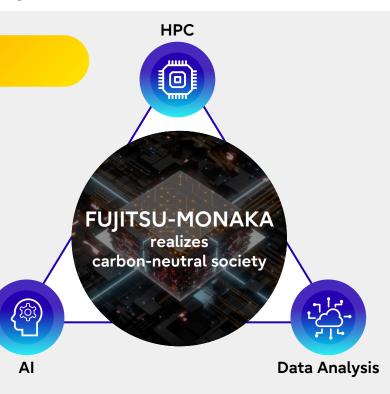

Next Arm-based Processor FUJITSU-MONAKA and Its Software Ecosystem

Fujitsu Limited

Fujitsu Processor Development

Persistent Evolution for over 60 years : Always targeting No.1

The Next Stage as World's Top Processor FUJITSU-MONAKA


Arm-based ultra power efficient processor (To be shipped in 2027)

Inheritance from Fugaku

- Many-core architecture
- High memory bandwidth
- Ultra-low voltage operation
- Building software stack using real applications
- Promoting expansion of the Arm ecosystem

Standardize and optimize datacenter workloads

- Expand the scope of the software stack to datacenter systems
 - Co-development with open-source communities to build an ecosystem
- Meet the future demands of datacenters
 - Performance, power efficiency, reliability and usability

Hardware Overview -FUJITSU-MONAKA-

50

0

Competitor X in 2027

MONAKA in 2027

MONAKA in 2027

n

Competitor X in 2027

Software Overview -Arm x Software Ecosystem-

Fujitsu co-develops hardware and co-enhances software ecosystems globally

• The FUJITSU-MONAKA software stack is being co-enhanced with the community, focusing on OSS

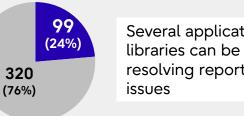
Application	Use Case Speech Recognition Surrogate Model Generative AI
Library Framework	Software Stack in Ecosystem OpenBLAS NumPy/SciPy scikit-learn oneDNN oneDAL PyTorch/TensorFlow
Middleware OS	Linux Kubernetes OpenStack GCC/LLVM Confidential Containers
Firmware Hardware	Arm Processor Utilization & FUJITSU-MONAKA System Development Many Core High-Capacity Memory Low Power Low Cost Security

Our recent activities

2 Promoting Growth of the Confidential Computing Technology

Joining UXL Foundation and Contributing to the Al Libraries

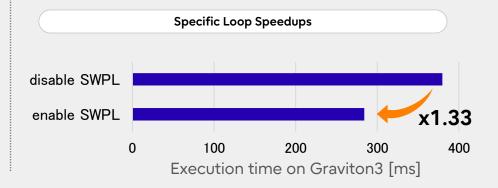
Enhancing Arm Support in LLVM Community


Integrate Fujitsu's compiler technology into OSS to expand our technology worldwide

- Aim to ensure applications' behavior and to improve the performance using LLVM for FUIITSU-MONAKA
- Work on enhancing LLVM for various Arm systems, looking ahead to FUIITSU-MONAKA

Quality enhancement with Fujitsu test suite

- Significant contribution to improving the quality of Flang*, which the community identifies as a need
- * LLVM's Fortran frontend


Number of reported issues of Flang in 2023

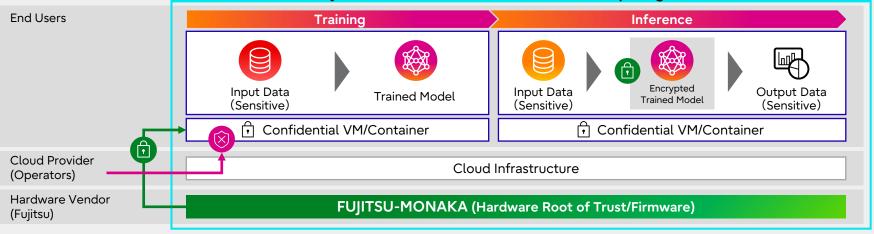
Several applications and libraries can be built by resolving reported

Apply Fujitsu's optimization technology to LLVM

Enhance software pipelining (SWPL) for AArch64

from Fujitsu from Others

> Fujitsu will continue these enhancements, contributing not only to FUJITSU-MONAKA but also to the Arm ecosystem.


2 Promoting Growth of the Confidential Computing Technology FUJITSU

Fujitsu will deliver a secure, high-performance platform with FUJITSU-MONAKA

- Research and verification to promote OSS software development for confidential computing
- Contributing to the Arm CCA ecosystem's expansion by closely working with the communities and partners

The Confidential Computing platform can protect user's sensitive data and provide safety

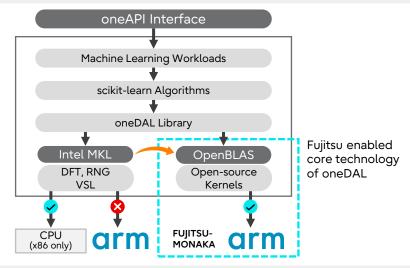
For AI workloads, this platform protects privacy of input/output data and intellectual property of trained models

FUJITSU-MONAKA-based Confidential Computing Platform

Processor encrypts each VM's memory with a different key.

Expected to be an essential technology in cloud, AI and HPC environments that deals with sensitive data.

3 Joining UXL Foundation and Contributing to the AI Libraries


Inified Acceleration Foundatio

Build an open-source ecosystem for AI computing on the UXL Foundation

- Deliver a multi-architecture, multi-vendor open-source software accelerator ecosystem
- Especially focus on the oneAPI Data Analytics Library (oneDAL)

First successful Arm enablement for oneDAL

• Successfully replaced MKL MATH functions with optimized open-source compute kernels of OpenBLAS

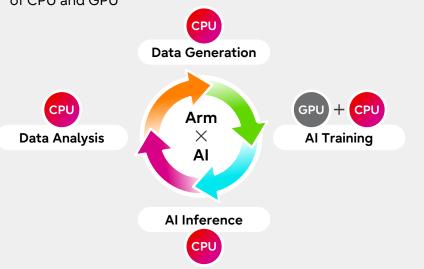
Speedup for ML algorithms

• Achieved up to 40x perf. speedup for ML algorithms compared to the current ARM default perf. by replacing MATH functions

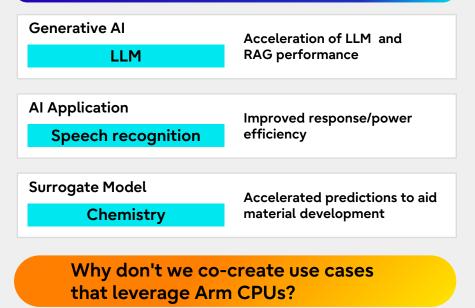
Future Outlook

- Continue to accelerate AI-ML algorithms further
- Contribute to the widespread use of open-standard software running on both CPU and GPU

4 Use Case Creation Through Customer Co-Creation



Broadening the scope of the Arm ecosystem through customer co-creation

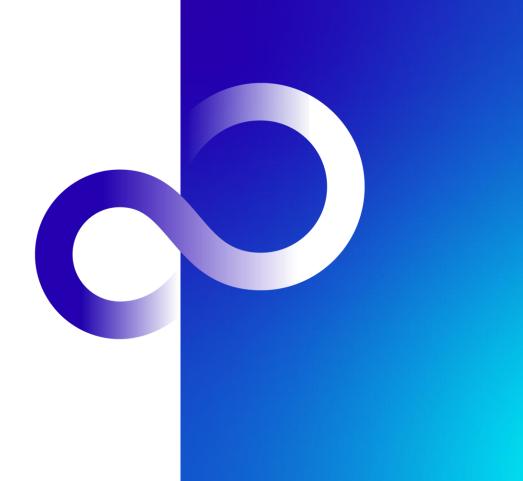

- Designing an Arm ecosystem where simply replacing the Arm CPU with FUJITSU-MONAKA results in performance improvement
- Co-creating use cases with customers that leverage the features of FUJITSU-MONAKA, with an emphasis on AI and data utilization

Examples of FUJITSU-MONAKA use cases

- Investigating AI use cases for FUJITSU-MONAKA by validating various AI models
- Evaluating the overall solution performance with a combination of CPU and GPU

Some examples of ongoing projects

Conclusion


• Fujitsu develops high performance and energy-efficient processor called FUJITSU-MONAKA using our own microarchitecture and innovative 3D many-core architecture

- This processor will meet future computing demand of performance, power, reliability and usability for wide range of usage in the datacenter including AI and HPC
- Fujitsu co-enhances software ecosystem with OSS communities and cocreates use case with customers

* This presentation is based on results obtained from a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO)

Thank you

