
Accelerating XGBoost on ARM CPUs with Scalable
Vector Extension for High-Performance Data Science
Divya Kotadiya, Ragesh Hajela, Doteguchi Masahiro, Priyanka Sharma
Fujitsu Limited

Figure 3 showcases the pseudocode of the function modified using SVE intrinsics.Abstract
Decision trees are a cornerstone of many machine learning algorithms, o�fering
interpretable & robust models for structured data. XGBoost (eXtreme Gradient
Boosting)[1] uses an ensemble of decision trees to deliver high performance in
gradient boosting.

In this work, we leverage ARM Scalable Vector Extension (SVE)[2], which is a
vector extension for Armv-8A that supports variable length vectors from 128 to
2048 bits. By utilizing SVE’s vectorization capabilities we accelerate XGBoost’s
training pipeline by optimizing the histogram update function - a key step in
constructing decision trees.

The results of our experiments on Higgs Boson dataset show a 2x speed-up in
training time compared to the non-SVE optimized code, with same accuracy on
ARM architectures.

Methodology
Figure 1 illustrates implementation of gradient boosting, where for a given dataset
X, subsequent trees are built by learning the residual of the previous tree as the
input for the next tree.

Figure 4 presents the performance numbers on ARM, showing 2x speed-up
with SVE implementation across multiple cores compared to the default
implementation. These measurements were taken on an AWS Graviton 3
(c7g.8xl) machine with 32 cores.

Dataset details: Kaggle’s Higgs Boson dataset[3]

Results

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

Figure 2 outlines the key steps in training pipeline, highlighting the function which is
optimised using SVE to compute and update histogram values e�ficiently.

The following features of SVE contributed in boosting the performance of the
XGBoost training process on ARM :

1. Predicate-Based Operations: Predicates control active lanes by creating masks to
process only valid elements ensuring safe and e�ficient computation at the
boundaries of the dataset.

2. Gather-load & Scatter-store operations: Parallel access to non-contiguous
memory reduces memory bottlenecks, which is crucial for decision tree building
process.

3. Parallelism for Scalability: SVE maximizes parallelism by processing multiple data
elements simultaneously, reducing loop iterations and computation time.

Figure 1 : Implementation of gradient boosting in XGBoost

Figure 3: Pseudocode for UpdateHistogramWithSVE

Figure 4 : Performance improvement with SVE

Tree 2 Tree k

f1(X) f2(X) fk(X)

Training set (X)

Σ
k

fk (X)
k=1

Residual Residual Residual

Tree 1

Figure 2 : Key steps in XGBoost training pipeline

Input Data

Initialized model

Update predictions

SVE implementation
For ARM CPUs

Tree building process

Our contribution

Vectorization

Yes

No Model
converged?

Copmute Gradient
and Hessian values

Update histogram

Copmute Gradient
and Hessian values

Update histogram

Final prediction

Pseudocode for UpdateHistogramWithSVE

Function: UpdateHistogramWithSVE
Steps:

1 Load gradient and Hessian values from the input array
2 For each chunk of rows with size equal to vector width:

(a) Create masks for valid elements in the current chunk
(b) Load gradient index values and offsets for the current chunk
(c) Calculate index

If there are any missing values, multiply gradient index by 2
Otherwise, add the offsets to the gradient index and then
multiply by 2

(d) Split 32-bit index vector into two 64-bit vectors (lower and
 upper)
(e) Increment indices for Hessian values (lower + 1, upper + 1)
(f) Gather histogram values for computed indices
(g) Update Histogram: Add the gradient and hessian values to the
 histogram data
(h) Store updated histogram back into memory

3 End For

End Function

Chen, Tianqi, and Carlos Guestrin. "Xgboost: A
scalable tree boosting system." Proceedings of the
22nd acm sigkdd international conference on
knowledge discovery and data mining. 2016.

A64 SIMD Instruction List: SVE Instructions

Higgs Boson Dataset

References
Link to Pull request

ARM (default) ARM (with SVE)

1 2 4 8 3216
Number of cores

6

5

4

3

2

1

0

Ex
ec

ut
io

n
ti

m
e

(s
ec

)

Our work improves the performance of training algorithm of XGBoost by
leveraging SVE intrinsics, achieving up to a 2x speed-up. The enhancements
maximize hardware utilization and scalability, paving the way for
high-performance gradient boosting on ARM platforms.

This work is planned to be extended towards accelerating other gradient
boosting algorithms like LightGBM, CatBoost, etc.

Conclusion and Future Work

[1]

[2]

[3]

Lower in better

