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We have tested performance of our kernel at 2 levels, shape-wise at oneDNN level 
using the benchdnn and at model inference level using Pytorch on AWS Graviton 
3E machine with 32 cores. 

The graph in Figure 4 demonstrates the speed-up (up to 1.4x) of our BRGEMM 
kernel compared to the current oneDNN implementation, based on shapes 
gathered from various language and vision models in PyTorch, including but not 
limited to Tinyllama, Whisper, DETR, Albert. 

ResultsAbstract
Matrix multiplications serve as a basic building block for models like Transformers 
and large language models (LLMs), thus contributing majorly for the performance 
of deep learning workloads. Among the matrix multiplication algorithms, BRGEMM 
(Batch-Reduced GEMM) stands out as a highly e�ficient algorithm which can be 
used in other essential kernels such as convolutions, significantly accelerating 
various deep learning  language and vision models.

In this work, we have developed BRGEMM[1] utilising the SVE vector registers to 
achieve maximum vectorization on Arm, addressing the growing need for e�ficient 
computation on Arm architectures. We chose oneDNN (Deep Neural Network 
Library) to implement this kernel as it is an open-source performance library which 
serves as the backend for many popular deep learning frameworks, including 
PyTorch, TensorFlow, and JAX, making it an ideal platform for implementing 
optimized algorithms. Our contributions to oneDNN provides a 1.2x to 1.4x 
performance improvement at the kernel level for various LLM shapes and achieves 
up to 3x acceleration in inference time for various deep learning  language and 
vision models like Whisper, Resnet50, Llama, T5 etc.,  in PyTorch on ARM platforms.

This work accelerates high-performance deep learning workload on ARM HPC 
systems, fostering improved scalability and e�ficiency for applications ranging from 
computer vision to NLP and recommendation systems. By developing BRGEMM, 
we advance the adoption of Arm architecture in AI workloads.

Methodology
BRGEMM : The batch-reduce GEMM kernel performs multiplication on a series of 
input sub-tensor blocks (batch) and combines the partial results into a single 
output or accumulator sub-tensor block.[1]

According to Figure 1 there are 4 matrix multiplications performed in a batch, i.e. 
A0xB0, A1xB1, A2xB2, A3xB3 and the sum of all the results is store in Cj .The Figure 2 
shows the GEMM microkernel implementation used by BRGEMM on aarch64 for a 
single matrix multiplication(e.g. - A0xB0 ) within a batch, written in JIT using Xbyak 
library in C++. Here for simplicity each vector registers is considered to be 64 bits, 
which means each vector registers can hold two f32 elements.

Figure 1 : Batch-reduce operation
The 4 sub-tensors of tensor A are 
multiplied with the corresponding 4 
sub-tensors of B forming a batch and 
reduced to a sub-tensor of C as show 
in the formula, where α and β are 
scaling parameters This reduces 
load/store operations on C tensor[1].
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Matrix A and B are broadcasted and loaded respectively to vector registers. We 
perform the fused-multiply-add operation(FMLA) on these registers thus storing 
the results in vector registers termed as accumulators. Once a batch is processed 
the contents of accumulators are stored in memory assigned to matrix C. The 
kernel also involves reordering of B matrix into blocked format to enable better 
memory and cache utilisation.

Convolution in CNNs can be reformulated as BRGEMM-based matrix multiplication 
with appropriate input and weight transformations.[1]

Input tensors and weights are divided into smaller blocks, which are reshaped 
into matrices—one representing input activations and the other kernel weights. 
Multiple such flattened pairs are prepared in parallel for e�ficient processing. 
For each spatial location in the output, the BRGEMM kernel processes the 
corresponding weight and input blocks and accumulates the results in the output 
tensor.
The accumulated results from the BRGEMM operations are reshaped back into 
the final output tensor format.

Thus, the integration of the batch-reduce GEMM kernel removes the necessity for 
a dedicated convolution kernel. The optimizations applied to the BRGEMM kernel 
directly contribute to performance improvements in BRGEMM-based convolution.

Figure 4 : Shape wise Speed-up
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The graph in Figure 5 illustrates the inference speed-ups (up to 4.5x) achieved in widely used 
language and vision models in PyTorch, compared to the current default implementation on 
ARM.

The performance acceleration observed on various individual shapes at oneDNN level are 
e�fectively extended to model level inference accelerations thus enhancing the performance 
of deep learning workloads on ARM.  

The use of vector registers and data reorders in BRGEMM has e�fectively 
accelerated matrix math on ARM CPUs.

Our contribution has significantly enhanced the performance of deep learning  
language and vision models like Whisper, Resnet50, Llama, T5 etc., on ARM 
CPUs.

Our future work aims to implement quantisation in BRGEMM kernel to 
accelerate matmuls and convolutions in quantised deep learning workloads.

Conclusion and Future Work

This poster is based on results obtained from a project, JPNP21029 subsidized by the New energy and Industrial Technology Development Organization (NEDO).

Figure 2 : BRGEMM operation

Figure 3 : BRGEMM Convolution Flow
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Σ N - 1

i = 0
Ai * BiCj =β* Cj + α

Figure 5 : Inference Speed-up in DL models
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