
Optimizing Matrix Math: Batch-Reduced GEMM (BRGEMM)
for Accelerated Deep Learning on Arm HPC Systems
Shreyas K S, Deeksha K, Vineel A G, Abhishek J, Kentaro K, Masahiro D, Priyanka S

Fujitsu Limited

We have tested performance of our kernel at 2 levels, shape-wise at oneDNN level
using the benchdnn and at model inference level using Pytorch on AWS Graviton
3E machine with 32 cores.

The graph in Figure 4 demonstrates the speed-up (up to 1.4x) of our BRGEMM
kernel compared to the current oneDNN implementation, based on shapes
gathered from various language and vision models in PyTorch, including but not
limited to Tinyllama, Whisper, DETR, Albert.

ResultsAbstract
Matrix multiplications serve as a basic building block for models like Transformers
and large language models (LLMs), thus contributing majorly for the performance
of deep learning workloads. Among the matrix multiplication algorithms, BRGEMM
(Batch-Reduced GEMM) stands out as a highly e�ficient algorithm which can be
used in other essential kernels such as convolutions, significantly accelerating
various deep learning language and vision models.

In this work, we have developed BRGEMM[1] utilising the SVE vector registers to
achieve maximum vectorization on Arm, addressing the growing need for e�ficient
computation on Arm architectures. We chose oneDNN (Deep Neural Network
Library) to implement this kernel as it is an open-source performance library which
serves as the backend for many popular deep learning frameworks, including
PyTorch, TensorFlow, and JAX, making it an ideal platform for implementing
optimized algorithms. Our contributions to oneDNN provides a 1.2x to 1.4x
performance improvement at the kernel level for various LLM shapes and achieves
up to 3x acceleration in inference time for various deep learning language and
vision models like Whisper, Resnet50, Llama, T5 etc., in PyTorch on ARM platforms.

This work accelerates high-performance deep learning workload on ARM HPC
systems, fostering improved scalability and e�ficiency for applications ranging from
computer vision to NLP and recommendation systems. By developing BRGEMM,
we advance the adoption of Arm architecture in AI workloads.

Methodology
BRGEMM : The batch-reduce GEMM kernel performs multiplication on a series of
input sub-tensor blocks (batch) and combines the partial results into a single
output or accumulator sub-tensor block.[1]

According to Figure 1 there are 4 matrix multiplications performed in a batch, i.e.
A0xB0, A1xB1, A2xB2, A3xB3 and the sum of all the results is store in Cj .The Figure 2
shows the GEMM microkernel implementation used by BRGEMM on aarch64 for a
single matrix multiplication(e.g. - A0xB0) within a batch, written in JIT using Xbyak
library in C++. Here for simplicity each vector registers is considered to be 64 bits,
which means each vector registers can hold two f32 elements.

Figure 1 : Batch-reduce operation
The 4 sub-tensors of tensor A are
multiplied with the corresponding 4
sub-tensors of B forming a batch and
reduced to a sub-tensor of C as show
in the formula, where α and β are
scaling parameters This reduces
load/store operations on C tensor[1].

Tensor A

A0

A3

A1

A2

Tensor B

B3

B2

B0

B1

Tensor C

C
J

1 2

3 4

5 6

7 8

1x5+2x7 1x6+2x8

3x5+4x7 3x6+4x8

2 2 4 4z0

7 8

1 1 3 3

1x5 1x6

z2

3x5 3x6

z3

1x5+2x7 1x6+2x8 3x5+4x7 3x6+4x8

z2 z3Result (C matrix)

z1
5 6

z1

z0

A X B C=
Load
Broadcast
Store

FMLA

z0, z1, z2, z3 - Vector
registers of 64 bit
Data type - f32(32bits)

X X X X

X

Matrix A and B are broadcasted and loaded respectively to vector registers. We
perform the fused-multiply-add operation(FMLA) on these registers thus storing
the results in vector registers termed as accumulators. Once a batch is processed
the contents of accumulators are stored in memory assigned to matrix C. The
kernel also involves reordering of B matrix into blocked format to enable better
memory and cache utilisation.

Convolution in CNNs can be reformulated as BRGEMM-based matrix multiplication
with appropriate input and weight transformations.[1]

Input tensors and weights are divided into smaller blocks, which are reshaped
into matrices—one representing input activations and the other kernel weights.
Multiple such flattened pairs are prepared in parallel for e�ficient processing.
For each spatial location in the output, the BRGEMM kernel processes the
corresponding weight and input blocks and accumulates the results in the output
tensor.
The accumulated results from the BRGEMM operations are reshaped back into
the final output tensor format.

Thus, the integration of the batch-reduce GEMM kernel removes the necessity for
a dedicated convolution kernel. The optimizations applied to the BRGEMM kernel
directly contribute to performance improvements in BRGEMM-based convolution.

Figure 4 : Shape wise Speed-up

12
x4

1x
64:12

x6
4x4

1

8x1
00x3

2:8
x3

2x1
00

8x1
00x1

00:8x1
00x3

2

12
x5

3x
64:12

x6
4x5

3

10
0x2

56:2
56x9

2

14
5x1

6.1
6x1

024

12
x5

3x
53:1

2x5
3x

64

12
x4

1x
41.12

x4
1x

64

29
0x1

6:1
6x1

024

10
0x2

56:2
56x2

56

580x4
096:4

096x1
6

32
x5

12
:512

x3
2

32
x5

12
:512

x5
12

580x1
6:1

6x1
024

14
5x4

096:4
096x1

6

14
5x1

6:1
6x4

096

32
x7

68:76
8x5

12

8x1
00x8

50:8x8
50x3

2

12
x6

4x4
48:12

x4
48x6

4

4096x1
6:1

6x1
024

25
6x3

2x6
4:25

6x6
4x3

3

Shapes

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

 0
Ti

m
e

(in
 m

s)

Default oneDNN Our Implementation

BRGEMM KERNEL PERFORMANCE FP32

The graph in Figure 5 illustrates the inference speed-ups (up to 4.5x) achieved in widely used
language and vision models in PyTorch, compared to the current default implementation on
ARM.

The performance acceleration observed on various individual shapes at oneDNN level are
e�fectively extended to model level inference accelerations thus enhancing the performance
of deep learning workloads on ARM.

The use of vector registers and data reorders in BRGEMM has e�fectively
accelerated matrix math on ARM CPUs.

Our contribution has significantly enhanced the performance of deep learning
language and vision models like Whisper, Resnet50, Llama, T5 etc., on ARM
CPUs.

Our future work aims to implement quantisation in BRGEMM kernel to
accelerate matmuls and convolutions in quantised deep learning workloads.

Conclusion and Future Work

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

Figure 2 : BRGEMM operation

Figure 3 : BRGEMM Convolution Flow

Data transformation BRGEMM operation2 Output Reshaping31

1

2

3

Georganas, Evangelos & Banerjee, Kunal & Kalamkar, Dhiraj & Avancha,
Sasikanth & Venkat, Anand & Anderson, Michael & Henry, Greg & Pabst, Hans
& Heinecke, Alexander. (2019). High-Performance Deep Learning via a Single
Building Block. 10.48550/arXiv.1906.06440.

References

Brgemm
Matmul
– A64FX

Brgemm
Convolution

– A64FX

Brgemm
Matmul
– GR3

Brgemm
Convolution

– GR3

Porting
OneDNN
to Fugaku

[1]

Σ N - 1

i = 0
Ai * BiCj =β* Cj + α

Figure 5 : Inference Speed-up in DL models

W
hisp

er
unet

re
sn

et5
0

W
hisp

er
Ilm

a T5
vg

g16

m
obile

net_v
3_

lar
ge

Bert

sh
u�

fle
net_v

2_
x1

dlrm

sq
ueeze

net1_
1

DL MODEL PERFORMANCE FP32

Default PyTorch

MODELS

Ti
m

e
(in

 m
s)

1200

1000

800

600

400

200

0

3x

4.5x

1.44x

1.29x

Our Implementation

