

- Fugaku is the successor to K computer that has been in operation for 7 years
- Powered by A64FX, an Arm-based processor designed for HPC

© RIKEN

Commercial models, PRIMEHPC FX1000/FX700, are now available

Fugaku Project

FUJITSU

- Joint Development by RIKEN and Fujitsu
- Flagship supercomputer for Japan
- Arm64-based fast and Green Supercomputer
- Solving the Social issues in the World*

Fugaku Supercomputer Joins Fight Against Covid-19 (InsideHPC, April 7, 2020)

Fugaku Ultra-Dense Hardware

Single rack (384 CPUs) = 1 Peta flops

10¹⁵ floating point operation per second

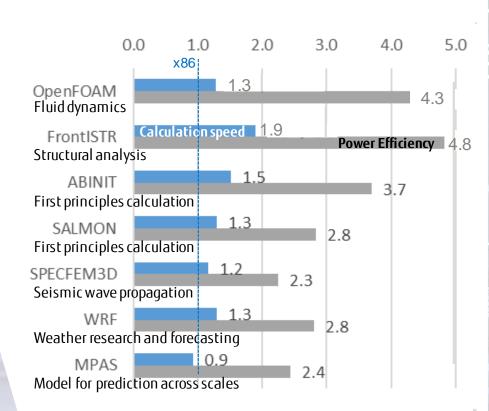
K computer

100 rack

Energy Efficient HPC

- Supercomputers consume vast amount electric power
 - K computer 13MW = 15K US households
 - K computer X 100 1.3GW = 1.5M US households
- Green500, a global ranking for the energy efficiency
 - Fugaku prototype took No.1 in the Green500 at the SC19,

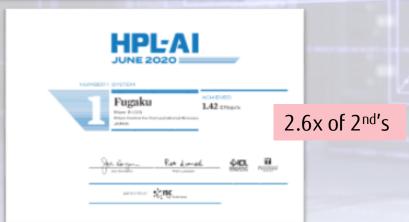
Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficienc (GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876

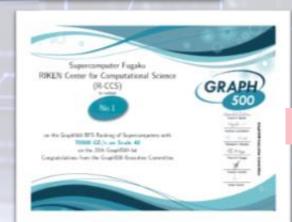

Fugaku has 40x the performance using only 3x the power of K computer!

High Performance and Power Efficiency

The power efficiency of major OSS HPC applications

- Measured on A64FX 2.2GHz normalized to IA CPU 2.9 GHz x2
- High efficiency is achieved by energyconscious design and implementation



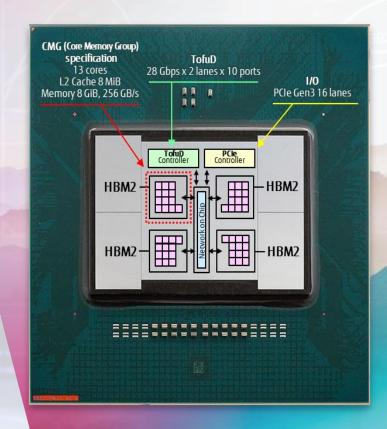

Fugaku ranked at 1st place in all categories FUJITSU

4.6x of 2nd's

3.0x of 2nd's

Road to Fujitsu's ARM-based Supercomputer

- Strong collaboration with Arm
 - Plus Fujitsu's Supercomputer DNA
- Added features for HPC applications
 - Optimized toward new supercomputer standard
 - Best performance/power
 - High-performance CPU core for HPC usage
 - High memory bandwidth and B/F ratio
 - High scalability of Tofu interconnect
 - Targeting to not only current HPC but also Al applications
- Expanding eco-system with HPC technology and applications
 - Roadmap to general purpose Enterprise
 - Working with Arm/Linux community and OSS

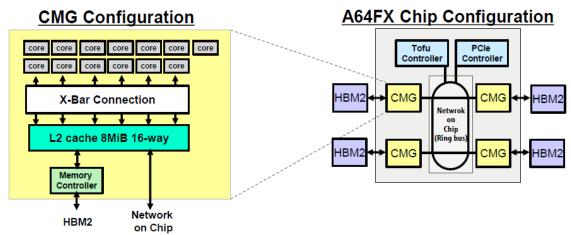

A64FX Overview

- Fujitsu's Arm Processor
 - Lead partner with Arm for SVE architecture
 - High speed
 - Low Power Design

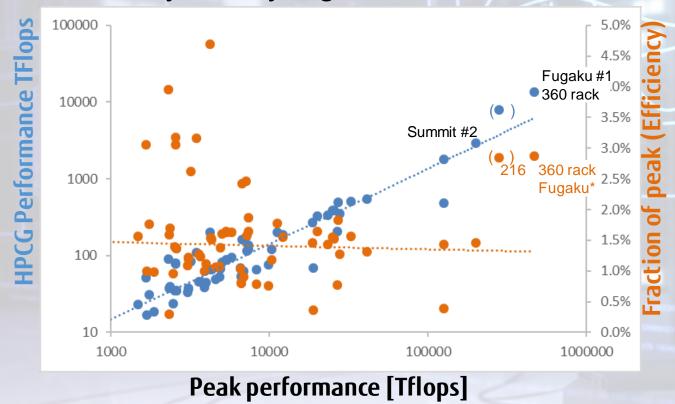
Goal

- CPU with GPU-class performance
- High performance, high efficiency
 - DP performance >3 TFLOPS, > 90%@DGEMM
 - Memory BW 1024GB/s, > 80%@STREAM Triad
- Power efficiency
 - 2-5x performance/watt over IA
 - 16.9GFLOPS/W (HPL)

Collaboration with Arm


- FUJITSU
- A64FX is the first processor of the ARMv8-A SVE architecture
- Collaboration with ARM to develop and optimize SVE for a wide range of applications
 - 512 bit SIMD
 - Added FP16 and INT16/8 dot product for AI applications
 - Many other enhancements
 - Gather/Scatter
 - Four operand FMA
 - Predicated operations
 - Math acceleration
 - Compression
 - HW barrier and sector cache

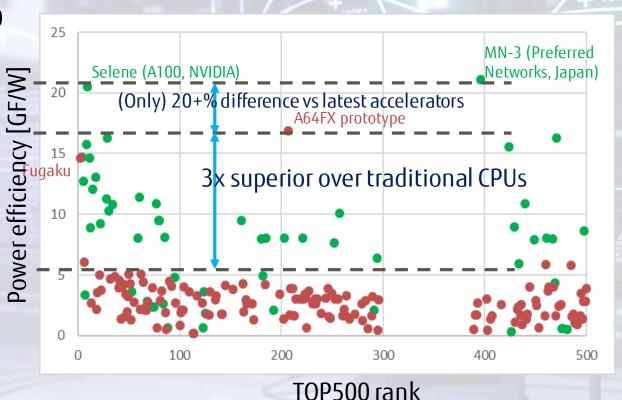
Many Core Architecture


- A64FX consists of four CMGs (Core Memory Group)
 - A CMG consists of 13 cores, an L2 cache and a memory controller
 - One out of 13 cores is an assistant core which handles daemon, I/O, etc.
 - Four CMGs keep cache coherency by ccNUMA with on-chip directory
 - X-bar connection in a CMG maximizes high efficiency for throughput of the L2 cache
 - Process binding in a CMG allows linear scalability up to 48 cores
- On-chip-network with a wide ring bus secures I/O performance

HPCG results of TOP500 @ ISC20

FUJITSU

■ Fugaku's efficiency is very high at ~3%



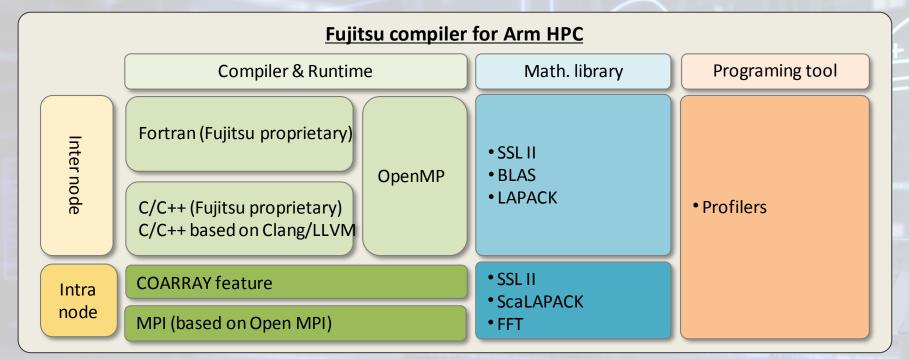
Fugaku and A64FX Greenness on TOP500 FUJITSU

■ Power efficiency in GF/W, w/ ACCEL and w/o ACCEL

■ Top500 - June 22, 2020

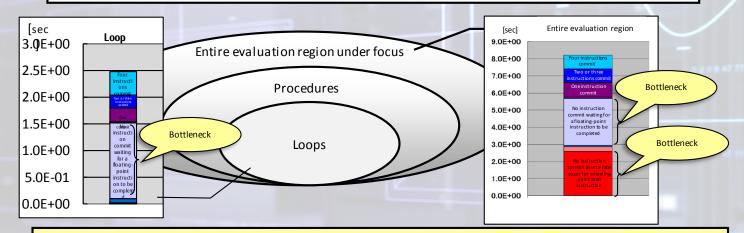
A64FX demonstrating power efficiency comparable to latest accelerators, and 3x superiority c.f. traditional CPUs

Full Software Stack for the A64FX CPU



- From Kernel, middleware, compiler to HPC application
- OSS stack provides high usability
- Keeping binary compatibility with the other Arm64 v8.2+SVE systems

Fujitsu's Programming Environment



- Supports major HPC programming environment software and latest international standard
- Supports Arm v8 SVE for optimized application performance

Bottleneck Diagnostics with Fujitsu Profiler Fujitsu

- CPU Performance Analysis information produced by FUJITSU Profiler enables you to
 - observe summarized visualization of activities in the CPU
 - determine bottleneck in the CPU
 - obtain data in the level of loop, procedure, or entire region
- Major part of CPU Performance Analysis information is the cycle accounting graph such as the following

- What is a reason of the bottleneck?
- To what extent can the bottleneck be improved?
 CPU Performance Analysis information produced by FUJITSU Profiler is the answer to these questions.

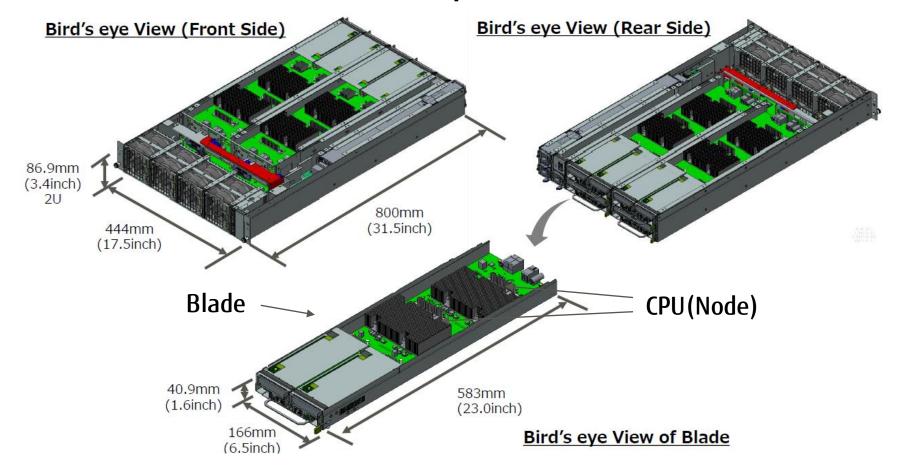
A64FX-based PRIMEHPC Family

PRIMEHPC FX1000

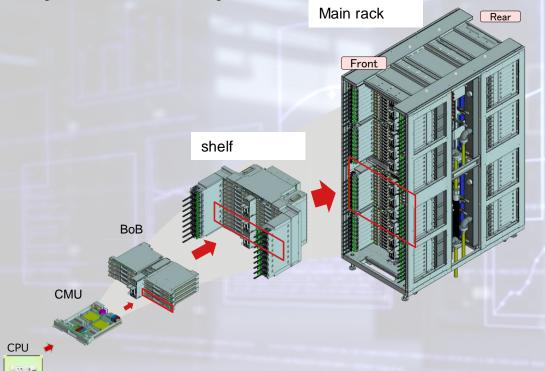
PRIMEHPC FX700

A64FX-based PRIMEHPC Platforms

FX1000 FX700



High density custom cabinet, 384 nodes/cabinet, Scale to ~400k nodes Water cooled, Tofu interconnect D, Fujitsu software stack Standard 19' Rack mount, 8 nodes (=CPU)/2U, Air cooled, InfiniBand EDR/HDR100 Utilize ISV and Open Source


PRIMEHPC FX700 Components



System Layout of PRIMEHPC FX1000

Layer	No de #	description				
CPU	1	CPU and Main Memory CPU includes execution cores, assistant cores, L2\$, memory controller, interconnect controller (ICC) and PCIe interface				
CMU	2	CMU (CPU Memory Unit) consists 2x CPU				
ВоВ	16	BoB (Bunch of Blades) consists 8x CMU				
Shelf	48	Shelf consists 3x BoB				
Main Rack	384	Main Rack consists 8x shelves				

shaping tomorrow with you