Next Arm Processor FUJITSU-MONAKA and Its Technologies

Fujitsu Processor Development

2nm

Persistent Evolution for over 60 years : Always targeting No.1

The Next Stage as World's Top Processor

- Creating a new era of computing power is mandatory for the future society with massive data generation and processing
- Ever-increasing power in datacenters is critical, and the power efficiency in CPU (consists of 60%) would be the vital factor for a sustainable future
- Fujitsu shall utilize its Supercomputer success and technology for the solution

- Developing the new power efficient CPU "FUJITSU-MONAKA" for datacenters, which will be shipped in 2027
- Targeted for wide range of usage in the datacenter including AI and HPC, and contribute to the realization of carbon-neutral society

Fujitsu Arm Processor "FUJITSU-MONAKA"

Semiconductor Trends -High Performance-

• (Pros.) Continuing improvements in semiconductor performance and power consumption, due to advancements in transistor structures

• (Cons.)

Facing challenges with the slowdown in increasing cache memory capacity and the drastic increase in cost

	Transistor Type		
	Planar	FinFET	GAA (Gate-All-Around)
Technology node	~20nm (K computer : 45nm)	16nm ~ 3nm (Fugaku : 7nm)	2nm~ (MONAKA:2nm)
Semiconductors Structures	Gate	Gate	Gate

Architectural innovation is required to meet demand of performance, power and cost

Semiconductor Trends*

3D Microarchitecture -High Performance-

• FUJITSU-MONAKA adopts the innovative 3D many-core architecture

- 2nm is used only for core die (top die), achieving high performance and low power consumption
- All the last level cache are in 5nm SRAM die (bottom die), tightly coupled with core die through TSV
- 3D many-core architecture realizes more cores, low latency and high throughput
- 2nm area is less than 30% of total die size, contributing to cost-efficiency

Ultra Low Voltage Technology - Energy Efficient-

subject to change

 FUJITSU-MONAKA's ultra low voltage operation technology enables energy saving comparable to one generation ahead of 2nm

Semiconductor Technology Node

Reducing power consumption by lowering voltage of the CPU

 $P \propto C V^2 f$

- C : Capacity
- V : Voltage
- f : Clock Frequency
- Fujitsu develops **custom circuits including SRAM by using our proprietary CAD**, which enables stable operation at an ultra low voltage

Security Enhancements -High Reliability-

However, not protected from cloud operators.

Confidential Computing

- Protect end-user data in memory by encrypting every VM with a different key generated by the processor hardware and firmware
- Expected to be an essential technology in cloud, edge and HPC environments which deals with sensitive data

Processor encrypts each VM's memory with a different key. User data is not accessible from cloud operators. (Protected even if the cloud infrastructure is compromised)

Comparison between A64FX and FUJITSU-MONAKA

A64FX	FUJITSU-MONAKA	
HBM2 (8GB) HBM2 (8GB)	DORS PCIel Interconnect SRAM Die (LLC) Core Die DORS PCIel SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die SI Interposer	
Armv8-A Architecture - SVE for HPC and AI	Armv9-A Architecture - SVE2 enhanced for HPC and AI - Confidential Computing	
48 cores x 1 socket	144 cores x 2 sockets	
Low voltage	Ultra low voltage	
2.5D - CPU 7nm - HBM2	3D chiplet - Core die 2nm - SRAM die/IO die 5nm	
HBM2 4 channels	DDR5 12 channels	
PCI Express 3.0 Tofu Interconnect	PCI Express 6.0 (CXL3.0)	
Air cooling and water cooling	Air cooling	

Software Ecosystem - Easy to Use -

Supports industry standard software

- Standard Linux OS support and system architecture
 - Continue and expand OSS development activities for FUJITSU-MONAKA
 - OSS development achievements for Fugaku/A64FX: GCC, glibc, live-patch, papi, etc
 - Comply with standard system architecture (Arm System Ready) and support major distributions
- Arm software ecosystem
 - Working on the standard tools (Python/Java/LLVM) to provide higher performance on FUJITSU-MONAKA.
- > Enabling smooth transition of customer assets and continuously enhancing performance

Conclusion

- Fujitsu develops high performance and energy-efficient processor called FUJITSU-MONAKA using our own microarchitecture and innovative 3D many-core architecture
- We continue and expand software development with communities and partners for easy-to-use
- This processor will meet future computing demand of performance, power, reliability and usability for wide range of usage in the datacenter including AI and HPC
- We will contribute to the realization of carbon-neutral society by our computing technologies and collaboration with users and partners

* This presentation is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Thank you

