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Figure 3 showcases the pseudocode of the function modified using SVE intrinsics.Abstract
Decision trees are a cornerstone of many machine learning algorithms, o�fering 
interpretable & robust models for structured data. XGBoost (eXtreme Gradient 
Boosting)[1] uses an ensemble of decision trees to deliver high performance in 
gradient boosting.

In this work, we leverage ARM Scalable Vector Extension (SVE)[2], which is a 
vector extension for Armv-8A that supports variable length vectors from 128 to 
2048 bits. By utilizing SVE’s vectorization capabilities we accelerate XGBoost’s 
training pipeline by optimizing the histogram update function - a key step in 
constructing decision trees.

The results of our experiments on Higgs Boson dataset show a 2x speed-up in 
training time compared to the non-SVE optimized code, with same accuracy on 
ARM architectures.

Methodology
Figure 1 illustrates implementation of gradient boosting, where for a given dataset 
X, subsequent trees are built by learning the residual of the previous tree as the 
input for the next tree.

Figure 4 presents the performance numbers on ARM, showing 2x speed-up 
with SVE implementation across multiple cores compared to the default 
implementation. These measurements were taken on an AWS Graviton 3 
(c7g.8xl) machine with 32 cores.

Dataset details: Kaggle’s Higgs Boson dataset[3]

Results

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

Figure 2 outlines the key steps in training pipeline, highlighting the function which is 
optimised using SVE to compute and update histogram values e�ficiently.

The following features of SVE contributed in boosting the performance of the 
XGBoost training process on ARM : 
                                                                                                                                                                                  
1. Predicate-Based Operations: Predicates control active lanes by creating masks to 
process only valid elements ensuring safe and e�ficient computation at the 
boundaries of the dataset.

2. Gather-load & Scatter-store operations: Parallel access to non-contiguous 
memory reduces memory bottlenecks, which is crucial for decision tree building 
process.

3. Parallelism for Scalability: SVE maximizes parallelism by processing multiple data 
elements simultaneously, reducing loop iterations and computation time.

Figure 1 : Implementation of gradient boosting in XGBoost

Figure 3: Pseudocode for UpdateHistogramWithSVE

Figure 4 : Performance improvement with SVE
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Figure 2 : Key steps in XGBoost training pipeline
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Pseudocode for UpdateHistogramWithSVE

Function: UpdateHistogramWithSVE
Steps:

1  Load gradient and Hessian values from the input array
2  For each chunk of rows with size equal to vector width:

(a)  Create masks for valid elements in the current chunk
(b)  Load gradient index values and offsets for the current chunk
(c)  Calculate index

If there are any missing values, multiply gradient index by 2
Otherwise, add the offsets to the gradient index and then 
multiply by 2

(d)  Split 32-bit index vector into two 64-bit vectors (lower and 
     upper)
(e)  Increment indices for Hessian values (lower + 1, upper + 1)
(f)  Gather histogram values for computed indices
(g)  Update Histogram: Add the gradient and hessian values to the  
     histogram data
(h)  Store updated histogram back into memory

3  End For

End Function

Chen, Tianqi, and Carlos Guestrin. "Xgboost: A 
scalable tree boosting system." Proceedings of the 
22nd acm sigkdd international conference on 
knowledge discovery and data mining. 2016.

A64 SIMD Instruction List: SVE Instructions
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Our work improves the performance of training algorithm of XGBoost by 
leveraging SVE intrinsics, achieving up to a 2x speed-up. The enhancements 
maximize hardware utilization and scalability, paving the way for 
high-performance gradient boosting on ARM platforms.

This work is planned to be extended towards accelerating other gradient 
boosting algorithms like LightGBM, CatBoost, etc.

Conclusion and Future Work
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