cO
% Enabling vLLM on ARM for scalable LLM FUJITSU

Y

v Inference on resource-constrained servers

Sanket Kale, Ashwin Sekhar, Nishant Prabhu, Abhishek Nair, Abhishek Jain, Masahiro Doteguchi, Priyanka Sharma
Fujitsu Limited

SIMD implementation
for ARM CPUs

Abstract

e VLLMIMis an LLM serving framework built for deploying large
language models (LLMs) with memory efficiency. It provides
continuous batching and paged attention functionality enabling
lower memory footprint and the right balance of request-level
latency and throughput.

Neon

Block Table

Vectorization

Block ID | Cache KV

A

PyTorch

This work’s
contribution

CPU kernels

e Originally, vLLM was supported on GPUs and demonstrated 2-4x
better throughput compared to other methods for fixed latency

Asynchronous requests from users

requirements. Support for x86 platforms was recently enabled. 5 PagedAttention)
kernel
e We enable vLLM for ARM CPUs, extending support for PyTorch % | |
and OpenVINO backends. We develop specialized kernels using é oo sarchta
Neon and Scalable Vector Extension (SVE)® intrinsics for SIMD O Ve SURen
vectorization on ARM. We observe 1.5x overall latency RS NS N
improvement with PyTorch, ~51x improvement in prefill latency \C’)VSQR,INO SREEMT
and ~3x improvement in per-token decoding latency with - /
OpenVINO over the baseline. Figure 1: Schematic of vLLM's backend and bindings with PyTorch and OpenVINO
vLLM with PyTorch backend vLLM with OpenVINO backend
e Added vectorized implementations of CPU kernels e Utilizes BRGEMM!? matrix multiplication micro-kernel with
(PagedAttention, LayerNormalization, PositionalEncoding, threading and blocking logic implemented over them to
etc.) using Neon intrinsics for FP32, FP16 and BF16 data types. achieve improved TTFT latency.
e Specialized execution pathways were added for hardware without * Added implementations of paged attention executor and
BF16 support (e.g., Apple Metal CPUs) to bypass BF16 execution supporting functions using SVE intrinsics in OpenVINO. This

enabled vLLM to use the OpenVINO backend for

and use FP32 or FP16 precisions instead. :
PagedAttention execution on ARM.

Mean TTFT vs total (prefill + decoding) throughput Mean TTFT vs Throughput
— Figure 2 o >0 :
g 40 Be oo 10 1. Variation of total o 2 T —¢— llamatsve+Q Figure 4
P 0.2 05 07 1015 throughput (prefill P : —o— |lama+sve Variation of total
R A UINPUL APTET! i, —e— llama throughput (prefill
o 35 + decoding) with S 256 : + decoding) with
= ~1.5x mean TTFT for ot ; mean TTFT for
2 LLaMA-2 7B model. 2 : 10 15 20 LLaMA-2 7B.
<, 30 . . e S : —o—° .
= Mean single inference throughput Fujitsu’s 3 : Fujitsu’s
- et el optimizations = ; optimizations give
: o5 provide ~1.5x : : ~51x better TTFT
£ 0.05 better throughput 2 0.5 15.0 1.°5 .2°0 ’?P? an average fotr
= at higher request = -~ 5 ! rateesame reques
9 20 rates (>0.5) s : ' |
+ compared to naive + » e Q: 8-b|th
= inference = : : KV-cache
o 15 (PyTorch). 7 ' ~51x faster 5 quantization.
L A , — ' e Annotations are
& 0.02 ® Annotations are s |02 g request rates.
°10| % request rates. o
0 100 200 300 400 500 600 1 4 36 64 256
Mean TTFT (sec) Mean TTFT (sec)
Mean TPOT vs total (prefill + decoding) throughput Mean TPOT vs Throughput
40 Flgl."e. 3 1.2 2.0 [—o— llama+sve+Q Figure 5
Variation of total —o— |(lama+sve Variation of total
throughput (prefill —— llama throughput (prefill
35 + decoding) with 256 + deCQI_Cé)lggl_)leth
mean TPOT for mean or
2.0 -
LLaMA-2 7B model. LLaMA-2 78.
30 Mean single inference throughput FUjitSU'S Fujitsu’s

optimizations
provide ~3x better
1.0 1.5 TPOT on an

o—0

optimizations
provide ~1.5x

Total (prefill + decoding) throughput (tokens/sec)
Oon
Total (prefill + Decoding) Throughput (tokens/sec)

better throughput average for the
at higher request 128 same request rate.

20 rates (>0.5) : e Q: 8-bit
compared to naive : KV-cache

15 inference 54 : quantization.
(PyTorch). 05 . ~3x faster . e Annotations are

ol 4002 e Annotations are | ' request rates.

request rates.
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.1 0.2 0.5 1.0 2.0 4.0 8.0
Mean TPOT (sec) Mean TPOT (sec)
All measurements performed on AWS Graviton3E (armé4, 64 cores, 128GB RAM, 2.6 GHz) TTFT - Time to first token (prefill latency), TPOT - Time per output token (per-token decoding latency)

Links to pull requests

e This work enables vLLM on the ARM CPUs, with kernel-level Neon and [1] Kwon et al., ERficient Memory Management for Large
SVE optimizations for PyTorch and OpenVINO backends, giving us Language Model Serving with PagedAttention. 2023.

f ARM CP arXiv:2309.06180.
Strong pPEfTormance on Us. [2] Georganas et al., High-Performance Deep Learning via a

Single Building Block. 2019. arXiv:1906.06440.

[3] Scalable Vector Extensions, Arm Developer,
https://developer.arm.com/Architectures/Scalable%20Vector
%Z20Extensions

e We will extend support for PagedAttention in FP16 precision in both
backends by July 2025 to enhance performance on Arm CPUs further.

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

