
Sun Microsystems, Inc. Fujitsu Limited
901 San Antonio Road 4-1-1 Kamikodanaka
Palo Alto, CA 94303 Nahahara-ku, Kawasaki, 211-8588
U.S.A. 650-960-1300 Japan

SPARC® Joint Programming
Specification (JPS1):
Commonality

Sun Microsystems and Fujitsu Limited

Release 1.0.4, 31 May 2002

Part No. 806-6753-1.0
Release 1.0.4, 31 May 2002

Please
Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.
Portions of this document are protected by copyright 1994 SPARC International, Inc.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems,
Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering
efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from
Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s
written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),
or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT
TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun
et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-Unis
et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à Netscape Communicator™: Copyright 1995
Netscape Communications Corporation. Tous droits réservés.
Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts
de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun
détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE,
OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT PAS, DANS LA
MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Copyright© 2001 Fujitsu Limited, 4-1-1 Kamikodanaka, Nahahara-ku, Kawasaki, 211-8588, Japan. All rights reserved.
This product and related documentation are protected by copyright and distributed under licenses restricting their use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Fujitsu Limited and HAL
Computer Systems, Inc., and its licensors, if any.
Portions of this product may be derived from the UNIX and Berkeley 4.3 BSD Systems, licensed from UNIX System Laboratories, Inc., a wholly owned subsidiary
of Novell, Inc., and the University of California, respectively.
The product described in this book may be protected by one or more U.S. patents, foreign patents, or pending applications.
TRADEMARKS
HAL and the HAL logo are registered trademarks of HAL Computer Systems, Inc. SPARC64® is a registered trademark of SPARC International, Inc., licensed
exclusively to Fujitsu Limited and HAL Computer Systems, Inc.
Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited.
This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of
merchantability, fitness for a particular purpose, or noninfringement.
This publication could include technical inaccuracies or typographical errors. changes are periodically added to the information herein; these changes will be
incorporated in new editions of the publication. hal computer systems, inc. may make improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time.
Sun Microsystems, Inc. Fujitsu Limited
901 San Antonio 4-1-1 Kamikodanaka
Palo Alto, California, 94303 Nahahara-ku, Kawasaki, 211-8588
U.S.A. Japan
http://www.sun.com http://www.fujitsu.com/

Contents

Preface xv

1. Overview 1

1.1 Navigating the SPARC Joint Programming Specification 2

1.2 Fonts and Notational Conventions 3
1.2.1 Implementation Dependencies 4
1.2.2 Notation for Numbers 4
1.2.3 Informational Notes 4

1.3 SPARC V9 Architecture 5
1.3.1 Features 5
1.3.2 Attributes 6
1.3.3 System Components 6
1.3.4 Architectural Definition 7
1.3.5 SPARC V9 Compliance 8

2. Definitions 9

3. Architectural Overview 19

3.1 SPARC V9 Processor Architecture 19
3.1.1 Integer Unit (IU) 20
3.1.2 Floating-Point Unit (FPU) 20

3.2 Instructions 20
3.2.1 Memory Access 21
3.2.2 Arithmetic / Logical / Shift Instructions 23
Contents i

3.2.3 Control Transfer 23
3.2.4 State Register Access 24
3.2.5 Floating-Point Operate 24
3.2.6 Conditional Move 25
3.2.7 Register Window Management 25

3.3 Traps 25

4. Data Formats 27

4.1 Signed, Unsigned, and Tagged Integer Data Formats 28
4.1.1 Signed Integer Data Types 29
4.1.2 Unsigned Integer Data Types 31
4.1.3 Tagged Word 32

4.2 Floating-Point Data Types 32
4.2.1 Floating Point, Single Precision 33
4.2.2 Floating Point, Double Precision 33
4.2.3 Floating Point, Quad Precision 34
4.2.4 Floating-Point Data Alignment in Memory and Registers 35

4.3 Graphics Data Formats 36
4.3.1 Pixel Graphics Format 36
4.3.2 Fixed16 Graphics Format 36
4.3.3 Fixed32 Graphics Format 37

5. Registers 39

5.1 Nonprivileged Registers 40
5.1.1 General-Purpose r Registers 40
5.1.2 Special r Registers 46
5.1.3 IU Control/Status Registers 46
5.1.4 Floating-Point Registers 48
5.1.5 Integer Condition Codes Register (CCR) 54
5.1.6 Floating-Point Registers State (FPRS) Register 55
5.1.7 Floating-Point State Register (FSR) 56
5.1.8 Address Space Identifier (ASI) Register 67
5.1.9 Tick (TICK) Register 68

5.2 Privileged Registers 69
5.2.1 Processor State (PSTATE) Register 69
ii SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

5.2.2 Trap Level Register (TL) 74
5.2.3 Processor Interrupt Level (PIL) Register 75
5.2.4 Trap Program Counter (TPC) Registers 75
5.2.5 Trap Next Program Counter (TNPC) Registers 76
5.2.6 Trap State (TSTATE) Registers 77
5.2.7 Trap Type (TT) Registers 77
5.2.8 Trap Base Address (TBA) Register 78
5.2.9 Version (VER) Register 79
5.2.10 Register-Window State Registers 80
5.2.11 Ancillary State Registers (ASRs) 83
5.2.12 Registers Referenced Through ASIs 91
5.2.13 Floating-Point Deferred-Trap Queue (FQ) 98
5.2.14 Integer Unit Deferred-Trap Queue 99

6. Instructions 101

6.1 Instruction Execution 101

6.2 Instruction Formats and Fields 102

6.3 Instruction Categories 106
6.3.1 Memory Access Instructions 107
6.3.2 Integer Arithmetic Instructions 113
6.3.3 Control-Transfer Instructions (CTIs) 114
6.3.4 Register Window Management Instructions 120
6.3.5 State Register Access 122
6.3.6 Privileged Register Access 123
6.3.7 Floating-Point Operate (FPop) Instructions 123
6.3.8 Implementation-Dependent Instructions 124
6.3.9 Reserved Opcodes and Instruction Fields 125
6.3.10 Summary of Unimplemented Instructions 125

6.4 Register Window Management 126
6.4.1 Register Window State Definition 126
6.4.2 Register Window Traps 127

7. Traps 131

7.1 Processor States, Normal and Special Traps 132
7.1.1 RED_state 133
7.1.2 Error_state 136
Release 1.0.4, 31 May 2002 Contents iii

7.2 Trap Categories 137
7.2.1 Precise Traps 137
7.2.2 Deferred Traps 137
7.2.3 Disrupting Traps 138
7.2.4 Reset Traps 139
7.2.5 Uses of the Trap Categories 139

7.3 Trap Control 140
7.3.1 PIL Control 141
7.3.2 TEM Control 141

7.4 Trap-Table Entry Addresses 141
7.4.1 Trap Table Organization 142
7.4.2 Trap Type (TT) 142
7.4.3 Trap Priorities 147
7.4.4 Details of Supported Traps 148

7.5 Trap Processing 149
7.5.1 Normal Trap Processing 151
7.5.2 Fast MMU Trap Processing 152
7.5.3 Interrupt Vector Trap Processing 154
7.5.4 Special Trap Processing 155

7.6 Exception and Interrupt Descriptions 161
7.6.1 Traps Defined by SPARC V9 As Mandatory 162
7.6.2 SPARC V9 Optional Traps That Are Mandatory in SPARC JPS1

165
7.6.3 SPARC V9 Optional Traps That Are Optional in SPARC JPS1 166
7.6.4 SPARC V9 Implementation-Dependent, Optional Traps That Are

Mandatory in SPARC JPS1 167
7.6.5 SPARC JPS1 Implementation-Dependent Traps 167

8. Memory Models 169

8.1 Overview 170

8.2 Memory, Real Memory, and I/O Locations 171

8.3 Addressing and Alternate Address Spaces 173

8.4 SPARC V9 Memory Model 175
8.4.1 SPARC V9 Program Execution Model 175
8.4.2 Processor/Memory Interface Model 177
iv SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

8.4.3 MEMBAR Instruction 179
8.4.4 Memory Models 181
8.4.5 Mode Control 182
8.4.6 Hardware Primitives for Mutual Exclusion 182
8.4.7 Synchronizing Instruction and Data Memory 183

A. Instruction Definitions 185

A.1 Add 192
A.2 Alignment Instructions (VIS I) 194
A.3 Three-Dimensional Array Addressing Instructions (VIS I) 196
A.4 Block Load and Store (VIS I) 199
A.5 Byte Mask and Shuffle Instructions (VIS II) 203
A.6 Branch on Integer Register with Prediction (BPr) 205
A.7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 207
A.8 Branch on Integer Condition Codes with Prediction (BPcc) 210
A.9 Call and Link 213
A.10 Compare and Swap 214
A.11 DONE and RETRY 217
A.12 Edge Handling Instructions (VIS I, II) 218
A.13 Floating-Point Add and Subtract 221
A.14 Floating-Point Compare 223
A.15 Convert Floating-Point to Integer 225
A.16 Convert Between Floating-Point Formats 227
A.17 Convert Integer to Floating-Point 229
A.18 Floating-Point Move 231
A.19 Floating-Point Multiply and Divide 233
A.20 Floating-Point Square Root 235
A.21 Flush Instruction Memory 236
A.22 Flush Register Windows 238
A.23 Illegal Instruction Trap 239
A.24 Implementation-Dependent Instructions 240
A.25 Jump and Link 241
A.26 Load Floating-Point 242
A.27 Load Floating-Point from Alternate Space 244
A.28 Load Integer 247
A.29 Load Integer from Alternate Space 249
Release 1.0.4, 31 May 2002 Contents v

A.30 Load Quadword, Atomic (VIS I) 251
A.31 Load-Store Unsigned Byte 253
A.32 Load-Store Unsigned Byte to Alternate Space 254
A.33 Logical Operate Instructions (VIS I) 256
A.34 Logical Operations 259
A.35 Memory Barrier 261
A.36 Move Floating-Point Register on Condition (FMOVcc) 264
A.37 Move Floating-Point Register on Integer Register Condition (FMOVr) 270
A.38 Move Integer Register on Condition (MOVcc) 272
A.39 Move Integer Register on Register Condition (MOVr) 277
A.40 Multiply and Divide (64-bit) 279
A.41 No Operation 281
A.42 Partial Store (VIS I) 282
A.43 Partitioned Add/Subtract Instructions (VIS I) 284
A.44 Partitioned Multiply Instructions (VIS I) 286

A.44.1 FMUL8x16 Instruction 287
A.44.2 FMUL8x16AU Instruction 288
A.44.3 FMUL8x16AL Instruction 288
A.44.4 FMUL8SUx16 Instruction 289
A.44.5 FMUL8ULx16 Instruction 289
A.44.6 FMULD8SUx16 Instruction 290
A.44.7 FMULD8ULx16 Instruction 291

A.45 Pixel Compare (VIS I) 292
A.46 Pixel Component Distance (PDIST) (VIS I) 294
A.47 Pixel Formatting (VIS I) 295

A.47.1 FPACK16 296
A.47.2 FPACK32 297
A.47.3 FPACKFIX 298
A.47.4 FEXPAND 299
A.47.5 FPMERGE 300

A.48 Population Count 301
A.49 Prefetch Data 303

A.49.1 SPARC V9 Prefetch Variants 305
A.49.2 SPARC JPS1 Prefetch Variants (fcn = 20–23) 307
A.49.3 Implementation-Dependent Prefetch Variants (fcn = 16–19, 24–

31) 308
vi SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.49.4 General Comments 309
A.50 Read Privileged Register 311
A.51 Read State Register 313
A.52 RETURN 316
A.53 SAVE and RESTORE 318
A.54 SAVED and RESTORED 321
A.55 Set Interval Arithmetic Mode (VIS II) 322
A.56 SETHI 323
A.57 Shift 324
A.58 Short Floating-Point Load and Store

(VIS I) 326
A.59 SHUTDOWN (VIS I) 328
A.60 Software-Initiated Reset 329
A.61 Store Floating-Point 330
A.62 Store Floating-Point into Alternate Space 333
A.63 Store Integer 336
A.64 Store Integer into Alternate Space 338
A.65 Subtract 340
A.66 Tagged Add 342
A.67 Tagged Subtract 343
A.68 Trap on Integer Condition Codes (Tcc) 344
A.69 Write Privileged Register 347
A.70 Write State Register 350
A.71 Deprecated Instructions 353

A.71.1 Branch on Floating-Point Condition Codes (FBfcc) 355
A.71.2 Branch on Integer Condition Codes (Bicc) 358
A.71.3 Divide (64-bit / 32-bit) 361
A.71.4 Load Floating-Point Status Register 364
A.71.5 Load Integer Doubleword 365
A.71.6 Load Integer Doubleword from Alternate Space 367
A.71.7 Multiply (32-bit) 369
A.71.8 Multiply Step 371
A.71.9 Read Y Register 373
A.71.10 Store Barrier 374
A.71.11 Store Floating-Point Status Register Lower 375
A.71.12 Store Integer Doubleword 377
Release 1.0.4, 31 May 2002 Contents vii

A.71.13 Store Integer Doubleword into Alternate Space 379
A.71.14 Swap Register with Memory 381
A.71.15 Swap Register with Alternate Space Memory 383
A.71.16 Tagged Add and Trap on Overflow 385
A.71.17 Tagged Subtract and Trap on Overflow 387
A.71.18 Write Y Register 389

B. IEEE Std 754-1985 Requirements for SPARC V9 391

B.1 Traps Inhibiting Results 392
B.2 NaN Operand and Result Definitions 392

B.2.1 Untrapped Result in Different Format from Operands 393
B.2.2 Untrapped Result in Same Format as Operands 393

B.3 Trapped Underflow Definition (UFM = 1) 394
B.4 Untrapped Underflow Definition (UFM = 0) 395
B.5 Integer Overflow Definition 396
B.6 Floating-Point Nonstandard Mode 396

C. Implementation Dependencies 397

C.1 Definition of an Implementation Dependency 398
C.2 Hardware Characteristics 398
C.3 Implementation Dependency Categories 399
C.4 List of Implementation Dependencies 399

D. Formal Specification of the Memory Models 413

D.1 Processors and Memory 413
D.2 Overview of the Memory Model Specification 414
D.3 Memory Transactions 415

D.3.1 Memory Transactions 415
D.3.2 Program Order 416
D.3.3 Dependence Order 417
D.3.4 Memory Order 418

D.4 Specification of Relaxed Memory Order (RMO) 418
D.4.1 Value Atomicity 418
D.4.2 Store Atomicity 419
D.4.3 Atomic Memory Transactions 419
D.4.4 Memory Order Constraints 419
viii SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

D.4.5 Value of Memory Transactions 419
D.4.6 Termination of Memory Transactions 420
D.4.7 Flush Memory Transaction 420

D.5 Specification of Partial Store Order (PSO) 420
D.6 Specification of Total Store Order (TSO) 420
D.7 Examples of Program Executions 421

D.7.1 Observation of Store Atomicity 421
D.7.2 Dekker’s Algorithm 423
D.7.3 Indirection Through Processors 424
D.7.4 PSO Behavior 425
D.7.5 Application to Compilers 426
D.7.6 Verifying Memory Models 426

E. Opcode Maps 427

F. Memory Management Unit 437

F.1 Virtual Address Translation 437
F.2 Translation Table Entry (TTE) 440
F.3 Translation Storage Buffer 443

F.3.1 TSB Indexing Support 443
F.3.2 TSB Cacheability 444
F.3.3 TSB Organization 444

F.4 Hardware Support for TSB Access 445
F.4.1 Typical TLB Miss/Refill Sequence 445
F.4.2 TSB Pointer Formation 445
F.4.3 Required TLB Conditions 448
F.4.4 Required TSB Conditions 448
F.4.5 MMU Global Registers Selection 448

F.5 Faults and Traps 449
F.6 MMU Operation Summary 451
F.7 ASI Value, Context, and Endianness Selection for Translation 453
F.8 Reset, Disable, and RED_state Behavior 455
F.9 SPARC V9 “MMU Requirements” Annex 457
F.10 Internal Registers and ASI Operations 457

F.10.1 Accessing MMU Registers 458
F.10.2 Context Registers 459
F.10.3 Instruction/Data MMU TLB Tag Access Registers 460
Release 1.0.4, 31 May 2002 Contents ix

F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers 461
F.10.5 I/D TSB Tag Target Registers 464
F.10.6 I/D TSB Base Registers 464
F.10.7 I/D TSB Extension Registers 466
F.10.8 I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct Pointer

Registers 466
F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR) 467
F.10.10 Synchronous Fault Addresses 469
F.10.11 I/D MMU Demap 470

F.11 MMU Bypass 472
F.12 Translation Lookaside Buffer Hardware 473

F.12.1 TLB Operations 473
F.12.2 TLB Replacement Policy 473
F.12.3 TSB Pointer Logic Hardware Description 474

G. Assembly Language Syntax 475

G.1 Notation Used 475
G.1.1 Register Names 476
G.1.2 Special Symbol Names 477
G.1.3 Values 480
G.1.4 Labels 481
G.1.5 Other Operand Syntax 481
G.1.6 Comments 483

G.2 Syntax Design 483
G.3 Synthetic Instructions 484

H. Software Considerations 487

H.1 Nonprivileged Software 487
H.1.1 Registers 487
H.1.2 Leaf-Procedure Optimization 491
H.1.3 Example Code for a Procedure Call 493
H.1.4 Register Allocation Within a Window 494
H.1.5 Other Register-Window-Usage Models 494
H.1.6 Self-Modifying Code 495
H.1.7 Thread Management 495
H.1.8 Minimizing Branch Latency 496
x SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

H.1.9 Prefetch 497
H.1.10 Nonfaulting Load 500

H.2 Supervisor Software 503
H.2.1 Trap Handling 503
H.2.2 Example Code for Spill Handler 504
H.2.3 Client-Server Model 504
H.2.4 User Trap Handlers 505

I. Extending the SPARC V9 Architecture 509

I.1 Read/Write Ancillary State Registers (ASRs) 509
I.2 Implementation-Dependent and Reserved Opcodes 510

J. Programming with the Memory Models 511

J.1 Memory Operations 512
J.2 Memory Model Selection 512
J.3 Processors and Processes 513
J.4 Higher-Level Programming Languages and Memory Models 513
J.5 Portability and Recommended Programming Style 514
J.6 Spin Locks 516
J.7 Producer-Consumer Relationship 517
J.8 Process Switch Sequence 519
J.9 Dekker’s Algorithm 520
J.10 Code Patching 521
J.11 Fetch_and_Add 523
J.12 Barrier Synchronization 524
J.13 Linked List Insertion and Deletion 525
J.14 Communicating with I/O Devices 526

J.14.1 I/O Registers with Side Effects 527
J.14.2 The Control and Status Register (CSR) 528
J.14.3 The Descriptor 529
J.14.4 Lock-Controlled Access to a Device Register 529

K. Changes from SPARC V8 to SPARC V9 531

K.1 Trap Model 531
K.2 Data Formats 532
K.3 Little-Endian Support 532
Release 1.0.4, 31 May 2002 Contents xi

K.4 Little-Endian Byte Order 532
K.5 Registers 532
K.6 Alternate Space Access 534
K.7 Instruction Set 534
K.8 Memory Model 536

L. Address Space Identifiers 537

L.1 Address Space Identifiers and Address Spaces 537
L.2 ASI Values 538
L.3 ASI Assignments 538

L.3.1 Supported ASIs 538
L.3.2 Special Memory Access ASIs 546

M. Caches and Cache Coherency 551

N. Interrupt Handling 553

N.1 Interrupt Vector Dispatch 554
N.2 Interrupt Vector Receive 555
N.3 Interrupt Global Registers 556
N.4 Interrupt ASI Registers 556

N.4.1 Outgoing Interrupt Vector Data<7:0> Register 556
N.4.2 Interrupt Vector Dispatch Register 557
N.4.3 Interrupt Vector Dispatch Status Register 558
N.4.4 Incoming Interrupt Vector Data<7:0> 558
N.4.5 Interrupt Vector Receive Register 559

N.5 Software Interrupt Register (SOFTINT) 560
N.5.1 Setting the Software Interrupt Register 560
N.5.2 Clearing the Software Interrupt Register 561

O. Reset, RED_state, and Error_state 563

O.1 RED_state Characteristics 563
O.2 Resets 564

O.2.1 Externally Initiated Reset (XIR) 564
O.2.2 error_state and Watchdog Reset (WDR) 565
O.2.3 Software-Initiated Reset (SIR) 565

O.3 RED_state Trap Vector 565
O.4 Machine States 565
xii SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

P. Error Handling 569

P.1 Error Classes and Signalling 570
P.1.1 Error Classes in Severity 570
P.1.2 Errors Asynchronous to Instruction Execution 570

P.2 Corrective Actions 571
P.2.1 Reset-Inducing ERROR Signal 573
P.2.2 Precise Traps 574
P.2.3 Deferred Traps 574
P.2.4 Disrupting Traps 577

P.3 Related Traps 578
P.4 Related Registers/Error Logging 579
P.5 Signalling/Special ECC 580

Q. Performance Instrumentation 581

Bibliography 583
Release 1.0.4, 31 May 2002 Contents xiii

xiv SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Preface

SPARC® V9 is the standard instruction set architecture developed by SPARC
International for 64-bit SPARC processors. Although the standard serves the needs
of application programmers, some processor functions that primarily affect system
programmers are left uncovered or implementation dependent in the standard. Sun
Microsystems, with its UltraSPARC® III implementation, and Fujitsu, with its
SPARC64® V implementation, jointly worked to increase the commonalities between
their processors in the areas that SPARC V9 does not cover. Both companies intend
to continue this collaborative effort for future processor generations.

The SPARC Joint Programming Specification is based on SPARC V9. It first defines the
programmer's model and the hardware behavior common to the processors from
both companies. These aspects of the processors conform to the instruction set
architecture, memory model, error and trap handling specified by The SPARC
Architecture Manual-Version 9 and also conform to additional feature conventions
jointly established by Sun and Fujitsu. Some features, especially initialization, error
detection, error recovery, etc., strongly depend on the specific implementation and
cannot be common. Such features and specific implementation-dependent deviations
from common definitions are detailed in Implementation Supplements that are
companions to this document.

Who Should Use This Book
Programmers who write code for the UltraSPARC III processor, the SPARC64 V
processor, and the successors of both processor lines will find this book, combined
with Implementation Supplements, the single depository of information that logic
designers, operating system programmers, or application software programmers can
share to gain a common understanding of the features of SPARC processors from
both Sun Microsystems, Inc., and Fujitsu.
Release 1.0.4, 31 May 2002 Preface xv

How This Book Is Organized
The book is organized in major sections: Commonality, which contains information
that is common to all implementations, and Implementation Supplements. At
present, we describe two implementations: SPARC64 V, the Fujitsu implementation
of SPARC V9, and UltraSPARC III, the Sun Microsystems implementation. Other
implementations may be added in the future.

The Commonality section and the Implementation Supplements begin at Chapter
1, page 1, each supplement contains its own index, and all supplements in general
follow the organization of the The SPARC Architecture Manual-Version 9, as follows.

Chapter 1, Overview, describes features, attributes, and components and provides a
high-level view of SPARC V9 and the implementations.

Chapter 2, Definitions, defines terms you should know before reading the book or
parts.

Chapter 3, Architectural Overview, describes processors and instructions.

Chapter 4, Data Formats, presents data types.

Chapter 5, Registers, discusses the two types of registers: general-purpose (working
data) registers and control/status registers.

Chapter 6, Instructions, details nuts and bolts of instructions.

Chapter 7, Traps, describes types, behavior, control, and processing of traps.

Chapter 8, Memory Models, discusses three types of memory models: Total Store
Order, Partial Store Order, and Relaxed Memory Order.

An extensive set of appendixes complements the chapters. Appendixes D, H, I, J,
and K contain material from The SPARC Architecture Manual-Version 9.

Appendix A, Instruction Definitions
Appendix B, IEEE Std 754-1985 Requirements for SPARC V9
Appendix C, Implementation Dependencies
Appendix D, Formal Specification of the Memory Models
Appendix E, Opcode Maps
Appendix F, Memory Management Unit
Appendix G, Assembly Language Syntax
Appendix H, Software Considerations (Informative)
Appendix I, Extending the SPARC V9 Architecture (Informative)
Appendix J, Programming with the Memory Models (Informative)
Appendix K, Changes from SPARC V8 to SPARC V9
Appendix L, Address Space Identifiers
xvi SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Appendix N, Interrupt Handling
Appendix O, Reset, RED_state, and Error_state
Appendix P, Error Handling

The Implementation Supplements to the book contain additional appendixes on
implementation-specific topics such as cache organization, performance
instrumentation, and interconnect programming model.

For navigation suggestions, see Chapter 1, Overview.

Editorial Conventions
For editorial conventions, see Chapter 1, Overview. Notational conventions of SPARC
Joint Programming Specification generally follow those of The SPARC Architecture
Manual-Version 9 and differ slightly from the standard Sun Microsystems notational
conventions.

Related Reading
The SPARC Joint Programming Specification refers to these related books:

■ The SPARC Architecture Manual-Version 9
■ UltraSPARC™ User’s Manual
■ Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x

(SPARC International)
■ SPARC64™ Processor User’s Guide

See also the bibliography section of Commonality and Implementations.
Release 1.0.4, 31 May 2002 Preface xvii

xviii SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 1

Overview

The SPARC Joint Programming Specification (SPARC JPS1) specifies a particular subset
of SPARC V9 implementations, including Fujitsu’s SPARC64 V, Sun Microsystem’s
UltraSPARC III, and certain successors to those processors.

SPARC JPS1 was derived directly from the source text of The SPARC Architecture
Manual-Version 9. Some theoretical material contained in The SPARC Architecture
Manual-Version 9 has been omitted, but for some implementors, this theoretical
information is important. In particular, operating system programmers who write
memory management software, compiler writers who write machine-specific
optimizers, and anyone who writes code to run on all SPARC V9-compatible
machines should obtain and use The SPARC Architecture Manual-Version 9. Readers of
SPARC Joint Programming Specification could profit from using The SPARC Architecture
Manual-Version 9 as a companion text.

Software that is intended to be portable across all SPARC V9 processors should
adhere to The SPARC Architecture Manual-Version 9.

Material in this document identified as relevant to SPARC JPS1 (or just “JPS1”)
processors may not apply to other SPARC V9 processors. Therefore, in Appendixes
D, H, I, J, and K, we duplicated the information contained in the same appendixes of
The SPARC Architecture Manual-Version 9. Because we have added and deleted a
significant number of tables and figures, the table and figure numbers in this guide
are not parallel with the numbers in The SPARC Architecture Manual-Version 9.

In this book, the word architecture refers to the machine details that are visible to an
assembly language programmer or to the compiler code generator. It does not
include details of the implementation that are not visible or easily observable by
software.

In this chapter, we discuss:

■ Navigating the SPARC Joint Programming Specification on page 2
■ Fonts and Notational Conventions on page 3
■ SPARC V9 Architecture on page 5
Release 1.0.4, 31 May 2002 C. Chapter 1 • Overview 1

1.1 Navigating the SPARC Joint Programming
Specification
If you are new to SPARC, read Chapter 3, Architectural Overview, study the
definitions in Chapter 2, Definitions, then look into the subsequent s and appendixes
for more details in areas of interest to you.

If you are familiar with SPARC V8 but not SPARC V9, you should review the list of
changes in Appendix K. For additional details of architectural changes, review the
following s:

■ Chapter 4, Data Formats, for a description of the supported data formats

■ Chapter 5, Registers, for a description of the register set

■ Chapter 6, Instructions, for a description of the new instructions

■ Chapter 7, Traps, for a description of the trap model

■ Chapter 8, Memory Models, for a description of the memory models

■ Appendix A, Instruction Definitions, for descriptions of the instructions

Finally, if you are familiar with the SPARC V9 architecture and want to familiarize
yourself with the Sun- and Fujitsu-specific implementations, study the following
chapters and appendices in the Sun- and Fujitsu-specific Implementation
Supplements:

■ Chapter 2, Definitions

■ Appendix A, Instruction Definitions, for descriptions of specific instruction
extensions

■ Appendix C, Implementation Dependencies, for descriptions of resolutions of all
SPARC V9 implementation dependencies

■ Appendix E, Opcode Maps, to see how opcode extensions fit into the SPARC V9
opcode maps

■ Appendix F, Memory Management Unit, to see the common features of the SPARC
JPS1 Memory Management Unit and the implementation-specific features of that
MMU.

■ Appendix G, Assembly Language Syntax, to see extensions to the SPARC V9
assembly language syntax; in particular, synthetic instructions are documented in
this appendix
2 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

1.2 Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

■ Italic font is also used for assembly language terms.

■ Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

■ Typewriter font (Courier) is used for register fields (named bits), instruction
fields, and read-only register fields. For example: “The rs1 field contains....”

■ Typewriter font is used for literals, instruction names, register names, and
software examples.

■ UPPERCASE items are acronyms, instruction names, or writable register fields.
Some common acronyms appear in the glossary in Chapter 2, Definitions. Note:
Names of some instructions contain both upper- and lowercase letters.

■ Underbar characters join words in register, register field, exception, and trap
names. Note: Such words can be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

■ Square brackets, [], indicate a numbered register in a register file. For example:
“r[0] contains....”

■ Angle brackets, < >, indicate a bit number or colon-separated range of bit
numbers within a field. For example: “Bits FSR<29:28> and FSR<12> are....”

■ Curly braces, { }, indicate textual substitution. For example, the string
“ASI_PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and
“ASI_PRIMARY_LITTLE.”

■ The symbol designates concatenation of bit vectors. A comma (,) on the left
side of an assignment separates quantities that are concatenated for the purpose
of assignment. For example, if X, Y, and Z are 1-bit vectors and the 2-bit vector T
equals 112, then

(X, Y, Z) ← 0 T

results in X = 0, Y = 1, and Z = 1.
Release 1.0.4, 31 May 2002 C. Chapter 1 • Overview 3

1.2.1 Implementation Dependencies
The implementors of SPARC V9 processors are allowed to resolve some aspects of
the architecture in machine-dependent ways. Each possible implementation
dependency is indicated in The SPARC Architecture Manual-Version 9 by the notation
“IMPL. DEP. #nn: Some descriptive text.” The number nn enumerates the
dependencies in Appendix C. References to SPARC V9 implementation
dependencies are indicated, as in The SPARC Architecture Manual-Version 9, by the
notation “(impl. dep. #nn).” In SPARC Joint Programming Specification, we have
replaced all definitions of and references to SPARC V9 implementation dependencies
with implementation-specific descriptions.

1.2.2 Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 10012, FFFF 000016). Long binary and hex numbers within
the text have spaces inserted every four characters to improve readability. Within C
or assembly language examples, numbers may be preceded by “0x” to indicate base-
16 (hexadecimal) notation (for example, 0xFFFF0000).

1.2.3 Informational Notes
This guide provides several different types of information in notes, as follows:

Programming Note – Programming notes contain incidental information about
implementation-specific programming.

Implementation Note – Implementation notes contain information that is specific
to a particular implementation. Such information may not pertain to other SPARC
V9 implementations.

Compatibility Note – Compatibility notes contain information relevant to the
previous SPARC V8 architecture.
4 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

1.3 SPARC V9 Architecture
This section briefly describes features, attributes, and components of the SPARC V9
architecture and, further, describes correct implementation of the architecture
specification and SPARC V9-compliance levels.

1.3.1 Features
SPARC V9 includes the following principal features:

■ A linear 64-bit address space with 64-bit addressing.

■ 32-bit wide instructions — These are aligned on 32-bit boundaries in memory.
Only load and store instructions access memory and perform I/O.

■ Few addressing modes — A memory address is given as either “register +
register” or “register + immediate.”

■ Triadic register addresses — Most computational instructions operate on two
register operands or one register and a constant and place the result in a third
register.

■ A large windowed register file — At any one instant, a program sees 8 global
integer registers plus a 24-register window of a larger register file. The windowed
registers can be used as a cache of procedure arguments, local values, and return
addresses.

■ Floating point — The architecture provides an IEEE 754-compatible floating-point
instruction set, operating on a separate register file that provides 32 single-
precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit)
registers, or a mixture thereof.

■ Fast trap handlers — Traps are vectored through a table.

■ Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic exchange-
register-with-memory operation; another compares the contents of a register with
a value in memory and exchanges memory with the contents of another register if
the comparison was equal (compare and swap); two others synchronize the order
of shared memory operations as observed by processors.

■ Predicted branches — The branch with prediction instructions allows the
compiler or assembly language programmer to give the hardware a hint about
whether a branch will be taken.

■ Branch elimination instructions — Several instructions can be used to eliminate
branches altogether (for example, Move on Condition). Eliminating branches
increases performance in superscalar and superpipelined implementations.
Release 1.0.4, 31 May 2002 C. Chapter 1 • Overview 5

■ Hardware trap stack — A hardware trap stack is provided to allow nested traps.
It contains all of the machine state necessary to return to the previous trap level.
The trap stack makes the handling of faults and error conditions simpler, faster,
and safer.

■ Relaxed memory order (RMO) model — In addition to the TSO and PSO
memory models defined for SPARC V8, SPARC JPS1 offers a weak memory model
called Relaxed Memory Order, or RMO. RMO allows the hardware to schedule
memory accesses in any order as long as the program computes the correct result
(adheres to processor consistency).

1.3.2 Attributes
SPARC V9 is a processor instruction set architecture (ISA) derived from SPARC V8;
both architectures come from a reduced instruction set computer (RISC) lineage. As
architectures, SPARC V9 and SPARC V8 allow for a spectrum of chip and system
implementations at a variety of price/performance points for a range of applications,
including scientific/engineering, programming, real-time, and commercial
applications.

Design Goals

SPARC JPS1 is designed to be a target for optimizing compilers and high-
performance hardware implementations. Implementations of SPARC JPS1 provide
exceptionally high execution rates and short time-to-market development schedules.

Register Windows

The JPS1 processor is derived from SPARC®, which was formulated at Sun
Microsystems in 1985. SPARC is based on the RISC I and II designs engineered at the
University of California at Berkeley from 1980 through 1982. The SPARC “register
window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store
instructions.

Note that supervisor software, not user programs, manages the register windows.
The supervisor can save a minimum number of registers (approximately 24) during
a context switch, thereby optimizing context-switch latency.

1.3.3 System Components
The SPARC V9 architecture allows for a spectrum of I/O, memory management unit
(MMU), and cache system subarchitectures.
6 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

SPARC JPS1 MMU

The SPARC V9 ISA does not mandate a single MMU design for all system
implementations. Rather, designers are free to use the MMU that is most appropriate
for their application or no MMU at all, if they wish.

Although SPARC V9 allows its implementations freedom in their MMU designs,
SPARC JPS1 defines a common MMU architecture (see Appendix F, Memory
Management Unit) with some specifics left to implementations (see Appendix F in
each Implementation Supplement).

Privileged Software

SPARC V9 does not assume that all implementations must execute identical
privileged software. Thus, certain traits that are visible to privileged software have
been tailored to the requirements of the system.

Binary Compatibility

The most important SPARC V9 architectural mandate is binary compatibility of
nonprivileged programs across implementations. Binaries executed in nonprivileged
mode should behave identically on all SPARC V9 systems when those systems are
running an operating system known to provide a standard execution environment.
One example of such a standard environment is the SPARC V9 Application Binary
Interface (ABI).

Although different SPARC V9 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the
same memory model. See Chapter 8, Memory Models, for more information.

Additionally, SPARC V9 is binary upward-compatible from SPARC V8 for
applications running in nonprivileged mode that conform to the SPARC V8 ABI.

1.3.4 Architectural Definition
The SPARC V9 architecture is defined by the s and normative appendixes of The
SPARC Architecture Manual-Version 9. A correct implementation of the architecture
interprets a program strictly according to the rules and algorithms specified in the s
and normative appendixes.

SPARC Joint Programming Specification defines a set of conforming implementations
of the SPARC V9 architecture.
Release 1.0.4, 31 May 2002 C. Chapter 1 • Overview 7

1.3.5 SPARC V9 Compliance
SPARC International is responsible for certifying that implementations comply with
the SPARC V9 Architecture. Two levels of compliance are distinguished; an
implementation may be certified at either level.

■ Level 1 – The implementation correctly interprets all of the nonprivileged
instructions by any method, including direct execution, simulation, or emulation.
This level supports user applications and is the architecture component of the
SPARC V9 ABI.

■ Level 2 – The implementation correctly interprets both nonprivileged and
privileged instructions by any method, including direct execution, simulation, or
emulation. A Level 2 implementation includes all hardware, supporting software,
and firmware necessary to provide a complete and correct implementation.

Note that a Level-2-compliant implementation is also Level-1 compliant.

IMPL. DEP. #1: Whether an instruction is implemented directly by hardware,
simulated by software, or emulated by firmware is implementation dependent.

SPARC International publishes a document, Implementation Characteristics of Current
SPARC-V9-based Products, Revision 9.x, listing which instructions are simulated or
emulated in existing SPARC V9 implementations.

Compliant implementations shall not add to or deviate from this standard except in
aspects described as implementation dependent. See Appendix C, Implementation
Dependencies.

An implementation may be claimed to be compliant only if it has been

1. Submitted to SPARC International for testing, and

2. Issued a Certificate of Compliance by SPARC International.

A system incorporating a certified implementation may also claim compliance. A
claim of compliance must designate the level of compliance.

Prior to testing, a statement must be submitted for each implementation; this
statement must:

■ Resolve the implementation dependencies listed in Appendix C, Implementation
Dependencies

■ Identify the presence (but not necessarily the function) of any extensions

■ Designate any instructions that require emulation

These statements become the property of SPARC International and may be released
publicly.

Appendix C of each Implementation Supplement describes the manner in which
implementation dependencies have been resolved.
8 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 2

Definitions

This chapter defines concepts and terminology common to all implementations of
SPARC V9.

AFAR Asynchronous Fault Address Register.

AFSR Asynchronous Fault Status Register.

aliased Said of each of two virtual addresses that refer to the same physical address.

address space identifier
(ASI) An 8-bit value that identifies an address space. For each instruction or data

access, the integer unit appends an ASI to the address. See also implicit ASI.

application program A program executed with the processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged processor state (for example, as stored in a memory-image dump).

ASI Address space identifier.

ASR Ancillary State Register.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

BLD Block load.

BST Block store.

bypass ASI An ASI that refers to memory and for which the MMU does not perform
address translation (that is, memory is accessed using a direct physical
address).

byte Eight consecutive bits of data.

clean window A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.
Release 1.0.4, 31 May 2002 C. Chapter 2 • Definitions 9

coherence A set of protocols guaranteeing that all memory accesses are globally visible to
all caches on a shared-memory bus.

completed A memory transaction is said to be completed when an idealized memory has
executed the transaction with respect to all processors. A load is considered
completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent
load can return the value that was overwritten by the store.

consistency See coherence.

context A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

copyback The process of copying back a dirty cache line in response to a cache hit while
snooping.

CPI Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

cross-call An interprocessor call in a multiprocessor system.

current window The block of 24 r registers that is currently in use. The Current Window
Pointer (CWP) register points to the current window.

DCTI Delayed control transfer instruction,

demap To invalidate a mapping in the MMU.

deprecated The term applied to an architectural feature (such as an instruction or register)
for which a SPARC V9 implementation provides support only for compatibility
with previous versions of the architecture. Use of a deprecated feature must
generate correct results but may compromise software performance.
Deprecated features should not be used in new SPARC V9 software and may
not be supported in future versions of the architecture.

dispatch To send a previously fetched instruction to one or more functional units for
execution. Typically, the instruction is dispatched from a reservation station or
other buffer of instructions waiting to be executed. (Other conventions for this
term exist, but the JPS1 document attempts to use dispatch consistently as
defined here.)
See also issued.

doublet Two bytes (16 bits) of data.

doubleword An aligned octlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

exception A condition that makes it impossible for the processor to continue executing
the current instruction stream without software intervention. See also trap.

extended word An aligned octlet, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.
10 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

f register A floating-point register. SPARC V9 includes single-, double-, and quad-
precision f registers.

fccN One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

floating-point
exception An exception that occurs during the execution of an FPop instruction while the

corresponding bit in FSR.TEM is set to 1. The exceptions are unfinished_FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, or
IEEE_754_exception.

floating-point IEEE-754
exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within

this specification as IEEE_754_exception.

floating-point operate
(FPop) instructions Instructions that perform floating-point calculations, as defined by the FPop1

and FPop2 opcodes. FPop instructions do not include FBfcc instructions or
loads and stores between memory and the floating-point unit.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

FPRS Floating Point Register State (register).

FSR Floating-Point Status Register.

FPU Floating-point unit.

halfword An aligned doublet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

hexlet Sixteen bytes (128 bits) of data.

implementation Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

implementation
dependent An aspect of the architecture that can legitimately vary among

implementations. In many cases, the permitted range of variation is specified
in the SPARC V9 standard. When a range is specified, compliant
implementations must not deviate from that range.

implicit ASI The address space identifier that is supplied by the hardware on all instruction
accesses and on data accesses that do not contain an explicit ASI or a reference
to the contents of the ASI register.

informative appendix An appendix containing information that is useful but not required to create an
implementation that conforms to the SPARC V9 specification. See also
normative appendix.

initiated Synonym: issued.
Release 1.0.4, 31 May 2002 C. Chapter 2 • Definitions 11

instruction field A bit field within an instruction word.

instruction group One or more independent instructions that can be dispatched for simultaneous
execution.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the

effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. This specification defines the SPARC JPS1 ISA.

integer unit A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and processor state registers, as
defined by this specification.

interrupt request A request for service presented to the processor by an external device.

ISA Instruction set architecture.

issued (1) A memory transaction (load, store, or atomic load-store) is said to be
“issued” when a processor has sent the transaction to the memory subsystem
and the completion of the request is out of the processor’s control.
Synonym: initiated.
(2) An instruction (or sequence of instructions) is said to be issued when
released from the processor's in-order instruction fetch unit. Typically,
instructions are issued to a reservation station or other buffer of instructions
waiting to be executed. (Other conventions for this term exist, but the JPS1
document attempts to use "issue" consistently as defined here.)
See also dispatched.

IU Integer Unit.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one that does not
call (by using CALL or JMPL) any other procedures.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

load An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Load includes loads into integer
or floating-point registers, block loads, Load Quadword Atomic, and alternate
address space variants of those instructions. See also load-store and store, the
definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, and the deprecated SWAP
instruction. See also load and store, the definitions of which are mutually
exclusive with load-store.
12 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

may A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

Memory Management
Unit (MMU) The address translation hardware in the SPARC JPS1 implementation that

translates 64-bit virtual address into physical addresses. The MMU is
composed of the TLBs, ASRs, and ASI registers used to manage address
translation. See also context, physical address, and virtual address.

must Synonym: shall.

next program counter
(nPC) A register that contains the address of the instruction to be executed next if a

trap does not occur.

NFO Nonfault access only.

nonfaulting load A load operation that, in the absence of faults or in the presence of a
recoverable fault, completes correctly, and in the presence of a nonrecoverable
fault returns (with the assistance of system software) a known data value
(nominally zero). See speculative load.

nonprivileged An adjective that describes:
(1) the state of the processor when PSTATE.PRIV = 0, that is, nonprivileged
mode;
(2) processor state information that is accessible to software while the
processor is in either privileged mode or nonprivileged mode; for example,
nonprivileged registers, nonprivileged ASRs, or, in general, nonprivileged
state;
(3) an instruction that can be executed when the processor is in either
privileged mode or nonprivileged mode.

nonprivileged mode The mode in which a processor is operating when PSTATE.PRIV = 0. See also
privileged.

normative appendix An appendix containing specifications that must be met by an implementation
conforming to the SPARC V9 specification. See also informative appendix.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

nPC Next program counter.

NPT Nonprivileged trap.

NWINDOWS The number of register windows present in a particular implementation.

OBP OpenBoot PROM.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.
Release 1.0.4, 31 May 2002 C. Chapter 2 • Definitions 13

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for SPARC V9 compliance.

PA Physical address.

Page Table Entry
(PTE) Describes the virtual-to-physical translation and page attributes for a specific

page. A PTE generally means an entry in the page table or in the TLB, but it is
sometimes used as an entry in the TSB (translation storage buffer). In general,
a PTE contains fewer fields than does a TTE. See also TLB and TSB.

PC Program counter.

PCR Performance Control Register.

physical address An address that maps real physical memory or I/O device space. See also
virtual address.

PIC Performance Instrumentation Counter.

PIO Programmed I/O.

PIPT Physically indexed, physically tagged.

POR Power-on reset.

prefetchable (1) An attribute of a memory location that indicates to an MMU that PREFETCH
operations to that location may be applied.
(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

privileged An adjective that describes:
(1) the state of the processor when PSTATE.PRIV = 1, that is, privileged mode;
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in
general, privileged state;
(3) an instruction that can be executed only when the processor is in privileged
mode.

privileged mode The mode in which a processor is operating when PSTATE.PRIV = 1. See also
nonprivileged.

processor The combination of the integer unit and the floating-point unit.

program counter (PC) A register that contains the address of the instruction currently being executed
by the IU.

PSO Partial store order.
14 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

PTE Page Table Entry.

quadlet Four bytes (32 bits) of data.

quadword Aligned hexlet. Note: The definition of this term is architecture dependent and
may be different from that used in other processor architectures.

r register An integer register. Also called a general-purpose register or working register.

RD Rounding direction.

RDPR Read Privileged Register.

RED_state Reset, Error, and Debug state. The processor state when PSTATE.RED = 1. A
restricted execution environment used to process resets and traps that occur
when TL = MAXTL – 1.

reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.
Reserved instruction fields shall read as 0, unless the implementation supports
extended instructions within the field. The behavior of SPARC V9 processors
when they encounter nonzero values in reserved instruction fields is
undefined.
Reserved bit combinations within instruction fields are defined in Appendix A,
Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap
on these reserved combinations.
Reserved register fields should always be written by software with values of
those fields previously read from that register or with zeroes; they should read
as zero in hardware. Software intended to run on future versions of SPARC V9
should not assume that these fields will read as 0 or any other particular value.
Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

reset trap A vectored transfer of control to privileged software through a fixed-address
reset trap table. Reset traps cause entry into RED_state.

restricted Describing an address space identifier (ASI) that may be accessed only while
the processor is operating in privileged mode.

rs1, rs2, rd The integer or floating-point register operands of an instruction. rs1 and rs2
are the source registers; rd is the destination register.

RMO Relaxed memory order.

SFAR Synchronous Fault Address Register.

SFSR Synchronous Fault Status Register.

shall A keyword indicating a mandatory requirement. Designers shall implement all
such mandatory requirements to ensure interoperability with other SPARC V9-
compliant products. Synonym: must.
Release 1.0.4, 31 May 2002 C. Chapter 2 • Definitions 15

should A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym: it is recommended.

SIAM Set interval arithmetic mode instruction.

side effect The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

SIR Software-initiated reset.

speculative load A load operation that is issued by the processor speculatively, that is, before it
is known whether the load will be executed in the flow of the program.
Speculative accesses are used by hardware to speed program execution and are
transparent to code. An implementation, through a combination of hardware
and system software, must nullify speculative loads on memory locations that
have side effects; otherwise, such accesses produce unpredictable results.
Contrast with nonfaulting load, which is an explicit load that always
completes, even in the presence of recoverable faults.

snooping The process of maintaining coherency between caches in a shared-memory bus
architecture. All cache controllers monitor (snoop) the bus to determine
whether they have a copy of the shared cache block.

store An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Store
includes stores from either integer or floating-point registers, block stores,
Partial Store, and alternate address space variants of those instructions. See also
load and load-store, the definitions of which are mutually exclusive with store.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

supervisor software Software that executes when the processor is in privileged mode.

TBA Trap base address.

TLB Translation lookaside buffer.

TLB hit The desired translation is present in the on-chip TLB.

TLB miss The desired translation is not present in the on-chip TLB.

TPC Trap-saved PC.

Translation Lookaside
Buffer (TLB) A cache within an MMU that contains recent partial translations. TLBs speed

up closely following translations by often eliminating the need to reread Page
Table Entries from memory.
16 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

trap The action taken by the processor when it changes the instruction flow in
response to the presence of an exception, a Tcc instruction, or an interrupt.
The action is a vectored transfer of control to supervisor software through a
table, the address of which is specified by the privileged Trap Base Address
(TBA) register. See also exception.

TSB Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

TSO Total store order.

TTE Translation table entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the Page Table. In some cases, the term is
explicitly used for the entries in the TSB.

unassigned A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

undefined An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.
Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as allowing user software to access privileged
state), put the processor into supervisor mode, or put the processor into an
unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

unpredictable Synonym: undefined.

unrestricted Describing an address space identifier (ASI) that can be used regardless of the
processor mode; that is, regardless of the value of PSTATE.PRIV.

user application
program Synonym: application program.

VA Virtual address.

virtual address An address produced by a processor that maps all systemwide, program-
visible memory. Virtual addresses usually are translated by a combination of
hardware and software to physical addresses, which can be used to access
physical memory.

VIS Visual instruction set.

WDR Watchdog reset.

word An aligned quadlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.
Release 1.0.4, 31 May 2002 C. Chapter 2 • Definitions 17

writeback The process of writing a dirty cache line back to memory before it is refilled.

WRPR Write Privileged Register.

XIR Externally initiated reset.
18 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 3

Architectural Overview

SPARC V9 architecture supports 32- and 64-bit integer and 32- 64-, and 128-bit
floating-point as its principal data types. The 32- and 64-bit floating-point types
conform to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std
1596.5-1992. The JPS1 processor defines general-purpose integer, floating-point, and
special state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 264-byte virtual address space.

Text in this chapter is excerpted from The SPARC Architecture Manual, Version 9,
edited by David L. Weaver and Tom Germond. Even though the implementation-
specific processor architecture is beginning to differ more significantly from this
earlier, simpler model, the following sections still provide some useful background
for understanding the implementation-specific discussion of the processor
architecture.

■ SPARC V9 Processor Architecture on page 19
■ Instructions on page 20
■ Traps on page 25

3.1 SPARC V9 Processor Architecture
A SPARC V9 processor logically consists of an integer unit (IU) and a floating-point
unit (FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction execution.
Integer registers are 64 bits wide; floating-point registers are 32, 64, or 128 bits wide.
Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.

The processor can run in either of two modes: privileged or nonprivileged. In
privileged mode, the processor can execute any instruction, including privileged
instructions. In nonprivileged mode, an attempt to execute a privileged instruction
causes a trap to privileged software.
Release 1.0.4, 31 May 2002 C. Chapter 3 • Architectural Overview 19

3.1.1 Integer Unit (IU)
The integer unit contains the general-purpose registers and controls the overall
operation of the processor. The IU executes the integer arithmetic instructions and
computes memory addresses for loads and stores. It also maintains the program
counters and controls instruction execution for the FPU.

In addition, SPARC JPS1 processors implement two additional sets of alternate
global registers: one for MMU handling and another for interrupt handling.

IMPL. DEP. #2: An implementation of the SPARC V9 IU may contain from 64 to 528
general-purpose 64-bit r registers. This corresponds to a grouping of the registers
into 8 global r registers, 8 alternate global r registers, plus a circular stack of from 3
to 32 sets of 16 registers each, known as register windows. The number of register
windows present (NWINDOWS) is implementation dependent in SPARC V9.

NWINDOWS = 8 in SPARC JPS1 processors.

3.1.2 Floating-Point Unit (FPU)
The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two
64-bit (double-precision) floating-point registers, and sixteen 128-bit (quad-
precision) floating-point registers, some of which overlap. Double-precision values
occupy an even-odd pair of single-precision register, and quad-precision values
occupy a quad-aligned group of four single-precision registers.

If an FPU is not present or is not enabled, then an attempt to execute a floating-point
instruction generates an fp_disabled trap. In either case, privileged-mode software
must do the following:

■ Enable the FPU and reexecute the trapping instruction, or
■ Emulate the trapping instruction

3.2 Instructions
Instructions fall into the following basic categories:

■ Memory access
■ Integer arithmetic / logical / shift
■ Control transfer
■ State register access
■ Floating-point operate
■ Conditional move
■ Register window management

These classes are discussed in the following subsections.
20 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

3.2.1 Memory Access
Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. They use two r registers or an r register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The Integer
Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two r
registers or one, two, or four f registers that supply the data for a store or that
receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Some versions of integer load instructions
perform sign extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit
destination register. Floating-point load and store instructions support word,
doubleword, and quadword memory accesses.

CASA/CASXA, SWAP, and LDSTUB are special atomic memory access instructions that
concurrent processes use for synchronization and memory updates.

The Atomic Quad Load instruction supplies an indivisible 128-bit (16-byte) load that
is important in certain system software applications.

Memory Alignment Restrictions

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include
instruction fetches) are aligned on 4-byte boundaries; extended-word and
doubleword accesses are aligned on 8-byte boundaries. An improperly aligned
address in a load, store, or load-store instruction causes a trap to occur, with the
possible exception of cases described in Memory Alignment Restrictions on page 108.

Addressing Conventions

SPARC V9 uses big-endian byte order by default: the address of a quadword,
doubleword, word, or halfword is the address of its most significant byte. Increasing
the address means decreasing the significance of the unit being accessed. All
instruction accesses are performed using big-endian byte order. SPARC V9 also can
support little-endian byte order for data accesses only: the address of a quadword,
doubleword, word, or halfword is the address of its least significant byte. Increasing
the address means increasing the significance of the unit being accessed. See
Processor State (PSTATE) Register on page 69 for information about changing the
implicit byte order to little-endian.

Addressing conventions are illustrated in FIGURE 6-4 on page 109 and FIGURE 6-5 on
page 111.
Release 1.0.4, 31 May 2002 C. Chapter 3 • Architectural Overview 21

Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to
alternate spaces 0016–7F16 is restricted, and access to alternate spaces 8016–FF16 is
unrestricted. Some of the ASIs are available for implementation-dependent uses.
Supervisor software can use the implementation-dependent ASIs to access special
protected registers, such as MMU, cache control, and processor state registers, and
other processor- or system-dependent values. See Address Space Identifiers (ASIs) on
page 112 for more information.

Alternate space addressing is also provided for the atomic memory access
instructions LDSTUB, SWAP, and CASA/CASXA.

Separate I and D Memories

The interpretation of address can be unified, in which case the same translations and
caching are applied to both instructions and data. Alternatively, addresses can be
split, in which case instruction references use one translation mechanism and cache
and data references use another, although the same main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so that a
write into data memory is not immediately reflected in instruction memory. For this
reason, programs that modify their own code (self-modifying code) and that wish to
be portable across all SPARC V9 processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into a
consistent state. SPARC JPS1 processors have coherent instruction and data caches.
Therefore, FLUSH instructions are required for self-modifying code on those
processors to flush pipeline instruction buffers that possibly contain modified
instructions but are not required for cache coherency.

Input/Output (I/O)

SPARC V9 assumes that input/output registers are accessed through load/store
alternate instructions, normal load/store instructions, or read/write Ancillary State
Register instructions (RDASR, WRASR).

IMPL. DEP. #123: The semantic effect of accessing input/output (I/O) locations is
implementation dependent.

IMPL. DEP. #6: Whether the I/O registers can be accessed by nonprivileged code is
implementation dependent.

IMPL. DEP. #7: The addresses and contents of I/O registers are implementation
dependent.
22 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and
MEMBAR. Their operation is explained in Flush Instruction Memory on page 236 and
Memory Barrier on page 261, respectively. Note: STBAR is also available, but it is
deprecated and should not be used in newly developed software.

3.2.2 Arithmetic / Logical / Shift Instructions
The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a result
that is a function of two source operands; the result is either written into a
destination register or discarded. The exception, SETHI, can be used in combination
with another arithmetic or logical instruction to create a 32-bit constant in an r
register.

Shift instructions shift the contents of an r register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of an r
register.

The integer multiply instruction performs a 64 × 64 → 64-bit operation. The integer
division instructions perform 64 ÷ 64 → 64-bit operations. Division by zero causes a
trap. Some versions of the 32-bit multiply and divide instructions set the condition
codes.

The tagged arithmetic instructions assume that the least-significant two bits of each
operand are a data-type tag. These instructions set the integer condition code (icc)
and extended integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit
(xcc) arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero,
icc is set. The xcc overflow bit is not affected by the tag bits.

3.2.3 Control Transfer
Control-transfer instructions (CTIs) include PC-relative branches and calls, register-
indirect jumps, and conditional traps. Most of the control-transfer instructions are
delayed; that is, the instruction immediately following a control-transfer instruction
in logical sequence is dispatched before the control transfer to the target address is
completed. Note that the next instruction in logical sequence may not be the
instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay
instruction. A bit in a delayed control-transfer instruction (the annul bit) can cause
the delay instruction to be annulled (that is, to have no effect) if the branch is not
taken (or in the “branch always” case if the branch is taken).
Release 1.0.4, 31 May 2002 C. Chapter 3 • Architectural Overview 23

Note – SPARC V8 specified that the delay instruction was always fetched, even if
annulled, and that an annulled instruction could not cause any traps. SPARC V9
does not require the delay instruction to be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link
(JMPL) and return (RETURN) instructions use a register-indirect target address. They
compute their target addresses either as the sum of two r registers or as the sum of
an r register and a 13-bit signed immediate value. The “branch on condition codes
without prediction” instruction provides a displacement of ±8 Mbytes; the “branch
on condition codes with prediction” instruction provides a displacement of ±1
Mbyte; the “branch on register contents” instruction provides a displacement of ±128
Kbytes; and the CALL instruction’s 30-bit word displacement allows a control
transfer to any address within ±2 gigabytes (±231 bytes).

Note – The return from privileged trap instructions (DONE and RETRY) get their
target address from the appropriate TPC or TNPC register.

3.2.4 State Register Access
The read and write state register instructions read and write the contents of state
registers visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The
read and write privileged register instructions read and write the contents of state
registers visible only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA,
PSTATE, TL, PIL, CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, WSTATE,
and VER).

IMPL. DEP. #8: Software can use read/write ancillary state register instructions to
read/write implementation-dependent processor registers (ASRs 16–31).

IMPL. DEP. #9: Whether each of the implementation-dependent read/write
ancillary state register instructions (for ASRs 16–31) is privileged is implementation
dependent.

3.2.5 Floating-Point Operate
Floating-point operate (FPop) instructions perform all floating-point calculations;
they are register-to-register instructions that operate on the floating-point registers.
Like arithmetic/logical/shift instructions, FPops compute a result that is a function
of one or two source operands. Specific floating-point operations are selected by a
subfield of the FPop1/FPop2 instruction formats.
24 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Although not part of JPS1 commonality, the floating-point multiply-add and
multiply-subtract instructions described in A.24 of the SPARC64 V supplement to
JPS1 are expected to be part of the commonality in a future JPS.

3.2.6 Conditional Move
Conditional move instructions conditionally copy a value from a source register to a
destination register, depending on an integer or floating-point condition code or
upon the contents of an integer register. These instructions increase performance by
reducing the number of branches.

3.2.7 Register Window Management
Register window instructions manage the register windows. SAVE and RESTORE are
nonprivileged and cause a register window to be pushed or popped. FLUSHW is
nonprivileged and causes all of the windows except the current one to be flushed to
memory. SAVED and RESTORED are used by privileged software to end a window
spill or fill trap handler.

3.3 Traps
A trap is a vectored transfer of control to privileged software through a trap table
that may contain the first 8 instructions (32 for fill/spill traps) of each trap handler.
The base address of the table is established by software in a state register (the Trap
Base Address Register, TBA). The displacement within the table is encoded in the
type number of each trap and the level of the trap. One-half of the table is reserved
for hardware traps; one-quarter is reserved for software traps generated by trap
(Tcc) instructions; the final quarter is reserved for future expansion of the
architecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It
also causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC,
TNPC, and TSTATE are entries in a hardware trap stack, where the number of entries
in the trap stack is equal to the number of trap levels supported (which is 5 in a JPS1
processor). A trap also sets bits in the PSTATE register, one of which can enable an
alternate set of global registers for use by the trap handler. Normally, the CWP is not
changed by a trap; on a window spill or fill trap; however, the CWP is changed to
point to the register window to be saved or restored.
Release 1.0.4, 31 May 2002 C. Chapter 3 • Architectural Overview 25

A trap can be caused by a Tcc instruction, an asynchronous exception, an
instruction-induced exception, or an interrupt request not directly related to a
particular instruction. Before executing each instruction, the processor determines if
there are any pending exceptions or interrupt requests. If any are pending, the
processor selects the highest-priority exception or interrupt request and causes a
trap.

See Chapter 7, Traps, for a complete description of traps.
26 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 4

Data Formats

The SPARC V9 architecture recognizes these fundamental data types:

■ Signed integer: 8, 16, 32, and 64 bits
■ Unsigned integer: 8, 16, 32, and 64 bits
■ Graphics data formats: pixel (32-bits), fixed16 (64-bits), and fixed32 (64 bits)
■ Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

■ Byte: 8 bits
■ Halfword: 16 bits
■ Word: 32 bits
■ Extended word: 64 bits
■ Tagged word: 32 bits (30-bit value plus 2-bit tag) (deprecated)
■ Doubleword: 64 bits
■ Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. Unsigned integer values, bit vectors, Boolean
values, character strings, and other values representable in binary form are stored as
unsigned integers with a width commensurate with their range. The floating-point
formats conform to the IEEE Standard for Binary Floating-point Arithmetic, IEEE
Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Data formats are described in these sections:

■ Signed, Unsigned, and Tagged Integer Data Formats on page 28
■ Floating-Point Data Types on page 32
■ Graphics Data Formats on page 36

Names are assigned to individual subwords of the multiword data formats as
described in these sections:

■ Signed Integer Double on page 30
■ Unsigned Integer Double on page 32
■ Floating Point, Double Precision on page 33
■ Floating Point, Quad Precision on page 34
Release 1.0.4, 31 May 2002 C. Chapter 4 • Data Formats 27

4.1 Signed, Unsigned, and Tagged Integer
Data Formats
TABLE 4-1 describes the width and ranges of the signed, unsigned, and tagged integer
data formats.

TABLE 4-2 describes the memory and register alignment for integer data.

TABLE 4-1 Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data Type Width (bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer tagged word 32 −229 to 229 − 1

Signed integer double 64 −263 to 263 − 1

Signed extended integer 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer tagged word 32 0 to 230 − 1

Unsigned integer double 64 0 to 264 − 1

Unsigned extended integer 64 0 to 264 − 1

TABLE 4-2 Integer Doubleword Alignment

Subformat
Name Subformat Field

Required
Address
Alignment

Memory
Address

Register
Number
Alignment

Register
Number

SD-0 signed_dbl_integer<63:32> 0 mod 8 n 0 mod 2 r

SD-1 signed_dbl_integer<31:0> 4 mod 8 n + 4 1 mod 2 r + 1

SX signed_ext_integer<63:0> 0 mod 8 n — r

UD-0 unsigned_dbl_integer<63:32> 0 mod 8 n 0 mod 2 r
28 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The data types are illustrated in the following subsections.

4.1.1 Signed Integer Data Types
Figures in this section illustrate the following signed data types:

■ Signed integer byte
■ Signed integer halfword
■ Signed integer word
■ Signed integer doubleword
■ Signed extended integer

Signed Integer Byte

FIGURE 4-1 illustrates the signed integer byte data format.

FIGURE 4-1 Signed Integer Byte Data Format

Signed Integer Halfword

FIGURE 4-2 illustrates the signed integer halfword data format.

FIGURE 4-2 Signed Integer Halfword Data Format

UD-1 unsigned_dbl_integer<31:0> 4 mod 8 n + 4 1 mod 2 r + 1

UX unsigned_ext_integer<63:0> 0 mod 8 n — r

TABLE 4-2 Integer Doubleword Alignment (Continued)

Subformat
Name Subformat Field

Required
Address
Alignment

Memory
Address

Register
Number
Alignment

Register
Number

7 6 0

S

15 14 0

S

Release 1.0.4, 31 May 2002 C. Chapter 4 • Data Formats 29

Signed Integer Word

FIGURE 4-3 illustrates the signed integer word data format.

FIGURE 4-3 Signed Integer Word Data Format

Signed Integer Double

FIGURE 4-4 illustrates both components (SD-0 and SD-1) of the signed integer double
data format.

FIGURE 4-4 Signed Integer Double Data Format

Signed Extended Integer

FIGURE 4-5 illustrates the signed extended integer (SX) data format.

FIGURE 4-5 Signed Extended Integer Data Format

31 30 0

S

31 30 0

S signed_dbl_integer<62:32>

SD–0

SD–1

31 0

signed_dbl_integer<31:0>

63 62 0

S signed_ext_integerSX
30 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

4.1.2 Unsigned Integer Data Types
Figures in this section illustrate the following unsigned data types:

■ Unsigned integer byte
■ Unsigned integer halfword
■ Unsigned integer word
■ Unsigned integer doubleword
■ Unsigned extended integer

Unsigned Integer Byte

FIGURE 4-6 illustrates the unsigned integer byte data format.

FIGURE 4-6 Unsigned Integer Byte Data Format

Unsigned Integer Halfword

FIGURE 4-7 illustrates the unsigned integer halfword data format.

FIGURE 4-7 Unsigned Integer Halfword Data Format

Unsigned Integer Word

FIGURE 4-8 illustrates the unsigned integer word data format.

FIGURE 4-8 Unsigned Integer Word Data Format

7 0

15 0

31 0
Release 1.0.4, 31 May 2002 C. Chapter 4 • Data Formats 31

Unsigned Integer Double

FIGURE 4-9 illustrates both components (UD-0 and UD-1) of the unsigned integer
double data format.

FIGURE 4-9 Unsigned Integer Double Data Format

Unsigned Extended Integer

FIGURE 4-10 illustrates the unsigned extended integer (UX) data format.

FIGURE 4-10 Unsigned Extended Integer Data Format

4.1.3 Tagged Word
FIGURE 4-11 illustrates the tagged word data format.

FIGURE 4-11 Tagged Word Data Format

4.2 Floating-Point Data Types
Single-precision, double-precision, and quad-precision floating-point data types are
described below.

31 0

unsigned_dbl_integer<63:32>UD–0

UD–1
31 0

unsigned_dbl_integer<31:0>

63 0

unsigned_ext_integerUX

31 0

tag

2 1
32 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

4.2.1 Floating Point, Single Precision
FIGURE 4-12 illustrates the floating-point single-precision data format, and TABLE 4-3
describes the formats.

FIGURE 4-12 Floating-Point Single-Precision Data Format

4.2.2 Floating Point, Double Precision
FIGURE 4-13 illustrates both components (FD-0 and FD-1) of the floating-point
double-precision data format, and TABLE 4-4 describes the formats.

FIGURE 4-13 Floating-Point Double-Precision Data Format

TABLE 4-3 Floating-Point Single-Precision Format Definition

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127 × 1.f

Subnormal value (e = 0): (−1)s × 2−126 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

31 30 0

S exp<7:0> fraction<22:0>

2223

31 30 0

S exp<10:0> fraction<51:32>

1920

FD–0

FD–1
31 0

fraction<31:0>
Release 1.0.4, 31 May 2002 C. Chapter 4 • Data Formats 33

4.2.3 Floating Point, Quad Precision
FIGURE 4-14 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 4-5 describes the formats.

FIGURE 4-14 Floating-Point Quad-Precision Data Format

TABLE 4-4 Floating-Point Double-Precision Format Definition

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0): (−1)s × 2−1022 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

31 30 0

S exp<14:0> fraction<111:96>

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

fraction<95:64>

31 0

fraction<63:32>

31 0

fraction<31:0>
34 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

4.2.4 Floating-Point Data Alignment in Memory and
Registers
TABLE 4-6 describes the address and memory alignment for floating-point data.

*The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-en-
dian accesses are used.

†Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/
stores instead of multiple singleword loads/stores).

‡Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).

TABLE 4-5 Floating-Point Quad-Precision Format Definition

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0): (-1)s × 2−16382 × 0.f

Zero (e = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be
nonzero)

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

TABLE 4-6 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Required
Address
Alignment

Memory
Address
(big-endian)*

Register
Number
Alignment

Register
Number

FD-0 s:exp<10:0>:fraction<51:32> 0 mod 4 † n 0 mod 2 f

FD-1 fraction<31:0> 0 mod 4 † n + 4 1 mod 2 f + 1

FQ-0 s:exp<14:0>:fraction<111:96> 0 mod 4 ‡ n 0 mod 4 f

FQ-1 fraction<95:64> 0 mod 4 ‡ n + 4 1 mod 4 f + 1

FQ-2 fraction<63:32> 0 mod 4 ‡ n + 8 2 mod 4 f + 2

FQ-3 fraction<31:0> 0 mod 4 ‡ n + 12 3 mod 4 f + 3
Release 1.0.4, 31 May 2002 C. Chapter 4 • Data Formats 35

4.3 Graphics Data Formats
Graphics instructions are optimized for short integer arithmetic, where the overhead
of converting to and from floating point is significant. Image components can be 8 or
16 bits; intermediate results are 16 or 32 bits.

4.3.1 Pixel Graphics Format
Pixels consist of four unsigned 8-bit integers contained in a 32-bit word (see
FIGURE 4-15). Typically, they represent intensity values for an image (for example, α,
G, B, R). A SPARC JPS1 processor supports:

■ Band interleaved images, with the various color components of a point in the image
stored together

■ Band sequential images, with all of the values for one color component stored
together

FIGURE 4-15 Pixel Graphics Format

Each 8-bit quantity is an unsigned integer. Conventional use is to store α, R, G, and
B values in MSB to LSB order within the pixel format.

4.3.2 Fixed16 Graphics Format
Fixed data values provide an intermediate format with enough precision and
dynamic range for filtering and simple image computations on pixel values.

Conversion from pixel data to fixed data occurs through pixel multiplication.
Conversion from fixed data to pixel data is done with the FPACK instructions, which
clip and truncate to an 8-bit unsigned value. Conversion from 32-bit fixed to 16-bit
fixed is also supported with the FPACKFIX instruction.

Perform rounding by adding 1 to the round bit position. Perform complex
calculations needing more dynamic range or precision by means of floating-point
data.

31 24 023 16 15 8 716
36 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The fixed 16-bit data format consists of four 16-bit, signed, fixed-point values
contained in a 64-bit word. FIGURE 4-16 illustrates the Fixed16 Graphics format.

FIGURE 4-16 Fixed16 Graphics Format

4.3.3 Fixed32 Graphics Format
The fixed 32-bit format consists of two 32-bit, signed, fixed-point values contained in
a 64-bit word. FIGURE 4-17 illustrates the Fixed32 Graphics format.

FIGURE 4-17 Fixed32 Graphics Format

63 48 0

int frac int frac int frac int frac

47 32 31 16 1563

63 0

int frac int

32 31

frac
Release 1.0.4, 31 May 2002 C. Chapter 4 • Data Formats 37

38 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 5

Registers

Registers are described in these two main sections:

■ Nonprivileged Registers on page 40
■ Privileged Registers on page 69

A SPARC JPS1 processor includes three types of registers: general-purpose (working
data), ancillary state (ASRs), and ASI registers.

Working data registers include:

■ Integer working registers (r registers) — page 46
■ Floating-point working registers (f registers) — page 48

Control/status registers include:

■ Program Counter Register (PC) — page 46
■ Next Program Counter Register (nPC) — page 46
■ Y Register (Y) — page 47
■ Condition Codes Register (CCR) — page 54
■ Floating-Point Registers State Register (FPRS) — page 55
■ Floating-Point State Register (FSR) — page 56
■ Address Space Identifier Register (ASI) — page 67
■ Hardware clock-tick counter register (TICK) — page 68
■ Processor State Register (PSTATE) — page 69
■ Trap Level Register (TL) — page 74
■ Processor Interrupt Level Register (PIL) — page 75
■ Trap Program Counter Register (TPC) — page 75
■ Trap Next Program Counter Register (TNPC) — page 76
■ Trap State Register (TSTATE) — page 77
■ Trap Type Register (TT) — page 77
■ Trap Base Address Register (TBA) — page 78
■ Version Register (VER) — page 79
■ Current Window Pointer Register (CWP) — page 80
■ Savable Windows Register (CANSAVE) — page 81
■ Restorable Windows Register (CANRESTORE) — page 81
■ Other Windows Register (OTHERWIN) — page 82
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 39

■ Window State Register (WSTATE) — page 82
■ Clean Windows Register (CLEANWIN) — page 83
■ Performance Control Register (PCR) (ASR 16) — page 84
■ Performance Instrumentation Counters (PIC) (ASR 17) — page 85
■ Dispatch Control Register (DCR) (ASR 18) — page 86
■ Graphics Status Register (GSR) (ASR 19) — page 87
■ Set Bit(s) in Per-processor Soft Interrupt Register (SET_SOFTINT) (ASR 20) —

page 88
■ Clear Bit(s) in per-processor Soft Interrupt Register (CLEAR_SOFTINT) (ASR 21)

— page 88
■ Per-processor Soft Interrupt Register (SOFTINT) (ASR 22) — page 89
■ Tick Compare (TICK_COMPARE) (ASR 23) — page 90
■ System hardware clock-tick counter (STICK) (ASR 24) — page 90
■ System Tick Compare (STICK_COMPARE) (ASR 25) — page 91
■ Data Cache Unit Control Register (DCUCR) (ASI 4516) — page 92
■ Virtual Address Data Watchpoint Register (ASI 5816) —page 95
■ Physical Address Data Watchpoint Register (ASI 5816) — page 96
■ Instruction Trap Register — page 96

The ASI registers are defined in Appendix L, Address Space Identifiers.

For convenience, some registers in this are illustrated as fewer than 64 bits wide.
Any bits not shown are reserved for future extensions to the architecture. Such
reserved bits are read as zeroes and, when written by software, should be written
with the values of those bits previously read from that register or with zeroes.

Figures and tables in this chapter are reproduced from The SPARC Architecture
Manual-Version 9.

5.1 Nonprivileged Registers
The registers described in this subsection are visible to nonprivileged (application or
“user mode”) software.

5.1.1 General-Purpose r Registers
A SPARC JPS1 processor contains 160 general-purpose 64-bit r registers. They are
partitioned into eight global registers, three sets of eight alternate global registers, plus
eight 16-register sets. A register window consists of the current eight in registers,
eight local registers, and eight out registers. See FIGURE 5-1.

At any moment, general-purpose registers appear to nonprivileged software as
shown in FIGURE 5-1.
40 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

i7 r[31]

i6 r[30]

i5 r[29]

i4 r[28]

i3 r[27]

i2 r[26]

i1 r[25]

i0 r[24]

r[23]

r[22]

r[21]

r[20]

r[19]

r[18]

r[17]

r[16]

r[15]

r[14]

r[13]

r[12]

r[11]

r[10]

r[9]

r[8]

r[7]

r[6]

r[5]

r[4]

r[3]

r[2]

r[1]

r[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

FIGURE 5-1 General-Purpose Registers (Nonprivileged View)
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 41

Global r Registers

Registers r[0]–r[7] refer to a set of eight registers called the global registers (g0–
g7). At any time, one of four sets of eight registers is enabled and can be accessed as
a global register. The currently enabled set of global registers is selected by the
Alternate Global (AG), Interrupt Global (IG), and MMU Global (MG) fields in the
PSTATE register. See Processor State (PSTATE) Register on page 69 for a description of
the AG, IG, and MG fields.

Global register zero (g0) always reads as zero; writes to it have no program-visible
effect.

Windowed r Registers

At any time, an instruction can access the eight global registers and a 24-register
window into the r registers. A register window comprises the 8 in and 8 local
registers of a particular register set, together with the 8 in registers of an adjacent
register set, which are addressable from the current window as out registers. See
TABLE 5-1 and FIGURE 5-2.

Compatibility Note – Since the PSTATE register is writable only by privileged
software, existing nonprivileged SPARC V8 software operates correctly on a SPARC
JPS1 processor if supervisor software ensures that nonprivileged software sees a
consistent set of global registers.

The number of windows or register sets, NWINDOWS, ranges from 3 to 32 (impl. dep.
#2) in SPARC V9. The total number of r registers in a given implementation is 8 (for
the global registers), plus 24 (8 alternate global registers, 8 interrupt global registers,
and 8 MMU global registers) plus the number of sets times 16 registers/set. In a
SPARC JPS1 processor, NWINDOWS is fixed at 8. Therefore, a JPS1 processor has 160 r
registers.

TABLE 5-1 Window Addressing

Windowed Register Address r Register Address

in[0] – in[7] r[24] – r[31]

local[0] – local[7] r[16] – r[23]

out[0] – out[7] r[8] – r[15]

global[0] – global[7] r[0] – r[7]
42 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The current window in the windowed portion of r registers is given by the current
window pointer (CWP) register. The CWP is decremented by the RESTORE instruction
and incremented by the SAVE instruction. Window overflow is detected by the
CANSAVE register, and window underflow is detected by the CANRESTORE register,
both of which are controlled by privileged software. A window overflow
(underflow) condition causes a window spill (fill) trap.

Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The
outs of the CWP – 1 (modulo NWINDOWS) window are addressable as the ins of the
current window, and the outs in the current window are the ins of the CWP + 1
(modulo NWINDOWS) window. The locals are unique to each window.

Window (CWP – 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP + 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

r[7]

r[1]

globals
.
.

r[0] 0

63 0

FIGURE 5-2 Three Overlapping Windows and the Eight Global Registers
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 43

An outs register with address o, where 8 ≤ o ≤ 15, refers to exactly the same register
as (o+16) does after the CWP is incremented by 1 (modulo NWINDOWS). Likewise, an
in register with address i, where 24 ≤ i ≤ 31, refers to exactly the same register as
address (i−16) does after the CWP is decremented by 1 (modulo NWINDOWS). See
FIGURE 5-2 on page 43 and FIGURE 5-3 on page 45.

Since CWP arithmetic is performed modulo NWINDOWS, the highest-numbered
implemented window (window 7 in SPARC JPS1) overlaps with window 0. The outs
of window NWINDOWS − 1 are the ins of window 0. Implemented windows are
numbered contiguously from 0 through NWINDOWS −1.

Programming Note – Since the procedure call instructions (CALL and JMPL) do
not change the CWP, a procedure can be called without changing the window. See
Leaf-Procedure Optimization on page 491.

Because the windows overlap, the number of windows available to software is one
less than the number of implemented windows; that is, NWINDOWS – 1 or 7 in SPARC
JPS1. When the register file is full, the outs of the newest window are the ins of the
oldest window, which still contains valid data.

The local and out registers of a register window are guaranteed to contain either
zeroes or an old value that belongs to the current context upon reentering the
window through a SAVE instruction. If a program executes a RESTORE followed by a
SAVE, then the resulting window’s locals and outs may not be valid after the SAVE,
since a trap may have occurred between the RESTORE and the SAVE. However, if the
clean_window protocol is being used, system software must guarantee that
registers in the current window after a SAVE always contains only zeroes or valid
data from that context. See Clean Windows (CLEANWIN) Register on page 83, Savable
Windows (CANSAVE) Register on page 81, and Restorable Windows (CANRESTORE)
Register on page 81.

Register Window Management Instructions on page 120 describes how the windowed
integer registers are managed.
44 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

FIGURE 5-3 Windowed r Registers for NWINDOWS = 8

w4 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins

w1 locals

w1 ins

w6 locals w6 ins

w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

The current window (window 0) and the overlap window (window 5)
account for the two windows in the right side of the equation. The
“overlap window” is the window that must remain unused because its ins
and outs overlap two other valid windows.

SAVE RESTORE w5 ins

CANSAVE =4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(Current Window Pointer)
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 45

5.1.2 Special r Registers
The use of two of the r registers is fixed, in whole or in part, by the architecture:

■ The value of r[0] is always zero; writes to it have no program-visible effect.

■ The CALL instruction writes its own address into register r[15] (out register 7).

Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjacent r registers
and require even-odd register alignment. The least significant bit of an r register
number in these instructions is reserved and should be supplied as 0 by software.

When the r[0]–r[1] register pair is used as a destination in LDD or LDDA, only r[1] is
modified. When the r[0]–r[1] register pair is used as a source in STD or STDA, a 0 is
written to the 32-bit word at the lowest address, and the least significant 32 bits of
r[1] are written to the 32-bit word at the highest address.

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a
misaligned (odd) destination register number causes an illegal_instruction trap.

Register Usage

See General-Purpose r Registers on page 40 for information about the conventional
usage of the r registers.

In FIGURE 5-3, NWINDOWS = 8. The eight global registers are not illustrated. CWP = 0,
CANSAVE = 4, OTHERWIN = 1, and CANRESTORE = 1. If the procedure using window
w0 executes a RESTORE, then window w7 becomes the current window. If the
procedure using window w0 executes a SAVE, then window w1 becomes the current
window.

5.1.3 IU Control/Status Registers
The nonprivileged IU control/status registers include the program counters (PC and
nPC), the 32-bit multiply/divide (Y) register, and several implementation-dependent
Ancillary State Registers (ASRs), which are defined in Ancillary State Registers (ASRs)
on page 83.

Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed. The nPC
holds the address of the next instruction to be executed if a trap does not occur. The
low-order two bits of PC and nPC always contain 0.
46 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

For a delayed control transfer, the instruction that immediately follows the transfer
instruction is known as the delay instruction. This delay instruction is executed
(unless the control transfer instruction annuls it) before control is transferred to the
target. During execution of the delay instruction, the nPC points to the target of the
control transfer instruction, and the PC points to the delay instruction. See Chapter 6,
Instructions.

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc,
FBPfcc, JMPL, and RETURN instructions. It can be read directly by an RDPC
instruction.

32-bit Multiply/Divide Register (Y)

The low-order 32 bits of the Y register, illustrated in FIGURE 5-4, contain the more
significant word of the 64-bit product of an integer multiplication, as a result of
either a 32-bit integer multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an
integer multiply step (MULScc) instruction. The Y register also holds the more
significant word of the 64-bit dividend for a 32-bit integer divide (SDIV, SDIVcc,
UDIV, UDIVcc) instruction.

FIGURE 5-4 Y Register

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as
0.

The Y register is read and written with the RDY and WRY instructions, respectively.

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software. It
is recommended that all instructions that reference the Y register (that is, SMUL,
SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc, RDY, and WRY
be avoided. For suitable substitute instructions, see the following pages: for the
multiply instructions, see page 369; for the multiply step instruction, see
page 371; for division instructions, see page 361; for the read instruction, see
page 373; and for the write instruction, see page 389.

63 032 31

— product<63:32> or dividend<63:32>
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 47

Ancillary State Registers (ASRs)

SPARC V9 provides for optional ancillary state registers (ASRs). Access to a
particular ASR may be privileged or nonprivileged; see Ancillary State Registers
(ASRs) on page 83 for a more complete description of ASRs

5.1.4 Floating-Point Registers
The Floating Point Unit contains:

■ 32 single-precision (32-bit) floating-point registers, numbered f [0], f[1], … f[31]

■ 32 double-precision (64-bit) floating-point registers, numbered f[0], f [2], … f[62]

■ 16 quad-precision (128-bit) floating-point registers, numbered f [0], f[4], …f [60]

The floating-point registers are arranged so that some of them overlap, that is, are
aliased. The layout and numbering of the floating-point registers are shown in
Tables 5-2, 5-3, and 5-4. Unlike the windowed r registers, all of the floating-point
registers are accessible at any time. The floating-point registers can be read and
written by FPop (FPop1/FPop2 format) instructions, by load/store single/double/
quad floating-point instructions, and by block load and block store instructions.

TABLE 5-2 Single-Precision Floating-Point Registers, with Aliasing

Operand Register ID From Register

f31 f31<31:0>

f30 f30<31:0>

f29 f29<31:0>

f28 f28<31:0>

f27 f27<31:0>

f26 f26<31:0>

f25 f25<31:0>

f24 f24<31:0>

f23 f23<31:0>

f22 f22<31:0>

f21 f21<31:0>

f20 f20<31:0>

f19 f19<31:0>

f18 f18<31:0>

f17 f17<31:0>

f16 f16<31:0>
48 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

f15 f15<31:0>

f14 f14<31:0>

f13 f13<31:0>

f12 f12<31:0>

f11 f11<31:0>

f10 f10<31:0>

f9 f9<31:0>

f8 f8<31:0>

f7 f7<31:0>

f6 f6<31:0>

f5 f5<31:0>

f4 f4<31:0>

f3 f3<31:0>

f2 f2<31:0>

f1 f1<31:0>

f0 f0<31:0>

TABLE 5-3 Double-Precision Floating-Point Registers, with Aliasing (1 of 3)

Operand Register ID Operand Field From Register

f62 <63:0> f62<63:0>

f60 <63:0> f60<63:0>

f58 <63:0> f58<63:0>

f56 <63:0> f56<63:0>

f54 <63:0> f54<63:0>

f52 <63:0> f52<63:0>

f50 <63:0> f50<63:0>

f48 <63:0> f48<63:0>

f46 <63:0> f46<63:0>

f44 <63:0> f44<63:0>

f42 <63:0> f42<63:0>

f40 <63:0> f40<63:0>

f38 <63:0> f38<63:0>

TABLE 5-2 Single-Precision Floating-Point Registers, with Aliasing (Continued)

Operand Register ID From Register
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 49

f36 <63:0> f36<63:0>

f34 <63:0> f34<63:0>

f32 <63:0> f32<63:0>

f30 <31:0> f31<31:0>

<63:32> f30<31:0>

f28
<31:0> f29<31:0>

<63:32> f28<31:0>

f26
<31:0> f27<31:0>

<63:32> f26<31:0>

f24
<31:0> f25<31:0>

<63:32> f24<31:0>

f22
<31:0> f23<31:0>

<63:32> f22<31:0>

f20
<31:0> f21<31:0>

<63:32> f20<31:0>

f18
<31:0> f19<31:0>

<63:32> f18<31:0>

f16
<31:0> f17<31:0>

<63:32> f16<31:0>

f14
<31:0> f15<31:0>

<63:32> f14<31:0>

f12
<31:0> f13<31:0>

<63:32> f12<31:0>

f10
<31:0> f11<31:0>

<63:32> f10<31:0>

f8
<31:0> f9<31:0>

<63:32> f8<31:0>

f6
<31:0> f7<31:0>

<63:32> f6<31:0>

f4
<31:0> f5<31:0>

<63:32> f4<31:0>

TABLE 5-3 Double-Precision Floating-Point Registers, with Aliasing (2 of 3)

Operand Register ID Operand Field From Register
50 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

f2
<31:0> f3<31:0>

<63:32> f2<31:0>

f0
<31:0> f1<31:0>

<63:32> f0<31:0>

TABLE 5-4 Quad-Precision Floating-Point Registers, with Aliasing

Operand Register ID Operand Field From Register

f60
<63:0> f62<63:0>

<127:64> f60<63:0>

f56
<63:0> f58<63:0>

<127:64> f56<63:0>

f52
<63:0> f54<63:0>

<127:64> f52<63:0>

f48
<63:0> f50<63:0>

<127:64> f48<63:0>

f44
<63:0> f46<63:0>

<127:64> f44<63:0>

f40
<63:0> f42<63:0>

<127:64> f40<63:0>

f36
<63:0> f38<63:0>

<127:64> f36<63:0>

f32
<63:0> f34<63:0>

<127:64> f32<63:0>

f28

<31:0> f31<31:0>

<63:32> f30<31:0>

<95:64> f29<31:0>

<127:96> f28<31:0>

f24

<31:0> f27<31:0>

<63:32> f26<31:0>

<95:64> f25<31:0>

<127:96> f24<31:0>

TABLE 5-3 Double-Precision Floating-Point Registers, with Aliasing (3 of 3)

Operand Register ID Operand Field From Register
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 51

Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in
the 5-bit register number field of a floating-point instruction. If the bits in a register
number field are labeled b<4>–b<0> (where b<4> is the most significant bit of the

f20

<31:0> f23<31:0>

<63:32> f22<31:0>

<95:64> f21<31:0>

<127:96> f20<31:0>

f16

<31:0> f19<31:0>

<63:32> f18<31:0>

<95:64> f17<31:0>

<127:96> f16<31:0>

f12

<31:0> f15<31:0>

<63:32> f14<31:0>

<95:64> f13<31:0>

<127:96> f12<31:0>

f8

<31:0> f11<31:0>

<63:32> f10<31:0>

<95:64> f9<31:0>

<127:96> f8<31:0>

f4

<31:0> f7<31:0>

<63:32> f6<31:0>

<95:64> f5<31:0>

<127:96> f4<31:0>

f0

<31:0> f3<31:0>

<63:32> f2<31:0>

<95:64> f1<31:0>

<127:96> f0<31:0>

TABLE 5-4 Quad-Precision Floating-Point Registers, with Aliasing (Continued)

Operand Register ID Operand Field From Register
52 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

register number), the encoding of floating-point register numbers into 5-bit
instruction fields is as given in TABLE 5-5.

Compatibility Note – In SPARC V8, bit 0 of double and quad register numbers
encoded in instruction fields was required to be zero. Therefore, all SPARC V8 floating-
point instructions can run unchanged on a SPARC JPS1 processor, using the encoding in
TABLE 5-5.

Double and Quad Floating-Point Operands

A single f register can hold one single-precision operand; a double-precision
operand requires an aligned pair of f registers, and a quad-precision operand
requires an aligned quadruple of f registers. At a given time, the floating-point
registers can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision values in the lower half of the floating-point register file, plus an
additional 16 double-precision or 8 quad-precision values in the upper half, or
mixtures of the three sizes.

Programming Notes – Data to be loaded into a floating-point double or quad
register that is not doubleword aligned in memory must be loaded into the lower 16
double registers (8 quad registers) by means of single-precision LDF instructions. If
desired, the data can then be copied into the upper 16 double registers (8 quad
registers).

An attempt to execute an instruction that refers to a misaligned floating-point
register operand (that is, a quad-precision operand in a register whose 6-bit register
number is not 0 mod 4) shall cause an fp_exception_other trap, with FSR.ftt = 6
(invalid_fp_register).

Given the encoding in TABLE 5-5, it is impossible to specify a double-precision
register with a misaligned register number.

TABLE 5-5 Floating-Point Register Number Encoding

Register Operand
Type 6-bit Register Number

Encoding in a 5-bit Register Field in an
Instruction

Single 0 b<4> b<3> b<2> b<1> b<0> b<4> b<3> b<2> b<1> b<0>

Double b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>

Quad b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 53

SPARC JPS1 does not implement quad-precision operations in hardware. All SPARC
V9 FP quad (including load and store) operations trap to the OS kernel and are
emulated. Whether quad-precision multiply-add and multiply-subtract instructions
are emulated in software is implementation-dependent (impl. dep. #1). Since JPS1
processors do not implement quad floating-point arithmetic operations in hardware,
the fp_exception_other trap with FSR.ftt = 6 (invalid_fp_register) does not occur in
JPS1 processors.

5.1.5 Integer Condition Codes Register (CCR)
The Condition Codes Register (CCR), shown in FIGURE 5-5, holds the integer
condition codes.

FIGURE 5-5 Condition Codes Register

CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both the xcc and icc fields. The
xcc condition codes indicate the result of an operation when viewed as a 64-bit
operation. The icc condition codes indicate the result of an operation when viewed
as a 32-bit operation. For example, if an operation results in the 64-bit value
0000 0000 FFFF FFFF16, the 32-bit result is negative (icc.N is set to 1) but the 64-bit
result is nonnegative (xcc.N is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown
in FIGURE 5-6.

FIGURE 5-6 Integer Condition Codes (CCR_icc and CCR_xcc)

The n bits indicate whether the 2’s-complement ALU result was negative for the last
instruction that modified the integer condition codes; 1 = negative, 0 = not negative.

The z bits indicate whether the ALU result was zero for the last instruction that
modified the integer condition codes; 1 = zero, 0 = nonzero.

7 4 03

xcc iccCCR

7 5 4

0

6

13 2

xcc:
icc:

cvn z
54 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The v bits signify whether the ALU result was within the range of (was
representable in) 64-bit (xcc) or 32-bit (icc) 2’s complement notation for the last
instruction that modified the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the
last instruction that modified the integer condition codes. Carry is set on addition if
there is a carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there
is a borrow into bit 63 (xcc) or bit 31 (icc); 1 = carry, 0 = no carry.

CCR_extended_integer_cond_codes (xcc). Bits 7 through 4 are the IU condition
codes, which indicate the results of an integer operation, with both of the operands
and the result considered to be 64 bits wide. These bits are modified by the
arithmetic and logical instructions, the names of which end with the letters “cc” (for
example, ANDcc) and by the WRCCR instruction. They can be modified by a DONE or
RETRY instruction, which replaces these bits with the CCR field of the TSTATE
register. The BPcc and Tcc instructions may cause a transfer of control based on the
values of these bits. The MOVcc instruction can conditionally move the contents of an
integer register based on the state of these bits. The FMOVcc instruction can
conditionally move the contents of a floating-point register according to the state of
these bits.

CCR_integer_cond_codes (icc). Bits 3 through 0 are the IU condition codes, which
indicate the results of an integer operation, with both of the operands and the result
considered to be 32 bits wide. These bits are modified by the arithmetic and logical
instructions, the names of which end with the letters “cc” (for example, ANDcc) and
by the WRCCR instruction. They can be modified by a DONE or RETRY instruction,
which replaces these bits with the CCR field of the TSTATE register. The BPcc, Bicc,
and Tcc instructions may cause a transfer of control based on the values of these
bits. The MOVcc instruction can conditionally move the contents of an integer
register based on the state of these bits. The FMOVcc instruction can conditionally
move the contents of a floating-point register based on the state of these bits.

5.1.6 Floating-Point Registers State (FPRS) Register
The Floating-Point Registers State (FPRS) Register, shown in FIGURE 5-7, holds
control information for the floating-point register file; this information is readable
and writable by nonprivileged software.

FIGURE 5-7 Floating-Point Registers State Register

012

DLFEF DUFPRS
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 55

FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes an fp_disabled trap. If this bit is set but the
PSTATE.PEF bit is not set, then executing a floating-point instruction causes an
fp_disabled trap; that is, both FPRS.FEF and PSTATE.PEF must be set to enable
floating-point operations.

FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32–
f62. It is set whenever any of the upper floating-point registers is modified. The
processor may set it pessimistically; it may be set whenever a floating-point
instruction is issued, even though that instruction never completes and no output
register is modified. The DU bit is cleared only by software.

FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f0–f31. It is
set whenever any of the lower floating-point registers is modified. The processor
may set it pessimistically; it may be set whenever a floating-point instruction is
issued, even though that instruction never completes and no output register is
modified. The DL bit is cleared only by software.

5.1.7 Floating-Point State Register (FSR)
The FSR register fields, illustrated in FIGURE 5-8, contain FPU mode and status
information. The lower 32 bits of the FSR are read and written by the STFSR and
LDFSR instructions; all 64 bits of the FSR are read and written by the STXFSR and
LDXFSR instructions, respectively. The ver, ftt, and reserved (“—”) fields are not
modified by LDFSR or LDXFSR.

FIGURE 5-8 FSR Fields

63 3235 34 3338 37

31 141923 13 12 11 5 4 091017 162730 29 28 22 21 20

36

fcc3 fcc2 fcc1—

RD — TEM NS — ver ftt qne — fcc0 aexc cexc
56 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Bits 63–38, 29–28, 21–20, and 12 are reserved. When read by an STXFSR instruction,
these bits shall read as zero. Software should issue LDXFSR instructions only with
zero values in these bits, unless the values of these bits are exactly those derived
from a previous STXFSR.

The subsections on pages 57 through 65 describe the remaining fields in the FSR.

FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)

The four sets of floating-point condition code fields are labeled fcc0, fcc1, fcc2,
and fcc3.

Compatibility Note – SPARC V9’s fcc0 is the same as SPARC V8’s fcc.

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32,
fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields
in the FSR, as selected by the instruction. The fccn fields are read and written by
STXFSR and LDXFSR instructions, respectively. The fcc0 field can also be read and
written by STFSR and LDFSR, respectively. FBfcc and FBPfcc instructions base
their control transfers on these fields. The MOVcc and FMOVcc instructions can
conditionally copy a register, based on the state of these fields.

In TABLE 5-6, frs1 and frs2 correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s rs1 and
rs2 fields. The question mark (?) indicates an unordered relation, which is true if
either frs1 or frs2 is a signalling NaN or a quiet NaN. If FCMP or FCMPE generates an
fp_exception_ieee_754 exception, then fccn is unchanged.

TABLE 5-6 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 57

FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 5-7 shows the encodings.

If GSR.IM = 1, then the value of FSR.RD is ignored and floating-point results are
instead rounded according to GSR.IRND.

FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point
exceptions that can be indicated in the current_exception field (cexc). See FIGURE 5-9
on page 65. If a floating-point operate instruction generates one or more exceptions
and the TEM bit corresponding to any of the exceptions is 1, then this condition
causes an fp_exception_ieee_754 trap. A TEM bit value of 0 prevents the
corresponding exception type from generating a trap.

FSR_nonstandard_fp (NS)

IMPL. DEP. #18: When set to 1, bit 22 causes a SPARC V9 FPU to produce
implementation-defined results that may not correspond to IEEE Std 754-1985.

SPARC V9 implementations are permitted but not encouraged to deviate from IEEE
Std. 754-1985 requirements when the nonstandard mode (NS) bit of the FSR is 1.

For instance, to obtain higher performance, implementations may convert a
subnormal floating-point operand or result to zero when FSR.NS is set. For
implementations in which no nonstandard floating-point mode exists, the NS bit of
the FSR should always read as 0, and writes to it should be ignored.

SPARC JPS1 processors implement FSR.NS; the effects of FSR.NS = 1 are as follows:

■ If a floating-point source operand is subnormal, it is replaced by a floating-point
zero value of the same sign (instead of causing an exception).

■ If a floating-point operation generates a subnormal value, the value is replaced
with a floating-point zero value of the same sign. A JPS1 implementation may
implement this by any of the following methods (impl. dep. #18):

TABLE 5-7 Rounding Direction (RD) Field of FSR

RD Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞

3 − ∞
58 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Always perform the replacement in hardware, never causing an exception.

■ Always perform the replacement in hardware, but also cause an
fp_exception__ieee754 “inexact,” ”underflow,” or “division-by-zero”
exception (which may be masked with FSR.TEM).

■ Sometimes perform the replacement in hardware, and sometimes cause an
fp_exception_other exception with FSR.ftt = 2 (unfinished_FPop) so that trap
handler software can perform the replacement.

If GSR.IM = 1, then the value of FSR.NS is ignored and the processor operates as if
FSR.NS = 0.

FSR_version (ver)

IMPL. DEP. #19: Bits 19 through 17 identify one or more particular implementations
of the FPU architecture.

For each SPARC V9 IU implementation (as identified by its VER.impl field), there
may be one or more FPU implementations, or none. This field identifies the
particular FPU implementation present. The value in FSR.ver for each
implementation is strictly implementation dependent. Consult the appropriate
document for each implementation for its setting of FSR.ver.

Version number 7 is reserved to indicate that no hardware floating-point controller is
present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR
instructions.

FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point
exception trap occurs, ftt (bits 16 through 14 of the FSR) identifies the cause of the
exception, the “floating-point trap type.” After a floating-point exception occurs, the
ftt field encodes the type of the floating-point exception until an STFSR or an FPop
is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and
LDXFSR instructions do not affect ftt.

Privileged software that handles floating-point traps must execute an STFSR (or
STXFSR) to determine the floating-point trap type. STFSR and STXFSR shall zero
ftt after the store completes without error. If the store generates an error and does
not complete, ftt remains unchanged.
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 59

Programming Note – Neither LDFSR nor LDXFSR can be used for this purpose,
since both leave ftt unchanged. However, executing a nontrapping FPop such as
“fmovs %f0,%f0” prior to returning to nonprivileged mode will zero ftt. The
ftt remains valid until the next FPop instruction completes execution.

The ftt field encodes the floating-point trap type according to TABLE 5-8. Note: The
value “7” is reserved for future expansion.

IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user
software:

1. The value of aexc is unchanged.

2. The value of cexc is unchanged, except that for an IEEE_754_exception, a bit
corresponding to the trapping exception is set. The unfinished_FPop,
unimplemented_FPop, sequence_error, and invalid_fp_register floating-point trap
types do not affect cexc.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an IEEE_754_exception or after recovery from an
unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap
handler reflects the exception causing the trap.

TABLE 5-8 Floating-Point Trap Type (ftt) Field of FSR)

ftt Trap Type Trap Vector

0 None No trap taken

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop fp_exception_other

3 unimplemented_FPop fp_exception_other

4 sequence_error Does not occur in SPARC JPS1

5 hardware_error Does not occur in SPARC JPS1

6 invalid_fp_register Does not occur in SPARC JPS1

7 Reserved
60 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

In the cases of fp_exception_other exceptions with unfinished_FPop or
unimplemented_FPop trap types that do not subsequently generate IEEE traps, the
recovery software should define cexc, aexc, and the destination registers or fccs,
as appropriate.

ftt = IEEE_754_exception. The IEEE_754_exception floating-point trap type
indicates the occurrence of a floating-point exception conforming to IEEE Std 754-
1985. The exception type is encoded in the cexc field.

The aexc and fccs fields and the destination f register are not affected by an
IEEE_754_exception trap.

ftt = unfinished_FPop. The unfinished_FPop floating-point trap type indicates
that the processor was unable to generate correct results or that exceptions as
defined by IEEE Std 754-1985 have occurred. Where exceptions have occurred, the
cexc field is unchanged.

IMPL. DEP. #248: The conditions under which an fp_exception_other exception with
floating-point trap type of unfinished_FPop can occur are implementation
dependent. The standard (recommended) set of conditions is listed in TABLE 5-9. An
implementation may cause fp_exception_other with unfinished_FPop under a
different (but specified) set of conditions.

TABLE 5-9 Standard Conditions Under Which unfinished_FPop Trap Type Can Occur (impl. dep. #248)

Operation Condition causing unfinished_FPop

Double-to-Single-Precision
Conversion (FdTOs)

• The condition -25 < eres <1 is true, where eres is the biased result exponent
before rounding.

The kernel trap routine implements the conversion and store the result in the
destination register, correctly setting the FSR.cexc bits.

Single-to-Double Precision
Conversion (FsTOd)

• The operand is denormal.
The kernel trap routine implements the conversion and stores the result in the
destination register, correctly setting the FSR.cexc bits.

Add or Subtract • Both operands are denormal,
• One operand is denormal and the other operand is normal (not zero, infinity,

qNaN, sNaN),
• The condition eres <1 is true, where eres is the biased result exponent before

rounding.
The kernel trap routine implements the addition or subtraction and stores the
result in the destination register, correctly setting the FSR.cexc bits.
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 61

Multiply (except FsMULd) • For single precision, one of the operands is denormal, the other operand is
normal and the condition -25 < (esrc1 + esrc2 - 126) is true, where esrc1 and
esrc2 are biased exponents of the operands without normalization.

• For double precision, one of the operands is denormal, the other operand is
normal and the condition -54 < (esrc1 + esrc2 - 1022) is true, where esrc1 and
esrc2 are biased exponents of the operands without normalization.

• For single precision, both operands are normal, FSR.UFM = 0, and the
condition
-25 < eres <1 is true, where eres is the biased result exponent before rounding.

• For double precision, both operands are normal, FSR.UFM = 0, and the
condition -54 < eres <1 is true, where eres is the biased result exponent before
rounding.

The kernel trap routine implements the multiplication and stores the result in
the destination register, correctly setting the FSR.cexc bits.

Multiply (FsMULd) • Both operands are denormal.
• One operand is denormal and the other operand is normal.
The kernel trap routine implements the multiplication, stores the result in the
destination register, and correctly sets the FSR.cexc bits.

Divide • Both operands are denormal.
• For single precision, the numerator is normal, the denominator is denormal

and the condition (esrc1 - esrc2 - 1) <128 is true, where esrc1 and esrc2 are
biased exponents of the operands without normalization.

• For double precision, the numerator is normal, the denominator is denormal
and the condition (esrc1 - esrc2 - 1) <1024 is true, where esrc1 and esrc2 are
biased exponents of the operands without normalization.

• For single precision, the numerator is denormal, the denominator is normal
and the condition -25 < (esrc1 - esrc2 + 126) is true, where esrc1 and esrc2 are
biased exponents of the operands without normalization.

• For double precision, the numerator is denormal, the denominator is normal
and the condition -54 < (esrc1 - esrc2 + 1022) is true, where esrc1 and esrc2 are
biased exponents of the operands without normalization.

• For single precision, both operands are normal, FSR.UFM = 0, and the
condition
-25 < eres <1 is true, where eres is the biased result exponent before rounding.

• For double precision, both operands are normal, FSR.UFM = 0, and the
condition -54 < eres <1 is true, where eres is the biased result exponent before
rounding.

The kernel trap routine implements the division, stores the result in the
destination register, and correctly sets the FSR.cexc bits.

Square Root • The source operand is a positive denormalized number.
The kernel trap routine implements the square root result, stores the result in
the destination register, and correctly set the FSR.cexc bits.

TABLE 5-9 Standard Conditions Under Which unfinished_FPop Trap Type Can Occur (impl. dep. #248)

Operation Condition causing unfinished_FPop
62 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

ftt = unimplemented_FPop. The unimplemented_FPop floating-point trap type
indicates that the processor decoded an FPop that it does not implement. In this
case, the cexc field is unchanged.

All quad FPop variations in a SPARC JPS1 processor set
ftt = unimplemented_FPop.

ftt = sequence_error. The sequence_error floating-point trap type indicates the
occurrence of one of three abnormal error conditions in the FPU. The
sequence_error floating-point trap type can never occur in a SPARC JPS1 processor.

IMPL. DEP. #25: On implementations without a floating-point queue, an attempt to
read the fq with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR.ftt set to 4
(sequence_error).

ftt = hardware_error. The hardware_error floating-point trap type indicates that
the FPU detected a catastrophic internal error, such as an illegal state or a parity
error on an f register access. The hardware_error floating-point trap type can never
occur in SPARC JPS1.

ftt = invalid_fp_register. This trap never occurs in a SPARC JPS1 processor since
JPS1 processors do not implement quad floating-point FPops in hardware.

Implementation Note – SPARC JPS1 processors do not implement quad FPops in
hardware, so a quad FPop generates an unimplemented_FPop trap regardless of the
specified f registers. ftt = invalid_fp_register never occurs in SPARC JPS1
processors.

This trap indicates that one or more operands of an FPop are misaligned; that is, a
quad-precision register number in not 0 mod 4. An implementation shall generate an
fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

FSR_FQ_not_empty (qne)

Since SPARC JPS1 processors do not implement a floating-point queue, FSR.qne
always reads as zero and writes to FSR.qne are ignored.

FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-
point exception traps are disabled through the TEM field. See FIGURE 5-10 on page 66.
After an FPop completes with ftt = 0, the TEM and cexc fields are logically ANDed
together. If the result is nonzero, aexc is left unchanged and an
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 63

fp_exception_ieee_754 trap is generated; otherwise, the new cexc field is ORed into
the aexc field and no trap is generated. Thus, while (and only while) traps are
masked, exceptions are accumulated in the aexc field.

This field is also written with the appropriate value when an LDFSR or LDXFSR
instruction is executed.

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an
exception causes the corresponding bit to be cleared. See FIGURE 5-11 on page 66.

Note – If the FPop traps and software emulate or finish the instruction, the system
software in the trap handler is responsible for creating a correct FSR.cexc value
before returning to a nonprivileged program.

The cexc bits are set as described in , “Floating-Point Exception Fields,” by the
execution of an FPop that either does not cause a trap or causes an
fp_exception_ieee_754 exception with FSR.ftt = IEEE_754_exception. An IEEE
754 exception that traps shall cause exactly one bit in FSR.cexc to be set,
corresponding to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also
cause an "inexact" condition. For overflow and underflow conditions, FSR.cexc
bits are set and trapping occurs as follows:

■ If an IEEE 754 overflow condition occurs:

■ if OFM=0 and NXM=0, the cexc.ofc and cexc.nxc bits are both set to 1, the
other three bits of cexc are set to 0, and an fp_exception_ieee_754 trap does
not occur.

■ if OFM=0 and NXM=1,the cexc.nxc bit is set to 1,the other four bits of cexc
are set to 0, and an fp_exception_ieee_754 trap does occur.

■ if OFM=1, the cexc.ofc bit is set to 1, the other four bits of cexc are set to 0,
and an fp_exception_ieee_754 trap does occur,

■ If an IEEE 754 underflow condition occurs:

■ if UFM=0 and NXM=0, the cexc.ufc and cexc.nxc bits are both set to 1, the
other three bits of cexc are set to 0, and an fp_exception_ieee_754 trap does
not occur.

■ if UFM=0 and NXM=1, the cexc.nxc bit is set to 1, the other four bits of cexc
are set to 0, and an fp_exception_ieee_754 trap does occur.

■ if UFM=1, the cexc.ufc bit is set to 1, the other four bits of cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.
64 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The above behavior is summarized in Table 5-10 (where “x” indicates “don’t-care”):

If the execution of an FPop causes a trap other than fp_exception_ieee_754,
FSR.cexc is left unchanged.

Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per IEEE Std 754-
1985):

FIGURE 5-9 Trap Enable Mask (TEM) Fields of FSR

TABLE 5-10 Setting of FSR.cexc bits

Exception(s)
Detected

in f.p.
 operation

Trap Enable
Mask bits

(in FSR.TEM) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx OFM UFM NXM ofc ufc nxc Notes

- - - x x x no 0 0 0

- - ✔ x x 0 no 0 0 1

- ✔ ✔ x 0 0 no 0 1 1 (1)

✔ - ✔ 0 x 0 no 1 0 1 (2)

- - ✔ x x 1 yes 0 0 1

- ✔ ✔ x 0 1 yes 0 0 1

- ✔ - x 1 x yes 0 1 0

- ✔ ✔ x 1 x yes 0 0 0

✔ - ✔ 1 x x yes 1 0 0 (2)

✔ - ✔ 0 x 1 yes 0 0 1 (2)

Notes:

(1) When the underflow trap is disabled (UFM=0), underflow is
 always accompanied by inexact.
(2) Overflow is always accompanied by inexact.

24 2327 26 25

NVM OFM UFM DZM NXM
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 65

FIGURE 5-10 Accrued Exception Bits (aexc) Fields of FSR

FIGURE 5-11 Current Exception Bits (cexc) Fields of FSR

FSR_invalid (nvc, nva). An operand is improper for the operation to be
performed. For example, 0.0 ÷ 0.0 and ∞ – ∞ are invalid; 1 = invalid operand(s),
0 = valid operand(s).

FSR_overflow (ofc, ofa). The result, rounded as if the exponent range were
unbounded, would be larger in magnitude than the destination format’s largest
finite number; 1 = overflow, 0 = no overflow.

FSR_underflow (ufc, ufa). The rounded result is inexact and would be smaller in
magnitude than the smallest normalized number in the indicated format;
1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0. Otherwise:

If UFM = 0: Underflow occurs if a nonzero result is tiny and a loss of accuracy
occurs.

If UFM = 1: Underflow occurs if a nonzero result is tiny.

SPARC V9 allows tininess to be detected either before or after rounding. In all cases
and regardless of the setting of UFM, a SPARC JPS1 processor detects tininess before
rounding (impl. dep. #55).

FSR_division-by-zero (dzc, dza). X ÷ 0.0, where X is subnormal or normalized;
1 = division by zero, 0 = no division by zero.

Note: 0.0 ÷ 0.0 does not set the dzc or dza bits.

FSR_inexact (nxc, nxa). The rounded result of an operation differs from the
infinitely precise unrounded result; 1 = inexact result, 0 = exact result.

6 59 8 7

nva ofa ufa dza nxa

1 04 3 2

nvc ofc ufc dzc nxc
66 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Programming Note – Software must be capable of simulating the operation of the
FPU in order to properly handle the unimplemented_FPop, unfinished_FPop, and
IEEE_754_exception floating-point trap types. Thus, a user application program
always sees an FSR that is fully compliant with IEEE Std 754-1985.

FSR Conformance

IMPL. DEP. #22: An implementation may choose to implement the TEM, cexc, and
aexc fields in hardware in either of two ways (both of which comply with IEEE Std
754-1985):

1. Implement all three fields conformant to IEEE Std 754-1985.

2. Implement the inexact (NXM, nxa, and nxc) bits of these fields conformant to IEEE
Std 754-1985, plus implement each of the remaining bits in the three fields (for
invalid, overflow, under, and division-by-zero conditions) either:

a. Conformant to IEEE Std 754-1985, or

b. as a state bit that may be set by software that calculates the IEEE Std 754-1985
value of the bit. For any bit implemented as a state bit:

i. The IEEE exception corresponding to the state bit must always cause an
exception (specifically, an unfinished_FPop exception). During exception
processing in the trap handler, the bit in the state field can be written to the
appropriate value by an LDFSR or LDXFSR instruction.

ii. The state bit must be implemented in such a way that if it is written to a
particular value by an LDFSR or LDXFSR instruction, it will be read back as
the same value by a subsequent STFSR or STXFSR.

Programming Note – Privileged software (or a combination of privileged and
nonprivileged software) must be capable of simulating the operation of the FPU in
order to handle the unimplemented_FPop, unfinished_FPop, and IEEE_754_exception
floating-point trap types properly. Thus, a user application program always sees an
FSR that is fully compliant with IEEE Std 754-1985.

5.1.8 Address Space Identifier (ASI) Register
The Address Space Identifier Register (FIGURE 5-12) specifies the address space
identifier to be used for load and store alternate instructions that use the “rs1 +
simm13” addressing form. Nonprivileged (user-mode) software may write any
value into the ASI register; however, values with bit 7 = 0 indicate restricted ASIs.
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 67

When a nonprivileged instruction makes an access that uses an ASI with bit 7 = 0, a
privileged_action exception is generated. See Address Space Identifiers (ASIs) on page
112 for details.

FIGURE 5-12 Address Space Identifier Register

5.1.9 Tick (TICK) Register
FIGURE 5-13 illustrates the TICK register.

FIGURE 5-13 Tick Register

The counter field of the TICK register is a 63-bit counter that counts processor
clock cycles. Bit 63 of the TICK register is the nonprivileged trap (NPT) bit, which
controls access to the TICK register by nonprivileged software. Privileged software
can always read the TICK register with either the RDPR or RDTICK instruction.
Privileged software can always write the TICK register with the WRPR instruction;
there is no WRTICK instruction.

Nonprivileged software can read the TICK register by using the RDTICK instruction
when TICK.NPT = 0. When TICK.NPT = 1, an attempt by nonprivileged software to
read the TICK register causes a privileged_action exception. Nonprivileged software
cannot write the TICK register.

TICK.NPT is set to 1 by a power-on reset trap. The value of TICK.counter is reset
after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of the counter. The number of counts between a write and a
subsequent read does not accurately reflect the number of processor cycles between
the write and the read. Software may rely only on read-to-read counts of the TICK
register for accurate timing, not on write-to-read counts.

IMPL. DEP. #105: The difference between the values read from the TICK register on
two reads should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, any inaccuracy should be small,
bounded, and documented. An implementation may implement fewer than 63 bits

7 0

ASI

063 62

TICK NPT counter
68 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

in TICK.counter; however, the counter as implemented must be able to count for
at least 10 years without overflowing. Any upper bits not implemented must read as
zero.

Programming Note – TICK.NPT may be used by a secure operating system to
control access by user software to high-accuracy timing information. The operation
of the timer might be emulated by the trap handler, which could read
TICK.counter and “fuzz” the value to lower accuracy.

5.2 Privileged Registers
The registers described in this subsection are visible only to software running in
privileged mode; that is, when PSTATE.PRIV = 1. Privileged registers are written
with the WRPR instruction and read with the RDPR instruction.

5.2.1 Processor State (PSTATE) Register
The PSTATE register (FIGURE 5-14) holds the current state of the processor. There is
only one instance of the PSTATE register. See Chapter 7, Traps, for more details.

FIGURE 5-14 PSTATE Fields

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is
visible to the next instruction executed. The privileged RDPR and WRPR instructions
are used to read and write PSTATE, respectively.

Subsections on pages 69 through 74 describe the fields contained in the PSTATE
register.

Global Register Sets

The SPARC JPS1 processor provides Interrupt and MMU Global Register sets in
addition to the two global register sets specified by SPARC V9. The currently active
set of global registers is specified by the AG, IG, and MG bits according to TABLE 5-11.

4 0

PSTATE PEF AM PRIV IE AG

3 2 16 5

MM RED

7

TLECLE

9 8

MGIG

1011
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 69

Note – The IG and MG fields are saved on the trap stack along with the 10 bits of the
PSTATE register that are defined in SPARC V9.

When an interrupt_vector_trap (trap type = 6016) is taken, the SPARC JPS1 processor
selects the Interrupt Global Registers by setting IG and clearing AG and MG. When a
fast_instruction_access_MMU_miss, fast_data_access__MMU_miss,
fast_data_access_protection, data_access_exception, or
instruction_access_exception trap is taken, the processor selects the MMU Global
Registers by setting MG and clearing AG and IG. When any other type of trap occurs,
the processor selects the Alternate Global Registers by setting AG and clearing IG
and MG.

Executing a DONE or RETRY instruction restores the previous {AG, IG, MG} state before
the trap is taken. Programmers can also set or clear these three bits by writing to the
PSTATE register with a WRPR instruction.

Note – Attempting to “wrpr %pstate” to a reserved encoding for IG, MG, and AG
(more than one bit set) results in an illegal_instruction exception. However, the
processor does not check for a reserved encoding in TSTATE. Hence, executing a
DONE or RETRY may result in undefined behavior in this case.

TABLE 5-11 PSTATE Global Register Selection Encoding

AG IG MG Globals selected for use Automatically Set by ‡

0 0 0 Normal Global registers

0 0 1 MMU Global registers fast_instruction_access_MMU_miss,
fast_data_access__MMU_miss,
fast_data_access_protection,
data_access_exception,
instruction_access_exception

0 1 0 Interrupt Global registers interrupt_vector_trap

0 1 1 Reserved†

1 0 0 Alternate Global registers any trap other than those listed above

1 0 1 Reserved†

1 1 0 Reserved†

1 1 1 Reserved†

† A WRPR to PSTATE using a reserved combination of AG, IG, and MG bit values
 causes an illegal_instruction exception.
‡ Since PSTATE is preserved in the TSTATE register when a trap occurs, the
 previous value of these bits are normally restored upon return from a trap
 (via DONE or RETRY instruction)
70 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

PSTATE_interrupt_globals (IG). When PSTATE.IG = 1, the processor interprets
integer register numbers in the range 0–7 as referring to the interrupt global register
set. See Note on page 70. When an interrupt_vector trap (trap type = 6016) is taken,
SPARC V9 sets IG and clears AG and MG.

PSTATE_MMU_globals (MG). When PSTATE.MG = 1, the processor interprets
integer register numbers in the range 0–7 as referring to the MMU global register
set. This bit must not be set if either AG or IG is also set. See Note on page 70.

The SPARC JPS1 processor sets MG and clears IG and AG when any of the following
traps are taken:

■ fast_instruction_access_MMU_miss trap (trap type = 6416–6716)
■ fast_data_access_MMU_miss trap (trap type = 6816–6B16)
■ fast_data_access_protection trap (trap type = 6C16–6F16)
■ data_access_exception trap (trap type = 3016)
■ instruction_access_exception trap (trap type = 0816)

PSTATE_current_little_endian (CLE)

When PSTATE.CLE = 1, all data reads and writes using an implicit ASI are
performed in little-endian byte order with an ASI of ASI_PRIMARY_LITTLE. When
PSTATE.CLE = 0, all data reads and writes using an implicit ASI are performed in
big-endian byte order with an ASI of ASI_PRIMARY. Instruction accesses are always
big-endian.

PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and
the PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This
behavior allows system software to have a different implicit byte ordering than the
current process. Thus, if PSTATE.TLE is set to 1, data accesses using an implicit ASI
in the trap handler are little-endian. The original state of PSTATE.CLE is restored
when the original PSTATE register is restored from the trap stack.

PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. The defined
values in SPARC V9 are shown in TABLE 5-12.

TABLE 5-12 MM Encodings

MM Value SPARC V9

00 Total Store Order (TSO)
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 71

The current memory model is determined by the value of PSTATE.MM. Software
should always refrain from using the combination 11 because it is reserved for future
SPARC V9 extensions.

■ Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores
are ordered with respect to earlier loads and stores. Thus, loads can bypass earlier
stores but cannot bypass earlier loads; stores cannot bypass earlier loads and
stores. Programs that execute correctly in either PSO or RMO will execute
correctly in the TSO model.

■ Partial Store Order (PSO) — Loads and stores ordered with respect to earlier
loads; atomic load-stores are ordered with respect to loads. Explicit MEMBAR
instructions are required to order store and atomic load-store instructions with
respect to each other.

■ Relaxed Memory Order (RMO) — Hardware can schedule memory accesses in
any order, as long as the program computes the correct result. In other words,
RMO places no ordering constraints on memory references beyond those required
for processor self-consistency. When ordering is required, it must be provided
explicitly in the programs by MEMBAR instructions.

IMPL. DEP. #113: Whether the PSO or RMO models are supported by SPARC V9
systems is implementation dependent.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode
designation into PSTATE.MM is implementation dependent.

PSTATE_RED_state (RED)

PSTATE.RED (Reset, Error, and Debug state) is set whenever the SPARC JPS1
processor takes a RED state disrupting or nondisrupting trap. See RED_state on page
133. The IU sets PSTATE.RED when any hardware reset occurs. It also sets
PSTATE.RED when a trap is taken while TL = (MAXTL − 1). Software can exit
RED_state by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE
and clears PSTATE.RED if it was 0 in the stacked copy.

2. Write a 0 to PSTATE.RED with a WRPR instruction.

01 Partial Store Order (PSO)

10 Relaxed Memory Order (RMO)

11 Reserved

TABLE 5-12 MM Encodings

MM Value SPARC V9
72 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Programming Note – Changing PSTATE.RED may cause a change in address
mapping on some systems. It is recommended that writes of PSTATE.RED be placed
in the delay slot of a JMPL; the target of this JMPL should be in the new address
mapping. The JMPL sets the nPC, which becomes the PC for the instruction that
follows the 'WRPR' in its delay slot. The effect of the WRPR instruction is immediate.

PSTATE_enable_floating-point (PEF)

When set to 1, the PEF bit enables the floating-point unit, which allows privileged
software to manage the FPU. For the FPU to be usable, both PSTATE.PEF and
FPRS.FEF must be set. Otherwise, any floating-point instruction (including the
future JPS-specific multiply-add and multiply-subtract instructions) that tries to
reference the FPU causes an fp_disabled trap.

PSTATE_address_mask (AM)

When PSTATE.AM = 1, the high-order 32 bits of all instruction and data addresses
are set to 0 in the following cases:

■ Before data addresses are sent out of the processor

■ For instruction accesses to caches (both internal and external)

■ Before being stored to a general-purpose register for CALL, JMPL, and RDPC
instructions (impl. dep. #125; see below)

■ Before being stored to TPC[n] and TNPC[n] when a trap occurs (impl. dep. #125;
see specific SPARC JPS1 Implementation Supplements)

When an ASI_PHYS_* ASI is used in a load or store instruction, the setting of
PSTATE.AM is ignored and the full 64-bit address is used. (See ASI 1416,
ASI_PHYS_USE_EC, for an example.)

IMPL. DEP. #125: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC
transmitted to the specified destination register(s) by CALL, JMPL, RDPC, and saved
during a trap is implementation dependent.

IMPL. DEP. #241: When PSTATE.AM = 1 and an exception occurs, the value written
to the more-significant 32 bits of the Data Synchronous Fault Address Register
(DSFAR) is implementation dependent.

The PSTATE.AM bit must be set when 32-bit software is executed.

PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode.
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 73

PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

PSTATE_alternate_globals (AG)

When PSTATE.AG = 1, the processor interprets integer register numbers in the range
0–7 as referring to the alternate global register set. See Note on page 70. When IG,
MG, and AG are all 0, the processor interprets integer register numbers in the range 0–
7 as referring to the normal global register set.

PSTATE.AG is set automatically when any trap other than the following occurs:

■ fast_instruction_access_MMU_miss (tt = 6416–6716)
■ fast_data_access_MMU_miss (tt = 6816–6B16)
■ fast_data_access_protection (tt = 6C16–6F16)
■ data_access_exception (tt = 3016)
■ instruction_access_exception (tt = 0816)
■ interrupt_vector (tt = 6016)

Setting this bit is mutually exclusive with setting the PSTATE.MG or PSTATE.IG bit;
at most, one of them may be set at any given time. A SPARC JPS1 processor resets
IG and MG any time it automatically sets AG.

5.2.2 Trap Level Register (TL)
The trap level register (FIGURE 5-15) specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being
processed. The maximum valid value that the TL register may contain is MAXTL,
which is always equal to the number of supported trap levels beyond level 0; MAXTL
must be ≥ 4. See Chapter 7, Traps, for more details about the TL register.

SPARC JPS1 supports five trap levels beyond level 0; that is, MAXTL = 5 in a SPARC
JPS1 processor (impl. dep. #101).

After a power-on rest (POR), TL is set to MAXTL (5 in SPARC JPS1).

FIGURE 5-15 Trap Level Register

2 0

TL TL
74 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Programming Note – Writing the TL register with a value greater than MAXTL (5
for SPARC JPS1) causes the value MAXTL to be written.

Writing the TL register with a wrpr %tl instruction does not alter any other machine
state; that is, it is not equivalent to taking or returning from a trap.

5.2.3 Processor Interrupt Level (PIL) Register
The processor interrupt level (PIL; see FIGURE 5-16) is the interrupt level above
which the processor will accept an interrupt. Interrupt priorities are mapped so that
interrupt level 2 has greater priority than interrupt level 1, and so on. See Section 7.1
on page 132 for a list of exception and interrupt priorities.

FIGURE 5-16 Processor Interrupt Level Register

Compatibility Note – On SPARC V8 processors, the level 15 interrupt is considered
to be nonmaskable, so it has different semantics from other interrupt levels. SPARC
V9 processors do not treat level 15 interrupts differently from other interrupt levels.
See Externally Initiated Reset (XIR) Traps on page 158.

5.2.4 Trap Program Counter (TPC) Registers
The TPC register (FIGURE 5-17) contains the program counter (PC) from the previous
trap level. There are MAXTL instances of the TPC (five in SPARC JPS1), but only one
is accessible at any time. The current value in the TL register determines which
instance of the TPC register is accessible. An attempt to read or write the TPC
register when TL = 0 causes an illegal_instruction exception.

3 0

PIL PIL
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 75

After a power-on reset the contents of TPC[1] through TPC[MAXTL] are undefined.
During normal operation, the value of TPC[n], when n is greater than the current
trap level (n > TL), is undefined.

5.2.5 Trap Next Program Counter (TNPC) Registers
The TNPC register, shown in FIGURE 5-18, is the next program counter (nPC) from the
previous trap level. There are MAXTL instances (five in SPARC JPS1) of the TNPC, but
only one is accessible at any time. The current value in the TL register determines
which instance of the TNPC register is accessible. An attempt to read or write the
TNPC register when TL = 0 causes an illegal_instruction exception.

FIGURE 5-18 Trap Next Program Counter Register

After a power-on reset, the contents of TNPC[1] through TNPC[MAXTL] are undefined.
During normal operation, the value of TNPC[n], when n is greater than the current
trap level (n > TL), is undefined.

TPC1 PC from trap while TL = 0

2

00

63 1 0

TPC2 PC from trap while TL = 1 00

TPC3 PC from trap while TL = 2 00

…

PC from trap while TL = MAXTL-1 00TPCMAXTL

FIGURE 5-17 Trap Program Counter Register

TNPC1 nPC from trap while TL = 0

2

00

63 1 0

TNPC2 nPC from trap while TL = 1 00

TNPC3 nPC from trap while TL = 2 00

…

nPC from trap while TL = MAXTL-1 00TNPCMAXTL
76 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

5.2.6 Trap State (TSTATE) Registers

The Trap State (TSTATE) Register, shown in FIGURE 5-19, contains the state from the
previous trap level, comprising the contents of the CCR, ASI, CWP, and PSTATE
registers from the previous trap level. There are MAXTL instances (five in SPARC
JPS1) of the TSTATE register, but only one is accessible at a time. The current value
in the TL register determines which instance of TSTATE is accessible. An attempt to
read or write the TSTATE register when TL = 0 causes an illegal_instruction
exception.

FIGURE 5-19 Trap State Register

After a power-on reset the contents of TSTATE[1] through TSTATE[MAXTL] are
undefined. During normal operation the value of TSTATE[n], when n is greater than
the current trap level (n > TL), is undefined.

Because of the addition of the IG and MG bits in the PSTATE register in SPARC JPS1,
a 12-bit PSTATE value is stored in TSTATE instead of the 10-bit value specified in
SPARC V9.

5.2.7 Trap Type (TT) Registers
The TT register (FIGURE 5-20) normally contains the trap type of the trap that caused
entry to the current trap level. On a reset trap, the TT field contains the trap type of
the reset (see TABLE 7-1 on page 134). There are MAXTL (5 in SPARC JPS1) instances of
the TT register, but only one is accessible at a time. The current value in the TL
register determines which instance of the TT register is accessible. An attempt to
read or write the TT register when TL = 0 causes an illegal_instruction exception.

39 0

TSTATE1 CCR from TL = 0 CWP from TL = 0ASI from TL = 0 PSTATE from TL = 0— —

432 31 24 23 20 8 7 519

TSTATE2 CCR from TL = 1 CWP from TL = 1ASI from TL = 1 PSTATE from TL = 1— —

TSTATE3 CCR from TL = 2 CWP from TL = 2ASI from TL = 2 PSTATE from TL = 2— —

…

TSTATEMAXTL CCR from TL = MAXTL-1 CWP from TL = MAXTL-1ASI from TL = MAXTL-1 PSTATE from TL = MAXTL-1— —

… … …… …
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 77

FIGURE 5-20 Trap Type Register

After a power-on reset the contents of TT[1] through TT[MAXTL-1] are undefined and
TT[MAXTL] = 00116. During normal operation the value of TT[n], when n is greater
than the current trap level (n > TL) is undefined.

5.2.8 Trap Base Address (TBA) Register
The TBA register (FIGURE 5-21) provides the upper 49 bits of the address used to select
the trap vector for a trap. The lower 15 bits of the TBA always read as zero, and
writes to them are ignored.

FIGURE 5-21 Trap Base Address Register

The full address for a trap vector is specified by the TBA, TL, TT[TL], and five
zeroes, as shown in FIGURE 5-22.

FIGURE 5-22 Trap Vector Address Format

Note – The “TL>0” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when
the trap was taken. This implies that there are two trap tables: one for traps from
TL = 0 and one for traps from TL > 0. See Chapter 7, Traps, for more details on trap
vectors.

TT1 Trap type from trap while TL = 0

8 0

TT2 Trap type from trap while TL = 1

TT3 Trap type from trap while TL = 2

…

TTMAXTL Trap type from trap while TL = MAXTL-1

63 15 14 0

000 0000 0000 0000Trap Base Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000
78 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

5.2.9 Version (VER) Register
The version register, shown in FIGURE 5-23, specifies the fixed parameters pertaining
to a particular processor implementation and mask set. The VER register is read-only,
readable by the RDPR instruction.

FIGURE 5-23 Version Register

IMPL. DEP. #104: VER.manuf contains a 16-bit manufacturer code. This field is
optional and, if not present, shall read as 0. VER.manuf may indicate the original
supplier of a second-sourced chip. It is intended that the contents of VER.manuf
track the JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code, SPARC
International will assign a value for VER.manuf.

IMPL. DEP. #13: VER.impl uniquely identifies an implementation or class of
software-compatible implementations of the architecture. Values FFF016–FFFF16 are
reserved and are not available for assignment.

The value of VER.impl is assigned as described in Implementation Dependency
Categories on page 399.

VER.mask specifies the current mask set revision and is chosen by the implementor.
It generally increases numerically with successive releases of the processor but does
not necessarily increase by one for consecutive releases.

VER.maxtl contains the maximum number of trap levels supported by an
implementation (impl. dep. #101), that is, MAXTL, the maximum value of the
contents of the TL register.

VER.maxwin contains the maximum index number available for use as a valid CWP
value in an implementation; that is, VER.maxwin contains the value NWINDOWS − 1
(impl. dep. #2).

For a SPARC JPS1 processor, MAXTL = 5 and MAXWIN = NWINDOWS − 1 = 7; therefore,
VER.maxtl = 5 and VER.maxwin = 7.

63 48 47 24 23 16 15 8 7 05 432 31

maxwin—maxtl—maskimplmanuf
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 79

5.2.10 Register-Window State Registers
The state of the register windows is determined by a set of privileged registers. They
can be read/written by privileged software using the RDPR/WRPR instructions. In
addition, these registers are modified by instructions related to register windows
and are used to generate traps that allow supervisor software to spill, fill, and clean
register windows.

IMPL. DEP. #126: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and
CLEANWIN contain values in the range 0 to NWINDOWS − 1. The effect of writing a
value greater than NWINDOWS − 1 to any of these registers is undefined. Although the
width of each of these five registers is nominally 5 bits, the width is implementation
dependent and shall be between log2(NWINDOWS) and 5 bits, inclusive. If fewer
than 5 bits are implemented, the unimplemented upper bits shall read as 0 and
writes to them shall have no effect. All five registers should have the same width.

Because NWINDOWS = 8 in SPARC JPS1, only the lower 3 bits are implemented in the
CWP, CANSAVE, CANRESTORE, CLEANWIN, and OTHERWIN registers (impl. dep. #126).
When any of these registers are moved into a 64-bit integer register with an RDPR
instruction, the most significant 61 bits are set to 0. When any are written with a
WRPR instruction, the most significant 61 bits are ignored.

For details of how the window-management registers are used by hardware, see
Register Window Management Instructions on page 120.

Programming Note – CANSAVE, CANRESTORE, and OTHERWIN must never be set
to 7. Setting any of these to 7 violates the register window state definition in section
6.4.1. Notice that hardware does not enforce this restriction; it is up to system
software to keep the window state consistent.

Current Window Pointer (CWP) Register

The CWP register, shown in FIGURE 5-24, is a counter that identifies the current
window into the set of integer registers. See Register Window Management Instructions
on page 120 and Chapter 7, Traps, for information on how hardware manipulates the
CWP register.

FIGURE 5-24 Current Window Pointer Register

4 0

CWP

3 2
80 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Implementation Note – Since NWINDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CWP register are unused and always read as 0.

Compatibility Note – The following differences between SPARC V8 and SPARC V9
are visible only to privileged software; they are invisible to nonprivileged software.

1. In SPARC V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC V8,
the opposite is true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2. PSR.CWP in SPARC V8 is changed on each trap. In SPARC V9, CWP is affected only
by a trap caused by a window fill or spill exception.

Savable Windows (CANSAVE) Register

The CANSAVE register, shown in FIGURE 5-25, contains the number of register
windows following CWP that are not in use and are, hence, available to be allocated
by a SAVE instruction without generating a window spill exception.

FIGURE 5-25 CANSAVE Register

Implementation Note – Since NWINDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CANSAVE register are unused and always read as 0.

Restorable Windows (CANRESTORE) Register

The CANRESTORE register, shown in FIGURE 5-26, contains the number of register
windows preceding CWP that are in use by the current program and can be restored
(by the RESTORE instruction) without generating a window fill exception.

FIGURE 5-26 CANRESTORE Register

CANSAVE
4 03 2

CANRESTORE
4 03 2
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 81

Implementation Note – Since NWINDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CANRESTORE register are unused and always read as 0.

Other Windows (OTHERWIN) Register

The OTHERWIN register, shown in FIGURE 5-27, contains the count of register
windows that will be spilled/filled by a separate set of trap vectors based on the
contents of WSTATE_OTHER. If OTHERWIN is zero, register windows are spilled/filled
by use of trap vectors based on the contents of WSTATE_NORMAL.

The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by use of separate spill/fill
vectors.

FIGURE 5-27 OTHERWIN Register

Implementation Note – Since NWINDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the OTHERWIN register are unused and always read as 0.

Window State (WSTATE) Register

The WSTATE register, shown in FIGURE 5-28, specifies bits that are inserted into
TTTL<4:2> on traps caused by window spill and fill exceptions. These bits are used
to select one of eight different window spill and fill handlers. If OTHERWIN = 0 at the
time a trap is taken because of a window spill or window fill exception, then the
WSTATE.NORMAL bits are inserted into TT[TL]. Otherwise, the WSTATE.OTHER bits
are inserted into TT[TL]. See Register Window Management Instructions on page 120,
for details of the semantics of OTHERWIN.

FIGURE 5-28 WSTATE Register

OTHERWIN
4 03 2

WSTATE

05 3 2

OTHER NORMAL
82 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Clean Windows (CLEANWIN) Register

The CLEANWIN register, shown in FIGURE 5-29, contains the number of windows that
can be used by the SAVE instruction without causing a clean_window exception.

FIGURE 5-29 CLEANWIN Register

Implementation Note – Since NWINDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CLEANWIN register are unused and always read as 0.

The CLEANWIN register counts the number of register windows that are “clean” with
respect to the current program; that is, register windows that contain only zeroes,
valid addresses, or valid data from that program. Registers in these windows need
not be cleaned before they can be used. The count includes the register windows that
can be restored (the value in the CANRESTORE register) and the register windows
following CWP that can be used without cleaning. When a clean window is requested
(by a SAVE instruction) and none is available, a clean_window exception occurs to
cause the next window to be cleaned.

Programming Note – CLEANWIN must never be set to a value greater than 6.
Setting CLEANWIN > 6 would violate the register window state definition. Note:
Hardware does not enforce this restriction; it is up to system software to keep the
window state consistent.

5.2.11 Ancillary State Registers (ASRs)
The SPARC V9 architecture provides for up to 25 ancillary state registers (ASRs),
numbered from 7 through 31. ASRs numbered 7–15 are reserved for future use by
the architecture and should not be referenced by software.

An ASR is read and written with the RDASR and WRASR instructions, respectively. An
RDASR or WRASR instruction is privileged if the accessed register is privileged.

The SPARC V9 architecture leaves ASRs numbered 16–31 available for
implementation-dependent uses. SPARC JPS1 processors implement ASRs 16
through 25; the ASRs are defined in the subsections that follow.

CLEANWIN
4 03 2
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 83

Performance Control Register (PCR) (ASR 16)

The PCR is a read/write register used to control performance monitoring events
collected in counter pairs, via the Performance Instrumentation Counter (PIC)
register (ASR 17) (see page 85). Unused PCR bits read as zero; they should be written
only with zeroes or with values previously read from them.

When the processor is operating in privileged mode (PSTATE.PRIV = 1), PCR may
be freely read and written by software.

IMPL. DEP. #250: When the processor is operating in nonprivileged mode
(PSTATE.PRIV = 0), the accessibility of PCR as a unit and of individual fields of PCR
is implementation dependent. Also, which exception is raised upon detection of an
access privilege violation is implementation dependent.

See Appendix Q, Performance Instrumentation, in each Implementation Supplement
for a detailed discussion of the PCR and PIC register usage and event count
definitions.

The Performance Control Register is illustrated in FIGURE 5-30 and described in
TABLE 5-13.

FIGURE 5-30 Performance Control Register (PCR) (ASR 16)

IMPL. DEP. #207: The values and semantics of bits 47:32, 26:17, and bit 3 of the PCR
are implementation dependent.

TABLE 5-13 PCR Bit Description

Bit Field Description

47:32 — These bits are implementation dependent (impl. dep #207).

26:17 — These bits are implementation dependent (impl. dep. #207).

16:11 SU Six-bit field selecting 1 of 64 event counts in the upper half (bits <63:32>) of the PIC.

 9:4 SL Six-bit field selecting 1 of 64 event counts in the lower half (bits <31:0>) of the PIC.

3 — This bit is implementation dependent (impl. dep. #207).

2 UT User Trace Enable. If set to 1, events in nonprivileged (user) mode are counted.

1 ST System Trace Enable. If set to 1, events in privileged (system) mode are counted.

Notes:
If both PCR.UT and PCR.ST are set to 1, all selected events are counted.
If both PCR.UT and PCR.ST are zero, counting is disabled.
PCR.UT and PCR.ST are global fields which apply to all PIC pairs.

63 16 11 10 9 4 0

– SLSU

174748

— UT ST PRIV

123

impl. dep. impl.
dep.

impl. dep.

3132 27 26

—

84 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Performance Instrumentation Counter (PIC) Register (ASR
17)

The PIC is a general-access, read/write register. However, if the PRIV bit of the PCR
(ASR 16) is set, attempted access by nonprivileged (user) code causes a
privileged_action exception.

Multiple PICs may be implemented. Each is accessed by way of ASR 17, using an
implementation-dependent PIC pair selection field in PCR (ASR 16) (impl. dep.
#207). Read/write access to the PIC will access the PICU/PICL counter pair selected
by PCR.

The PIC is described below and illustrated in FIGURE 5-31.

FIGURE 5-31 Performance Instrumentation Counter (PIC) (ASR 17)

Counter Overflow. On overflow, a counter wraps to 0, SOFTINT register bit 15 is
set to 1, and an interrupt level 15 trap is generated. The counter overflow trap is
triggered on the transition from value FFFF FFFF16 to value 0.

0 PRIV Privileged. If PCR.PRIV = 1, a nonprivileged (PSTATE.PRIV = 0) attempt to access PIC
(via an RDPIC or WRPIC instruction) will result in a privileged_action exception.
PCR.PRIV may also have implementation-dependent effects on the accessibility (via
RDPCR and WRPCR instructions) of fields in PCR itself (impl. dep. #250).

Bit Field Description

63:32 PICU 32-bit counter representing the count of an event selected by the SU field of the Performance
Control Register (PCR) (ASR 16). See Appendix Q, Performance Instrumentation, in
Implementation Supplements for a detailed definition of these counters.

31:0 PICL 32-bit counter representing the count of an event selected by the SL field of the Performance
Control Register (PCR) (ASR 16). See Appendix Q, Performance Instrumentation, in
Implementation Supplements for a detailed definition of these counters.

TABLE 5-13 PCR Bit Description (Continued)

Bit Field Description

063 3132

PICU PICL
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 85

Dispatch Control Register (DCR) (ASR 18)

The DCR is a read/write register. Unused bits read as 0; unused bits should be
written only with zero or values previously read from them. The DCR is a privileged
register; attempted access by nonprivileged (user) code causes a privileged_opcode
trap.

The Dispatch Control Register is illustrated in FIGURE 5-32 and described in
TABLE 5-14.

FIGURE 5-32 Dispatch Control Register (ASR 18)

IMPL. DEP. #204: The existence, values, and semantics of DCR bits 5:3 and 0 are
implementation dependent. If each is implemented, standard (recommended)
semantics are as described below. If not implemented, each bit reads as 0 and writes
to it are ignored.

TABLE 5-14 DCR Bit Description

Bit Field Description

63:14 — Reserved.

13:6 — IMPL. DEP. #203: The values and semantics of bits 13:6 and 1 of DCR are implementation
dependent.

Branch and Return Control

5 BPE Branch Prediction Enable. When BPE = 1, conditional branches are predicted through
internal hardware. When BPE = 0, all branches are predicted not taken. After power-on
reset initialization, this bit is set to 0. This bit is also automatically set to 0 on any trap
causing RED_state entry (but not cleared when privileged code enters RED_state by
setting the RED bit in PSTATE).

4 RPE Return Address Prediction Enable. When RPE = 0, the return address prediction stack is
disabled. Even when encountering a JMPL instruction, instruction fetch will continue on
a sequential path until the return address is generated and a mispredict is signalled.
When RPE = 1, the processor may attempt to predict the target address of JMPL
instructions and prefetch subsequent instructions accordingly.
After power-on reset initialization, this bit is set to 0. This bit is also automatically set to
0 on any trap causing a RED_state entry (but left unchanged when privileged code
enters RED_state by setting PSTATE.RED).

0

—

63 1

MSSI

26

—RPEBPE

3451314

impl. dep. impl
dep
86 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Graphics Status Register (GSR) (ASR 19)

The Graphics Status Register is a nonprivileged read/write registerimplicitly
referenced by many VIS instructions1. The GSR can be read through RDGSR (see A.51
on page 313) and written through WRGSR (see A.70 on page 350).

The GSR is illustrated in FIGURE 5-33 and described in TABLE 5-15.

FIGURE 5-33 Graphic Status Register (GSR) (ASR 19)

Instruction Dispatch Control

3 SI Single Issue Disable. When SI = 0, only one instruction will be outstanding at a time.
Superscalar instruction dispatch is disabled, and only one instruction is executed at a
time. When SI = 1, normal pipelining is enabled. The processor can issue new
instructions prior to the completion of previously issued instructions.
After power-on reset initialization, this bit is set to 0. This bit is also automatically zeroed
on any trap causing RED_state entry (but left unchanged when privileged code enters
RED_state by setting PSTATE.RED).

2 — Reserved.

1 — IMPL. DEP. #203: The values and semantics of bits 13:6 and 1 of DCR are implementation
dependent.

0 MS Multiscalar Dispatch Enable. When MS = 0, the processor operates in scalar mode,
issuing and executing one instruction at a time. Pipelined operation is still controlled by
the SI bit. MS = 1 enables superscalar (normal) instruction issue.
After power-on reset initialization, this bit is set to 0. The bit is also zeroed automatically
on any trap causing RED_state entry (but left unchanged when privileged code enters
RED_state by setting PSTATE.RED).

1. Sun Microsystems’ “Visual Instruction Set”

TABLE 5-15 GSR Bit Description

Bit Field Description

63:32 MASK<31:0> This field specifies the mask used by the BSHUFFLE instruction. The field contents are
set by the BMASK instruction.

31:28 Reserved
27 IM Interval Mode: When IM = 1, the values in FSR.RD and FSR.NS are ignored; the

processor operates as if FSR.NS = 0 and rounds floating-point results according to
GSR.IRND.

TABLE 5-14 DCR Bit Description (Continued)

Bit Field Description

0

—
63 2325 24 8 7

SCALE ALIGNIRNDIMMASK

27283132 26

—

Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 87

Accesses to the Graphics Status Register cause an fp_disabled trap if PSTATE.PEF or
FPRS.FEF is 0.

SET_SOFTINT (Set Bit(s) in Per-Processor SOFTINT Register)
(ASR 20)

A Write State Register instruction (WRSOFTINT_SET) to ASR 20 sets the
corresponding bits in the SOFTINT Register (ASR 22) (see page 89); that is, when set,
bits 16:0 in ASR 20 set the corresponding bits in ASR 22. Other bits in ASR 20 are
ignored.

ASR 20 is a privileged, write-only register.

FIGURE 5-34 illustrates the SET_SOFTINT Register.

FIGURE 5-34 SET_SOFTINT Register (ASR 20)

CLEAR_SOFTINT (Clear Bit(s) in Per-Processor SOFTINT
Register) (ASR 21)

A Write State Register instruction (WRSOFTINT_CLR) to ASR 21 clears the
corresponding bits in the SOFTINT register(ASR 22) (see page 89); that is, when set,
bits 16:0 in ASR 21 clear the corresponding bits in ASR 22. Other bits in ASR 21 are
ignored.

26:25 IRND<1:0> IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.IM = 1), as
follows:

When GSR.IM = 1, the value in GSR.IRND overrides the value in FSR.RD.
24:8 Reserved

7:3 SCALE<4:0> Shift count in the range 0–31, used by the PACK instructions for formatting.
2:0 ALIGN<2:0> Least three significant bits of the address computed by the last executed

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

TABLE 5-15 GSR Bit Description (Continued)

Bit Field Description

IRND Round toward …

0 Nearest (even if tie)

1 0

2 + ∞
3 − ∞

0

—

63 17 16

ASR 22 Bits to be set
88 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

ASR 21 is a privileged, write-only register.

FIGURE 5-35 illustrates the CLEAR_SOFTINT Register.

FIGURE 5-35 CLEAR_SOFTINT Register (ASR 21)

SOFTINT Register (ASR 22)

Privileged software uses this privileged, read/write register to schedule interrupts.
SOFTINT can be read with a RDSOFTINT instruction (Read State Register 22) and
written with a WRSOFTINT instruction (Write State Register 22).

The SOFTINT Register is illustrated in FIGURE 5-36 and described in TABLE 5-16.

FIGURE 5-36 SOFTINT Register (ASR 22)

See Section N.5 for additional information regarding the SOFTINT register.

TABLE 5-16 SOFTINT Bit Description

Bit Field Description

16 STICK_INT
(SM)

When the STICK_COMPARE (ASR 25) register’s INT_DIS (interrupt
disable) field is 0 (that is, system tick compare is enabled) and its
STICK_CMPR field matches the value in the STICK register, then the
STICK_INT field in ASR 22 is set to 1 and a level 14 interrupt is
generated. See System Tick Compare (STICK_COMPARE) Register (ASR
25) on page 91 for details.

15:1 INT_LEVEL When a bit is set within this field (bits 15:1), an interrupt is caused at
the corresponding interrupt level.
Note: INT_LEVEL<14> is shared by level-14 interrupt,
(interrupt_level_14), STICK_COMPARE interrupt, and TICK_COMPARE
interrupt.
Note: INT_LEVEL<15> is shared by level-15 interrupt
(interrupt_level_15) and PIC overflow interrupt.

0 TICK_INT
(TM)

When the TICK_COMPARE (ASR 23) register’s INT_DIS (interrupt
disable) field is 0 (that is, tick compare is enabled) and its TICK_CMPR
field matches the value in the TICK register, then the TICK_INT field
in ASR 22 is set to 1 and a level-14 interrupt is generated. See Tick
Compare (TICK_COMPARE) Register (ASR 23) for details.

0

—

63 17 16

ASR 22 Bits to be cleared

0

—

63 11516

INT_LEVEL

17

SM TM
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 89

Tick Compare (TICK_COMPARE) Register (ASR 23)

The TICK register is used for fine-grained measurements of time in processor cycles.
The TICK_COMPARE register allows system software to cause a trap when the TICK
register reaches a specified value. Nonprivileged accesses to this register cause a
privileged_opcode trap (see Exception and Interrupt Descriptions on page 161). After a
power-on reset trap, the INT_DIS bit is set to 1 (disabling tick compare interrupts)
and the TICK_CMPR value is set to 0.

The TICK_COMPARE Register is described below and illustrated in FIGURE 5-37.

FIGURE 5-37 TICK_COMPARE Register

System Tick (STICK) Register (ASR 24)

The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor. Bit 63 of the STICK register is
the nonprivileged trap (NPT) bit, which controls access to the STICK register by
nonprivileged software. Privileged software can always read the STICK register with
RDSTICK instruction. Privileged software can always write the STICK register with
the WRSTICK instruction.

The STICK register is illustrated in FIGURE 5-38 and described below.

FIGURE 5-38 STICK Register

Nonprivileged software can read the STICK register by using the RDSTICK
instruction when STICK.NPT = 0. When STICK.NPT = 1, an attempt by
nonprivileged software to read the STICK register causes a privileged_action

Bit Field Description

63 INT_DIS Interrupt Disable. If set, tick compare interrupts are disabled.
62:0 TICK_CMPR Tick Compare Field. When this field exactly matches TICK.counter and

TICK_COMPARE.INT_DIS = 0, a TICK_INT is posted in the SOFTINT register. This has
the effect of posting a level-14 interrupt to the processor when the processor has
(PIL < 14) and (PSTATE.IE = 1). The level-14 interrupt handler must check
SOFTINT<14>, TICK_INT, and STICK_INT to determine which was the source of the
level-14 interrupt.

063 62

TICK_COMPARE INT_DIS TICK_CMPR

063 62

STICK NPT counter
90 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

exception. Nonprivileged software cannot write the STICK register. If
PSTATE.PRIV = 0 when WRSTICK instruction is executed, a privileged_opcode
exception is signalled.

STICK.NPT is set to 1 by a power-on reset trap. The value of STICK.counter is
cleared after a power-on reset trap.

After the STICK register is written, reading the STICK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of the counter.

Note – The STICK register is unaffected by any reset other than a power-on reset.

System Tick Compare (STICK_COMPARE) Register (ASR 25)

The System Tick (STICK) register provides a synchronized systemwide clock that
can be used for timestamping. The STICK_COMPARE register allows system software
to cause a trap when the STICK register reaches a specified value. Nonprivileged
accesses to this register cause a privileged_opcode trap (see Exception and Interrupt
Descriptions on page 161). After a power-on reset trap, the INT_DIS bit is set to 1
(disabling system tick compare interrupts), and the STICK_CMPR value is set to 0.

The System Tick Compare Register is defined below and illustrated in FIGURE 5-39.

FIGURE 5-39 STICK_COMPARE Register

5.2.12 Registers Referenced Through ASIs
In this section the Data Cache Unit Control Register, Data Watchpoint registers
(virtual address data watchpoint and physical address data watchpoint), and the
Instruction Trap Register are described.

Bit Field Description

63 INT_DIS Interrupt Disable. If set, system tick compare interrupts are disabled.
62:0 STICK_CMPR System Tick Compare Field. When this field exactly matches STICK.counter and

STICK_COMPARE.INT_DIS = 0, a STICK_INT is posted in the SOFTINT register.
This has the effect of posting a level-14 interrupt to the processor when the processor
has (PIL < 14) and (PSTATE.IE = 1). The level-14 interrupt handler must check
SOFTINT<14>, TICK_INT, and STICK_INT to determine which was the source of the
level-14 interrupt.

063 62

STICK_COMPARE INT_DIS STICK_CMPR
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 91

Data Cache Unit Control Register (DCUCR)

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 016

The Data Cache Unit Control Register contains fields that control several memory-
related hardware functions. The functions include instruction, prefetch, write and
data caches, MMUs, and watchpoint setting.

After a power-on reset (POR), all fields of DCUCR are set to 0. After a WDR, XIR, or
SIR, all fields of DCUCR defined in this section are set to 0. The effect of reset on
implementation-dependent fields of DCUCR is implementation dependent (impl. dep.
#240).

The Data Cache Unit Control Register is illustrated in FIGURE 5-40 and described in
TABLE 5-17. In the table, bits are grouped by function rather than by strict bit
sequence.

FIGURE 5-40 DCU Control Register Access Data Format (ASI 4516)

TABLE 5-17 DCUCR Description

Bits Field Type Use — Description

49:48 CP, CV RW IMPL. DEP. #232: Whether CP and CV bits are implemented in the DCU Control
Register is implementation dependent in JPS1.
If CP is implemented, it determines the physical cacheability of memory accesses
when the IMMU or DMMU is disabled (IM = 0 or DM = 0). 1 = cacheable,
0 = noncacheable.
If CV is implemented, it determines the virtual cacheability of memory accesses
when the DMMU is disabled (DM = 0); 1 = cacheable, 0 = noncacheable.
If CP is implemented, the TTE E (side effect) bit is set to the complement of CP
when MMUs are enabled.
Note: The CP and CV bits of DCUCR must be changed with care. It is recommended
that a MEMBAR #Sync be executed before and after CP or CV is changed. Also,
software must manage cache states to be consistent before and after CP or CV is
changed.

47:41 impl. dep. IMPL. DEP. #240: The presence and semantics of bits 47:41 of DCUCR are
implementation dependent. If any of these bits is not implemented, it reads as 0
and writes to it are ignored.

Implementation-dependent PM VM PR PW VR DM DC

012342122234041 20

VW

2425323347

IM IC
CP

4849

CV

5063

—
(i.-d.) (i.-d.)

—

92 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Watchpoint Control

40:33 PM<7:0> DCU Physical Address Data Watchpoint Mask. The Physical Address Data
Watchpoint Register contains the physical address of a 64-bit word to be watched.
The 8-bit Physical Address Data Watch Point Mask controls which byte(s) within
the 64-bit word should be watched. If all 8 bits are cleared, the physical watchpoint
is disabled. If the watchpoint is enabled and a data reference overlaps any of the
watched bytes in the watchpoint mask, then a physical watchpoint trap is
generated. Watchpoint behavior for a Partial Store instruction may differ (see impl.
dep. #249).
Please see the table in the VM field description.

32:25 VM<7:0> DCU Virtual Address Data Watchpoint Mask. The Virtual Address Data
Watchpoint Register contains the virtual address of a 64-bit word to be watched.
This 8-bit mask controls which byte(s) within the 64-bit word should be watched. If
all 8 bits are cleared, then the virtual watchpoint is disabled. If watchpoint is
enabled and a data reference overlaps any of the watched bytes in the watchpoint
mask, then a virtual watchpoint trap is generated. Watchpoint behavior for a
Partial Store instruction may differ (see impl. dep. #249).
VA/PA data watchpoint byte mask examples are shown below.

24, 23 PR, PW DCU Physical Address Data Watchpoint Enable. If PR (PW) is 1, then a data read
(write) that matches the range of addresses in the Physical Watchpoint Register
causes a watchpoint trap. If both PR and PW are set, a watchpoint trap will occur on
either a read or write access.

22, 21 VR, VW DCU Virtual Address Data Watchpoint Enable. If VR (VW) is 1, then a data read
(write) that matches the range of addresses in the Virtual Watchpoint Register
causes a watchpoint trap. If both VR and VW are set, a watchpoint trap will occur on
either a read or write access.

20:4 — Reserved.

MMU Control

3 DM DMMU Enable. If DM = 0, the DMMU is disabled (pass-through mode).
Note: When the MMU/TLB is disabled, a virtual address is passed through as a
physical address.

2 IM IMMU Enable. If IM = 0, the IMMU is disabled (pass-through mode).

TABLE 5-17 DCUCR Description (Continued)

Bits Field Type Use — Description

Watchpoint Mask
(PM or VM)

Least Significant 3 Bits of
Address of Bytes Watched
7654 3210

0016 Watchpoint disabled
0116 0000 0001
3216 0011 0010
FF16 1111 1111
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 93

Data Watchpoint Registers

SPARC JPS1 processors implement “break before” watchpoint traps. When the
address of a data access matches a preset physical or virtual watchpoint address,
instruction execution is stopped immediately before the watched memory location is
accessed. TABLE 5-18 lists ASIs that are affected by the two watchpoint traps.

Cache Control

1 DC IMPL. DEP. #252: The presence of DCUCR bit 1 (DCUCR.DC, Data Cache Enable) is
implementation dependent. If DC is not implemented, it reads as zero, writes to it
are ignored, and software should only write zero or a value previously read from
DC to DC. The remainder of this description assumes that DC is implemented. The
function of DC is to enable/disable operation of the data cache closest to the
processor (D-cache); DC = 1 enables the D-cache and DC = 0 disables it. When
DC = 0, memory accesses (loads, stores, atomic load-stores) are satisfied by caches
lower in the cache hierarchy. It is implementation dependent whether or not
memory accesses update the D-cache while the D-cache is disabled (DC = 0). If
memory accesses do not update the D-cache, then when the D-cache is reenabled
(DC is set to 1) any D-cache lines still marked as “valid” may be inconsistent with
the state of memory or other caches. In that case, software must handle any
inconsistencies by flushing the inconsistent lines from the D-cache.

0 IC IMPL. DEP. #253: The presence of DCUCR bit 0 (DCUCR.IC, Instruction Cache Enable)
is implementation dependent. If IC is not implemented, it reads as zero, writes to it
are ignored, and software should only write zero or a value previously read from
IC to IC. The remainder of this description assumes that IC is implemented. The
function of IC is to enable/disable operation of the instruction cache closest to the
processor (I-cache); IC = 1 enables the I-cache and IC = 0 disables it. When IC = 0,
instruction fetches are satisfied by caches lower in the cache hierarchy. It is
implementation dependent whether or not instruction fetches update the I-cache
while the I-cache is disabled (IC = 0). If instruction fetches do not update the I-
cache, then when the I-cache is reenabled (IC is set to 1) any I-cache lines still
marked as “valid” may be inconsistent with the state of memory or other caches. In
that case, software must handle any inconsistencies by invalidating the inconsistent
lines in the I-cache.

TABLE 5-18 ASIs Affected by Watchpoint Traps

ASI Type ASI Range
Data
MMU

Watchpoint If
Matching VA

Watchpoint If
Matching PA

Translating ASIs 0416–1116, 1816–1916, 2416–2C16,
7016–7116, 7816–7916, 8016–FF16

on
off

Y
N

Y
Y

Bypass ASIs 1416–1516, 1C16 –1D16 — N Y

Nontranslating ASIs 3016–6F16, 7216–7716, 7A16–7F16 — N N

TABLE 5-17 DCUCR Description (Continued)

Bits Field Type Use — Description
94 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

For 128-bit (quad) atomic load and 64-byte block load and store instructions, a
watchpoint trap is generated only if the watchpoint overlaps the lowest-address
eight bytes of the access.

To avoid trapping infinitely, software should emulate the instruction that caused the
trap and return from the trap by using a DONE instruction or turn off the watchpoint
before returning from a watchpoint trap handler.

IMPL. DEP. #244: Implementation-dependent feature(s) may be present that degrade
the reliability of data watchpoints. If such features are present, it must be possible to
disable them such that data watchpoints function as described in this section.
Furthermore, those features should be disabled by default.

Two 64-bit data watchpoint registers provide the means to monitor data accesses
during program execution. When Virtual/Physical Data Watchpoint is enabled, the
virtual/physical addresses of all data references are compared against the content of
the corresponding watchpoint register. If a match occurs, a VA_watchpoint or
PA_watchpoint trap is signalled before the data reference instruction is completed.
The virtual address watchpoint trap has higher priority than the physical address
watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Each
zero bit in the byte mask causes the comparison to ignore the corresponding byte in
the address. These watchpoint byte masks and the watchpoint enable bits reside in
the Data Cache Unit Control Register.

Virtual Address Data Watchpoint Register

ASI 5816, VA = 3816

Name: VA Data Watchpoint Register

FIGURE 5-41 illustrates the Virtual Address Watchpoint Register,
where: DB_VA is the most significant 61 bits of the 64-bit virtual data watchpoint
address.

FIGURE 5-41 VA Data Watchpoint Register Format

63 23 0

—DB_VA
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 95

Physical Address Data Watchpoint Register

ASI 5816, VA=4016

Name: PA Data Watchpoint Register

FIGURE 5-42 illustrates the PA Data Watchpoint Register,
where: DB_PA is the most significant 61 bits of the physical data watchpoint address.
The minimum width of a SPARC JPS1 physical address is 43 bits (impl. dep. #224).

FIGURE 5-42 PA Data Watchpoint Register Format

Note – Implementations may provide fewer than 64 bits of physical address space
(impl. dep. #224). Therefore, software is responsible for zero-extending any physical
address narrower than 64 bits out to a full 64 bits before writing that address into the
PA Data Watchpoint Register.

Instruction Trap Register

ASI 6016 (ASI_IIU_INST_TRAP), VA=016

The Instruction Trap Register can be used to generate a trap whenever an instruction
belonging to a specified class of instruction is dispatched.

IMPL. DEP. #205: The presence of the Instruction Trap Register in a SPARC JPS1
processor is implementation dependent. If implemented, the standard
(recommended) implementation is as described in this section.

When an instruction is dispatched and its opcode bits match the pattern specified in
the Instruction Trap Register, then an illegal_instruction exception occurs. A range of
opcodes can be specified through the use of the Mask and Match fields of the
Instruction Trap Register.

Note – If an instruction breakpoint triggers an illegal_instruction trap, the
illegal_instruction trap has a higher priority than that of a privileged_opcode trap.

63 23 0

—DB_PA
96 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The Instruction Trap Register is described below and illustrated in FIGURE 5-43.

FIGURE 5-43 Instruction Trap Register

IMPL. DEP. #245: On SPARC JPS1 processors, the encoding of the least significant 11
bits of the displacement field of CALL and branch (BPcc, FBPfcc, Bicc, BPr)
instructions in an instruction cache is implementation-dependent. Specifically, those
bits' encoding in an instruction cache is not necessarily the same as their architectural
encoding (which appears in main memory).

Caution – The 32-bit instruction value matched against the Instruction Trap
Register is the instruction word fetched from the instruction cache. However, the
encoding of the least significant 11 bits of CALL and branch instructions may be
different in the instruction cache from the architecturally specified encoding (impl.
dep. #245, above). Therefore, software intended to be portable across SPARC JPS1
implementations that write the Instruction Trap Register to cause a trap on CALL or
branch instructions must set bits 10:0 of the Mask field to 0 to mask out the
implementation-dependent bits from the comparison.

Bits Field Type Description

63:32 Mask RW A “1” entry enables comparison of the corresponding Match bit against the
issued instructions. Bit 63 corresponds to Match bit 31, bit 32 to Match bit 0.
This field is initialized to all zeroes on power-on reset. If Mask is all zeroes, then
the Instruction Trap Register never generates a trap.

31:0 Match RW Contains a bit pattern to match against the issued instruction stream. If a match
is found, an illegal_instruction exception is generated. Specifically:
illegal_instruction generated when ((instruction & Mask) = (Match & Mask)) &&
(Mask!=0)

Mask

63 32 31 0

Match
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 97

Notes – (1) The Instruction Trap Register generates an exception based on
instruction opcodes, not on their addresses (as do traditional breakpoints).

(2) A store to the Instruction Trap Register requires MEMBAR #Sync plus either
FLUSH, DONE, or RETRY before the point that its effect must be visible to instruction
accesses. That is, MEMBAR #Sync alone is not sufficient. In either case, one of these
instructions must be executed before the next noninternal store or load of any type,
to avoid data corruption.

As a historical note: This mechanism was designed to provide a way around
hardware errors that may be found in silicon during bringup. For example, if an
instruction is failing on a particular mask set, it can be trapped and emulated in
software with the Instruction Trap Register mechanism.

Interrupt ASI Registers

See Interrupt ASI Registers on page 556 for detailed descriptions of ASI register used
in handling interrupts.

5.2.13 Floating-Point Deferred-Trap Queue (FQ)
If present in an implementation, the FQ contains sufficient state information to
implement resumable, deferred floating-point traps.

IMPL. DEP. #23: Floating-point traps may be precise or deferred. If deferred, a
floating-point deferred-trap queue (FQ) shall be present.

The FQ can be read with the read privileged register (RDPR) floating-point queue
instruction. In a given implementation, it may also be readable or writable through
privileged load/store double alternate instructions (LDDA, STDA) or by read/write
ancillary state register instructions (RDASR, WRASR).

IMPL. DEP. #24: The presence, contents of, and operations upon the FQ are
implementation dependent.

If an FQ is present, supervisor software must be able to deduce the exception-
causing instruction’s opcode, operands, and address from its FQ entry. This also
must be true of any other pending floating-point operation in the queue.

In an implementation with a floating-point queue, an attempt to read the FQ with a
RDPR instruction when the FQ is empty (FSR.qne = 0) shall cause an
fp_exception_other trap with FSR.ftt set to 4 (sequence_error).

In an implementation without an FQ, the qne bit in the FSR is always 0 and an
attempt to read FQ with an RDPR instruction causes an illegal_instruction exception.
98 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

No SPARC JPS1 implementations are expected to make use of deferred traps for
floating-point exceptions or to implement a floating-point deferred-trap queue.

5.2.14 Integer Unit Deferred-Trap Queue
An implementation may contain zero or more IU deferred-trap queues. Such a queue
contains sufficient state to implement resumable deferred traps caused by the IU.
Note: Deferred floating-point traps are handled by the floating-point deferred-trap
queue.

IMPL. DEP. #16: The existence, contents, and operation of an IU deferred-trap queue
are implementation dependent; it is not visible to user application programs under
normal conditions.

No SPARC JPS1 implementations are expected to implement an IU deferred-trap
queue.
Release 1.0.4, 31 May 2002 C. Chapter 5 • Registers 99

100 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 6

Instructions

Instructions are accessed by the processor from memory and are executed, annulled,
or trapped. Instructions are encoded in 4 major formats and partitioned into 11
general categories. We describe instructions in these sections:

■ Instruction Execution on page 101
■ Instruction Formats and Fields on page 102
■ Instruction Categories on page 106
■ Register Window Management on page 126

6.1 Instruction Execution
The instruction at the memory location specified by the program counter is fetched
and then executed. Instruction execution may change program-visible processor
and/or memory state. As a side effect of its execution, new values are assigned to
the program counter (PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes
it impossible to complete normal execution. Such an exception may in turn generate
a precise trap. Other events may also cause traps: an exception caused by a previous
instruction (a deferred trap), an interrupt or asynchronous error (a disrupting trap),
or a reset request (a reset trap). If a trap occurs, control is vectored into a trap table.
See Chapter 7, Traps, for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the nPC is incremented by 4 (ignoring overflow, if
any). If the instruction is a control-transfer instruction, the next program counter is
copied into the PC and the target address is written to nPC. Thus, the two program
counters provide for a delayed-branch execution model.
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 101

For each instruction access and each normal data access, the IU appends an 8-bit
address space identifier, or ASI, to the 64-bit memory address. Load/store alternate
instructions (see Address Space Identifiers (ASIs) on page 112) can provide an arbitrary
ASI with their data addresses or can use the ASI value currently contained in the ASI
register.

6.2 Instruction Formats and Fields
Instructions are encoded in four major 32-bit formats and several minor formats, as
shown in FIGURE 6-1, FIGURE 6-2 on page 103, and FIGURE 6-3 on page 104.

FIGURE 6-1 Summary of Instruction Formats: Formats 1 and 2

31 030 29

disp30op

Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI and Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

31 2224 21 02530 29

disp22op2condop a

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1cc0 p

pd16hi

14 13

rs1

imm22op2rdop
102 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

FIGURE 6-2 Summary of Instruction Formats: Format 3

op3rdop rs1 i=1 mmask

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Prefetch, Load, and Store

op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10rcond

—

—

op3rdop rs1 i=1 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

cmask

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

op3rdop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs20 0 0 rs1 opfcc1 cc0

10 9 8 7 3

op3fcnop —rs1 i=0 rs2

op3fcnop rs1 i=1 simm13

op2 impl-dep
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 103

FIGURE 6-3 Summary of Instruction Formats: Format 4

The instruction fields are interpreted as described in TABLE 6-1.

TABLE 6-1 Instruction Field Interpretation (1 of 3)

Field Description

a The a bit annuls the execution of the following instruction if the branch is
conditional and not taken, or if it is unconditional and taken.

cc2, cc1, cc0 cc2, cc1, and cc0 specify the condition codes (icc, xcc, fcc0, fcc1, fcc2,
fcc3) to be used in the following instructions:
• Branch on Floating-Point Condition Codes with Prediction Instructions

(FBPfcc)
• Branch on Integer Condition Codes with Prediction (BPcc)
• Floating-Point Compare Instructions (FCMP and FCMPE)
• Move Integer Register If Condition Is Satisfied (MOVcc)
• Move Floating-Point Register If Condition Is Satisfied (FMOVcc)
• Trap on Integer Condition Codes (Tcc).
In instructions such as Tcc that do not contain the cc2 bit, the missing cc2 bit
takes on a default value. See TABLE E-10 on page 434 for a description of these
fields’ values.

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 sw_trap#

cc1cc0 —

cc1cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0
104 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

cmask This 3-bit field specifies sequencing constraints on the order of memory
references and the processing of instructions before and after a MEMBAR
instruction.

cond This 4-bit field selects the condition tested by a branch instruction. See
Appendix E, Opcode Maps, for descriptions of its values.

d16hi, d16lo These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended,
PC-relative displacement for a branch-on-register-contents with prediction
(BPr) instruction.

disp19 This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for
an integer branch-with-prediction (BPcc) instruction or a floating-point
branch-with-prediction (FBPfcc) instruction.

disp22, disp30 These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative
displacements for a branch or call, respectively.

fcn This 5-bit field provides additional opcode bits to encode the DONE, RETRY, and
PREFETCH(A) instructions.

i The i bit selects the second operand for integer arithmetic and load/store
instructions. If i = 0, then the operand is r[rs2]. If i = 1, then the operand is
simm10, simm11, or simm13, depending on the instruction, sign-extended to
64 bits.

imm22 This 22-bit field is a constant that SETHI places in bits 31:10 of a destination
register.

imm_asi This 8-bit field is the address space identifier in instructions that access
alternate space.

impl-dep The meaning of these fields is completely implementation dependent for
IMPDEP2A and IMPDEP2B instructions.

mmask This 4-bit field imposes order constraints on memory references appearing
before and after a MEMBAR instruction.

op, op2 These 2- and 3-bit fields encode the three major formats and the Format 2
instructions. See Appendix E, Opcode Maps, for descriptions of their values.

op3 This 6-bit field (together with one bit from op) encodes the Format 3
instructions. See Appendix E, Opcode Maps, for descriptions of its values.

opf This 9-bit field encodes the operation for a floating-point operate (FPop)
instruction. See Appendix E, Opcode Maps, for possible values and their
meanings.

opf_cc Specifies the condition codes to be used in FMOVcc instructions. See cc0, cc1,
and cc2 above for details.

opf_low This 6-bit field encodes the specific operation for a Move Floating-Point
Register if condition is satisfied (FMOVcc) or Move Floating-Point Register if
contents of integer register match condition (FMOVr) instruction.

TABLE 6-1 Instruction Field Interpretation (2 of 3)

Field Description
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 105

6.3 Instruction Categories
SPARC V9 instructions can be grouped into the following categories:

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access

p This 1-bit field encodes static prediction for BPcc and FBPfcc instructions;
branch prediction bit (p) encodings are shown below.

rcond This 3-bit field selects the register-contents condition to test for a move, based
on register contents (MOVr or FMOVr) instruction or a Branch on Register
Contents with Prediction (BPr) instruction. See Appendix E, Opcode Maps, for
descriptions of its values.

rd This 5-bit field is the address of the destination (or source) r or f register(s) for
a load, arithmetic, or store instruction.

rs1 This 5-bit field is the address of the first r or f register(s) source operand.

rs2 This 5-bit field is the address of the second r or f register(s) source operand
with i = 0.

shcnt32 This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64 This 6-bit field provides the shift count for 64-bit shift instructions.

simm10 This 10-bit field is an immediate value that is sign-extended to 64 bits and used
as the second ALU operand for a MOVr instruction when i = 1.

simm11 This 11-bit field is an immediate value that is sign-extended to 64 bits and used
as the second ALU operand for a MOVcc instruction when i = 1.

simm13 This 13-bit field is an immediate value that is sign-extended to 64 bits and used
as the second ALU operand for an integer arithmetic instruction or for a load/
store instruction when i = 1.

sw_trap# This 7-bit field is an immediate value that is used as the second ALU operand
for a Trap on Condition Code instruction.

x The x bit selects whether a 32- or 64-bit shift will be performed.

TABLE 6-1 Instruction Field Interpretation (3 of 3)

Field Description

p Branch Prediction

0 Predict that branch will not be taken

1 Predict that branch will be taken
106 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Privileged register access
■ Floating-point operate
■ Implementation dependent
■ Reserved

Each of these categories is described in the following subsections.

6.3.1 Memory Access Instructions
Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. All of the instructions except Compare and Swap use either two r
registers or an r register and simm13 to calculate a 64-bit byte memory address.
Compare and Swap uses a single r register to specify a 64-bit byte memory address.
To this 64-bit address, the IU appends an ASI that encodes address space
information.

The destination field of a memory reference instruction specifies the r or f
register(s) that supply the data for a store or that receive the data from a load or
LDSTUB. For SWAP, the destination register identifies the r register to be exchanged
atomically with the calculated memory location. For Compare and Swap, an r
register is specified, the value of which is compared with the value in memory at the
computed address. If the values are equal, then the destination field specifies the r
register that is to be exchanged atomically with the addressed memory location. If
the values are unequal, then the destination field specifies the r register that is to
receive the value at the addressed memory location; in this case, the addressed
memory location remains unchanged.

The destination field of a PREFETCH instruction (fcn) is used to encode the type of
the prefetch.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-
bit), and doubleword (64-bit) accesses. Floating-point load and store instructions
support word, doubleword, and quadword memory accesses. LDSTUB accesses
bytes, SWAP accesses words, CASA accesses words, and CASXA accesses doublewords.
The Atomic Quad Load instruction accesses a quadword (16 bytes) Block load and
store access eight consecutive doublewords. PREFETCH accesses at least 64 bytes.
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 107

Programming Note – By setting i = 1 and rs1 = 0, you can access any location in
the lowest or highest 4 Kbytes of an address space without using a register to hold
part of the address.

Memory Alignment Restrictions

Halfword accesses must be aligned on 2-byte boundaries, word accesses (which
include instruction fetches) must be aligned on 4-byte boundaries, extended word
and doubleword accesses must be aligned on 8-byte boundaries, quadword accesses
must be aligned on 16-byte boundaries, and Block load and Block store accesses
must be aligned on 64-byte boundaries.

Double-precision floating-point values may be aligned on word boundaries.
However, if so aligned, doubleword loads/stores may not be used to access them,
resulting in less efficient and nonatomic accesses.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

■ An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned causes an LDDF_mem_address_not_aligned exception.

■ An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned causes an STDF_mem_address_not_aligned exception.

Addressing Conventions

The processor uses big-endian byte order for all instruction accesses and, by default,
for data accesses. It is possible to access data in little-endian format by using selected
ASIs. It is also possible to change the default byte order for implicit data accesses.
See Processor State (PSTATE) Register on page 69 for more information.1

1. See also Cohen, D., “On Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-
54.
108 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Big-endian Addressing Convention. Within a multiple-byte integer, the byte with
the smallest address is the most significant; a byte’s significance decreases as its
address increases. The big-endian addressing conventions are illustrated in
FIGURE 6-4 and described below the figure.

FIGURE 6-4 Big-endian Addressing Conventions

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15–8) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the address + 1.

Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

Extended word
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 109

word For a load/store word instruction, four bytes are accessed. The most significant
byte (bits 31–24) is accessed at the address specified in the instruction; the least
significant byte (bits 7–0) is accessed at the address + 3.

doubleword or
extended word For a load/store extended or floating-point load/store double instruction,

eight bytes are accessed. The most significant byte (bits 63–56) is accessed at
the address specified in the instruction; the least significant byte (bits 7–0) is
accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-
endian words are accessed. The word at the address specified in the instruction
corresponds to the even register specified in the instruction; the word at
address + 4 corresponds to the following odd-numbered register.

quadword For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127–120) is accessed at the address specified in the
instruction; the least significant byte (bits 7–0) is accessed at the address + 15.
110 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Little-endian Addressing Convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s significance increases as its
address increases. The little-endian addressing conventions are illustrated in
FIGURE 6-5 and defined below the figure.

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the instruction;
the most significant byte (bits 15–8) is accessed at the address + 1.

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

FIGURE 6-5 Little-endian Addressing Conventions
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 111

word For a load/store word instruction, four bytes are accessed. The least significant
byte (bits 7–0) is accessed at the address specified in the instruction; the most
significant byte (bits 31–24) is accessed at the address + 3.

doubleword or
extended word For a load/store extended or floating-point load/store double instruction,

eight bytes are accessed. The least significant byte (bits 7–0) is accessed at the
address specified in the instruction; the most significant byte (bits 63–56) is
accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two
little-endian words are accessed. The word at the address specified in the
instruction corresponds to the even register in the instruction; the word at the
address specified in the instruction +4 corresponds to the following odd-
numbered register. With respect to little endian memory, an LDD (STD}
instruction behaves as if it is composed of two 32-bit loads (stores), each of
which is byte-swapped independently before being written into each
destination register (memory word).

quadword For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7–0) is accessed at the address specified in the instruction;
the most significant byte (bits 127–120) is accessed at the address + 15.

Address Space Identifiers (ASIs)

Load and store instructions provide an implicit ASI value of ASI_PRIMARY,
ASI_PRIMARY_LITTLE, ASI_NUCLEUS, or ASI_NUCLEUS_LITTLE (see Addressing
and Alternate Address Spaces on page 173). Load and store alternate instructions
provide an explicit ASI, specified by the imm_asi instruction field when i = 0, or
the contents of the ASI register when i = 1.

ASIs 0016 through 7F16 are restricted; only privileged software is allowed to access
them. An attempt to access a restricted ASI by nonprivileged software results in a
privileged_action exception. ASIs 8016 through FF16 are unrestricted; software is
allowed to access them whether the processor is operating in privileged or
nonprivileged mode, as summarized in TABLE 6-2.

TABLE 6-2 Allowed Accesses to ASIs

Value Access Type
Processor State
(PSTATE.PRIV) Result of ASI Access

0016–7F16 Restricted Nonprivileged (0) privileged_action exception

Privileged (1) Valid access

8016–FF16 Unrestricted Nonprivileged (0) Valid access

Privileged (1) Valid access
112 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

IMPL. DEP. #29: In SPARC V9, many ASIs were defined to be implementation
dependent. Some of those ASIs have been allocated for standard uses in SPARC
JPS1. Others remain implementation dependent in SPARC JPS1. See TABLE L-1 on
page 539 for details.

IMPL. DEP. #30: In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier. In SPARC JPS1 implementations, all 8 bits of each
ASI specifier must be decoded. Refer to Appendix L, Address Space Identifiers, of this
specification for details.

Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the
same address space and use hardware to keep data and instruction memory
consistent at all times. It may also choose to overload independent address spaces
for data and instructions and allow them to become inconsistent when data writes
are made to addresses shared with the instruction space.

A SPARC V9 program containing self-modifying code should use FLUSH
instruction(s) after executing stores to modify instruction memory and before
executing the modified instruction(s), to ensure the consistency of program
execution.

Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the
order and completion of memory references. Ordering MEMBARs induce a partial
ordering between sets of loads and stores and future loads and stores. Sequencing
MEMBARs exert explicit control over completion of loads and stores (or other
instructions). Both barrier forms are encoded in a single instruction, with
subfunctions bit-encoded in an immediate field.

6.3.2 Integer Arithmetic Instructions
The integer arithmetic instructions are generally triadic-register-address instructions
that compute a result that is a function of two source operands. They either write the
result into the destination register r[rd] or discard it. One of the source operands is
always r[rs1]. The other source operand depends on the i bit in the instruction; if
i = 0, then the operand is r[rs2]; if i = 1, then the operand is the constant simm10,
simm11, or simm13 sign-extended to 64 bits.

Note: The value of r[0] always reads as zero, and writes to it are ignored.
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 113

Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer
condition codes (icc and xcc) as a side effect; the other does not affect the
condition codes. A special comparison instruction for integer values is not needed
since it is easily synthesized with the “subtract and set condition codes” (SUBcc)
instruction. See Synthetic Instructions on page 484 for details.

Shift Instructions

Shift instructions shift an r register left or right by a constant or variable amount.
None of the shift instructions change the condition codes.

Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-
bit constant from the instruction into bits 31 through 10 of the destination register. It
clears the low-order 10 bits and high-order 32 bits, and it does not affect the
condition codes. Its primary use is to construct constants in registers.

Integer Multiply/Divide

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer
divide instructions perform 64 ÷ 64 → 64-bit operations. For compatibility with
SPARC V8, 32 × 32 → 64-bit multiply instructions, 64 ÷ 32 → 32-bit divide
instructions, and the multiply step instruction are provided. Division by zero causes
a division_by_zero exception.

Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is
the two low-order bits of each operand. If either of the two operands has a nonzero
tag or if 32-bit arithmetic overflow occurs, tag overflow is detected. If tag overflow
occurs, then TADDcc and TSUBcc set the CCR.icc.V bit; if 64-bit arithmetic
overflow occurs, then they set the CCR.xcc.V bit.

The trapping versions (TADDccTV, TSUBccTV) are deprecated. See A.71.16 and
A.71.17 for details.

6.3.3 Control-Transfer Instructions (CTIs)
These are the basic control-transfer instruction types:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
114 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program
counter (nPC) or by changing the value of both the program counter (PC) and the
next program counter (nPC). When only the next program counter, nPC, is changed,
the effect of the transfer of control is delayed by one instruction. Most control
transfers in SPARC V9 are of the delayed variety. The instruction following a
delayed control transfer instruction is said to be in the delay slot of the control
transfer instruction. Some control transfer instructions (branches) can optionally
annul, that is, not execute, the instruction in the delay slot, depending upon whether
the transfer is taken or not taken. Annulled instructions have no effect upon the
program-visible state, nor can they cause a trap.

Programming Note – The annul bit increases the likelihood that a compiler can
find a useful instruction to fill the delay slot after a branch, thereby reducing the
number of instructions executed by a program. For example, the annul bit can be
used to move an instruction from within a loop to fill the delay slot of the branch
that closes the loop.

Likewise, the annul bit can be used to move an instruction from either the “else” or
“then” branch of an “if-then-else” program block to the delay slot of the branch that
selects between them. Since a full set of conditions is provided, a compiler can
arrange the code (possibly reversing the sense of the condition) so that an instruction
from either the “else” branch or the “then” branch can be moved to the delay slot.

Use of annulled branches provided some benefit in older, single-issue SPARC
implementations. JPS1 processors are superscalar SPARC implementations, on which
the only benefit of annulled branches might be a slight reduction in code size.
Therefore, the use of annulled branch instructions is no longer encouraged.

TABLE 6-3 defines the value of the program counter and the value of the next
program counter after execution of each instruction. Conditional branches have two
forms: branches that test a condition (including branch-on-register), represented in
the table by Bcc, and branches that are unconditional, that is, always or never taken,
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 115

represented in the table by B. The effect of an annulled branch is shown in the table
through explicit transfers of control, rather than by fetching and annulling the
instruction.

The effective address, EA in TABLE 6-3, specifies the target of the control transfer
instruction. The effective address is computed in different ways, depending on the
particular instruction.

■ PC-relative effective address — A PC-relative effective address is computed by
sign extending the instruction’s immediate field to 64-bits, left-shifting the word
displacement by two bits to create a byte displacement, and adding the result to
the contents of the PC.

■ Register-indirect effective address — A register-indirect effective address
computes its target address as either r[rs1] + r[rs2] if i = 0, or
r[rs1] + sign_ext(simm13) if i = 1.

■ Trap vector effective address — A trap vector effective address first computes the
software trap number as the least significant 7 bits of r[rs1] + r[rs2] if
i = 0, or as the least significant 7 bits of r[rs1] + sw_trap# if i = 1. The trap
level, TL, is incremented. The hardware trap type is computed as 256 + sw_trap#
and stored in TT[TL]. The effective address is generated by concatenation of the
contents of the TBA register, the “TL > 0” bit, and the contents of TT[TL]. See Trap
Base Address (TBA) Register on page 78 for details.

TABLE 6-3 Control Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New nPC

Non-CTIs — — — — nPC nPC + 4

Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4

Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC + 4 nPC + 8

B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC + 4

B PC-relative Yes Yes 1 EA EA + 4

B PC-relative Yes No 1 nPC + 4 nPC + 8

CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-indirect Yes — — nPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — nPC nPC + 4
116 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Trap state effective address — A trap state effective address is not computed but
is taken directly from either TPC[TL] or TNPC[TL].

Compatibility Note – SPARC V8 specified that the delay instruction was always
fetched, even if annulled, and that an annulled instruction could not cause any traps.
SPARC V9 does not require the delay instruction to be fetched if it is annulled.

SPARC V8 left as undefined the result of executing a delayed conditional branch that
had a delayed control transfer in its delay slot. For this reason, programmers should
avoid such constructs when backward compatibility is an issue.

Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul
bit is 0, the instruction in the delay slot is always executed. If the annul bit is 1, the
instruction in the delay slot is not executed unless the conditional branch is taken.
Note: The annul behavior of a taken conditional branch is different from that of an
unconditional branch.

Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition
is “always”; it never transfers control if its specified condition is “never.” If the
annul bit is 0, then the instruction in the delay slot is always executed. If the annul
bit is 1, then the instruction in the delay slot is never executed. Note: The annul
behavior of an unconditional branch is different from that of a taken conditional
branch.

CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL
instruction itself, into r[15] (out register 7) and then causes a delayed transfer of
control to a PC-relative effective address. The value written into r[15] is visible to
the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL
instruction itself, into r[rd] and then causes a register-indirect delayed transfer of
control to the address given by “r[rs1] + r[rs2]” or “r[rs1] + a signed
immediate value.” The value written into r[rd] is visible to the instruction in the
delay slot.

When PSTATE.AM = 1, the value of the high-order 32 bits transmitted to r[15] by the
CALL instruction or to r[rd] by the JMPL instruction is zero.
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 117

RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in
nonprivileged mode. RETURN combines the control-transfer characteristics of a JMPL
instruction with r[0] specified as the destination register and the register-window
semantics of a RESTORE instruction.

DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a
trap. These instructions restore the machine state to values saved in the TSTATE
register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of nPC associated with the
instruction that caused the trap, that is, the next logical instruction in the program.
DONE presumes that the trap handler did whatever was requested by the program
and that execution should continue.

Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field
matches the current state of the condition code register specified by its cc field;
otherwise, it executes as a NOP. If the trap is taken, it increments the TL register,
computes a trap type that is stored in TT[TL], and transfers to a computed address in
the trap table pointed to by TBA. See Trap Base Address (TBA) Register on page 78.

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken,
256 plus the 7 least significant bits of the sum of the Tcc’s source operands is written
to TT[TL]. The only visible difference between a software trap generated by a Tcc
instruction and a hardware trap is the trap number in the TT register. See Chapter 7,
Traps, for more information.

Programming Note – Tcc can be used to implement breakpointing, tracing, and
calls to supervisor software. Tcc can also be used for runtime checks, such as out-of-
range array index checks or integer overflow checks.

Conditional Move Instructions

This subsection describes two groups of instructions that copy or move the contents
of any integer or floating-point register.
118 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy the
contents of any integer or floating-point register to a destination integer or floating-
point register if a condition is satisfied. The condition to test is specified in the
instruction and may be any of the conditions allowed in conditional delayed control-
transfer instructions. This condition is tested against one of the 6 sets of condition
codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified by the instruction. For
example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register
%f22 if floating-point condition code number 2 (fcc2) indicates a greater-than
relation (FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation
(FSR.fcc2 ≠ 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in
programs. In most implementations, branches will be more expensive than the
MOVcc or FMOVcc instructions. For example, the following C statement:

if (A > B) X = 1; else X = 0;

can be coded as

cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, %g0,1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the
contents of any integer or floating-point register to be moved to a destination integer
or floating-point register if the contents of a register satisfy a specified condition.
The conditions to test are enumerated in TABLE 6-4.

TABLE 6-4 MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 119

Any of the integer registers may be tested for one of the conditions, and the result
used to control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a
nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can
emulate multiple unsigned condition codes by using an integer register to hold the
result of a comparison.

6.3.4 Register Window Management Instructions
This subsection describes the instructions that manage register windows in SPARC
JPS1. The privileged registers affected by these instructions are described in Register-
Window State Registers on page 80.

SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register
window by incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window_spill
exception.

If CANSAVE ≠ 0 but the number of clean windows is zero, that is,

(CLEANWIN – CANRESTORE) = 0

then SAVE causes a clean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements
CANSAVE, and increments CANRESTORE. The source registers for the ADD are from
the old window (the one to which CWP pointed before the SAVE), while the result is
written into a register in the new window (the one to which the incremented CWP
points).

RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the
CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window_fill
exception.
120 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are from
the old window (the one to which CWP pointed before the RESTORE), and the result
is written into a register in the new window (the one to which the decremented CWP
points).

Programming Note – This note describes a common convention for use of register
windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure
requires a register window, it executes a SAVE instruction. A routine that does not
allocate a register window of its own (possibly a leaf procedure) should not modify
any windowed registers except out registers 0 through 6. See Leaf-Procedure
Optimization on page 491.

A procedure that uses a register window returns by executing both a RESTORE and a
JMPL instruction. A procedure that has not allocated a register window returns by
executing a JMPL only. The target address for the JMPL instruction is normally 8 plus
the address saved by the calling instruction, that is, the instruction after the
instruction in the delay slot of the calling instruction.

The SAVE and RESTORE instructions can be used to atomically establish a new
memory stack pointer in an r register and switch to a new or previous register
window. See Register Allocation Within a Window on page 494.

SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a
window spill has completed successfully. It increments CANSAVE:

CANSAVE ← (CANSAVE + 1)

If the saved window belongs to a different address space (OTHERWIN ≠ 0), it
decrements OTHERWIN:

OTHERWIN ← (OTHERWIN – 1)

Otherwise, the saved window belongs to the current address space (OTHERWIN = 0),
so SAVED decrements CANRESTORE:

CANRESTORE ← (CANRESTORE – 1)

RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a
window has been filled successfully. It increments CANRESTORE:
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 121

CANRESTORE ← (CANRESTORE + 1)

If the restored window replaces a window that belongs to a different address space
(OTHERWIN ≠ 0), it decrements OTHERWIN:

OTHERWIN ← (OTHERWIN – 1)

Otherwise, the restored window belongs to the current address space
(OTHERWIN = 0), so RESTORED decrements CANSAVE:

CANSAVE ← (CANSAVE – 1)

If CLEANWIN is less than NWINDOWS – 1, the RESTORED instruction increments
CLEANWIN:

if (CLEANWIN < (NWINDOWS – 1)) then CLEANWIN ← (CLEANWIN + 1)

Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows, except the current
window, by performing repetitive spill traps. The FLUSHW instruction causes a spill
trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as

NWINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHW instruction continues causing spill traps until all the register windows
except the current window have been flushed.

6.3.5 State Register Access
The read/write state register instructions access program-visible state and status
registers. These instructions read/write the state registers into/from r registers. A
read/write Ancillary State Register instruction is privileged only if the accessed
register is privileged.

The supported RDASR and WRASR instructions are described in TABLE 6-5; for more
information see Ancillary State Registers (ASRs) on page 83.

TABLE 6-5 Supported RDASR and WRASR Instructions

ASR # ASR Name Description R, W? Priv?

0 YD Y register (deprecated) RW No

2 CCR Condition Codes Register RW No

3 ASI ASI RW No
122 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

6.3.6 Privileged Register Access
The read/write privileged register instructions access state and status registers that
are visible only to privileged software. These instructions read/write privileged
registers into/from r registers. The read/write privileged register instructions are
privileged.

6.3.7 Floating-Point Operate (FPop) Instructions
Floating-point operate instructions (FPops) are generally triadic-register-address
instructions. They compute a result that is a function of one or two source operands
and place the result in one or more destination f registers, with two exceptions:

■ Floating-point convert operations, which use one source and one destination
operand

4 TICK Tick (timer) R Yes/No1

5 PC Program Counter R No

6 FPRS Floating-Point Register Status RW No

16 PCR Performance Control Register RW Yes/No2

17 PIC Performance Instrumentation Counters RW Yes/No3

18 DCR Dispatch Control Register RW Yes

19 GSR Graphics Status Register RW No

20 Set SOFTINT Set bits in SOFTINT W Yes

21 Clear SOFTINT Clear bits in SOFTINT W Yes

22 SOFTINT Software interrupt register RW Yes

23 TICK_COMPARE TICK compare RW Yes

24 STICK System TICK (timer) RW Yes/No4

25 STICK_COMPARE STICK compare RW Yes

26-31 Implementation
dependent

— — —

1. Writes are always privileged; reads are privileged if TICK.NPT = 1; otherwise, reads are nonprivileged.

2. If PCR.NC = 0, access is always privileged. If PCR.NC ≠ 0 and PCR.PRIV = 0, access is nonprivileged; otherwise,
access is privileged.

3. All accesses are privileged if PCR.PRIV = 1; otherwise, all accesses are nonprivileged.

4. Writes are always privileged; reads are privileged if STICK.NPT = 1; otherwise, reads are nonprivileged.

TABLE 6-5 Supported RDASR and WRASR Instructions (Continued)

ASR # ASR Name Description R, W? Priv?
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 123

■ Floating-point compare operations, which do not write to an f register but update
one of the fccn fields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2
opcodes and does not include branches based on the floating-point condition codes
(FBfcc and FBPfcc) or the load/store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc
instructions do for the integer registers. See MOVcc and FMOVcc Instructions on page
119.

The FMOVr instructions function for the floating-point registers as the MOVr
instructions do for the integer registers. See MOVr and FMOVr Instructions on page
119.

If no floating-point unit is present or if PSTATE.PEF = 0 or FPRS.FEF = 0, then any
instruction, including an FPop instruction, that attempts to access an FPU register
generates an fp_disabled exception.

All FPop instructions clear the ftt field and set the cexc field unless they generate
an exception. Floating-point compare instructions also write one of the fccn fields.
All FPop instructions that can generate IEEE exceptions set the cexc and aexc
fields unless they generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q),
FMOVr(s,d,q), and FNEG(s,d,q) cannot generate IEEE exceptions, so they clear cexc
and leave aexc unchanged.

IMPL. DEP. #3: An implementation may indicate that a floating-point instruction did
not produce a correct IEEE Std 754-1985 result by generating an fp_exception_other
exception with FSR.ftt = unfinished_FPop or unimplemented FPop. In this case,
privileged software must emulate any functionality not present in the hardware.

SPARC JPS1 processors do not implement any quad-precision floating-point
operations in hardware. Instead, these operations cause an fp_exception_other trap
with FSR.ftt = unimplemented_FPop, and system software emulates quad
operations (impl. dep. #1).

See ftt = unfinished_FPop on page 61 to see which instructions can produce an
unfinished_FPop exception. See ftt = unimplemented_FPop on page 63 to see which
instructions can produce an unimplemented_FPop exception.

6.3.8 Implementation-Dependent Instructions
SPARC V9 provides two instructions that are entirely implementation dependent:
IMPDEP1 and IMPDEP2.

In SPARC JPS1, the IMPDEP1 opcode space is used by graphics instructions.
124 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

In SPARC JPS1, IMPDEP2A is subdivided into IMPDEP2A and IMPDEP2B. IMPDEP2A
remains implementation dependent. However, some implementations use the
IMPDEP2B opcode space for floating-point multiply-add/multiply-subtract
instructions, which are expected to be incorporated into a future JPS. Therefore, for
future compatibility, it is recommended that SPARC JPS1 implementations not use
IMPDEP2B instructions, unless they are used in compatibility with the Fujitsu/HAL
SPARC64 V implementation.

6.3.9 Reserved Opcodes and Instruction Fields
An attempt to execute an opcode to which no instruction is assigned causes a trap.
Specifically:

■ Attempting to execute a reserved FPop causes an fp_exception_other exception
(with FSR.ftt = unimplemented_FPop).

■ Attempting to execute any other reserved opcode causes an illegal_instruction
exception (see illegal_instruction, page 163).

■ Attempting to execute an FPop with a nonzero value in a reserved instruction
field should cause an fp_exception_other exception (with
FSR.ftt = unimplemented_FPop).1

■ Attempting to execute a Tcc instruction with a nonzero value in a reserved
instruction field causes an illegal_instruction exception.

■ Attempting to execute any other instruction with a nonzero value in a reserved
instruction field should cause an illegal_instruction exception.1

See Appendix E, Opcode Maps, for a complete enumeration of the reserved opcodes.

6.3.10 Summary of Unimplemented Instructions
Certain SPARC V9 instructions are not implemented in hardware in SPARC JPS1
processor. Executing any of these instructions results in implementation-dependent
behavior, described in TABLE 6-6.

1. Although it is recommended that this exception is generated, a JPS1 implementation may ignore
the contents of reserved instruction fields (in instructions other than Tcc).

TABLE 6-6 SPARC JPS1 Actions on Unimplemented Instructions

Instructions Trap Taken SPARC JPS1-specific Behavior

Quad FPops (including FdMULq) fp_exception_other FSR.ftt = unimplemented_FPop

POPC illegal_instruction (none)

RDPR FQ illegal_instruction There is no FQ

LDQF illegal_instruction (none)

STQF illegal_instruction (none)
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 125

Programming Note – The operating system emulates all of these instructions
except RDPR FQ.

6.4 Register Window Management
The state of the register windows is determined by the contents of the set of
privileged registers described in Register Window Management Instructions on page
120. Those registers are affected by the instructions described in Register Window
Management on page 126. Privileged software can read/write these state registers
directly by using RDPR/WRPR instructions.

6.4.1 Register Window State Definition
For the state of the register windows to be consistent, the following must always be
true:

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

FIGURE 5-3 on page 45 shows how the register windows are partitioned to obtain the
above equation. The partitions are as follows:

■ The current window and the window that overlaps two other valid windows and
so must not be used (in FIGURE 5-3, windows 0 and 5, respectively). They are
always present and account for the 2 subtracted from NWINDOWS in the right side
of the equation.

■ Windows that do not have valid contents and can be used (through a SAVE
instruction) without causing a spill trap. These windows (windows 1–4 in
FIGURE 5-3) are counted in CANSAVE.

■ Windows that have valid contents for the current address space and that can be
used (through the RESTORE instruction) without causing a fill trap. These
windows (window 7 in FIGURE 5-3) are counted in CANRESTORE.

■ Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows through a SAVE (RESTORE)
instruction results in a spill (fill) trap to a separate set of trap vectors, as discussed
in the following subsection. These windows (window 6 in FIGURE 5-3) are counted
in OTHERWIN.
126 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows
following CWP.

For the window-management features of the architecture described in this section to
be used, the state of the register windows must be kept consistent at all times, except
within the trap handlers for window spilling, filling, and cleaning. While window
traps are being handled, the state may be inconsistent. Window spill/fill trap
handlers should be written so that a nested trap can be taken without destroying
state.

Programming Note – System software is responsible for keeping the state of the
register windows consistent at all times. Failure to do so will cause undefined
behavior. For example, CANSAVE, CANRESTORE, and OTHERWIN must never be
greater than or equal to 7 (NWINDOWS – 1).

6.4.2 Register Window Traps
Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHW instruction.

Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next
register window is occupied (CANSAVE = 0). An overflow causes a spill trap that
allows privileged software to save the occupied register window in memory, thereby
making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the
previous register window is not valid (CANRESTORE = 0). An underflow causes a fill
trap that allows privileged software to load the registers from memory.

Clean-Window Trap

The processor provides the clean_window trap so that software can create a secure
environment in which it is guaranteed that register windows contain only data from
the same address space.

A clean register window is one in which all of the registers, including uninitialized
registers, contain either 0 or data assigned by software executing in the address
space to which the window belongs. A clean window cannot contain register values
from another process, that is, software operating in a different address space.
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 127

Supervisor software specifies the number of windows that are clean with respect to
the current address space in the CLEANWIN register. This number includes register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. Therefore, the
number of clean windows that are available to be used by the SAVE instruction is

CLEANWIN – CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This
behavior allows supervisor software to clean a register window before it is accessed
by a user.

Vectoring of Fill/Spill Traps

To make handling of fill and spill traps efficient, SPARC V9 provides multiple trap
vectors for the fill and spill traps. These trap vectors are determined as follows:

■ Supervisor software can mark a set of contiguous register windows as belonging
to an address space different from the current one. The count of these register
windows is kept in the OTHERWIN register. A separate set of trap vectors
(fill_n_other and spill_n_other) is provided for spill and fill traps for these register
windows (as opposed to register windows that belong to the current address
space).

■ Supervisor software can specify the trap vectors for fill and spill traps by
presetting the fields in the WSTATE register. This register contains two subfields,
each three bits wide. The WSTATE.NORMAL field determines one of eight spill (fill)
vectors to be used when the register window to be spilled (filled) belongs to the
current address space (OTHERWIN = 0). If the OTHERWIN register is nonzero, the
WSTATE.OTHER field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Chapter 7, Traps, for more details on how the trap address is determined.

CWP on Window Traps

On a window trap, the CWP is set to point to the window that must be accessed by
the trap handler, as follows. (Note: All arithmetic on CWP is done modulo
NWINDOWS.)

■ If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there
is an overlap window between the CWP and the next register window to be
spilled:

CWP ← (CWP + 2) mod NWINDOWS

If the spill trap occurs because of a FLUSHW instruction, there can be unused
windows (CANSAVE) in addition to the overlap window between the CWP and the
window to be spilled:
128 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

CWP ← (CWP + CANSAVE + 2) mod NWINDOWS

Implementation Note – All spill traps can use
CWP ← (CWP + CANSAVE + 2) mod NWINDOWS
since CANSAVE is 0 whenever a trap occurs because of a SAVE instruction.

■ On a fill trap, the window preceding CWP must be filled:

CWP ← (CWP – 1) mod NWINDOWS

■ On a clean_window trap, the window following CWP must be cleaned. Then

CWP ← (CWP + 1) mod NWINDOWS

Window Trap Handlers

The trap handlers for fill, spill, and clean_window traps must handle the trap
appropriately and return, by using the RETRY instruction, to reexecute the trapped
instruction. The state of the register windows must be updated by the trap handler,
and the relationships among CLEANWIN, CANSAVE, CANRESTORE, and OTHERWIN
must remain consistent. Follow these recommendations:

■ A spill trap handler should execute the SAVED instruction for each window that it
spills.

■ A fill trap handler should execute the RESTORED instruction for each window that
it fills.

■ A clean_window trap handler should increment CLEANWIN for each window that
it cleans:

CLEANWIN ← (CLEANWIN + 1)

Window trap handlers in SPARC JPS1 can be very efficient. See Example Code for Spill
Handler on page 504 for details and sample code.
Release 1.0.4, 31 May 2002 C. Chapter 6 • Instructions 129

130 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 7

Traps

A trap is a vectored transfer of control to supervisor software through a trap table
that contains the first eight (32 for clean_window, spill, fill,
fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and
fast_data_access_protection traps) instructions of each trap handler. The base
address of the table is established by supervisor software, by writing the Trap Base
Address (TBA) register. The displacement within the table is determined by the trap
type and the current trap level (TL). One-half of the table is reserved for hardware
traps; one-quarter is reserved for software traps generated by Tcc instructions; the
remaining quarter is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to do the
following:

1. Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and the
trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.

3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to
return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset,
an asynchronous error, or an interrupt request not directly related to a particular
instruction. The processor must appear to behave as though, before executing each
instruction, it determines if there are any pending exceptions or interrupt requests. If
there are pending exceptions or interrupt requests, the processor selects the highest-
priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to
continue executing the current instruction stream without software intervention. A
trap is the action taken by the processor when it changes the instruction flow in
response to the presence of an exception, interrupt, or Tcc instruction.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 131

A catastrophic error exception is due to the detection of a hardware malfunction
from which, due to the nature of the error, the state of the machine at the time of the
exception cannot be restored. Since the machine state cannot be restored, execution
after such an exception may not be resumable. An example of such an error is an
uncorrectable bus parity error.

IMPL. DEP. #31: The causes and effects of catastrophic errors are implementation-
dependent. They may cause precise, deferred, or disrupting traps.

Traps are described in these sections:

■ Processor States, Normal and Special Traps on page 132
■ Trap Categories on page 137
■ Trap Control on page 140
■ Trap-Table Entry Addresses on page 141
■ Trap Processing on page 149
■ Exception and Interrupt Descriptions on page 161

7.1 Processor States, Normal and Special
Traps
The processor is always in one of three discrete states:

■ execute_state, which is the normal execution state of the processor

■ RED_state (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL – 1, and for processing
hardware- and software-initiated resets

■ error_state, which is a halted state that is entered as a result of a trap when
TL = MAXTL

Traps processed in execute_state are called normal traps. Traps processed in
RED_state are called special traps.
132 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

FIGURE 7-1 shows the processor state diagram.

FIGURE 7-1 Processor State Diagram

7.1.1 RED_state
RED_state is an acronym for Reset, Error, and Debug state. The processor enters
RED_state under any one of the following conditions:

■ A trap is taken when TL = MAXTL –1.
■ A POR, WDR, or XIR reset occurs.
■ An SIR occurs when TL < MAXTL.
■ System software sets PSTATE.RED = 1.

RED_state serves two mutually exclusive purposes:

■ During trap processing, it indicates that no more trap levels are available; that is,
if another nested trap is taken, the processor will enter error_state and halt.
RED_state provides system software with a restricted execution environment.

■ It provides the execution environment for all reset processing.

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in
RED_state; when this bit is clear, the processor is not in RED_state, independent
of the value of TL. Executing a DONE or RETRY instruction in RED_state restores
the stacked copy of the PSTATE register, which clears the PSTATE.RED flag if the
stacked copy had it cleared. System software can also set or clear the PSTATE.RED

RED_stateexecute_state error_state

POR,

Including Power Off

Trap or SIR @

Trap or SIR @
MAXTL

Trap @
TL = MAXTL–1,

DONE,

TL = MAXTL

RED = 1

RED = 0

XIR

Any State

Trap or SIR @
TL < MAXTL

Trap @
TL < MAXTL–1

Trap or SIR @
TL< MAXTL,

(impl. dep. #254)
(impl. dep. #212)

RETRY,
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 133

flag with a WRPR instruction, which also forces the processor to enter or exit
RED_state, respectively. In this case, the WRPR instruction should be placed in the
delay slot of a jump so that the PC can be changed in concert with the state change.

Programming Notes – Setting TL = MAXTL with a WRPR instruction does not also
set PSTATE.RED = 1 nor does it alter any other machine state. The values of
PSTATE.RED and TL are independent.

Setting PSTATE.RED with a WRPR instruction causes the processor to execute in
RED_state. This results in the execution environment, as defined in RED_state
Execution Environment on page 135. However, it is different from a RED_state trap
in the sense that there are no trap-related changes in the machine state (for example.,
TL does not change).

RED_state Trap Table

Traps occurring in RED_state or traps that cause the processor to enter RED_state
use an abbreviated trap vector. The RED_state trap vector is constructed so that it
can overlay the normal trap vector if necessary. TABLE 7-1 illustrates the RED_state
trap vector layout.

†TT = 2 if a watchdog reset occurs while the processor is not in error_state; TT = trap type of the exception that
caused entry into error_state if a watchdog reset (WDR) occurs in error_state.

‡TT = 3 if an externally_initiated_reset (XIR) occurs while the processor is not in error_state; TT = trap type of
the exception that caused entry into error_state if the externally initiated reset occurs in error_state.

*TT = trap type of the exception. See TABLE 7-3 on page 144.

IMPL. DEP. #114: The RED_state trap vector is located at an implementation-
dependent address referred to as RSTVaddr. The value of RSTVaddr is a constant
within each implementation.

TABLE 7-1 RED_state Trap Vector Layout

Offset TT Reason

0016 0 Reserved (SPARC V8 reset)

2016 1 Power-on reset (POR)

4016 2† Watchdog reset (WDR)

6016 3‡ Externally initiated reset (XIR)

8016 4 Software-initiated reset (SIR)

A016 * All other exceptions in RED_state
134 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

RED_state Execution Environment

In RED_state, the processor is forced to execute in a restricted environment by
overriding the values of some processor controls and state registers.

The values are overridden, not set, allowing them to be switched atomically.

IMPL. DEP. #115: A processor’s behavior in RED_state is implementation dependent.

When RED_state is entered because of component failures, the handler should
attempt to recover from potentially catastrophic error conditions or to disable the
failing components. When RED_state is entered after a reset, the software should
create the environment necessary to restore the system to a running state.

RED_state Entry Traps

The following traps are processed in RED_state in all cases.

■ Power-on reset (POR) — Implemented in hardware in SPARC JPS1 processors;
not really a trap.

■ Watchdog reset (WDR) — Implemented in hardware in SPARC JPS1; this trap is
used as a recovery mechanism from error_state in SPARC JPS1. Upon an
entry to error_state, the processor automatically invokes a watchdog reset to
enter RED_state.

■ Externally initiated reset (XIR) — Implemented in hardware in SPARC JPS1;
typically used as a nonmaskable interrupt method for debug.

In addition, the following trap is processed in RED_state if TL < MAXTL when the
trap is taken. Otherwise, it is processed in error_state.

■ Software-initiated reset (SIR)

Traps that occur when TL = MAXTL – 1 also set PSTATE.RED = 1; that is, any trap
handler entered with TL = MAXTL runs in RED_state.

Any non-reset trap that sets PSTATE.RED = 1 or that occurs when PSTATE.RED = 1
branches to a special entry in the RED_state trap vector at RSTVaddr + A016.

RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset
processing. Software should be designed to require only MAXTL – 1 trap levels for
normal processing. That is, any trap that causes TL = MAXTL is an exceptional
condition that should cause entry to RED_state.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 135

The architected value for MAXTL in SPARC JPS1 is 5; typical usage of the trap levels
is shown in TABLE 7-2.

Programming Note – To log the state of the processor, RED_state-handler
software needs either a spare register or a preloaded pointer to a save area. To
support recovery, the operating system might reserve one of the alternate global
registers (for example, %a7) for use in RED_state.

7.1.2 Error_state
The processor enters error_state when a trap occurs while the processor is
already at its maximum supported trap level, that is, when TL = MAXTL.

IMPL. DEP. #39: The processor may enter error_state when an implementation
dependent error condition occurs.

IMPL. DEP. #40: Effects when error_state is entered are implementation-
dependent, but it is recommended that as much processor state as possible be
preserved upon entry to error_state. In addition, a SPARC JPS1 processor may
have other error_state entry traps that are implementation dependent.

IMPL. DEP. #254: The means of exiting error_state are implementation
dependent. A suggested method is for the processor, upon entering error_state,
to automatically generate a watchdog_reset (WDR).

TABLE 7-2 Typical Usage for Trap Levels

TL Usage

0 Normal execution

1 System calls; interrupt handlers; instruction emulation

2 Window spill/fill

3 Page-fault handler

4 Reserved for error handling

5 RED_state handler
136 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

7.2 Trap Categories
An exception or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap
■ Reset trap

7.2.1 Precise Traps
A precise trap is induced by a particular instruction and occurs before any program-
visible state has been changed by the trap-inducing instructions. When a precise trap
occurs, several conditions must be true.

■ The PC saved in TPC[TL] points to the instruction that induced the trap and the
nPC saved in TNPC[TL] points to the instruction that was to be executed next.

■ All instructions issued before the one that induced the trap have completed
execution.

■ Any instructions issued after the one that induced the trap remain unexecuted.

Among the actions the trap handler software might take after a precise trap are
these:

■ Return to the instruction that caused the trap and reexecute it by executing a
RETRY instruction (PC ← old PC, nPC ← old nPC).

■ Emulate the instruction that caused the trap and return to the succeeding
instruction by executing a DONE instruction (PC ← old nPC, nPC← old nPC + 4).

■ Terminate the program or process associated with the trap.

7.2.2 Deferred Traps
A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself or by one or more other instructions.

Associated with a particular deferred-trap implementation, the following must exist:

■ An instruction that causes a potentially outstanding deferred-trap exception to be
taken as a trap

■ Privileged instructions that access the state information needed by the supervisor
software to emulate the deferred-trap-inducing instruction and to resume
execution of the trapped instruction stream
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 137

Programming Note – Resuming execution may require the emulation of
instructions that had not completed execution at the time of the deferred trap, that
is, those instructions in the deferred-trap queue.

IMPL. DEP. #32: Whether any deferred traps (and, possibly, associated deferred-trap
queues) are present is implementation dependent.

Among the actions software can take after a deferred trap are these:

■ Emulate the instruction that caused the exception, emulate or cause to execute
any other execution-deferred instructions that were in an associated deferred-trap
state queue, and use RETRY to return control to the instruction at which the
deferred trap was invoked.

■ Terminate the program or process associated with the trap.

7.2.3 Disrupting Traps
A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is
caused by a condition (for example, an interrupt) rather than directly by a particular
instruction; that cause distinguishes it from precise and deferred traps. When a
disrupting trap has been serviced, trap handler software normally arranges for
program execution to resume where it left off. That differentiates disrupting traps
from reset traps, which trap to a unique reset address from which execution of the
program that was running when the reset occurred is never expected to resume.

Disrupting traps are controlled by a combination of the Processor Interrupt Level
(PIL) register and the Interrupt Enable (IE) field of PSTATE. A disrupting trap
condition is ignored when interrupts are disabled (PSTATE.IE = 0) or when the
condition’s interrupt level is less than or equal to that specified in PIL.

A disrupting trap may be due either to an interrupt request not directly related to a
previously executed instruction or to an exception related to a previously executed
instruction. Interrupt requests may be either internal or external. An interrupt
request can be induced by the assertion of a signal not directly related to any
particular processor or memory state, for example, the assertion of an “I/O done”
signal.

A disrupting trap related to an earlier instruction causing an exception is similar to a
deferred trap in that it occurs after instructions following the trap-inducing
instruction have modified the processor or memory state. The difference is that the
condition that caused the instruction to induce the disrupting trap may lead to
unrecoverable errors, since the implementation may not preserve the necessary state.
An example is an ECC data-access error reported after the corresponding load
instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.
138 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Among the actions that trap-handler software might take after a disrupting trap are
these:

■ Use RETRY to return to the instruction at which the trap was invoked
(PC ← old PC, nPC ← old nPC).

■ Terminate the program or process associated with the trap.

7.2.4 Reset Traps
A reset trap occurs when supervisor software or the implementation’s hardware
determines that the machine must be reset to a known state. Reset traps differ from
disrupting traps in that trap handler software for resets is never expected to resume
execution of the program that was running when the reset trap occurred.

IMPL. DEP. #37: Some of a processor’s behavior during a reset trap is
implementation dependent. See Special Trap Processing on page 155 for details.

The following reset traps are defined for SPARC V9:

■ Software-initiated reset (SIR) — Initiated by software by executing the SIR
instruction.

■ Power-on reset (POR) — Initiated when power is applied (or reapplied) to the
processor.

■ Watchdog reset (WDR) — Initiated in response to watchdog timer overflow or
entry into error_state (impl. dep. #254).

■ Externally initiated reset (XIR) — Initiated in response to an external signal. This
reset trap is normally used for critical system events, such as power failure.

7.2.5 Uses of the Trap Categories
The SPARC V9 trap model makes the following stipulations:

1. Reset traps, except software_initiated_reset traps, occur asynchronously to
program execution.

2. When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. These exceptions are:
■ software_initiated_reset
■ instruction_access_exception
■ privileged_action
■ privileged_opcode
■ trap_instruction
■ instruction_access_error
■ clean_window
■ fp_disabled
■ LDDF_mem_address_not_aligned
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 139

■ STDF_mem_address_not_aligned
■ LDQF_mem_address_not_aligned (not used in SPARC JPS1)
■ STQF_mem_address_not_aligned (not used in SPARC JPS1)
■ tag_overflow
■ spill_n_normal
■ spill_n_other
■ fill_n_normal
■ fill_n_other

3. IMPL. DEP. #33: Exceptions that occur as the result of program execution may be
precise or deferred, although it is recommended that such exceptions be precise.
Examples are mem_address_not_aligned, division_by_zero.

4. An exception caused after the initial access of a multiple-access load or store
instruction (load/store doubleword, block load, block store, LDSTUB, CASA,
CASXA, or SWAP) that causes a catastrophic exception may be precise, deferred, or
disrupting. Thus, a trap due to the second memory access can occur after the
processor or memory state has been modified by the first access.

5. Implementation-dependent catastrophic exceptions may cause precise, deferred,
or disrupting traps (impl. dep. #31).

6. Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is dispatched.

7.3 Trap Control
Several registers control how any given trap is processed:

■ The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL)
register control interrupt processing.

■ The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable
(PEF) field in PSTATE, and the trap enable mask (TEM) in the FSR control floating-
point traps.

■ The TL register, which contains the current level of trap nesting, controls whether
a trap causes entry to execute_state, RED_state, or error_state.

■ PSTATE.TLE determines whether implicit data accesses in the trap routine will
be performed with the big- or little-endian byte order.
140 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

7.3.1 PIL Control
Between the execution of instructions, the IU prioritizes the outstanding exceptions
and interrupt requests. At any given time, only the highest priority exception or
interrupt request is taken as a trap. When there are multiple outstanding exceptions
or interrupt requests, SPARC V9 assumes that lower-priority interrupt requests will
persist and lower-priority exceptions will recur if an exception-causing instruction is
reexecuted.

For interrupt requests, the IU compares the interrupt request level against the
processor interrupt level (PIL) register. If the interrupt request level is greater than
PIL, then the processor takes the interrupt request trap, assuming there are no
higher-priority exceptions outstanding.

IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the
method by which an interrupt request is removed are implementation dependent.

7.3.2 TEM Control
The occurrence of floating-point traps of type IEEE_754_exception can be controlled
with the user-accessible trap enable mask (TEM) field of the FSR. If a particular bit of
TEM is 1, the associated IEEE_754_exception can cause an fp_exception_ieee_754
trap.

If a particular bit of TEM is 0, the associated IEEE_754_exception does not cause an
fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in
the FSR’s accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the
destination f register, fccn, and aexc fields remain unchanged. However, if an
IEEE_754_exception does not result in a trap, then the f register, fccn, and aexc
fields are updated to their new values.

7.4 Trap-Table Entry Addresses
Privileged software initializes the trap base address (TBA) register to the upper 49
bits of the trap-table base address. Bit 14 of the vector address (the TL>0 field) is set
based on the value of TL at the time the trap is taken; that is, to 0 if TL = 0 and to 1
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 141

if TL > 0. Bits 13–5 of the trap vector address are the contents of the TT register. The
lowest five bits of the trap address, bits 4–0, are always 0 (hence, each trap-table
entry is at least 25 or 32 bytes long). FIGURE 7-2 illustrates the trap vector address.

FIGURE 7-2 Trap Vector Address

7.4.1 Trap Table Organization
The trap table layout is as illustrated in FIGURE 7-3.

FIGURE 7-3 Trap Table Layout

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for
TL > 0 comprises 512 more 32-byte entries. Therefore, the total size of a full trap
table is 512 × 32 × 2, or 32 Kbytes. However, if privileged software does not use
software traps (Tcc instructions) at TL > 0, the table can be made 24 Kbytes long.

7.4.2 Trap Type (TT)
When a normal trap occurs, a value that uniquely identifies the trap is written into
the current 9-bit TT register (TT[TL]) by hardware. Control is then transferred into
the trap table to an address formed by the TBA register (TL>0) and TT[TL] (see Trap
Base Address (TBA) Register on page 78). The lowest five bits of the address are
always 0; each entry in the trap table may contain the first eight instructions of the
corresponding trap handler.

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

Value of TL
Before the Trap

Trap Table Contents Trap Type

TL = 0

Hardware traps

Spill/fill traps

Software traps

Reserved

00016–07F16

08016–0FF16

10016–7F16

18016–1FF16

TL > 0

Hardware traps

Spill/fill traps

Software traps

Reserved

20016–27F16

28016–2FF16

30016–37F16

38016–3FF16
142 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Programming Notes – The trap type for the clean_window exception is 02416.
Three subsequent trap vectors (02516–02716) are reserved to allow for an inline
(branchless) trap handler. Three subsequent trap vectors are reserved for each spill/
fill vector, to allow for an inline (branchless) trap handler.

The spill/fill, clean_window, and MMU-related traps
(fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and
fast_data_access_protection) trap types are spaced such that their trap-table entries
are 128 bytes (32 instructions) long in SPARC JPS1. This length allows the complete
code for one spill/fill routine, a clean_window routine, or a normal MMU miss
handling routine to reside in one trap-table entry.

When a special trap occurs, the TT register is set as described in RED_state on page
133. Control is then transferred into the RED_state trap table to an address formed
by the RSTVaddr and an offset depending on the condition.

TT values 00016–0FF16 are reserved for hardware traps. TT values 10016–17F16 are
reserved for software traps (traps caused by execution of a Tcc instruction). TT
values 18016–1FF16 are reserved for future uses.

IMPL. DEP. #35: TT values 06016 to 07F16 are reserved for implementation-dependent
exceptions. The existence of implementation_dependent_n traps and whether any
that do exist are precise, deferred, or disrupting is implementation dependent. TT
values 06016 through 06F16 are defined for JPS1 processors and 07016 through 07F16
remain implemenation-dependent; see TABLE 7-3 and Appendix C, Implementation
Dependencies.

The assignment of TT values to traps is shown in TABLE 7-3; TABLE 7-4 lists the traps
in priority order. Traps marked with an open bullet (❍) are optional and possibly
implementation dependent. Traps marked with a closed bullet (●) are mandatory;
that is, hardware must detect and trap these exceptions and interrupts and must set
the defined TT values. In the table, AG = alternate globals, MG = MMU globals, and
IG = interrupt globals. “-NA-” means “not applicable”.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 143

TABLE 7-3 Exception and Interrupt Requests, by TT Value (1 of 2)

SPARC
V9 M/O

JPS1
M/O Exception or Interrupt Request TT

Global Register
Set Priority

● ● Reserved 00016 -NA- -NA-

● ● power_on_reset 00116 AG 0

❍ ● watchdog_reset 00216 AG 1

❍ ● externally_initiated_reset 00316 AG 1

● ● software_initiated_reset 00416 AG 1

● ● RED_state_exception 00516 AG 1

● ● Reserved 00616–00716 -NA- -NA-

● ● instruction_access_exception 00816 MG 5

❍ ❍ instruction_access_MMU_miss 00916 MG(impl. dep.)† 2

❍ ● instruction_access_error 00A16 AG 3

● ● Reserved 00B16–00F16 -NA- -NA-

● ● illegal_instruction 01016 AG 7

● ● privileged_opcode 01116 AG 6

❍ ❍ unimplemented_LDD 01216 AG 6

❍ ❍ unimplemented_STD 01316 AG 6

● ● Reserved 01416–01F16 -NA- -NA-

● ● fp_disabled 02016 AG 8

❍ ● fp_exception_ieee_754 02116 AG 11

❍ ● fp_exception_other 02216 AG 11

● ● tag_overflow 02316 AG 14

❍ ● clean_window 02416–02716 AG 10

● ● division_by_zero 02816 AG 15

❍ ❍ internal_processor_error 02916 impl. dep. impl. dep

● ● Reserved 02A16–02F16 -NA- -NA-

● ● data_access_exception 03016 MG 12

❍ ❍ data_access_MMU_miss 03116 MG(impl. dep.)† 12

❍ ● data_access_error 03216 AG 12

❍ ❍ data_access_protection 03316 MG(impl. dep.)† 12

● ● mem_address_not_aligned 03416 AG 10

❍ ● LDDF_mem_address_not_aligned (impl. dep. #109) 03516 AG 10

❍ ● STDF_mem_address_not_aligned (impl. dep.#110) 03616 AG 10

● ● privileged_action 03716 AG 11
144 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

❍ ❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 AG 10

❍ ❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 AG 10

● ● Reserved 03A16–03F16 -NA- -NA-

❍ ❍ async_data_error 04016 impl. dep. 2

● ● interrupt_level_n (n = 1–15) 04116–04F16 AG 32-n

● ● Reserved 05016–05F16 -NA- -NA-

❍ ● interrupt_vector 06016 IG 16

❍ ● PA_watchpoint 06116 AG 12

❍ ● VA_watchpoint 06216 AG 11

❍ ● ECC_error 06316 AG 33

❍ ● fast_instruction_access_MMU_miss 06416–06716 MG 2

❍ ● fast_data_access_MMU_miss 06816–06B16 MG 12

❍ ● fast_data_access_protection 06C16–06F16 MG 12

❍ ❍ implementation_dependent_exception_n (impl. dep. #35) 07016–07F impl. dep. impl. dep.

● ● spill_n_normal (n = 0–7) 08016–09F16 AG 9

● ● spill_n_other (n = 0–7) 0A016–0BF16AG 9

● ● fill_n_normal (n = 0–7) 0C016–0DF16AG 9

● ● fill_n_other (n = 0–7) 0E016–0FF16 AG 9

● ● trap_instruction 10016–17F16 AG 16

● ● Reserved 18016–1FF16 -NA- -NA-

† Global register set is implementation-dependent, but use of MMU Globals (MG) is recommended

TABLE 7-3 Exception and Interrupt Requests, by TT Value (2 of 2)

SPARC
V9 M/O

JPS1
M/O Exception or Interrupt Request TT

Global Register
Set Priority
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 145

TABLE 7-4 Exception and Interrupt Requests, by Priority (0 = Highest; larger number = lower priority)

SPARC
V9 M/O

JPS1
M/O Exception or Interrupt Request TT

Global Register
Set Priority ‡

● ● power_on_reset (POR) 00116 AG 0

❍ ● externally_initiated_reset (XIR) 00316 AG 1

❍ ● watchdog_reset (WDR) 00216 AG 1

● ● software_initiated_reset (SIR) 00416 AG 1

● ● RED_state_exception 00516 AG 1

❍ ❍ instruction_access_MMU_miss 00916 MG(impl. dep.)† 2

❍ ❍ async_data_error 04016 impl. dep. 2

❍ ● fast_instruction_access_MMU_miss 06416–06716 MG 2

❍ ● instruction_access_error 00A16 AG 3

● ● instruction_access_exception 00816 MG 5

● ● privileged_opcode 01116 AG 6

❍ ❍ unimplemented_LDD 01216 AG 6

❍ ❍ unimplemented_STD 01316 AG 6

● ● illegal_instruction 01016 AG 7

● ● fp_disabled 02016 AG 8

● ● spill_n_normal (n = 0–7) 08016–09F16 AG 9

● ● spill_n_other (n = 0–7) 0A016–0BF16 AG 9

● ● fill_n_normal (n = 0–7) 0C016–0DF16AG 9

● ● fill_n_other (n = 0–7) 0E016–0FF16 AG 9

❍ ● clean_window 02416–02716 AG 10

❍ ● LDDF_mem_address_not_aligned (impl. dep. #109) 03516 AG 10

❍ ● STDF_mem_address_not_aligned (impl. dep. #110) 03616 AG 10

❍ ❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 AG 10

❍ ❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 AG 10

● ● mem_address_not_aligned 03416 AG 10

❍ ● fp_exception_ieee_754 02116 AG 11

❍ ● fp_exception_other 02216 AG 11

● ● privileged_action 03716 AG 11

❍ ● VA_watchpoint 06216 AG 11

● ● data_access_exception 03016 MG 12

❍ ● fast_data_access_MMU_miss 06816–06B16 MG 12

❍ ❍ data_access_MMU_miss 03116 MG(impl. dep.)† 12
146 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of
the OTHERWIN and WSTATE registers as described below and shown in FIGURE 7-4.

FIGURE 7-4 Trap Type Encoding for Spill/Fill Traps

❍ ● data_access_error 03216 AG 12

❍ ● PA_watchpoint 06116 AG 12

❍ ● fast_data_access_protection 06C16–06F16 MG 12

❍ ❍ data_access_protection 03316 MG(impl. dep.)† 12

● ● tag_overflow 02316 AG 14

● ● division_by_zero 02816 AG 15

● ● trap_instruction 10016–17F16 AG 16

❍ ● interrupt_vector 06016 IG 16

● ● interrupt_level_n (n = 1–15) 04116–04F16 AG 32-n

❍ ● ECC_error 06316 AG 33

❍ ❍ implementation_dependent_exception_n (impl. dep. #35) 07016–07F16 impl. dep. impl. dep.

❍ ❍ internal_processor_error 02916 impl. dep. impl. dep

† Global register set is implementation-dependent, but use of MMU Globals (MG) is recommended

‡ Although these trap priorities are recommended, all trap priorities are implementation dependent (impl.
dep. #36 on page 148), including relative priorities within a given priority level.

Bit Field Description

8:6 SPILL_OR_FILL 0102 for spill traps; 0112 for fill trap

5 OTHER (OTHERWIN ≠ 0)
4:2 WTYPE If (OTHER) then WSTATE.OTHER; else WSTATE.NORMAL

TABLE 7-4 Exception and Interrupt Requests, by Priority (0 = Highest; larger number = lower priority)

SPARC
V9 M/O

JPS1
M/O Exception or Interrupt Request TT

Global Register
Set Priority ‡

Trap Type

05 2

0SPILL_OR_FILL

1468

0WTYPEOTHER
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 147

7.4.3 Trap Priorities
TABLE 7-3 on page 144 and TABLE 7-4 on page 146 show the assignment of traps to TT
values and the relative priority of traps and interrupt requests. Priority 0 is highest
and greater priority numbers indicate lower priority; that is, if X < Y, a pending
exception or interrupt request with priority X is taken instead of a pending
exception or interrupt request with priority Y.

IMPL. DEP. #36: The priorities of particular traps are relative and are implementation
dependent, because a future version of the architecture may define new traps, and
an implementation may define implementation-dependent traps that establish new
relative priorities.

However, the TT values for the exceptions and interrupt requests shown in TABLE 7-3
and TABLE 7-4 must remain the same for every implementation.

The trap priorities given above always need to be considered in light of how the
processor actually issues and executes instructions. For example, if an
instruction_access_error occurs (priority 3), it will be taken even if the instruction
was an SIR (priority 1). This situation occurs because the processor gets the
instruction_access_error during instruction fetch and never actually issues or
executes the instruction, so the SIR instruction is never seen by the execution units
of the processor. This is an obvious case, but there are other more subtle cases.

In summary, the trap priorities are used to prioritize traps that occur in the same
clock cycle. They do not take into consideration that an instruction may be alive for
multiple cycles and that a trap may be detected and initiated early in the life of an
instruction. Once the early trap is taken, any errors that might have occurred later in
the instruction’s life will not be seen.

7.4.4 Details of Supported Traps

MMU Traps

SPARC JPS1 supports three 32-instruction traps for handling the most performance
sensitive MMU traps:
■ fast_instruction_access_MMU_miss
■ fast_data_access_MMU_miss
■ fast_data_access_protection

The first two traps are taken when the TLBs miss on an instruction or data access.
The third type of trap is taken when a protection violation occurs. The common case
of this trap occurs when a write request is made to a page marked as clean in the
TLB.
148 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Each of these trap vectors takes up 4 slots in the trap table; this means that each trap
handler can contain up to 32 instructions before a branch is needed.

Other SPARC JPS1 Implementation-Specific Traps

SPARC JPS1 supports the following trap types in addition to those in SPARC V9:
■ interrupt_vector_trap
■ PA_watchpoint
■ VA_watchpoint
■ ECC_error

Unimplemented SPARC V9 Traps in SPARC JPS1
■ instruction_access_MMU_miss
■ unimplemented_LDD
■ unimplemented_STD
■ data_access_MMU_miss
■ data_access_protection
■ async_data_error
■ LDQF_mem_address_not_aligned
■ STQF_mem_address_not_aligned

7.5 Trap Processing
The processor’s action during trap processing depends on the trap type, the current
level of trap nesting (given in the TL register), and the processor state. When a trap
occurs, the global registers are replaced with one of three sets of trap global
register—MMU globals, interrupt globals, or alternate globals—based on the type of
trap.

All traps use normal trap processing, except those due to reset requests, catastrophic
errors, traps taken when TL = MAXTL – 1, and traps taken when the processor is in
RED_state. These traps use special RED_state trap processing.

During normal operation, the processor is in execute_state. It processes traps in
execute_state and continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there
are no more levels on the trap stack, so the processor enters error_state and
halts. To avoid this catastrophic failure, SPARC V9 provides the RED_state
processor state. Traps processed in RED_state use a special trap vector and a
special trap-vectoring algorithm. RED_state vectoring and the setting of the TT
value for RED_state traps are described in RED_state Trap Table on page 134.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 149

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset
traps are also processed in RED_state. Reset trap processing is described in Power-
On Reset (POR) Traps on page 157. Finally, supervisor software can force the
processor into RED_state by setting the PSTATE.RED flag to 1.

Once the processor has entered RED_state, no matter how it got there, all
subsequent traps are processed in RED_state until software returns the processor
to execute_state or a normal or SIR trap is taken when TL = MAXTL, which puts
the processor in error_state. TABLE 7-5, TABLE 7-6, and TABLE 7-7 describe the
processor mode and trap-level transitions involved in handling traps.

†This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it clears PSTATE.RED
while at MAXTL.

TABLE 7-5 Trap Received While in execute_state

New State, After Receiving Trap Type

Original State Normal Trap
or Interrupt POR XIR,

WDR (Impl. Dep.) SIR

execute_state

TL < MAXTL – 1
execute_state

TL ← TL + 1
RED_state

TL = MAXTL

RED_state

TL ← TL + 1
RED_state

TL ← TL + 1

execute_state

TL = MAXTL – 1
RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

execute_state†

TL = MAXTL

error_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

error_state

TL = MAXTL

TABLE 7-6 Trap Received While in RED_state

New State, After Receiving Trap Type

Original State Normal Trap
or Interrupt POR XIR,

WDR (Impl. Dep.) SIR

RED_state

TL < MAXTL – 1

RED_state

TL ← TL + 1

RED_state

TL = MAXTL

RED_state

TL ← TL + 1

RED_state

TL ← TL + 1

RED_state

TL = MAXTL – 1

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

error_state

TL = MAXTL

RED_state

TL = MAXTL

RED_state

TL = MAXTL

error_state

TL = MAXTL
150 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Implementation Note – The processor does not recognize interrupts while it is in
error_state.

7.5.1 Normal Trap Processing
A trap other than a fast MMU trap (see Section 7.5.2 on page 153) or an interrupt
vector trap (see Section 7.5.3 on page 154) causes the following state changes to
occur:

■ If the processor is already in RED_state, the new trap is processed in
RED_state unless TL = MAXTL. See Normal Traps When the Processor Is in
RED_state on page 160.

■ If the processor is in execute_state and the trap level is one less than its
maximum value, that is, TL = MAXTL–1, then the processor enters RED_state.
See RED_state on page 133 and Normal Traps with TL = MAXTL – 1 on page 155.

■ If the processor is in either execute_state or RED_state and the trap level is
already at its maximum value, that is, TL = MAXTL, then the processor enters
error_state. See Error_state on page 136.

Otherwise, the trap uses normal trap processing, and the following state changes
occur:

■ The trap level is set. This provides access to a fresh set of privileged trap-state
registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL ← TL + 1

TABLE 7-7 Reset Received While in error_state

New State, After Receiving Trap Type

Original State Normal Trap
or Interrupt POR XIR,

WDR (Impl. Dep.) SIR

error_state

TL < MAXTL – 1
—

RED_state

TL = MAXTL

RED_state

TL ← TL + 1
—

error_state

TL = MAXTL – 1
—

RED_state

TL = MAXTL

RED_state

TL = MAXTL
—

error_state

TL = MAXTL
—

RED_state

TL = MAXTL

RED_state

TL = MAXTL
—

Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 151

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is preserved.

TT[TL] ← the trap type

■ The PSTATE register is updated to a predefined state.

PSTATE.MM is unchanged
PSTATE.RED ← 0
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE is unchanged

■ For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

■ If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

■ If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ←
CWP + CANSAVE + 2.

■ If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

For non-register-window traps, CWP is not changed.

■ Control is transferred into the trap table:

PC ← TBA<63:15> (TL>0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL>0) TT[TL] 0 0100

where “(TL>0)” is 0 if TL = 0, and 1 if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note – State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken while TL = n –1;
however, software can change any of these values with a WRPR instruction when
TL = n.
152 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

7.5.2 Fast MMU Trap Processing
Fast MMU traps (fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and fast_data_access_protection) cause the following
state changes to occur:

■ If the processor is already in RED_state, the new trap is processed in
RED_state unless TL = MAXTL. See Normal Traps When the Processor Is in
RED_state on page 160.

■ If the processor is in execute_state and the trap level is one less than its
maximum value, that is, TL = MAXTL–1, then the processor enters RED_state.
See RED_state on page 133 and Normal Traps with TL = MAXTL – 1 on page 155.

■ If the processor is in either execute_state or RED_state and the trap level is
already at its maximum value, that is, TL = MAXTL, then the processor enters
error_state. See Error_state on page 136.

Otherwise, the trap uses normal trap processing, and the following state changes
occur:

■ The trap level is set. This provides access to a fresh set of privileged trap-state
registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL ← TL + 1

■ Existing state is preserved:

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is preserved.

TT[TL] ← the trap type

■ The PSTATE register is updated to a predefined state.

PSTATE.MM is unchanged
PSTATE.RED ← 0
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 0 (alternate globals are disabled)
PSTATE.MG ← 1 (global regs are replaced with MMU globals)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE is unchanged
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 153

■ For non-register-window traps, CWP is not changed.

■ Control is transferred into the trap table:

PC ← TBA<63:15> (TL>0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL>0) TT[TL] 0 0100

where “(TL>0)” is 0 if TL = 0, and 1 if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note – State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken while TL = n – 1;
however, software can change any of these values with a WRPR instruction when
TL = n.

7.5.3 Interrupt Vector Trap Processing
An interrupt_vector trap causes the following state changes to occur:

■ If the processor is already in RED_state, the new trap is processed in
RED_state unless TL = MAXTL. See Normal Traps When the Processor Is in
RED_state on page 160.

■ If the processor is in execute_state and the trap level is one less than its
maximum value, that is, TL = MAXTL – 1, the processor enters RED_state. See
RED_state on page 133 and Normal Traps with TL = MAXTL – 1 on page 155.

■ If the processor is in either execute_state or RED_state and the trap level is
already at its maximum value, that is, TL = MAXTL, then the processor enters
error_state. See Error_state on page 136.

Otherwise, the trap uses normal trap processing, and the following state changes
occur:

■ The trap level is set. This provides access to a fresh set of privileged trap-state
registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL ← TL + 1

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is preserved.

TT[TL] ← the trap type
154 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ The PSTATE register is updated to a predefined state.

PSTATE.MM is unchanged
PSTATE.RED ← 0
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 0 (alternate globals are disabled)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 1 (global regs are replaced with interrupt globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE is unchanged

■ For non-register-window traps, CWP is not changed.

■ Control is transferred into the trap table:

PC ← TBA<63:15> (TL>0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL>0) TT[TL] 0 0100

where “(TL>0)” is 0 if TL = 0, and 1 if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note – State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken while TL = n – 1;
however, software can change any of these values with a WRPR instruction when
TL = n.

7.5.4 Special Trap Processing
The following conditions invoke special trap processing:

■ Traps taken with TL = MAXTL – 1
■ Power-on reset traps
■ Watchdog reset traps
■ Externally initiated reset traps
■ Software-initiated reset traps
■ Traps taken when the processor is already in RED_state

IMPL. DEP. #38: Implementation-dependent registers may or may not be affected by
the various reset traps.

Normal Traps with TL = MAXTL – 1

Normal traps that occur when TL = MAXTL – 1 are processed in RED_state. The
following state changes occur:
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 155

■ The trap level is advanced.

TL ← MAXTL

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is preserved.

TT[TL] ← the trap type

■ The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE ← undefined1

■ For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP ←
CWP + CANSAVE + 2.

If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

For non-register-window traps, CWP is not changed.

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

1. Note that this differs from SPARC V9.
156 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Power-On Reset (POR) Traps

POR traps occur when power is applied to the processor. If the processor is in
error_state, a POR brings the processor out of error_state and places it in
RED_state. Processor state is undefined after POR, except for the following:

■ The trap level is set.

TL ← MAXTL

■ The trap type is set.

TT[TL] ← 00116

■ The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← 0 (big-endian mode for nontraps)
PSTATE.TLE ← 0 (big-endian mode for traps)

■ The TICK register is protected.

TICK.NPT ← 1 (TICK unreadable by nonprivileged software)

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0010 00002

nPC ← RSTVaddr<63:8> 0010 01002

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

See SPARC JPS1 Implementation Supplements for more details.

Watchdog Reset (WDR) Traps

The WDR reset in SPARC JPS1 occurs when a watchdog timer overflows or to
provide automatic recovery from error_state (impl. dep. #254). There are several
causes of error_state entry (impl. dep. #39), including but not limited to SIR with
TL = MAXTL and implementation-dependent watchdog timeout.

Processor state is undefined after WDR, except for the following:

■ The trap level is set.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 157

TL ← min (TL + 1, MAXTL)

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is set.

TT[TL] ← 00216

■ The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE ← undefined1

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0100 00002

nPC ← RSTVaddr<63:8> 0100 01002

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that
cannot be masked by IE = 0 or PIL. Typically, XIR is used for critical system events
such as power failure, reset button pressed, failure of external components that does
not require a WDR (which aborts operations), or systemwide reset in a
multiprocessor. The following state changes occur:

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE

1. Note that this differs from SPARC V9.
158 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is set.

TT[TL] ← 00316

■ The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE ← undefined1

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0110 00002

nPC ← RSTVaddr<63:8> 0110 01002

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

See Externally Initiated Reset (XIR) on page 564 and Appendix O of Implementation
Supplements for more information.

Software-Initiated Reset (SIR) Traps

SIR traps are initiated by execution of an SIR instruction in privileged mode.
Supervisor software uses the SIR trap as a panic operation or a metasupervisor trap.

The following state changes occur:

■ If TL = MAXTL, then enter error_state. Otherwise, do the following:

■ The trap level is set.

TL ← TL + 1

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 159

TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← undefined1

■ The trap type is set.

TT[TL] ← 0416

■ The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE ← undefined1

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 1000 00002

nPC ← RSTVaddr<63:8> 1000 01002

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

See Software-Initiated Reset (SIR) on page 565 and Appendix O of Implementation
Supplements for more information.

Normal Traps When the Processor Is in RED_state

Normal traps taken when the processor is already in RED_state are also processed
in RED_state, unless TL = MAXTL, in which case the processor enters
error_state.

Assuming that TL < MAXTL, the processor state shall be set as follows:

■ The trap level is set.

TL ← TL + 1

■ Existing state is preserved.

TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← undefined1

1. Note that this differs from SPARC V9.
160 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

■ The trap type is preserved.

TT[TL] ← trap type

■ The PSTATE register is set as follows:

PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 (FPU is present)
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.MG ← 0 (MMU globals are disabled)
PSTATE.IG ← 0 (interrupt globals are disabled)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)
PSTATE.TLE ← undefined1

■ For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[TL] = 02416 (a clean_window trap), then CWP ← CWP + 1.

If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then
CWP ← CWP + CANSAVE + 2.

If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP ← CWP – 1.

■ For non-register-window traps, CWP is not changed.

■ Implementation-specific state changes; for example, disabling an MMU.

■ Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

7.6 Exception and Interrupt Descriptions
The following sections describe the various exceptions and interrupt requests and
the conditions that cause them. Each exception and interrupt request describes the
corresponding trap type as defined by the trap model. SPARC JPS1 defines five
categories of traps:

■ Traps defined by SPARC V9 as mandatory

1. Note that this differs from SPARC V9
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 161

■ Traps that are defined by SPARC V9 as optional but that are mandatory in SPARC
JPS1

■ Traps that are defined by SPARC V9 as optional and that remain optional in
SPARC JPS1

■ Traps that are defined by SPARC V9 as implementation dependent and optional
but that are mandatory in SPARC JPS1

■ Traps that are defined by SPARC V9 as implementation dependent and that
remain implementation dependent in SPARC JPS1

All other trap types are reserved.

Note: This encoding differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or reset. Example
exception conditions are included for each exception type. Appendix A, Instruction
Definitions, enumerates which traps can be generated by each instruction.

7.6.1 Traps Defined by SPARC V9 As Mandatory
SPARC V9 defines the following traps as mandatory.

■ data_access_exception [tt = 03016] (Precise) — An exception occurred on an
attempted data access. Detailed information regarding the error is logged into the
FTYPE field of Data Synchronous Fault Status Register (ASI 5816, VA = 1816).
Below is the list of exceptions that cause a data_access_exception exception.

■ Invalid ASI — An attempt to do load or store with undefined or reserved ASI
or a disallowed instruction/ASI combination (see Block Load and Store ASIs on
page 548 and Partial Store ASIs on page 548).

■ Illegal Access to Strongly Ordered Page — An attempt to access a strongly
ordered page by any type of load instruction with nonfaulting ASI.

An attempt to access a strongly ordered page by FLUSH instruction.

■ Illegal Access to Non-Faulting-Only Page — An attempt to access a non-
faulting-only page by any type of load or store instruction or FLUSH
instruction with ASI other than nonfaulting ASI.

■ Illegal Access to Noncacheable Page —An attempt to access a noncacheable
page by atomic instructions (CASA, CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA),
or an attempt to access a noncacheable page by atomic quad load instructions
(LDDA with ASI = 2416, 2C16), or an attempt to access a noncacheable page by
FLUSH instruction.

■ division_by_zero [tt = 02816] (Precise) — An integer divide instruction
attempted to divide by zero.

■ fill_n_normal [tt = 0C016–0DF16] (Precise)
■ fill_n_other [tt = 0E016–0FF16] (Precise)
162 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A RESTORE or RETURN instruction has determined that the contents of a register
window must be restored from memory.

Compatibility Note – The SPARC V9 fill_n_* exceptions supersede the SPARC V8
window_underflow exception.

■ fp_disabled [tt = 02016] (Precise) — An attempt was made to execute an FPop, a
floating-point branch, or a floating-point load/store instruction while an FPU was
not present, PSTATE.PEF = 0, or FPRS.FEF = 0.

■ illegal_instruction [tt = 01016] (Precise) — An attempt was made to execute an
instruction with an unimplemented opcode, an ILLTRAP instruction, an
instruction with invalid field usage, instruction breakpoints, or an instruction that
would result in illegal processor state. Note: Unimplemented FPop instructions
generate fp_exception_other traps.

illegal_instruction is generated in the following cases:

■ An instruction encoding does not match any of the opcode map definitions (see
Appendix E, Opcode Maps).

■ An instruction is not implemented in hardware (if the op and op3 fields of the
instruction decode as an FPop, then an fp_exception_other exception, with
ftt = 3, will be generated instead of illegal_instruction).

■ An illegal value is present in an instruction i field.

■ An illegal value is present in a field that is explicitly defined for an instruction,
such as cc2, cc1, cc0, fcn, impl, op2 (IMPDEP2A, IMPDEP2B), rcond, or
opf_cc.

■ Illegal register alignment (such as odd rd value in a doubleword load
instruction).

■ RDASR instruction with rs1 = 1, 7–14, 20–21, or 26–31.

■ RDASR with rs1 = 15 and nonzero rd.

■ RDPR with rs1 = 16–30.

■ RDPR with rs1 ≤ 3 when TL = 0.

■ WRPR with rd = 15–31.

■ WRPR with rd ≤ 3 when TL = 0.

■ WRPR to PSTATE register that attempts to set more than one of bits IG, MG, and
AG.

■ Illegal rd value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or
STFSR.

■ Illegal rd value for WRPR.

■ Illegal rs1 value for RDPR.

■ WRASR instruction with rd = 1, 4, 5, 7–14, 26-31.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 163

■ WRASR with rd = 15 and nonzero rs1.

■ WRASR with rd = 15 and i = 0.

■ DONE or RETRY when TL = 0.

■ ILLTRAP instruction.

■ Instruction breakpoint occurred (impl. dep. #205).

■ A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an
illegal_instruction exception should be generated.1

■ instruction_access_exception [tt = 00816] (Precise) — A protection exception
occurred on an instruction access, typically as a result of an attempt to access a
privileged page while the processor was executing in nonprivileged mode.

■ interrupt_level_n [tt = 04116–04F16] (Disrupting) — An interrupt request level
of n was presented to the IU, while PSTATE.IE = 1 and (interrupt request
level > PIL).

■ mem_address_not_aligned [tt = 03416] (Precise) — A load/store instruction
generated a memory address that was not properly aligned according to the
instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address. (See also Section L.3.2 on page 546.)

■ power_on_reset (POR) [tt = 00116] (Reset) — An external signal was asserted.
This trap is issued to bring a system reliably from the power-off to the power-on
state.

■ privileged_action [tt = 03716] (Precise) — An action defined to be privileged has
been attempted while PSTATE.PRIV = 0. Examples: a data access by
nonprivileged software using an ASI value with its most significant bit = 0 (a
restricted ASI), or an attempt to read the TICK register by nonprivileged software
when TICK.NPT = 1.

■ privileged_opcode [tt = 01116] (Precise) — An attempt was made to execute a
privileged instruction while PSTATE.PRIV = 0.

Compatibility Note – privileged_opcode’s trap type is identical to that of the SPARC
V8 privileged_instruction trap. The name was changed to distinguish it from the new
privileged_action trap type.

■ RED_state_exception [tt = 00516] — Caused when TL = MAXTL − 1 and a trap
occurs, an event that bring the processor into RED_state.

■ software_initiated_reset (SIR) [tt = 00416] (Precise/Reset) — Caused by the
execution of the WRSIR, write to SIR register, instruction. It allows system
software to reset the processor.

1. Since it is not strictly required that a nonzero value in a reserved field of an instruction other
than Tcc causes an illegal__instruction exception, a JPS1 implementation may ignore the contents
of reserved instruction fields (for instructions other than Tcc).
164 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ spill_n_normal [tt = 08016–09F16] (Precise)
■ spill_n_other [tt = 0A016–0BF16] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

Compatibility Note – The SPARC V9 spill_n_* exceptions supersede the SPARC V8
window_overflow exception.

■ tag_overflow [tt = 02316] (Precise) — A TADDccTV or TSUBccTV instruction was
executed, and either 32-bit arithmetic overflow occurred or at least one of the tag
bits of the operands was nonzero.

■ trap_instruction [tt = 10016–17F16] (Precise) — A Tcc instruction was executed
and the trap condition evaluated to TRUE.

7.6.2 SPARC V9 Optional Traps That Are Mandatory in
SPARC JPS1
SPARC V9 defines the following traps as optional. However, the traps are mandatory
in SPARC JPS1.

■ clean_window [tt = 02416–02716] (Precise) — A SAVE instruction discovered that
the window about to be used contains data from another address space; the
window must be cleaned before it can be used.

IMPL. DEP. #102: An implementation may choose either to implement automatic
cleaning of register windows in hardware or to generate a clean_window trap,
when needed, so that window(s) can be cleaned by software. If an
implementation chooses the latter option, then support for this trap type is
mandatory.

■ data_access_error [tt = 03216] (Precise or Deferred) — An error occurred on a
data access.

■ externally_initiated_reset (XIR) [tt = 00316] (Reset) — An external signal was
asserted. This trap is used for catastrophic events such as power failure, reset
button pressed, and systemwide reset in multiprocessor systems.

■ fp_exception_ieee_754 [tt = 02116] (Precise) — An FPop instruction generated
an IEEE_754_exception and its corresponding trap enable mask (TEM) bit was 1.
The floating-point exception type, IEEE_754_exception, is encoded in the
FSR.ftt, and specific IEEE_754_exception information is encoded in FSR.cexc.

■ fp_exception_other [tt = 02216] (Precise) — An FPop instruction generated an
exception other than an IEEE_754_exception. Examples: the FPop is
unimplemented, or there was a sequence or hardware error in the FPU. The
floating-point exception type is encoded in the FSR’s ftt field.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 165

■ instruction_access_error [tt = 00A16] (Precise) — An error occurred on an
instruction access.

■ LDDF_mem_address_not_aligned [tt = 03516] (Precise) — An attempt was
made to execute an LDDF instruction and the effective address was not
doubleword aligned. See Section A.26, Load Floating-Point and Section A.27, Load
Floating-Point from Alternate Space.

■ STDF_mem_address_not_aligned [tt = 03616] (Precise) — An attempt was
made to execute an STDF instruction and the effective address was not
doubleword aligned. See A.61, Store Floating-Point on page 330.

■ watchdog reset (WDR) [tt = 00216] (Reset) — This trap occurs when the
watchdog timer overflows or as a transition from error_state to RED_state
(impl. dep. #254).

7.6.3 SPARC V9 Optional Traps That Are Optional in
SPARC JPS1
SPARC V9 defines the following traps as optional. The traps remain optional in
SPARC JPS1.

■ data_access_MMU_miss [tt = 03116] (Precise or Deferred) (impl. dep. #) — This
exception is generally superseded by fast_data_access_MMU_miss (see section
7.6.4).

■ data_access_protection [tt = 03316] (Precise or Deferred) (impl. dep. #) — This
exception is generally superseded by fast_data_access_protection (see section
7.6.4).

■ LDQF_mem_address_not_aligned [tt = 03816] (Precise or Deferred) — An
attempt was made to execute an LDQF instruction and the effective address was
word aligned but not quadword aligned. Use of this exception is implementation
dependent (impl. dep. #111). A separate trap entry for this exception supports fast
software emulation of the LDQF instruction when the effective address is word
aligned but not quadword aligned. See A.26, Load Floating-Point on page 242.

■ STQF_mem_address_not_aligned [tt = 03916] (Precise) — An attempt was
made to execute an STQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #112). A separate trap entry for the exception supports fast software
emulation of the STQF instruction when the effective address is word aligned but
not quadword aligned. See A.61, Store Floating-Point on page 330.

■ instruction_access_MMU_miss [tt = 00916] (Precise, Deferred, or Disrupting)
(impl. dep. #) — This exception is generally superseded by
fast_instruction_access_MMU_miss (see section 7.6.4).

■ unimplemented_LDD [tt = 01216] (Precise) — An attempt was made to execute
an LDD instruction, which is not implemented in hardware on this
implementation (impl. dep. #107).
166 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ unimplemented_STD [tt = 01316] (Precise) — An attempt was made to execute
an STD instruction, which is not implemented in hardware on this
implementation (impl. dep. #108).

7.6.4 SPARC V9 Implementation-Dependent, Optional
Traps That Are Mandatory in SPARC JPS1
SPARC V9 defines the following traps as implementation dependent and optional.
The traps are mandatory in SPARC JPS1.

■ ECC_error [tt = 06316] (Disrupting) — The trap to signal the detection of
hardware errors asynchronous to the instruction execution, or to request to save
the information logged for the error that was detected and corrected by the
processor.

Implementation Note – Some implementations may refer to this trap by the name
“corrected_ECC_error.”

■ fast_data_access_MMU_miss [tt = 06816 –06B16] (Precise) — During an
attempted data access, the MMU detected that a translation lookaside buffer did
not contain a translation for the virtual address (that is, a TLB miss occurred).
Four trap vectors are allocated for this trap, allowing a TLB miss handler of up to
32 instructions to fit within the trap vector area.

■ fast_data_access_protection [tt = 06C16–06F16] (Precise) — During an
attempted data write access (by a store or load-store instruction), the instruction
had appropriate access privilege but the MMU signalled that the location was
write-protected (write to a read-only location). Note that on a JPS1 processor, an
attempt to read or write to a privileged location while in nonprivileged mode
causes the higher-priority data_access_exception instead of this exception. Four
trap vectors are allocated for this trap, allowing a trap handler of up to 32
instructions to fit within the trap vector area.

■ fast_instruction_access_MMU_miss [tt = 06416 –06716] (Precise) — During an
attempted instruction access, the MMU detected a TLB miss. Four trap vectors are
allocated for this trap, allowing a trap handler of up to 32 instructions to fit
within the trap vector area.

■ interrupt_vector_trap [tt = 06016] (Disrupting) — The processor has received an
interrupt request.

■ PA_watchpoint [tt = 06116] (Precise) — The processor has detected a physical-
address breakpoint.

■ VA_watchpoint [tt = 06216] (Precise) — The processor has detected a virtual-
address breakpoint.
Release 1.0.4, 31 May 2002 C. Chapter 7 • Traps 167

7.6.5 SPARC JPS1 Implementation-Dependent Traps
The following traps are implementation dependent in SPARC JPS1.

■ async_data_error [tt = 04016] (Precise, Deferred, or Disrupting) — An
implementation-dependent exception (impl. dep. #31, #218) that indicates that
one or more unrecoverable or uncorrectable but recoverable errors have been
detected in the processor. This may include errors detected in the architectural
registers (general-purpose registers, floating-point registers, ASRs, or ASI
registers) and other core processor hardware. A single async_data_error
exception may indicate multiple errors and may occur asynchronously to
instruction execution. An async_data_error exception may cause a precise,
deferred, or disrupting trap. When async_data_error causes a disrupting trap, the
TPC and TNPC stacked by the trap do not necessarily indicate the instruction or
data access that caused the error.

Compatibility Note – The SPARC V9 async_data_error supersedes the less general
SPARC V8 data_store_error exception.

IMPL. DEP. #218: Whether async_data_error exception is implemented is
implementation dependent. If it does exist, it indicates that an error is detected in
a processor core and its trap type is 4016. The SPARC V9 async_data_error
supersedes the less general SPARC V8 data_store_error exception.

■ fast_ECC_error [tt = 07016] (Precise) — A single-bit or multiple-bit ECC error is
detected.

IMPL. DEP. #: Whether or not a fast_ECC_error trap exists is implementation
dependent. If it does exist, it indicates that an ECC error was detected in an
external cache and its trap type is 07016.

■ internal_processor_error [tt = 02916] (Precise, Deferred, or Disrupting) — A
serious internal error occurred in the main processor (impl. dep. #).
168 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.CHAPTER 8

Memory Models

The SPARC V9 memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores seem to be performed in the
order in which they appear in the dynamic control flow of the program. The actual
order in which they are processed by the memory may be different. The purpose of
the memory models is to specify what constraints, if any, are placed on the order of
memory operations.

The memory models apply both to uniprocessor and to shared memory
multiprocessors. Formal memory models are necessary for precise definitions of the
interactions between multiple processors and input/output devices in a shared
memory configuration. Programming shared memory multiprocessors requires a
detailed understanding of the operative memory model and the ability to specify
memory operations at a low level in order to build programs that can safely and
reliably coordinate their activities. See Appendix J, Programming with the Memory
Models, for additional information on the use of the models in programming real
systems.

Although this chapter contains a great deal of theoretical information, we have
included that information so the discussion of the implementation-specific memory
models has sufficient background.

We describe memory models in these sections:

■ Overview on page 170
■ Memory, Real Memory, and I/O Locations on page 171
■ Addressing and Alternate Address Spaces on page 173
■ SPARC V9 Memory Model on page 175
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 169

8.1 Overview
The SPARC V9 architecture is a model that specifies the behavior observable by
software on SPARC V9 systems. Therefore, access to memory can be implemented in
any manner, as long as the behavior observed by software conforms to that of the
models described here and defined in Appendix D, Formal Specification of the Memory
Models.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC V9
processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure SPARC V8 compatibility.

IMPL. DEP. #113: Whether the PSO or RMO models are supported by SPARC V9
systems is implementation dependent.

FIGURE 8-1 shows the relationship of the various SPARC V9 memory models, from
the least restrictive to the most restrictive. Programs written assuming one model
will function correctly on any included model.

FIGURE 8-1 Memory Models: Least Restrictive (RMO) to Most Restrictive (TSO)

SPARC V9 provides multiple memory models so that:

■ Implementations can schedule memory operations for high performance.

■ Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix
D, Formal Specification of the Memory Models. If there is a conflict in interpretation
between the informal description provided here and the formal models, the formal
models supersede the informal description.

There is no preferred memory model for SPARC V9. Programs written for Relaxed
Memory Order will work in both Partial Store Order and Total Store Order.
Programs written for Partial Store Order will work in Total Store Order. Programs
written for a weak model, such as RMO, may execute more quickly, since the model

RMO PSO TSO
170 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

exposes more scheduling opportunities, but may also require extra instructions to
ensure synchronization. Multiprocessor programs written for a stronger model will
behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO, PSO, and RMO.
Sequential consistency is not a SPARC V9 memory model. In sequential consistency,
the loads, stores, and atomic load-stores of all processors are performed by memory
in a serial order that conforms to the order in which these instructions are issued by
individual processors. A machine that implements sequential consistency may
deliver lower performance than an equivalent machine that implements a weaker
model. Although particular SPARC V9 implementations may support sequential
consistency, portable software must not rely on having this model available.

Notes About the Implementation of the Memory Models

From the programmer’s point of view, a SPARC V9 implementation completely
supports the memory models specified in SPARC V9.

SPARC V9 does not specify exactly how the hardware must support a particular
SPARC V9 memory model, except that the hardware support for the V9 memory
model must guarantee that a correct program written for that memory model will
run correctly on the hardware. For example, a slightly stronger (more restrictive)
hardware memory model might be used than that required by the SPARC V9
memory model.

8.2 Memory, Real Memory, and I/O
Locations
Memory is the collection of locations accessed by the load and store instructions
(described in Appendix A, Instruction Definitions). Each location is identified by an
address consisting of two elements: an address space identifier (ASI), which identifies
an address space, and a 64-bit address, which is a byte offset into that address space.
Memory addresses may be interpreted by the memory subsystem to be either
physical addresses or virtual addresses; addresses may be remapped and values
cached, provided that memory properties are preserved transparently and coherency
is maintained.

When two or more data addresses refer to the same datum, the address is said to be
aliased. In this case, the processor and memory system must cooperate to maintain
consistency; that is, a store to an aliased address must change all values aliased to
that address.
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 171

Memory addresses identify either real memory or I/O locations.

Real memory stores information without side effects. A load operation returns the
value most recently stored. Operations are side-effect-free in the sense that a load,
store, or atomic load-store to a location in real memory has no program-observable
effect, except upon that location.

I/O locations may not behave like memory and may have side effects. Load, store,
and atomic load-store operations performed on I/O locations may have observable
side effects, and loads may not return the value most recently stored. The value
semantics of operations on I/O locations are not defined by the memory models, but
the constraints on the order in which operations are performed is the same as it
would be if the I/O locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of I/O registers are implementation
dependent.

IMPL. DEP. #118: The manner in which I/O locations are identified is
implementation dependent.

IMPL. DEP. #120: The coherence and atomicity of memory operations between
processors and I/O DMA memory accesses are implementation dependent.

Implementation Note – Operations to I/O locations are not guaranteed to be
sequentially consistent among themselves, as they are in SPARC V8.

SPARC V9 does not distinguish real memory from I/O locations in terms of
ordering. All references, both to I/O locations and real memory, conform to the
memory model’s order constraints. References to I/O locations may need to be
interspersed with MEMBAR instructions to guarantee the desired ordering.

Systems supporting SPARC V8 applications that use memory mapped I/O locations
must ensure that SPARC V8 sequential consistency of I/O locations can be
maintained when those locations are referenced by a SPARC V8 application. The
MMU either must enforce such consistency or cooperate with system software or the
processor to provide it.

IMPL. DEP. #121: An implementation may choose to identify certain addresses and
use an implementation-dependent memory model for references to them.
172 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

8.3 Addressing and Alternate Address
Spaces
An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier
(ASI) and a 64-bit byte-address offset in the specified address space. Memory is byte-
addressed, with halfword accesses aligned on 2-byte boundaries, word accesses
(which include instruction fetches) aligned on 4-byte boundaries, extended-word
and doubleword accesses aligned on 8-byte boundaries, and quadword quantities
aligned on 16-byte boundaries. With the possible exception of the cases described in
Memory Alignment Restrictions on page 108, an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that
is guaranteed to be atomically read or written is an aligned doubleword.1 Also,
memory references to different bytes, halfwords, and words in a given doubleword
are treated for ordering purposes as references to the same location. Thus, the unit of
ordering for memory is a doubleword.

Notes – The doubleword is the coherency unit for update, but programmers should
not assume that doubleword floating-point values are updated as a unit unless they
are doubleword-aligned and always updated with double-precision loads and
stores. Some programs use pairs of single-precision operations to load and store
double-precision floating-point values when the compiler cannot determine that
they are doubleword aligned.

Also, although quad-precision operations are defined in the SPARC V9 architecture,
the granularity of loads and stores for quad-precision floating-point values may be
word or doubleword.

The processor provides an address space identifier with every address. This ASI may
serve several purposes:

■ To identify which of several distinguished address spaces the 64-bit address offset
is addressing

■ To provide additional access control and attribute information, for example, to
identify the processing that is to be performed if an access fault occurs, or to
specify the endianness of the reference

■ To specify the address of an internal control register in the processor, cache, or
memory management hardware

1. Two exceptions to this are the special ASI_NUCLEUS_QUAD_LDD[_L] and ASI_QUAD_LDD_PHYS[_L]
which provide hardware support for an atomic quad load to be used for TTE loads from TSBs.
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 173

The memory management hardware can associate an independent 264-byte memory
address space with each ASI. If this is done, it becomes possible to allow system
software easy access to the address space of the faulting program when processing
exceptions or to implement access to a client program’s memory space by a server
program.

The architecturally specified ASIs are listed in Appendix L, Address Space Identifiers.

When TL = 0, normal accesses by the processor to memory when fetching
instructions and performing loads and stores implicitly specify ASI_PRIMARY or
ASI_PRIMARY_LITTLE, depending on the setting of the PSTATE.CLE bit.

When TL > 0, the implicit ASI for instruction fetches is ASI_NUCLEUS; loads and
stores will use ASI_NUCLEUS if PSTATE.CLE = 0 or ASI_NUCLEUS_LITTLE if
PSTATE.CLE = 1 (impl. dep. #124).

SPARC V9 supports the PRIMARY{_LITTLE}, SECONDARY{_LITTLE}, and
NUCLEUS{_LITTLE} address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register-register
addressing mode) or taken from the ASI register (for register-immediate addressing).

ASIs are either nonrestricted or restricted. A nonrestricted ASI is one that may be
used independently of the privilege level (PSTATE.PRIV) at which the processor is
running. Restricted ASIs require that the processor be in privileged mode for a legal
access to occur. Restricted ASIs have their high-order bit equal to 0. The relationship
between processor state and ASI restriction is shown in TABLE 6-2 on page 112.

Several restricted ASIs are provided as mandated by SPARC V9:
ASI_AS_IF_USER_PRIMARY{_LITTLE} and
ASI_AS_IF_USER_SECONDARY{_LITTLE}. The intent of these ASIs is to give
system software efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the
unrestricted ASI_PRIMARY{_LITTLE}. The secondary address space, which is
accessed by the unrestricted ASI_SECONDARY{_LITTLE}, is provided to allow a
server program to access a client program’s address space.

ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SECONDARY_NOFAULT{_LITTLE}
support nonfaulting loads. These ASIs are aliased to ASI_PRIMARY{_LITTLE} and
ASI_SECONDARY{_LITTLE}, respectively, and have exactly the same action. They
may be used to color (that is, distinguish into classes) loads in the instruction stream
so that, in combination with a judicious mapping of low memory and a specialized
trap handler, an optimizing compiler can move loads outside of conditional control
structures.
174 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Notes – Nonfaulting loads allow optimizations that move loads ahead of
conditional control structures that guard their use; thus, they can minimize the
effects of load latency by improving instruction scheduling. The semantics of
nonfaulting loads are the same as for any other load, except when nonrecoverable
catastrophic faults occur (for example, a reference to a nonexisting or invalid page).
When such a fault occurs, it is ignored and the hardware and system software
cooperate to make the load appear to complete normally, returning a zero result. The
compiler’s optimizer generates load-alternate instructions with the ASI field or
register set to ASI_PRIMARY_NOFAULT{_LITTLE} or
ASI_SECONDARY_NOFAULT{_LITTLE} for those loads it determines should be
nonfaulting.

To minimize unnecessary processing if a fault does occur, map low addresses
(especially address zero) to a page of all zeroes, so that references through a NULL
pointer do not cause unnecessary traps.

8.4 SPARC V9 Memory Model
The SPARC V9 processor architecture specifies the organization and structure of a
SPARC V9 central processing unit but does not specify a memory system
architecture. Appendix F, Memory Management Unit, summarizes the MMU support
required by a SPARC JPS1 processor. Appendix F of the Implementation
Supplements describe implementations.

The memory models specify the possible order relationships between memory-
reference instructions issued by a processor and the order and visibility of those
instructions as seen by other processors. The memory model is intimately
intertwined with the program execution model for instructions.

8.4.1 SPARC V9 Program Execution Model
The SPARC V9 processor model consists of three units: an Issue Unit, a Reorder
Unit, and an Execute Unit, as shown in FIGURE 8-2.

The Issue Unit reads instructions over the instruction path from memory and issues
them in program order to the Reorder Unit. Program order is precisely the order
determined by the control flow of the program and the instruction semantics, under
the assumption that each instruction is performed independently and sequentially.
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 175

Issued instructions are collected and potentially reordered in the Reorder Unit, and
then dispatched to the Execute Unit. Instruction reordering allows an
implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of
program execution are the same as they would be if the instructions were performed
in program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another processor, be identical to the result that
would be observed if the instructions were performed in program order. In the
model in FIGURE 8-2, instructions are issued in program order and placed in the
reorder buffer. The processor is allowed to reorder instructions, provided it does not
violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction cannot be performed until all earlier instructions that set a register
it uses have been performed (read-after-write hazard; write-after-write hazard).

2. An instruction cannot be performed until all earlier instructions that use a register
it sets have been performed (write-after-read hazard).

Implementation Note – An implementation can avoid blocking instruction
execution in case 2 and the write-after-write hazard in case 1 by using a renaming
mechanism that provides the old value of the register to earlier instructions and the
new value to later uses.

The data-flow order constraints for memory-reference instructions are those for
register reference instructions, plus the following additional constraints:

1. A memory-reference instruction that sets (stores to) a location cannot be
performed until all previous instructions that use (load from) the location have
been performed (write-after-read hazard).

Processor

Memory

Data Path

Instruction Path
Issue Reorder Execute

FIGURE 8-2 Processor Model: Uniprocessor System

Unit Unit Unit
Reorder

Unit
176 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

2. A memory-reference instruction that uses (loads) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) the
location have been performed (read-after-write hazard).

Memory-barrier instructions (MEMBAR and STBAR) and the active memory model
specified by PSTATE.MM also constrain the issue of memory-reference instructions.
See MEMBAR Instruction on page 179 and Memory Models on page 181 for a detailed
description.

The constraints on instruction execution assert a partial ordering on the instructions
in the reorder buffer. Every one of the several possible orderings is a legal execution
ordering for the program. See Appendix D, Formal Specification of the Memory Models,
for more information.

8.4.2 Processor/Memory Interface Model
Each processor in a multiprocessor system is modeled as shown in FIGURE 8-3; that is,
having two independent paths to memory: one for instructions and one for data.

FIGURE 8-3 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware to be consistent (coherent). Instruction
caches need not be kept consistent with data caches and therefore require explicit
program action to ensure consistency when a program modifies an executing
instruction stream. Memory is shared in terms of address space, but it may be
nonhomogeneous and distributed in an implementation. Mapping and caches are
ignored in the model, since their functions are transparent to the memory model.2

2. The model described here is only a model; implementations of SPARC V9 systems are unconstrained as long
as their observable behaviors match those of the model.

Processors

Memory Transactions
in Memory Order

Memory

Instructions

Data
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 177

In real systems, addresses may have attributes that the processor must respect. The
processor executes loads, stores, and atomic load-stores in whatever order it chooses,
as constrained by program order and the current memory model. The ASI-address
couples it generates are translated by a memory management unit (MMU), which
associates attributes with the address and may, in some instances, abort the memory
transaction and signal an exception to the CPU.

For example, a region of memory may be marked as nonprefetchable, noncacheable,
read-only, or restricted. It is the MMU’s responsibility, working in conjunction with
system software, to ensure that memory attribute constraints are not violated. See
Appendix F of the Implementation Supplements for more information.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory
transactions to the memory. The memory performs transactions in memory order. The
memory unit may perform transactions submitted to it out of order; hence, the
execution unit must not concurrently submit two or more transactions that are
required to be ordered.

The memory accepts transactions, performs them, and then acknowledges their
completion. Multiple memory operations may be in progress at any time and may be
initiated in a nondeterministic fashion in any order, provided that all transactions to
a location preserve the per-processor partial orders. Memory transactions may
complete in any order. Once initiated, all memory operations are performed
atomically: loads from one location all see the same value, and the result of stores is
visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that
preserves the partial orderings of each processor’s transactions to this address. There
may be many legal total orders for a given program’s execution.
178 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

8.4.3 MEMBAR Instruction
MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR, the
ordering MEMBAR, provides a way for the programmer to control the order of loads
and stores issued by a processor. The other variant of MEMBAR, the sequencing
MEMBAR, enables the programmer to explicitly control order and completion for
memory operations. Sequencing MEMBARs are needed only when a program requires
that the effect of an operation becomes globally visible rather than simply being
scheduled.3 Because both forms are bit-encoded into the instruction, a single MEMBAR
can function both as an ordering MEMBAR and as a sequencing MEMBAR.

Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a
single processor. Sets of loads and stores that appear before the MEMBAR in program
order are ordered with respect to sets of loads and stores that follow the MEMBAR in
program order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and CASXA) are
ordered by MEMBAR as if they were both a load and a store, since they share the
semantics of both. An STBAR instruction, with semantics that are a subset of
MEMBAR, is provided for SPARC V8 compatibility. MEMBAR and STBAR operate on all
pending memory operations in the reorder buffer, independently of their address or
ASI, ordering them with respect to all future memory operations. This ordering
applies only to memory-reference instructions issued by the processor issuing the
MEMBAR. Memory-reference instructions issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 8-1. For example,
MEMBAR 0116, written as “membar #LoadLoad” in assembly language, requires that
all load operations appearing before the MEMBAR in program order complete before
any of the load operations following the MEMBAR in program order complete. Store
operations are unconstrained in this case. MEMBAR 0816 (#StoreStore) is equivalent
to the STBAR instruction; it requires that the values stored by store instructions
appearing in program order prior to the STBAR instruction be visible to other
processors before issuing any store operations that appear in program order
following the STBAR.

In TABLE 8-1 these ordering relationships are specified by the “<m” symbol, which
signifies memory order. See Appendix D, Formal Specification of the Memory Models,
for a formal description of the <m relationship.

3. Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other system functions. Using a sequencing MEMBAR when one is
not needed may cause a degradation of performance. See Appendix J, Programming with the Memory Models,
for examples of the use of sequencing MEMBARs.

TABLE 8-1 Ordering Relationships Selected by Mask

Ordering Relation, Earlier < Later Suggested Assembler Tag Mask Value nmask Bit #

Load <m Load #LoadLoad 0116 0
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 179

Selections may be combined to form more powerful barriers. For example, a MEMBAR
instruction with a mask of 0916 (#LoadLoad | #StoreStore) orders loads with
respect to loads and stores with respect to stores, but it does not order loads with
respect to stores, or vice versa.

Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. The
three sequencing MEMBAR options each have a different degree of control and a
different application.

■ Lookaside Barrier — Ensures that loads following this MEMBAR are from memory
and not from a lookaside into a write buffer. Lookaside Barrier requires that
pending stores issued prior to the MEMBAR be completed before any load from
that address following the MEMBAR may be issued. A Lookaside Barrier MEMBAR
may be needed to provide lock fairness and to support some plausible I/O
location semantics. See the example in J.14.2, The Control and Status Register (CSR).

■ Memory Issue Barrier — Ensures that all memory operations appearing in
program order before the sequencing MEMBAR complete before any new memory
operation may be initiated. See the example in J.14.1, I/O Registers with Side Effects.

■ Synchronization Barrier — Ensures that all instructions (memory reference and
others) preceding the MEMBAR complete and that the effects of any fault or error
have become visible before any instruction following the MEMBAR in program
order is initiated. A Synchronization Barrier MEMBAR fully synchronizes the
processor that issues it.

TABLE 8-2 shows the encoding of these functions in the MEMBAR instruction.

Store <m Load #StoreLoad 0216 1

Load <m Store #LoadStore 0416 2

Store <m Store #StoreStore 0816 3

TABLE 8-2 Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #

Lookaside Barrier #Lookaside 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

TABLE 8-1 Ordering Relationships Selected by Mask

Ordering Relation, Earlier < Later Suggested Assembler Tag Mask Value nmask Bit #
180 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

8.4.4 Memory Models
The SPARC V9 memory models are defined below in terms of order constraints
placed upon memory-reference instruction execution, in addition to the minimal set
required for self-consistency. These order constraints take the form of MEMBAR
operations implicitly performed following some memory-reference instructions.

Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond
those required for processor self-consistency. When ordering is required, it must be
provided explicitly in the programs by MEMBAR instructions.

Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in the RMO memory model will execute
correctly in the PSO model.

The rules for PSO are these:

■ Loads are blocking and ordered with respect to earlier loads.

■ Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures the following behavior:

■ Each load and atomic load-store instruction behaves as if it were followed by a
MEMBAR with a mask value of 0516.

■ Explicit MEMBAR instructions are required to order store and atomic load-store
instructions with respect to each other.

Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in either RMO or PSO will execute
correctly in the TSO model.

Following are the rules for TSO:

■ Loads are blocking and ordered with respect to earlier loads.

■ Stores are ordered with respect to stores.

■ Atomic load-stores are ordered with respect to loads and stores.

Thus, TSO ensures the following behavior:

■ Each load instruction behaves as if it were followed by a MEMBAR with a mask
value of 0516.
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 181

■ Each store instruction behaves as if it were followed by a MEMBAR with a mask of
0816.

■ Each atomic load-store behaves as if it were followed by a MEMBAR with a mask of
0D16.

8.4.5 Mode Control
The memory model is specified by the 2-bit state in PSTATE.MM, described in
PSTATE_mem_model (MM) on page 71.

Writing a new value into PSTATE.MM causes subsequent memory reference
instructions to be performed with the order constraints of the specified memory
model.

SPARC V9 processors need not provide all three memory models; undefined values
of PSTATE.MM have implementation-dependent effects.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode
designation into PSTATE.MM is implementation dependent.

Except when a trap enters RED_state, PSTATE.MM is left unchanged when a trap is
entered and the old value is stacked. When RED_state is entered, the value of
PSTATE.MM is set to TSO.

8.4.6 Hardware Primitives for Mutual Exclusion
In addition to providing memory-ordering primitives that allow programmers to
construct mutual-exclusion mechanisms in software, SPARC V9 provides three
hardware primitives for mutual exclusion:

■ Compare and Swap (CASA and CASXA)
■ Load Store Unsigned Byte (LDSTUB and LDSTUBA)
■ Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three
memory models. They are all atomic, in the sense that no other store to the same
location can be performed between the load and store elements of the instruction.
All of the hardware mutual-exclusion operations conform to the memory models
and may require barrier instructions to ensure proper data visibility.

When the hardware mutual-exclusion primitives address I/O locations, the results
are implementation dependent. In addition, the atomicity of hardware mutual-
exclusion primitives is guaranteed only for processor memory references and not
when the memory location is simultaneously being addressed by an I/O device such
as a channel or DMA.
182 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a processor
register to a value in memory and, if and only if they are equal, swaps the value in
memory with the value in a second processor register. Both 32-bit (CASA) and 64-bit
(CASXA) operations are provided. The compare-and-swap operation is atomic in the
sense that once it begins, no other processor can access the memory location
specified until the compare has completed and the swap (if any) has also completed
and is potentially visible to all other processors in the system.

Compare-and-swap is substantially more powerful than the other hardware
synchronization primitives. It has an infinite consensus number; that is, it can
resolve, in a wait-free fashion, an infinite number of contending processes. Because
of this property, compare-and-swap can be used to construct wait-free algorithms
that do not require the use of locks. See Appendix J, Programming with the Memory
Models, for examples.

Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in
memory. SWAP has a consensus number of two; that is, it cannot resolve more than
two contending processes in a wait-free fashion.

Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into
the addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like
SWAP, it has a consensus number of two and so cannot resolve more than two
contending processes in a wait-free fashion.

8.4.7 Synchronizing Instruction and Data Memory
The SPARC V9 memory models do not require that instruction and data memory
images be consistent at all times. The instruction and data memory images may
become inconsistent if a program writes into the instruction stream. As a result,
whenever instructions are modified by a program in a context where the data (that
is, the instructions) in the memory and the data cache hierarchy may be inconsistent
with instructions in the instruction cache hierarchy, some special programmatic
action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction
stream and the data references in the processor executing FLUSH. The programmer
must ensure that the modification sequence is robust under multiple updates and
Release 1.0.4, 31 May 2002 C. Chapter 8 • Memory Models 183

concurrent execution. Since, in general, loads and stores may be performed out of
order, appropriate MEMBAR and FLUSH instructions must be interspersed as needed
to control the order in which the instruction data are mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the
doubleword target of the FLUSH by the processor executing the FLUSH appear to
execute after any loads, stores, and atomic load-stores issued by the processor to that
address prior to the FLUSH. FLUSH acts as a barrier for instruction fetches in the
processor on which it executes and has the properties of a store with respect to
MEMBAR operations.

FLUSH has zero latency on the issuing processor; the modified instruction stream is
immediately available.4

IMPL. DEP. #122: The latency between the execution of FLUSH on one processor and
the point at which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.

Programming Note – Because FLUSH is designed to act on a doubleword and
because, on some implementations, FLUSH may trap to system software, it is
recommended that system software provide a user-callable service routine for
flushing arbitrarily sized regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might issue a single trap to
system software that would then flush the entire region.

On a SPARC JPS1 processor:

■ A FLUSH instruction flushes the processor pipeline and synchronizes the
processor.

■ Coherency between instruction and data memories is maintained with hardware;
therefore, the address in the operands of a FLUSH instruction may be ignored (but
must be supplied by software for SPARC V9 compatibility).

Programming Note – Although SPARC JPS1 processors maintain coherency
between instruction and data caches in hardware, SPARC V9 implementations in
general are not required to do so (and some do not). Therefore, portable SPARC V9
software:
(1) must always assume that store instructions (except Block Store with Commit) do
not coherently update I-cache(s);
(2) must, in every FLUSH instruction, supply the address of the instruction or
instructions that were modified.

4. SPARC V8 specified a five-instruction latency. Invalidation of instructions in the instruction cache during
their execution is likely to force an instruction-cache fault.
184 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX A

Instruction Definitions

The SPARC Joint Programming Specification extends the standard SPARC V9
instruction set with four classes of instructions:

■ Low-power mode: SHUTDOWN (A.59)

■ Enhanced graphics functionality: instructions for alignment (A.2); array handling
(A.3); BMASK and BSHUFFLE (A.5); edge handling (A.12); logical operations on
floating-point registers (A.33); and partitioned arithmetic and pixel manipulation
(A.43 to A.47)

■ Efficient memory access: partial store (A.42); short floating-point loads and stores
(A.58); atomic load quadword (A.30); and block load and store (A.4)

■ Efficient interval arithmetic: SIAM (A.55) and all instructions that reference
GSR.IM

Related instructions are grouped into subsections. Each subsection consists of these
parts:

1. A table of the opcodes defined in the subsection with the values of the field(s)
that uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations a dash
(—) indicates that the field is reserved for future versions of the architecture and
shall be 0 in any instance of the instruction. If a conforming SPARC V9
implementation encounters nonzero values in these fields, its behavior is
undefined. See Appendix I, Extending the SPARC V9 Architecture, for information
about extending the SPARC V9 instruction set.

3. A list of the suggested assembly language syntax; the syntax notation is described
in Appendix G, Assembly Language Syntax.

4. A description of the features, restrictions, and exception-causing conditions.

5. A list of exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, fast_instruction_access_MMU_miss,
fast_ECC_error†, async_data_error†, ECC_error (corrected ECC_error), WDR,
and interrupts are not listed because they can occur on any instruction. A
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 185

floating-point operation that is not implemented in hardware generates an
fp_exception_other exception with ftt = unimplemented_FPop when executed.
Non-floating-point instructions not implemented in hardware shall generate an
illegal_instruction exception and therefore will not generate any of the other
exceptions listed. The illegal_instruction exception is not listed because it can
occur on any instruction that triggers an instruction breakpoint or contains an
invalid field.

This appendix does not include any timing information (in either cycles or clock
time), since timing is implementation dependent.

TABLE A-2 summarizes the instruction set; the instruction definitions follow the table.
Within TABLE A-2, throughout this appendix, and in Appendix E, Opcode Maps,
certain opcodes are marked with mnemonic superscripts. The superscripts and their
meanings are defined in TABLE A-1.

† Implementation-dependent exception; see SPARC JPS1 Implementation-Dependent Traps on page
168.

TABLE A-1 Opcode Superscripts

Superscript Meaning

D Deprecated instruction

P Privileged opcode

PASI Privileged action if bit 7 of the referenced ASI is 0

PASR Privileged opcode if the referenced ASR register is privileged

PNPT Privileged action if PSTATE.PRIV = 0 and (S)TICK.NPT = 1

PPIC Privileged action if PCR.PRIV = 1

PPCR Privileged access to PCR (impl. dep. #250)

TABLE A-2 Instruction Set (1 of 6)

Operation Name Page
Ext. to
V9?

ADD (ADDcc) Add (and modify condition codes) 192

ADDC (ADDCcc) Add with carry (and modify condition codes) 192

ALIGNADDRESS{_LITTLE} Calculate address for misaligned data 194 ✓

AND (ANDcc) And (and modify condition codes) 259

ANDN (ANDNcc) And not (and modify condition codes) 259

ARRAY(8,16,32) 3-D array addressing instructions 196 ✓

BPcc Branch on integer condition codes with prediction 210

BiccD Branch on integer condition codes 358

BMASK Set the GSR.MASK field 203 ✓
186 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

BPr Branch on contents of integer register with prediction 205

BSHUFFLE Permute bytes as specified by GSR.MASK 203 ✓

CALL Call and link 213

CASAPASI Compare and swap word in alternate space 214

CASXAPASI Compare and swap doubleword in alternate space 214

DONEP Return from trap 217

EDGE(8,16,32){L} Edge handling instructions 218 ✓

FABS(s,d,q) Floating-point absolute value 231

FADD(s,d,q) Floating-point add 221

FALIGNDATA Perform data alignment for misaligned data 194 ✓

FAND{S} Logical AND operation 256 ✓

FANDNOT(1,2){S} Logical AND operation with one inverted source 256 ✓

FBfccD Branch on floating-point condition codes 355

FBPfcc Branch on floating-point condition codes with prediction 207

FCMP(s,d,q) Floating-point compare 223

FCMPE(s,d,q) Floating-point compare (exception if unordered) 223

FCMP(GT,LE,NE,EQ)(16,32) Pixel compare operations 292 ✓

FDIV(s,d,q) Floating-point divide 233

FdMULq Floating-point multiply double to quad 233

FEXPAND Pixel expansion 299 ✓

FiTO(s,d,q) Convert integer to floating-point 229

FLUSH Flush instruction memory 236

FLUSHW Flush register windows 238

FMOV(s,d,q) Floating-point move 231

FMOV(s,d,q)cc Move floating-point register if condition is satisfied 264

FMOV(s,d,q)r Move f-p reg. if integer reg. contents satisfy condition 270

FMUL(s,d,q) Floating-point multiply 233

FMUL8x16 8x16 partitioned product 287 ✓

FMUL8x16(AU,AL) 8x16 upper/lower α partitioned product 288 ✓

FMUL8(SU,UL)x16 8x16 upper/lower partitioned product 289 ✓

FMULD8(SU,UL)x16 8x16 upper/lower partitioned product 290 ✓

FNAND{S} Logical NAND operation 256 ✓

FNEG(s,d,q) Floating-point negate 231

FNOR{S} Logical NOR operation 256 ✓

FNOT(1,2){S} Copy negated source 256 ✓

FPACK(16,32, FIX) Pixel packing 296,
297, 298

✓

TABLE A-2 Instruction Set (2 of 6)

Operation Name Page
Ext. to
V9?
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 187

FPADD(16,32){S} Pixel add (single) 16- or 32-bit 284 ✓

FPMERGE Pixel merge 300 ✓

FONE{S} One fill 256 ✓

FOR{S} Logical OR operation 256 ✓

FORNOT(1,2){S} Logical OR operation with one inverted source 256 ✓

FPSUB(16,32){S} Pixel subtract (single) 16- or 32-bit 284 ✓

FsMULd Floating-point multiply single to double 233

FSQRT(s,d,q) Floating-point square root 235

FSRC(1,2){S} Copy source 256 ✓

F(s,d,q)TOi Convert floating point to integer 225

F(s,d,q)TO(s,d,q) Convert between floating-point formats 227

F(s,d,q)TOx Convert floating point to 64-bit integer 225

FSUB(s,d,q) Floating-point subtract 221

FXNOR{S} Logical XNOR operation 256 ✓

FXOR{S} Logical XOR operation 256 ✓

FxTO(s,d,q) Convert 64-bit integer to floating-point 229

FZERO{S} Zero fill 256 ✓

ILLTRAP Illegal instruction 239

IMPDEP2A Implementation-dependent instructions 240

IMPDEP2B Implementation-dependent instructions (reserved) 240

JMPL Jump and link 241

LDDD Load integer doubleword 365

LDDAD, PASI Load integer doubleword from alternate space 367

LDDA ASI_NUCLEUS_QUAD* Load integer quadword, atomic 251 ✓

LDDF Load double floating-point 242

LDDFAPASI Load double floating-point from alternate space 199

LDDFA ASI_BLK* Block loads 199 ✓

LDDFA ASI_FL* Short floating point loads 326 ✓

LDF Load floating-point 242

LDFAPASI Load floating-point from alternate space 242

LDFSRD Load floating-point state register lower 364

LDQF Load quad floating-point 242

LDQFAPASI Load quad floating-point from alternate space 242

LDSB Load signed byte 247

LDSBAPASI Load signed byte from alternate space 249

LDSH Load signed halfword 247

LDSHAPASI Load signed halfword from alternate space 249

TABLE A-2 Instruction Set (3 of 6)

Operation Name Page
Ext. to
V9?
188 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

LDSTUB Load-store unsigned byte 253

LDSTUBAPASI Load-store unsigned byte in alternate space 254

LDSW Load signed word 247

LDSWAPASI Load signed word from alternate space 249

LDUB Load unsigned byte 247

LDUBAPASI Load unsigned byte from alternate space 249

LDUH Load unsigned halfword 247

LDUHAPASI Load unsigned halfword from alternate space 249

LDUW Load unsigned word 247

LDUWAPASI Load unsigned word from alternate space 249

LDX Load extended 247

LDXAPASI Load extended from alternate space 249

LDXFSR Load floating-point state register 242

MEMBAR Memory barrier 261

MOVcc Move integer register if condition is satisfied 272

MOVr Move integer register on contents of integer register 277

MULSccD Multiply step (and modify condition codes) 371

MULX Multiply 64-bit integers 279

NOP No operation 281

OR (ORcc) Inclusive-or (and modify condition codes) 259

ORN (ORNcc) Inclusive-or not (and modify condition codes) 259

PDIST Pixel component distance 294 ✓

POPC Population count 301

PREFETCH Prefetch data 303

PREFETCHAPASI Prefetch data from alternate space 303

RDASI Read ASI register 313

RDASRPASR Read ancillary state register 313

RDCCR Read condition codes register 313

RDDCRP Read dispatch control register 313

RDFPRS Read floating-point registers state register 313

RDGSR Read graphic status register 313

RDPC Read program counter 313

RDPCRPPCR Read performance control register 313

RDPICPPIC Read performance instrumentation counters 313

RDPRP Read privileged register 311

RDSOFTINTP Read per-processor soft interrupt register 313

TABLE A-2 Instruction Set (4 of 6)

Operation Name Page
Ext. to
V9?
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 189

RDSTICKPNPT Read system TICK register 313

RDSTICK_CMPRP Read system TICK compare register 313

RDTICKPNPT Read TICK register 313

RDTICK_CMPRP Read TICK compare register 313

RDYD Read Y register 373

RESTORE Restore caller’s window 318

RESTOREDP Window has been restored 321

RETRYP Return from trap and retry 217

RETURN Return 316

SAVE Save caller’s window 318

SAVEDP Window has been saved 321

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 361

SDIVX 64-bit signed integer divide 279

SETHI Set high 22 bits of low word of integer register 323

SHUTDOWN Shut down the processor 328 ✓

SIAM Set Interval Arithmetic Mode 322 ✓

SIR Software-initiated reset 329

SLL Shift left logical 324

SLLX Shift left logical, extended 324

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 369

SRA Shift right arithmetic 324

SRAX Shift right arithmetic, extended 324

SRL Shift right logical 324

SRLX Shift right logical, extended 324

STB Store byte 336

STBAPASI Store byte into alternate space 338

STBARD Store barrier 374

STDD Store doubleword 377

STDAD, PASI Store doubleword into alternate space 379

STDF Store double floating-point 330

STDFAPASI Store double floating-point into alternate space 333

STDFA ASI_BLK* Block stores 199 ✓

STDFA ASI_FL* Short floating point stores 326 ✓

STDFA ASI_PST* Partial Store instructions 282 ✓

STF Store floating-point 330

STFAPASI Store floating-point into alternate space 333

STFSRD Store floating-point state register 375

TABLE A-2 Instruction Set (5 of 6)

Operation Name Page
Ext. to
V9?
190 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

STH Store halfword 336

STHAPASI Store halfword into alternate space 338

STQF Store quad floating-point 330

STQFAPASI Store quad floating-point into alternate space 333

STW Store word 336

STWAPASI Store word into alternate space 338

STX Store extended 336

STXAPASI Store extended into alternate space 338

STXFSR Store extended floating-point state register 330

SUB (SUBcc) Subtract (and modify condition codes) 340

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 340

SWAPD Swap integer register with memory 381

SWAPAD, PASI Swap integer register with memory in alternate space 383

TADDcc (TADDccTVD) Tagged add and modify condition codes (trap on overflow) 342, 385

Tcc Trap on integer condition codes 344

TSUBcc (TSUBccTVD) Tagged subtract and modify condition codes (trap on overflow) 343, 387

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 361

UDIVX 64-bit unsigned integer divide 279

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 369

WRASI Write ASI register 350

WRASRPASR Write ancillary state register 350

WRCCR Write condition codes register 350

WRDCRP Write dispatch control register 350

WRFPRS Write floating-point registers state register 350

WRGSR Write graphic status register 350

WRPCRPPCR Write performance control register 350

WRPICPPIC Write performance instrumentation counters register 350

WRPRP Write privileged register 347

WRSOFTINTP Write per-processor soft interrupt register 350

WRSOFTINT_CLRP Clear bits of per-processor soft interrupt register 350

WRSOFTINT_SETP Set bits of per-processor soft interrupt register 350

WRTICK_CMPRP Write TICK compare register 350

WRSTICKP Write System TICK register 350

WRSTICK_CMPRP Write System TICK compare register 350

WRYD Write Y register 389

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 259

XOR (XORcc) Exclusive-or (and modify condition codes) 259

TABLE A-2 Instruction Set (6 of 6)

Operation Name Page
Ext. to
V9?
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 191

Add
A.1 Add

Format (3)

Description: ADD and ADDcc compute “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1, and write the sum into r[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry
(icc.c) bit; that is, they compute “r[rs1] + r[rs2] + icc.c” or
“r[rs1] + sign_ext(simm13) + icc.c” and write the sum into r[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different.

Opcode Op3 Operation

ADD 00 0000 Add

ADDcc 01 0000 Add and modify cc’s

ADDC 00 1000 Add with Carry

ADDCcc 01 1000 Add with Carry and modify cc’s

Assembly Language Syntax

add regrs1, reg_or_imm, regrd

addcc regrs1, reg_or_imm, regrd

addc regrs1, reg_or_imm, regrd

addccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
192 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Add
Programming Note – ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCR.icc.c), not the 64-bit condition codes’ carry bit (CCR.xcc.c).

Compatibility Note – ADDC and ADDCcc were named ADDX and ADDXcc,
respectively, in SPARC V8.

Exceptions: None
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 193

Alignment Instructions (VIS I)
A.2 Alignment Instructions (VIS I)

Format (3)

Description: ALIGNADDRESS adds two integer values, r[rs1] and r[rs2], and stores the result
(with the least significant 3 bits forced to 0) in the integer register r[rd]. The least
significant 3 bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the 2’s
complement of the least significant 3 bits of the result is stored in GSR.align.

Note – ALIGNADDR_LITTLE generates the opposite-endian byte ordering for a
subsequent FALIGNDATA operation.

FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1
and rs2 to form a 128-bit (16-byte) intermediate value. The contents of the first
source operand form the more-significant 8 bytes of the intermediate value, and the
contents of the second source operand form the less significant 8 bytes of the
intermediate value. Bytes in the intermediate value are numbered from most
significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the

Opcode opf Operation

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned data access

ALIGNADDRESS_LITTLE 0 0001 1010 Calculate address for misaligned data access
little-endian

FALIGNDATA 0 0100 1000 Perform data alignment for misaligned data

Assembly Language Syntax

alignaddr regrs1, regrs2, regrd

alignaddrl regrs1, regrs2, regrd

faligndata fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
194 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Alignment Instructions (VIS I)
intermediate value and stored in the 64-bit floating-point destination register
specified by rd. GSR.align specifies the number of the most significant byte to
extract (and, therefore, the least significant byte extracted from the intermediate
value is numbered GSR.align+7).

A byte-aligned 64-bit load can be performed as shown in CODE EXAMPLE A-1.

Exceptions: fp_disabled

CODE EXAMPLE A-1 Byte-Aligned 64-Bit Load

alignaddr Address, Offset, Address

ldd [Address], %f0

ldd [Address + 8], %f2

faligndata %f0, %f2, %f4
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 195

Three-Dimensional Array Addressing Instructions (VIS I)
A.3 Three-Dimensional Array Addressing
Instructions (VIS I)

Format (3)

Description These instructions convert three-dimensional (3D) fixed-point addresses contained
in r[rs1] to a blocked-byte address; they store the result in r[rd]. Fixed-point
addresses typically are used for address interpolation for planar reformatting
operations. Blocking is performed at the 64-byte level to maximize external cache
block reuse, and at the 64-Kbyte level to maximize TLB entry reuse, regardless of the
orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits (ARRAY32). The second operand,
r[rs2], specifies the power-of-2 size of the X and Y dimensions of a 3D image
array. The legal values for rs2 and their meanings are shown in TABLE A-3. Illegal
values produce undefined results in the destination register, r[rd].

Opcode opf Operation

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address

Assembly Language Syntax

array8 regrs1, regrs2, regrd

array16 regrs1, regrs2, regrd

array32 regrs1, regrs2, regrd

TABLE A-3 3D r[rs2] Array X/Y Dimensions

r[rs2] value Number of elements

0 64

1 128

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
196 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Three-Dimensional Array Addressing Instructions (VIS I)
FIGURE A-1 Three-Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the following blocked-address
formats.

FIGURE A-2 Three-Dimensional Array Blocked-Address Format (Array8)

FIGURE A-3 Three-Dimensional Array Blocked-Address Format (Array16)

FIGURE A-4 Three Dimensional Array Blocked-Address Format (Array32)

2 256

3 512

4 1024

5 2048

TABLE A-3 3D r[rs2] Array X/Y Dimensions (Continued)

r[rs2] value Number of elements

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

Lower

513 9

XYZ

Middle

1717 17

XYZ

Upper

+ isrc2+ 2 isrc2
20
+ 2 isrc2

15 3

XYZ

Lower

614 10

XYZ

Middle

1818 18

XYZ

Upper

+ isrc2+ 2 isrc2
21
+ 2 isrc2

0

0

26 4

XYZ

Lower

715 11

XYZ

Middle

1919 19

XYZ

Upper

+ isrc2+ 2 isrc2
22
+ 2 isrc2

00

0

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 197

Three-Dimensional Array Addressing Instructions (VIS I)
The bits above Z upper are set to 0. The number of zeroes in the least significant bits
is determined by the element size. An element size of 8 bits has no zeroes, an
element size of 16 bits has one zero, and an element size of 32 bits has two zeroes.
Bits in X and Y above the size specified by r[rs2] are ignored.

The code fragment in CODE EXAMPLE A-2 shows assembly of components along an
interpolated line at the rate of one component per clock.

Exceptions None

CODE EXAMPLE A-2 Assembly of Components Along an Interpolated Line

add Addr, DeltaAddr, Addr

array8 Addr, %g0, bAddr

ldda [bAddr] ASI_FL8_PRIMARY, data

faligndata data, accum, accum
198 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Block Load and Store (VIS I)
A.4 Block Load and Store (VIS I)

Format (3) LDDFA

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_BLK_AIUP 7016 64-byte block load/store from/to primary
address space, user privilege

LDDFA
STDFA

ASI_BLK_AIUS 7116 64-byte block load/store from/to secondary
address space, user privilege

LDDFA
STDFA

ASI_BLK_AIUPL 7816 64-byte block load/store from/to primary
address space, little-endian, user privilege

LDDFA
STDFA

ASI_BLK_AIUSL 7916 64-byte block load/store from/to secondary
address space, little-endian, user privilege

LDDFA
STDFA

ASI_BLK_P F016 64-byte block load/store from/to primary
address space

LDDFA
STDFA

ASI_BLK_S F116 64-byte block load/store from/to secondary
address space

LDDFA
STDFA

ASI_BLK_PL F816 64-byte block load/store from/to primary
address space, little-endian

LDDFA
STDFA

ASI_BLK_SL F916 64-byte block load/store from/to secondary
address space, little-endian

STDFA ASI_BLK_COMMIT_P E016 64-byte block commit store to primary
address space

STDFA ASI_BLK_COMMIT_S E116 64-byte block commit store to secondary
address space

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 199

Block Load and Store (VIS I)
Format (3) STDFA

Description A block load or store instruction uses an LDDFA or STDFA instruction combined with
a block transfer ASI. Block transfer ASIs allow block loads and stores to be
performed accessing the same address space as normal loads and stores. Little-
endian ASIs (those with an ‘L’ suffix) access data in little-endian format; otherwise,
the access is assumed to be big-endian. Byte swapping is performed separately for
each of the eight double-precision registers used by the instruction. Endianness does
not matter if these instructions are only being used for a block copy operation.

A block store with commit forces the data to be written to memory and invalidates
copies in all caches present. As a result,a block store with commit maintains
coherency with the I-cache.† It does not, however, flush instructions that have
already been fetched into the pipeline before executing the modified code. If a block
store with commit is used to write modified instructions, a FLUSH instruction must
still be executed to guarantee that the instruction pipeline is flushed. (See
Synchronizing Instruction and Data Memory on page 183 for more information.)

LDDFA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned
memory area into the eight double-precision floating-point registers specified by rd.
The lowest-addressed eight bytes in memory are loaded into the lowest-numbered
double-precision destination register. An illegal_instruction exception occurs if the
floating-point registers are not aligned on an eight-double-precision register
boundary. The least significant 6 bits of the memory address must be 0 or a
mem_address_not_aligned exception occurs.

STDFA with a block transfer ASI stores data from the eight double-precision floating-
point registers specified by rs1 to a 64-byte-aligned memory area. The lowest-
addressed eight bytes in memory are stored from the lowest-numbered double-

Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi

† Although all stores on JPS1 processors coherently update the instruction cache (see page 184), stores (other
than Block Store with Commit) on SPARC V9 implementations in general do not maintain coherency between
instruction and data caches.

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
200 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Block Load and Store (VIS I)
precision rd. An illegal_instruction exception occurs if the floating-point registers are
not aligned on an eight-register boundary. The least significant 6 bits of the memory
address must be 0 or a mem_address_not_aligned exception occurs.

ASIs E016 and E116 are only used for block store-with-commit operations; they are
not used for block load operations. See Block Load and Store ASIs on page 548 for
more information.

Programming Note – Block load does not provide register dependency interlocks,
as ordinary load instructions do.

Before block load data can be referenced, a second block load (to a different set of
registers) or a MEMBAR #Sync must be performed. If a second block load is used to
synchronize against returning data, the processor will continue execution before all
data has been returned. The programmer is then responsible for scheduling
instructions so registers are only used when they become valid.

To determine when data is valid, the programmer must count instruction groups
containing FP operate instructions (not FP loads or stores). The lowest-numbered
destination register of the first block load may be referenced in the first instruction
group following the second block load, using an FP operate instruction only.

The second-lowest-numbered destination register of the first block load may be
referenced in the second instruction group containing an FP operate instruction, and
so on.

If this block-load/block-load synchronization mechanism is used, the initial
reference to the block load data must be an FP operate instruction (not an FP store),
and only instruction groups with FP operate instructions are counted when
determining block load data availability.

If these rules are violated, data from before or after the block load may be returned
by a reference to any of the block load’s destination registers.

If a MEMBAR #Sync is used to synchronize on block load data, there are no
restrictions on data usage, although performance will be lower than if block-load/
block-load synchronization is used. No other MEMBARs can be used to provide data
synchronization for block load.

FP operate instructions can be issued in a single instruction group with FP stores. If
block-load/block-load synchronization is used, FP operates and FP stores can be
interlaced. This allows an FP operate instruction, such as FMOVD or FALIGNDATA, to
reference the returning data before using the data in any FP store (normal store or
block store).

The processor also continues execution, without register interlocks, before all the
store data for block stores are transferred from the register file.
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 201

Block Load and Store (VIS I)
If store source registers are overwritten before the next block store or MEMBAR
#Sync instruction, then the following rule must be observed: The first register can
be overwritten in the same instruction group as the block store, the second register
can be overwritten in the instruction group following the block store, and so on. If
this rule is violated, the block store may use the old or the new (overwritten) data.

When determining correctness for a code sample, note that JPS1 implementations
may interlock more than required above. For example, there may be partial register
interlocks, such as on the lowest-number register.

Code that does not meet the above constraints may appear to work on a particular
implementation. However, to be portable across all SPARC JPS1 implementations, all
of the above rules should be followed.

Exceptions fp_disabled
PA_watchpoint (recognized on only the first 8 bytes of a transfer)
VA_watchpoint (recognized on only the first 8 bytes of a transfer)
illegal_instruction (misaligned rd)
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
202 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Byte Mask and Shuffle Instructions (VIS II)
A.5 Byte Mask and Shuffle Instructions (VIS II)

Format (3)

Description: BMASK adds two integer registers, r[rs1] and r[rs2], and stores the result in the
integer register r[rd]. The least significant 32 bits of the result are stored in the
GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers specified by rs1
(more-significant half) and rs2 (less significant half) to form a 16-byte value. Bytes
in the concatenated value are numbered from most significant to least significant,
with the most significant byte being byte 0. BSHUFFLE extracts 8 of those 16 bytes
and stores the result in the 64-bit floating-point register specified by rd. Bytes in the
rd register are also numbered from most to least significant, with the most
significant being byte 0. The following table indicates which source byte is extracted
from the concatenated value for each byte in rd.

Opcode opf Operation

BMASK 0 0001 1001 Set the GSR.MASK field in preparation for a
following BSHUFFLE instruction

BSHUFFLE 0 0100 1100 Permute bytes as specified by GSR.MASK

Assembly Language Syntax

bmask regrs1, regrs2, regrd

bshuffle fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 203

Byte Mask and Shuffle Instructions (VIS II)
Exceptions: fp_disabled

Destination Byte (in r[rd]) Source Byte

0 (most significant) (r[rs1] r[rs2])[GSR.mask<31:28>]

1 (r[rs1] r[rs2])[GSR.mask<27:24>]

2 (r[rs1] r[rs2])[GSR.mask<23:20>]

3 (r[rs1] r[rs2])[GSR.mask<19:16>]

4 (r[rs1] r[rs2])[GSR.mask<15:12>]

5 (r[rs1] r[rs2])[GSR.mask<11:8>]

6 (r[rs1] r[rs2])[GSR.mask<7:4>]

7 (least significant) (r[rs1] r[rs2])[GSR.mask<3:0>]
204 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Branch on Integer Register with Prediction (BPr)
A.6 Branch on Integer Register with
Prediction (BPr)

Format (2)

Opcode rcond Operation RegisterContents Test

— 000 Reserved —

BRZ 001 Branch on Register Zero r[rs1] = 0

BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rs1] ≤ 0

BRLZ 011 Branch on Register Less Than Zero r[rs1] < 0

— 100 Reserved —

BRNZ 101 Branch on Register Not Zero r[rs1] ≠ 0

BRGZ 110 Branch on Register Greater Than Zero r[rs1] > 0

BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rs1] ≥ 0

Assembly Language Syntax

brz{,a}{,pt|,pn} regrs1, label

brlez{,a}{,pt|,pn} regrs1, label

brlz{,a}{,pt|,pn} regrs1, label

brnz{,a}{,pt|,pn} regrs1, label

brgz{,a}{,pt|,pn} regrs1, label

brgez{,a}{,pt|,pn} regrs1, label

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0 rcond 011 d16hi p rs1 d16lo
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 205

Branch on Integer Register with Prediction (BPr)
Programming Note – To set the annul bit for BPr instructions, append “,a” to the
opcode mnemonic. For example, use “brz,a %i3,label.” In the preceding table,
braces signify that the “,a” is optional. To set the branch prediction bit p, append
either “,pt” for predict taken or “,pn” for predict not taken to the opcode
mnemonic. If neither “,pt” nor “,pn” is specified, the assembler shall default to
“,pt”.

Description These instructions branch based on the contents of r[rs1]. They treat the register
contents as a signed integer value.

A BPr instruction examines all 64 bits of r[rs1] according to the rcond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;
that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 * sign_ext(d16hi d16lo)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the
value of the annul bit. If the branch is not taken and the annul bit (a) is 1, the delay
instruction is annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to
be taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0
indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instructions.

Implementation Note – If this instruction is implemented by tagging each register
value with an N (negative) bit and Z (zero) bit, use the table below to determine if
rcond is TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ N or Z
BRGZ not (N or Z)

Exceptions illegal_instruction (if rcond = 0002 or 1002)
206 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
A.7 Branch on Floating-Point Condition
Codes with Prediction (FBPfcc)

Format (2)

Opcode cond Operation fcc Test

FBPA 1000 Branch Always 1

FBPN 0000 Branch Never 0

FBPU 0111 Branch on Unordered U

FBPG 0110 Branch on Greater G

FBPUG 0101 Branch on Unordered or Greater G or U

FBPL 0100 Branch on Less L

FBPUL 0011 Branch on Unordered or Less L or U

FBPLG 0010 Branch on Less or Greater L or G

FBPNE 0001 Branch on Not Equal L or G or U

FBPE 1001 Branch on Equal E

FBPUE 1010 Branch on Unordered or Equal E or U

FBPGE 1011 Branch on Greater or Equal E or G

FBPUGE 1100 Branch on Unordered or Greater or Equal E or G or U

FBPLE 1101 Branch on Less or Equal E or L

FBPULE 1110 Branch on Unordered or Less or Equal E or L or U

FBPO 1111 Branch on Ordered E or L or G

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 207

Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
Programming Note – To set the annul bit for FBPfcc instructions, append “,a” to
the opcode mnemonic. For example, use “fbl,a %fcc3,label.” In the preceding
table, braces signify that the “,a” is optional. To set the branch prediction bit,
append either “,pt” (for predict taken) or “pn” (for predict not taken) to the opcode
mnemonic. If neither “,pt” nor “,pn” is specified, the assembler shall default to
“,pt”. To select the appropriate floating-point condition code, include “%fcc0”,
“%fcc1”, “%fcc2”, or “%fcc3” before the label.

cc1 cc0 Condition Code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

Assembly Language Syntax

fba{,a}{,pt|,pn} %fccn, label

fbn{,a}{,pt|,pn} %fccn, label

fbu{,a}{,pt|,pn} %fccn, label

fbg{,a}{,pt|,pn} %fccn, label

fbug{,a}{,pt|,pn} %fccn, label

fbl{,a}{,pt|,pn} %fccn, label

fbul{,a}{,pt|,pn} %fccn, label

fblg{,a}{,pt|,pn} %fccn, label

fbne{,a}{,pt|,pn} %fccn, label (synonym: fbnz)

fbe{,a}{,pt|,pn} %fccn, label (synonym: fbz)

fbue{,a}{,pt|,pn} %fccn, label

fbge{,a}{,pt|,pn} %fccn, label

fbuge{,a}{,pt|,pn} %fccn, label

fble{,a}{,pt|,pn} %fccn, label

fbule{,a}{,pt|,pn} %fccn, label

fbo{,a}{,pt|,pn} %fccn, label
208 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
Description: Unconditional branches and Fcc-conditional branches are described below.

■ Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN (Floating-
Point Branch Never with Prediction) instruction acts like a NOP. If the Branch
Never’s annul field is 0, the following (delay) instruction is executed; if the annul
field is 1, the following instruction is annulled (not executed). In no case does an
FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19)).” If the annul field of the branch instruction is 1,
the delay instruction is annulled (not executed). If the annul field is 0, the delay
instruction is executed.

■ Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and
FBPN) evaluate one of the four floating-point condition codes (fcc0, fcc1, fcc2,
fcc3) as selected by cc0 and cc1, according to the cond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul field. If a conditional branch is not taken and
the a (annul) field is 1, the delay instruction is annulled (not executed). Note: The
annul bit has a different effect on conditional branches than it does on
unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken. A 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6, Instructions.

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc
instruction is not executed and instead, an fp_disabled exception is generated.

Compatibility Note – Unlike SPARC V8, SPARC V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBfcc,
FBPfcc).

Exceptions fp_disabled
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 209

Branch on Integer Condition Codes with Prediction (BPcc)
A.8 Branch on Integer Condition Codes with
Prediction (BPcc)

Format (2)

Opcode cond Operation icc Test

BPA 1000 Branch Always 1

BPN 0000 Branch Never 0

BPNE 1001 Branch on Not Equal not Z

BPE 0001 Branch on Equal Z

BPG 1010 Branch on Greater not (Z or (N xor V))

BPLE 0010 Branch on Less or Equal Z or (N xor V)

BPGE 1011 Branch on Greater or Equal not (N xor V)

BPL 0011 Branch on Less N xor V

BPGU 1100 Branch on Greater Unsigned not (C or Z)

BPLEU 0100 Branch on Less or Equal Unsigned C or Z

BPCC 1101 Branch on Carry Clear (Greater Than or Equal,
Unsigned)

not C

BPCS 0101 Branch on Carry Set (Less than, Unsigned) C

BPPOS 1110 Branch on Positive not N

BPNEG 0110 Branch on Negative N

BPVC 1111 Branch on Overflow Clear not V

BPVS 0111 Branch on Overflow Set V

cc1 cc0 Condition Code

00 icc

01 —

10 xcc

11 —

31 1924 18 02530 29 28 22 21 20

00 a cond 001 cc1 p disp19cc0
210 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Branch on Integer Condition Codes with Prediction (BPcc)
Programming Note – To set the annul bit for BPcc instructions, append “,a” to
the opcode mnemonic. For example, use bgu,a %icc,label. Braces in the
preceding table signify that the “,a” is optional. To set the branch prediction bit,
append to an opcode mnemonic either “,pt” for predict taken or “,pn” for predict
not taken. If neither “,pt” nor “,pn” is specified, the assembler shall default to
“,pt”. To select the appropriate integer condition code, include “%icc” or “%xcc”
before the label.

Description: Unconditional branches and conditional branches are described below:

■ Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)
instruction for this branch type (op2 = 1) is used in SPARC V9 as an instruction
prefetch; that is, the effective address (PC + (4 × sign_ext(disp19))) specifies
an address of an instruction that is expected to be executed soon. If the Branch
Never’s annul field is 1, then the following (delay) instruction is annulled (not
executed). If the annul field is 0, then the following instruction is executed. In no
case does a Branch Never cause a transfer of control to take place.

Assembly Language Syntax

ba{,a}{,pt|,pn} i_or_x_cc, label

bn{,a}{,pt|,pn} i_or_x_cc, label (or: iprefetch label)

bne{,a}{,pt|,pn} i_or_x_cc, label (synonym: bnz)

be{,a}{,pt|,pn} i_or_x_cc, label (synonym: bz)

bg{,a}{,pt|,pn} i_or_x_cc, label

ble{,a}{,pt|,pn} i_or_x_cc, label

bge{,a}{,pt|,pn} i_or_x_cc, label

bl{,a}{,pt|,pn} i_or_x_cc, label

bgu{,a}{,pt|,pn} i_or_x_cc, label

bleu{,a}{,pt|,pn} i_or_x_cc, label

bcc{,a}{,pt|,pn} i_or_x_cc, label (synonym: bgeu)

bcs{,a}{,pt|,pn} i_or_x_cc, label (synonym: blu)

bpos{,a}{,pt|,pn} i_or_x_cc, label

bneg{,a}{,pt|,pn} i_or_x_cc, label

bvc{,a}{,pt|,pn} i_or_x_cc, label

bvs{,a}{,pt|,pn} i_or_x_cc, label
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 211

Branch on Integer Condition Codes with Prediction (BPcc)
BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If the
annul field of the branch instruction is 1, then the delay instruction is annulled
(not executed). If the annul field is 0, then the delay instruction is executed.

■ Conditional branches — Conditional BPcc instructions (except BPA and BPN)
evaluate one of the two integer condition codes (icc or xcc), as selected by cc0
and cc1, according to the cond field of the instruction, producing either a TRUE
or FALSE result. If TRUE, the branch is taken; that is, the instruction causes a PC-
relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp19)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not taken and
the a (annul) field is 1, the delay instruction is annulled (not executed). Note: The
annul bit has a different effect for conditional branches than it does for
unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch
is expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken; a 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instructions.

Exceptions illegal_instruction (cc1 cc0 = 012 or 112)
212 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Call and Link
A.9 Call and Link

Format (1)

Description The CALL instruction causes an unconditional, delayed, PC-relative control transfer
to address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30)
field is 30 bits wide, the target address lies within a range of –231 to +231 – 4 bytes.
The PC-relative displacement is formed by sign-extending the 30-bit word
displacement field to 62 bits and appending two low-order zeroes to obtain a 64-bit
byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into r[15] (out register 7).

Exceptions None

Opcode op Operation

CALL 01 Call and Link

Assembly Language Syntax

call label

31 030 29

01 disp30
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 213

Compare and Swap
A.10 Compare and Swap

Format (3)

Description Concurrent processes use these instructions for synchronization and memory
updates. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The last two can use wait-free
(nonlocking) protocols.

The CASXA instruction compares the value in register r[rs2] with the doubleword
in memory pointed to by the doubleword address in r[rs1]. If the values are equal,
the value in r[rd] is swapped with the doubleword pointed to by the doubleword
address in r[rs1]. If the values are not equal, the contents of the doubleword
pointed to by r[rs1] replaces the value in r[rd], but the memory location remains
unchanged.

The CASA instruction compares the low-order 32 bits of register r[rs2] with a word
in memory pointed to by the word address in r[rs1]. If the values are equal, then
the low-order 32 bits of register r[rd] are swapped with the contents of the
memory word pointed to by the address in r[rs1] and the high-order 32 bits of

Opcode op3 Operation

CASA
PASI 11 1100 Compare and Swap Word from Alternate Space

CASXAPASI 11 1110 Compare and Swap Extended from Alternate Space

Assembly Language Syntax

casa [regrs1] imm_asi, regrs2, regrd

casa [regrs1] %asi, regrs2, regrd

casxa [regrs1] imm_asi, regrs2, regrd

casxa [regrs1] %asi, regrs2, regrd

31 141924 18 13 12 5 4 02530 29

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
214 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Compare and Swap
register r[rd] are set to 0. If the values are not equal, the memory location remains
unchanged, but the zero-extended contents of the memory word pointed to by
r[rs1] replace the low-order 32 bits of r[rd] and the high-order 32 bits of register
r[rd] are set to 0.

A compare-and-swap instruction comprises three operations: a load, a compare, and
a swap. The overall instruction is atomic; that is, no intervening interrupts or
deferred traps are recognized by the processor and no intervening update resulting
from a compare-and-swap, swap, load, load-store unsigned byte, or store instruction
to the doubleword containing the addressed location, or any portion of it, is
performed by the memory system.

A compare-and-swap operation does not imply any memory barrier semantics.
When compare-and-swap is used for synchronization, the same consideration
should be given to memory barriers as if a load, store, or swap instruction were
used.

A compare-and-swap operation behaves as if it performs a store, either of a new
value from r[rd] or of the previous value in memory. The addressed location must
be writable, even if the values in memory and r[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field;
if i = 1, the address space is specified in the ASI register.

A mem_address_not_aligned exception is generated if the address in r[rs1] is not
properly aligned. CASXA and CASA cause a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between processors and I/O
DMA memory accesses are implementation dependent (impl. dep. #120).

Implementation Note – An implementation might cause an exception because of
an error during the store memory access, even though there was no error during the
load memory access.

Programming Note – Compare and Swap (CAS) and Compare and Swap Extended
(CASX) synthetic instructions are available for “big endian” memory accesses.
Compare and Swap Little (CASL) and Compare and Swap Extended Little (CASXL)
synthetic instructions are available for “little endian” memory accesses. See Synthetic
Instructions on page 484 for the syntax of these synthetic instructions.

The compare-and-swap instructions do not affect the condition codes.
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 215

Compare and Swap
Exceptions privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
216 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

DONE and RETRY
A.11 DONE and RETRY

Format (3)

Description The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI,
CCR, and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting
PC←TPC[TL] (the saved value of PC on trap) and nPC←TNPC[TL] (the saved
value of nPC on trap).

The DONE instruction skips the trapped instruction by setting PC←TNPC[TL] and
nPC←TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer
instruction produces undefined results.

Programming Note – Use the DONE and RETRY instructions to return from
privileged trap handlers.

Exceptions privileged_opcode
illegal_instruction (if TL = 0 or fcn = 2–31)

Opcode op3 fcn Operation

DONEP 11 1110 0 Return from Trap (skip trapped instruction)

RETRYP 11 1110 1 Return from Trap (retry trapped instruction)

— 11 1110 2–31 Reserved

Assembly Language Syntax

done

retry

10 op3fcn —

31 1924 18 02530 29
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 217

Edge Handling Instructions (VIS I, II)
A.12 Edge Handling Instructions (VIS I, II)

Format (3)

Opcode opf Operation

EDGE8 0 0000 0000 Eight 8-bit edge boundary processing

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no CC

EDGE8L 0 0000 0010 Eight 8-bit edge boundary processing little-endian

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing, little-endian, no CC

EDGE16 0 0000 0100 Four 16-bit edge boundary processing

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no CC

EDGE16L 0 0000 0110 Four 16-bit edge boundary processing little-endian

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing, little-endian, no CC

EDGE32 0 0000 1000 Two 32-bit edge boundary processing

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no CC

EDGE32L 0 0000 1010 Two 32-bit edge boundary processing little-endian

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing, little-endian, no CC

Assembly Language Syntax

edge8 regrs1, regrs2, regrd

edge8n regrs1, regrs2, regrd

edge8l regrs1, regrs2, regrd

edge8ln regrs1, regrs2, regrd

edge16 regrs1, regrs2, regrd

edge16n regrs1, regrs2, regrd

edge16l regrs1, regrs2, regrd

edge16ln regrs1, regrs2, regrd

edge32 regrs1, regrs2, regrd

edge32n regrs1, regrs2, regrd

edge32l regrs1, regrs2, regrd

edge32ln regrs1, regrs2, regrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
218 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Edge Handling Instructions (VIS I, II)
Description These instructions handle the boundary conditions for parallel pixel scan line loops,
where src1 is the address of the next pixel to render and src2 is the address of the
last pixel in the scan line.

EDGE8L(N), EDGE16L(N), and EDGE32L(N) are little-endian versions of EDGE8(N),
EDGE16(N), and EDGE32(N). They produce an edge mask that is bit-reversed from
their big-endian counterparts but are otherwise identical. This makes the mask
consistent with the mask produced by the graphics compare operations (see Pixel
Compare (VIS I) on page 292) and with the Partial Store instruction (see Partial Store
(VIS I) on page 282) on little-endian data.

A 2-bit (EDGE32), 4-bit (EDGE16), or 8-bit (EDGE8) pixel mask is stored in the least
significant bits of r[rd]. The mask is computed from left and right edge masks as
follows:

1. The left edge mask is computed from the 3 least significant bits (LSBs) of r[rs1],
and the right edge mask is computed from the 3 LSBs of r[s2], according to
TABLE A-4 (TABLE A-5 for little-endian byte ordering).

2. If a 32-bit address masking is disabled (PSTATE.AM = 0, 64-bit addressing) and
the upper 61 bits of r[rs1] are equal to the corresponding bits in r[rs2],
r[rd] is set to the right edge mask ANDed with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.AM = 1, 32-bit addressing) and bits
31:3 of r[rs1] match bits 31:3 of r[rs2], r[rd] is set to the right edge mask
ANDed with the left edge mask.

4. Otherwise, r[rd] is set to the left edge mask.

The integer condition codes are set per the rules of the SUBCC instruction with the
same operands (see A.65, Subtract, on page 340).

The EDGE(8,16,32)(L)N instructions do not set the integer condition codes.

Exceptions None

TABLE A-4 Edge Mask Specification

Edge Size A2–A0 Left Edge Right Edge

8 000 1111 1111 1000 0000

8 001 0111 1111 1100 0000

8 010 0011 1111 1110 0000

8 011 0001 1111 1111 0000

8 100 0000 1111 1111 1000

8 101 0000 0111 1111 1100
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 219

Edge Handling Instructions (VIS I, II)
8 110 0000 0011 1111 1110

8 111 0000 0001 1111 1111

16 00x 1111 1000

16 01x 0111 1100

16 10x 0011 1110

16 11x 0001 1111

32 0xx 11 10

32 1xx 01 11

TABLE A-5 Edge Mask Specification (Little-Endian)

Edge Size A2–A0 Left Edge Right Edge

8 000 1111 1111 0000 0001

8 001 1111 1110 0000 0011

8 010 1111 1100 0000 0111

8 011 1111 1000 0000 1111

8 100 1111 0000 0001 1111

8 101 1110 0000 0011 1111

8 110 1100 0000 0111 1111

8 111 1000 0000 1111 1111

16 00x 1111 0001

16 01x 1110 0011

16 10x 1100 0111

16 11x 1000 1111

32 0xx 11 01

32 1xx 10 11

TABLE A-4 Edge Mask Specification (Continued)

Edge Size A2–A0 Left Edge Right Edge
220 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Floating-Point Add and Subtract
A.13 Floating-Point Add and Subtract

Format (3)

Description The floating-point add instructions add the floating-point register(s) specified by the
rs1 field and the floating-point register(s) specified by the rs2 field. The
instructions then write the sum into the floating-point register(s) specified by the rd
field.

The floating-point subtract instructions subtract the floating-point register(s)
specified by the rs2 field from the floating-point register(s) specified by the rs1
field. The instructions then write the difference into the floating-point register(s)
specified by the rd field.

Opcode op3 opf Operation

FADDs 11 0100 0 0100 0001 Add Single

FADDd 11 0100 0 0100 0010 Add Double

FADDq 11 0100 0 0100 0011 Add Quad

FSUBs 11 0100 0 0100 0101 Subtract Single

FSUBd 11 0100 0 0100 0110 Subtract Double

FSUBq 11 0100 0 0100 0111 Subtract Quad

Assembly Language Syntax

fadds fregrs1, fregrs2, fregrd

faddd fregrs1, fregrs2, fregrd

faddq fregrs1, fregrs2, fregrd

fsubs fregrs1, fregrs2, fregrd

fsubd fregrs1, fregrs2, fregrd

fsubq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 221

Floating-Point Add and Subtract
Rounding is performed as specified by the FSR.RD field.

Notes – 1) SPARC JPS1 processors do not implement in hardware the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with ftt = unimplemented_FPop), which causes a trap.
Supervisor software then emulates these instructions.

2) For FADDs, FADDd, FSUBs, FSUBd, an fp_exception_other with
ftt = unfinished_FPop can occur if the add/subtract operation detects certain
unusual conditions. See TABLE 5-9 on page 61 for details.

Exceptions fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (ftt = unimplemented_FPop (FADDq and FSUBq only))
fp_exception_other (ftt = unifinished_FPop (FADDs, FADDd, FSUBs, FSUBd only))
222 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Floating-Point Compare
A.14 Floating-Point Compare

Format (3)

Opcode op3 opf Operation

FCMPs 11 0101 0 0101 0001 Compare Single

FCMPd 11 0101 0 0101 0010 Compare Double

FCMPq 11 0101 0 0101 0011 Compare Quad

FCMPEs 11 0101 0 0101 0101 Compare Single and Exception if Unordered

FCMPEd 11 0101 0 0101 0110 Compare Double and Exception if Unordered

FCMPEq 11 0101 0 0101 0111 Compare Quad and Exception if Unordered

Assembly Language Syntax

fcmps %fccn, fregrs1, fregrs2

fcmpd %fccn, fregrs1, fregrs2

fcmpq %fccn, fregrs1, fregrs2

fcmpes %fccn, fregrs1, fregrs2

fcmped %fccn, fregrs1, fregrs2

fcmpeq %fccn, fregrs1, fregrs2

cc1 cc0 Condition Code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

10 op3 rs2000 rs1

31 141924 18 13 02530 29 4

opf

52627

cc1 cc0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 223

Floating-Point Compare
Description These instructions compare the floating-point register(s) specified by the rs1 field
with the floating-point register(s) specified by the rs2 field, and set the selected
floating-point condition code (fccn) as shown below.

The “?” in the preceding table means that the comparison is unordered. The
unordered condition occurs when one or both of the operands to the compare is a
signalling or quiet NaN.

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

Compatibility Note – Unlike SPARC V8, SPARC V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBfcc,
FBPfcc).

SPARC V8 floating-point compare instructions are required to have a 0 in the r[rd]
field. In SPARC V9, bits 26 and 25 of the r[rd] field specify the floating-point
condition code to be set. Legal SPARC V8 code will work on SPARC V9 because the
zeroes in the r[rd] field are interpreted as fcc0 and the FBfcc instruction
branches according to fcc0.

Note – SPARC V9 JPS1 instructions do not implement in hardware the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with ftt = unimplemented_FPop), which causes a trap.
Supervisor software then emulates these instructions.

Exceptions fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (ftt = unimplemented_FPop (FCMPq, FCMPEq only))

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)
224 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Convert Floating-Point to Integer
A.15 Convert Floating-Point to Integer

Format (3)

Description: FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 64-bit integer in the floating-point register(s)
specified by rd.

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point
register(s) specified by rs2 to a 32-bit integer in the floating-point register specified
by rd.

The result is always rounded toward zero; that is, the rounding direction (RD) field
of the FSR register is ignored.

Opcode op3 opf Operation

FsTOx 11 0100 0 1000 0001 Convert Single to 64-bit Integer

FdTOx 11 0100 0 1000 0010 Convert Double to 64-bit Integer

FqTOx 11 0100 0 1000 0011 Convert Quad to 64-bit Integer

FsTOi 11 0100 0 1101 0001 Convert Single to 32-bit Integer

FdTOi 11 0100 0 1101 0010 Convert Double to 32-bit Integer

FqTOi 11 0100 0 1101 0011 Convert Quad to 32-bit Integer

Assembly Language Syntax

fstox fregrs2, fregrd

fdtox fregrs2, fregrd

fqtox fregrs2, fregrd

fstoi fregrs2, fregrd

fdtoi fregrs2, fregrd

fqtoi fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 225

Convert Floating-Point to Integer
If the floating-point operand’s value is too large to be converted to an integer of the
specified size or is a NaN or infinity, then an fp_exception_ieee_754 “invalid”
exception occurs. The value written into the floating-point register(s) specified by rd
in these cases is as defined in Integer Overflow Definition on page 396.

Note – SPARC V9 JPS1 instructions do not implement in hardware the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with ftt = unimplemented_FPop), which causes a trap.
Supervisor software then emulates these instructions.

Exceptions fp_disabled
fp_exception_ieee_754 (NV, NX)
fp_exception_other (ftt = unimplemented_FPop (FqTOi, FqTOx only))
226 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Convert Between Floating-Point Formats
A.16 Convert Between Floating-Point Formats

Format (3)

Description: These instructions convert the floating-point operand in the floating-point register(s)
specified by rs2 to a floating-point number in the destination format. They write the
result into the floating-point register(s) specified by rd.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF,
UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion
instructions) cannot.

Opcode op3 opf Operation

FsTOd 11 0100 0 1100 1001 Convert Single to Double

FsTOq 11 0100 0 1100 1101 Convert Single to Quad

FdTOs 11 0100 0 1100 0110 Convert Double to Single

FdTOq 11 0100 0 1100 1110 Convert Double to Quad

FqTOs 11 0100 0 1100 0111 Convert Quad to Single

FqTOd 11 0100 0 1100 1011 Convert Quad to Double

Assembly Language Syntax

fstod fregrs2, fregrd

fstoq fregrs2, fregrd

fdtos fregrs2, fregrd

fdtoq fregrs2, fregrd

fqtos fregrs2, fregrd

fqtod fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 227

Convert Between Floating-Point Formats
Any of these six instructions can trigger an NV exception if the source operand is a
signalling NaN.

Section B.2.1, Untrapped Result in Different Format from Operands, on page 393, defines
the rules for converting NaNs from one floating-point format to another.

Notes – 1) SPARC V9 JPS1 instructions do not implement in hardware the
instructions that refer to a quad floating-point register. Execution of such an
instruction generates fp_exception_other (with ftt = unimplemented_FPop), which
causes a trap. Supervisor software then emulates these instructions.

2) For FdTOs and FsTOd, an fp_exception_other with ftt = unfinished_FPop can
occur if the convert operation detects certain unusual conditions. See TABLE 5-9 on
page 61 for details.

Exceptions fp_disabled
fp_exception_ieee_754 (OF, UF, NV, NX)
fp_exception_other (ftt = unimplemented_FPop (FsTOq, FdTOq, FqTOs, FqTOd
only))
fp_exception_other (ftt = unfinished_FPop (FdTOs and FsTOd only))
228 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Convert Integer to Floating-Point
A.17 Convert Integer to Floating-Point

Format (3)

Description FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-
point registers specified by rs2 into a floating-point number in the destination
format.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-
point register(s) specified by rs2 into a floating-point number in the destination
format. All write their result into the floating-point register(s) specified by rd.

FiTOs, FxTOs, and FxTOd round as specified by the FSR.RD field.

Opcode op3 opf Operation

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to Single

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to Double

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to Quad

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to Single

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to Double

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to Quad

Assembly Language Syntax

fxtos fregrs2, fregrd

fxtod fregrs2, fregrd

fxtoq fregrs2, fregrd

fitos fregrs2, fregrd

fitod fregrs2, fregrd

fitoq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 229

Convert Integer to Floating-Point
Note – SPARC V9 JPS1 instructions do not implement in hardware the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with ftt = unimplemented_FPop), which causes a trap.
Supervisor software then emulates these instructions.

Exceptions fp_disabled
fp_exception_ieee_754 (NX (FiTOs, FxTOs, FxTOd only))
fp_exception_other (ftt = unimplemented_FPop (FiTOq, FxTOq only))
230 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Floating-Point Move
A.18 Floating-Point Move

Format (3)

Opcode op3 opf Operation

FMOVs 11 0100 0 0000 0001 Move Single

FMOVd 11 0100 0 0000 0010 Move Double

FMOVq 11 0100 0 0000 0011 Move Quad

FNEGs 11 0100 0 0000 0101 Negate Single

FNEGd 11 0100 0 0000 0110 Negate Double

FNEGq 11 0100 0 0000 0111 Negate Quad

FABSs 11 0100 0 0000 1001 Absolute Value Single

FABSd 11 0100 0 0000 1010 Absolute Value Double

FABSq 11 0100 0 0000 1011 Absolute Value Quad

Assembly Language Syntax

fmovs fregrs2, fregrd

fmovd fregrs2, fregrd

fmovq fregrs2, fregrd

fnegs fregrs2, fregrd

fnegd fregrs2, fregrd

fnegq fregrs2, fregrd

fabss fregrs2, fregrd

fabsd fregrs2, fregrd

fabsq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 231

Floating-Point Move
Description The single-precision versions of these instructions copy the contents of a single-
precision floating-point register to the destination. The double-precision versions
copy the contents of a double-precision floating-point register to the destination. The
quad-precision versions copy a quad-precision value in floating-point registers to
the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.

FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Note – SPARC V9 JPS1 instructions do not implement in hardware the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with ftt = unimplemented_FPop), which causes a trap.
Supervisor software then emulates these instructions.

Exceptions fp_disabled
fp_exception_other (ftt = unimplemented_FPop (FMOVq, FNEGq, FABSq only))
232 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Floating-Point Multiply and Divide
A.19 Floating-Point Multiply and Divide

Format (3)

Description The floating-point multiply instructions multiply the contents of the floating-point
register(s) specified by the rs1 field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the product into the floating-
point register(s) specified by the rd field.

Opcode op3 opf Operation

FMULs 11 0100 0 0100 1001 Multiply Single

FMULd 11 0100 0 0100 1010 Multiply Double

FMULq 11 0100 0 0100 1011 Multiply Quad

FsMULd 11 0100 0 0110 1001 Multiply Single to Double

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad

FDIVs 11 0100 0 0100 1101 Divide Single

FDIVd 11 0100 0 0100 1110 Divide Double

FDIVq 11 0100 0 0100 1111 Divide Quad

Assembly Language Syntax

fmuls fregrs1, fregrs2, fregrd

fmuld fregrs1, fregrs2, fregrd

fmulq fregrs1, fregrs2, fregrd

fsmuld fregrs1, fregrs2, fregrd

fdmulq fregrs1, fregrs2, fregrd

fdivs fregrs1, fregrs2, fregrd

fdivd fregrs1, fregrs2, fregrd

fdivq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 233

Floating-Point Multiply and Divide
The FsMULd instruction provides the exact double-precision product of two single-
precision operands, without underflow, overflow, or rounding error. Similarly,
FdMULq provides the exact quad-precision product of two double-precision
operands.

The floating-point divide instructions divide the contents of the floating-point
register(s) specified by the rs1 field by the contents of the floating-point register(s)
specified by the rs2 field. The instructions then write the quotient into the floating-
point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Notes – 1) SPARC V9 JPS1 instructions do not implement in hardware the
instructions that refer to a quad floating-point register. Execution of such an
instruction generates fp_exception_other (with ftt = unimplemented_FPop), which
causes a trap. Supervisor software then emulates these instructions.

2) For FDIVs and FDIVd, an fp_exception_other with ftt = unfinished_FPop can
occur if the divide unit detects certain unusual conditions. See TABLE 5-9 on page 61
for details.

Exceptions fp_disabled
fp_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)
fp_exception_other (ftt = unimplemented_FPop (FMULq, FdMULq, FDIVq)
fp_exception_other (ftt = unifinished_FPop (FMULs, FMULd, FSMULd, FDIVs, FDIV))
234 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Floating-Point Square Root
A.20 Floating-Point Square Root

Format (3)

Description These SPARC V9 instructions generate the square root of the floating-point operand
in the floating-point register(s) specified by the rs2 field and place the result in the
destination floating-point register(s) specified by the rd field. Rounding is
performed as specified by the FSR.RD field.

Note – SPARC V9 JPS1 instructions do not implement in hardware the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with ftt = unimplemented_FPop), which causes a trap.
Supervisor software then emulates these instructions.

For FSQRTs and FSQRTd an fp_exception_other (with ftt = unfinished_FPop) can
occur if the operand to the square root is positive denormalized. See FSR_floating-
point_trap_type (ftt) on page 59 for additional details.

Exceptions fp_disabled
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))
fp_exception_other (unimplemented_FPop) (Quad forms)
fp_exception_other (unfinished_FPop) (FSQRTs, FSQRTd)

Opcode op3 opf Operation

FSQRTs 11 0100 0 0010 1001 Square Root Single

FSQRTd 11 0100 0 0010 1010 Square Root Double

FSQRTq 11 0100 0 0010 1011 Square Root Quad

Assembly Language Syntax

fsqrts fregrs2, fregrd

fsqrtd fregrs2, fregrd

fsqrtq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 235

Flush Instruction Memory
A.21 Flush Instruction Memory

Format (3)

Description FLUSH ensures that the doubleword specified as the effective address is consistent
across any local caches and, in a multiprocessor system, will eventually become
consistent everywhere.

In the following discussion PFLUSH refers to the processor that executed the FLUSH
instruction.

FLUSH ensures that instruction fetches from the specified effective address by
PFLUSH appear to execute after any loads, stores, and atomic load-stores to that
address issued by PFLUSH prior to the FLUSH. In a multiprocessor system, FLUSH
also ensures that these values will eventually become visible to the instruction
fetches of all other processors. FLUSH behaves as if it were a store with respect to
MEMBAR-induced orderings. See A.35, Memory Barrier.

The effective address operand for the FLUSH instruction is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1. The least significant two address
bits of the effective address are unused and should be supplied as zeroes by
software. Bit 2 of the address is ignored because FLUSH operates on at least a
doubleword.

Opcode op3 Operation

FLUSH 11 1011 Flush Instruction Memory

Assembly Language Syntax

flush address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
236 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Flush Instruction Memory
Programming Notes –

1. Typically, FLUSH is used in self-modifying code. See H.1.6, Self-Modifying Code, for
information about use of the FLUSH instruction in portable self-modifying code.
The use of self-modifying code is discouraged.

2. The order in which memory is modified can be controlled by means of FLUSH and
MEMBAR instructions interspersed appropriately between stores and atomic load-
stores. FLUSH is needed only between a store and a subsequent instruction fetch
from the modified location. When multiple processes may concurrently modify
live (that is, potentially executing) code, the programmer must ensure that the
order of update maintains the program in a semantically correct form at all times.

3. The memory model guarantees in a uniprocessor that data loads observe the
results of the most recent store, even if there is no intervening FLUSH.

4. FLUSH may be time consuming.

5. In a multiprocessor system, the time it takes for a FLUSH to take effect is
implementation dependent. No mechanism is provided to ensure or test
completion.

6. Because FLUSH is designed to act on a doubleword and because, on some
implementations, FLUSH may trap to system software, system software should
provide a user-callable service routine for flushing arbitrarily sized regions of
memory. On some implementations, this routine would issue a series of FLUSH
instructions; on others, it might issue a single trap to system software that would
then flush the entire region.

IMPL. DEP. #42: If FLUSH is not implemented in hardware, it causes an
illegal_instruction exception and the function of FLUSH is performed by system
software. Whether FLUSH traps is implementation dependent.

Implementation Note – The effect of a FLUSH instruction as observed from the
processor on which FLUSH executes is immediate. Other processors in a
multiprocessor system eventually will see the effect of the FLUSH, but the latency is
implementation dependent.

On a SPARC JPS1 processor:

■ A FLUSH instruction flushes the processor pipeline and synchronizes the
processor.

■ Coherency between instruction and data memories is maintained by hardware;
therefore, a JPS1 implementation may ignore the address in a FLUSH instruction’s
operands. However, for portability across all SPARC V9 implementations,
software must supply the target effective address in FLUSH instructions.

Exceptions None
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 237

Flush Register Windows
A.22 Flush Register Windows

Format (3)

Description FLUSHW causes all active register windows except the current window to be flushed
to memory at locations determined by privileged software. FLUSHW behaves as a
NOP if there are no active windows other than the current window. At the
completion of the FLUSHW instruction, the only active register window is the current
one.

Programming Note – The FLUSHW instruction can be used by application software
to switch memory stacks or to examine register contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS – 2. Otherwise, there is more than
one active window, so FLUSHW causes a spill exception. The trap vector for the spill
exception is based on the contents of OTHERWIN and WSTATE. The spill trap handler
is invoked with the CWP set to the window to be spilled (that is, (CWP + CANSAVE + 2)
mod NWINDOWS). See Register Window Management Instructions on page 120.

Programming Note – Typically, the spill handler saves a window on a memory
stack and returns to reexecute the FLUSHW instruction. Thus, FLUSHW traps and
reexecutes until all active windows other than the current window have been
spilled.

Exceptions spill_n_normal
spill_n_other

Opcode op3 Operation

FLUSHW 10 1011 Flush Register Windows

Assembly Language Syntax

flushw

31 24 02530 29 19 18

—10 op3 —

14 13 12

— i=0
238 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Illegal Instruction Trap
A.23 Illegal Instruction Trap

Format (2)

Description The ILLTRAP instruction causes an illegal_instruction exception. The const22 value
is ignored by the hardware; specifically, this field is not reserved by the architecture
for any future use.

Compatibility Note – Except for its name, this instruction is identical to the SPARC
V8 UNIMP instruction.

Exceptions illegal_instruction

Opcode op op2 Operation

ILLTRAP 00 000 illegal_instruction trap

Assembly Language Syntax

illtrap const22

00 000 const22—

31 2124 02530 29 22
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 239

Implementation-Dependent Instructions
A.24 Implementation-Dependent Instructions

Format (3)

Description IMPL. DEP. #106: The IMPDEP2A opcode space is completely implementation
dependent. Implementation-dependent aspects of IMDEP2A instructions include
their operation, the interpretation of bits 29–25, 18–7, and 4–0 in their encodings,
and which (if any) exceptions they may cause.

IMPDEP2B instructions are implementation dependent but may only be used to
implement FMADD, FMSUB, FNMADD, and FNMSUB instructions (as described in the
SPARC JPS1 Implementation Supplement for the SPARC64 V processor). These
instructions are expected to become part of Commonality in a future JPS.

See I.2, Implementation-Dependent and Reserved Opcodes, for information about
extending the SPARC V9 instruction set by means of the implementation-dependent
instructions.

Compatibility Note – IMPDEP2A and IMPDEP2B are subsets of the SPARC V9
IMPDEP2 opcode space. The IMPDEP1 opcode space from SPARC V9 is occupied by
various VIS instructions in JPS1, so is no longer available for implementation-
dependent uses.

Exceptions implementation-dependent (IMPDEP2A, IMPDEP2B)

Opcode op3 op2 Operation

IMPDEP2A 11 0111 0 Implementation-Dependent Instruction 2A

IMPDEP2B 11 0111 1, 2, 3 Implementation-Dependent Instruction 2B (FMADD, FMSUB,
FNMADD, FNMSUB)

10 op3 impl-depimpl-dep

31 1824 02530 29 19

impl-dep

7 6 5 4

op2
240 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Jump and Link
A.25 Jump and Link

Format (3)

Description The JMPL instruction causes a register-indirect delayed control transfer to the
address given by “r[rs1] + r[rs2]” if i field = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL
instruction, into register r[rd].

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

Programming Note – A JMPL instruction with rd = 15 functions as a register-
indirect call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The typical return
address is “r[31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is
entered by a CALL instruction, or “r[15] + 8” if a leaf routine (one that does not use
the SAVE instruction) is entered by a CALL instruction or by a JMPL instruction with
rd = 15.

Exceptions mem_address_not_aligned

Opcode op3 Operation

JMPL 11 1000 Jump and Link

Assembly Language Syntax

jmpl address, regrd

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 241

Load Floating-Point
A.26 Load Floating-Point

† Encoded floating-point register value, as described on page 52.

Format (3)

Description: The load single floating-point instruction (LDF) copies a word from memory into
f[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned
doubleword from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quad-word
from memory into a quad-precision floating-point register.

The load floating-point state register instruction (LDXFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a
doubleword from memory into the FSR.

Opcode op3 rd Operation

LDF 10 0000 0–31 Load Floating-Point Register

LDDF 10 0011 † Load Double Floating-Point Register

LDQF 10 0010 † Load Quad Floating-Point Register

LDXFSR 10 0001 1 Load Floating-Point State Register

— 10 0001 2–31 Reserved

Assembly Language Syntax

ld [address], fregrd

ldd [address], fregrd

ldq [address], fregrd

ldx [address], %fsr

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
242 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load Floating-Point
Load floating-point instructions access the primary address space (ASI = 8016). The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

LDF causes a mem_address_not_aligned exception if the effective memory address is
not word aligned. LDXFSR causes a mem_address_not_aligned exception if the
address is not doubleword aligned. If the floating-point unit is not enabled (per
FPRS.FEF and PSTATE.PEF) or if no FPU is present, then a load floating-point
instruction causes an fp_disabled exception.

IMPL. DEP. #109(1): LDDF requires only word alignment. However, if the effective
address is word aligned but not doubleword aligned, LDDF may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.

IMPL. DEP. #111(1): LDQF requires only word alignment. However, if the effective
address is word aligned but not quadword aligned, LDQF may cause an
LDQF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDQF instruction and return.

Programming Note – In SPARC V8, some compilers issued sequences of single-
precision loads when they could not determine that doubleword or quadword
operands were properly aligned. For SPARC V9, since emulation of misaligned loads
is expected to be fast, we recommend that compilers issue sets of single-precision
loads only when they can determine that doubleword or quadword operands are not
properly aligned.

IMPL. DEP. #44 (1): If a load floating-point instruction traps with any type of access
error, the contents of the destination floating-point register(s) remain unchanged or
are undefined.

Exceptions illegal_instruction (op3=2116 and rd = 2–31)
fp_disabled
LDDF_mem_address_not_aligned (LDDF only)
LDQF_mem_address_not_aligned (LDQF only) (not used in JPS1)
mem_address_not_aligned
data_access_exception
PA_watchpoint
VA_watchpoint
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 243

Load Floating-Point from Alternate Space
A.27 Load Floating-Point from Alternate
Space

† Encoded floating-point register value, as described in Floating-Point Register Number Encoding on page 52.

Format (3)

Description: The load single floating-point from alternate space instruction (LDFA) copies a word
from memory into f[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a double-precision floating-point
register.

The load quad floating-point from alternate space instruction (LDQFA) copies a
word-aligned quadword from memory into a quad-precision floating-point register.

Load floating-point from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not

Opcode op3 rd Operation

LDFAPASI 11 0000 0–31 Load Floating-Point Register from Alternate Space

LDDFAPASI 11 0011 † Load Double Floating-Point Register from Alternate Space

LDQFAPASI 11 0010 † Load Quad Floating-Point Register from Alternate Space

Assembly Language Syntax

lda [regaddr] imm_asi, fregrd

lda [reg_plus_imm] %asi, fregrd

ldda [regaddr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

ldqa [regaddr] imm_asi, fregrd

ldqa [reg_plus_imm] %asi, fregrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
244 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load Floating-Point from Alternate Space
privileged. The effective address for these instructions is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

LDFA causes a mem_address_not_aligned exception if the effective memory address
is not word aligned. If the floating-point unit is not enabled (per FPRS.FEF and
PSTATE.PEF) or if no FPU is present, then load floating-point from alternate space
instructions cause an fp_disabled exception.

LDDFA with certain target ASIs is defined to be a 64-byte block-load instruction. See
Block Load and Store (VIS I) on page 199 for details.

LDDFA with certain target ASIs is defined to be a Short Floating-point Load
instruction. See Short Floating-Point Load and Store (VIS I) on page 326 for details.

Implementation Note – LDFA, LDDFA, and LDQFA cause a privileged_action
exception if PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

IMPL. DEP. #109(2): LDDFA requires only word alignment. However, if the effective
address is word aligned but not doubleword aligned, LDDFA may cause an
LDDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDDF instruction and return.

IMPL. DEP. #111(2): LDQFA requires only word alignment. However, if the effective
address is word aligned but not quadword aligned, LDQFA may cause an
LDQF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the LDQF instruction and return.

Programming Note – In SPARC V8, some compilers issued sequences of single-
precision loads when they could not determine that doubleword or quadword
operands were properly aligned. For SPARC V9, since emulation of misaligned loads
is expected to be fast, compilers should issue sets of single-precision loads only
when they can determine that doubleword or quadword operands are not properly
aligned.

IMPL. DEP. #44 (2): If a load floating-point instruction traps with any type of access
error, the destination floating-point register(s) remain unchanged or are undefined.

Exceptions illegal_instruction (LDQFA only)
fp_disabled
LDDF_mem_address_not_aligned (LDDFA only)
LDQF_mem_address_not_aligned (LDQFA only) (not used in JPS1)
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 245

Load Floating-Point from Alternate Space
fast_data_access_protection
VA_watchpoint
PA_watchpoint
246 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load Integer
A.28 Load Integer

Format (3)

Description: The load integer instructions copy a byte, a halfword, a word, or an extended word
from memory. All copy the fetched value into r[rd]. A fetched byte, halfword, or
word is right-justified in the destination register r[rd]; it is either sign-extended or
zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 00 1010 Load Signed Halfword

LDSW 00 1000 Load Signed Word

LDUB 00 0001 Load Unsigned Byte

LDUH 00 0010 Load Unsigned Halfword

LDUW 00 0000 Load Unsigned Word

LDX 00 1011 Load Extended Word

Assembly Language Syntax

ldsb [address], regrd

ldsh [address], regrd

ldsw [address], regrd

ldub [address], regrd

lduh [address], regrd

lduw [address], regrd (synonym: ld)

ldx [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 247

Load Integer
Load integer instructions access the primary address space (ASI = 8016). The
effective address is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not
halfword aligned. LDUW and LDSW cause a mem_address_not_aligned exception if
the effective address is not word aligned. LDX causes a mem_address_not_aligned
exception if the address is not doubleword aligned.

Compatibility Note – The SPARC V8 LD instruction has been renamed LDUW in
SPARC V9. The LDSW instruction is new in SPARC V9.

Exceptions mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint
248 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load Integer from Alternate Space
A.29 Load Integer from Alternate Space

Format (3)

Opcode op3 Operation

LDSBAPASI 01 1001 Load Signed Byte from Alternate Space

LDSHAPASI 01 1010 Load Signed Halfword from Alternate Space

LDSWAPASI 01 1000 Load Signed Word from Alternate Space

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate Space

LDUHAPASI 01 0010 Load Unsigned Halfword from Alternate Space

LDUWAPASI 01 0000 Load Unsigned Word from Alternate Space

LDXAPASI 01 1011 Load Extended Word from Alternate Space

Assembly Language Syntax

ldsba [regaddr] imm_asi, reg rd

ldsha [regaddr] imm_asi, reg rd

ldswa [regaddr] imm_asi, reg rd

lduba [regaddr] imm_asi, reg rd

lduha [regaddr] imm_asi, reg rd

lduwa [regaddr] imm_asi, reg rd (synonym: lda)

ldxa [regaddr] imm_asi, reg rd

ldsba [reg_plus_imm] %asi, reg rd

ldsha [reg_plus_imm] %asi, reg rd

ldswa [reg_plus_imm] %asi, reg rd

lduba [reg_plus_imm] %asi, reg rd

lduha [reg_plus_imm] %asi, reg rd

lduwa [reg_plus_imm] %asi, reg rd (synonym: lda)

ldxa [reg_plus_imm] %asi, reg rd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 249

Load Integer from Alternate Space
Description The load integer from alternate space instructions copy a byte, a halfword, a word,
or an extended word from memory. All copy the fetched value into r[rd]. A
fetched byte, halfword, or word is right-justified in the destination register r[rd]; it
is either sign-extended or zero-filled on the left, depending on whether the opcode
specifies a signed or unsigned operation, respectively.

The load integer from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

LDUHA and LDSHA cause a mem_address_not_aligned exception if the address is not
halfword aligned. LDUWA and LDSWA cause a mem_address_not_aligned exception if
the effective address is not word aligned; LDXA causes a mem_address_not_aligned
exception if the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7
of the ASI is 0.

Exceptions privileged_action
mem_address_not_aligned (all except LDSBA and LDUBA)
data_access_exception
PA_watchpoint
VA_watchpoint
fast_data_access_MMU_miss
fast_data_access_protection
data_access_error
250 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load Quadword, Atomic (VIS I)
A.30 Load Quadword, Atomic (VIS I)

Format (3) LDDA

Description ASIs 2416 and 2C16 are used with the LDDA instruction to atomically read a 128-bit,
virtually addressed data item. They are intended to be used by a TLB miss handler
to access TSB entries without requiring locks. The data are placed in an even/odd
pair of 64-bit registers. The lowest-address 64 bits are placed in the even register; the
highest-address 64 bits are placed in the odd-numbered register. The reference is
made from the nucleus context.

In addition to the usual traps for LDDA using a privileged ASI, a
data_access_exception trap occurs for a noncacheable access or if a quadword-load
ASI is used with any instruction other than LDDA. A mem_address_not_aligned trap
is taken if the access is not aligned on a 16-byte boundary.

With respect to little endian memory, a Load Quadword Atomic instruction behaves
as if it comprises two 64-bit loads, each of which is byte-swapped independently
before being written into its respective destination register.

Exceptions: privileged_action
PA_watchpoint (recognized on only the first 8 bytes of an access)
VA_watchpoint (recognized on only the first 8 bytes of an access)
illegal_instruction (misaligned rd)
mem_address_not_aligned

Opcode imm_asi ASI Value Operation

LDDA ASI_NUCLEUS_QUAD_LDD 2416 128-bit atomic load

LDDA ASI_NUCLEUS_QUAD_LDD_L 2C16 128-bit atomic load, little-endian

Assembly Language Syntax

ldda [reg_addr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18 14 13 5 4

rd11 010011 simm_13rs1 i=1

rd11 010011 imm_asirs1 rs2i=0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 251

Load Quadword, Atomic (VIS I)
data_access_exception (an attempt to access a page marked as noncacheable)
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
252 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load-Store Unsigned Byte
A.31 Load-Store Unsigned Byte

Format (3)

Description The load-store unsigned byte instruction copies a byte from memory into r[rd],
then rewrites the addressed byte in memory to all 1’s. The fetched byte is right-
justified in the destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more processors
executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing
all or parts of the same doubleword simultaneously are guaranteed to execute them
in an undefined, but serial, order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between processors and I/O
DMA memory accesses are implementation dependent (impl. dep. #120).

Exceptions data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

Opcode op3 Operation

LDSTUB 00 1101 Load-Store Unsigned Byte

Assembly Language Syntax

ldstub [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 253

Load-Store Unsigned Byte to Alternate Space
A.32 Load-Store Unsigned Byte to Alternate
Space

Format (3)

 Description The load-store unsigned byte into alternate space instruction copies a byte from
memory into r[rd], then rewrites the addressed byte in memory to all 1’s. The
fetched byte is right-justified in the destination register r[rd] and zero-filled on the
left.

The operation is performed atomically, that is, without allowing intervening
interrupts or deferred traps. In a multiprocessor system, two or more processors
executing LDSTUB, LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing
all or parts of the same doubleword simultaneously are guaranteed to execute them
in an undefined, but serial, order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in the
imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is 0; otherwise, it is not privileged. The effective address is
“r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

LDSTUBA causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASI is 0.

For information about the coherence and atomicity of memory operations between
processors and I/O DMA memory accesses, see Appendix F of the Implementation
Supplements.

Opcode op3 Operation

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate Space

Assembly Language Syntax

ldstuba [regaddr] imm_asi, regrd

ldstuba [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
254 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Load-Store Unsigned Byte to Alternate Space
Exceptions privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 255

Logical Operate Instructions (VIS I)
A.33 Logical Operate Instructions (VIS I)
Opcode opf Operation

FZERO 0 0110 0000 Zero fill

FZEROS 0 0110 0001 Zero fill, single precision

FONE 0 0111 1110 One fill

FONES 0 0111 1111 One fill, single precision

FSRC1 0 0111 0100 Copy src1

FSRC1S 0 0111 0101 Copy src1, single precision

FSRC2 0 0111 1000 Copy src2

FSRC2S 0 0111 1001 Copy src2, single precision

FNOT1 0 0110 1010 Negate (1’s complement) src1

FNOT1S 0 0110 1011 Negate (1’s complement) src1, single precision

FNOT2 0 0110 0110 Negate (1’s complement) src2

FNOT2S 0 0110 0111 Negate (1’s complement) src2, single precision

FOR 0 0111 1100 Logical OR

FORS 0 0111 1101 Logical OR, single precision

FNOR 0 0110 0010 Logical NOR

FNORS 0 0110 0011 Logical NOR, single precision

FAND 0 0111 0000 Logical AND

FANDS 0 0111 0001 Logical AND, single precision

FNAND 0 0110 1110 Logical NAND

FNANDS 0 0110 1111 Logical NAND, single precision

FXOR 0 0110 1100 Logical XOR

FXORS 0 0110 1101 Logical XOR, single precision

FXNOR 0 0111 0010 Logical XNOR

FXNORS 0 0111 0011 Logical XNOR, single precision

FORNOT1 0 0111 1010 Negated src1 OR src2

FORNOT1S 0 0111 1011 Negated src1 OR src2, single precision

FORNOT2 0 0111 0110 src1 OR negated src2

FORNOT2S 0 0111 0111 src1 OR negated src2, single precision

FANDNOT1 0 0110 1000 Negated src1 AND src2

FANDNOT1S 0 0110 1001 Negated src1 AND src2, single precision
256 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Logical Operate Instructions (VIS I)
Format (3)

FANDNOT2 0 0110 0100 src1 AND negated src2

FANDNOT2S 0 0110 0101 src1 AND negated src2, single precision

Assembly Language Syntax

fzero fregrd

fzeros fregrd

fone fregrd

fones fregrd

fsrc1 fregrs1, fregrd

fsrc1s fregrs1, fregrd

fsrc2 fregrs2, fregrd

fsrc2s fregrs2, fregrd

fnot1 fregrs1, fregrd

fnot1s fregrs1, fregrd

fnot2 fregrs2, fregrd

fnot2s fregrs2, fregrd

for fregrs1, fregrs2, fregrd

fors fregrs1, fregrs2, fregrd

fnor fregrs1, fregrs2, fregrd

fnors fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fxor fregrs1, fregrs2, fregrd

fxors fregrs1, fregrs2, fregrd

fxnor fregrs1, fregrs2, fregrd

fxnors fregrs1, fregrs2, fregrd

fornot1 fregrs1, fregrs2, fregrd

Opcode opf Operation

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 257

Logical Operate Instructions (VIS I)
Description The standard 64-bit versions of these instructions perform one of sixteen 64-bit
logical operations between the 64-bit floating-point registers specified by rs1 and
rs2. The result is stored in the 64-bit floating-point destination register specified by
rd. The 32-bit (single-precision) version of these instructions perform 32-bit logical
operations.

Exceptions fp_disabled

fornot1s fregrs1, fregrs2, fregrd

fornot2 fregrs1, fregrs2, fregrd

fornot2s fregrs1, fregrs2, fregrd

fandnot1 fregrs1, fregrs2, fregrd

fandnot1s fregrs1, fregrs2, fregrd

fandnot2 fregrs1, fregrs2, fregrd

fandnot2s fregrs1, fregrs2, fregrd

Assembly Language Syntax
258 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Logical Operations
A.34 Logical Operations

Format (3)

Opcode op3 Operation

AND 00 0001 And

ANDcc 01 0001 And and modify cc’s

ANDN 00 0101 And Not

ANDNcc 01 0101 And Not and modify cc’s

OR 00 0010 Inclusive Or

ORcc 01 0010 Inclusive Or and modify cc’s

ORN 00 0110 Inclusive Or Not

ORNcc 01 0110 Inclusive Or Not and modify cc’s

XOR 00 0011 Exclusive Or

XORcc 01 0011 Exclusive Or and modify cc’s

XNOR 00 0111 Exclusive Nor

XNORcc 01 0111 Exclusive Nor and modify cc’s

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 259

Logical Operations

Description These instructions implement bitwise logical operations. They compute “r[rs1] op
r[rs2]” if i = 0, or “r[rs1] op sign_ext(simm13)” if i = 1, and write the result
into r[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition
codes (icc and xcc). They set the condition codes as follows:

■ icc.v, icc.c, xcc.v, and xcc.c to 0
■ icc.n to bit 31 of the result
■ xcc.n to bit 63 of the result
■ icc.z to 1 if bits 31:0 of the result are zero (otherwise to 0)
■ xcc.z to 1 if all 64 bits of the result are zero (otherwise to 0)

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before
applying the main (AND or OR) operation.

Programming Note – XNOR and XNORcc are identical to the XOR-Not and XOR-
Not-cc logical operations, respectively.

Exceptions None

Assembly Language Syntax

and regrs1, reg_or_imm, regrd

andcc regrs1, reg_or_imm, regrd

andn regrs1, reg_or_imm, regrd

andncc regrs1, reg_or_imm, regrd

or regrs1, reg_or_imm, regrd

orcc regrs1, reg_or_imm, regrd

orn regrs1, reg_or_imm, regrd

orncc regrs1, reg_or_imm, regrd

xor regrs1, reg_or_imm, regrd

xorcc regrs1, reg_or_imm, regrd

xnor regrs1, reg_or_imm, regrd

xnorcc regrs1, reg_or_imm, regrd
260 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Memory Barrier
A.35 Memory Barrier

Format (3)

Description The memory barrier instruction, MEMBAR, has two complementary functions: to
express order constraints between memory references and to provide explicit control
of memory-reference completion. The membar_mask field in the suggested assembly
language is the concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references
appearing before the MEMBAR and memory references following it in a program. The
particular classes of memory references are specified by the mmask field. Memory
references are classified as loads (including load instructions LDSTUB(A), SWAP(A),
CASA, and CASXA and stores (including store instructions LDSTUB(A), SWAP(A), CASA,
CASXA, and FLUSH). The mmask field specifies the classes of memory references
subject to ordering, as described below. MEMBAR applies to all memory operations in
all address spaces referenced by the issuing processor, but it has no effect on
memory references by other processors. When the cmask field is nonzero,
completion as well as order constraints are imposed, and the order imposed can be
more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from
memory and cannot be modified by another processor. A store has been performed
when the value stored has become visible, that is, when the previous value can no
longer be read by any processor. In specifying the effect of MEMBAR, instructions are
considered to be executed as if they were processed in a strictly sequential fashion,
with each instruction completed before the next has begun.

Opcode op3 Operation

MEMBAR 10 1000 Memory Barrier

Assembly Language Syntax

membar membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

6

4

7

cmask
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 261

Memory Barrier
The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-6 specifies
the order constraint that each bit of mmask (selected when set to 1) imposes on
memory references appearing before and after the MEMBAR. From zero to four mask
bits may be selected in the mmask field.

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask
field, described in TABLE A-7, specify additional constraints on the order of memory
references and the processing of instructions. If cmask is zero, then MEMBAR enforces
the partial ordering specified by the mmask field; if cmask is nonzero, then
completion and partial order constraints are applied.

For information on the use of MEMBAR, see 8.4.3, MEMBAR Instruction, and Appendix
J, Programming with the Memory Models. For additional information about the
memory models themselves, see Chapter 8, Memory Models.

The encoding of MEMBAR is identical to that of the RDASR instruction, except that
rs1 = 15, rd = 0, and i = 1.

TABLE A-6 MEMBAR mmask Encodings

Mask Bit Name Description

mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction must be
visible to all processors before the effect of any stores following the MEMBAR.
Equivalent to the deprecated STBAR instruction.

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been
performed before the effects of any stores following the MEMBAR are visible to
any other processor.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction must be
visible to all processors before loads following the MEMBAR may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been
performed before any loads following the MEMBAR may be performed.

TABLE A-7 MEMBAR cmask Encodings

Mask Bit Function Name Description

cmask[2] Synchronization
barrier

#Sync All operations (including nonmemory reference operations)
appearing prior to the MEMBAR must have been performed and
the effects of any exceptions be visible before any instruction
after the MEMBAR may be initiated.

cmask[1] Memory issue
barrier

#MemIssue All memory reference operations appearing prior to the
MEMBAR must have been performed before any memory
operation after the MEMBAR may be initiated.

cmask[0] Lookaside
barrier

#Lookaside A store appearing prior to the MEMBAR must complete before
any load following the MEMBAR referencing the same address
can be initiated.
262 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Memory Barrier
The coherence and atomicity of memory operations between processors and I/O
DMA memory accesses are implementation dependent (impl. dep. #120).

Compatibility Note – MEMBAR with mmask = 816 and cmask = 016 (“membar
#StoreStore”) is identical in function to the SPARC V8 STBAR instruction, which
is deprecated.

Exceptions None
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 263

Move Floating-Point Register on Condition (FMOVcc)
A.36 Move Floating-Point Register on
Condition (FMOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc /xcc Test

FMOVA 11 0101 1000 Move Always 1

FMOVN 11 0101 0000 Move Never 0

FMOVNE 11 0101 1001 Move if Not Equal not Z

FMOVE 11 0101 0001 Move if Equal Z

FMOVG 11 0101 1010 Move if Greater not (Z or (N xor V))

FMOVLE 11 0101 0010 Move if Less or Equal Z or (N xor V)

FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)

FMOVL 11 0101 0011 Move if Less N xor V

FMOVGU 11 0101 1100 Move if Greater Unsigned not (C or Z)

FMOVLEU 11 0101 0100 Move if Less or Equal Unsigned (C or Z)

FMOVCC 11 0101 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

FMOVCS 11 0101 0101 Move if Carry Set (Less than, Unsigned) C

FMOVPOS 11 0101 1110 Move if Positive not N

FMOVNEG 11 0101 0110 Move if Negative N

FMOVVC 11 0101 1111 Move if Overflow Clear not V

FMOVVS 11 0101 0111 Move if Overflow Set V
264 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Floating-Point Register on Condition (FMOVcc)
For Floating-Point Condition Codes

Format (4)

Opcode op3 cond Operation fcc Test

FMOVFA 11 0101 1000 Move Always 1

FMOVFN 11 0101 0000 Move Never 0

FMOVFU 11 0101 0111 Move if Unordered U

FMOVFG 11 0101 0110 Move if Greater G

FMOVFUG 11 0101 0101 Move if Unordered or Greater G or U

FMOVFL 11 0101 0100 Move if Less L

FMOVFUL 11 0101 0011 Move if Unordered or Less L or U

FMOVFLG 11 0101 0010 Move if Less or Greater L or G

FMOVFNE 11 0101 0001 Move if Not Equal L or G or U

FMOVFE 11 0101 1001 Move if Equal E

FMOVFUE 11 0101 1010 Move if Unordered or Equal E or U

FMOVFGE 11 0101 1011 Move if Greater or Equal E or G

FMOVFUGE 11 0101 1100 Move if Unordered or Greater or Equal E or G or U

FMOVFLE 11 0101 1101 Move if Less or Equal E or L

FMOVFULE 11 0101 1110 Move if Unordered or Less or Equal E or L or U

FMOVFO 11 0101 1111 Move if Ordered E or L or G

31 1924 18 1314 11 5 4 010172530 29

10 rd op3 cond opf_cc opf_low rs20
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 265

Move Floating-Point Register on Condition (FMOVcc)
Encoding of the opf_cc Field (also see TABLE E-10 on page 434)

Encoding of opf Field (opf_cc opf_low)

opf_cc Condition Code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 —

110 xcc

111 —

Instruction Variation opf_cc opf_low opf

FMOVScc %fccn,rs2,rd 0nn 00 0001 0 nn00 0001

FMOVDcc %fccn,rs2,rd 0nn 00 0010 0 nn00 0010

FMOVQcc %fccn,rs2,rd 0nn 00 0011 0 nn00 0011

FMOVScc %icc, rs2,rd 100 00 0001 1 0000 0001

FMOVDcc %icc, rs2,rd 100 00 0010 1 0000 0010

FMOVQcc %icc, rs2,rd 100 00 0011 1 0000 0011

FMOVScc %xcc, rs2,rd 110 00 0001 1 1000 0001

FMOVDcc %xcc, rs2,rd 110 00 0010 1 1000 0010

FMOVQcc %xcc, rs2,rd 110 00 0011 1 1000 0011
266 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Floating-Point Register on Condition (FMOVcc)
For Integer Condition Codes

Programming Note – To select the appropriate condition code, include %icc or
%xcc before the registers.

Assembly Language Syntax

fmov{s,d,q}a i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}n i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ne i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}g i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}le i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ge i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}l i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}gu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}leu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}cc i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}geu)

fmov{s,d,q}cs i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}lu)

fmov{s,d,q}pos i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}neg i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vc i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vs i_or_x_cc, fregrs2, fregrd
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 267

Move Floating-Point Register on Condition (FMOVcc)
For Floating-Point Condition Codes

Description These instructions copy the floating-point register(s) specified by rs2 to the floating-
point register(s) specified by rd if the condition indicated by the cond field is
satisfied by the selected condition code. The condition code used is specified by the
opf_cc field of the instruction. If the condition is FALSE, then the destination
register(s) are not changed.

These instructions do not modify any condition codes.

Programming Note – Branches cause the performance of most implementations to
degrade significantly. Frequently, the MOVcc and FMOVcc instructions can be used to
avoid branches. For example, the following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as
! assume A is in %f0; B is in %f2; %xx points to constant area

ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B

Assembly Language Syntax

fmov{s,d,q}a %fccn, fregrs2, fregrd

fmov{s,d,q}n %fccn, fregrs2, fregrd

fmov{s,d,q}u %fccn, fregrs2, fregrd

fmov{s,d,q}g %fccn, fregrs2, fregrd

fmov{s,d,q}ug %fccn, fregrs2, fregrd

fmov{s,d,q}l %fccn, fregrs2, fregrd

fmov{s,d,q}ul %fccn, fregrs2, fregrd

fmov{s,d,q}lg %fccn, fregrs2, fregrd

fmov{s,d,q}ne %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}ue %fccn, fregrs2, fregrd

fmov{s,d,q}ge %fccn, fregrs2, fregrd

fmov{s,d,q}uge %fccn, fregrs2, fregrd

fmov{s,d,q}le %fccn, fregrs2, fregrd

fmov{s,d,q}ule %fccn, fregrs2, fregrd

fmov{s,d,q}o %fccn, fregrs2, fregrd
268 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Floating-Point Register on Condition (FMOVcc)
fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as
ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches and may boost
performance significantly. Use MOVcc and FMOVcc instead of branches wherever
these instructions would improve performance.

Exceptions fp_disabled
fp_exception_other (ftt = unimplemented_FPop (opf_cc = 1012 or 1112 and quad
forms))
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 269

Move Floating-Point Register on Integer Register Condition (FMOVr)
A.37 Move Floating-Point Register on Integer
Register Condition (FMOVr)

Format (4)

Encoding of opf_low Field

Opcode op3 rcond Operation Test

— 11 0101 000 Reserved —

FMOVRZ 11 0101 001 Move if Register Zero r[rs1] = 0

FMOVRLEZ 11 0101 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

FMOVRLZ 11 0101 011 Move if Register Less Than Zero r[rs1] < 0

— 11 0101 100 Reserved —

FMOVRNZ 11 0101 101 Move if Register Not Zero r[rs1] ≠ 0

FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r[rs1] > 0

FMOVRGEZ 11 0101 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Instruction variation opf_low

FMOVSrcond rs1, rs2, rd 0 0101

FMOVDrcond rs1, rs2, rd 0 0110

FMOVQrcond rs1, rs2, rd 0 0111

31 141924 18 13 12 9 5 4 0102530 29

10 rd op3 0 rcond opf_low rs2rs1
270 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Floating-Point Register on Integer Register Condition (FMOVr)
Description If the contents of integer register r[rs1] satisfy the condition specified in the
rcond field, these instructions copy the contents of the floating-point register(s)
specified by the rs2 field to the floating-point register(s) specified by the rd field. If
the contents of r[rs1] do not satisfy the condition, the floating-point register(s)
specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they
do not modify any condition codes.

Implementation Note – If this instruction is implemented by tagging each register
value with an N (negative) and a Z (zero) bit, use the following table to determine
whether rcond is TRUE:

Exceptions fp_disabled
fp_exception_other (unimplemented_FPop (rcond = 0002 or 1002 and quad forms))

Assembly Language Syntax

fmovr{s,d,q}e regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}z)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}ne regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}nz)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

Branch Test

FMOVRNZ not Z

FMOVRZ Z

FMOVGEZ not N

FMOVRLZ N

FMOVRLEZ N or Z

FMOVRGZ N nor Z
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 271

Move Integer Register on Condition (MOVcc)
A.38 Move Integer Register on Condition
(MOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcc Test

MOVA 10 1100 1000 Move Always 1

MOVN 10 1100 0000 Move Never 0

MOVNE 10 1100 1001 Move if Not Equal not Z

MOVE 10 1100 0001 Move if Equal Z

MOVG 10 1100 1010 Move if Greater not (Z or (N xor V))

MOVLE 10 1100 0010 Move if Less or Equal Z or (N xor V)

MOVGE 10 1100 1011 Move if Greater or Equal not (N xor V)

MOVL 10 1100 0011 Move if Less N xor V

MOVGU 10 1100 1100 Move if Greater Unsigned not (C or Z)

MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (C or Z)

MOVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C

MOVPOS 10 1100 1110 Move if Positive not N

MOVNEG 10 1100 0110 Move if Negative N

MOVVC 10 1100 1111 Move if Overflow Clear not V

MOVVS 10 1100 0111 Move if Overflow Set V
272 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Integer Register on Condition (MOVcc)
For Floating-Point Condition Codes

Format (4)

Opcode op3 cond Operation fcc Test

MOVFA 10 1100 1000 Move Always 1

MOVFN 10 1100 0000 Move Never 0

MOVFU 10 1100 0111 Move if Unordered U

MOVFG 10 1100 0110 Move if Greater G

MOVFUG 10 1100 0101 Move if Unordered or Greater G or U

MOVFL 10 1100 0100 Move if Less L

MOVFUL 10 1100 0011 Move if Unordered or Less L or U

MOVFLG 10 1100 0010 Move if Less or Greater L or G

MOVFNE 10 1100 0001 Move if Not Equal L or G or U

MOVFE 10 1100 1001 Move if Equal E

MOVFUE 10 1100 1010 Move if Unordered or Equal E or U

MOVFGE 10 1100 1011 Move if Greater or Equal E or G

MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal E or G or U

MOVFLE 10 1100 1101 Move if Less or Equal E or L

MOVFULE 10 1100 1110 Move if Unordered or Less or Equal E or L or U

MOVFO 10 1100 1111 Move if Ordered E or L or G

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 273

Move Integer Register on Condition (MOVcc)
For Integer Condition Codes

Programming Note – To select the appropriate condition code, include %icc or
%xcc before the register or immediate field.

cc2 cc1 cc0 Condition Code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 Reserved

110 xcc

111 Reserved

Assembly Language Syntax

mova i_or_x_cc, reg_or_imm11, regrd

movn i_or_x_cc, reg_or_imm11, regrd

movne i_or_x_cc, reg_or_imm11, regrd (synonym: movnz)

move i_or_x_cc, reg_or_imm11, regrd (synonym: movz)

movg i_or_x_cc, reg_or_imm11, regrd

movle i_or_x_cc, reg_or_imm11, regrd

movge i_or_x_cc, reg_or_imm11, regrd

movl i_or_x_cc, reg_or_imm11, regrd

movgu i_or_x_cc, reg_or_imm11, regrd

movleu i_or_x_cc, reg_or_imm11, regrd

movcc i_or_x_cc, reg_or_imm11, regrd (synonym: movgeu)

movcs i_or_x_cc, reg_or_imm11, regrd (synonym: movlu)

movpos i_or_x_cc, reg_or_imm11, regrd

movneg i_or_x_cc, reg_or_imm11, regrd

movvc i_or_x_cc, reg_or_imm11, regrd

movvs i_or_x_cc, reg_or_imm11, regrd
274 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Integer Register on Condition (MOVcc)
For Floating-Point Condition Codes

Programming Note – To select the appropriate condition code, include %fcc0,
%fcc1, %fcc2, or %fcc3 before the register or immediate field.

Description These instructions test to see if cond is TRUE for the selected condition codes. If so,
they copy the value in r[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into
r[rd]. The condition code used is specified by the cc2, cc1, and cc0 fields of the
instruction. If the condition is FALSE, then r[rd] is not changed.

These instructions copy an integer register to another integer register if the condition
is TRUE. The condition code that is used to determine whether the move will occur
can be either integer condition code (icc or xcc) or any floating-point condition
code (fcc0, fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

Assembly Language Syntax

mova %fccn, reg_or_imm11, regrd

movn %fccn, reg_or_imm11, regrd

movu %fccn, reg_or_imm11, regrd

movg %fccn, reg_or_imm11, regrd

movug %fccn, reg_or_imm11, regrd

movl %fccn, reg_or_imm11, regrd

movul %fccn, reg_or_imm11, regrd

movlg %fccn, reg_or_imm11, regrd

movne %fccn, reg_or_imm11, regrd (synonym: movnz)

move %fccn, reg_or_imm11, regrd (synonym: movz)

movue %fccn, reg_or_imm11, regrd

movge %fccn, reg_or_imm11, regrd

movuge %fccn, reg_or_imm11, regrd

movle %fccn, reg_or_imm11, regrd

movule %fccn, reg_or_imm11, regrd

movo %fccn, reg_or_imm11, regrd
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 275

Move Integer Register on Condition (MOVcc)
Programming Note – Branches cause the performance of many implementations
to degrade significantly. Frequently, the MOVcc and FMOVcc instructions can be used
to avoid branches. For example, the C language if-then-else statement

if (A > B) then X = 1; else X = 0;

can be coded as
cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3 ! X = 1
or %g0,0,%i3 ! X = 0

label:...

This takes four instructions including a branch. With MOVcc this could be coded as

cmp %i0,%i2
or %g0,1,%i3 ! assume X = 1
movle %xcc,0,%i3 ! overwrite with X = 0

This approach takes only three instructions and no branches and may boost
performance significantly. Use MOVcc and FMOVcc instead of branches wherever
these instructions would increase performance.

Exceptions illegal_instruction (cc2 cc1 cc0 = 1012 or 1112)
fp_disabled (cc2 cc1 cc0 = 0002 , 0012, 0102 , or 0112 and the FPU is
disabled)
276 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Move Integer Register on Register Condition (MOVr)
A.39 Move Integer Register on Register
Condition (MOVr)

Format (3)

Opcode op3 rcond Operation Test

— 10 1111 000 Reserved —

MOVRZ 10 1111 001 Move if Register Zero r[rs1] = 0

MOVRLEZ 10 1111 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

MOVRLZ 10 1111 011 Move if Register Less Than Zero r[rs1] < 0

— 10 1111 100 Reserved —

MOVRNZ 10 1111 101 Move if Register Not Zero r[rs1] ≠ 0

MOVRGZ 10 1111 110 Move if Register Greater Than Zero r[rs1] > 0

MOVRGEZ 10 1111 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Assembly Language Syntax

movrz regrs1, reg_or_imm10, regrd (synonym: movre)

movrlez regrs1, reg_or_imm10, regrd

movrlz regrs1, reg_or_imm10, regrd

movrnz regrs1, reg_or_imm10, regrd (synonym: movrne)

movrgz regrs1, reg_or_imm10, regrd

movrgez regrs1, reg_or_imm10, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 277

Move Integer Register on Register Condition (MOVr)
Description If the contents of integer register r[rs1] satisfy the condition specified in the
rcond field, these instructions copy r[rs2] (if i = 0) or sign_ext(simm10) (if
i = 1) into r[rd]. If the contents of r[rs1] do not satisfy the condition, then
r[rd] is not modified. These instructions treat the register contents as a signed
integer value; they do not modify any condition codes.

Implementation Note – If this instruction is implemented by tagging each register
value with an N (negative) and a Z (zero) bit, use the table below to determine if
rcond is TRUE.

Exceptions illegal_instruction (rcond = 0002 or 1002)

 Move Test

MOVRNZ not Z

MOVRZ Z

MOVRGEZ not N

MOVRLZ N

MOVRLEZ N or Z

MOVRGZ N nor Z
278 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Multiply and Divide (64-bit)
A.40 Multiply and Divide (64-bit)

Format (3)

Description MULX computes “r[rs1] × r[rs2]” if i = 0 or “r[rs1] × sign_ext(simm13)” if
i = 1, and writes the 64-bit product into r[rd]. MULX can be used to calculate the
64-bit product for signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “r[rs1] ÷ r[rs2]” if i = 0 or
“r[rs1] ÷ sign_ext(simm13)” if i = 1, and write the 64-bit result into r[rd].
SDIVX operates on the operands as signed integers and produces a corresponding
signed result. UDIVX operates on the operands as unsigned integers and produces a
corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the
largest negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

Opcode op3 Operation

MULX 00 1001 Multiply (signed or unsigned)

SDIVX 10 1101 Signed Divide

UDIVX 00 1101 Unsigned Divide

Assembly Language Syntax

mulx regrs1, reg_or_imm, regrd

sdivx regrs1, reg_or_imm, regrd

udivx regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 279

Multiply and Divide (64-bit)
These instructions do not modify any condition codes.

Exceptions division_by_zero
280 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

No Operation
A.41 No Operation

Format (2)

Description The NOP instruction changes no program-visible state (except that of the PC and
nPC).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions None

Opcode op2 Operation

NOP 100 No Operation

Assembly Language Syntax

nop

31 24 02530 29 22 21

00 op2 00 0 0 0 0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 281

Partial Store (VIS I)
A.42 Partial Store (VIS I)

Format (3)

Opcode imm_asi ASI Value Operation

STDFA ASI_PST8_P C016 Eight 8-bit conditional stores to primary address space

STDFA ASI_PST8_S C116 Eight 8-bit conditional stores to secondary address space

STDFA ASI_PST8_PL C816 Eight 8-bit conditional stores to primary address space, little-endian

STDFA ASI_PST8_SL C916 Eight 8-bit conditional stores to secondary address space, little-
endian

STDFA ASI_PST16_P C216 Four 16-bit conditional stores to primary address space

STDFA ASI_PST16_S C316 Four 16-bit conditional stores to secondary address space

STDFA ASI_PST16_PL CA16 Four 16-bit conditional stores to primary address space, little-endian

STDFA ASI_PST16_SL CB16 Four 16-bit conditional stores to secondary address space, little-
endian

STDFA ASI_PST32_P C416 Two 32-bit conditional stores to primary address space

STDFA ASI_PST32_S C516 Two 32-bit conditional stores to secondary address space

STDFA ASI_PST32_PL CC16 Two 32-bit conditional stores to primary address space, little-endian

STDFA ASI_PST32_SL CD16 Two 32-bit conditional stores to secondary address space, little-
endian

Assembly Language Syntax1

1. The original assembly language syntax for a Partial Store instruction
(“stda fregrd, [regrs1] regrs2, imm_asi”) has been deprecated because
of inconsistency with the rest of the SPARC assembly language. Over
time, assemblers will support the new syntax for this instruction. In the
meantime, some assemblers may recognize only the original syntax.

stda fregrd, regrs2, [regrs1] imm_asi

31 24 02530 29 19 18 14 13 5 4

rd11 110111 imm_asirs1 rs2i=0
282 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Partial Store (VIS I)
Description The partial store instructions are selected by one of the partial store ASIs with the
STDFA instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register
specified by rd are conditionally stored at the address specified by r[rs1], using
the mask specified in r[rs2]. The value in r[rs2] has the same format as the
result specified by the pixel compare instructions (see Pixel Compare (VIS I) on page
292). The most significant bit of the mask (not the entire register) corresponds to the
most significant part of the floating-point register specified by rd. The data is stored
in little-endian form in memory if the ASI name has an “L” suffix; otherwise, it is
stored in big-endian format.

A Partial Store instruction can cause a virtual (or physical) watchpoint exception
when the following conditions are met:
■ The virtual (physical) address in r[rs1] matches the address in the VA (PA)

Data Watchpoint Register .

■ The byte store mask in r[rs2] indicates that a byte is to be stored.

■ The Virtual (Physical) Data Watchpoint Mask in DCUCR indicates that one or more
of the bytes to be stored at the watched address is being watched.

IMPL. DEP. #249: For a Partial Store instruction, the following aspects of data
watchpoints are implementation dependent: (a) whether data watchpoint logic
examines the byte store mask in r[rs2] or it conservatively behaves as if every
Partial Store always stores all 8 bytes, and (b) whether data watchpoint logic
examines individual bits in the Virtual (Physical) Data Watchpoint Mask in DCUCR to
determine which bytes are being watched or (when the Watchpoint Mask is nonzero)
it conservatively behaves as if all 8 bytes are being watched.

ASIs C016-C516 and C816-CD16 are only used for partial store operations. In
particular, they should not be used with the LDDFA instruction. See Partial Store
ASIs on page 548 for more information.

Exceptions fp_disabled
illegal_instruction (when i = 1: no immediate mode is supported.)
PA_watchpoint (see text)
VA_watchpoint (see text)
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 283

Partitioned Add/Subtract Instructions (VIS I)
A.43 Partitioned Add/Subtract Instructions
(VIS I)

Format (3)

Opcode opf Operation

FPADD16 0 0101 0000 Four 16-bit Add

FPADD16S 0 0101 0001 Two 16-bit Add

FPADD32 0 0101 0010 Two 32-bit Add

FPADD32S 0 0101 0011 One 32-bit Add

FPSUB16 0 0101 0100 Four 16-bit Subtract

FPSUB16S 0 0101 0101 Two 16-bit Subtract

FPSUB32 0 0101 0110 Two 32-bit Subtract

FPSUB32S 0 0101 0111 One 32-bit Subtract

Assembly Language Syntax

fpadd16 fregrs1, fregrs2, fregrd

fpadd16s fregrs1, fregrs2, fregrd

fpadd32 fregrs1, fregrs2, fregrd

fpadd32s fregrs1, fregrs2, fregrd

fpsub16 fregrs1, fregrs2, fregrd

fpsub16s fregrs1, fregrs2, fregrd

fpsub32 fregrs1, fregrs2, fregrd

fpsub32s fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
284 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Partitioned Add/Subtract Instructions (VIS I)
Description The standard versions of these instructions perform four 16-bit or two 32-bit
partitioned adds or subtracts between the corresponding fixed-point values
contained in the source operands (the 64-bit floating-point registers specified by rs1
and rs2). For subtraction, the second operand is subtracted from the first operand.
The result is placed in the 64-bit destination register specified by rd.

The single-precision versions of these instructions (FPADD16S, FPSUB16S,
FPADD32S, FPSUB32S) perform two 16-bit or one 32-bit partitioned add(s) or
subtract(s); only the low 32-bits of the destination register are affected.

Exceptions fp_disabled
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 285

Partitioned Multiply Instructions (VIS I)
A.44 Partitioned Multiply Instructions (VIS I)

Format (3)

Description Notes – For good performance, the result of a partitioned multiply should not be
used as a 32-bit graphics instruction source operand in the next three instruction
groups.

Opcode opf Operation

FMUL8x16 0 0011 0001 8-bit x 16-bit Partitioned Product

FMUL8x16AU 0 0011 0011 8-bit x 16-bit Upper α Partitioned Product

FMUL8x16AL 0 0011 0101 8-bit x 16-bit Upper α Partitioned Product

FMUL8SUx16 0 0011 0110 Upper 8-bit x 16-bit Partitioned Product

FMUL8ULx16 0 0011 0111 Lower Unsigned 8-bit x 16-bit Partitioned Product

FMULD8SUx16 0 0011 1000 Upper 8-bit x 16-bit Partitioned Product

FMULD8ULx16 0 0011 1001 Lower Unsigned 8-bit x 16-bit Partitioned Product

Assembly Language Syntax

fmul8x16 fregrs1, fregrs2, fregrd

fmul8x16au fregrs1, fregrs2, fregrd

fmul8x16al fregrs1, fregrs2, fregrd

fmul8sux16 fregrs1, fregrs2, fregrd

fmul8ulx16 fregrs1, fregrs2, fregrd

fmuld8sux16 fregrs1, fregrs2, fregrd

fmuld8ulx16 fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
286 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Partitioned Multiply Instructions (VIS I)
Programming Note – When software emulates an 8-bit unsigned by16-bit signed
multiply, the unsigned value must be zero-extended and the 16-bit value sign-
extended before the multiplication.

The following sections describe the versions of partitioned multiplies.

Exceptions fp_disabled

A.44.1 FMUL8x16 Instruction
FMUL8x16 multiplies each unsigned 8-bit value (that is, a pixel) in f[rs1] by the
corresponding (signed) 16-bit fixed-point integer in the 64-bit floating-point register
specified by rs2; it rounds the 24-bit product (assuming binary point between bits 7
and 8) and stores the upper 16 bits of the result into the corresponding 16-bit field in
the 64-bit floating-point destination register specified by rd. FIGURE A-5 illustrates
the operation.

Note – This instruction treats the pixel values as fixed-point with the binary point to
the left of the most significant bit. Typically, this operation is used with filter
coefficients as the fixed-point rs2 value and image data as the rs1 pixel value.
Appropriate scaling of the coefficient allows various fixed-point scaling to be
realized.

FIGURE A-5 FMUL8x16 Operation

0151631

rs1

rd

24 23 8 7

rs2

015163132474863

015163132474863

× MSB × MSB × MSB × MSB
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 287

Partitioned Multiply Instructions (VIS I)
A.44.2 FMUL8x16AU Instruction
FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is
used for all four multiplies. This value is the most significant 16 bits of the 32-bit
register f[rs2], which is typically an α value. FIGURE A-6 illustrates the operation.

FIGURE A-6 FMUL8x16AU Operation

A.44.3 FMUL8x16AL Instruction
FMUL8x16AL is the same as FMUL8x16AU, except that the least significant 16 bits of
the 32-bit register f[rs2] register are used as an α value. FIGURE A-7 illustrates the
operation.

FIGURE A-7 FMUL8x16AL Operation

0151631

rs1

rd

24 23 8 7

rs2

0151631

015163132474863

× × × ×

0151631

rs1

rd

24 23 8 7

rs2

0151631

015163132474863

× × × ×
288 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Partitioned Multiply Instructions (VIS I)
A.44.4 FMUL8SUx16 Instruction
FMUL8SUx16 multiplies the upper 8 bits of each 16-bit signed value in the 64-bit
floating-point register specified by rs1 by the corresponding signed, 16-bit, fixed-
point, signed integer in the 64-bit floating-point register specified by rs2. It rounds
the 24-bit product toward the nearest representable value and then stores the upper
16 bits of the result into the corresponding 16-bit field of the 64-bit floating-point
destination register specified by rd. If the product is exactly halfway between two
integers, the result is rounded toward positive infinity. FIGURE A-8 illustrates the
operation.

FIGURE A-8 FMUL8SUx16 Operation

A.44.5 FMUL8ULx16 Instruction
FMUL8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in the 64-bit
floating-point register specified by rs1 by the corresponding fixed-point signed
integer in the 64-bit floating-point register specified by rs2. Each 24-bit product is
sign-extended to 32 bits. The upper 16-bits of the sign-extended value are rounded
to nearest and then stored in the corresponding 16-bit field of the 64-bit floating-
point destination register specified by rd. If the result is exactly halfway between
two integers, the result is rounded toward positive infinity. FIGURE A-9 illustrates the
operation; CODE EXAMPLE A-4 exemplifies the operation.

rs1

rd

rs2

015163132474863

× MSB × MSB × MSB × MSB

015163132474863

015163132474863 56 55 40 39 24 23 8 7
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 289

Partitioned Multiply Instructions (VIS I)
FIGURE A-9 FMUL8LUx16 Operation

A.44.6 FMULD8SUx16 Instruction
FMULD8SUx16 multiplies the upper 8 bits of each 16-bit signed value in f[rs1] by
the corresponding signed 16-bit fixed-point signed integer in f[rs2]. Each 24-bit
product is shifted left by 8 bits to make up a 32-bit result, which is then stored in the
64-bit floating-point register specified by rd. FIGURE A-10 illustrates the operation.

FIGURE A-10 FMULD8SUx16 Operation

CODE EXAMPLE A-3 16-bit x 16-bit → 16-bit Multiply

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

rs1

rd

rs2

015163132474863

× signed-extended × signed-extended × signed-extended × signed-extended

015163132474863

015163132474863 56 55 40 39 24 23 8 7

8 MSB 8 MSB 8 MSB 8 MSB

rs1

rd

rs2

0783132394063

× ×

0151631

0151631 24 23 8 7

0000000000000000
290 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Partitioned Multiply Instructions (VIS I)
A.44.7 FMULD8ULx16 Instruction
FMULD8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in f[rs1]
by the corresponding fixed-point signed integer in f[rs2]. Each 24-bit product is
sign-extended to 32 bits and stored in the 64-bit floating-point register specified by
rd. FIGURE A-11 illustrates the operation; CODE EXAMPLE A-4 exemplifies the
operation.

FIGURE A-11 FMULD8ULx16 Operation

CODE EXAMPLE A-4 16-bit x 16-bit → 32-bit Multiply

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

rs1

rd

rs2

0313263

× ×

0151631

0151631 24 23 8 7

sign-extended sign-extended
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 291

Pixel Compare (VIS I)
A.45 Pixel Compare (VIS I)

Format (3)

Description Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source
registers specified by rs1 and rs2 are compared. The 4-bit or 2-bit results are stored
in the least significant bits in the integer destination register r[rd]. Signed
comparisons are used. Bit 0 of r[rd] corresponds to the least significant 16-bit or
32-bit comparison.

Opcode opf Operation

FCMPGT16 0 0010 1000 Four 16-bit Compares; set rd if src1 > src2

FCMPGT32 0 0010 1100 Two 32-bit Compares; set rd if src1 > src2

FCMPLE16 0 0010 0000 Four 16-bit Compares; set rd if src1 ≤ src2

FCMPLE32 0 0010 0100 Two 32-bit Compares; set rd if src1 ≤ src2

FCMPNE16 0 0010 0010 Four 16-bit Compares; set rd if src1 ≠ src2

FCMPNE32 0 0010 0110 Two 32-bit Compares; set rd if src1 ≠ src2

FCMPEQ16 0 0010 1010 Four 16-bit Compares; set rd if src1 = src2

FCMPEQ32 0 0010 1110 Two 32-bit Compares; set rd if src1 = src2

Assembly Language Syntax

fcmpgt16 fregrs1, fregrs2, regrd

fcmpgt32 fregrs1, fregrs2, regrd

fcmple16 fregrs1, fregrs2, regrd

fcmple32 fregrs1, fregrs2, regrd

fcmpne16 fregrs1, fregrs2, regrd

fcmpne32 fregrs1, fregrs2, regrd

fcmpeq16 fregrs1, fregrs2, regrd

fcmpeq32 fregrs1, fregrs2, regrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
292 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Pixel Compare (VIS I)
For FCMPGT, each bit in the result is set if the corresponding value in the first source
operand is greater than the value in the second source operand. Less-than
comparisons are made by swapping the operands.

For FCMPLE, each bit in the result is set if the corresponding value in the first source
operand is less than or equal to the value in the second source operand. Greater-
than-or-equal comparisons are made by swapping the operands.

For FCMPEQ, each bit in the result is set if the corresponding value in the first source
operand is equal to the value in the second source operand.

For FCMPNE, each bit in the result is set if the corresponding value in the first source
operand is not equal to the value in the second source operand.

Exceptions fp_disabled
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 293

Pixel Component Distance (PDIST) (VIS I)
A.46 Pixel Component Distance (PDIST)
(VIS I)

Format (3)

Description Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers
specified by rs1 and rs2. The corresponding 8-bit values in the source registers are
subtracted (that is, the second source operand from the first source operand). The
sum of the absolute value of each difference is added to the integer in the 64-bit
floating-point destination register specified by rd. The result is stored in the
destination register. Typically, this instruction is used for motion estimation in video
compression algorithms.

Note – For good performance, the rd operand of PDIST should not reference the
result of a non-PDIST instruction in the five previously executed instruction groups.

Exceptions fp_disabled

Opcode opf Operation

PDIST 0 0011 1110 Distance between eight 8-bit components

Assembly Language Syntax

pdist fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
294 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Pixel Formatting (VIS I)
A.47 Pixel Formatting (VIS I)

Format (3)

Description The FPACK instructions convert multiple values in a source register to a lower-
precision fixed or pixel format and stores the resulting values in the destination
register. Input values are clipped to the dynamic range of the output format. Packing
applies a scale factor from GSR.scale to allow flexible positioning of the binary
point.

FEXPAND performs the inverse of the FPACK16 operation.

FPMERGE interleaves four 8-bit values from each of two 32-bit registers into a single
64-bit destination register.

Exceptions fp_disabled

Opcode opf Operation

FPACK16 0 0011 1011 Four 16-bit packs into 8 unsigned bits

FPACK32 0 0011 1010 Two 32-bit packs into 8 unsigned bit

FPACKFIX 0 0011 1101 Four 16-bit packs into 16 signed bits

FEXPAND 0 0100 1101 Four 16-bit expands

FPMERGE 0 0100 1011 Two 32-bit merges

Assembly Language Syntax

fpack16 fregrs2, fregrd

fpack32 fregrs1, fregrs2, fregrd

fpackfix fregrs2, fregrd

fexpand fregrs2, fregrd

fpmerge fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 295

Pixel Formatting (VIS I)
A.47.1 FPACK16
FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register
specified by rs2, scales, truncates, and clips them into four 8-bit unsigned integers,
and stores the results in the 32-bit destination register, f[rd]. FIGURE A-12 illustrates
the FPACK16 operation.

FIGURE A-12 FPACK16 Operation

Note – FPACK16 ignores the most significant bit of GSR.scale (GSR.scale<4>).

This operation is carried out as follows:

1. Left-shift the value from the 64-bit floating-point register specified by rs2 by the
number of bits specified in GSR.scale while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to
the left of the implicit binary point (that is, between bits 7 and 6 for each 16-bit
word). Truncation converts the scaled value into a signed integer (that is, round
toward negative infinity). If the resulting value is negative (that is, its most
significant bit is set), 0 is returned as the clipped value. If the value is greater than
255, then 255 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, f[rd].

015163132474863

04

x0 1 0 0GSR.scale

rs2

rd

067

19

0 0 0 0

1415 4

3
implicit binary point

07

04

GSR.scale

0910

25

1415 6

3
implicit binary point

07

0 0 0 0 0 0 0

x1 0 1 0

0 0 0

rs2 rs2

rd rd

015015
296 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Pixel Formatting (VIS I)
A.47.2 FPACK32
FPACK32 takes two 32-bit fixed values from the second source operand (the 64-bit
floating-point register specified by rs2) and scales, truncates, and clips them into
two 8-bit unsigned integers. The two 8-bit integers are merged at the corresponding
least significant byte positions with each 32-bit word in the 64-bit floating-point
register specified by rs1, left-shifted by 8 bits. The 64-bit result is stored in the 64-bit
floating-point register specified by rd. Thus, successive FPACK32 instructions can
assemble two pixels by using three or four pairs of 32-bit fixed values. FIGURE A-13
illustrates the FPACK32 operation.

FIGURE A-13 FPACK32 Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from the second source operand by the number of bits
specified in GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 23 and
22 for each 32-bit word). Truncation converts the scaled value into a signed
integer (that is, round toward negative infinity). If the resulting value is negative

015163132474863

rs2

rd

04

GSR.scale

0

37

2223 5

implicit binary point

07

0 0 0 0 0 0

0 0 1 1 0

rs2

rd

015

56 55 40 39 24 23 8 7

rs1

31
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 297

Pixel Formatting (VIS I)
(that is, MSB is set), then 0 is returned as the clipped value. If the value is greater
than 255, then 255 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Left-shift each 32-bit value from the first source operand (the 64-bit floating-point
register specified by rs1) by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least
significant byte positions in the left-shifted value from the second source operand.

5. Store the result in the rd register.

A.47.3 FPACKFIX
FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register
specified by rs2, scales, truncates, and clips them into two 16-bit unsigned integers,
and then stores the result in the 32-bit destination register f[rd]. FIGURE A-14
illustrates the FPACKFIX operation.

FIGURE A-14 FPACKFIX Operation

01516313263

rs2

rd

04

GSR.scale

0

37

1516 5

implicit binary point

015

0 0 0 0 0 0

0 0 1 1 0

rs2

rd

0

31
298 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Pixel Formatting (VIS I)
This operation is carried out as follows:

1. Left-shift each 32-bit value from the source operand (the 64-bit floating-point
register specified by rs2) by the number of bits specified in GSR.scale while
maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the
bit immediately to the left of the implicit binary point (that is, between bits 16 and
15 for each 32-bit word). Truncation converts the scaled value into a signed
integer (that is, round toward negative infinity). If the resulting value is less than
−32768, then −32768 is returned as the clipped value. If the value is greater than
32767, then 32767 is delivered as the clipped value. Otherwise, the scaled value is
returned as the result.

3. Store the result in the 32-bit destination register f[rd].

A.47.4 FEXPAND
FEXPAND takes four 8-bit unsigned integers from f[rs2], converts each integer to a
16-bit fixed-point value, and stores the four resulting 16-bit values in a 64-bit
floating-point register specified by rd. FIGURE A-15 illustrates the operation.

FIGURE A-15 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by 4 and zero-extend the results to a 16-bit fixed value.

2. Store the result in the destination register.

01516313263

rs2

rd

1215 3

07

0 0 0 0

rs2

rd

011

1516

0151631 2324 78

0 0 0 0

4

Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 299

Pixel Formatting (VIS I)
A.47.5 FPMERGE
FPMERGE interleaves four corresponding 8-bit unsigned values in f[rs1] and
f[rs2] to produce a 64-bit value in the 64-bit floating-point destination register
specified by rd. This instruction converts from packed to planar representation
when it is applied twice in succession; for example, R1G1B1A1, R3G3B3A3 →
R1R3G1G3A1A3 → R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession;
for example, R1R2R3R4, B1B2B3B4 → R1B1R2B2R3B3R4B4 →
R1G1B1A1R2G2B2A2.

FIGURE A-16 illustrates the operation.

FIGURE A-16 FPMERGE Operation

rd

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

rs1

rs2
300 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Population Count
A.48 Population Count

Format (3)

Description POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does
not modify the condition codes. Note: Neither UltraSPARC III nor SPARC64 V
implements this instruction in hardware; instead it generates an illegal_instruction
exception. The instruction is emulated in supervisor software.

Implementation Note – Instruction bits 18 through 14 must be zero for POPC.
Other encodings of this field (rs1) may be used in future versions of the SPARC
architecture for other instructions.

Programming Note – POPC can be used to “find first bit set” in a register. A
C program illustrating how POPC can be used for this purpose follows:

int ffs(zz)/* finds first 1 bit, counting from the LSB */
unsigned zz;
{
return popc (zz ^ (∼ (–zz))); /* for nonzero zz */
}

Opcode op3 Operation

POPC 10 1110 Population Count

Assembly Language Syntax

popc reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0

rd10 op3 0 0000 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 301

Population Count
Inline assembly language code for ffs() is
neg %IN, %M_IN ! –zz(2’s complement)
xnor %IN, %M_IN, %TEMP ! ^ ∼ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

where IN, M_IN, TEMP, and RESULT are integer registers.

Example
IN = ...00101000! 1st 1 bit from rt is 4th bit
–IN = ...11011000
∼ –IN = ...00100111
IN ^ ∼ –IN = ...00001111
popc(IN ^ ∼ –IN) = 4

Exceptions illegal_instruction
302 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Prefetch Data
A.49 Prefetch Data

Format (3) PREFETCH

Format (3) PREFETCHA

Opcode op3 Operation

PREFETCH 10 1101 Prefetch Data

PREFETCHAPASI 11 1101 Prefetch Data from Alternate Space

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

31 24 02530 29 19 18

fcn11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

fcn11 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 303

Prefetch Data
Description In nonprivileged code, a prefetch instruction has the same observable effect as a
NOP; its execution is nonblocking and cannot cause an observable trap. In
particular, a prefetch instruction shall not trap if it is applied to an illegal or
nonexistent memory address.

IMPL. DEP. #103(1): Whether the execution of a PREFETCH instruction has
observable effects in privileged code is implementation dependent.

IMPL. DEP. #103(2): Whether the execution of a PREFETCH instruction can cause a
data_access_mmu_miss exception is implementation dependent.

Whether PREFETCH always succeeds when the MMU is disabled is implementation
dependent (impl. dep. #117).

Implementation Note – Any effects of prefetch in privileged code should be
reasonable (for example, in handling ECC errors, no page prefetching is allowed
within code that handles page faults). The benefits of prefetching should be available
to most privileged code.

fcn SPARC JPS1 Prefetch Function

0 Prefetch for several reads

1 Prefetch for one read

2 Prefetch for several writes

3 Prefetch for one write

4 Prefetch page

5–15 (0516–0F16) Reserved

16–19 (1016–1316) Implementation dependent

20 (1416) Strong Prefetch for several reads

21 (1516) Strong Prefetch for one read

22 (1616) Strong Prefetch for several writes

23 (1716) Strong Prefetch for one write

24-31 (1816–1F16) Implementation dependent

Assembly Language Syntax

prefetch [address], prefetch_fcn

prefetcha [regaddr] imm_asi, prefetch_fcn

prefetcha [reg_plus_imm] %asi, prefetch_fcn
304 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Prefetch Data
Execution of a prefetch instruction initiates data movement (or preparation for
future data movement or address mapping) to reduce the latency of subsequent
loads and stores to the specified address range.

A successful prefetch initiates movement of a block of data containing the addressed
byte from memory toward the processor. In SPARC JPS1, the block of data is one 64-
byte cache line.

IMPL. DEP. #103(3): The size and alignment in memory of the data block is
implementation dependent; the minimum size is 64 bytes and the minimum
alignment is a 64-byte boundary.

Programming Note – Software may prefetch 64 bytes beginning at an arbitrary
address address by issuing the instructions

prefetch [address], prefetch_fcn
prefetch [address + 63], prefetch_fcn

Implementation Note – Prefetching may be used to help manage memory cache(s).
A prefetch from a nonprefetchable location has no effect. It is up to memory
management hardware to determine how locations are identified as not prefetchable.

Prefetch instructions that do not load from an alternate address space access the
primary address space (ASI_PRIMARY{_LITTLE}). Prefetch instructions that do
load from an alternate address space contain the address space identifier (ASI) to be
used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The
access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

Variants of the prefetch instruction can be used to prepare the memory system for
different types of accesses.

IMPL. DEP. #103(4): An implementation may implement none, some, or all of these
variants. A variant not implemented shall execute as a NOP. An implemented
variant may support its full semantics or just the simple common-case prefetching
semantics.

A.49.1 SPARC V9 Prefetch Variants
The prefetch variant is selected by the fcn field of the instruction. fcn values 5–15
are reserved for future extensions of the architecture, and PREFETCH fcn values of
16–19 and 25–29 are implementation dependent in SPARC JPS1.
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 305

Prefetch Data
Each prefetch variant reflects an intent on the part of the compiler or programmer.
This is different from other instructions in SPARC V9 (except BPN), all of which
specify specific actions. An implementation may implement a prefetch variant by
any technique, as long as the intent of the variant is achieved.

The prefetch instruction is designed to treat the common cases as well. The variants
are intended to provide scalability for future improvements in both hardware and
compilers. If a variant is implemented, it should have the effects described below. In
case some of the variants listed below are implemented and some are not, a
recommended overloading of the unimplemented variants is provided in the SPARC
V9 specification.

Prefetch for Several Reads (fcn = 0)

The intent of this variant is to cause movement of data into the data cache nearest
the processor, with “reasonable” efforts made to obtain the data.

Programming Note – The intended use of this variant is in streaming relatively
small amounts of data into the primary data cache of the processor.

Prefetch for One Read (fcn = 1)

The data to be read from the given address is expected to be read once and not
reused (read or written) soon after that. Use of this PREFETCH variant indicates
that, if possible, the data cache should be minimally disturbed by the data read from
the given address.

Programming Note – The intended use of this variant is in streaming medium
amounts of data into the processor without disturbing the data in the primary data
cache memory.

Prefetch for Several Writes (and Possibly Reads) (fcn = 2)

The intent of this variant is to cause movement of data in preparation for writing.

Programming Note – An example use of this variant is to initialize a cache line in
preparation for a partial write.
306 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Prefetch Data
Implementation Note – On a multiprocessor, this variant indicates that exclusive
ownership of the addressed data is needed, so it may have the additional effect of
obtaining exclusive ownership of the addressed cache line.

Prefetch for One Write (fcn = 3)

This variant indicates that, if possible, the data cache should be minimally disturbed
by the data written to this address, because those data are not expected to be reused
(read or written) soon after they have been written once.

Prefetch Page (fcn = 4)

In a virtual memory system, the intended action of this variant is for the supervisor
software or hardware to initiate asynchronous mapping of the referenced virtual
address, assuming that it is legal to do so.

Programming Note – The desire is to avoid a later page fault for the given
address, or at least to shorten the latency of a page fault.

In a non-virtual-memory system or if the addressed page is already mapped, this
variant has no effect.

The referenced page need not be mapped when the instruction completes. Loads and
stores issued before the page is mapped should block just as they would if the
prefetch had never been issued. When the activity associated with the mapping has
completed, the loads and stores may proceed.

Implementation Notes– An example of mapping activity is DMA from secondary
storage.

Use of this variant may be disabled or restricted in privileged code that is not
permitted to cause page faults.

SPARC JPS1 treats this variant as a NOP; no operation is performed.

A.49.2 SPARC JPS1 Prefetch Variants (fcn = 20–23)

These values are available for implementations to use. An implementation shall treat
any unimplemented prefetch fcn values as NOPs (impl. dep. #103).
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 307

Prefetch Data
Strong Prefetch for Several Reads (fcn =20)

The intent of this variant is the same as for Prefetch for Several Reads (fcn = 0)
except this variant may cause an exception if access causes a TLB miss.

Strong Prefetch for One Read (fcn = 21)

The intent of this variant is the same as for Prefetch for One Read (fcn = 1) except
this variant may cause an exception if this access causes a TLB miss.

Strong Prefetch for Several Writes (fcn = 22)

The intent of this variant is the same as for Prefetch for Several Writes (fcn = 2)
except this variant may cause an exception if this access causes TLB miss.

Strong Prefetch for One Write (fcn = 23)

The intent of this variant is the same as for Prefetch for One Write (fcn = 3) except
this variant may cause an exception if this access causes a TLB miss.

A.49.3 Implementation-Dependent Prefetch Variants
(fcn = 16–19, 24–31)
fcns 16-19 and 24-31 are implementation dependent.
308 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Prefetch Data
Implementation Note – It is desirable to avoid conflicting uses of the same
prefetch function code on different implementation; the following is a list of function
codes that are either implemented in JPS1 implementations or are expected to be
used in future implementations, and their respective uses:

fcn Expected Use

16 Prefetch Invalidate
17 NOP
18 NOP
19 NOP
20 Strong Prefetch for read
21 Strong Prefetch for read
22 Strong Prefetch for write
23 Strong Prefetch for write
24 Invalidate Cache Entry
25 NOP
26 NOP
27 NOP
28 NOP
29 NOP
30 NOP
31 NOP

Please refer to Implementation Supplements for details.

A.49.4 General Comments
There is no variant of PREFETCH for instruction prefetching. Instruction prefetching
should be encoded with the Branch Never (BPN) form of the BPcc instruction (see
A.8, Branch on Integer Condition Codes with Prediction (BPcc), on page 210).

One error to avoid in thinking about prefetch instructions is that they should have
“no cost to execute.” As long as the cost of executing a prefetch instruction is well
less than one-third the cost of a cache miss, use of prefetching is a net win. It does
not appear that prefetching causes a significant number of useless fetches from
memory, though it may increase the rate of useful fetches (and hence the bandwidth),
because it more efficiently overlaps computing with fetching.
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 309

Prefetch Data
Programming Note – A SPARC V9 compiler that generates PREFETCH instructions
should generate each of the variants where it is most appropriate. The overloadings
suggested in the previous Implementation Note ensure that such code will be
portable and reasonably efficient across a range of hardware configurations.

Implementation Note – The Prefetch for One Read and Prefetch for One Write
variants assume the existence of a “bypass cache,” so that the bulk of the “real
cache” remains undisturbed. If such a bypass cache is used, it should be large
enough to properly shield the processor from memory latency. Such a cache should
probably be small, highly associative, and use a FIFO replacement policy.

Exceptions illegal_instruction (fcn = 5–15)
fast_data_access_MMU_miss (fcn = 20–23)
310 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Read Privileged Register
A.50 Read Privileged Register

Format (3)

Opcode op3 Operation

RDPRP 10 1010 Read Privileged Register

rs1 Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15 FQ

16–30 —

31 VER

31 141924 18 13 02530 29

10 rd op3 rs1 —
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 311

Read Privileged Register
Description The rs1 field in the instruction determines the privileged register that is read. There
are MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of
these registers returns the value in the register indexed by the current value in the
trap level register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is
zero (TL = 0) causes an illegal_instruction exception.

RDPR instructions with rs1 in the range 16–30 are reserved; executing an RDPR
instruction with rs1 in that range causes an illegal_instruction exception.

Programming Note – On an implementation with precise floating-point traps, the
address of a trapping instruction will be in the TPC[TL] register when the trap code
begins execution. On an implementation with deferred floating-point traps, the
address of the trapping instruction might be a value obtained from the FQ.

Exceptions privileged_opcode
illegal_instruction ((rs1 = 16–30) or ((rs1 ≤ 3) and (TL = 0)))

Assembly Language Syntax

rdpr %tpc, regrd

rdpr %tnpc, regrd

rdpr %tstate, regrd

rdpr %tt, regrd

rdpr %tick, regrd

rdpr %tba, regrd

rdpr %pstate, regrd

rdpr %tl, regrd

rdpr %pil, regrd

rdpr %cwp, regrd

rdpr %cansave, regrd

rdpr %canrestore, regrd

rdpr %cleanwin, regrd

rdpr %otherwin, regrd

rdpr %wstate, regrd

rdpr %fq, regrd

rdpr %ver, regrd
312 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Read State Register
A.51 Read State Register

Format (3)

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register; deprecated (see A.71.9)

 — 10 1000 1 Reserved

RDCCR 10 1000 2 Read Condition Codes Register

RDASI 10 1000 3 Read ASI Register

RDTICKPNPT 10 1000 4 Read Tick Register

RDPC 10 1000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

 — 10 1000 7−14 Reserved

See text 10 1000 15 STBAR, MEMBAR, or Reserved; see text

RDASR 10 1000 16-31 Read non-SPARC V9 ASRs

RDPCRPPCR 16 Read Performance Control Registers (PCR)

RDPICPPIC 17 Read Performance Instrumentation Counters (PIC)

RDDCRP 18 Read Dispatch Control Register (DCR)

RDGSR 19 Read Graphic Status Register (GSR)

— 20–21 Implementation dependent (impl. dep. #8, 9)

RDSOFTINTP 22 Read per-processor Soft Interrupt Register

RDTICK_CMPRP 23 Read Tick Compare Register

RDSTICKPNPT 24 Read System TICK Register

RDSTICK_CMPRP 25 Read System TICK Compare Register

 — 26-31 Implementation dependent (impl. dep. #8, 9)

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 313

Read State Register
Description These instructions read the state register specified by rs1 into r[rd].

Values 7–14 of rs1 are reserved for future versions of the architecture. A Read State
Register instruction with rs1 = 15, rd = 0, and i = 0 is defined to be a (deprecated)
STBAR instruction (see A.71.10, Store Barrier, on page 374). An RDASR instruction
with rs1 = 15, rd = 0, and i = 1 is defined to be a MEMBAR instruction (see page 261).
RDASR with rs1 = 15 and rd ≠ 0 is reserved for future versions of the architecture; it
causes an illegal_instruction exception.

For RDPC, the high-order 32 bits of the PC value stored in r[rd] are implementation
dependent when PSTATE.AM = 1 (impl. dep. #125).

RDFPRS waits for all pending FPops and loads of floating-point registers to complete
before reading the FPRS register.

RDGSR causes an fp_disabled exception if PSTATE.PEF = 0 or FPRS.FEF = 0.

RDTICK causes a privileged_action exception if PSTATE.PRIV = 0 and
TICK.NPT = 1. RDSTICK causes a privileged_action exception if PSTATE.PRIV = 0
and STICK.NPT = 1.

RDPIC causes a privileged_action exception if PSTATE.PRIV = 0 and PCR.PRIV = 1.

RDPCR causes an exception due to access privilege violation under implementation-
dependent circumstances (impl. dep. #250).

Assembly Language Syntax

rd %ccr, regrd

rd %asi, regrd

rd %tick, regrd

rd %pc, regrd

rd %fprs, regrd

rd %pcr, regrd

rd %pic, regrd

rd %dcr, regrd

rd %gsr, regrd

rd %softint, regrd

rd %tick_cmpr, regrd

rd %sys_tick, regrd

rd %sys_tick_cmpr, regrd
314 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Read State Register
Note – See Section I.1, Read/Write Ancillary State Registers (ASRs), for a discussion of
extending the SPARC V9 instruction set using read/write ASR instructions.

Implementation Note – Ancillary state registers may include (for example) timer,
counter, diagnostic, self-test, and trap-control registers. See Implementation
Characteristics of Current SPARC-V9-based Products, Revision 9.x, a document available
from SPARC International, for information on implemented ancillary state registers.

Compatibility Note – The SPARC V8 RDPSR, RDWIM, and RDTBR instructions do
not exist in SPARC V9 since the PSR, WIM, and TBR registers do not exist in SPARC
V9.

Exceptions privileged_opcode(RDDCR, RDSOFTINT, RDTICK_CMPR, RDSTICK, RDSTICK_CMPR,
 and RDPCR (impl. dep. #250))
illegal_instruction(RDASR with rs1 = 1 or 7–14;

RDASR with rs1 = 15 and rd ≠ 0;
RDASR with rs1 = 20–21, 26–31)

privileged_action (RDTICK with PSTATE.PRIV = 0 and TICK.NPT = 1;
RDPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1;
RDSTICK with PSTATE.PRIV = 0 and STICK.NPT = 1;
RDPCR (impl. dep. #250))

fp_disabled (RDGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 315

RETURN
A.52 RETURN

Format (3)

Description The RETURN instruction causes a delayed transfer of control to the target address
and has the window semantics of a RESTORE instruction; that is, it restores the
register window prior to the last SAVE instruction. The target address is
“r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1. Registers
r[rs1] and r[rs2] come from the old window.

The RETURN instruction may cause an exception. It may cause a window_fill
exception as part of its RESTORE semantics, or it may cause a
mem_address_not_aligned exception if either of the two low-order bits of the target
address is nonzero.

Programming Note – To reexecute the trapped instruction when returning from a
user trap handler, use the RETURN instruction in the delay slot of a JMPL instruction,
for example:

jmpl %l6,%g0 | Trapped PC supplied to user trap handler
return %l7 | Trapped nPC supplied to user trap handler

Opcode op3 Operation

RETURN 11 1001 Return

Assembly Language Syntax

return address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
316 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

RETURN
Programming Note – A routine that uses a register window may be structured
either as

save %sp,-framesize, %sp
. . .
ret | Same as jmpl %i7 + 8, %g0
restore | Something useful like “restore

| %o2,%l2,%o0”

or as

save %sp,-framesize, %sp
. . .
return %i7 + 8
nop | Could do some useful work in the caller’s

| window, e.g., “or %o1, %o2,%o0”

Exceptions mem_address_not_aligned
fill_n_normal (n = 0–7)
fill_n_other (n = 0–7)
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 317

SAVE and RESTORE
A.53 SAVE and RESTORE

Format (3)

Description (Effect on Nonprivileged State)

The SAVE instruction provides the routine executing it with a new register window.
The out registers from the old window become the in registers of the new window.
The contents of the out and the local registers in the new window are zero or contain
values from the executing process; that is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE
instruction executed by the current process. The in registers of the old window
become the out registers of the new window. The in and local registers in the new
window contain the previous values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE
behave like normal ADD instructions, except that the source operands r[rs1] or
r[rs2] are read from the old window (that is, the window addressed by the original
CWP) and the sum is written into r[rd] of the new window (that is, the window
addressed by the new CWP).

Note: CWP arithmetic is performed modulo the number of implemented windows,
NWINDOWS.

Opcode op3 Operation

SAVE 11 1100 Save Caller’s Window

RESTORE 11 1101 Restore Caller’s Window

Assembly Language Syntax

save regrs1, reg_or_imm, regrd

restore regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
318 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

SAVE and RESTORE
Programming Notes – Typically, if a SAVE (RESTORE) instruction traps, the spill
(fill) trap handler returns to the trapped instruction to reexecute it. So, although the
ADD operation is not performed the first time (when the instruction traps), it is
performed the second time the instruction executes. The same applies to changing
the CWP.

The SAVE instruction can be used to atomically allocate a new window in the
register file and a new software stack frame in memory. See H.1.2, Leaf-Procedure
Optimization, for details.

There is a performance trade-off to consider between using SAVE/RESTORE and
saving and restoring selected registers explicitly.

Description (Effect on Privileged State)

If the SAVE instruction does not trap, it increments the CWP (mod NWINDOWS) to
provide a new register window and updates the state of the register windows by
decrementing CANSAVE and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is
generated. The trap vector for the spill trap is based on the value of OTHERWIN and
WSTATE. The spill trap handler is invoked with the CWP set to point to the window
to be spilled (that is, old CWP + 2).

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causes a clean_window trap if the number of unused clean windows is
zero, that is, (CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is
invoked with the CWP set to point to the window to be cleaned (that is, old CWP + 1).

If the RESTORE instruction does not trap, it decrements the CWP (mod NWINDOWS) to
restore the register window that was in use prior to the last SAVE instruction
executed by the current process. It also updates the state of the register windows by
decrementing CANRESTORE and incrementing CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill
trap is generated. The trap vector for the fill trap is based on the values of
OTHERWIN and WSTATE, as described in Trap Type for Spill/Fill Traps on page 147. The
fill trap handler is invoked with CWP set to point to the window to be filled, that is,
old
CWP – 1.
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 319

SAVE and RESTORE
Programming Note – The vectoring of spill and fill traps can be controlled by
setting the value of the OTHERWIN and WSTATE registers appropriately. For details,
see Splitting the Register Windows in H.2.3, Client-Server Model.

The spill (fill) handler normally will end with a SAVED (RESTORED) instruction
followed by a RETRY instruction.

Exceptions clean_window (SAVE only)
fill_n_normal (RESTORE only, n =0–7)
fill_n_other (RESTORE only, n = 0–7)
spill_n_normal (SAVE only, n = 0–7)
spill_n_other (SAVE only, n = 0–7)
320 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

SAVED and RESTORED
A.54 SAVED and RESTORED

Format (3)

Description SAVED and RESTORED adjust the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE.
If OTHERWIN ≠ 0, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWIN < (NWINDOWS−1), then RESTORED
increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE.
If OTHERWIN ≠ 0, it decrements OTHERWIN.

Programming Notes – The spill (fill) handlers use the SAVED (RESTORED)
instruction to indicate that a window has been spilled (filled) successfully. See H.2.2,
Example Code for Spill Handler, for details.

Normal privileged software would probably not do a SAVED or RESTORED from trap
level zero (TL = 0). However, it is not illegal to do so and doing so does not cause a
trap.

Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap
handler is likely to create an inconsistent window state. Hardware will not signal an
exception, however, since maintaining a consistent window state is the responsibility
of privileged software.

Exceptions privileged_opcode
illegal_instruction (fcn = 2–31)

Opcode op3 fcn Operation

SAVEDP 11 0001 0 Window has been saved

RESTOREDP 11 0001 1 Window has been restored

— 11 0001 2–31 Reserved

Assembly Language Syntax

saved

restored

31 1924 18 02530 29

10 fcn op3 —
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 321

Set Interval Arithmetic Mode (VIS II)
A.55 Set Interval Arithmetic Mode (VIS II)

Format (3)

Description The SIAM instruction sets the GSR.IM and GSR.IRND fields as follows:

GSR.IM = mode<2>

GSR.IRND = mode<1:0>

Exceptions fp_disabled

Opcode opf Operation

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR

Assembly Language Syntax

siam mode

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode

3 2
322 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

SETHI
A.56 SETHI

Format (2)

Description SETHI zeroes the least significant 10 bits and the most significant 32 bits of r[rd]
and replaces bits 31 through 10 of r[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 have special uses:

■ rd = 0 and imm22 = 0: defined to be a NOP instruction (described in A.41)

■ rd = 0 and imm22 ≠ 0 may be used to trigger hardware performance counters in
some JPS1 implementations (for details, see Appendix Q in each JPS1
Implementation Supplement).

Programming Note – The most common form of 64-bit constant generation is
creating stack offsets whose magnitude is less than 232. The code below can be used
to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note: The immediate
field of the xor instruction is sign extended and can be used to get 1’s in all of the
upper 32 bits. For example, to set the negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0 ! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0 ! part of imm. overlaps upper bits

Exceptions None

Opcode op2 Operation

SETHI 100 Set High 22 Bits of Low Word

Assembly Language Syntax

sethi const22, regrd

sethi %hi (value), regrd

31 2224 21 02530 29

00 rd op2 imm22
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 323

Shift
A.57 Shift

Format (3)

Description When i = 0 and x = 0, the shift count is the least significant five bits of r[rs2].
When i = 0 and x = 1, the shift count is the least significant six bits of r[rs2].
When i = 1 and x = 0, the shift count is the immediate value specified in bits 0
through 4 of the instruction.
When i = 1 and x = 1, the shift count is the immediate value specified in bits 0
through 5 of the instruction.

Opcode op3 x Operation

SLL 10 0101 0 Shift Left Logical – 32 bits

SRL 10 0110 0 Shift Right Logical – 32 bits

SRA 10 0111 0 Shift Right Arithmetic– 32 bits

SLLX 10 0101 1 Shift Left Logical – 64 bits

SRLX 10 0110 1 Shift Right Logical – 64 bits

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits

Assembly Language Syntax

sll regrs1, reg_or_shcnt, regrd

srl regrs1, reg_or_shcnt, regrd

sra regrs1, reg_or_shcnt, regrd

sllx regrs1, reg_or_shcnt, regrd

srlx regrs1, reg_or_shcnt, regrd

srax regrs1, reg_or_shcnt, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1 x=0

rd10 op3 —rs1 shcnt64i=1 x=1

6

324 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Shift
TABLE A-8 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in r[rs1] left by the number of bits
specified by the shift count, replacing the vacated positions with zeroes, and write
the shifted result to r[rd].

SRL shifts the low 32 bits of the value in r[rs1] right by the number of bits
specified by the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to
zero, and the result is written to r[rd].

SRLX shifts all 64 bits of the value in r[rs1] right by the number of bits specified
by the shift count. Zeroes are shifted into the vacated high-order bit positions, and
the shifted result is written to r[rd].

SRA shifts the low 32 bits of the value in r[rs1] right by the number of bits
specified by the shift count and replaces the vacated positions with bit 31 of r[rs1].
The high-order 32 bits of the result are all set with bit 31 of r[rs1], and the result is
written to r[rd].

SRAX shifts all 64 bits of the value in r[rs1] right by the number of bits specified
by the shift count and replaces the vacated positions with bit 63 of r[rs1]. The
shifted result is written to r[rd].

No shift occurs when the shift count is 0, but the high-order bits are affected by the
32-bit shifts as noted above.

These instructions do not modify the condition codes.

Programming Notes – “Arithmetic left shift by 1 (and calculate overflow)” can be
effected with the ADDcc instruction.

The instruction “sra rs1,0,rd” can be used to convert a 32-bit value to 64 bits,
with sign extension into the upper word. “srl rs1,0,rd” can be used to clear the
upper 32 bits of r[rd].

Exceptions None

TABLE A-8 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of r[rs2]

0 1 bits 5–0 of r[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 325

Short Floating-Point Load and Store (VIS I)
A.58 Short Floating-Point Load and Store
(VIS I)

Format (3) LDDFA

Format (3) STDFA

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_FL8_P D016 8-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL8_S D116 8-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL8_PL D816 8-bit load/store from/to primary address space, little-
endian

LDDFA
STDFA

ASI_FL8_SL D916 8-bit load/store from/to secondary address space, little-
endian

LDDFA
STDFA

ASI_FL16_P D216 16-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL16_S D316 16-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL16_PL DA16 16-bit load/store from/to primary address space, little-
endian

LDDFA
STDFA

ASI_FL16_SL DB16 16-bit load/store from/to secondary address space, little-
endian

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
326 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Short Floating-Point Load and Store (VIS I)
Description Short floating-point load and store instructions are selected by means of one of the
short ASIs with the LDDFA and STDFA instructions.

These ASIs allow 8- and 16-bit loads or stores to be performed to/from the floating-
point registers. Eight-bit loads can be performed to arbitrary byte addresses. For 16-
bit loads, the least significant bit of the address must be 0 or a
mem_address_not_aligned trap is taken. Short loads are zero-extended to the full
floating-point register. Short stores access the low-order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format in memory; otherwise,
memory is assumed to be big-endian. Short loads and stores are typically used with
the FALIGNDATA instruction (see Alignment Instructions (VIS I) on page 194) to
assemble or store 64 bits on noncontiguous components.

Exceptions fp_disabled
PA_watchpoint
VA_watchpoint
mem_address_not_aligned (odd memory address for a 16-bit load or store)
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 327

SHUTDOWN (VIS I)
A.59 SHUTDOWN (VIS I)

Format (3)

Description SHUTDOWN is a privileged instruction that may be used to bring the processor or its
containing system into a low-power state in an orderly manner. It has no effect on
software-visible processor state.

The SHUTDOWN instruction waits for all outstanding transactions to be completed,
thereby leaving the caches and other internal registers in a clean state. It then enters
a mode in which the processor consumes substantially less power.

The SHUTDOWN instruction is intended to enter a low power mode (such as Energy
Star).

Because SHUTDOWN is a privileged instruction, an attempt to execute it while in
nonprivileged mode causes a privileged_opcode trap.

IMPL. DEP. #206: It is implementation dependent whether SHUTDOWN functions as
described above or whether in nonprivileged mode it acts as a NOP in a given
implementation.

Note – In privileged mode, SHUTDOWN acts as NOP on SPARC JPS1
implementations.

Exceptions privileged_opcode

Opcode opf Operation

SHUTDOWNP 0 1000 0000 Shut down to enter power-down mode

Assembly Language Syntax

shutdown

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— —
328 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Software-Initiated Reset
A.60 Software-Initiated Reset

Format (3)

Description On SPARC V9 systems, SIR is used to generate a software-initiated reset (SIR). As
with other traps, a software-initiated reset performs different actions when
TL = MAXTL than it does when TL < MAXTL.

See Software-Initiated Reset (SIR) Traps on page 159 for more information about
software-initiated resets.

When executed in nonprivileged mode, SIR acts with no visible effect (as a NOP)
(impl. dep. #116).

Exceptions software_initiated_reset

Opcode op3 rd Operation

SIR 11 0000 15 Software-Initiated Reset

Assembly Language Syntax

sir simm13

31 1924 18 02530 29

10 0 1111 op3

14 13

0 0000 simm13

12

i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 329

Store Floating-Point
A.61 Store Floating-Point

† Encoded floating-point register value, as described on page 52.

Format (3)

Description The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a
double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) copies the contents of a quad
floating-point register into a word-aligned quadword in memory.

The store floating-point state register instruction (STXFSR) waits for any currently
executing FPop instructions to complete, and then it writes all 64 bits of the FSR into
memory.

Opcode op3 rd Operation

STF 10 0100 0–31 Store Floating-Point Register

STDF 10 0111 † Store Double Floating-Point Register

STQF 10 0110 † Store Quad Floating-Point Register

STXFSR 10 0101 1 Store Floating-Point State Register

— 10 0101 2–31 Reserved

Assembly Language Syntax

st fregrd, [address]

std fregrd, [address]

stq fregrd, [address]

stx %fsr, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
330 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Store Floating-Point
STXFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the
store will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

STF causes a mem_address_not_aligned exception if the effective memory address is
not word aligned. STXFSR causes a mem_address_not_aligned exception if the
address is not doubleword aligned. If the floating-point unit is not enabled for the
source register rd (per FPRS.FEF and PSTATE.PEF) or if the FPU is not present,
then a store floating-point instruction causes an fp_disabled exception.

IMPL. DEP. #110(1): STDF requires only word alignment in memory. If the effective
address is word aligned but not doubleword aligned, it may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STDF instruction and return.

IMPL. DEP. #112(1): STQF requires only word alignment in memory. If the effective
address is word aligned but not quadword aligned, it may cause an
STQF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STQF instruction and return.

Implementation Note – A floating-point operation that is not implemented in
hardware shall generate an fp_exception_other exception with
ftt = unimplemented_FPop when executed. Other instructions not implemented in
hardware shall generate an illegal_instruction exception and therefore will not
generate any of the other exceptions listed.

Programming Note – In SPARC V8, some compilers issued sets of single-precision
stores when they could not determine that double- or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned stores is expected to
be fast, it is recommended that compilers issue sets of single-precision stores only
when they can determine that double- or quadword operands are not properly
aligned.

Exceptions illegal_instruction (op3 = 2516 and rd = 2–31)
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only)
STQF_mem_address_not_aligned (STQF only) (not used in JPS1)
data_access_exception
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 331

Store Floating-Point
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
332 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Store Floating-Point into Alternate Space
A.62 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described on page 52.

Format (3)

Description The store single floating-point into alternate space instruction (STFA) copies f[rd]
into memory.

The store double floating-point into alternate space instruction (STDFA) copies a
doubleword from a double floating-point register into a word-aligned doubleword
in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the
contents of a quad floating-point register into a word-aligned quadword in memory.

Opcode op3 rd Operation

STFAPASI 11 0100 0–31 Store Floating-Point Register to Alternate Space

STDFAPASI 11 0111 † Store Double Floating-Point Register to Alternate Space

STQFAPASI 11 0110 † Store Quad Floating-Point Register to Alternate Space

Assembly Language Syntax

sta fregrd, [regaddr] imm_asi

sta fregrd, [reg_plus_imm] %asi

stda fregrd, [regaddr] imm_asi

stda fregrd, [reg_plus_imm] %asi

stqa fregrd, [regaddr] imm_asi

stqa fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 333

Store Floating-Point into Alternate Space
Store floating-point into alternate space instructions contain the address space
identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

STFA causes a mem_address_not_aligned exception if the effective memory address
is not word aligned. If the floating-point unit is not enabled for the source register
rd (per FPRS.FEF and PSTATE.PEF) or if the FPU is not present, store floating-
point into alternate space instructions cause an fp_disabled exception.

Implementation Notes – This check is not made for STQFA. STFA and STDFA
cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

STDFA with certain target ASIs is defined to be a 64-byte block-store instruction. See
Block Load and Store (VIS I) on page 199 for details.

STDFA with certain target ASIs is defined to be a Partial Store instruction. See Partial
Store (VIS I) on page 282 for details.

STDFA with certain target ASIs is defined to be a Short Floating-point Store
instruction. See Short Floating-Point Load and Store (VIS I) on page 326 for details.

IMPL. DEP. #110(2): STDFA requires only word alignment in memory. If the effective
address is word aligned but not doubleword aligned, it may cause an
STDF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STDFA instruction and return.

IMPL. DEP. #112(2): STQFA requires only word alignment in memory. If the effective
address is word aligned but not quadword aligned, it may cause an
STQF_mem_address_not_aligned exception. In this case, the trap handler software
shall emulate the STQFA instruction and return.

Programming Note – In SPARC V8, some compilers issued sets of single-precision
stores when they could not determine that double- or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned stores is expected to
be fast, we recommend that compilers issue sets of single-precision stores only when
they can determine that double- or quadword operands are not properly aligned.

Exceptions fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA only)
STQF_mem_address_not_aligned (STQFA only) (not used in JPS1)
privileged_action
data_access_exception
334 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Store Floating-Point into Alternate Space
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 335

Store Integer
A.63 Store Integer

Format (3)

Description The store integer instructions (except store doubleword) copy the whole extended
(64-bit) integer, the less significant word, the least significant halfword, or the least
significant byte of r[rd] into memory.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, store extended) instruction operates atomically.

STH causes a mem_address_not_aligned exception if the effective address is not
halfword aligned. STW causes a mem_address_not_aligned exception if the effective
address is not word aligned. STX causes a mem_address_not_aligned exception if
the effective address is not doubleword aligned.

Exceptions mem_address_not_aligned (all except STB)
data_access_exception
data_access_error

Opcode op3 Operation

STB 00 0101 Store Byte

STH 00 0110 Store Halfword

STW 00 0100 Store Word

STX 00 1110 Store Extended Word

Assembly Language Syntax

stb regrd, [address] (synonyms: stub, stsb)

sth regrd, [address] (synonyms: stuh, stsh)

stw regrd, [address] (synonyms: st, stuw, stsw)

stx regrd, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
336 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Store Integer
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 337

Store Integer into Alternate Space
A.64 Store Integer into Alternate Space

Format (3)

Description The store integer into alternate space instructions copy the whole extended (64-bit)
integer, the less significant word, the least significant halfword, or the least
significant byte of r[rd] into memory.

Opcode op3 Operation

STBAPASI 01 0101 Store Byte into Alternate Space

STHAPASI 01 0110 Store Halfword into Alternate Space

STWAPASI 01 0100 Store Word into Alternate Space

STXAPASI 01 1110 Store Extended Word into Alternate Space

Assembly Language Syntax

stba regrd, [regaddr] imm_asi (synonyms: stuba, stsba)

stha regrd, [regaddr] imm_asi (synonyms: stuha, stsha)

stwa regrd, [regaddr] imm_asi (synonyms: sta, stuwa, stswa)

stxa regrd, [regaddr] imm_asi

stba regrd, [reg_plus_imm] %asi (synonyms: stuba, stsba)

stha regrd, [reg_plus_imm] %asi (synonyms: stuha, stsha)

stwa regrd, [reg_plus_imm] %asi (synonyms: sta, stuwa, stswa)

stxa regrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
338 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Store Integer into Alternate Space
Store integer to alternate space instructions contain the address space identifier (ASI)
to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1.
The access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, store extended) instruction operates atomically.

STHA causes a mem_address_not_aligned exception if the effective address is not
halfword aligned. STWA causes a mem_address_not_aligned exception if the
effective address is not word aligned. STXA causes a mem_address_not_aligned
exception if the effective address is not doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

Compatibility Note – The SPARC V8 STA instruction is renamed STWA in SPARC
V9.

Exceptions privileged_action
mem_address_not_aligned (all except STBA)
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 339

Subtract
A.65 Subtract

Format (3)

Description These instructions compute “r[rs1] – r[rs2]” if i = 0, or
“r[rs1] – sign_ext(simm13)” if i = 1, and write the difference into r[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit
carry (icc.c) bit; that is, they compute “r[rs1] – r[rs2] – icc.c” or
“r[rs1] – sign_ext(simm13) –icc.c,” and write the difference into r[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A
32-bit overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the
operands differs and bit 31 (the sign) of the difference differs from r[rs1]<31>. A
64-bit overflow (CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the
operands differs and bit 63 (the sign) of the difference differs from r[rs1]<63>.

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify cc’s

SUBC 00 1100 Subtract with Carry

SUBCcc 01 1100 Subtract with Carry and modify cc’s

Assembly Language Syntax

sub regrs1, reg_or_imm, regrd

subcc regrs1, reg_or_imm, regrd

subc regrs1, reg_or_imm, regrd

subccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
340 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Subtract
Programming Notes– A SUBcc with rd = 0 can be used to effect a signed or
unsigned integer comparison. See the CMP synthetic instruction in Appendix G,
Assembly Language Syntax.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the
64-bit condition codes’ carry bit (CCR.xcc.c).

Exceptions None
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 341

Tagged Add
A.66 Tagged Add

Format (3)

Description This instruction computes a sum that is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TADDcc does not cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits
and all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set only, based on the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

Exceptions None

Opcode op3 Operation

TADDcc 10 0000 Tagged Add and modify cc’s

Assembly Language Syntax

taddcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
342 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Tagged Subtract
A.67 Tagged Subtract

Format (3)

Description This instruction computes “r[rs1] – r[rs2]” if i = 0, or
“r[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of r[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1; if
TSUBcc does not cause a tag overflow, CCR.icc.v is set to 0.

In either case, the remaining integer condition codes (both the other CCR.icc bits
and all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit). The
CCR.xcc.v setting is based only on the normal 64-bit arithmetic overflow
condition, like a normal 64-bit subtract.

Exceptions None

Opcode op3 Operation

TSUBcc 10 0001 Tagged Subtract and modify cc’s

Assembly Language Syntax

tsubcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 343

Trap on Integer Condition Codes (Tcc)
A.68 Trap on Integer Condition Codes (Tcc)

Format (4)

Opcode op3 cond Operation icc Test

TA 11 1010 1000 Trap Always 1

TN 11 1010 0000 Trap Never 0

TNE 11 1010 1001 Trap on Not Equal not Z

TE 11 1010 0001 Trap on Equal Z

TG 11 1010 1010 Trap on Greater not (Z or (N xor V))

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V)

TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)

TL 11 1010 0011 Trap on Less N xor V

TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)

TLEU 11 1010 0100 Trap on Less or Equal Unsigned (C or Z)

TCC 11 1010 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C

TCS 11 1010 0101 Trap on Carry Set (Less Than, Unsigned) C

TPOS 11 1010 1110 Trap on Positive or zero not N

TNEG 11 1010 0110 Trap on Negative N

TVC 11 1010 1111 Trap on Overflow Clear not V

TVS 11 1010 0111 Trap on Overflow Set V

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 7 6

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 sw_trap_#
344 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Trap on Integer Condition Codes (Tcc)
Description The Tcc instruction evaluates the selected integer condition codes (icc or xcc)
according to the cond field of the instruction, producing either a TRUE or FALSE
result. If TRUE and no higher-priority exceptions or interrupt requests are pending,
then a trap_instruction exception is generated. If FALSE, a trap_instruction exception
does not occur and the instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of
“r[rs1] + r[rs2]” if i = 0, or the least significant seven bits of
“r[rs1] + sw_trap_#” if i = 1.

cc1 cc0 Condition Codes

00 icc

01 —

10 xcc

11 —

Assembly Language Syntax

ta i_or_x_cc, software_trap_number

tn i_or_x_cc, software_trap_number

tne i_or_x_cc, software_trap_number (synonym: tnz)

te i_or_x_cc, software_trap_number (synonym: tz)

tg i_or_x_cc, software_trap_number

tle i_or_x_cc, software_trap_number

tge i_or_x_cc, software_trap_number

tl i_or_x_cc, software_trap_number

tgu i_or_x_cc, software_trap_number

tleu i_or_x_cc, software_trap_number

tcc i_or_x_cc, software_trap_number (synonym: tgeu)

tcs i_or_x_cc, software_trap_number (synonym: tlu)

tpos i_or_x_cc, software_trap_number

tneg i_or_x_cc, software_trap_number

tvc i_or_x_cc, software_trap_number

tvs i_or_x_cc, software_trap_number
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 345

Trap on Integer Condition Codes (Tcc)
When i = 1, bits 7 through 10 are reserved and should be supplied as zeroes by
software. When i = 0, bits 5 through 10 are reserved, the most significant 57 bits of
“r[rs1] + r[rs2]” are unused, and both should be supplied as zeroes by software.

Description (Effect on Privileged State)

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL].
Then the trap is taken, and the processor performs the normal trap entry procedure,
as described in Chapter 7, Traps.

Programming Note – Tcc can be used to implement breakpointing, tracing, and
calls to supervisor software. It can also be used for runtime checks, such as out-of-
range array indexes, integer overflow, and so on.

Compatibility Note – Tcc is upward compatible with the SPARC V8 Ticc
instruction, with one qualification: a Ticc with i = 1 and simm13 < 0 may execute
differently on a SPARC V9 processor. Use of the i = 1 form of Ticc is believed to be
rare in SPARC V8 software, and simm13 < 0 is probably not used at all, so it is
believed that, in practice, full software compatibility will be achieved.

Exceptions trap_instruction
illegal_instruction (cc1 cc0 = 012 or 112, or reserved fields nonzero)
346 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Write Privileged Register
A.69 Write Privileged Register

Format (3)

Opcode op3 Operation

WRPRP 11 0010 Write Privileged Register

rd Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15–31 Reserved

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 347

Write Privileged Register
Description This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1 to the writable fields of the specified privileged state
register. Note: The operation is exclusive-or.

The rd field in the instruction determines the privileged register that is written.
There are at least four copies of the TPC, TNPC, TT, and TSTATE registers, one for
each trap level. A write to one of these registers sets the register indexed by the
current value in the trap-level register (TL). A write to TPC, TNPC, TT, or TSTATE
when the trap level is zero (TL = 0) causes an illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other
machine state.

Programming Note – A WRPR of TL can be used to read the values of TPC, TNPC,
and TSTATE for any trap level; however, take care that traps do not occur while the
TL register is modified.

The WRPR instruction is a non-delayed-write instruction. The instruction immediately
following the WRPR observes any changes made to processor state made by the
WRPR.

Assembly Language Syntax

wrpr regrs1, reg_or_imm, %tpc

wrpr regrs1, reg_or_imm, %tnpc

wrpr regrs1, reg_or_imm, %tstate

wrpr regrs1, reg_or_imm, %tt

wrpr regrs1, reg_or_imm, %tick

wrpr regrs1, reg_or_imm, %tba

wrpr regrs1, reg_or_imm, %pstate

wrpr regrs1, reg_or_imm, %tl

wrpr regrs1, reg_or_imm, %pil

wrpr regrs1, reg_or_imm, %cwp

wrpr regrs1, reg_or_imm, %cansave

wrpr regrs1, reg_or_imm, %canrestore

wrpr regrs1, reg_or_imm, %cleanwin

wrpr regrs1, reg_or_imm, %otherwin

wrpr regrs1, reg_or_imm, %wstate
348 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Write Privileged Register
WRPR instructions with rd in the range 15–31 are reserved for future versions of the
architecture; executing a WRPR instruction with rd in that range causes an
illegal_instruction exception.

Implementation Note – Some WRPR instructions could serialize the processor in
some implementations. See specific Implementation Supplements for applicability
and details.

Exceptions privileged_opcode
illegal_instruction ((rd = 15–31) or ((rd ≤ 3) and (TL = 0)))
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 349

Write State Register
A.70 Write State Register

Format (3)

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register; deprecated (see A.71.18)

 — 11 0000 1 Reserved

WRCCR 11 0000 2 Write Condition Codes Register

WRASI 11 0000 3 Write ASI Register

 — 11 0000 4, 5 Reserved

WRFPRS 11 0000 6 Write Floating-Point Registers Status Register

 — 11 0000 7–14 Reserved

 — 11 0000 15 Software-initiated reset (see A.60)

WRASR 11 0000 16–31 Write non-SPARC V9 ASRs

WRPCRPPCR 16 Write Performance Control Registers (PCR)

WRPICPPIC 17 Write Performance Instrumentation Counters (PIC)

WRDCRP 18 Write Dispatch Control Register (DCR)

WRGSR 19 Write Graphic Status Register (GSR)

WRSOFTINT_SETP 20 Set bits of per-processor Soft Interrupt Register

WRSOFTINT_CLRP 21 Clear bits of per-processor Soft Interrupt Register

WRSOFTINTP 22 Write per-processor Soft Interrupt Register

WRTICK_CMPRP 23 Write Tick Compare Register

WRSTICKP 24 Write System TICK Register

WRSTICK_CMPRP 25 Write System TICK Compare Register

 — 26–31 Implementation dependent (impl. dep. #8, 9)

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
350 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Write State Register
Description These instructions store the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1, to the writable fields of the specified state register.
Note: The operation is exclusive-or.

WRASR writes a value to the ancillary state register (ASR) indicated by rd. The
operation performed to generate the value written may be rd dependent or
implementation dependent (see below). A WRASR instruction is indicated by op = 2,
rd = ≥ 16, and op3 = 3016.

IMPL. DEP. #48: WRASR instructions with rd in the range 26–31 are available for
implementation-dependent uses (impl. dep. #8). For a WRASR instruction with rd in
the range 26–31, the following are implementation dependent: the interpretation of
bits 18:0 in the instruction, the operation(s) performed (for example, xor) to generate
the value written to the ASR, whether the instruction is privileged (impl. dep. #9),
and whether the instruction causes an illegal_instruction exception.

The WRASR opcode for rd = 15, rs1 = 0, and i = 1 is used for the software-initiated
reset (SIR) instruction (see A.60).

The WRCCR, WRFPRS, and WRASI instructions are not delayed-write instructions. The
instruction immediately following a WRCCR, WRFPRS, or WRASIR observes the new
value of the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing
the FPRS register.

WRGSR causes an fp_disabled trap if PSTATE.PEF = 0 or FPRS.FEF = 0.

Assembly Language Syntax

wr regrs1, reg_or_imm, %ccr

wr regrs1, reg_or_imm, %asi

wr regrs1, reg_or_imm, %fprs

wr regrs1, reg_or_imm, %pcr

wr regrs1, reg_or_imm, %pic

wr regrs1, reg_or_imm, %dcr

wr regrs1, reg_or_imm, %gsr

wr regrs1, reg_or_imm, %set_softint

wr regrs1, reg_or_imm, %clear_softint

wr regrs1, reg_or_imm, %softint

wr regrs1, reg_or_imm, %tick_cmpr

wr regrs1, reg_or_imm, %sys_tick

wr regrs1, reg_or_imm, %sys_tick_cmpr
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 351

Write State Register
WRPIC causes a privileged_action exception if PSTATE.PRIV = 0 and PCR.PRIV = 1.

WRPCR causes an exception due to access privilege violation under implementation-
dependent circumstances (impl. dep. #250).

See Ancillary State Registers (ASRs) on page 83 for details of the ASR registers.

Note – See I.1, Read/Write Ancillary State Registers (ASRs), for a discussion of
extending the SPARC V9 instruction set by means of read/write ASR instructions.

Implementation Note – Ancillary state registers may include (for example) timer,
counter, diagnostic, self-test, and trap-control registers.

Compatibility Note – The SPARC V8 WRIER, WRPSR, WRWIM, and WRTBR
instructions do not exist in SPARC V9 because the IER, PSR, TBR, and WIM registers
do not exist in SPARC V9.

Implementation Note – Some WRASR instructions could serialize the processor in
some implementations. See specific Implementation Supplements for applicability
and details.

Exceptions software_initiated_reset (rd = 15, rs1 = 0, and i = 1 only)
privileged_opcode (WRDCR, WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT,
 WRTICK_CMPR, WRSTICK, WRSTICK_CMPR,
 and WRPCR (impl. dep. #250))
illegal_instruction (WRASR with rd = 1, 4, 5, 7–14, 26-31;

WRASR with rd = 15 and rs1 ≠ 0 or i ≠ 1)
privileged_action (WRPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1,
 WRPCR (impl. dep. #250))
fp_disabled (WRGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)
352 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Deprecated Instructions
A.71 Deprecated Instructions
The following instructions are deprecated; they are provided only for compatibility
with previous versions of the architecture. They should not be used in new SPARC
V9 software. For each deprecated instruction, we recommend the instruction to be
used instead. Please see TABLE A-2 on page 186 for the page number at which you
can find a description of the preferred instruction.
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions 353

Deprecated Instructions
354 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.1 Branch on Floating-Point Condition Codes (FBfcc)
The FBfcc instructions are deprecated. Use the FBPfcc instructions instead.

Format (2)

Opcode cond Operation fcc Test

FBAD 1000 Branch Always 1

FBND 0000 Branch Never 0

FBUD 0111 Branch on Unordered U

FBGD 0110 Branch on Greater G

FBUGD 0101 Branch on Unordered or Greater G or U

FBLD 0100 Branch on Less L

FBULD 0011 Branch on Unordered or Less L or U

FBLGD 0010 Branch on Less or Greater L or G

FBNED 0001 Branch on Not Equal L or G or U

FBED 1001 Branch on Equal E

FBUED 1010 Branch on Unordered or Equal E or U

FBGED 1011 Branch on Greater or Equal E or G

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U

FBLED 1101 Branch on Less or Equal E or L

FBULED 1110 Branch on Unordered or Less or Equal E or L or U

FBOD 1111 Branch on Ordered E or L or G

31 24 02530 29 28 22 21

cond00 a 110 disp22
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 355

Programming Note – To set the annul bit for FBfcc instructions, append “,a” to
the opcode mnemonic. For example, use “fbl,a label.” In the preceding table,
braces around “,a” signify that “,a” is optional.

Description: Unconditional and Fcc branches are described below:

■ Unconditional branches (FBA, FBN) — If its annul field is 0, an FBN (Branch
Never) instruction acts like a NOP. If its annul field is 1, the following (delay)
instruction is annulled (not executed) when the FBN is executed. In neither case
does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 × sign_ext(disp22)),” regardless of the value of the floating-point
condition code bits. If the annul field of the branch instruction is 1, the delay
instruction is annulled (not executed). If the annul field is 0, the delay instruction
is executed.

Assembly Language Syntax

fba{,a} label

fbn{,a} label

fbu{,a} label

fbg{,a} label

fbug{,a} label

fbl{,a} label

fbul{,a} label

fblg{,a} label

fbne{,a} label (synonym: fbnz)

fbe{,a} label (synonym: fbz)

fbue{,a} label

fbge{,a} label

fbuge{,a} label

fble{,a} label

fbule{,a} label

fbo{,a} label
356 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Fcc-conditional branches — Conditional FBfcc instructions (except FBA and
FBN) evaluate floating-point condition code zero (fcc0) according to the cond
field of the instruction. Such evaluation produces either a TRUE or FALSE result.
If TRUE, the branch is taken, that is, the instruction causes a PC-relative, delayed
control transfer to the address “PC + (4 × sign_ext(disp22)).” If FALSE, the
branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul field. If a conditional branch is not taken and
the a (annul) field is 1, the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on
unconditional branches.

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6 of Commonality.

Compatibility Note – Unlike SPARC V8, SPARC V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBfcc,
FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, the FBfcc
instruction is not executed and instead generates an fp_disabled exception.

Exceptions fp_disabled
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 357

A.71.2 Branch on Integer Condition Codes (Bicc)
Use the BPcc instructions in place of Bicc instructions.

Format (2)

Opcode cond Operation icc Test

BAD 1000 Branch Always 1

BND 0000 Branch Never 0

BNED 1001 Branch on Not Equal not Z

BED 0001 Branch on Equal Z

BGD 1010 Branch on Greater not (Z or (N xor V))

BLED 0010 Branch on Less or Equal Z or (N xor V)

BGED 1011 Branch on Greater or Equal not (N xor V)

BLD 0011 Branch on Less N xor V

BGUD 1100 Branch on Greater Unsigned not (C or Z)

BLEUD 0100 Branch on Less or Equal Unsigned C or Z

BCCD 1101 Branch on Carry Clear (Greater Than or Equal,
Unsigned)

not C

BCSD 0101 Branch on Carry Set (Less Than, Unsigned) C

BPOSD 1110 Branch on Positive not N

BNEGD 0110 Branch on Negative N

BVCD 1111 Branch on Overflow Clear not V

BVSD 0111 Branch on Overflow Set V

31 24 02530 29 28 22 21

00 a cond 010 disp22
358 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Programming Note – To set the annul bit for Bicc instructions, append “,a” to
the opcode mnemonic. For example, use “bgu,a label.” In the preceding table,
braces signify that the “,a” is optional.

Description Unconditional branches and icc-conditional branches are described below:

■ Unconditional branches (BA, BN) — If its annul field is 0, a BN (Branch Never)
instruction is treated as a NOP. If its annul field is 1, the following (delay)
instruction is annulled (not executed). In neither case does a transfer of control
take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 × sign_ext(disp22)).” If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul field
is 0, the delay instruction is executed.

Assembly Language Syntax

ba{,a} label

bn{,a} label

bne{,a} label (synonym: bnz)

be{,a} label (synonym: bz)

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bcc{,a} label (synonym: bgeu)

bcs{,a} label (synonym: blu)

bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 359

■ Icc-conditional branches — Conditional Bicc instructions (all except BA and BN)
evaluate the 32-bit integer condition codes (icc), according to the cond field of
the instruction, producing either a TRUE or FALSE result. If TRUE, the branch is
taken, that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not taken and
the a (annul) field is 1, the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on
unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, Instructions.

Exceptions None
360 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.3 Divide (64-bit / 32-bit)
The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated. Use the UDIVX and
SDIVX instructions instead.

Format (3)

Description The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If
i = 0, they compute “(Y r[rs1]<31:0>) ÷ r[rs2]<31:0>.” Otherwise (that is, if
i = 1), the divide instructions compute “(Y r[rs1]<31:0>) ÷
(sign_ext(simm13)<31:0>).” In either case, if overflow does not occur, the less
significant 32 bits of the integer quotient are sign- or zero-extended to 64 bits and are
written into r[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide
operation.

Opcode op3 Operation

UDIVD 00 1110 Unsigned Integer Divide

SDIVD 00 1111 Signed Integer Divide

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s

SDIVcc
D 01 1111 Signed Integer Divide and modify cc’s

Assembly Language Syntax

udiv regrs1, reg_or_imm, regrd

sdiv regrs1, reg_or_imm, regrd

udivcc regrs1, reg_or_imm, regrd

sdivcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 361

Unsigned Divide Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword
dividend (Y r[rs1]<31:0>) and an unsigned integer word divisor r[rs2<31:0>]
or (sign_ext(simm13)<31:0>) and computes an unsigned integer word quotient
(r[rd]). Immediate values in simm13 are in the ranges 0 to 212 – 1 and 232 – 212 to
232 – 1 for unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

IMPL. DEP. #107(1): It is implementation dependent whether LDD is implemented in
hardware. If not, an attempt to execute it will cause an unimplemented_LDD
exception.

Programming Note – The rational quotient is the infinitely precise result quotient. It
includes both the integer part and the fractional part of the result. For example, the
rational quotient of 11/4 = 2.75 (integer part = 2, fractional part = .75).

The result of an unsigned divide instruction can overflow the less significant 32 bits
of the destination register r[rd] under certain conditions. When overflow occurs,
the largest appropriate unsigned integer is returned as the quotient in r[rd]. The
condition under which overflow occurs and the value returned in r[rd] under this
condition are specified in TABLE A-9.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written
into register r[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of r[rd] after it has been set to reflect overflow, if any.

TABLE A-9 UDIV / UDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r[rd]

Rational quotient ≥ 232 232 − 1
(0000 0000 FFFF FFFF16)

Bit UDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per TABLE A-9)

icc.C Zero

xcc.N Set if r[rd]<63> = 1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero
362 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Signed Divide Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend
(Y lower 32 bits of r[rs1]) and a signed integer word divisor (lower 32 bits of
r[rs2] or lower 32 bits of sign_ext(simm13)) and computes a signed integer
word quotient (r[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals
the rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward
zero.

The result of a signed divide can overflow the low-order 32 bits of the destination
register r[rd] under certain conditions. When overflow occurs, the largest
appropriate signed integer is returned as the quotient in r[rd]. The conditions
under which overflow occurs and the value returned in r[rd] under those
conditions are specified in TABLE A-10.

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written
into register r[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition
code bits as shown in the following table. Note that negative (N) and zero (Z) are set
according to the value of r[rd] after it has been set to reflect overflow, if any.

Exceptions division_by_zero

TABLE A-10 SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r[rd]

Rational quotient ≥ 231 231 −1
(0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231

(FFFF FFFF 8000 000016)

Bit SDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per TABLE A-10)

icc.C Zero

xcc.N Set if r[rd]<63]> = 1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 363

A.71.4 Load Floating-Point Status Register
The LDFSR instruction is deprecated. Use the LDXFSR instruction instead.

Format (3)

Description The load floating-point state register lower instruction (LDFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a word
from memory into the less significant 32 bits of the FSR. The upper 32 bits of FSR are
unaffected by LDFSR.

LDFSR causes a mem_address_not_aligned exception if the effective memory
address is not word aligned.

Compatibility Note – SPARC V9 supports two different instructions to load the
FSR: the SPARC V8 LDFSR instruction is defined to load only the less significant 32
bits of the FSR, whereas LDXFSR allows SPARC V9 programs to load all 64 bits of the
FSR.

Exceptions mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

Opcode op3 rd Operation

LDFSRD 10 0001 0 Load Floating-Point State Register Lower

Assembly Language Syntax

ld [address], %fsr

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
364 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.5 Load Integer Doubleword
The LDD instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC V9
software. Use the LDX instruction instead.

Please refer to A.28 on page 247 for the current load integer instructions.

Format (3)

Description: The load doubleword integer instruction (LDD) copies a doubleword from memory
into an r-register pair. The word at the effective memory address is copied into the
even r register. The word at the effective memory address + 4 is copied into the
following odd-numbered r register. The upper 32 bits of both the even-numbered
and odd-numbered r registers are zero-filled.

Note – A load doubleword with rd = 0 modifies only r[1]. The least significant bit
of the rd field in an LDD instruction is unused and should be set to 0 by software.

An attempt to execute a load doubleword instruction that refers to a misaligned
(odd-numbered) destination register causes an illegal_instruction exception.

With respect to little endian memory, an LDD instruction behaves as if it is comprises
two 32-bit loads, each of which is byte-swapped independently before being written
into its respective destination register.

Opcode op3 Operation

LDDD 00 0011 Load doubleword

Assembly Language Syntax

ldd [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 365

Load integer doubleword instructions access the primary address space (ASI = 8016).
The effective address is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

A successful load doubleword instruction operates atomically.

Programming Note – LDD is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and register-access
difficulties.

Exceptions illegal_instruction (LDD with odd rd)
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
366 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.6 Load Integer Doubleword from Alternate Space
The LDDA instruction is deprecated. Use the LDXA instruction in its place.

Please refer to A.29 on page 249 for current load integer from alternate space
instructions.

Format (3)

Description The load doubleword integer from alternate space instruction (LDDA) copies a
doubleword from memory into an r-register pair. The word at the effective memory
address is copied into the even r register. The word at the effective memory
address + 4 is copied into the following odd-numbered r register. The upper 32 bits
of both the even-numbered and odd-numbered r registers are zero-filled.

Note – A load doubleword with rd = 0 modifies only r[1]. The least significant bit
of the rd field in an LDDA instruction is unused and should be set to 0 by software.

An attempt to execute a load doubleword instruction that refers to a misaligned
(odd-numbered) destination register causes an illegal_instruction exception.

With respect to little endian memory, an LDDA instruction behaves as if it is
composed of two 32-bit loads, each of which is byte-swapped independently before
being written into its respective destination register.

The load integer doubleword from alternate space instructions contain the address
space identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the
ASI register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is
not privileged. The effective address for these instructions is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

Opcode op3 Operation

LDDAD, PASI 01 0011 Load Doubleword from Alternate Space

Assembly Language Syntax

ldda [regaddr] imm_asi, reg rd

ldda [reg_plus_imm] %asi, reg rd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 367

A successful load doubleword instruction operates atomically.

LDDA causes a mem_address_not_aligned exception if the address is not
doubleword aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7
of the ASI is 0.

LDDA with ASI = 2416 or 2C16 is defined to be a Load Quadword Atomic instruction.
See A.30 on page 251 for details.

LDDA with ASI = 7016, 7116, 7816, 7916, F016, F116, F816, or F916 is defined to be a Block
Load instruction. See A.4 on page 199 for details.

LDDA with ASI = D016–D316 or D816–DB16 is defined to be a Short Floating-point
Load instruction. See A.58 on page 326 for details.

IMPL. DEP. #107(2): It is implementation dependent whether LDDA is implemented
in hardware. If not, an attempt to execute it will cause an unimplemented_LDD
exception.

Programming Note – LDDA is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and register-access
difficulties.

If LDDA is emulated in software, an LDXA instruction should be used for the memory
access in order to preserve atomicity.

Exceptions privileged_action
illegal_instruction (LDDA with odd rd)
mem_address_not_aligned)
data_access_exception
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
368 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.7 Multiply (32-bit)
The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated. Use the MULX
instruction instead.

Format (3)

Description The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They compute “r[rs1]<31:0> × r[rs2]<31:0>” if i = 0, or “r[rs1]<31:0>
× sign_ext(simm13)<31:0>” if i = 1. They write the 32 most significant bits of the
product into the Y register and all 64 bits of the product into r[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer word
operands and compute an unsigned integer doubleword product. Signed multiply
instructions (SMUL, SMULcc) operate on signed integer word operands and compute
a signed integer doubleword product.

Opcode op3 Operation

UMULD 00 1010 Unsigned Integer Multiply

SMULD 00 1011 Signed Integer Multiply

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s

SMULccD 01 1011 Signed Integer Multiply and modify cc’s

Assembly Language Syntax

umul regrs1, reg_or_imm, regrd

smul regrs1, reg_or_imm, regrd

umulcc regrs1, reg_or_imm, regrd

smulcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 369

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the
integer condition code bits, icc and xcc, as shown in TABLE A-11. Note: 32-bit
negative (icc.N) and zero (icc.Z) condition codes are set according to the less
significant word of the product, not according to the full 64-bit result.

Programming Notes – 32-bit overflow after UMUL/UMULcc is indicated by Y ≠ 0.

32-bit overflow after SMUL/SMULcc is indicated by Y ≠ (r[rd] >> 31), where “>>”
indicates 32-bit arithmetic right-shift.

Exceptions None

TABLE A-11 UMULcc / SMULcc Condition Code Settings

Bit UMULcc / SMULcc

icc.N Set if product<31> = 1

icc.Z Set if product<31:0>= 0

icc.V 0

icc.C 0

xcc.N Set if product<63> = 1

xcc.Z Set if product<63:0> = 0

xcc.V 0

xcc.C 0
370 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.8 Multiply Step
The MULScc instruction is deprecated. Use the MULX instruction instead.

Format (3)

Description MULScc treats the less significant 32 bits of both r[rs1] and the Y register as a
single 64-bit, right-shiftable doubleword register. The least significant bit of r[rs1]
is treated as if it were adjacent to bit 31 of the Y register. The MULScc instruction
adds, based on the least significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, r[rs1]
contains the most significant bits of the product, and r[rs2] contains the
multiplicand. Upon completion of the multiplication, the Y register contains the least
significant bits of the product.

Note: A standard MULScc instruction has rs1 = rd.

MULScc operates as follows:

1. The multiplicand is r[rs2] if i = 0, or sign_ext(simm13) if i = 1.

2. A 32-bit value is computed by shifting r[rs1] right by one bit with
“CCR.icc.n xor CCR.icc.v” replacing bit 31 of r[rs1]. (This is the proper sign
for the previous partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the
multiplicand are added. If the least significant bit of the Y = 0, then 0 is added to
the shifted value from step (2).

Opcode op3 Operation

MULSccD 10 0100 Multiply Step and modify cc’s

Assembly Language Syntax

mulscc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 371

4. The sum from step (3) is written into r[rd]. The upper 32 bits of r[rd] are
undefined. The integer condition codes are updated according to the addition
performed in step (3). The values of the extended condition codes are undefined.

5. The Y register is shifted right by one bit, with the least significant bit of the
unshifted r[rs1] replacing bit 31of Y.

Exceptions None
372 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.9 Read Y Register
The RDY instruction from the Read State Register instructions (A.51 on page 313) is
deprecated. We recommend that all instructions that reference the Y register be
avoided.

Format (3)

Description This instruction reads the Y register into r[rd].

Exceptions None

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register

Assembly Language Syntax

rd %y, regrd

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 373

A.71.10 Store Barrier
The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Format (3)

Description The store barrier instruction (STBAR) forces all store and atomic load-store
operations issued by a processor prior to the STBAR to complete their effects on
memory before any store or atomic load-store operations issued by that processor
subsequent to the STBAR are executed by memory.

Note: The encoding of STBAR is identical to that of the RDASR instruction except that
rs1 = 15 and rd = 0, and it is identical to that of the MEMBAR instruction except that
bit 13 (i) = 0.

Compatibility Note – STBAR is identical in function to a MEMBAR instruction with
mmask = 816. STBAR is retained for compatibility with SPARC V8.

Implementation Note – For correctness, it is sufficient for a processor to stop
issuing new store and atomic load-store operations when an STBAR is encountered
and to resume after all stores have completed and are observed in memory by all
processors. More efficient implementations may take advantage of the fact that the
processor is allowed to issue store and load-store operations after the STBAR, as long
as those operations are guaranteed not to become visible before all the earlier stores
and atomic load-stores have become visible to all processors.

Exceptions None

Opcode op3 Operation

STBARD 10 1000 Store Barrier

Assembly Language Syntax

stbar

31 141924 18 13 02530 29

10 0 op3 0 1111 —

12

0

374 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.11 Store Floating-Point Status Register Lower
The STFSR instruction is deprecated. Use the STXFSR instruction instead.

Format (3)

Description The store floating-point state register lower instruction (STFSR) waits for any
currently executing FPop instructions to complete, and then it writes the less
significant 32 bits of the FSR into memory.

Compatibility Note – SPARC V9 needs two store-FSR instructions, since the
SPARC V8 STFSR instruction is defined to store only 32 bits of the FSR into memory.
STXFSR allows SPARC V9 programs to store all 64 bits of the FSR.

STFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the
store will not cause a precise trap.

The effective address for this instruction is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

STFSR causes a mem_address_not_aligned exception if the effective memory
address is not word aligned.

Exceptions illegal_instruction (op3 = 2516 and rd = 2–31)
fp_disabled
mem_address_not_aligned

Opcode op3 rd Operation

STFSRD 10 0101 0 Store Floating-Point State Register Lower

Assembly Language Syntax

st %fsr, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 375

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
376 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.12 Store Integer Doubleword
The STD instruction is deprecated. Use the STX instruction instead.

Format (3)

Description The store doubleword integer instruction (STD) copies two words from an r register
pair into memory. The least significant 32 bits of the even-numbered r register are
written into memory at the effective address, and the least significant 32 bits of the
following odd-numbered r register are written into memory at the “effective
address + 4.” The least significant bit of the rd field of a store doubleword
instruction is unused and should always be set to 0 by software. An attempt to
execute a store doubleword instruction that refers to a misaligned (odd-numbered)
rd causes an illegal_instruction exception.

The effective address for this instruction is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

A successful store doubleword instruction operates atomically.

STD causes a mem_address_not_aligned exception if the effective address is not
doubleword aligned.

IMPL. DEP. #108(1): It is implementation dependent whether STD is implemented
in hardware. If not, an attempt to execute it will cause an unimplemented_STD
exception.

With respect to little-endian memory, a STD instruction behaves as if it is composed
of two 32-bit stores, each of which is byte-swapped independently before being
written into its respective destination memory word.

Opcode op3 Operation

STDD 00 0111 Store Doubleword

Assembly Language Syntax

std regrd, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 377

Programming Notes – STD is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and register-access
difficulties. Therefore, software should avoid using STD.

If STD is emulated in software, STX should be used to preserve atomicity.

Exceptions illegal_instruction (STD with odd rd)
mem_address_not_aligned (all except STB)
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
378 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.13 Store Integer Doubleword into Alternate Space
The STDA instruction is deprecated. Instead, use the STXA instruction.

Format (3)

Description The store doubleword integer instruction (STDA) copies two words from an r
register pair into memory. The least significant 32 bits of the even-numbered r
register are written into memory at the effective address, and the least significant 32
bits of the following odd-numbered r register are written into memory at the
“effective address + 4.” The least significant bit of the rd field of a store doubleword
instruction is unused and should always be set to 0 by software. An attempt to
execute a store doubleword instruction that refers to a misaligned (odd-numbered)
rd causes an illegal_instruction exception.

Store integer doubleword to alternate space instructions contain the address space
identifier (ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI
register if i = 1. The access is privileged if bit 7 of the ASI is 0; otherwise, it is not
privileged. The effective address for these instructions is “r[rs1] + r[rs2]” if
i = 0, or “r[rs1]+sign_ext(simm13)” if i = 1.

A successful store doubleword instruction operates atomically.

STDA causes a mem_address_not_aligned exception if the effective address is not
doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

Opcode op3 Operation

STDAD, PASI 01 0111 Store Doubleword into Alternate Space

Assembly Language Syntax

stda regrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 379

With respect to little-endian memory, a STDA instruction behaves as if it is composed
of two 32-bit stores, each of which is byte-swapped independently before being
written into its respective destination memory word.

STDA with ASI = 7016, 7116, 7816, 7916, E016, E116, F016, F116, F816, or F916 is defined to
be a Block Store instruction. See A.4 on page 199 for details.

STDA with ASI = C016–C516 or C816–CD16 is defined to be a Partial Store instruction.
See A.42 on page 282 for details.

STDA with ASI = D016–D316 or D816–DB16 is defined to be a Short Floating-point
Store instruction. See A.58 on page 326 for details.

IMPL. DEP. #108(2): It is implementation dependent whether STDA is implemented
in hardware. If not, an attempt to execute it will cause an unimplemented_STD
exception.

Programming Note – STDA is provided for compatibility with SPARC V8. It may
execute slowly on SPARC V9 machines because of data path and register-access
difficulties. Therefore, software should avoid using STDA.

If STDA is emulated in software, STXA should be used to preserve atomicity.

Exceptions illegal_instruction (STDA with odd rd)
privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
380 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.14 Swap Register with Memory
The SWAP instruction is deprecated. Use the CASA or CASXA instruction in its place.

Format (3)

Description SWAP exchanges the less significant 32 bits of r[rd] with the contents of the word at
the addressed memory location. The upper 32 bits of r[rd] are set to 0. The
operation is performed atomically, that is, without allowing intervening interrupts
or deferred traps. In a multiprocessor system, two or more processors executing
CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all
of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1. This instruction causes a
mem_address_not_aligned exception if the effective address is not word aligned.

The coherence and atomicity of memory operations between processors and I/O
DMA memory accesses are implementation dependent (impl. dep. #120).

Implementation Note – See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for
information on the presence of hardware support for these instructions in the
various SPARC V9 implementations.

Opcode op3 Operation

SWAPD 00 1111 Swap Register with Memory

Assembly Language Syntax

swap [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 381

Exceptions mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
382 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.15 Swap Register with Alternate Space Memory
The SWAPA instruction is deprecated. Use the CASXA instruction instead.

Format (3)

Description SWAPA exchanges the less significant 32 bits of r[rd] with the contents of the word
at the addressed memory location. The upper 32 bits of r[rd] are set to 0. The
operation is performed atomically, that is, without allowing intervening interrupts
or deferred traps. In a multiprocessor system, two or more processors executing
CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all
of the same doubleword simultaneously are guaranteed to execute them in an
undefined, but serial, order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the
load in the imm_asi field if i = 0, or in the ASI register if i = 1. The access is
privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective address
for this instruction is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes a mem_address_not_aligned exception if the effective
address is not word aligned. It causes a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

The coherence and atomicity of memory operations between processors and I/O
DMA memory accesses are implementation dependent (impl. dep #120).

Opcode op3 Operation

SWAPAD, PASI 01 1111 Swap register with Alternate Space Memory

Assembly Language Syntax

swapa [regaddr] imm_asi, regrd

swapa [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 383

Implementation Note – See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for
information on the presence of hardware support for this instruction in the various
SPARC V9 implementations.

Exceptions mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
384 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.16 Tagged Add and Trap on Overflow
The TADDccTV instruction is deprecated. Use the TADDcc followed by BPVS
instruction (with instructions to save the pre-TADDcc integer condition codes if
necessary).

Format (3)

Description This instruction computes a sum that is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same
value in bit 31 and bit 31 of the sum is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and r[rd]
and the integer condition codes remain unchanged. If a TADDccTV does not cause a
tag overflow, the sum is written into r[rd] and the integer condition codes are
updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits
and all the CCR.xcc bits) are also updated as they would be for a normal ADD
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set, based only on the normal 64-bit arithmetic overflow condition,
like a normal 64-bit add.

Opcode op3 Operation

TADDccTVD 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Assembly Language Syntax

taddcctv regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 385

Compatibility Note – TADDccTV traps based on the 32-bit overflow condition, just
as in SPARC V8. Although the tagged add instructions set the 64-bit condition codes
CCR.xcc, there is no form of the instruction that traps the 64-bit overflow condition.

Exceptions tag_overflow
386 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.17 Tagged Subtract and Trap on Overflow
The TSUBccTV instruction is deprecated. Use the TSUBcc instruction followed by
BPVS (with instructions to save the pre-TSUBcc integer condition codes if
necessary).

Format (3)

Description This instruction computes “r[rs1] – r[rs2]” if i = 0, or “r[rs1] –
sign_ext(simm13)” if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different
values in bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31
differs from bit 31 of r[rs1].

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and
r[rd] and the integer condition codes remain unchanged. If a TSUBccTV does not
cause a tag overflow condition, the difference is written into r[rd] and the integer
condition codes are updated. CCR.icc.v is set to 0 to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits
and all the CCR.xcc bits) are also updated as they would be for a normal subtract
instruction. In particular, the setting of the CCR.xcc.v bit is not determined by the
tag overflow condition (tag overflow is used only to set the 32-bit overflow bit).
CCR.xcc.v is set, based only on the normal 64-bit arithmetic overflow condition,
like a normal 64-bit subtract.

Opcode op3 Operation

TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflow

Assembly Language Syntax

tsubcctv regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 387

Compatibility Note – TSUBccTV traps are based on the 32-bit overflow condition,
just as in SPARC V8. Although the tagged-subtract instructions set the 64-bit
condition codes CCR.xcc, there is no form of the instruction that traps on 64-bit
overflow.

Exceptions tag_overflow
388 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A.71.18 Write Y Register
The WRY instruction is deprecated. It is recommended that all instructions that
reference the Y register be avoided.

Format (3)

Description This instructions stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1, to the writable fields of the Y register. Note: The
operation is exclusive-or.

The WRY instruction is not a delayed-write instruction. The instruction immediately
following a WRY observes the new value of the Y register.

Exceptions None

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register

— 11 0000 1–31 See Write State Register on page 350

Assembly Language Syntax

wr regrs1, reg_or_imm, %y

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Release 1.0.4, 31 May 2002 C. Appendix A • Instruction Definitions (Deprecated) 389

390 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX B

IEEE Std 754-1985 Requirements for
SPARC V9

The IEEE Std 754-1985 floating-point standard contains a number of implementation
dependencies. This appendix specifies choices for these implementation
dependencies, to ensure that SPARC V9 implementations are as consistent as
possible.

The appendix contains these major sections:

■ Traps Inhibiting Results on page 392
■ NaN Operand and Result Definitions on page 392
■ Trapped Underflow Definition (UFM = 1) on page 394
■ Untrapped Underflow Definition (UFM = 0) on page 395
■ Integer Overflow Definition on page 396
■ Floating-Point Nonstandard Mode on page 396

Exceptions are discussed in this appendix on the assumption that instructions are
implemented in hardware. If an instruction is implemented in software, it may not
trigger hardware exceptions but its behavior as observed by nonprivileged software
(other than timing) must be the same as if it was implemented in hardware.
Release 1.0.4, 31 May 2002 C. Appendix B • IEEE Std 754-1985 Requirements for SPARC V9 391

B.1 Traps Inhibiting Results
As described in Floating-Point State Register (FSR) on page 56 and elsewhere, when a
floating-point trap occurs, the following conditions are true:

■ The destination floating-point register(s) (the f registers) are unchanged.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

■ The FSR.aexc (accrued exceptions) field is unchanged.

■ The FSR.cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains a bit set to 1, corresponding to
the exception that caused the trap. Only one bit shall be set in cexc.

Instructions causing an fp_exception_other trap because of unfinished or
unimplemented FPops execute as if by hardware; that is, a trap is undetectable by
user software, except that timing may be affected. A user-mode trap handler
invoked for an IEEE_754_exception, whether as a direct result of a hardware
fp_exception_ieee_754 trap or as an indirect result of supervisor handling of an
fp_exception_other trap with FSR.ftt = unfinished_FPop or
FSR.ftt = unimplemented_FPop, can rely on the following behavior:

■ The address of the instruction that caused the exception will be available.

■ The destination floating-point register(s) are unchanged from their state prior to
that instruction’s execution.

■ The floating-point condition codes (fcc0, fcc1, fcc2, and fcc3) are unchanged.

■ The FSR aexc field is unchanged.

■ The FSR cexc field contains exactly one bit set to 1, corresponding to the
exception that caused the trap.

■ The FSR ftt, qne, and reserved fields are zero.

B.2 NaN Operand and Result Definitions
An untrapped floating-point result can be in a format that is either the same as, or
different from, the format of the source operands. These two cases are described
separately below.
392 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

B.2.1 Untrapped Result in Different Format from
Operands
■ F[sdq]TO[sdq] with a quiet NaN operand — No exception caused; result is a

quiet NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. In conversion to a narrower
format, excess low-order bits of the operand fraction are discarded. In conversion
to a wider format, excess low-order bits of the result fraction are set to 0. The
quiet bit (the most significant bit of the result fraction) is always set to 1, so the
NaN transformation always produces a quiet NaN. The sign bit is copied from
the operand to the result without modification.

■ F[sdq]TO[sdq] with a signalling NaN operand — Invalid exception; result is the
signalling NaN operand processed by the NaN transformation above to produce a
quiet NaN.

■ FCMPE[sdq] with any NaN operand — Invalid exception; the selected floating-
point condition code is set to unordered.

■ FCMP[sdq] with any signalling NaN operand — Invalid exception; the selected
floating-point condition code is set to unordered.

■ FCMP[sdq] with any quiet NaN operand but no signalling NaN operand — No
exception; the selected floating-point condition code is set to unordered.

B.2.2 Untrapped Result in Same Format as Operands
■ No NaN operand — For an invalid operation such as sqrt(–1.0) or 0.0 ÷ 0.0, the

result is the quiet NaN with sign = zero, exponent = all ones, and fraction = all
ones. The sign is zero to distinguish such results from storage initialized to all
ones.

■ One operand, a quiet NaN — No exception; result is the quiet NaN operand.

■ One operand, a signalling NaN — Invalid exception; result is the signalling NaN
with its quiet bit (most significant bit of fraction field) set to 1.

■ Two operands, both quiet NaNs — No exception; result is the rs2 (second
source) operand.

■ Two operands, both signalling NaNs — Invalid exception; result is the rs2
operand with the quiet bit set to 1.

■ Two operands, only one is a signalling NaN — Invalid exception; result is the
signalling NaN operand with the quiet bit set to 1.

■ Two operands, neither is a signalling NaN, only one is a quiet NaN — No
exception; result is the quiet NaN operand.
Release 1.0.4, 31 May 2002 C. Appendix B • IEEE Std 754-1985 Requirements for SPARC V9 393

In TABLE B-1, NaNn means that the NaN is in rsn, Q means quiet, S signalling.

QSNaNn means a quiet NaN produced by the NaN transformation on a signalling
NaN from rsn; the invalid exception is always indicated. The QNaNn results in the
table never generate an exception, but IEEE 754 specifies several cases of invalid
exceptions, and QNaN results from operands that are both numbers.

B.3 Trapped Underflow Definition
(UFM = 1)
A SPARC JPS1 processor detects tininess before rounding occurs. (impl. dep. #55)

Since tininess is detected before rounding, trapped underflow occurs when the exact
unrounded result has magnitude between zero and the smallest normalized number
in the destination format.

Note – The wrapped exponent results intended to be delivered on trapped
underflows and overflows in IEEE 754 are irrelevant to SPARC V9 at the hardware
and supervisor software levels. If they are created at all, it would be by user
software in a user-mode trap handler.

TABLE B-1 Untrapped Floating-Point Results

rs2 Operand

Number QNaN2 SNaN2

rs1
Operand

None IEEE 754 QNaN2 QSNaN2

Number IEEE 754 QNaN2 QSNaN2

QNaN1 QNaN1 QNaN2 QSNaN2

SNaN1 QSNaN1 QSNaN1 QSNaN2
394 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

B.4 Untrapped Underflow Definition
(UFM = 0)
On an implementation that detects tininess before rounding, untrapped underflow
occurs when the exact unrounded result has magnitude between zero and the
smallest normalized number in the destination format and the correctly rounded
result in the destination format is inexact.

TABLE B-2 summarizes what happens on an implementation that detects tininess
before rounding, when an exact unrounded value u satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to a rounded value r which might be zero,
subnormal, or the smallest normalized value.

In an implementation that detects tininess after rounding, TABLE B-2 applies to a
narrower range of values of the exact unrounded result u. The precise bounds
depend on the rounding direction specified in FSR.RD, as follows:

TABLE B-2 Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)

Underflow trap:
Inexact trap:

UFM = 1
NXM = x

UFM = 0
NXM = 1

UFM = 0
NXM = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

UF = fp_exception_ieee_754 trap with cexc.ufc = 1
NX = fp_exception_ieee_754 trap with cexc.nxc = 1
uf = cexc.ufc = 1, aexc.ufa = 1, no fp_exception_ieee_754 trap
nx = cexc.nxc = 1, aexc.nxa = 1, no fp_exception_ieee_754 trap
Release 1.0.4, 31 May 2002 C. Appendix B • IEEE Std 754-1985 Requirements for SPARC V9 395

■ Let m denote the smallest normalized number and e the absolute difference
between 1 and the next larger representable number in the destination format.
Then the bounds on u for which TABLE B-2 applies are:

■ When u lies outside these ranges, underflow does not occur. However, an
fp_exception_ieee_754 exception with cexc.nxc = 1 still occurs when u ≠ r
(where r is the rounded value).

B.5 Integer Overflow Definition
■ F[sdq]TOi — When a NaN, infinity, large positive argument ≥ 2147483648.0 or

large negative argument ≤ –2147483649.0 is converted to an integer, the
invalid_current (nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754
should be raised. If the floating-point invalid trap is disabled (FSR.TEM.NVM = 0),
no trap occurs and a numerical result is generated: if the sign bit of the operand is
0, the result is 2147483647; if the sign bit of the operand is 1, the result is
–2147483648.

■ F[sdq]TOx — When a NaN, infinity, large positive argument ≥ 263, or large
negative argument ≤ –(263 + 1) is converted to an extended integer, the
invalid_current (nvc) bit of FSR.cexc should be set and fp_exception_IEEE_754
should be raised. If the floating-point invalid trap is disabled (FSR.TEM.NVM = 0),
no trap occurs and a numerical result is generated: if the sign bit of the operand is
0, the result is 263 – 1; if the sign bit of the operand is 1, the result is –263.

B.6 Floating-Point Nonstandard Mode
Please refer to FSR_nonstandard_fp (NS) on page 58 for information.

TABLE B-3 Range of Values of u for which TABLE B-2 Applies,
if Tininess is Detected After Rounding

FSR.RD Round Toward
Range of Values of u for
which TABLE B-2 applies

0 Nearest (even, if tie) |u| < m(1 − e/4)

1 0 |u| < m

2 + ∞ −m < u ≤ m(1 − e/2)

3 − ∞ −m(1 − e/2) ≤ u < m
396 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX C

Implementation Dependencies

This appendix summarizes implementation dependencies in the SPARC V9
standard. In SPARC V9, the notation “IMPL. DEP. #nn:” identifies the definition of an
implementation dependency; the notation “(impl. dep. #nn)” identifies a reference to
an implementation dependency. These dependencies are described by their number
nn in TABLE C-1 on page 399.

The appendix contains these sections:

■ Definition of an Implementation Dependency on page 398
■ Hardware Characteristics on page 398
■ Implementation Dependency Categories on page 399
■ List of Implementation Dependencies on page 399

Note – SPARC International maintains a document, Implementation Characteristics of
Current SPARC-V9-based Products, Revision 9.x, that describes the implementation-
dependent design features of all SPARC V9-compliant implementations. Contact
SPARC International for this document at:

home page: www.sparc.org
email: info@sparc.org
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 397

C.1 Definition of an Implementation
Dependency
The SPARC V9 architecture is a model that specifies unambiguously the behavior
observed by software on SPARC V9 systems. Therefore, it does not necessarily
describe the operation of the hardware of any actual implementation.

An implementation is not required to execute every instruction in hardware. An
attempt to execute a SPARC V9 instruction that is not implemented in hardware
generates a trap. Whether an instruction is implemented directly by hardware,
simulated by software, or emulated by firmware is implementation dependent.

The two levels of SPARC V9 compliance are described in SPARC V9 Compliance on
page 8.

Some elements of the architecture are defined to be implementation dependent.
These elements include certain registers and operations that may vary from
implementation to implementation; they are explicitly identified as such in this
appendix.

Implementation elements (such as instructions or registers) that appear in an
implementation but are not defined in this document (or its updates) are not
considered to be SPARC V9 elements of that implementation.

C.2 Hardware Characteristics
Hardware characteristics that do not affect the behavior observed by software on
SPARC V9 systems are not considered architectural implementation dependencies. A
hardware characteristic may be relevant to the user system design (for example, the
speed of execution of an instruction) or may be transparent to the user (for example,
the method used for achieving cache consistency). The SPARC International
document, Implementation Characteristics of Current SPARC-V9-based Products, Revision
9.x, provides a useful list of these hardware characteristics, along with the list of
implementation-dependent design features of SPARC V9-compliant
implementations.

In general, hardware characteristics deal with

■ Instruction execution speed

■ Whether instructions are implemented in hardware

■ The nature and degree of concurrency of the various hardware units constituting
a SPARC V9 implementation
398 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.3 Implementation Dependency Categories
Many of the implementation dependencies can be grouped into four categories,
abbreviated by their first letters throughout this appendix:

■ Value (v)
The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations. A typical example
is the number of implemented register windows (impl. dep. #2).

■ Assigned Value (a)
The semantics of an architectural feature are well defined, except that a value
associated with the feature may differ across implementations and the actual
value is assigned by SPARC International. Typical examples are the impl field of
Version register (VER) (impl. dep. #13) and the FSR.ver field (impl. dep. #19).

■ Functional Choice (f)
The SPARC V9 architecture allows implementors to choose among several
possible semantics related to an architectural function. A typical example is the
treatment of a catastrophic error exception, which may cause either a deferred or
a disrupting trap (impl. dep. #31).

■ Total Unit (t)
The existence of the architectural unit or function is recognized, but details are
left to each implementation. Examples include the handling of I/O registers
(impl. dep. #7) and some alternate address spaces (impl. dep. #29).

C.4 List of Implementation Dependencies
TABLE C-1 provides a complete list of the SPARC V9 implementation dependencies.
The Page column lists the page for the context in which the dependency is defined.

TABLE C-1 SPARC V9 Implementation Dependencies (1 of 7)

Nbr Category Description Page

1 f Software emulation of instructions
Whether an instruction is implemented directly by hardware, simulated by software, or
emulated by firmware is implementation dependent.

8, 124

2 v Number of IU registers
An implementation of the IU may contain from 64 to 528 general-purpose 64-bit r
registers. This corresponds to a grouping of the registers into two sets of eight global r
registers, plus a circular stack of from 3 to 32 sets of 16 registers each, known as register
windows. Since the number of register windows present (NWINDOWS) is implementation
dependent, the total number of registers is also implementation dependent.

20, 79
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 399

3 f Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction did not produce a
correct IEEE Std 754-1985 result by generating an fp_exception_other exception with
FSR.ftt = unfinished_FPop or unimplemented FPop. In this case, privileged mode
software shall emulate any functionality not present in the hardware.

124

4-5 Reserved.

6 f I/O registers privileged status
Whether I/O registers can be accessed by nonprivileged code is implementation
dependent.

22

7 t I/O register definitions
The contents and addresses of I/O registers are implementation dependent.

22

8 t RDASR/WRASR target registers
Software can use read/write ancillary state register instructions to read/write
implementation-dependent processor registers (ASRs 16–31).

24,
313,
350

9 f RDASR/WRASR privileged status
Whether each of the implementation-dependent read/write ancillary state register
instructions (for ASRs 16–31) is privileged is implementation dependent.

24,
313,
350

10-12 Reserved.

13 a VER.impl
VER.impl uniquely identifies an implementation or class of software-compatible
implementations of the architecture. Values FFF016–FFFF16 are reserved and are not
available for assignment.

79

14-15 Reserved.

16 t IU deferred-trap queue
The existence, contents, and operation of an IU deferred-trap queue are implementation
dependent; the queue is not visible to user application programs under normal
operating conditions.

99

17 Reserved.

18 f Nonstandard IEEE 754-1985 results
Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1, causes the FPU to
produce implementation-defined results that may not correspond to IEEE Standard 754-
1985.

58

19 a FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or more implementations of the FPU
architecture.

59

20-21 Reserved.

22 f FPU TEM, cexc, and aexc
An implementation may choose to implement the TEM, cexc, and aexc fields in
hardware in either of two ways (see FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3) on page
57 for details).

67

TABLE C-1 SPARC V9 Implementation Dependencies (2 of 7)

Nbr Category Description Page
400 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

23 f Floating-point traps
Floating-point traps may be precise or deferred. If deferred, a floating-point deferred-
trap queue (FQ) must be present.

98

24 t FPU deferred-trap queue (FQ)
The presence, contents of, and operations on the floating-point deferred-trap queue (FQ)
are implementation dependent.

98

25 f RDPR of FQ with nonexistent FQ
On implementations without a floating-point queue, an attempt to read the FQ with an
RDPR instruction shall cause either an illegal_instruction exception or an
fp_exception_other exception with FSR.ftt set to 4 (sequence_error).

63

26-28 Reserved.

29 t Address space identifier (ASI) definitions
In SPARC V9, many ASIs were defined to be implementation dependent. Some of those
ASIs have been allocated for standard uses in SPARC JPS1. Others remain
implementation dependent in SPARC JPS1. See TABLE L-1 on page 539 and Block Load
and Store ASIs on page 548 for details.

113

30 f ASI address decoding
In SPARC V9, an implementation could choose to decode only a subset of the 8-bit ASI
specifier. In SPARC JPS1 implementations, all 8 bits of each ASI specifier must be
decoded. Refer to Appendix L, Address Space Identifiers, of this specification for details.

113

31 f Catastrophic error exceptions
The causes and effects of catastrophic error exceptions are implementation dependent.
They may cause precise, deferred, or disrupting traps.

132,
168,
579

32 t Deferred traps
Whether any deferred traps (and associated deferred-trap queues) are present is
implementation dependent.

138

33 f Trap precision
Exceptions that occur as the result of program execution may be precise or deferred,
although it is recommended that such exceptions be precise. Examples include
mem_address_not_aligned and division_by_zero.

140

34 f Interrupt clearing
How quickly a processor responds to an interrupt request and the method by which an
interrupt request is removed are implementation dependent.

141

35 t Implementation-dependent traps
Trap type (TT) values 06016 –07F16 are reserved for implementation-dependent
exceptions. The existence of implementation_dependent_n traps and whether any that do
exist are precise, deferred, or disrupting is implementation dependent.

143

36 f Trap priorities
The priorities of particular traps are relative and are implementation dependent because
a future version of the architecture may define new traps, and implementations may
define implementation-dependent traps that establish new relative priorities.

148

TABLE C-1 SPARC V9 Implementation Dependencies (3 of 7)

Nbr Category Description Page
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 401

37 f Reset trap
Some of a processor’s behavior during a reset trap is implementation dependent.

139

38 f Effect of reset trap on implementation-dependent registers
Implementation-dependent registers may or may not be affected by the various reset
traps.

155

39 f Entering error_state on implementation-dependent errors
The processor may enter error_state when an implementation-dependent error
condition occurs.

136,
157

40 f Error_state processor state
Effects when error_state is entered are implementation dependent, but it is
recommended that as much processor state as possible be preserved upon entry to
error_state. In addition, a SPARC JPS1 processor may have other error_state
entry traps that are implementation dependent.

136

41 Reserved.

42 t, f, v FLUSH instruction
If FLUSH is not implemented in hardware, it causes an illegal_instruction exception, and
its function is performed by system software. Whether FLUSH traps is implementation
dependent.

237

43 Reserved.

44 f Data access FPU trap
If a load floating-point instruction traps with any type of access error exception, the
contents of the destination floating-point register(s) either remain unchanged or are
undefined.

243 (1),
245 (2)

45 - 46 Reserved.

47 t RDASR
RDASR instructions with rd in the range 16–31 are available for implementation-
dependent uses (impl. dep. #8). For an RDASR instruction with rs1 in the range 16–31,
the following are implementation dependent:
• the interpretation of bits 13:0 and 29:25 in the instruction
• whether the instruction is privileged (impl. dep. #9)
• whether it causes an illegal_instruction trap

313

48 t WRASR
WRASR instructions with rd in the range 16–31 are available for implementation-
dependent uses (impl. dep. #8). For a WRASR instruction with rd in the range 16–31, the
following are implementation dependent:
• the interpretation of bits 18:0 in the instruction
• the operation(s) performed (for example, xor) to generate the value written to the ASR
• whether the instruction is privileged (impl. dep. #9)
• whether it causes an illegal_instruction trap

351

49-54 Reserved.

TABLE C-1 SPARC V9 Implementation Dependencies (4 of 7)

Nbr Category Description Page
402 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

55 f Tininess detection
In SPARC V9, it is implementation-dependent whether “tininess” (an IEEE 754 term) is
detected before or after rounding. In all SPARC JPS1 implementations, tininess is
detected before rounding.

66,
394

56-100 Reserved.

101 v Maximum trap level
All SPARC JPS1 processors implement MAXTL = 5 (5 trap levels beyond level 0).

74, 79

102 f Clean windows trap
An implementation may choose either to implement automatic “cleaning” of register
windows in hardware or to generate a clean_window trap, when needed, for window(s)
to be cleaned by software.

165

103 f Prefetch instructions
The following aspects of the PREFETCH and PREFETCHA instructions are
implementation dependent:
• whether they have an observable effect in privileged code
• whether they can cause a data_access_MMU_miss exception
• the attributes of the block of memory prefetched: its size (minimum = 64 bytes) and its

alignment (minimum = 64-byte alignment)
• whether each variant is implemented as a NOP, with its full semantics, or with

common-case prefetching semantics
• whether and how variants 16–31 are implemented

304,
305

104 a VER.manuf
VER.manuf contains a 16-bit semiconductor manufacturer code. This field is optional
and, if not present, reads as zero. VER.manuf may indicate the original supplier of a
second-sourced chip in cases involving mask-level second-sourcing. It is intended that
the contents of VER.manuf track the JEDEC semiconductor manufacturer code as
closely as possible. If the manufacturer does not have a JEDEC semiconductor
manufacturer code, then SPARC International will assign a VER.manuf value.

79

105 f TICK register
The difference between the values read from the TICK register on two reads should
reflect the number of processor cycles executed between the reads. If an accurate count
cannot always be returned, any inaccuracy should be small, bounded, and documented.
An implementation may implement fewer than 63 bits in TICK.counter; however, the
counter as implemented must be able to count for at least 10 years without overflowing.
Any upper bits not implemented must read as 0.

68

106 f IMPDEP2A instructions
The IMPDEP2A instructions are completely implementation dependent. Implementation-
dependent aspects include their operation, the interpretation of bits 29:25 and 18:0 in
their encodings, and which (if any) exceptions they may cause.

240

107 f Unimplemented LDD trap
It is implementation dependent whether LDD and LDDA are implemented in hardware. If
not, an attempt to execute either will cause an unimplemented_LDD trap.

362 (1)
368 (2)

TABLE C-1 SPARC V9 Implementation Dependencies (5 of 7)

Nbr Category Description Page
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 403

108 f Unimplemented STD trap
It is implementation dependent whether STD and STDA are implemented in hardware. If
not, an attempt to execute either will cause an unimplemented_STD trap.

377 (1)
380 (2)

109 f LDDF_mem_address_not_aligned
LDDF and LDDFA require only word alignment. However, if the effective address is word
aligned but not doubleword aligned, either may cause an
LDDF_mem_address_not_aligned trap. In that case, the trap handler software shall
emulate the LDDF (or LDDFA) instruction and return.

243 (1)
245 (2)

110 f STDF_mem_address_not_aligned
STDF and STDFA require only word alignment in memory. However, if the effective
address is word aligned but not doubleword aligned, either may cause an
STDF_mem_address_not_aligned trap. In that case, the trap handler software shall
emulate the STDF or STDFA instruction and return.

331 (1),
334 (2)

111 f LDQF_mem_address_not_aligned
LDQF and LDQFA require only word alignment. However, if the effective address is word
aligned but not quadword aligned, either may cause an LDQF_mem_address_not_aligned
trap. In that case, the trap handler software shall emulate the LDQF or LDQFA instruction
and return.

243 (1)
245 (2)

112 f STQF_mem_address_not_aligned
STQF and STQFA require only word alignment in memory. However, if the effective
address is word aligned but not quadword aligned, either may cause an
STQF_mem_address_not_aligned trap. In that case, the trap handler software shall
emulate the STQF or STQFA instruction and return.

331 (1),
334 (2)

113 f Implemented memory models
Whether the Partial Store Order (PSO) or Relaxed Memory Order (RMO) models are
supported is implementation dependent.

72, 170

114 f RED_state trap vector address (RSTVaddr)
The RED_state trap vector is located at an implementation-dependent address referred
to as RSTVaddr.

134

115 f RED_state processor state
What occurs after the processor enters RED_state is implementation dependent.

135

116 f SIR_enable control flag
SPARC V9 states that the location of the SIR_enable control flag and the means by
which it is accessed are implementation dependent. In SPARC JPS1 processors, the
SIR_enable control flag does not explicitly exist; the SIR instruction always behaves
like a NOP in nonprivileged mode (that is, as if SIR_enable is permanently set to
zero).

329

117 f MMU disabled prefetch behavior
Whether PREFETCH and nonfaulting loads always succeed when the MMU is disabled is
implementation dependent.

304,
456

118 f Identifying I/O locations
The manner in which I/O locations are identified is implementation dependent.

172

TABLE C-1 SPARC V9 Implementation Dependencies (6 of 7)

Nbr Category Description Page
404 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

119 f Unimplemented values for PSTATE.MM
The effect of writing an unimplemented memory-mode designation into PSTATE.MM is
implementation dependent.

72, 182

120 f Coherence and atomicity of memory operations
The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation dependent.

172

121 f Implementation-dependent memory model
An implementation may choose to identify certain addresses and use an
implementation-dependent memory model for references to them.

172

122 f FLUSH latency
The latency between the execution of FLUSH on one processor and the point at which
the modified instructions have replaced outdated instructions in a multiprocessor is
implementation dependent.

184

123 f Input/output (I/O) semantics
The semantic effect of accessing I/O registers is implementation dependent.

22

124 v Implicit ASI when TL > 0
In SPARC V9, when TL > 0, the implicit ASI for instruction fetches, loads, and stores is
implementation dependent. In all SPARC JPS1 implementations, when TL > 0, the
implicit ASI for instruction fetches is ASI_NUCLEUS; loads and stores will use
ASI_NUCLEUS if PSTATE.CLE = 0 or ASI_NUCLEUS_LITTLE if PSTATE.CLE = 1.

174

125 f Address masking
When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted to the
specified destination register(s) by CALL, JMPL, RDPC, and on a trap is implementation
dependent.

73

126 Register Windows State Registers width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN contain
values in the range 0 to NWINDOWS − 1. The effect of writing a value greater than
NWINDOWS − 1 to any of these registers is undefined. Although the width of each of these
five registers is nominally 5 bits, the width is implementation dependent and shall be
between log2(NWINDOWS) and 5 bits, inclusive. If fewer than 5 bits are implemented,
the unimplemented upper bits shall read as 0 and writes to them shall have no effect. All
five registers should have the same width. For SPARC JPS1 processors, NWINDOWS = 8,
so each register window state register is implemented with 3 bits.

80

127-
199

— Reserved. —

TABLE C-1 SPARC V9 Implementation Dependencies (7 of 7)

Nbr Category Description Page
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 405

TABLE C-2 provides a list of implementation dependencies that, in addition to those
in TABLE C-1, apply to SPARC JPS1 processors. See Appendix C in the
Implementation Supplements for further information.

TABLE C-2 SPARC JPS1 Implementation Dependencies (1 of 7)

Nbr Description Page

200-
201

Reserved. —

202 fast_ECC_error trap
Whether or not a fast_ECC_error trap exists is implementation dependent. If
it does exist, it indicates that an ECC error was detected in an external cache
and its trap type is 07016.

168, 579

203 Dispatch Control Register bits 13:6 and 1
The values and semantics of bits 13:6 and bit 1 of the Dispatch Control
Register are implementation dependent.

86, 567

204 DCR bits 5:3 and 0
The existence, values, and semantics of DCR bits 5:3 and 0 are
implementation dependent. If each is implemented, standard (recommended)
semantics are as described in Section 5.2.11. If not implemented, each bit
reads as 0 and writes to it are ignored.

86, 86,
567

205 Instruction Trap Register
The presence of the Instruction Trap Register in a SPARC JPS1 processor is
implementation dependent. If implemented, the standard (recommended)
implementation is described in Instruction Trap Register on page 96.

96

206 SHUTDOWN instruction
It is implementation dependent whether SHUTDOWN acts as described in A.59
or whether in privileged mode it acts as a NOP in a given implementation.

328

207 PCR register bits 47:32, 26:17, and 3
The values and semantics of bits 47:32, 26:17, and bit 3 of the PCR register are
implementation dependent.

84

208 Ordering of errors captured in instruction execution
The order in which errors are captured in instruction execution is
implementation dependent. Ordering may be in program order or in order of
detection.

571

209 Software intervention after instruction-induced error
Precision of the trap to signal an instruction-induced error of which recovery
requires software intervention is implementation dependent.

572

210 ERROR output signal
The following aspects of the ERROR output signal are implementation
dependent in SPARC JPS1:
• The causes of the ERROR signal
• Whether each of the causes of the ERROR signal, when it generates the

ERROR signal, halts the processor or allows the processor to continue
running

• The exact semantics of the ERROR signal

573
406 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

211 Error logging registers’ information
The information that the error logging registers preserves beyond the reset
induced by an ERROR signal is implementation dependent.

573

212 Trap with fatal error
Generation of a trap along with assertion of an ERROR signal upon detection
of a fatal error is implementation dependent.

212, 574

213 AFSR.PRIV
The existence of the AFSR.PRIV bit is implementation dependent. If
AFSR.PRIV is implemented, it is implementation dependent whether the
logged AFSR.PRIV indicates the privileged state upon the detection of an
error or upon the execution of an instruction that induces the error. For the
former implementation to be effective, operating software must provide error
barriers appropriately.

575

214 Enable/disable control for deferred traps
Whether an implementation provides an enable/disable control feature for
deferred traps is implementation dependent.

575

215 Error barrier
DONE and RETRY instructions may implicitly provide an error barrier
function as MEMBAR #Sync. Whether DONE and RETRY instructions provide
an error barrier is implementation dependent.

575

216 data_access_error trap precision
The precision of a data_access_error trap is implementation dependent.

579

217 instruction_access_error trap precision
The precision of an instruction_access_error trap is implementation
dependent.

579

218 async_data__error
Whether async_data__error exception is implemented is implementation
dependent. If it does exist, it indicates that an error is detected in a processor
core and its trap type is 4016.

168, 579

219 Asynchronous Fault Address Register (AFAR) allocation
Allocation of Asynchronous Fault Address Register (AFAR) is
implementation dependent. There may be one instance or multiple instances
of AFAR. Although the ASI for AFAR is defined as 4D16, the virtual address of
AFAR if there are multiple AFARs is implementation dependent.

580

220 Addition of logging and control registers for error handling
Whether the implementation supports additional logging and control
registers for error handling is implementation dependent.

580

221 Special/signalling ECCs
The method to generate “special” or “signalling” ECCs and whether
processor-ID is embedded into the data associated with special/signalling
ECCs is implementation dependent.

580

TABLE C-2 SPARC JPS1 Implementation Dependencies (2 of 7)

Nbr Description Page
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 407

222 TLB organization
TLB organization is implementation dependent in JPS1 processors.

438

223 TLB multiple-hit detection
Whether TLB multiple-hit detection is supported in JPS1 is implementation
dependent.

439, 437

224 MMU physical address width
Physical address width support by the MMU is implementation dependent
in JPS1; minimum PA width is 43 bits.

96, 96,
441, 441,
546

225 TLB locking of entries
The mechanism by which entries in TLB are locked is implementation
dependent in JPS1.

442

226 TTE support for CV bit
Whether the CV bit is supported in TTE is implementation dependent in JPS1.
When the CV bit in TTE is not provided and the implementation has virtually
indexed caches, the implementation should support hardware unaliasing for
the caches. See also #232.

442

227 TSB number of entries
The maximum number of entries in a TSB is implementation dependent in
JPS1.

444

228 TSB_Hash supplied from TSB or context-ID register
Whether TSB_Hash is supplied from a TSB extension register or from a
context-ID register is implementation dependent in JPS1. Only for cases of
direct hash with context-ID can the width of the TSB_size field be wider
than 3 bits.

446

229 TSB_Base address generation
Whether the implementation generates the TSB_Base address by exclusive-
ORing the TSB_Base register and a TSB register or by taking TSB_Base
field directly from TSB register is implementation dependent in JPS1. This
implementation dependency is only to maintain compatibility with the TLB
miss handling software of UltraSPARC I/II.

446

230 data_access_exception trap
The causes of a data_access_exception trap are implementation dependent in
JPS1, but there are several mandatory causes of data_access_exception trap.

450

231 MMU physical address variability
The variability of the width of the physical address is implementation
dependent in JPS1, and if variable, the initial width of the physical address
after reset is also implementation dependent in JPS1.

456

232 DCU Control Register bits
Whether CP and CV bits exist in the DCU Control Register is implementation
dependent in JPS1. See also #226.

93, 456

TABLE C-2 SPARC JPS1 Implementation Dependencies (3 of 7)

Nbr Description Page
408 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

233 TSB_Hash field
Whether TSB_Hash field is implemented in I/D Primary/Secondary/
Nucleus TSB Extension Register is implementation dependent in JPS1.

459, 466

234 TLB replacement algorithm
The replacement algorithm for a TLB entry is implementation dependent in
JPS1.

462

235 TLB data access address assignment
The MMU TLB data access address assignment and the purpose of the
address are implementation dependent in JPS1.

463

236 TSB_Size field width
The width of the TSB_Size field in the TSB Base Register is implementation
dependent; the permitted range is from 2 to 6 bits. The least significant bit of
TSB_Size is always at bit 0 of the TSB register. Any bits unimplemented at
the most significant end of TSB_Size read as 0, and writes to them are
ignored.

465, 468

237 JMPL/RETURN mem_address_not_aligned
Whether the fault status and/or address (DSFSR/DSFAR) are captured when
a mem_address_not_aligned trap occurs during a JMPL or RETURN instruction
is implementation dependent.

451

238 TLB page offset for large page sizes
When page offset bits for larger page sizes (PA<15:13>, PA<18:13>, and
PA<21:13> for 64-Kbyte, 512-Kbyte, and 4-Mbyte pages, respectively) are
stored in the TLB, it is implementation dependent whether the data returned
from those fields by a Data Access read are zero or the data previously
written to them.

441

239 Register access by ASIs 5516 and 5D16
The register(s) accessed by IMMU ASI 5516 and DMMU ASI 5D16 at virtual
addresses 4000016 to 60FF816 are implementation dependent.

462, 541

240 DCU Control Register bits 47:41
The presence and semantics of bits 47:41 of DCUCR are implementation
dependent. If any of these bits is not implemented, it reads as 0 and writes to
it are ignored.

92, 567

241 Address Masking and DSFAR
When PSTATE.AM = 1 and an exception occurs, the value written to the
more-significant 32 bits of the Data Synchronous Fault Address Register
(DSFAR) is implementation dependent.

73

242 TLB lock bit
An implementation containing multiple TLBs may implement the L (lock) bit
in all TLBs but is only required to implement a lock bit in one TLB for each
page size. If the lock bit is not implemented in a particular TLB, it reads as 0
and writes to it are ignored.

442

TABLE C-2 SPARC JPS1 Implementation Dependencies (4 of 7)

Nbr Description Page
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 409

243 Interrupt Vector Dispatch Status Register BUSY/NACK pairs
The number of BUSY/NACK bit pairs implemented in the Interrupt Vector
Dispatch Status Register is implementation dependent.

558

244 Data Watchpoint Reliability
Implementation-dependent feature(s) may be present that degrade the
reliability of data watchpoints. If such features are present, it must be
possible to disable them such that data watchpoints function as described in
Data Watchpoint Registers on page 94,. Furthermore, those features should be
disabled by default

95

245 Call/Branch Displacement Encoding in I-Cache
On SPARC JPS1 processors, the encoding of the least significant 11 bits of
the displacement field of CALL and branch (BPcc, FBPfcc, Bicc, BPr)
instructions in an instruction cache is implementation-dependent.
Specifically, those bits' encoding in an instruction cache is not necessarily
the same as their architectural encoding (which appears in main memory).

97

246 VA<38:29> for Interrupt Vector Dispatch Register Access
When the Interrupt Vector Dispatch Register is written, the source module
identifier (SID) is supplied in VA<38:29>. Which, if any, of the 10 VA<38:29>
bits are interpreted by hardware is implementation dependent.

558

247 Interrupt Vector Receive Register SID Fields
Which, if any, of the 10 bits of the physical module ID (MID) of the interrupt
source is set by hardware in the SID_U and SID_L fields of the Interrupt
Vector Receive Register is implementation dependent. Also, the source of
the physical module ID (MID) bits is implementation dependent.

560

248 Conditions for fp_exception_other with unfinished_FPop
The conditions under which an fp_exception_other exception with floating-
point trap type of unfinished_FPop can occur are implementation dependent.
The standard (recommended) set of conditions is listed in TABLE 5-9 on
page 61. An implementation may cause fp_exception_other with
unfinished_FPop under a different (but specified) set of conditions.

61

249 Data Watchpoint for Partial Store Instruction
For a Partial Store instruction, the following aspects of data watchpoints are
implementation dependent: (a) whether data watchpoint logic examines the
byte store mask in r[rs2] or it conservatively behaves as if every Partial
Store always stores all 8 bytes, and (b) whether data watchpoint logic
examines individual bits in the Virtual (Physical) Data Watchpoint Mask in
DCUCR to determine which bytes are being watched or (when the
Watchpoint Mask is nonzero) it conservatively behaves as if all 8 bytes are
being watched.

283

TABLE C-2 SPARC JPS1 Implementation Dependencies (5 of 7)

Nbr Description Page
410 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

250 PCR accessibility when PSTATE.PRIV = 0
When the processor is operating in nonprivileged mode
(PSTATE.PRIV = 0), the accessibility of PCR as a unit and of individual
fields of PCR is implementation dependent. Also, which exception is raised
upon detection of an access privilege violation is implementation
dependent.

84, 85,
186, 314,
352

251 Reserved.

252 DCUCR.DC (Data Cache Enable)
The presence of DCUCR bit 1 (DCUCR.DC, Data Cache Enable) is
implementation dependent. If DC is not implemented, it reads as zero,
writes to it are ignored, and software should only write zero or a value
previously read from DC to DC. The remainder of this description assumes
that DC is implemented.
The function of DC is to enable/disable operation of the data cache closest to
the processor (D-cache); DC = 1 enables the D-cache and DC = 0 disables it.
When DC = 0, memory accesses (loads, stores, atomic load-stores) are
satisfied by caches lower in the cache hierarchy. It is implementation
dependent whether or not memory accesses update the D-cache while the
D-cache is disabled (DC = 0). If memory accesses do not update the D-cache,
then when the D-cache is reenabled (DC is set to 1) any D-cache lines still
marked as “valid” may be inconsistent with the state of memory or other
caches. In that case, software must handle any inconsistencies by flushing
the inconsistent lines from the D-cache.

94

253 DCUCR.IC (Instruction Cache Enable)
The presence of DCUCR bit 0 (DCUCR.IC, Instruction Cache Enable) is
implementation dependent. If IC is not implemented, it reads as zero,
writes to it are ignored, and software should only write zero or a value
previously read from IC to IC. The remainder of this description assumes
that IC is implemented.
The function of IC is to enable/disable operation of the instruction cache
closest to the processor (I-cache); IC = 1 enables the I-cache and IC = 0
disables it. When IC = 0, instruction fetches are satisfied by caches lower in
the cache hierarchy. It is implementation dependent whether or not
instruction fetches update the I-cache while the I-cache is disabled (IC = 0).
If instruction fetches do not update the I-cache, then when the I-cache is
reenabled (IC is set to 1) any I-cache lines still marked as “valid” may be
inconsistent with the state of memory or other caches. In that case, software
must handle any inconsistencies by invalidating the inconsistent lines in the
I-cache.

94

254 Means of exiting error_state
The means of exiting error_state are implementation dependent. A
suggested method is for the processor, upon entering error_state, to
automatically generate a watchdog_reset (WDR).

133, 136,
139, 157,
166, 563,
565

TABLE C-2 SPARC JPS1 Implementation Dependencies (6 of 7)

Nbr Description Page
Release 1.0.4, 31 May 2002 C. Appendix C • Implementation Dependencies 411

255 LDDFA with ASI E016 or E116 and misaligned destination register number
For LDDFA with ASI E016 or E116, if a destination register number rd is
specified which is not a multiple of 8 ("misaligned" rd), it is implementation
dependent whether the processor generates a data_access_exception or
illegal_instruction exception.

548

256 LDDFA with ASI E016 or E116 and misaligned memory address
For LDDFA with ASI E016 or E116, if a memory address is specified with less
than 64-byte alignment, it is implementation dependent whether the
processor generates a data_access_exception, mem_address_not_aligned, or
LDDF_mem_address_not_aligned exception.

548

257 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory
address
For LDDFA with ASI C016–C516 or C816–CD16, if a memory address is
specified with less than 8-byte alignment, it is implementation dependent
whether the processor generates a data_access_exception,
mem_address_not_aligned, or LDDF_mem_address_not_aligned exception.

549

258 ASI_SERIAL_ID
The semantics and encoding of ASI_SERIAL_ID are implementation
dependent. Its intended use is for a part identification number that is unique
to each chip.

541

TABLE C-2 SPARC JPS1 Implementation Dependencies (7 of 7)

Nbr Description Page
412 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX D

Formal Specification of the Memory
Models

This appendix contains only material from The SPARC Architecture Manual, Version 9,
which provides a formal description of the SPARC V9 processor’s interaction with
memory. The formal description is more complete and more precise than the
description of Chapter 8, Memory Models, and therefore represents the definitive
specification. Implementations must conform to this model, and programmers must
use this description to resolve any ambiguity.

This formal specification is not intended to be a description of an actual
implementation, only to describe in a precise and rigorous fashion the behavior that
any conforming implementation must provide.

D.1 Processors and Memory
The system model consists of a collection of processors, P0, P1,…Pn-1. Each processor
executes its own instruction stream.1 Processors may share address space and access
to real memory and I/O locations.

To improve performance, processors may interpose a cache or caches in the path
between the processor and memory. For data and I/O references, caches are required
to be transparent. The memory model specifies the functional behavior of the entire
memory subsystem, which includes any form of caching. Implementations must use
appropriate cache coherency mechanisms to achieve this transparency.2

1. Processors are equivalent to their software abstraction, processes, provided that context switching is properly
performed. See Appendix J, Programming with the Memory Models, for an example of context switch code.

2. Philip Bitar and Alvin M. Despain, “Multiprocessor Cache Synchronization: Issues, Innovations, Evolution,”
Proc. 13th Annual International Symposium on Computer Architecture, Computer Architecture News 14:2, June
1986, pp.424-433.
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 413

The SPARC V9 memory model requires that all data references be consistent but
does not require that instruction references or input/output references be
maintained consistent. The FLUSH instruction or an appropriate operating system
call may be used to ensure that instruction and data spaces are consistent. Likewise,
system software is needed to manage the consistency of I/O operations.

The memory model is a local property of a processor that determines the order
properties of memory references. The ordering properties have global implications
when memory is shared, since the memory model determines what data is visible to
observing processors and in what order. Moreover, the operative memory model of
the observing processor affects the apparent order of shared data reads and writes
that it observes.

D.2 Overview of the Memory Model
Specification
The underlying goal of the memory model is to place the weakest possible
constraints on the processor implementations and to provide a precise specification
of the possible orderings of memory operations so that shared-memory
multiprocessors can be constructed.

An execution trace is a sequence of instructions with a specified initial instruction. An
execution trace constitutes one possible execution of a program and may involve
arbitrary reorderings and parallel execution of instructions. A self-consistent
execution trace is one that generates precisely the same results as those produced by
a program order execution trace.

A program order execution trace is an execution trace that begins with a specified
initial instruction and executes one instruction at a time in such a fashion that all the
semantic effects of each instruction take effect before the next instruction is begun.
The execution trace this process generates is defined to be program order.

A program is defined by the collection of all possible program order execution traces.

Dependence order is a partial order on the instructions in an execution trace that is
adequate to ensure that the execution trace is self-consistent. Dependence order can
be constructed with conventional data dependence analysis techniques. Dependence
order holds only between instructions in the instruction trace of a single processor;
instructions that are part of execution traces on different processors are never
dependence ordered.

Memory order is a total order on the memory reference instructions (loads, stores, and
atomic load/stores) which satisfies the dependence order and, possibly, other order
constraints such as those introduced implicitly by the choice of memory model or
414 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

explicitly by the appearance of memory barrier (MEMBAR) instructions in the
execution trace. The existence of a global memory order on the performance of all
stores implies that memory access is write-atomic.1

A memory model is a set of rules that constrains the order of memory references. The
SPARC V9 architecture supports three memory models: Total Store Order (TSO),
Partial Store Order (PSO), and Relaxed Memory Order (RMO). The memory models
are defined only for memory and not for I/O locations. See Memory, Real Memory,
and I/O Locations on page 171 for more information.

The formal definition used in the SPARC V8 specification2 remains valid for the
definition of PSO and TSO, except for the FLUSH instruction, which has been
modified slightly.3 The SPARC V9 architecture introduces a new memory model,
RMO, which differs from TSO and PSO in that it allows load operations to be
reordered as long as single-thread programs remain self-consistent.

D.3 Memory Transactions

D.3.1 Memory Transactions
A memory transaction is one of the following:

■ Store — A request by a processor to replace the value of a specified memory
location. The address and new value are bound to the store transaction when the
processor initiates the store transaction. A store is complete when the new value
is visible to all processors in the system.

■ Load — A request by a processor to retrieve the value of the specified memory
location. The address is bound to the load transaction when the processor initiates
the load transaction. A load is complete when the value being returned cannot be
modified by a store made by another processor.

1. W.W. Collier, Reasoning About Parallel Architectures, Prentice-Hall, 1992, includes an excellent discussion of
write-atomicity and related memory model topics.

2. Pradeep Sindhu, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Memory Models,” Xerox
Palo Alto Research Center Report CSL-91-11, December 1991.

3. In SPARC V8, a FLUSH instruction needs at least five instruction execution cycles before it is guaranteed to
have local effects; in SPARC V9 this five-cycle requirement has been removed.
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 415

■ Atomic — A load/store pair with the guarantee that no other memory transaction
will alter the state of the memory between the load and the store. The SPARC V9
instruction set includes three atomic instructions: LDSTUB, SWAP, and CAS.1 An
atomic transaction is considered to be both a load and a store.2

■ Flush — A request by a processor to force changes in the data space aliased to the
instruction space to become consistent. Flush transactions are considered to be
store operations for memory model purposes.

Memory transactions are referred to by capital letters: Xna, which denotes a specific
memory transaction X by processor n to memory address a. The processor index and
the address are specified only if needed. The predicate S(X) is true if and only if X
has store semantics. The predicate L(X) is true if and only if X has load semantics.

MEMBAR instructions are not memory transactions; rather they convey order
information above and beyond the implicit ordering implied by the memory model
in use. MEMBAR instructions are applied in program order.

D.3.2 Program Order
The program order is a per-processor total order that denotes the sequence in which
processor n logically executes instructions. The program order relation is denoted by
<p such that Xn <p Yn is true if and only if the memory transaction Xn is caused by
an instruction that is executed before the instruction that caused memory transaction
Yn.

Program order specifies a unique total order for all memory transactions initiated by
one processor.

Memory barrier (MEMBAR) instructions executed by the processor are ordered with
respect to <p. The predicate M(X,Y) is true if and only if X <p Y and there exists a
MEMBAR instruction that orders X and Y (that is, it appears in program order
between X and Y). MEMBAR instructions can be either ordering or sequencing and
may be combined into a single instruction by a bit-encoded mask.3

Ordering MEMBAR instructions impose constraints on the order in which memory
transactions are performed.

1. There are three generic forms. CASA and CASXA reference 32-bit and 64-bit objects, respectively. Both normal
and alternate ASI forms exist for LDSTUB and SWAP. CASA and CASXA only have alternate forms; however, a
CASA (CASXA) with ASI = ASI_PRIMARY{_LITTLE} is equivalent to CAS (CASX). Synthetic instructions for
CAS and CASX are suggested in G.3, Synthetic Instructions.

2. Even though the store part of a CASA is conditional, it is assumed that the store will always take place whether
or not it does in a particular implementation. Since the value stored when the condition fails is the value
already present and since the CASA operation is atomic, no observing processor can determine whether the
store occurred or not.

3. The Ordering MEMBAR instruction uses 4 bits of its argument to specify the existence of an order relation
depending on whether X and Y have load or store semantics. The Sequencing MEMBAR uses three bits to
specify completion conditions. The MEMBAR encoding is specified in A.35.
416 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Sequencing MEMBARs introduce additional constraints that are required in cases
where the memory transaction has side effects beyond storing data. Such side effects
are beyond the scope of the memory model, which is limited to order and value
semantics for memory.1

This definition of program order is equivalent to the definition given in the SPARC
V8 memory model specification.

D.3.3 Dependence Order
Dependence order is a partial order that captures the constraints that hold between
instructions that access the same processor register or memory location. To allow
maximum concurrency in processor implementations, dependence order assumes
that registers are dynamically renamed to avoid false dependences arising from
register reuse.

Two memory transactions X and Y are dependence ordered, denoted by X <d Y, if
and only if they are program ordered, X <p Y, and at least one of the following
conditions is true:

1. The execution of Y is conditional on X, and S(Y) is true.

2. Y reads a register that is written by X.

3. X and Y access the same memory location and S(X) and L(Y) are both true.

The dependence order also holds between the memory transactions associated with
the instructions. It is important to remember that partial ordering is transitive.

Rule (1) includes all control dependences that arise from the dynamic execution of
programs. In particular, a store or atomic memory transaction that is executed after a
conditional branch will depend on the outcome of that branch instruction, which in
turn will depend on one or more memory transactions that precede the branch
instruction. Loads after an unresolved conditional branch may proceed, that is, a
conditional branch does not dependence-order subsequent loads. Control
dependences always order the initiation of subsequent instructions to the
performance of the preceding instructions.2

Rule (2) captures dependences arising from register use. It is not necessary to
include an ordering when X reads a register that is later written by Y, because
register renaming will allow out-of-order execution in this case. Register renaming is
equivalent to having an infinite pool of registers and requiring all registers to be

1. Sequencing constraints have other effects, such as controlling when a memory error is recognized or when an
I/O access reaches global visibility. The need for sequencing constraints is always associated with I/O and
kernel-level programming and not usually with normal, user-level application programming.

2. Self-modifying code (use of FLUSH instructions) also causes control dependences.
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 417

write-once. Observe that the condition code register is set by some arithmetic and
logical instructions and used by conditional branch instructions, thus introducing a
dependence order.

Rule (3) captures ordering constraints resulting from memory accesses to the same
location and requires that the dependence order reflect the program order for store-
load pairs, but not for load-store or store-store pairs. A load may be executed
speculatively since loads are side-effect free, provided that Rule (3) is eventually
satisfied.

An actual processor implementation will maintain dependence order by score-
boarding, hardware interlocks, data flow techniques, compiler-directed code
scheduling, and so forth, or, simply, by sequential program execution. The means by
which the dependence order is derived from a program is irrelevant to the memory
model, which has to specify which possible memory transaction sequences are legal
for a given set of data dependences. Practical implementations will not necessarily
use the minimal set of constraints: adding unnecessary order relations from the
program order to the dependence order only reduces the available concurrency but
does not impair correctness.

D.3.4 Memory Order
The sequence in which memory transactions are performed by the memory is called
memory order, which is a total order on all memory transactions.

In general, the memory order cannot be known a priori. Instead, the memory order is
specified as a set of constraints that are imposed on the memory transactions. The
requirement that memory transaction X must be performed before memory
transaction Y is denoted by X <m Y. Any memory order that satisfies these
constraints is legal. The memory subsystem may choose arbitrarily among legal
memory orders; hence, multiple executions of the same programs may result in
different memory orders.

D.4 Specification of Relaxed Memory Order
(RMO)

D.4.1 Value Atomicity
Memory transactions will atomically set or retrieve the value of a memory location
as long as the size of the value is less than or equal to eight bytes, the unit of
coherency.
418 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

D.4.2 Store Atomicity
All possible execution traces are consistent with the existence of a memory order
that totally orders all transactions including all store operations.

This does not imply that the memory order is observable. Nor does it imply that
RMO requires any central serialization mechanism.

D.4.3 Atomic Memory Transactions
The atomic memory transactions SWAP, LDSTUB, and CAS are performed as one
memory transaction that is both a load and a store with respect to memory order
constraints. No other memory transaction can separate the load and store actions of
an atomic memory transaction. The semantics of atomic instructions are defined in
Appendix A, Instruction Definitions.

D.4.4 Memory Order Constraints
A memory order is legal in RMO if and only if:

1. X <d Y & L(X) ⇒ X <m Y

2. M(X,Y) ⇒ X <m Y

3. Xa <p Ya & S(Y) ⇒ X <m Y

Rule (1) states that the RMO model will maintain dependence when the preceding
transaction is a load. Preceding stores may be delayed in the implementation, so
their order may not be preserved globally.

Rule (2) states that MEMBAR instructions order the performance of memory
transactions.

Rule (3) states that stores to the same address are performed in program order. This
is necessary for processor self-consistency

D.4.5 Value of Memory Transactions
The value of a load Ya is the value of the most recent store that was performed with
respect to memory order or the value of the most recently initiated store by the same
processor. Assuming Y is a load to memory location a:
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 419

Value(La) = Value(Max<m { S | Sa <m La or Sa <p La })

where Max<m{..} selects the most recent element with respect to the memory order
and where Value() yields the value of a particular memory transaction. This states
that the value returned by a load is either the result of the most recent store to that
address which has been performed by any processor or which has been initiated by
the processor issuing the load. The distinction between local and remote stores
permits use of store buffers, which are explicitly supported in all SPARC V9 memory
models.

D.4.6 Termination of Memory Transactions
Any memory transaction will eventually be performed. This is formalized by the
requirement that only a finite number of memory ordered loads can be performed
before a pending store is completed.

D.4.7 Flush Memory Transaction
Flush instructions are treated as store memory transactions as far as the memory
order is concerned. Their semantics are defined in Section A.22, Flush Instruction Memory.
Flush instructions introduce a control dependence to any subsequent (in program
order) execution of the instruction that was addressed by the flush.

D.5 Specification of Partial Store Order (PSO)
The specification of Partial Store Order (PSO) is that of Relaxed Memory Order
(RMO) with the additional requirement that all memory transactions with load
semantics are followed by an implied MEMBAR #LoadLoad | #LoadStore.

D.6 Specification of Total Store Order (TSO)
The specification of Total Store Order (TSO) is that of Partial Store Order (PSO) with
the additional requirement that all memory transactions with store semantics are
followed by an implied MEMBAR #StoreStore.
420 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

D.7 Examples of Program Executions
This subsection lists several code sequences and an exhaustive list of all possible
execution sequences under RMO, PSO, and TSO. For each example, the code is
followed by the list of order relations between the corresponding memory
transactions. The memory transactions are referred to by numbers. In each case, the
program is executed once for each memory model.

D.7.1 Observation of Store Atomicity
The code example in FIGURE D-1 demonstrates how store atomicity prevents multiple
processors from observing inconsistent sequences of events. In this case, processors 2
and 3 observe changes to the shared variables A and B, which are being modified by
processor 1. Initially both variables are 0. The stores by processor 1 do not use any
form of synchronization, and they may in fact be issued by two independent
processors.

Should processor 2 find A to have the new value (1) and B to have the old value (0),
it can infer that A was updated before B. Likewise, processor 3 may find B = 1 and
A = 0, which implies that B was changed before A. It is impossible for both to occur
in all SPARC V9 memory models since there cannot exist a total order on all stores.
This property of the memory models has been encoded in the assertion A1.

However, in RMO, the observing processor must separate the load operations with
MEMBAR instructions. Otherwise, the loads may be reordered and no inference on the
update order can be made.

FIGURE D-1 is taken from the output of the SPARC V9 memory model simulator,
which enumerates all possible outcomes of short code sequences and which can be
used to prove assertions about such programs
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 421

ST #1, A

ST #1, B

LD A, %r1

LD B, %r2

LD B, %r1

LD A, %r2

T T,P T,P

T : TSO P : PSO R : RMO <d<m

Processor 1 Processor 2 Processor 3

/*
 * Store atomicity
 * Note: will fail in RMO due to lack of membars between loads
 */

Processor 1:
 (0) st #1,[A]
 (1) st #1,[B]
Processor 2:
 (2) ld [A],%r1
 (3) ld [B],%r2
Processor 3:
 (4) ld [B],%r1
 (5) ld [A],%r2

Assertions:
A1: !(P2:%r1 = = 1 && P2:%r2 = = 0) || !(P3:%r1 = = 1 && P3:%r2
= = 0)

Possible values under all memory models:
2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m
 0 0 0 0 1 1 4 5 2 0 3 1
 0 0 0 1 1 1 4 2 0 5 3 1
 0 0 1 1 1 1 2 3 0 1 4 5
 0 1 0 0 1 1 4 5 2 0 1 3
 0 1 0 1 1 1 4 2 0 5 1 3
 0 1 1 1 1 1 2 0 1 3 4 5
 1 0 0 0 1 1 4 5 0 2 3 1
 1 0 0 1 1 1 4 0 5 2 3 1
 1 0 1 1 1 1 0 2 3 1 4 5
 1 1 0 0 1 1 4 5 0 2 1 3
 1 1 0 1 1 1 4 0 5 1 2 3
 1 1 1 1 1 1 0 1 4 2 5 3

Possible values under PSO & RMO, but not under TSO:
2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m
 0 0 1 0 1 1 2 3 1 4 5 0
 0 1 1 0 1 1 2 1 4 3 5 0
 1 1 1 0 1 1 1 4 5 0 2 3

Possible values under RMO, but not under PSO & TSO:
2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m
 1 0 1 0 1 1 5 3 0 2 1 4

FIGURE D-1 Store Atomicity Example
422 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

D.7.2 Dekker’s Algorithm
The essence of Dekker’s algorithm is shown in FIGURE D-2.1

To ensure mutual exclusion, each processor signals its intent to enter a critical region
by asserting a dedicated variable (A for processor 1 and B for processor 2). It then
checks that the other processor does not want to enter, and if it finds the other signal
variable is deasserted, it enters the critical region. This code does not guarantee that
any processor can enter (that requires a retry mechanism, which is omitted here), but
it does guarantee mutual exclusion, which means that it is impossible that each
processor finds the other’s lock idle (= 0) when it enters the critical section.

1. See also DEC Litmus Test 8 described in the Alpha Architecture Handbook, Digital Equipment Corporation,
1992, p. 5-14.

ST #1, A

LD B, %r1

ST #1, B

LD A, %r1
T,P,R T,P,R

Processor 1 Processor 2

/*
 * Dekker's Algorithm
 */
Processor 1:

(0) st #1,[A]
membar #StoreLoad

(1) ld [B],%r1
Processor 2:

(2) st #1,[B]
membar #StoreLoad

(3) ld [A],%r1

Assertions:
A1: P1:%r1 = = 1 || P2:%r1 = = 1

Possible values under all memory models:
1:r1 2:r1 A B example sequence of performance in <m

0 1 1 1 0 1 2 3
1 0 1 1 2 3 0 1
1 1 1 1 2 0 3 1

Possible values under PSO & RMO, but not under TSO:
 --- none ---

Possible values under RMO, but not under PSO & TSO:
 --- none ---

T : TSO P : PSO R : RMO <d<m

FIGURE D-2 Dekker’s Algorithm
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 423

D.7.3 Indirection Through Processors
Another property of the SPARC V9 memory models is that causal update relations
are preserved, which is a side effect of the existence of a total memory order. In
FIGURE D-3, processor 3 observes updates made by processor 1. Processor 2 simply
copies B to C, which does not impact the causal chain of events.

ST #1, A

ST #1, B

LD B, %r1

ST %r1, C

LD C, %r1

LD A, %r2
T T,PT,P,R

Processor 1 Processor 2 Processor 3

T : TSO P : PSO R : RMO <d<m

/*
 * Indirection through processors
 * Note: Assertion will fail for PSO and RMO due to lack of
 * membar #StoreStore after P1's first store
 */
Processor 1:
 (0) st #1,[A]
 (1) st #1,[B]
Processor 2:
 (2) ld [B],%r1
 (3) st %r1,[C]
Processor 3:
 (4) ld [C],%r1
 (5) ld [A],%r2

Assertions:
A1: !(P3:%r1 = = 1 && P3:%r2 = = 0)

Possible values under all memory models:
2:r1 3:r1 3:r2 A B C example sequence of performance in <m
 0 0 0 1 1 0 4 5 0 2 1 3
 0 0 1 1 1 0 4 2 0 5 1 3
 1 0 0 1 1 1 4 5 0 1 2 3
 1 0 1 1 1 1 4 0 5 1 2 3
 1 1 1 1 1 1 0 1 2 3 4 5

Possible values under PSO & RMO, but not under TSO:
2:r1 3:r1 3:r2 A B C example sequence of performance in <m
 1 1 0 1 1 1 1 2 3 4 5 0

Possible values under RMO, but not under PSO & TSO:
 --- none ---

FIGURE D-3 Indirection Through Processors
424 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Again, this example intentionally exposes two potential error sources. In PSO (and
RMO), the stores by processor 1 are not ordered automatically and may be
performed out of program order. The correct code would need to insert a MEMBAR
#StoreStore between these stores. In RMO (but not in PSO), the observation
process 3 needs to separate the two load instructions by a MEMBAR #LoadLoad.

D.7.4 PSO Behavior
The code in FIGURE D-4 shows how different results can be obtained by allowing out-
of-order performance of two stores in PSO and RMO models.

ST #1, A

LD A, %r

LD B, %r1

LD A, %r2
T,P

ST %r, B

T

T,P,R

Processor 1 Processor 2

T : TSO P : PSO R : RMO <d<m

/*
 * PSO behavior
 */

Processor 1:
 (0) st #1, [A]
 (1) ld [A], %r
 (2) st %r, [B]

Processor 2:
 (3) ld [B], %r1
 (4) ld [A], %r2

Assertions:
E: P2:%r1 = = 1 && P2:%r2 = = 0;

Possible values under all memory models:
 1:r 2:r1 2:r2 A B example sequence of performance in <m
 1 0 0 1 1 3 4 0 1 2
 1 0 1 1 1 0 3 4 1 2
 1 1 1 1 1 0 1 2 3 4

Possible values under PSO & RMO, but not under TSO:
 1:r 2:r1 2:r2 A B example sequence of performance in <m
 1 1 0 1 1 1 2 3 4 0

Possible values under RMO, but not under PSO & TSO:
 --- none ---

FIGURE D-4 PSO Behavior
Release 1.0.4, 31 May 2002 C. Appendix D • Formal Specification of the Memory Models 425

A store to B is allowed to be performed before a store to A. If two loads of processor
2 are performed between the two stores, then the assertion above is satisfied for the
PSO and RMO models.

D.7.5 Application to Compilers
A significant problem in a multiprocessor environment arises from the fact that
normal compiler optimizations which reorder code can subvert programmer intent.
The SPARC V9 memory model can be applied to the program rather than to an
execution, to identify transformations that can be applied, provided that the
program has a proper set of MEMBARs in place. In this case, the dependence order is
a program-dependence order, rather than a trace-dependence order, and must
include the dependences from all possible executions.

D.7.6 Verifying Memory Models
While the SPARC V9 memory models were being defined, software tools were
developed that automatically analyze and formally verify assembly-code sequences
running in the models. The core of this collection of tools is the Murphi finite-state
verifier developed by David Dill and his students at Stanford University.

For example, these tools can be used to confirm that synchronization routines
operate properly in various memory models and to generate counter example traces
when they fail. The tools work by exhaustively enumerating system states in a
version of the memory model, so they can only be applied to fairly small assembly
code examples. We found the tools to be helpful in understanding the memory
models and checking our examples.1

Contact SPARC International to obtain the verification tools and a set of examples.

1. For a discussion of an earlier application of similar tools to TSO and PSO, see David Dill, Seungjoon Park, and
Andreas G. Nowatzyk, “Formal Specification of Abstract Memory Models” in Research on Integrated Systems:
Proceedings of the 1993 Symposium, Ed. Gaetano Borriello and Carl Ebeling, MIT Press, 1993.
426 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX E

Opcode Maps

This appendix contains the SPARC JPS1 instruction opcode maps.

Opcodes marked with a dash (—) are reserved; an attempt to execute a reserved
opcode shall cause a trap unless the opcode is an implementation-specific extension
to the instruction set. See Reserved Opcodes and Instruction Fields on page 125 for more
information.

In this appendix and in Appendix A, Instruction Definitions, certain opcodes are
marked with mnemonic superscripts. These superscripts and their meanings are
defined in TABLE A-1 on page 186. For deprecated opcodes, see Section A.71,
Deprecated Instructions, starting on page 353, for preferred substitute instructions.

In the tables in this appendix, reserved (—) and shaded entries indicate opcodes that
are not implemented in SPARC JPS1 processors.

 †rd = 0, imm22 = 0
The ILLTRAP and reserved (—) encodings generate an illegal_instruction trap.

TABLE E-1 op<1:0>

op <1:0>

0 1 2 3

Branches and SETHI
See TABLE E-2.

CALL Arithmetic & Miscellaneous
See TABLE E-3

Loads/Stores
See TABLE E-4

TABLE E-2 op2<2:0> (op = 0)

op2 <2:0>

0 1 2 3 4 5 6 7

ILLTRAP BPcc – See
TABLE E-7

BiccD– See
TABLE E-7

BPr – See
TABLE E-8

SETHI
NOP†

FBPfcc – See
TABLE E-7

FBfccD– See
TABLE E-7

—

Release 1.0.4, 31 May 2002 C. Appendix E • Opcode Maps 427

TABLE E-3 op3<5:0> (op = 2)

op3 <5:4>

0 1 2 3

op3
<3:0>

0

ADD ADDcc TADDcc WRYD (rd = 0)
— (rd= 1)
WRCCR (rd=2)
WRASI (rd=3)
— (rd= 4, 5)
WRFPRS (rd=6)
WRASRPASR (7≤rd≤14)
SIR (rd=15, rs1=0, i=1)

1
AND ANDcc TSUBcc SAVEDP (fcn = 0),

RESTOREDP (fcn = 1)

2 OR ORcc TADDccTVD WRPRP

3 XOR XORcc TSUBccTVD —

4 SUB SUBcc MULSccD FPop1 – See TABLE E-5

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 – See TABLE E-6

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (VIS) – See TABLE E-12

7
XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2 (FMADD/SUB, etc.) – See

Appendix C in SPARC64 V
Implementation Supplement

8

ADDC ADDCcc RDYD (rs1 = 0)
— (rs1= 1)
RDCCR (rs1= 2)
RDASI (rs1= 3)
RDTICKPNPT (rs1= 4)
RDPC (rs1= 5)
RDFPRS (rs1=6)
RDASRPASR (7≤rd≤14)
MEMBAR (rs1 = 15,rd=0,i = 1)
STBARD (rs1 = 15,rd=0,i = 0)

JMPL

9 MULX — — RETURN

A UMULD UMULccD RDPRP Tcc –See TABLE E-7

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc SAVE

D UDIVX — SDIVX RESTORE

E
UDIVD UDIVccD POPC (rs1 = 0)

— (rs1>0)
DONEP (fcn = 0)
RETRYP (fcn = 1)

F SDIVD SDIVccD MOVr
See TABLE E-8

—

428 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

POPC and the reserved (—) opcodes cause an illegal_instruction trap.

LDQF, LDQFA, STQF, STQFA, and the reserved (—) opcodes cause an illegal_instruction
trap on a SPARC JPS1 processor.

TABLE E-4 op3<5:0> (op = 3)

op3 <5:4>

0 1 2 3

op3
<3:0>

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR —

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD LDDAD, PASI LDDF LDDFAPASI

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —

6 STH STHAPASI STQF STQFAPASI

7 STDD STDAPASI STDF STDFAPASI

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —
Release 1.0.4, 31 May 2002 C. Appendix E • Opcode Maps 429

Shaded and reserved (—) opcodes cause an fp_exception_other trap with
ftt = unimplemented_FPop on a SPARC JPS1 processor.

TABLE E-5 opf<8:3> (op = 2,op3 = 3416 = FPop1)

opf<3:0>

opf<8:3> 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — FABSs FABSd FABSq — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — — — — — — — —

0516 — FSQRTs FSQRTd FSQRTq — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0916 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — — — — —

0D16 — FsMULd — — — — FdMULq —

0E16 — — — — — — — —

0F16 — — — — — — — —

1016 — FsTOx FdTOx FqTOx FxTOs — — —

1116 FxTOd — — — FxTOq — — —

1216 — — — — — — — —

1316 — — — — — — — —

1416 — — — — — — — —

1516 — — — — — — — —

1616 — — — — — — — —

1716 — — — — — — — —

1816 — — — — FiTOs — FdTOs FqTOs

1916 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

1A16 — FsTOi FdTOi FqTOi — — — —

1B16–3F16 — — — — — — — —
430 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

†Reserved variation of FMOVR

Shaded and reserved (—) opcodes cause an fp_exception_other trap with
ftt = unimplemented_FPop on a SPARC JPS1 processor.

TABLE E-6 opf<8:0> (op = 2, op3 = 3516 = FPop2)

opf<3:0>

opf<8:4> 0 1 2 3 4 5 6 7 8–F

0016 — FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0) — † † † —

0116 — — — — — — — — —

0216 — — — — — FMOVsZ FMOVdZ FMOVqZ —

0316 — — — — — — — — —

0416 — FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1) — FMOVsLEZ FMOVdLEZ FMOVqLEZ —

0516 — FCMPs FCMPd FCMPq — FCMPEs FCMPEd FCMPEq —

0616 — — — — — FMOVsLZ FMOVdLZ FMOVqLZ —

0716 — — — — — — — — —

0816 — FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2) — † † † —

0916 — — — — — — — — —

0A16 — — — — — FMOVsNZ FMOVdNZ FMOVqNZ —

0B16 — — — — — — — — —

0C16 — FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3) — FMOVsGZ FMOVdGZ FMOVqGZ —

0D16 — — — — — — — — —

0E16 — — — — — FMOVsGEZ FMOVdGEZ FMOVqGEZ —

0F16 — — — — — — — — —

1016 — FMOVs (icc) FMOVd (icc) FMOVq (icc) — — — — —

1116–1716 — — — — — — — — —

1816 — FMOVs (xcc) FMOVd (xcc) FMOVq (xcc) — — — — —

1916–1F16 — — — — — — — — —
Release 1.0.4, 31 May 2002 C. Appendix E • Opcode Maps 431

TABLE E-7 cond<3:0>

BPcc BiccD FBPfcc FBfccD Tcc

op = 0
op2 = 1

op = 0
op2 = 2

op = 0
op2 = 5

op = 0
op2 = 6

op = 2
op3 = 3A16

cond
<3:0>

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC
432 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

TABLE E-8 Encoding of rcond<2:0> Instruction Field

BPr MOVr FMOVr

op = 0
op2 = 3

op = 2
op3 = 2F16

op = 2
op3 = 3516

rcond
<2:0>

0 — — —

1 BRZ MOVRZ FMOVRZ

2 BRLEZ MOVRLEZ FMOVRLEZ

3 BRLZ MOVRLZ FMOVRLZ

4 — — —

5 BRNZ MOVRNZ FMOVRNZ

6 BRGZ MOVRGZ FMOVRGZ

7 BRGEZ MOVRGEZ FMOVRGEZ

TABLE E-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —
Release 1.0.4, 31 May 2002 C. Appendix E • Opcode Maps 433

TABLE E-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0 Condition Code
Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE E-11 cc Fields (BPcc and Tcc)

cc1 cc0 Condition Code
Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —
434 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

TABLE E-12 IMPDEP1: opf<8:0> for VIS opcodes (op = 2, op3 = 3616)

opf <8:4>

00 01 02 03 04 05 06 07 08

opf
<3:0>

0 EDGE8 ARRAY8 FCMPLE16 — — FPADD16 FZERO FAND SHUT
DOWN

1 EDGE8N — — FMUL
8x16

— FPADD16S FZEROS FANDS SIAM

2 EDGE8L ARRAY16 FCMPNE16 — — FPADD32 FNOR FXNOR —

3 EDGE8LN — — FMUL
8x16AU

— FPADD32S FNORS FXNORS —

4 EDGE16 ARRAY32 FCMPLE32 — — FPSUB16 FANDNOT2 FSRC1 —

5 EDGE16N — — FMUL
8x16AL

— FPSUB16S FANDNOT2SFSRC1S —

6
EDGE16L — FCMPNE32 FMUL

8SUx16
— FPSUB32 FNOT2 FORNOT2 —

7 EDGE16LN — — FMUL
8ULx16

— FPSUB32S FNOT2S FORNOT2S —

8 EDGE32 ALIGN
ADDRESS

FCMPGT16 FMULD
8SUx16

FALIGNDATA — FANDNOT1 FSRC2 —

9
EDGE32N BMASK — FMULD

8ULx16
— — FANDNOT1SFSRC2S —

A
EDGE32L ALIGN

ADDRESS
_LITTLE

FCMPEQ16 FPACK32 — — FNOT1 FORNOT1 —

B EDGE32LN — — FPACK16 FPMERGE — FNOT1S FORNOR1S —

C — — FCMPGT32 — BSHUFFLE — FXOR FOR —

D — — — FPACKFIX FEXPAND — FXORS FORS —

E — — FCMPEQ32 PDIST — — FNAND FONE —

F — — — — — — FNANDS FONES —
Release 1.0.4, 31 May 2002 C. Appendix E • Opcode Maps 435

436 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX F

Memory Management Unit

The Memory Management Unit (MMU) conforms to the requirements set forth in the
SPARC V9 Architecture Manual. In particular, it supports a 64-bit virtual address
space, software TLB-miss processing only (no hardware page table walk), simplified
protection encoding, and multiple page sizes.

This chapter describes the Memory Management Unit, as seen by the operating
system software, in these sections:

■ Virtual Address Translation on page 437
■ Translation Table Entry (TTE) on page 440
■ Translation Storage Buffer on page 443
■ Hardware Support for TSB Access on page 445
■ Faults and Traps on page 449
■ MMU Operation Summary on page 451
■ ASI Value, Context, and Endianness Selection for Translation on page 453
■ Reset, Disable, and RED_state Behavior on page 455
■ SPARC V9 “MMU Requirements” Annex on page 457
■ Internal Registers and ASI Operations on page 457
■ MMU Bypass on page 472
■ Translation Lookaside Buffer Hardware on page 473

F.1 Virtual Address Translation
The MMUs support four page sizes: 8 Kbytes, 64 Kbytes, 512 Kbytes, and 4 Mbytes.
Separate Instruction and Data MMUs (IMMU and DMMU, respectively) are
provided to enable concurrent virtual-to-physical address translations for instruction
and data. A 64-bit virtual address (VA) space is supported, with a minimum of 43
bits of physical address (PA). In each translation, the virtual page number is replaced
by a physical page number, which is concatenated with the page offset to form the
full physical address, as illustrated in FIGURE F-1.
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 437

Each MMU consists of one or more Translation Lookaside Buffers (TLBs), including
micro-TLB structures. The organization of TLB structures may be different between
the Instruction MMU and the Data MMU.

FIGURE F-1 Virtual-to-Physical Address Translation for All Four Page Sizes

The operating system maintains translation information in an arbitrary data
structure, called the software translation table in this appendix. The I- and D-MMU
TLBs act as independent caches of the software translation table, providing
appropriate concurrency for virtual-to-physical address translation.

IMPL. DEP. #222: TLB organization is JPS1 implementation dependent.

0

0

12

1213

1363

42

8-Kbyte Virtual Page Number

8-Kbyte Physical Page Number

Page Offset

Page Offset

0

0

15

1516

1663

42

64-Kbyte Virtual Page Number

64-Kbyte Physical Page Number

Page Offset

Page Offset

0

0

18

1819

1963

42

512-Kbyte Virtual Page Number

512-Kbyte PPN

Page Offset

Page Offset

VA

PA

PA

PA

VA

VA

8 Kbyte

64 Kbyte

512 Kbyte

0

0

21

2122

2263

42

4-Mbyte Virtual Page Number

4-Mbyte PPN

Page Offset

Page Offset PA

VA

4 Mbyte

MMU

MMU

MMU

MMU
438 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

On a TLB miss, the MMU immediately traps to software for TLB miss processing. The
TLB miss handler can fill the TLB by any available means, but it is likely to take
advantage of the TLB miss support features provided by the MMU, since the TLB
miss handler is time-critical code. Hardware support is described in Hardware
Support for TSB Access on page 445.

A general software view of the MMU is shown in FIGURE F-2. The TLBs, which are
part of the MMU hardware, are small and fast. The software translation table is likely
to be large and complex. The translation storage buffer (TSB), which acts like a
direct-mapped cache, is the interface between the two. The TSB can be shared by all
processes running on a processor or can be process specific. The hardware does not
require any particular scheme.

FIGURE F-2 Software View of the MMU

Aliasing between pages of different sizes (when multiple virtual addresses map to
the same physical address) can take place, as described in the SPARC V8 Reference
MMU. However, the reverse case of multiple mappings from one virtual address to
multiple physical addresses producing a multiple TLB match is not necessarily
detected in hardware and may produce undefined results.

IMPL. DEP. #223: Whether TLB multiple-hit detections is supported in a JPS1
processor is implementation dependent.

Note – The hardware ensures the physical reliability of the TLB on multiple
matches.

Translation

Lookaside

Buffers

Translation

Buffer

Software

Translation

Table

MMU Memory OS Data Structure

Storage
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 439

F.2 Translation Table Entry (TTE)
The Translation Table Entry (TTE) is the equivalent of a SPARC V8 page table entry;
it holds information for a single page mapping. The TTE is divided into two 64-bit
words representing the tag and data of the translation. Just as in a hardware cache,
the tag is used to determine whether there is a hit in the TSB; if there is a hit, the
data are fetched by software.

The configuration of the TTE is illustrated in FIGURE F-3 and described in TABLE F-1.

FIGURE F-3 Translation Storage Buffer (TSB) Translation Table Entry (TTE)

TABLE F-1 TSB and TTE Bit Description (1 of 4)

Bit Field Description

Tag– 63 G Global. If the Global bit is set, the Context field of the TLB entry is ignored
during hit detection. This behavior allows any page to be shared among all (user
or supervisor) contexts running in the same processor. The Global bit is
duplicated in the TTE tag and data to optimize the software miss handler.

Tag– 60:48 Context The 13-bit context identifier associated with the TTE.

Tag– 63:22 VA_tag Virtual Address Tag. The virtual page number. Bits 21 through 13 are not
maintained in the tag because these bits index the minimally sized, direct-
mapped TSB of 512 entries.

Data – 63 V Valid. If the Valid bit is set, then the remaining fields of the TTE are meaningful.
Note that the explicit Valid bit is redundant with the software convention of
encoding an invalid TTE with an unused context. The encoding of the context
field is necessary to cause a failure in the TTE tag comparison, and the explicit
Valid bit in the TTE data simplifies the TLB miss handler.

Data – 62:61 Size The page size of this entry, encoded as shown below.
Size <1:0> Page Size
00 8 Kbyte
01 64 Kbyte
10 512 Kbyte
11 4 Mbyte

DataPA<42:13>Size Soft

011363

CVCP

2312

WP

461 6062 5

GV E

6

L

7

Soft2

5059

NFO

49 43

IE

58

 Reserved

4247 46

 Impl. Dep.

G VA_tag<63:22>Context

063
Tag

414247

—

62 6061

—

48
440 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Data – 60 NFO No Fault Only. If the no-fault-only bit is set, loads with
ASI_PRIMARY_NO_FAULT, ASI_SECONDARY_NO_FAULT, and their *_LITTLE
variations are translated. Any other access will trap with a data_access_exception
trap (FT = 1016). The NFO bit in the IMMU is read as 0 and ignored when
written. The ITLB-miss handler should generate an error if this bit is set before
the TTE is loaded into the TLB.

Data – 59 IE Invert Endianness. If this bit is set for a page, accesses to the page are processed
with inverse endianness from that specified by the instruction (big for little, little
for big). See page 453 for details. The IE bit in the IMMU is read as 0 and
ignored when written.
Note: This bit is intended to be set primarily for noncacheable accesses. The
performance of cacheable accesses will be degraded as if the access missed the
D-cache.

Data - 58:50 Soft2 Software-defined field, provided for use by the operating system. The Soft2
field can be written with any value in the TSB. Hardware is not required to
maintain this field in the TLB, so when it is read from the TLB, it may read as
zero.

Data – 49:47 Reserved Reserved, read as 0.

Data – 46:43 Implementation
dependent

This field is implementation dependent (see impl. dep. #224 below); see each
Implementation Supplement for details regarding usage of this field.

Data – 42:13 PA The physical page number. Page offset bits for larger page sizes (PA<15:13>,
PA<18:13>, and PA<21:13> for 64-Kbyte, 512-Kbyte, and 4-Mbyte pages,
respectively) are ignored during normal translation.

IMPL. DEP. #224: Physical address width support by the MMU is
implementation dependent in JPS1; minimum PA width is 43 bits.

IMPL. DEP. #238: When page offset bits for larger page sizes (PA<15:13>,
PA<18:13>, and PA<21:13> for 64-Kbyte, 512-Kbyte, and 4-Mbyte pages,
respectively) are stored in the TLB, it is implementation dependent whether the
data returned from those fields by a Data Access read are zero or the data
previously written to them.

Data – 12:7 Soft Software-defined field, provided for use by the operating system. The Soft field
can be written with any value in the TSB. Hardware is not required to maintain
this field in the TLB, so when it is read from the TLB, it may read as zero.

TABLE F-1 TSB and TTE Bit Description (2 of 4)

Bit Field Description
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 441

Data – 6 L If the lock bit is set, then the TTE entry will be “locked down” when it is loaded
into the TLB; that is, if this entry is valid, it will not be replaced by the automatic
replacement algorithm invoked by an ASI store to the Data In Register. The lock
bit has no meaning for an invalid entry. While a minimum of 14 entries shall be
lockable by software in the TLB structure, software must ensure that at least one
entry is not locked when replacing a TLB entry.

IMPL. DEP. #225: The mechanism by which entries in TLB are locked is
implementation dependent in JPS1.

IMPL. DEP. #242: An implementation containing multiple TLBs may implement
the L (lock) bit in all TLBs but is only required to implement a lock bit in one
TLB for each page size. If the lock bit is not implemented in a particular TLB, it
reads as 0 and writes to it are ignored.

Data – 5
Data – 4

CP,
CV

The cacheable-in-physically-indexed-cache bit and cacheable-in-virtually-
indexed-cache bit determine the placement of data in the caches. Given an
implementation with a physically indexed instruction cache, a virtually indexed
data cache, and a physically indexed unified second-level cache, the following
table illustrates how the CP and CV bits could be used.

The MMU does not operate on the cacheable bits but merely passes them
through to the cache subsystem. The CV bit in the IMMU is read as zero and
ignored when written.

IMPL. DEP. #226: Whether the CV bit is supported in TTE is implementation
dependent in JPS1. When the CV bit in TTE is not provided and the implementation
has virtually indexed caches, the implementation should support hardware unaliasing
for the caches.

Data – 3 E Side effect. If the side-effect bit is set, nonfaulting loads will trap for addresses
within the page, noncacheable memory accesses other than block loads and
stores are strongly ordered against other E-bit accesses, and noncacheable stores
are not merged. This bit should be set for pages that map I/O devices having
side effects. Note, however, that the E bit does not prevent normal instruction
prefetching. The E bit in the IMMU is read as 0 and ignored when written.
Note: The E bit does not force a noncacheable access. It is expected, but not
required, that the CP and CV bits will be set to 0 when the E bit is set. If both the
CP and CV bits are set to 1 along with the E bit, the result is undefined.
Note Also: The E bit and the NFO bit are mutually exclusive; both bits should
never be set in any TTE.

TABLE F-1 TSB and TTE Bit Description (3 of 4)

Bit Field Description

Cacheable
(CP, CV)

Meaning of TTE when placed in:

I-TLB (Instruction Cache PA-indexed) D-TLB (Data Cache VA-indexed)

00, 01 Noncacheable Noncacheable

10 Cacheable E-cache, I-cache Cacheable E-cache

11 Cacheable E-cache, I-cache Cacheable E-cache, D-cache
442 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Compatibility Note – Referenced and Modified bits are maintained by software.
The Global, Privileged, and Writable fields replace the 3-bit ACC field of the SPARC
V8 Reference MMU Page Translation Entry.

F.3 Translation Storage Buffer
The Translation Storage Buffer (TSB) is an array of Translation Table Entries
managed entirely by software. It serves as a cache of the software translation table,
used to quickly reload the TLB in the event of a TLB miss. The discussion in this
section assumes the use of the hardware support for TSB access described in
Hardware Support for TSB Access on page 445, although the operating system is not
required to make use of this support hardware.

Inclusion of the TLB entries in the TSB is not required; that is, translation
information that is not present in the TSB can exist in the TLB.

A bit in the TSB register allows the TSB 64-Kbyte pointer to be computed for the case
of common or split 8-Kbyte/64-Kbyte TSBs.

F.3.1 TSB Indexing Support
No hardware TSB indexing support is provided for the 512-Kbyte and 4-Mbyte page
TTEs. However, since the TSB is entirely software managed, the operating system
may choose to place these larger page TTEs in the TSB by forming the appropriate

Data – 2 P Privileged. If the P bit is set, only the supervisor can access the page mapped by
the TTE. If the P bit is set and an access to the page is attempted when
PSTATE.PRIV=0, then the MMU signals an instruction_access_exception or
data_access_exception trap (FT = 116).

Data – 1 W Writable. If the W bit is set, the page mapped by this TTE has write permission
granted. Otherwise, write permission is not granted, and the MMU causes a
fast_data_access_protection trap if a write is attempted. The W bit in the IMMU is
read as 0 and ignored when written.

Data – 0 G Global. This bit must be identical to the Global bit in the TTE tag. Like the Valid
bit, the Global bit in the TTE tag is necessary for the TSB hit comparison, and the
Global bit in the TTE data facilitates the loading of a TLB entry.

TABLE F-1 TSB and TTE Bit Description (4 of 4)

Bit Field Description
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 443

pointers. In addition, simple modifications to the 8-Kbyte and 64-Kbyte index
pointers provided by the hardware allow formation of an M-way, set-associative
TSB, multiple TSBs per page size, and multiple TSBs per process.

F.3.2 TSB Cacheability
The TSB exists as a normal data structure in memory and therefore can be cached.
Indeed, the speed of the TLB miss handler relies on the TSB accesses hitting the
level-2 cache at a substantial rate. This policy may result in some conflicts with
normal instruction and data accesses, but it is hoped that the dynamic sharing of the
level-2 cache resource will provide a better overall solution than that provided by a
fixed partitioning.

F.3.3 TSB Organization
The TSB is arranged as a direct-mapped cache of TTEs. The MMU provides pre-
computed pointers into the TSB for the 8-Kbyte and 64-Kbyte page TTEs. In each
case, N least significant bits of the respective virtual page number are used as the
offset from the TSB base address, with N equal to log base 2 of the number of TTEs
in the TSB.

The TSB organization is illustrated in FIGURE F-4. The constant N is determined by
the Size field in the TSB Register; it can range from 512 to an implementation-
dependent number.

IMPL. DEP. #227: The maximum number of entries in a TSB is implementation-
dependent in JPS1. See impl. dep. #228 for the limitation of TSB_Size in TSB
registers.

FIGURE F-4 TSB Organization, Illustrated for Both Common and Shared Cases

Tag1 (8 bytes) Data1 (8 bytes)000016 000816

TagN (8 bytes) DataN (8 bytes)

N Lines in Common TSB

Tag1 (8 bytes) Data1 (8 bytes)

TagN (8 bytes) DataN (8 bytes)

2N Lines in Split TSB
444 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

F.4 Hardware Support for TSB Access
The MMU hardware provides services to allow the TLB-miss handler to efficiently
reload a missing TLB entry for an 8-Kbyte or 64-Kbyte page. These services include:

■ Formation of TSB Pointers, based on the missing virtual address and address
space identifier

■ Formation of the TTE Tag Target used for the TSB tag comparison

■ Efficient atomic write of a TLB entry with a single store ASI operation

■ Alternate globals on MMU-signalled traps

F.4.1 Typical TLB Miss/Refill Sequence
A typical TLB miss-and-refill sequence is the following:

1. A TLB miss causes either a fast_instruction_access_MMU_miss or a
fast_data_access_MMU_miss exception.

2. The appropriate TLB miss handler reads the TSB Pointers and the TTE Tag Target,
using ASI loads.

3. Using this information, the TLB miss handler checks to see if the desired TTE
exists in the TSB. If so, the TTE data are loaded into the TLB Data In Register to
initiate an atomic write of the TLB entry chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, then the TLB miss handler jumps to the more
sophisticated, and slower, TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from the
Tag Access Register, which holds the virtual address and context of the load or store
responsible for the MMU exception. See Translation Table Entry (TTE) on page 440.

Note – There are no separate physical registers in hardware for the pointer registers;
rather, they are implemented through a dynamic reordering of the data stored in the
Tag Access and the TSB registers.

F.4.2 TSB Pointer Formation
Hardware provides pointers for the most common cases of 8-Kbyte and 64-Kbyte
page miss processing. These pointers give the virtual addresses where the 8-Kbyte
and 64-Kbyte TTEs are stored if either are present in the TSB.
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 445

Input Values for TSB Pointer Formation

The pointer to the TTE in the TSB is generated from the following parameters as
inputs:

■ TSB base address (TSB_Base)
■ Virtual address (VA)
■ TSB_size
■ TSB_split
■ TSB_Hash

The TSB base address is in either of I/D Primary/Secondary (provided only for
data)/Nucleus TSB Extension Registers. Depending on the context that generated
the TLB miss, an appropriate TSB Extension Register is selected (which may be
combined with the TSB_Base field from the TSB Base Register; see Note below).
Note that the context with the TLB miss is logged in I/D Synchronous Fault Status
Register.

TSB_size and TSB_split are supplied also from the selected TSB Extension
Register.

The virtual page number to be used for TSB pointer formation is in I/D Tag Access
Register.

TSB_Hash is a representation of the context that generated a TLB miss. Depending
on the implementation, the source of the TSB_Hash may vary. For details, refer to
the appropriate Implementation Supplements.

IMPL. DEP. #228: Whether TSB_Hash is supplied from a TSB Extension Register or
from a context-ID register is implementation dependent in JPS1. Only for cases of
direct hash with context-ID can the width of the TSB_size field be wider than 3
bits.

Note – TSB_Base address may be generated by exclusive-ORing TSB_Base
register and TSB Extension Register contents, for compatibility with UltraSPARC I/II
TSB pointer formation. In this case, if the TSB Extension Registers hold 0 as
TSB_Base, the value in TSB_Base register becomes the TSB_Base address, thereby
maintaining compatibility with UltraSPARC I/II TLB miss handling software. In
addition, TSB_Base may be taken directly from an appropriate TSB Extension
Register. In that case, the implementation should provide the way to maintain
compatibility with UltraSPARC I/II TLB miss handler software.

IMPL. DEP. #229: Whether the implementation generates the TSB_Base address by
exclusive-ORing the TSB_Base register and a TSB Extension Register or by taking
TSB_Base field directly from the TSB Extension Register is implementation
dependent in JPS1. This implementation dependency is only to maintain
compatibility with the TLB miss handling software of UltraSPARC I/II.
446 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

TSB Pointer Formation

Hardware uses the following equations to form TSB pointers for TLB misses. In the
equations, N is defined to be the TSB_Size field of the TSB Base or TSB Extension
Register; it ranges from 0 to an implementation-dependent number. Note that
TSB_Size refers to the size of each TSB when the TSB is split. The symbol
designates concatenation of bit vectors.

Exclusive-ORed TSB_Base.

For a shared TSB (TSB Register split field = 0):

8K_POINTER = TSB_Base[63:13+N] ⊕ TSB_Extension[63:13+N]
VA[21+N:13] 0000

64K_POINTER = TSB_Base[63:13+N] ⊕ TSB_Extension[63:13+N]
VA[24+N:16] 0000

For a split TSB (TSB Register split field = 1):

8K_POINTER = TSB_Base[63:14+N] ⊕ TSB_Extension[63:14+N] 0
VA[21+N:13] 0000

64K_POINTER = TSB_Base[63:14+N] ⊕ TSB_Extension[63:14+N] 1
VA[24+N:16] 0000

TSB_Base from TSB Extension Registers.

For a shared TSB (TSB Register split field = 0):

8K_POINTER = TSB_Extension[63:13+N] (VA[21+N:13] ⊕ TSB_Hash)
0000

64K_POINTER = TSB_Extension[63:13+N] (VA[24+N:16] ⊕ TSB_Hash)
0000

For a split TSB (TSB Register split field = 1):

8K_POINTER = TSB_Extension[63:14+N] 0 (VA[21+N:13] ⊕ TSB_Hash)
 0000

64K_POINTER = TSB_Extension[63:14+N] 1 (VA[24+N:16] ⊕
TSB_Hash) 0000

Additional information. For a more detailed description of the pointer logic with
pseudocode and hardware implementation, refer to Appendix F of the
Implementation Supplements.
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 447

The TSB Tag Target (described on page 464) is formed by alignment of the missing
access VA (from the Tag Access Register) and the current context to positions found
above in the description of the TTE tag, allowing a simple XOR instruction for TSB
hit detection.

F.4.3 Required TLB Conditions
The following items must be locked in the TLB to avoid an error condition: TLB miss
handler and data, TSB and linked data, asynchronous trap handlers and data.

F.4.4 Required TSB Conditions
The following items must be locked in the TSB (not necessarily the TLB) to avoid an
error condition: TSB miss handler and data, interrupt-vector handler and data.

F.4.5 MMU Global Registers Selection
In the SPARC V9 normal trap model, the software is presented with an alternate set
of global registers in the Integer Register file. A JPS1 processor provides an
additional feature to facilitate fast handling of TLB misses. For the following traps,
the trap handler is presented with a special set of MMU globals:
■ fast_instruction_access_MMU_miss
■ fast_data_access_MMU_miss
■ instruction_access_exception
■ data_access_exception
■ fast_data_access_protection

Trap handlers for the privileged_action, mem_address_not_aligned, and
*_mem_address_not_aligned traps use the standard alternate global registers.

Compatibility Note – The MMU does not perform hardware tablewalking. JPS1
MMU hardware never directly reads or writes the TSB.
448 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

F.5 Faults and Traps
The traps recorded by the MMU are listed in TABLE F-2 and described below the
table, by reference number. All listed traps are precise traps.

† The contents of the context field of the D-MMU Tag Access Register are undefined after a
data_access_exception.

Note – In a SPARC JPS1 processor, fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and fast_data_access_protection traps are generated
instead of SPARC V9 instruction_access_MMU_miss, data_access_MMU_miss, and
data_access_protection traps, respectively.

1. fast_instruction_access_MMU_miss — Occurs when the MMU is unable to find a
translation for an instruction access; that is, when the appropriate TTE is not in
the instruction TLB.

In a SPARC JPS1 processor, the fast_instruction_access_MMU_miss exception is
generated instead of the SPARC V9 instruction_access_MMU_miss.

2. instruction_access_exception — Occurs when the IMMU is enabled and detects a
privilege violation for an instruction fetch; that is, an attempted access to a
privileged page when PSTATE.PRIV = 0.

TABLE F-2 MMU Trap Types, Causes, and Stored State Register Update Policy

Trap Name Trap Cause

Registers Updated
(Stored State in MMU)

Ref # I-SFSR

I-MMU
Tag
Access

D-SFSR,
SFAR

D-MMU
Tag
Access Trap Type

1. fast_instruction_access_MMU_miss I-TLB miss X X 6416–6716

2. instruction_access_exception Several (see below) X X 0816

3. fast_data_access_MMU_miss D-TLB miss X X 6816–6B16

4. data_access_exception Several (see below) X X† 3016

5. fast_data_access_protection Protection violation X X 6C16–6F16

6. privileged_action Use of privileged ASI X 3716

7. watchpoint Watchpoint hit X 6116–6216

8. mem_address_not_aligned,
*_mem_address_not_aligned

Misaligned mem op (impl. dep.
#237)

3516, 3616,
3816, 3916
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 449

3. fast_data_access_MMU_miss — Occurs when the MMU is unable to find a
translation for a data access; that is, when the appropriate TTE is not in the data
TLB.

In a SPARC JPS1 processor, the fast_data_access_MMU_miss exception is
generated instead of the SPARC V9 data_access_MMU_miss trap.

4. data_access_exception — Signalled upon the detection of at least one of the
following exceptional conditions.

■ The DMMU detects a privilege violation for a data access; that is, an attempted
access to a privileged page when PSTATE.PRIV = 0.

■ A speculative (nonfaulting) load instruction issued to a page marked with the
side effect (E bit) set to 1, including cases in which the DMMU is disabled.

■ An atomic instruction (including 128-bit atomic load) issued to a memory
address marked noncacheable in a physical cache; that is, with CP bit set to 0,
including cases in which the DMMU is disabled.

■ An invalid LDA/STA ASI value, read to write-only register, or write to read-
only register. Not for an attempted user access to a restricted ASI (see the
privileged_action trap described below).

■ An access with an ASI other than “(PRIMARY,SECONDARY)_NO_FAULT
(_LITTLE)” to a page marked with the NFO (no-fault-only) bit.

The implementation may signal a data_access_exception if it detects any other
exceptional conditions possibly caused by program errors.

IMPL. DEP. #230: The causes of a data_access_exception trap are implementation
dependent in JPS1, but there are several mandatory causes of
data_access_exception trap.

5. fast_data_access_protection — Occurs when the MMU detects a protection
violation for a data access. A protection violation is defined to be an attempted
store (including atomic load-store operations) to a page that does not have write
permission.

In a SPARC JPS1 processor, the fast_data_access_protection exception is
generated instead of the SPARC V9 data_access_protection trap.

6. privileged_action. — Occurs when an access is attempted using a restricted ASI
while in nonprivileged mode (PSTATE.PRIV = 0).

7. watchpoints — PA_watchpoint and VA_watchpoint traps are included in this
category. Watchpoint traps occur when watchpoints are enabled and the DMMU
detects a load or store to the virtual or physical address specified by the
watchpoint virtual or physical registers, respectively. See Data Watchpoint Registers
on page 94. The trap is precise and is signalled before the actual event, meaning
that the contents of the location are not modified when the trap is invoked.
450 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

8. mem_address_not_aligned — Occurs when a load, store, atomic, JMPL, or RETURN
instruction with a misaligned address is executed.

IMPL. DEP. #237: Whether the fault status and/or address (DSFSR/DSFAR) are
captured when a mem_address_not_aligned trap occurs during a JMPL or
RETURN instruction is implementation dependent.

F.6 MMU Operation Summary
The behavior of the DMMU is summarized in TABLE F-3 on page 452; the behavior of
the IMMU is summarized in TABLE F-4 for normal (noninternal) ASIs. In each case
and for all conditions, the behavior of each MMU is given by one of the following
abbreviations:

The ASI is indicated by one the following abbreviations:

Note – The *_LITTLE versions of the ASIs behave the same as the big-endian
versions with regard to the MMU table of operations.

Other abbreviations include W for the writable bit, E for the side-effect bit, and P for
the privileged bit.

Abbreviation Meaning

OK normal translation

Dmiss fast_data_access_MMU_miss exception

Dexc data_access_exception exception

Dprot fast_data_access_protection exception

Imiss fast_instruction_access_MMU_miss exception

Iexc instruction_access_exception exception

Abbreviation Meaning

NUC ASI_NUCLEUS*.

PRIM Any ASI with PRIMARY translation, except *NO_FAULT.

SEC Any ASI with SECONDARY translation, except *NO_FAULT.

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_AS_IF_USER_PRIMARY*.

U_SEC ASI_AS_IF_USER_SECONDARY*.

BYPASS ASI_PHYS_* and also other ASIs that require the MMU to perform a
bypass operation (such as D-cache access).
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 451

The following cases are not covered in TABLE F-3.

■ Invalid ASIs or ASIs that have no meaning for the opcodes listed; for example,
ASI_PRIMARY_NOFAULT for a store or atomic. Also, access to internal registers
other than LDXA, LDDFA, STXA, or STDFA. See Section L.3.1, Supported ASIs. The
MMU signals a data_access_exception trap (FT = 0816) for these cases.

■ Attempted access using a restricted ASI in nonprivileged mode. The MMU
signals a privileged_action exception for this case.

■ An atomic instruction (including 128-bit atomic load) issued to a memory address
marked noncacheable in a physical cache; that is, with the CP bit set to 0,
including cases in which the DMMU is disabled. The MMU signals a
data_access_exception trap (FT = 0416) for this case.

■ A data access with an ASI other than “(PRIMARY,SECONDARY)_NO_FAULT
(_LITTLE)” to a page marked with the NFO bit. The MMU signals a
data_access_exception trap (FT = 1016) for this case.

See Section L.3, ASI Assignments for a summary of the ASI map.

TABLE F-3 DMMU Table of Operations for Normal ASIs

Condition Behavior

Opcode
PRIV
mode ASI W TLB Miss

E = 0
P = 0

E = 0
P = 1

E = 1
P = 0

E = 1
P = 1

Load

0 PRIM, SEC x Dmiss OK Dexc OK Dexc

PRIM_NF, SEC_NF x Dmiss OK Dexc Dexc Dexc

1 PRIM, SEC, NUC x Dmiss OK OK OK OK

PRIM_NF, SEC_NF x Dmiss OK OK Dexc Dexc

U_PRIM, U_SEC x Dmiss OK Dexc OK Dexc

Store or
Atomic

0 PRIM, SEC 0 Dmiss Dprot Dexc Dprot Dexc

1 Dmiss OK Dexc OK Dexc

1 PRIM, SEC, NUC 0 Dmiss Dprot Dprot Dprot Dprot

1 Dmiss OK OK OK OK

U_PRIM, U_SEC 0 Dmiss Dprot Dexc Dprot Dexc

1 Dmiss OK Dexc OK Dexc

FLUSH†

†.The FLUSH entry in this table only applies to JPS1 implementations that translate (as opposed to ignore) the
address given in FLUSH instructions.

0
1

x
x

Dmiss
Dmiss

OK
OK

Dexc
OK

OK
Dexzc

Dexc
Desc

x 0 BYPASS x privileged_action

x 1 BYPASS x Bypass
452 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

F.7 ASI Value, Context, and Endianness
Selection for Translation
The selection of the context for a translation is the result of a two-step process:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction,
ASI register, trap level, and the processor endian mode (PSTATE.CLE).

2. The Context Register is determined directly from the ASI. The context value is
read by the Context Register selected by the ASI.

The ASI value and endianness (little or big) are determined for the IMMU and
DMMU, respectively, according to TABLE F-5 through TABLE F-7. Note that the
secondary context is never used to fetch instructions. The Instruction and Data
MMUs, when using the Primary Context identifier, use the value stored in the
shared Primary Context Register.

The endianness of a data access is specified by three conditions:

■ The ASI specified in the opcode or ASI register

■ The PSTATE current little-endian bit (CLE)

■ The DMMU invert endianness bit

The DMMU invert endianness bit does not affect the ASI value recorded in the
SFSR but does invert the endianness that is otherwise specified for the access.

TABLE F-4 IMMU Table of Operations for Normal ASIs

Condition Behavior

PRIV mode TLB Miss P = 0 P = 1

0 Imiss OK Iexc

1 Imiss OK OK
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 453

Note – The DMMU invert endianness bit inverts the endianness for all accesses,
including LD/ST/atomic alternates that have specified an ASI. That is, LDXA
[%g1]ASI_PRIMARY_LITTLE will be _BIG if the IE bit is on.

TABLE F-5 ASI Mapping for Instruction Access

Condition for Instruction Access Resulting Action

PSTATE.TL Endianness ASI Value (in SFSR)

0 BIG ASI_PRIMARY

> 0 BIG ASI_NUCLEUS

TABLE F-6 ASI Mapping for Data Accesses

Condition for Data Access Access Processed with:

Opcode TL PSTATE.CLE DMMU.IE Endian ASI Value (Recorded in SFSR)

LD/ST/Atomic

0 0 0 BIG ASI_PRIMARY

1 LITTLE ASI_PRIMARY

1 0 LITTLE ASI_PRIMARY_LITTLE

1 BIG ASI_PRIMARY_LITTLE

> 0 0 0 BIG ASI_NUCLEUS

1 LITTLE ASI_NUCLEUS

1 0 LITTLE ASI_NUCLEUS_LITTLE

1 BIG ASI_NUCLEUS_LITTLE

LD/ST/Atomic Alternate
with specified ASI not
ending in _LITTLE

x x 0 BIG Specified ASI value from
immediate field in opcode
or ASI Register1 LITTLE

LD/ST/Atomic Alternate
with specified ASI
ending in _LITTLE

x x 0 LITTLE Specified ASI value from
immediate field in opcode
or ASI Register1 BIG

FLUSH†

†.The FLUSH entry in this table only applies to JPS1 implementations that translate (as opposed to ignore) the ad-
dress given in FLUSH instructions.

0
>0

x
x

x
x

—
—

ASI_PRIMARY_*

ASI_NUCLEUS
454 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The Context Register used by the data and instruction MMUs is determined
according to TABLE F-7. The Context Register selection is not affected by the
endianness of the access. For a comprehensive list of ASI values in the ASI map, see
Appendix L, Address Space Identifiers.

F.8 Reset, Disable, and RED_state Behavior
During global reset of the processor, the following statements apply:

■ No change occurs in any block of the DMMU.
■ No change occurs in the datapath or TLB blocks of the IMMU.
■ The IMMU resets its internal state machine to normal (nonsuspended) operation.
■ The IMMU and DMMU Enable bits in the DCU Control Register are set to 0.

When the processor enters RED_state, the following statement applies:

■ The IMMU and DMMU Enable bits in the DCU Control Register are set to 0.

Either of the MMUs is defined to be disabled when its respective MMU Enable bit
equals 0 or, for the IMMU only, whenever the processor is in RED_state. The
DMMU is enabled or disabled solely by the state of the DMMU Enable bit.

When the DMMU is disabled:

■ The DMMU passes all addresses through without translation ("bypasses" them);
each address is truncated to the size of a physical address on the implementation
(impl. dep. #224), behaving as if the ASI_PHYS_* ASI had been used for the
access.

■ The processor behaves as if the TTE bits were set as:

■ TTE.IE ← 0
■ TTE.P ← 0
■ TTE.W ← 1
■ TTE.NFO← 0
■ If DCUCR.CP and DCUCR.CV are implemented (impl. dep. #232):

■ TTE.CP ← DCUCR.CP

TABLE F-7 IMMU and DMMU Context Register Usage

ASI Value Context Register

ASI_*NUCLEUS* (any ASI name containing the string “NUCLEUS”) Nucleus (000016 hard-wired)

ASI_*PRIMARY* (any ASI name containing the string “PRIMARY”) Primary

ASI_*SECONDARY* (any ASI name containing the string “SECONDARY”) Secondary

All other ASI values (Not applicable, no translation)
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 455

■ TTE.CV ← DCUCR.CV
■ TTE.E ← not DCUCR.CP

■ If DCUCR.CP and DCUCR.CV are not implemented:
■ TTE.E ← not TTE.CP

IMPL. DEP. #231: The variability of the width of physical address is implementation
dependent in JPS1, and if variable, the initial width of the physical address after
reset is also implementation dependent in JPS1.

IMPL. DEP. #232: Whether CP and CV bits exist in the DCU Control Register is
implementation dependent in JPS1.

However, if a bypass ASI (ASI_PHYS_*) is used while the DMMU is disabled, the
bypass operation behaves as it does when the DMMU is enabled; that is, the access
is processed with the E, CP, and CV bits as specified by the bypass ASI (see TABLE F-
15 on page 472).

When the IMMU is disabled, it truncates all instruction accesses to the physical
address size (implementation dependent) and passes the default physically
cacheable bit or implementation-dependent Data Cache Unit Control Register CP bit
to the cache system. The access does not generate an instruction_access_exception
trap.

When disabled, both the IMMU and DMMU correctly perform all LDXA and STXA
operations to internal registers, and traps are signalled just as if the MMU were
enabled. For instance, if a nonfaulting load is issued when the DMMU is disabled
and DCUCR.CP is set to 0 if the implementation has the bit, then the DMMU signals
a data_access_exception trap (FT = 0216), since E is set to 1.

IMPL. DEP. #117: Whether PREFETCH and nonfaulting loads always succeed when
the MMU is disabled is implementation dependent.

Note – A reset of the TLB is not performed by a chip reset or by entry into
RED_state. Before the MMUs are enabled, the operating system software must
explicitly write each entry with either a valid TLB entry or an entry with the valid
bit set to 0. The operation of the IMMU or DMMU in enabled mode is undefined if
the TLB valid bits have not been set explicitly beforehand.
456 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

F.9 SPARC V9 “MMU Requirements” Annex
The MMU complies completely with the SPARC V9 “MMU Requirements” Annex.
TABLE F-8 shows how various protection modes can be achieved, if necessary,
through the presence or absence of a translation in the instruction or data MMU.
Note that this behavior requires specialized TLB-miss handler code to guarantee
these conditions.

F.10 Internal Registers and ASI Operations
In this section, how to access MMU registers is described, followed by descriptions
of the registers themselves, as follows:

■ Context Registers
■ Instruction/Data MMU TLB Tag Access Registers
■ I/D TLB Data In, Data Access, and Tag Read Registers
■ I/D TSB Tag Target Registers
■ I/D TSB Base Registers
■ I/D TSB Extension Registers
■ I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct Pointer Registers
■ I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)
■ MMU Data Synchronous Fault Address Register

The I/D demap operation is then described.

TABLE F-8 MMU SPARC V9 Annex G Protection Mode Compliance

Condition

Resultant
Protection Mode

TTE in
DMMU

TTE in
IMMU

Writable Attribute
Bit

Yes No 0 Read-only

No Yes N/A Execute-only

Yes No 1 Read/Write

Yes Yes 0 Read-only/Execute

Yes Yes 1 Read/Write/Execute
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 457

F.10.1 Accessing MMU Registers
All internal MMU registers can be accessed directly by the processor through
defined ASIs. Several of the registers have been assigned their own ASI because
these registers are crucial to the speed of the TLB miss handler. Allowing the use of
%g0 for the address reduces the number of instructions required to perform the
access to the alternate space (by eliminating address formation).

See Appendix L, Address Space Identifiers, Section 5.2.12, Registers Referenced Through
ASIs, and Appendix P, Error Handlingfor details on the behavior of the MMU during
all other internal ASI accesses. For instance, to facilitate an access to the D-cache, the
MMU performs a bypass operation.

Caution – A store to an MMU register requires a MEMBAR #Sync, FLUSH, DONE, or
RETRY before the point that the effect must be visible to load/store/atomic accesses.
A FLUSH, DONE, or RETRY is needed before the point that the effect must be visible
to instruction accesses, that is, MEMBAR #Sync is not sufficient. In either case, one of
these instructions must be executed before the next noninternal store or load of any
type and on or before the delay slot of a delayed-control transfer instruction of any
type. This action is necessary to avoid data corruption.

If the low-order three bits of the VA are nonzero in an LDXA/STXA to or from these
registers, then a mem_address_not_aligned trap occurs. Writes to read-only, reads to
write-only, illegal ASI values, or illegal VA for a given ASI can cause a
data_access_exception trap (FT = 0816). (The hardware detects VA violations in only
an unspecified lower portion of the virtual address.) TABLE F-9 describes MMU
registers and provides references to sections with more details.

TABLE F-9 MMU Internal Registers and ASI Operations

IMMU ASI DMMU ASI VA<63:0> Access Register or Operation Name Page

5016 5816 016 Read-only I/D TSB Tag Target Registers 464

— 5816 816 Read/Write Primary Context Register 459

— 5816 1016 Read/Write Secondary Context Register 459

5016 5816 1816 Read/Write I/D Synchronous Fault Status Registers
(I-SFSR, D-SFSR)

467

— 5816 2016 Read-only D Synchronous Fault Address Register
(D-SFAR)

470

5016 5816 2816 Read/Write I/D TSB Base Registers 464

5016 5816 3016 Read/Write I/D TLB Tag Access Registers 460

— 5816 3816 Read/Write Virtual Watchpoint Address 94
458 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

IMPL. DEP. #233: Whether TSB_Hash field is implemented in I/D Primary/
Secondary/Nucleus TSB Extension Register is implementation dependent in JPS1.

IMPL. DEP. #239: The register(s) accessed by IMMU ASI 5516 and DMMU ASI 5D16
at virtual addresses 4000016 to 60FF816 are implementation dependent.

F.10.2 Context Registers
The Primary Context Register is shared by the IMMU and the DMMU and resides in
the MMU. The Primary Context Register is illustrated in FIGURE F-5,
where: PContext is the context identifier for the primary address space.

FIGURE F-5 IMMU and DMMU Primary Context Register

— 5816 4016 Read/Write Physical Watchpoint Address 94

5016 5816 4816 Read/Write I/D TSB Primary Extension Registers
Implementation dependent (impl. dep. #233)

466

—† 5816 5016 Read/Write D TSB Secondary Extension Register
Implementation dependent (impl. dep. #233)

466

5016 5816 5816 Read/Write I/D TSB Nucleus Extension Registers
Implementation dependent (impl. dep. #233)

466

5116 5916 016 Read-only I/D TSB 8-Kbyte Pointer Registers 460

5216 5A16 016 Read-only I/D TSB 64-Kbyte Pointer Registers 460

— 5B16 016 Read-only D TSB Direct Pointer Register 460

5416 5C16 016 Write-only I/D TLB Data In Registers 461

5516 5D16 016–20FF816 Read/Write I/D TLB Data Access Registers 461

5516 5D16 4000016–60FF816 — Implementation dependent (impl. dep. #239) 409

5616 5E16 016–20FF816 Read-only I/D TLB Tag Read Registers 461

5716 5E16 See F.10.11 Write-only I/D MMU Demap Operations 470

†. For symmetry, a "dummy" register exists at ASI 5016, VA5016 that reads as zero and to which writes are ignored.

TABLE F-9 MMU Internal Registers and ASI Operations (Continued)

IMMU ASI DMMU ASI VA<63:0> Access Register or Operation Name Page

63 13 12 0

— PContext
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 459

The Secondary Context Register is illustrated in FIGURE F-6,
where: SContext is the context identifier for the secondary address space.

FIGURE F-6 DMMU Secondary Context Register

The Nucleus Context Register is hardwired to zero, as illustrated in FIGURE F-7.

FIGURE F-7 DMMU Nucleus Context Register

Compatibility Note – The single Context Register of the SPARC V8 Reference
MMU has been replaced by three separate context registers.

F.10.3 Instruction/Data MMU TLB Tag Access Registers
In each MMU, the Tag Access Register is used as a temporary buffer for writing the
TLB Entry tag information. The Tag Access Register holds the tag portion, and the
Data In or Data Access Register holds the data being accessed.

 The Tag Access Register can be updated during either of the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection: The MMU
hardware, with one exception, automatically writes the missing VA and the
appropriate context into the Tag Access Register to facilitate formation of the TSB
Tag Target Register. The exception is that after a data_access_exception, the
contents of the Context field of the D-MMU Tag Access Register are undefined.
See TABLE F-2 on page 449 for the SFSR and Tag Access Register update policy.

2. An ASI write to the Tag Access Register: Before an ASI store to the TLB data
access registers, the operating system must set the Tag Access Register to the
values desired in the TLB Entry. Note that an ASI store to the TLB Data In Register
for automatic replacement also uses the Tag Access Register, but typically the
value written into the Tag Access Register by the MMU hardware is appropriate.

Note – Any update to the Tag Access Registers immediately affects the data that are
returned from subsequent reads of the TSB Tag Target and TSB Pointer Registers.

63 13 12 0

— SContext

63 0

0000
460 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The TLB Tag Access Register fields are defined below and illustrated in FIGURE F-8.

FIGURE F-8 I/D MMU TLB Tag Access Registers

F.10.4 I/D TLB Data In, Data Access, and Tag Read
Registers
Access to the TLB is complicated because of the need to provide an atomic write of a
TLB entry data item (tag and data) that is larger than 64 bits, the need to replace
entries automatically through the TLB entry replacement algorithm as well as to
provide direct diagnostic access, and the need for hardware assist in the TLB miss
handler.

TABLE F-2 on page 449 shows when loads and stores update the Tag Access Registers.

TABLE F-10 shows how the Tag Read, Tag Access, Data In, and Data Access Registers
interact to provide atomic reads and writes to the TLBs.

Bit Field Type Description

63:13 VA RW The 51-bit virtual page number.

12:0 Context RW The 13-bit context identifier. This field reads 0 when there is
no associated context with the access. Its contents in the D-
MMU are undefined after a data_access_exception.

TABLE F-10 MMU TLB Access Summary

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB tag array TLB data array Tag Access Register

Load

Tag Read Contents returned. Entry
specified by STXA‘s access.

No effect No effect

Tag Access No effect No effect Contents returned

Data In Trap with data_access_exception.

Data Access No effect Contents returned. Entry
specified by STXA‘s
access.

No effect

63 0

VA<63:13> Contex<12:0>

13 12
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 461

An ASI load from the TLB Tag Read Register initiates an internal read of the tag
portion of the specified TLB entry.

Data In and Data Access Registers

The Data In and Data Access Registers are the means of reading and writing the TLB
for all operations. The TLB Data In Register is used for TLB miss handler automatic
replacement writes. The TLB Data Access Register is used for operating system and
diagnostic directed writes (writes to a specific TLB entry).

An ASI load from the TLB Data Access Register initiates an internal read of the data
portion of the specified TLB entry.

ASI loads from the TLB Data In Register are not supported.

An ASI store to the TLB Data In Register initiates an automatic atomic replacement
of the TLB Entry pointed to by an internal register that is updated by an
implementation-dependent replacement algorithm. The TLB data and tag are formed
as in the case of an ASI store to the TLB Data Access Register.

IMPL. DEP. #234: The replacement algorithm of a TLB entry is implementation
dependent in JPS1.

Store

Tag Read Trap with data_access_exception.

Tag Access No effect No effect Written with store data

Data In TLB entry determined by
replacement policy written
with contents of Tag
Access Register

TLB entry determined by
replacement policy
written with store data

No effect

Data Access TLB entry specified by
STXA address written with
contents of Tag Access
Register

TLB entry specified by
STXA address written
with store data

No effect

TLB miss No effect No effect Written with VA and
context of access

TABLE F-10 MMU TLB Access Summary (Continued)

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB tag array TLB data array Tag Access Register
462 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Caution – Stores to the Data In Register are not guaranteed to replace the previous
TLB entry, causing a fault. In particular, to change an entry’s attribute bits, software
must explicitly demap the old entry before writing the new entry; otherwise, a
multiple match error condition can result.

Both the TLB Data In Register and the TLB Data Access Register use the TTE format
shown in FIGURE F-3 on page 440. Refer to the description of the TTE data in
Translation Table Entry (TTE) on page 440 for a complete description of the data
fields. Implementations may use part of the TLB index addresses for
implementation-dependent diagnostic purposes; in this case, the data format is also
implementation dependent. Please refer to the Implementation Supplements for
details.

IMPL. DEP. #235: The MMU TLB data access address assignment and the purpose of
the address are implementation dependent in JPS1.

Writes to the TLB Data In Register require the virtual address to be set to 0. The
format of the TLB Data Access Register virtual address is illustrated in FIGURE F-9,
where: TLB Index is the entry number to be accessed; the TLB organization
(number of TLBs, size, associativity) is implementation dependent. The format of
this field is implementation dependent; please refer to the Implementation
Supplements.

FIGURE F-9 MMU TLB Data Access Address

I/D MMU TLB Tag Read Register
The format for the Tag Read Register virtual address is described below and
illustrated in FIGURE F-10.

Bit Field Type Description

63:13 VA RW The 51-bit virtual page number. In the fully associative TLB,
page offset bits for larger page sizes are stored in the TLB;
that is, VA<15:13>, VA<18:13>, and VA<21:13> for 64-Kbyte,
512-Kbyte, and 4-Mbyte pages, respectively. These values
are ignored during normal translation. When read, an
implementation will return either 0 or the value previously
written to them (impl. dep. #238).

11:0 I/D Context RW The 13-bit context identifier.

63 0

0 0 0

3 2

— TLB Index (Implementation dependent)

1819
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 463

FIGURE F-10 I/D MMU TLB Tag Read Registers

I/D MMU TLB Tag Access Register

An ASI store to the TLB Data Access or Data In Register initiates an internal atomic
write to the specified TLB Entry. The TLB entry data are obtained from the store data,
and the TLB entry tag is obtained from the current contents of the TLB Tag Access
Register.

F.10.5 I/D TSB Tag Target Registers
The I and D TSB Tag Target Registers are simply bit-shifted versions of the data
stored in the I and D Tag Access Registers, respectively. Since the I or D Tag Access
Register is updated on an I or D TLB miss, respectively, the I and D Tag Target
Registers appear to software to be updated on an I or D TLB miss. The MMU Tag
Target Register is described below and illustrated in FIGURE F-11.

FIGURE F-11 MMU Tag Target Registers

F.10.6 I/D TSB Base Registers
The Translation Storage Buffer (TSB) Base registers provide information for the
hardware formation of TSB pointers and tag target, to assist software in quickly
handling TLB misses. If the TSB concept is not employed in the software memory
management strategy and therefore the Pointer and Tag Access Registers are not
used, then the TSB Base registers need not contain valid data.

BIt Field Type Description

60:48 Context<12:0> RW The context associated with the missing virtual address.

63:22 VA RW The most significant bits of the missing virtual address.

63 013 12

Context<12:0>VA<63:13>

63 61 47 4160 48 42 0

Context000 — VA<63:22>
464 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The TSB Base Register is illustrated in FIGURE F-12 and described in TABLE F-11.

FIGURE F-12 MMU I/D TSB Base Registers

TABLE F-11 TSB Base Register Description

Bit Field Type Description

63:13 I/D TSB_Base RW Provides the base virtual address of the Translation Storage Buffer. Software
must ensure that the TSB base address is aligned on a boundary equal to the
size of the TSB (or both TSBs in the case of a split TSB).

12 Split RW When Split = 1, the TSB 64-Kbyte pointer address is calculated assuming
separate (but abutting and equally sized) TSB regions for the 8-Kbyte and
the 64-Kbyte TTEs. In this case, TSB_Size refers to the size of each TSB.
The TSB 8-Kbyte pointer address calculation is not affected by the value of
the Split bit. When Split = 0, the TSB 64-Kbyte pointer address is
calculated assuming that the same lines in the TSB are shared by 8-Kbyte
and 64-Kbyte TTEs, called a “common TSB” configuration.
Caution: In the “common TSB” configuration (TSB.Split = 0), 8-Kbyte
and 64-Kbyte page TTEs can conflict unless the TLB-miss handler explicitly
checks the TTE for page size. Therefore, do not use the common TSB mode
in an optimized handler. For example, suppose an 8-Kbyte page at
VA = 200016 and a 64-Kbyte page at VA = 1000016 both exist—a legal
situation. These both map to the second TSB line (line 1) and have the same
VA tag of 0. Therefore, there is no way for the miss handler to distinguish
these TTEs by the TTE tag alone, and unless the miss handler checks the
TTE data, it may load an incorrect TTE.

5:0 I/D TSB_Size RW IMPL. DEP. #236: The width of the TSB_Size field in the TSB Base Register
is implementation dependent; the permitted range is from 2 to 6 bits. The
least significant bit of TSB_Size is always at bit 0 of the TSB Base Register.
Any bits unimplemented at the most significant end of TSB_Size read as 0,
and writes to them are ignored.
The TSB_Size field provides the size of the TSB as follows:
• The number of entries in the TSB (or each TSB if split) = 512 × 2TSB_Size.
• The number of entries in the TSB ranges from 512 entries at
TSB_Size = 0 (8-Kbyte common TSB, 16-Kbyte split TSB), to an
implementation-dependent number of entries.

Note: Any update to the TSB Base Register immediately affects the data that
are returned from later reads of the Tag Target and TSB Pointer Registers.

63 6 5 0

TSB_Base<63:13> (virtual) TSB_Size

13 12

Split —

11
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 465

F.10.7 I/D TSB Extension Registers
The TSB Extension Registers provide information for the hardware formation of TSB
pointers and tag target, to assist software in handling TLB misses quickly. If the TSB
concept is not employed in the software memory management strategy and
therefore the pointer and Tag Access Registers are not used, then the TSB Extension
Registers need not contain valid data.
The TSB Extension registers are defined as follows:

FIGURE F-13 MMU I/D TSB Extension Registers

The register field definitions are the same as for I/D TSB Base Registers (Section
F.10.6) except for an implementation-dependent field in bits 11:3. For the definition
of the implementation-dependent field, refer to impl. dep. #233. The field can be
used either as a TSB_Hash, which is a representation of the context that generated
the TLB miss, or as an extension to the TSB_size field, depending on the
implementation. In the latter case, TSB pointer generation logic must incorporate the
context ID into the process of TSB pointer generation, as described in TSB Pointer
Formation on page 445. See also impl. dep. #228.

There are three TSB Extension Registers, one for each of the virtual address spaces
(Primary, Secondary, Nucleus); see TABLE F-9 on page 458 for the ASI and VA of each
register. Note that there is no Instruction TSB Secondary Extension Register.

When an I/D TLB miss occurs, an appropriate TSB Extension Register is selected
and XORed either with the I/D TSB Register or with context ID, depending on the
implementation. The result is then used to form a TSB pointer, as described in TSB
Pointer Formation on page 445 and in each of the Implementation Supplements.

F.10.8 I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct
Pointer Registers
The I/D TSB 8-Kbyte and 64-Kbyte registers are provided as an aid to software in
determining the location of the missing or trapping TTE in the software-maintained
TSB. The TSB 8-Kbyte and 64-Kbyte Pointer Registers provide the possible locations
of the 8-Kbyte and 64-Kbyte TTE, respectively.

63 3 2 0

TSB_EXT<63:13> (virtual) TSB_Size

13 12

Split impl. dep.

11
466 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

As a fine point, the bit that controls selection of 8-Kbyte or 64-Kbyte address
formation for the Direct Pointer Register is a state bit in the DMMU that is updated
during a fast_data_access_protection exception. It records whether the page that hit
in the TLB was a 64-Kbyte page or a non-64-Kbyte page, in which case, 8 Kbyte is
assumed.

The registers are illustrated in FIGURE F-14,
where: VA<63:4> is the full virtual address of the TTE in the TSB, as determined by
the MMU hardware, and is described in Hardware Support for TSB Access on page 445.

FIGURE F-14 I/D MMU TSB 8-Kbyte/64Kbyte Pointer and DMMU Direct Pointer Register

TSB 8-Kbyte and 64-Kbyte Pointer Registers

The TSB Pointer Registers are implemented as a reorder of the current data stored in
the Tag Access Register and the TSB Extension Register. If the Tag Access Register or
TSB Extension Register is updated through a direct software write (through an STXA
instruction), then the values in the Pointer Registers will be updated as well.

Direct Pointer Register

The Direct Pointer Register is mapped by hardware to either the 8-Kbyte or 64-Kbyte
Pointer Register in the case of a fast_data_access_protection exception according to
the known size of the trapping TTE. In the case of a 512-Kbyte or 4-Mbyte page miss,
the Direct Pointer Register returns the pointer as if the fault were from an 8-Kbyte
page.

F.10.9 I/D Synchronous Fault Status Registers (I-SFSR,
D-SFSR)
The IMMU and DMMU each maintain their own SFSR Register. The SFSR is
illustrated in FIGURE F-15 and described in TABLE F-12.

FIGURE F-15 MMU I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)

63 0

VA<63:4>

4 3

0

63 1523 1114 7 5 3 16 4 2 0

Implementation dependent ASI FT E W OW FVCT PR

24

—

16

TMNF.
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 467

TABLE F-12 SFSR Bit Description

Bit Field Type Description

63:25 — Implementation dependent. Refer to Implementation Supplements.

24 NF RW Set in the DMMU if the faulting instruction was a nonfaulting load (a load to
ASI_NOFAULT) (IMMU = 0). NF is always 0 in I-SFSR.

23:16 ASI RW Records the 8-bit ASI associated with the faulting instruction. This field is valid
for both DMMU and IMMU SFSRs and for all traps in which the FV bit is set. A
trapping alternate space load or store sets the ASI field to the ASI the instruction
attempted to reference. A trapping non-alternate-space load or store sets ASI to
ASI_PRIMARY if PSTATE.CLE = 0 or to ASI_PRIMARY_LITTLE if
PSTATE.CLE = 1. A mem_address_not_aligned trap caused by a JMPL or RETURN
either does not set DSFSR.ASI or sets it as would a trapping non-alternate-space
load or store. (impl. dep. #237)

15 TM RW I/D TLB miss.

11:7 FT RW Specifies the exact condition that caused the recorded fault, according to TABLE
F-13 following this table. In the DMMU, the Fault Type field is valid only for
data_access_exception faults; there is no ambiguity in all other MMU trap cases.
Note that the hardware does not priority-encode the bits set in the fault type (FT)
field; that is, multiple bits can be set. In particular, the following ASI stores could
set both the 0116 and 0816 Fault Type bits (the page is privileged, as well as
storing to a read-only ASI):
stda %g0, [%g4]ASI_PRIMARY_NO_FAULT
stda %g0, [%g4]ASI_SECONDARY_NO_FAULT
stda %g0, [%g4]ASI_PRIMARY_NO_FAULT_LITTLE
stda %g0, [%g4]ASI_SECONDARY_NO_FAULT_LITTLE
The FT field in the IMMU SFSR always reads 0 for
fast_instruction_access_MMU_miss and reads 0116 for instruction_access_exception,
as all other fault types do not apply.

6 E RW Side-effect bit. Associated with the faulting data access or flush instruction. Set by
translating ASI accesses (see Section L.2, ASI Values) that are mapped by the TLB
with the E bit set and bypass ASIs 1516 and 1D16. Other cases that update the
SFSR (including bypass or internal ASI accesses) set the E bit to 0. It always reads
as 0 in the IMMU.

5:4 CT RW Context Register selection, as described below. The context is set to 112 when the
access does not have a translating ASI.

3 PR RW Privilege bit. Set if the faulting access occurred while in privileged mode. This
field is valid for all traps in which the FV bit is set.

2 W RW Write bit. Set if the faulting access indicated a data write operation (a store or
atomic load/store instruction). This bit always reads as 0 in the IMMU SFSR.

Context ID IMMU Context DMMU Context

00 Primary Primary
01 Reserved Secondary
10 Nucleus Nucleus
11 Reserved Reserved
468 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

TABLE F-13 describes the SFSR fault type field (FT<11:7>).

Note – A fast_instruction_MMU_miss or a fast_data_access_MMU_miss trap causes
the SFSR and the SFAR to be overwritten without setting either the OW or the FV bits.

The SFSR and the Tag Access registers both maintain state concerning a previous
translation causing an exception. The update policy for the SFSR and the Tag Access
Registers is shown in TABLE F-2 on page 449.

F.10.10 Synchronous Fault Addresses
This section describes how the IMMU and DMMU obtain a fault address.

IMMU Fault Address

There is no IMMU Synchronous Fault Address Register. Instead, software must read
the TPC register appropriately as discussed here.

1 OW RW Overwrite bit. When the MMU detects a fault, the Overwrite bit is set to 1 if the
Fault Valid bit has not been cleared from a previous fault; otherwise, it is set to 0.

0 FV RW Fault Valid bit. Set when the MMU detects a fault; it is cleared only on an explicit
ASI write of 0 to the SFSR. This bit is not set on an MMU miss. Therefore,
overwrites of MMU misses cannot be detected.
When the Fault Valid bit is not set, the values of the remaining fields in the SFSR
and SFAR are undefined for traps other than an MMU miss.

TABLE F-13 MMU Synchronous Fault Status Register FT (Fault Type) Field

I/D FT[6:0] Fault Type

I/D 0116 Privilege violation.

D 0216 Nonfaulting load instruction to page marked with E bit. This bit is 0
for internal ASI accesses.

D 0416 Atomic (including 128-bit atomic load) to page marked
noncacheable.

D 0816 Illegal LDA/STA ASI value, VA, RW, or size. Does not include cases
where 0216 and 0416 are set.

D 1016 Access other than nonfaulting load to page marked NFO. This bit is
0 for internal ASI accesses.

TABLE F-12 SFSR Bit Description (Continued)

Bit Field Type Description
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 469

For fast_instruction_access_MMU_miss traps, TPC contains the virtual address that
was not found in the IMMU TLB.

For instruction_access_exception traps, “privilege violation” fault type, TPC
contains the virtual address of the instruction in the privileged page that caused the
exception.

DMMU Fault Address

The Data Synchronous Fault Address Register contains the virtual memory address
of the fault recorded in the DMMU Synchronous Fault Status Register. The D-SFAR
can be thought of as an additional field of the D-SFSR.

The D-SFAR register is illustrated in FIGURE F-16, where Fault Address is the virtual
address associated with the translation fault recorded in the D-SFSR; the field is set
on an MMU miss fault or when the D-SFSR Fault Valid (FV) bit is set.

FIGURE F-16 MMU Data Synchronous Fault Address Register (D-SFAR)

F.10.11 I/D MMU Demap
Demap is an MMU operation, not an MMU register. Demap removes selected entries
from the TLBs.

Note – A store to a DMMU Register requires a MEMBAR #Sync, FLUSH, DONE, or
RETRY before the point that the effect must be visible to load/store/atomic accesses.
A FLUSH, DONE, or RETRY is needed before the point that the effect must be visible
to instruction accesses, that is, MEMBAR #Sync is not sufficient. In either case, one of
these instructions must be executed before the next noninternal store or load of any
type and on or before the delay slot of a delayed-control transfer instruction of any
type. This action is necessary to avoid data corruption.

Three types of demap operations are provided:

■ Demap page — Removes any TLB entry that matches exactly the specified virtual
page and context number. It is illegal to have more than one TLB entry per page.

Demap page may, in fact, remove more than one TLB entry in the condition of a
multiple TLB match, but this is an error condition of the TLB and has undefined
results.

■ Demap context — Removes any TLB entries that match the specified context
identifier.

63 0

Fault Address (VA<63:0>)
470 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Demap all — Removes all of the TLB entries from the TLB except for locked
entries.

Demap is initiated by an STXA with ASI 5716 for IMMU demap or 5F16 for DMMU
demap. It removes TLB entries from an on-chip TLB. No bus-based demap is
supported. The demap address format is illustrated in FIGURE F-17 and described in
TABLE F-14.

FIGURE F-17 MMU Demap Operation Address and Data Formats

A demap operation does not invalidate the TSB in memory. Software must modify
the appropriate TTEs in the TSB before initiating a demap operation.

Except for Demap All, the demap operation does not depend on the value of any
entry’s lock bit. A demap operation demaps both locked entries and unlocked
entries.

The demap operation produces no output.

TABLE F-14 Demap Address Format

Field Bit Type Description

63:13 VA<63:13> RW The virtual page number of the TTE to be removed from the TLB for
Demap Page.

12:8 Ignored This field is ignored by hardware.

7:6 Type RW The type of demap operation, as described below:
Type Field Demap Operation
0 Demap page— see page 470
1 Demap context—see page 470
2 Demap all—see page 470
3 Reserved—Ignored

5:4 Context ID RW Context Register selection, as described below. Use of the reserved value
causes the demap to be ignored
Context ID Field Context Used in Demap

00 Primary
01 Secondary (DMMU only)
10 Nucleus
11 Reserved

0Context

012
Address

Data

3463 13

Ignored

7 56

Type

063

VA<63:13>

—

8

Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 471

Following are Instruction/Data demap page types:

■ I/D Demap Page (Type = 0). Demap Page removes the TTE (from the specified
TLB), matching the specified virtual page number and Context Register. The
match condition with regard to the global bit is the same as a normal TLB access;
that is, if the global bit is set, the contexts do not need to match.

Virtual page offset bits 15:13, 18:13, and 21:13 for 64-Kbyte, 512-Mbyte, and 4-
Mbyte page TLB entries, respectively, do not participate in the match for that
entry. This is the same condition as for a translation match.

Note – Each Demap Page operation removes only one TLB entry. A demap of a 64-
Kbyte, 512-Kbyte, or 4-Mbyte page does not demap any smaller page within the
specified virtual address range.

■ I/D Demap Context (Type = 1). Demap Context removes from the TLB all TTEs
having the specified context. If the TTE Global bit is set, then the TTE is not
removed. VA is ignored for this operation.

■ I/D Demap All (Type = 2). Demap All removes all TTEs that do not have the lock
bit set. VA and Context are ignored for this operation.

F.11 MMU Bypass
In a bypass access, the DMMU sets the physical address equal to the truncated
virtual address; that is, the low-order bits of the virtual address are passed through
without translation as the physical address (the width of which is defined in impl.
dep. #224). The physical page attribute bits are set as shown in TABLE F-15.

The IMMU can only be bypassed by being disabled. See Reset, Disable, and RED_state
Behavior on page 455 for details on the effect of disabling the MMU.

TABLE F-15 Bypass Attribute Bits

ASI

Attribute Bits

CP IE CV E P W NFO Size

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE

1 0 0 0 0 1 0 8 Kbyte

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

0 0 0 1 0 1 0 8 Kbyte
472 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Compatibility Note – The virtual address is wider than the physical address; thus,
there is no need to use multiple ASIs to fill in the high-order physical address bits, as
is done in SPARC V8 machines.

F.12 Translation Lookaside Buffer Hardware
This section briefly describes the TLB hardware. For more detailed information, refer
to the Implementation Supplements or the corresponding microarchitecture
specification.

F.12.1 TLB Operations
The TLB supports exactly one of the following operations:

■ Normal translation. The TLB receives a virtual address and a context identifier as
input and produces a physical address and page attributes as output.

■ Bypass. The TLB receives a virtual address as input and produces a physical
address equal to the truncated virtual address and default page attributes as
output.

■ Demap operation. The TLB receives a virtual address, a context identifier, and
type as input and sets the Valid bit to zero for any matching page entries.

■ Read operation. The TLB reads either the Tag or Data portion of the specified
entry. (Since the TLB entry is greater than 64 bits, the Tag and Data portions must
be returned in separate reads. See I/D TLB Data In, Data Access, and Tag Read
Registers on page 461.)

■ Write operation. The TLB simultaneously writes the Tag and Data portion of the
specified entry or the entry given by the replacement policy described below.

■ No operation. The TLB performs no operation.

F.12.2 TLB Replacement Policy
On an automatic replacement write to the TLB, the MMU picks the entry to write,
based on an implement-dependent algorithm. Please refer to the Implementation
Supplements for details of the TLB replacement algorithm.
Release 1.0.4, 31 May 2002 C. Appendix F • Memory Management Unit 473

F.12.3 TSB Pointer Logic Hardware Description
The algorithm used to generate the I/D TSB pointer is implementation dependent.
Please refer to the Implementation Supplements for details of the TSB pointer
generation algorithm.
474 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX G

Assembly Language Syntax

This appendix supports Appendix A, Instruction Definitions. Each instruction
description in Appendix A includes a table that describes the suggested assembly
language format for that instruction. This appendix describes the notation used in
those assembly language syntax descriptions and lists some synthetic instructions
provided by the SPARC JPS1 assemblers for the convenience of assembly language
programmers.

The appendix contains these sections:

■ Notation Used on page 475
■ Syntax Design on page 483
■ Synthetic Instructions on page 484

G.1 Notation Used
The notations defined here are also used in the assembly language syntax
descriptions in Appendix A, Instruction Definitions.

Items in typewriter font are literals to be written exactly as they appear. Items
in italic font are metasymbols that are to be replaced by numeric or symbolic values
in actual SPARC V9 assembly language code. For example, “imm_asi” would be
replaced by a number in the range 0 to 255 (the value of the imm_asi bits in the
binary instruction) or by a symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the
generated binary instruction. For example, regrs2 is a reg (register name) whose
binary value will be placed in the rs2 field of the resulting instruction.
Release 1.0.4, 31 May 2002 C. Appendix G • Assembly Language Syntax 475

G.1.1 Register Names

reg A reg is an integer register name. It can have any of the following values:1

%r0–%r31
%g0–%g7(global registers; same as %r0–%r7)
%o0–%o7 (out registers; same as %r8–%r15)
%l0–%l7(local registers; same as %r16–%r23)
%i0–%i7(in registers; same as %r24–%r31)
%fp(frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

Subscripts identify the placement of the operand in the binary instruction as one of
the following:

regrs1(rs1 field)
regrs2(rs2 field)
regrd(rd field)

freg An freg is a floating-point register name. It may have the following values:

%f0, %f1, %f2–%f63

See Floating-Point Registers on page 48.

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

fregrs1(rs1 field)
fregrs2(rs2 field)
fregrs3(rs3 field)
fregrd(rd field)

asr_reg An asr_reg is an Ancillary State Register name. It may have one of the following
values:

%asr16–%asr31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regrs1(rs1 field)
asr_regrd(rd field)

1. In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.
476 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

i_or_x_cc An i_or_x_cc specifies a set of integer condition codes, those based on either the 32-
bit result of an operation (icc) or on the full 64-bit result (xcc). It may have either
of the following values:

%icc
%xcc

fccn An fccn specifies a set of floating-point condition codes. It can have any of the
following values:

%fcc0
%fcc1
%fcc2
%fcc3

G.1.2 Special Symbol Names
Certain special symbols appear in the syntax table in typewriter font. They
must be written exactly as they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:

%asi Address Space Identifier Register
%canrestore Restorable Windows Register
%cansave Savable Windows Register
%ccr Condition Codes Register
%cleanwin Clean Windows Register
%clear_softint Soft Interrupt Register (clear selected bits)
%cwp Current Window Pointer Register
%dcr Dispatch Control Register
%fprs Floating-Point Registers State Register
%fsr Floating-Point State Register
%gsr Graphics Status Register
%otherwin Other Windows Register
%pc Program Counter Register
%pcr Performance Control Register
%pic Performance Instrumentation Counters
%pil Processor Interrupt Level Register
%pstate Processor State Register
%set_softint Soft Interrupt Register (set selected bits)
%softint Soft Interrupt Register
%sys_tick System Timer (TICK) Register
Release 1.0.4, 31 May 2002 C. Appendix G • Assembly Language Syntax 477

%sys_tick_cmpr System TImer (STICK) Compare Register
%tba Trap Base Address Register
%tick Tick (cycle count) Register
%tick_cmpr Timer (TICK) Compare Register
%tl Trap Level Register
%tnpc Trap Next Program Counter Register
%tpc Trap Program Counter Register
%tstate Trap State Register
%tt Trap Type Register
%ver Version Register
%wstate Window State Register
%y Y Register

The following special symbol names are unary operators that perform the functions
described:

%uhi Extracts bits 63:42 (high 22 bits of upper word) of its operand
%ulo or %hm Extracts bits 41:32 (low-order 10 bits of upper word) of its

operand
%hi or %lm Extracts bits 31:10 (high-order 22 bits of low-order word) of

its operand
%lo Extracts bits 9:0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table in typewriter font.
They must be written exactly as they are shown, including the leading sharp sign
(#). The value names and the values to which they refer are listed in TABLE G-1.

TABLE G-1 Value Names and Values (1 of 3)

Name Value Description

#n_reads 0 (for PREFETCH instruction)

#one_read 1 (for PREFETCH instruction)

#n_writes 2 (for PREFETCH instruction)

#one_write 3 (for PREFETCH instruction)

#page 4 (for PREFETCH instruction)

#Sync 4016 (for MEMBAR instruction cmask field)

#MemIssue 2016 (for MEMBAR instruction cmask field)

#Lookaside 1016 (for MEMBAR instruction cmask field)

#StoreStore 0816 (for MEMBAR instruction mmask field)

#LoadStore 0416 (for MEMBAR instruction mmask field)
478 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

#StoreLoad 0216 (for MEMBAR instruction mmask field)

#LoadLoad 0116 (for MEMBAR instruction mmask field)

#ASI_AIUP 1016 ASI_AS_IF_USER_PRIMARY

#ASI_AIUS 1116 ASI_AS_IF_USER_SECONDARY

#ASI_AIUP_L 1816 ASI_AS_IF_USER_PRIMARY_LITTLE

#ASI_AIUS_L 1916 ASI_AS_IF_USER_SECONDARY_LITTLE

#ASI_PHYS_USE_EC_L1C16 ASI_PHYS_USE_EC_LITTLE

#ASI_PHYS_BYPASS_EC_WITH_EBIT_L1D16ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

#ASI_NUCLEUS_QUAD_LDD_L2C16ASI_NUCLEUS_QUAD_LDD_LITTLE

#ASI_MONDO_SEND_CTRL4816 ASI_INTR_DISPATCH_STATUS

#ASI_MONDO_RECEIVE_CTRL4916ASI_INTR_RECEIVE

#ASI_AFSR 4C16 ASI_ASYNC_FAULT_STATUS

#ASI_AFAR 4D16 ASI_ASYNC_FAULT_ADDR

#ASI_BLK_AIUP 7016 ASI_BLOCK_AS_IF_USER_PRIMARY

#ASI_BLK_AIUS 7116 ASI_BLOCK_AS_IF_USER_SECONDARY

#ASI_BLK_AIUPL 7816 ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE

#ASI_BLK_AIUSL 7916 ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

#ASI_P 8016 ASI_PRIMARY

#ASI_S 8116 ASI_SECONDARY

#ASI_PNF 8216 ASI_PRIMARY_NOFAULT

#ASI_SNF 8316 ASI_SECONDARY_NOFAULT

#ASI_P_L 8816 ASI_PRIMARY_LITTLE

#ASI_S_L 8916 ASI_SECONDARY_LITTLE

#ASI_PNF_L 8A16 ASI_PRIMARY_NOFAULT_LITTLE

#ASI_SNF_L 8B16 ASI_SECONDARY_NOFAULT_LITTLE

#ASI_PST8_P C016 ASI_PST8_PRIMARY

#ASI_PST8_S C116 ASI_PST8_SECONDARY

#ASI_PST16_P C216 ASI_PST16_PRIMARY

#ASI_PST16_S C316 ASI_PST16_SECONDARY

#ASI_PST32_P C416 ASI_PST32_PRIMARY

TABLE G-1 Value Names and Values (2 of 3)

Name Value Description
Release 1.0.4, 31 May 2002 C. Appendix G • Assembly Language Syntax 479

The full names of the ASIs, listed in the Description column of TABLE G-1 can also be
defined.

G.1.3 Values
Some instructions use operand values as follows:

const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0–255)

#ASI_PST32_S C516 ASI_PST32_SECONDARY

#ASI_PST8_PL C816 ASI_PST8_PRIMARY_LITTLE

#ASI_PST8_SL C916 ASI_PST8_SECONDARY_LITTLE

#ASI_PST16_PL CA16 ASI_PST16_PRIMARY_LITTLE

#ASI_PST16_SL CB16 ASI_PST16_SECONDARY_LITTLE

#ASI_PST32_PL CC16 ASI_PST32_PRIMARY_LITTLE

#ASI_PST32_SL CD16 ASI_PST32_SECONDARY_LITTLE

#ASI_FL8_P D016 ASI_FL8_PRIMARY

#ASI_FL8_S D116 ASI_FL8_SECONDARY

#ASI_FL16_P D216 ASI_FL16_PRIMARY

#ASI_FL16_S D316 ASI_FL16_SECONDARY

#ASI_FL8_PL D816 ASI_FL8_PRIMARY_LITTLE

#ASI_FL8_SL D916 ASI_FL8_SECONDARY_LITTLE

#ASI_FL16_PL DA16 ASI_FL16_PRIMARY_LITTLE

#ASI_FL16_SL DB16 ASI_FL16_SECONDARY_LITTLE

#ASI_BLK_COMMIT_PE016 ASI_BLOCK_COMMIT_PRIMARY

#ASI_BLK_COMMIT_SE116 ASI_BLOCK_COMMIT_SECONDARY

#ASI_BLK_P F016 ASI_BLOCK_PRIMARY

#ASI_BLK_S F116 ASI_BLOCK_SECONDARY

#ASI_BLK_PL F816 ASI_BLOCK_PRIMARY_LITTLE

#ASI_BLK_SL F916 ASI_BLOCK_SECONDARY_LITTLE

TABLE G-1 Value Names and Values (3 of 3)

Name Value Description
480 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

simm7 A signed immediate constant that can be represented in 7 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0–31
shcnt64 A shift count from 0–63

G.1.4 Labels
A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with
upper and lower case distinct]), underscores (_), dollar signs ($), periods (.), and
decimal digits (0-9). A label may contain decimal digits, but it may not begin with
one. A local label contains digits only.

G.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_imm
Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1 (equivalent to regrs1 + simm13)

address Can be any of the following:
regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm13
regrs1 – simm13
simm13 (equivalent to %g0 + simm13)
simm13 + regrs1 (equivalent to regrs1 + simm13)
regrs1 + regrs2
Release 1.0.4, 31 May 2002 C. Appendix G • Assembly Language Syntax 481

membar_mask
Is the following:

const7 — A constant that can be represented in 7 bits. Typically, this is an
expression involving the logical OR of some combination of #Lookaside,
#MemIssue, #Sync, #StoreStore, #LoadStore, #StoreLoad, and
#LoadLoad.

prefetch_fcn (prefetch function)
Can be any of the following:

#n_reads

#one_read

#n_writes

#one_write
#page

0–31

regaddr (register-only address)
Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + regrs2

reg_or_imm (register or immediate value)
Can be either of:

regrs2
simm13

reg_or_imm10 (register or immediate value)
Can be either of:

regrs2
simm10

reg_or_imm11 (register or immediate value)
Can be either of:

regrs2
simm11

reg_or_shcnt (register or shift count value)
Can be any of:

regrs2
shcnt32
482 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

shcnt64

software_trap_number
Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)
regrs1 + simm7
regrs1 – simm7
simm7 (equivalent to %g0 + simm7)
simm7 + regrs1 (equivalent to regrs1 + simm7)
regrs1 + regrs2

The resulting operand value (software trap number) must be in the range 0–127,
inclusive.

G.1.6 Comments
Two types of comments are accepted by the SPARC V9 assembler: C-style “/*...*/
” comments, which may span multiple lines, and “!...” comments, which extend
from the “!” to the end of the line.

G.2 Syntax Design
The SPARC V9 assembly language syntax is designed so that the following
statements are true:

■ The destination operand (if any) is consistently specified as the last (rightmost)
operand in an assembly language instruction.

■ A reference to the contents of a memory location (in a Load, Store, CASA, CASXA,
LDSTUB(A), or SWAP(A) instruction) is always indicated by square brackets ([]); a
reference to the address of a memory location (such as in a JMPL, CALL, or SETHI)
is specified directly, without square brackets.
Release 1.0.4, 31 May 2002 C. Appendix G • Assembly Language Syntax 483

G.3 Synthetic Instructions
TABLE G-2 describes the mapping of a set of synthetic (or “pseudo”) instructions to
actual instructions. These synthetic instructions are provided by the SPARC V9
assembler for the convenience of assembly language programmers.

Note: Synthetic instructions should not be confused with “pseudo ops,” which
typically provide information to the assembler but do not generate instructions.
Synthetic instructions always generate instructions; they provide more mnemonic
syntax for standard SPARC V9 instructions.

TABLE G-2 Mapping Synthetic to SPARC V9 Instructions (1 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare.

jmp address jmpl address, %g0

call address jmpl address, %o7

iprefetch label bn,a,pt %xcc,label Instruction prefetch.

tst regrs1 orcc %g0, regrs1, %g0 Test.

ret jmpl %i7+8, %g0 Return from subroutine.

retl jmpl %o7+8, %g0 Return from leaf subroutine.

restore restore %g0, %g0, %g0 Trivial restore.

save save %g0, %g0, %g0 Trivial save.
(Warning: trivial save should
only be used in kernel code!)

setuw value,regrd sethi %hi(value), regrd (When ((value&3FF16) == 0).)

— or —

or %g0, value, regrd (When 0 ≤value≤4095).

— or —

sethi %hi(value), regrd; (Otherwise)

or regrd, %lo(value), regrd Warning: do not use setuw in the
delay slot of a DCTI.

set value,regrd synonym for setuw.

setsw value,regrd sethi %hi(value), regrd (When (value> = 0) and
((value & 3FF16) == 0).)

— or —

or %g0, value, regrd (When −4096≤value≤4095).

— or —

sethi %hi(value), regrd (Otherwise, if (value < 0) and
((value & 3FF16) = = 0))
484 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

sra regrd, %g0, regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value> = 0)

or regrd, %lo(value), regrd

— or —

sethi %hi(value), regrd; (Otherwise, if value<0)

or regrd, %lo(value), regrd

sra regrd, %g0, regrd Warning: do not use setsw in the
delay slot of a CTI.

setx value, reg, regrd sethi %uhi(value), reg Create 64-bit constant.

or reg, %ulo(value), reg (“reg” is used as a temporary regis-
ter.)sllx reg,32,reg

sethi %hi(value), regrd Note: setx optimizations are pos-
sible but not enumerated here.
The worst case is shown. Warn-
ing: do not use setx in the
delay slot of a CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

signx regrs1, regrd sra regrs1, %g0, regrd Sign-extend 32-bit value to
64 bits.signx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd One’s complement.

not regrd xnor regrd, %g0, regrd One’s complement.

neg regrs2, regrd sub %g0, regrs2, regrd Two’s complement.

neg regrd sub %g0, regrd, regrd Two’s complement.

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd Compare and swap.

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap, little-endian.

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd Compare and swap extended.

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd Compare and swap extended, lit-
tle-endian.

inc regrd add regrd, 1, regrd Increment by 1.

inc const13,regrd add regrd, const13, regrd Increment by const13.

inccc regrd addcc regrd, 1, regrd Increment by 1; set icc & xcc.

inccc const13,regrd addcc regrd, const13, regrd Incr by const13; set icc & xcc.

dec regrd sub regrd, 1, regrd Decrement by 1.

dec const13, regrd sub regrd, const13, regrd Decrement by const13.

deccc regrd subcc regrd, 1, regrd Decr by 1; set icc & xcc.

deccc const13, regrd subcc regrd, const13, regrd Decr by const13; set icc & xcc.

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 Bit test.

TABLE G-2 Mapping Synthetic to SPARC V9 Instructions (2 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
Release 1.0.4, 31 May 2002 C. Appendix G • Assembly Language Syntax 485

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd Bit set.

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd Bit clear.

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd Bit toggle.

clr regrd or %g0, %g0, regrd Clear (zero) register.

clrb [address] stb %g0, [address] Clear byte.

clrh [address] sth %g0, [address] Clear half-word.

clr [address] stw %g0, [address] Clear word.

clrx [address] stx %g0, [address] Clear extended word.

clruw regrs1, regrd srl regrs1, %g0, regrd Copy and clear upper word.

clruw regrd srl regrd, %g0, regrd Clear upper word.

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asrn, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asrn wr %g0, reg_or_imm, %asrn

TABLE G-2 Mapping Synthetic to SPARC V9 Instructions (3 of 3)

Synthetic Instruction SPARC V9 Instruction(s) Comment
486 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX H

Software Considerations

This appendix contains only material from The SPARC Architecture Manual, Version 9,
and describes how software can use the SPARC V9 architecture effectively. Examples
do not necessarily conform to any specific Application Binary Interface (ABI).

This appendix is informative only. It is not part of the SPARC V9 specification.

H.1 Nonprivileged Software
This subsection describes software conventions that have proven or may prove
useful, assumptions that compilers may make about the resources available, and
how compilers can use those resources. It does not discuss how supervisor software
(an operating system) may use the architecture. Although a set of software
conventions is described, software is free to use other conventions more appropriate
for specific applications.

The following are the primary goals for many of the software conventions described
in this subsection:

■ Minimizing average procedure-call overhead
■ Minimizing latency due to branches
■ Minimizing latency due to memory access

H.1.1 Registers
Register usage is a critical resource allocation issue for compilers. The SPARC V9
architecture provides windowed integer registers (in, out, local), global integer
registers, and floating-point registers.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 487

In and Out Registers

The in and out registers are used primarily for passing parameters to and receiving
results from subroutines, and for keeping track of the memory stack. When a
procedure is called and executes a SAVE instruction, the caller’s outs become the
callee’s ins.

One of a procedure’s out registers (%o6) is used as its stack pointer, %sp. It points to
an area in which the system can store %r16–%r31 (%l0–%l7 and %i0–%i7) when
the register file overflows (spill trap), and is used to address most values located on
the stack. A trap can occur at any time,1 which may precipitate a subsequent spill
trap. During this spill trap, the contents of the user’s register window at the time of
the original trap are spilled to the memory to which its %sp points.

A procedure may store temporary values in its out registers (except %sp) with the
understanding that those values are volatile across procedure calls. %sp cannot be
used for temporary values for the reasons described in Register Windows and %sp on
page 489.

Up to six parameters2 may be passed by placing them in out registers %o0–%o5;
additional parameters are passed in the memory stack. The stack pointer is
implicitly passed in %o6, and a CALL instruction places its own address in %o7.3
Floating-point parameters may also be passed in floating-point registers.

After a callee is entered and its SAVE instruction has been executed, the caller’s out
registers are accessible as the callee’s in registers.

The caller’s stack pointer %sp (%o6) automatically becomes the current procedure’s
frame pointer %fp (%i6) when the SAVE instruction is executed.

The callee finds its first six integer parameters in %i0–%i5, and the remainder (if
any) on the stack.

A function returns a scalar integer value by writing it into its ins (which are the
caller’s outs), starting with %i0. A scalar floating-point value is returned in the
floating-point registers, starting with %f0.

A procedure’s return address, normally the address of the instruction just after the
CALL’s delay-slot instruction, is as %i7+8.4

1. For example, due to an error in executing an instruction (for example, a mem_address_not_aligned trap), or
due to any type of external interrupt.

2. Six is more than adequate, since the overwhelming majority of procedures in system code take fewer than six
parameters. According to studies cited by Weicker (Weicker, R. P., “Dhrystone: A Synthetic Systems
Programming Benchmark,” CACM 27:10, October 1984), at least 97% (measured statically) take fewer than six
parameters. The average number of parameters did not exceed 2.1, measured either statically or dynamically,
in any of these studies.

3. If a JMPL instruction is used in place of a CALL, it should place its address in %o7 for consistency.

4. For convenience, SPARC V9 assemblers may provide a “ret” (return) synthetic instruction that generates a
“jmpl %i7+8, %g0” hardware instruction. See G.3, Synthetic Instructions.
488 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Local Registers

The locals are used for automatic1 variables and for most temporary values. For
access efficiency, a compiler may also copy parameters (that is, those past the sixth)
from the memory stack into the locals and use them from there.

See Register Allocation Within a Window on page 494 for methods of allocating more
or fewer than eight registers for local values.

Register Windows and %sp

Some caveats about the use of %sp and the SAVE and RESTORE instructions are
appropriate. If the operating system and user code use register windows, it is
essential that

■ %sp always contains a correct value, so that when (and if) a register window spill/
fill trap occurs, the register window can be correctly stored to or reloaded from
memory.2

■ Nonprivileged code uses SAVE and RESTORE instructions carefully. In particular,
“walking” the call chain through the register windows using RESTOREs,
expecting to be able to return to where one started using SAVEs, does not work as
one might suppose. Since user code cannot disable traps, a trap (e.g., an interrupt)
could write over the contents of a user register window that has “temporarily”
been RESTOREd.3 The safe method is to flush the register windows to user
memory (the stack) with the FLUSHW instruction. Then, user code can safely walk
the call chain through user memory, instead of through the register windows.

To avoid such problems, consider all data memory at addresses just less than %sp to
be volatile, and the contents of all register windows “below” the current one to be
volatile.

Global Registers

Unlike the ins, locals, and outs, the globals are not part of any register window. The
globals are a set of eight registers with global scope, like the register sets of more
traditional processor architectures. An ABI may define conventions that the globals
(except %g0) must obey. For example, if the convention assumes that globals are
volatile across procedure calls, either the caller or the callee must take responsibility
for saving and restoring their contents.

1. In the C language, an automatic variable is a local variable whose lifetime is no longer than that of its
containing procedure.

2. Typically, the SAVE instruction is used to generate a new %sp value while shifting to a new register window,
all in one atomic operation. When SAVE is used this way, synchronization of the two operations should not be
a problem.

3. Another reason this might fail is that user code has no way to determine how many register windows are
implemented by the hardware.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 489

Global register %g0 has a hardwired value of zero; it always reads as zero, and
writes to it have no program-visible effect.

Typically, the global registers other than %g0 are used for temporaries, global
variables, or global pointers — either user variables, or values maintained as part of
the program’s execution environment. For example, one could use globals in the
execution environment by establishing a convention that global scalars are
addressed via offsets from a global base register. In the most general case, memory
accessed at an arbitrary address requires six instructions; for example,

sethi %hh(address),tmp
or tmp, %hm(address), tmp
sllx tmp, 32, tmp
sethi %lm(address), reg
or reg, %lo(address), reg
ld [reg+tmp], reg

Use of a global base register for frequently accessed global values would provide
faster (single-instruction) access to 213 bytes of those values; for example,

ld [%gn+offset], reg

Additional global registers could be used to provide single-instruction access to
correspondingly more global values.

Floating-Point Registers

There are 16 quad-precision floating-point registers. The registers can also be
accessed as 32 double-precision registers. In addition, the first 8 quad registers can
also be accessed as 32 single-precision registers. Floating-point registers are accessed
with different instructions than the integer registers; their contents can be moved
among themselves, and to or from memory. See Floating-Point Registers on page 48
for more information about floating-point register aliasing.

Like the global registers, the floating-point registers must be managed by software.
Compilers use the floating-point registers for user variables and compiler
temporaries, pass floating-point parameters, and return floating-point results in
them.

The Memory Stack

A stack is maintained to hold automatic variables, temporary variables, and return
information for each invocation of a procedure. When a procedure is called, a stack
frame is allocated; it is released when the procedure returns. The use of a stack for
this purpose allows simple and efficient implementation of recursive procedures.
490 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Under certain conditions, optimization can allow a leaf procedure to use its caller’s
stack frame instead of one of its own. In that case, the procedure allocates no space
of its own for a stack frame. See Leaf-Procedure Optimization, below, for more
information.

The stack pointer %sp must always maintain the alignment required by the
operating system’s ABI. This is at least doubleword alignment, possibly with a
constant offset to increase stack addressability using constant offset addressing.

H.1.2 Leaf-Procedure Optimization
A leaf procedure is one that is a “leaf” in the program’s call graph; that is, one that
does not call (e.g., via CALL or JMPL) any other procedures.

Each procedure, including leaf procedures, normally uses a SAVE instruction to
allocate a stack frame and obtain a register window for itself, and a corresponding
RESTORE instruction to deallocate it. The time costs associated with this are

■ Possible generation of register-window spill/fill traps at runtime. This only
happens occasionally,1 but when either a spill or fill trap does occur, it costs
several machine cycles to process.

■ The cycles expended by the SAVE and RESTORE instructions themselves.

There are also space costs associated with this convention, the cumulative cache
effects of which may be nonnegligible. The space costs include

■ The space occupied on the stack by the procedure’s stack frame

■ The two words occupied by the SAVE and RESTORE instructions

Of the above costs, the trap-processing cycles typically are the most significant.

Some leaf procedures can be made to operate without their own register window or
stack frame, using their caller’s instead. This can be done when the candidate leaf
procedure meets all of the following conditions:2

■ It contains no references to %sp, except in its SAVE instruction.

■ It contains no references to %fp.

■ It refers to (or can be made to refer to) no more than 8 of the 32 integer registers,
including %o7 (the return address).

If a procedure conforms to the above conditions, it can be made to operate using its
caller’s stack frame and registers, an optimization that saves both time and space.
This optimization is called leaf procedure optimization. The optimized procedure may

1. The frequency of overflow and underflow traps depends on the application and on the number of register
windows (NWINDOWS) implemented in hardware.

2. Although slightly less restrictive conditions could be used, the optimization would become more complex to
perform and the incremental gain would usually be small.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 491

safely use only registers that its caller already assumes to be volatile across a
procedure call.

The optimization can be performed at the assembly language level with the
following steps:

1. Change all references to registers in the procedure to registers that the caller
assumes volatile across the call.

a. Leave references to %o7 unchanged.

b. Leave any references to %g0–%g7 unchanged.

c. Change %i0–%i5 to %o0–%o5, respectively. If an in register is changed to an
out register that was already referenced in the original unoptimized version of
the procedure, all original references to that out register must be changed to
refer to an unused out or global register.

d. Change references to each local register into references to any unused register
that is assumed to be volatile across a procedure call.

2. Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP
instruction. If its destination register was not %g0 or %sp, convert the SAVE into
the corresponding ADD instruction instead of deleting it.

3. If the RESTORE’s implicit addition operation is used for a productive purpose
(such as setting the procedure’s return value), convert the RESTORE to the
corresponding ADD instruction. Otherwise, the RESTORE is only used for stack
and register-window deallocation; replace it with a NOP instruction (it is probably
in the delay slot of the RET and so cannot be deleted).

4. Change the RET (return) synthetic instruction to RETL (return-from-leaf-
procedure synthetic instruction).

5. Perform any optimizations newly made possible, such as combining instructions
or filling the delay slot of the RETL (or the delay slot occupied by the SAVE) with
a productive instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and no
references to in or local registers in the procedure body. All original references to ins
are now to outs. All other register references are to registers that are assumed to be
volatile across a procedure call.

Costs of optimizing leaf procedures in this way include

■ Additional intelligence in a peephole optimizer to recognize and optimize
candidate leaf procedures

■ Additional intelligence in debuggers to properly report the call chain and the
stack traceback for optimized leaf procedures1
492 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

H.1.3 Example Code for a Procedure Call
This subsection illustrates common parameter-passing conventions and gives a
simple example of leaf-procedure optimization.

The code fragment in CODE EXAMPLE H-1 shows a simple procedure call with a value
returned, and the procedure itself.

1. A debugger can recognize an optimized leaf procedure by scanning it, noting the absence of a SAVE
instruction. Compilers often constrain the SAVE, if present, to appear within the first few instructions of a
procedure; in such a case, only those instruction positions need be examined.

! CALLER:
! int i; /* compiler assigns "i" to register
! i = sum3(1, 2, 3);

...
mov 1, %o0 ! first arg to sum3 is 1
mov 2, %o1 ! second arg to sum3 is 2
call sum3 ! the call to sum3
mov 3, %o2 ! last parameter to sum3 in delay sl
mov %o0, %l7 ! copy return value to %l7 (variable
...

#define SA(x) (((x)+15)&(~0x1F)) /* rounds "x" up to extended word bou
*/
#define MINFRAME ((16+1+6)*8) /* minimum size stack frame, in byte

 * 16 extended words for saving the
 * current register window,
 * 1 extended word for “hidden param
 * and 6 extended words in which a c
 * can store its arguments.
 */

! CALLEE:
! int sum3(a, b, c)
! int a, b, c; /* args received in %i0, %i1, and %i
! {
! return a+b+c;
! }
sum3:

save %sp,-SA(MINFRAME),%sp! set up new %sp; alloc min. stack
add %i0, %i1, %l7 ! compute sum in local %l7
add %l7, %i2, %l7 ! (or %i0 could have been used dire
ret ! return from sum3, and...
restore %l7, 0, %o0 ! move result into output reg & res

CODE EXAMPLE H-1 Simple Procedure Call with Value Returned

! CALLER:
! int i; /* compiler assigns "i" to register %l7 */
! i = sum3(1, 2, 3);

...
mov 1, %o0 ! first arg to sum3 is 1
mov 2, %o1 ! second arg to sum3 is 2
call sum3 ! the call to sum3
mov 3, %o2 ! last parameter to sum3 in delay slot
mov %o0, %l7 ! copy return value to %l7 (variable "i")
...

#define SA(x) (((x)+15)&(~0x1F)) /* rounds "x" up to extended word boundary */
#define MINFRAME ((16+1+6)*8) /* minimum size stack frame, in bytes;

 * 16 extended words for saving the
 * current register window,
 * 1 extended word for “hidden parameter”,
 * and 6 extended words in which a callee
 * can store its arguments.
 */

! CALLEE:
! int sum3(a, b, c)
! int a, b, c; /* args received in %i0, %i1, and %i2 */
! {
! return a+b+c;
! }
sum3:

save %sp,-SA(MINFRAME),%sp! set up new %sp; alloc min. stack frame
add %i0, %i1, %l7 ! compute sum in local %l7
add %l7, %i2, %l7 ! (or %i0 could have been used directly)
ret ! return from sum3, and...
restore %l7, 0, %o0 ! move result into output reg & restore
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 493

Since sum3 does not call any other procedures (i.e., it is a leaf procedure), it can be
optimized to become:

sum3:
add %o0, %o1, %o0
retl ! (must use RETL, not RET,
add %o0, %o2, %o0 ! to return from leaf procedure)

H.1.4 Register Allocation Within a Window
The usual SPARC V9 software convention is to allocate eight registers (%l0–%l7) for
local values. A compiler could allocate more registers for local values at the expense
of having fewer outs and ins available for argument passing. For example, if instead
of assuming that the boundary between local values and input arguments is between
r[23] and r[24] (%l7 and %i0), software could, by convention, assume that the
boundary is between r[25] and r[26] (%i1 and %i2). This would provide 10 registers
for local values and 6 in and out registers. This is shown in TABLE H-1.

H.1.5 Other Register-Window-Usage Models
So far, this appendix has described SPARC V9 software conventions that are
appropriate for use in a general-purpose multitasking computer system. However,
SPARC V9 is used in many other applications, notably embedded and/or real-time
systems. In such applications, other schemes for allocation of SPARC V9’s register
windows might be more nearly optimal than the one described above.

One possibility is to avoid using the normal register-window mechanism by not
using SAVE and RESTORE instructions. Software would see 32 general-purpose
registers instead of SPARC V9’s usual windowed register file. In this mode, SPARC
V9 would operate like processors with more traditional (flat) register architectures.
Procedure call times would be more determinate (due to lack of spill/fill traps), but
for most types of software, average procedure call time would significantly increase,

TABLE H-1 Register Allocation Within a Window

Standard
register model

10 local register
model

Arbitrary
register model

Registers for local values 8 10 n

In / out registers

Reserved for %sp / %fp 1 1 1

Reserved for return address 1 1 1

Available for argument passing 6 4 14 − n

Total ins / outs 8 6 16 − n
494 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

due to increased memory traffic for parameter passing and saving/restoring local
variables.

Effective use of this software convention would require compilers to generate
different code (direct register spills/fills to memory and no SAVE/RESTORE
instructions) than for the software conventions described above.

It would be awkward, at best, to attempt to mix (link) code that uses the SAVE/
RESTORE convention with code that does not use it. If both conventions were used in
the same system, two versions of each library would be required.

It would be possible to run user code with one register-usage convention and
supervisor code with another. With sufficient intelligence in supervisor software,
user processes with different register conventions could be run simultaneously.1

H.1.6 Self-Modifying Code
If a program includes self-modifying code, it must issue a FLUSH instruction for each
modified doubleword of instructions (or a call to supervisor software having an
equivalent effect).

Note that self-modifying code intended to be portable must use FLUSH instruction(s)
(or a call to supervisor software having equivalent effect) after storing into the
instruction stream.

All SPARC V9 instruction accesses are big-endian. If a program is running in little-
endian mode and wishes to modify instructions, it must do one of the following:

■ Use an explicit big-endian ASI to write the modified instruction to memory, or

■ Reverse the byte ordering shown in the instruction formats in Appendix A,
Instruction Definitions, before doing a little-endian store, since the stored data will
be reordered before the bytes are written to memory.

H.1.7 Thread Management
SPARC V9 provides support for the efficient management of user-level threads. The
cost of thread switching can be reduced by using the following features:

■ User management of FPU — The FEF bit in the FPRS register allows
nonprivileged code to manage the FPU. This is in addition to the management
done by the supervisor code via the PEF bit in the PSTATE register. A thread-
management library can implement efficient switching of the FPU among threads

1. Although technically possible, this is not to suggest that there would be significant utility in mixing user
processes with differing register-usage conventions.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 495

by manipulating the FEF bit in the FPRS register and by providing a user trap
handler (with support from the supervisor software) for the fp_disabled
exception. See the description of User Traps in User Trap Handlers on page 505.

■ FLUSHW instruction — The FLUSHW instruction is an efficient way for a thread
library to flush the register windows during a thread switch. The instruction
executes as a NOP if there are no windows to flush.

H.1.8 Minimizing Branch Latency
The SPARC V9 architecture contains several instructions that can be used to
minimize branch latency. These are described below.

Conditional Moves

The conditional move instructions for both integer and floating-point registers can
be used to eliminate branches from the code generated for simple expressions or
assignments. The following example illustrates this.

The C code segment

double x,y;
int i;
...
i = (x > y) ? 1 : 2;

can be compiled to use a conditional move as follows:

fcmp %fcc1, x, y ! x and y are double regs
mov 1, i ! i is int; assume x > y
movfle %fcc1, 2, i ! fix i if wrong

Branch or Move Based on Register Contents

The use of register contents as conditions for branch and move instructions allows
any integer register (other than r0) to hold a boolean value or the results of a
comparison. This allows conditions to be used more efficiently in nested cases. It
allows the generation of a condition to be moved further from its use, thereby
minimizing latency. In addition, it can eliminate the need for additional arithmetic
instructions to set the condition codes. This is illustrated in the following example.

The test for finding the maximum of an array of integers,

if (A[i] > max)
max = A[i];
496 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

can be compiled as follows, allowing the condition for the loop to be set before the
sequence and checked after it:

ldx [addr_of_Ai], Ai
sub Ai, max, tmp
movrgz tmp, Ai, max

H.1.9 Prefetch
The SPARC V9 architecture includes a prefetch instruction intended to help hide the
latency of accessing memory.1

As a general rule, given a loop of the following form (using C for assembly language
and assuming a cache line size of 64 bytes and that A and B are arrays of 8-byte
values)

for (i = 0; i < N; i++) {
load A[i]
load B[i]
...

}

which takes C cycles per iteration (assuming all loads hit in cache) and given L
cycles of latency to memory, prefetch instructions may be inserted for data that will
be needed ceiling(L/C') iterations in the future, where C' is number of cycles per
iteration of the modified loop. Thus, the loop would be transformed into

K = ceiling(L/C');
for (i = 0; i < N; i++) {

load A[i]
load B[i]
prefetch A[i+K]
prefetch B[i+K]
...

}

This ensures that the loads will find their data in the cache and will thus complete
more quickly. The first K iterations will not get any benefit from prefetching, so if the
number of iterations is small (see below), then prefetching will not help.

Note that in cases of contiguous access (like this one), many of the prefetch
instructions will in fact be unnecessary and may slow the program down. To avoid
this, note that the prefetch instruction always obtains at least 64 (cache-line-aligned)
bytes.

1. Two papers describing the use of prefetch instructions are Callahan, D., K. Kennedy, A. Porterfield, “Software
Prefetching,” Proceedings of the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, April 1991, pp. 40-52, and Mowry, T., M. Lam, and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching,” Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, October 1992, pp. 62-73.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 497

/* Round up access to next cache line. */
K' = (ceiling(L/C') + 7) & ~7;
for (i = 0; i < N; i++) {

load A[i]
load B[i]
if (((int)(A+i) & 63) = = 0) {

prefetch A[i+K']
prefetch B[i+K']

}
...

}

or (unrolled eight times, assuming A and B are arrays of 8-byte values)

/* Be sure that we access the next cache line. */
K'' = ceiling(L/C') + 7;
for (i = 0; i < N; i++) {

load A[i]
load B[i]
prefetch A[i+K'']
prefetch B[i+K'']
...
load A[i+1]
load B[i+2]
... (no prefetching)
...
load A[i+7]
load B[i+7]
...

}

In the first case, the prefetching is performed exactly when needed, and thus the
distance need not be adjusted. However, the prefetching may not start on the first
iteration, resulting in as many as K' + 7 iterations without prefetching.

In the second case, the prefetching occurs somewhere within a cache line, and thus,
it is not known exactly how long it will be until the next cache line is needed.
However, by prefetching seven further ahead, we ensure that the next cache line will
be prefetched soon enough. In the worst case, as many as K'' (≤ K' + 7) iterations will
execute without any benefit from prefetching.

TABLE H-2 illustrates the cost trade-offs between no prefetching, naive prefetching,
and smart prefetching (the second choice) for a small loop (two cycles) with varying
uncovered latencies to memory. Some of the latency may be overlapped with
execution of surrounding instructions; that which is not is uncovered.
498 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Here, we treat the arrays accessed as if one were not in the cache. Thus, every eight
iterations, a cache line must be fetched from memory in the no-prefetch case; and
thus, the amortized cost of an iteration is C + L/8. The cost estimate for the smart
case ignores any benefits from unrolling, since it is reasonable to expect that the loop
would be unrolled or pipelined in this fashion, even if prefetching were not used.
The startup costs assume an alignment within the cache that maximizes the initial
misses. The break-even cost was chosen by solving the following equation for N.

N ∗ (C + L/8) = WM ∗ L + N ∗ (7C + C')/8 {e.g., 3N = 16 + 2.25N ⇒ N = 21}

Of course, this is a simplified model.

Another possibility to consider is the worst-case cost of prefetching. If, in the
example provided, everything accessed is always cached, then the smart-prefetching
loop takes 12.5% longer. For each memory latency, there is a break-even point (in
terms of how often one of the array operands is cached) at which the prefetching
loop begins to run faster. TABLE H-3 illustrates this.

Note that one uncached operand corresponds to one load out of sixteen missing the
cache; the operand miss rate is sixteen times higher than the load miss rate. Note
that this is the miss rate for this loop alone; extrapolation from whole-program miss
rates is not advised.

Binaries that run efficiently across different SPARC V9 implementations can be
created for cases like this (where memory accesses are regular, though not
necessarily contiguous) by parameterizing the prefetch distance by machine type. In
privileged code the machine type is available in the VER register; nonprivileged code
should be able to obtain this information from the operating system or ABI. Based
on information about known machines and estimated loop execution times, a

TABLE H-2 Prefetch Cost Tradeoffs

Limit cycles/iteration Smart startup costs

No pf Naive Smart Worst Worst

C C’ L K K" C+L/8 C' (7C+C')/8 Misses Breakeven

2 4 8 4 11 3 4 2.25 2 N = 21

2 4 16 8 15 4 4 2.25 2 N = 18

2 4 32 16 23 6 4 2.25 3 N = 26

TABLE H-3 Cache Break-Even Points

L C-cached C-missed C-smart
Break-even
% cached operands

Break-even loop
cache miss rate

8 2 3 2.25 75% 1.56%

16 2 4 2.25 88% 0.75%

32 2 6 2.25 94% 0.375%

64 2 10 2.25 97% 0.188%
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 499

compiler could precalculate values for K'' (assuming smart prefetching) and store
them in a table. At execution time, the proper value for K'' would be fetched from
the table before entering the loop.

For regular but noncontiguous accesses, a prefetch would be issued for every load. If
cache blocking is used, the prefetching strategy must be adjusted accordingly, since
there is no point in prefetching data that is expected to be in the cache already.

The prefetch variant should be chosen based on what is known about the local and
global use of the data prefetched. If the data is not being written locally, then variant
0 (several reads) should be used. If it is being written (and possibly also read), then
variant 2 (several writes) should be used. If, in addition, it is known that this is
likely to be the last use of the data for some time (for example, if the loop iteration
count is one million and dependence analysis reveals no reuse of data), then it is
appropriate to use either variant 1 (one read) or 3 (one write). If reuse of data is
expected to occur soon, then use of variants 1 or 3 is not appropriate, because of the
risk of increased bus and memory traffic on a multiprocessor.

If the hardware does not implement all variants, it is expected to provide a sensible
overloading of the unimplemented variants. Thus, correct use of a specific variant
need not be tied to a particular SPARC V9 implementation or multi/uniprocessor
configuration.

H.1.10 Nonfaulting Load
The SPARC V9 architecture includes a way to specify load instructions that do not
generate visible faults, so that compilers can have more freedom in scheduling
instructions. Note that these are not speculative loads, which may fault if their
results are later used; these are normal load instructions, but tagged to indicate to
the kernel and/or hardware that a fault should not be delivered to the code
executing the instruction.

Five important rules govern the use of nonfaulting loads:

1. Volatile memory references in the source language should not use nonfaulting
load instructions.

2. Code compiled for debugging should not use nonfaulting loads because they
remove the ability to detect common errors.

3. If nonfaulting loads are used, page zero should be a page of zero values, mapped
read-only. Compilers that routinely use negative offsets to register pointers
should map page “–1” similarly if the operating software permits it.

4. Any use of nonfaulting loads in privileged code must be aware of how they are
treated by the host SPARC V9 implementation.

5. Nonfaulting loads from unaligned addresses may be substantially more expensive
than nonfaulting loads from other addresses.
500 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Nonfaulting loads can be used to solve three scheduling problems.

■ On superscalar machines, it is often desirable to obtain the right mix of
instructions to avoid conflicts for any given execution unit. A nonfaulting load
can be moved (backwards) past a basic block boundary to even out the
instruction mix.

■ On pipelined machines, there may be latency between loads and uses. A
nonfaulting load can be moved past a block boundary to place more instructions
between a load into a register and the next use of that register.

■ Software pipelining improves the scheduling of loops, but if a loop iteration
begins with a load instruction and contains an early exit, it may not be eligible for
pipelining. If the load is replaced with a nonfaulting load, then the loop can be
pipelined.

In the branch-laden code shown in CODE EXAMPLE H-2, nonfaulting loads could be
used to separate loads from uses.

Source Code:
while (x ! = 0 && x -> key ! = goal) x = x -> next;

With Normal Loads:
entry:

brnz,a x,loop !
ldx [x],t1 ! (pre)load1 (key)

loop:
cmp t1,goal ! use1
bpe %xcc,out
nop ! no filling from loop.
ldx [x+8],x ! load2 (next)
brnz,a x,loop ! use2
ldx [x],t1 ! load1

out: ...

With Nonfaulting Loads:
entry:

mov x,t2
mov #ASI_PNF, %asi
ldxa [t2]%asi,t1 ! (pre)load1 (nf-load for key)

loop:
mov t2,x ! begin loop body
brz,pn t2,out
ldxa [t2+8]%asi,t2 ! load2 (nf-load for next)

cmp t1,goal ! use1
bpne %xcc,loop
ldxa [t2],%asi,t1 ! use2, load1 ! nf-load for x

out: ...

CODE EXAMPLE 0-1 Branch-Laden Code with Nonfaulting Loads
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 501

The result also has a somewhat better mix of instructions and is somewhat
pipelined. The basic blocks are separated.

In the loop shown in CODE EXAMPLE H-3, nonfaulting loads allow pipelining.

This loop might be improved further by using unrolling, prefetching, and multiple
FCCs, but that is beyond the scope of this discussion.

CODE EXAMPLE H-3 Loop with Nonfaulting Loads

Source Code:
d_ne_index (double * d1, double * d2) {

int i = 0;
while(d1[i] = = d2[i]) i++;
return i;

}

With Normal Loads:
mov 0,t
mov 0,i

loop:
lddf [d1+t],a1
lddf [d2+t],a2 ! load
add t,8,t
fcmpd a1,a2 ! use
fbe,a loop ! fcc use
add i,1,i

With Nonfaulting Loads:
lddf [d1],a1
lddf [d2],a2
mov 8,t
mov 0,i

loop:
fcmpd a1,a2 ! use, fcc def
lddfa [d1+t],%asi,a1
lddfa [d2+t],%asi,a2 ! load
add t,8,t
fbe,a loop ! fcc use
add i,1,i
502 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

H.2 Supervisor Software
This section discusses how supervisor software can use the SPARC V9 privileged
architecture. It illustrates how the architecture can be used in an efficient manner. An
implementation may choose to utilize different strategies based on its requirements
and implementation-specific aspects of the architecture.

H.2.1 Trap Handling
The SPARC V9 privileged architecture provides support for efficient trap handling,
especially for window traps. The following features of the SPARC V9 privileged
architecture can be used to write efficient trap handlers:

■ Multiple trap levels. The trap handlers for trap levels less than MAXTL – 1 can be
written to ignore exceptional conditions and execute the common case efficiently
(without checks and branches). For example, the fill/spill handlers can access
pageable memory without first checking if it is resident. If the memory is not
resident, the access will cause a trap that will be handled at the next trap level.

■ Vectoring of fill/spill traps. Supervisor software can set up the vectoring of fill/
spill traps prior to executing code that uses register windows and may cause
spill/fill traps. This feature can be used to support SPARC V8 and SPARC V7
binaries. These binaries create stack frames with save areas for 32-bit registers.
SPARC V9 binaries create stack frames with save areas for 64-bit registers. By
setting up the spill/fill trap vector based on the type of binary being executed, the
trap handlers can avoid checking and branching to use the appropriate load/store
instructions.

■ Saved trap state. Trap handlers need not save (restore) processor state that is
automatically saved (restored) on a trap (return from trap). For example, the fill/
spill trap handlers can load ASI_AS_IF_USER_PRIMARY{_LITTLE} into the
ASI register in order to access the user’s address space without the overhead of
having to save and restore the ASI register.

■ SAVED and RESTORED instructions. The SAVED (RESTORED) instruction provides
an efficient way to update the state of the register windows after successfully
spilling (filling) a register window. They implement a default policy of spilling
(filling) one register window at a time. If desired, the supervisor software can
implement a different policy by directly updating the state registers.

■ Alternate globals. The alternate global registers can be used to avoid saving and
restoring the normal global registers. They can be used like the local registers of
the trap window in SPARC V8.

■ Large trap vectors for spill/fill. The definition of the spill and fill trap vectors
with reserved space between each pair of vectors allows spill and fill trap
handlers to be up to 32 instructions long, thus avoiding a branch in the handler.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 503

H.2.2 Example Code for Spill Handler
The code in CODE EXAMPLE H-4 shows a spill handler for a SPARC V9 user binary.
The handler is located at the vector for trap type spill_0_normal (08016). It is
assumed that supervisor software has set the WSTATE register to 0 before executing
the user binary. The handler is invoked when user code executes a SAVE instruction
that results in a window overflow.

H.2.3 Client-Server Model
SPARC V9 provides mechanisms to support client-server computing efficiently. A
call from a client to a server (where the client and server have separate address
spaces) can be implemented efficiently through a software trap that switches the
address space. This is often referred to as a cross-domain call. A system call in most
operating systems can be viewed as a special case of a cross-domain call. The
following features are useful in implementing a cross-domain call.

T_NORMAL_SPILL_0:
!Set ASI to access user addr space
wr #ASI_AIUP, %asi
stxa %l0, [%sp+(8* 0)]%asi !Store window in memory sta
stxa %l1, [%sp+(8* 1)]%asi
stxa %l2, [%sp+(8* 2)]%asi
stxa %l3, [%sp+(8* 3)]%asi
stxa %l4, [%sp+(8* 4)]%asi
stxa %l5, [%sp+(8* 5)]%asi
stxa %l6, [%sp+(8* 6)]%asi
stxa %l7, [%sp+(8* 7)]%asi
stxa %i0, [%sp+(8* 8)]%asi
stxa %i1, [%sp+(8* 9)]%asi
stxa %i2, [%sp+(8*10)]%asi
stxa %i3, [%sp+(8*11)]%asi
stxa %i4, [%sp+(8*12)]%asi
stxa %i5, [%sp+(8*13)]%asi
stxa %i6, [%sp+(8*14)]%asi
stxa %i7, [%sp+(8*15)]%asi
saved ! Update state
retry ! Retry trapped instruction

! Restores old %asi

CODE EXAMPLE 0-1 Spill Handler
504 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Splitting the Register Windows

The register windows can be shared efficiently between multiple address spaces by
using the OTHERWIN register and providing additional trap handlers to handle spill/
fill traps for the other (not the current) address spaces. On a cross-domain call (a
software trap), the supervisor can set the OTHERWIN register to the number of
register windows used by the client (equal to CANRESTORE) and CANRESTORE to
zero. At the same time the WSTATE bit vectors can be set to vector the spill/fill traps
appropriately for each address space.

The sequence in CODE EXAMPLE H-5 shows a cross-domain call and return. The
example assumes the simple case, where only a single client-server pair can occupy
the register windows. More general schemes can be developed along the same lines.

ASI_SECONDARY{_LITTLE}

Supervisor software can use these unrestricted ASIs to support cross-address-space
access between clients and nonprivileged servers. For example, some services that
are currently provided as part of a large monolithic supervisor can be separated out
as nonprivileged servers (potentially occupying a separate address space). This is
often referred to as the microkernel approach.

H.2.4 User Trap Handlers
Supervisor software can provide efficient support for user (nonprivileged) trap
handlers on SPARC V9. The RETURN instruction allows nonprivileged code to retry
an instruction pointed to by the previous stack frame. This provides the semantics
required for returning from a user trap handler without any change in processor
state. Supervisor software can invoke the user trap handler by first creating a new
register window (and stack frame) on its behalf and passing the necessary
arguments (including the PC and nPC for the trapped instruction) in the local
registers. The code in CODE EXAMPLE H-6 shows how a user trap handler may be
invoked and how it returns.
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 505

cross_domain_call:
save ! create a new register window for the server
.. ! Switch to the execution environment for the server;
.. ! Save trap state as necessary.

! Set CWP for caller in TSTATE
rdpr %tstate, %g1
rdpr %cwp, %g2
bclr TSTATE_CWP, %g1
wrpr %g1, %g2, %tstate
rdpr %canrestore, %g1
wrpr %g0, 0, %canrestore
wrpr %g0, %g1, %otherwin
rdpr %wstate, %g1
sll %g1, 3, %g1 ! Move WSTATE_NORMAL (client

! vector) to WSTATE_OTHER
or %g1, WSTATE_SERVER, %g1 ! Set WSTATE_NORMAL to the

! vector for the server
wrpr %g0, %g1, %wstate
.. ! Load trap state for server
done ! Execute server code

cross_domain_return:
rdpr %otherwin, %g1
wrpr %g0, %g1, %canrestore
wrpr %g0, 0, %otherwin
rdpr %wstate, %g1
srl %g1, 3, %g1
wrpr %g0, %g1, %wstate ! Reset WSTATE_NORMAL to

 ! client’s vector
.. ! Restore saved trap state as necessary; this includes

! the return PC for the caller.
restore ! Go back to the caller’s register window.

! Set CWP for caller in TSTATE
rdpr %tstate, %g1
rdpr %cwp, %g2
bclr TSTATE_CWP, %g1
wrpr %g1, %g2, %tstate

done ! return to the caller

CODE EXAMPLE H-5 Cross-Domain Call and Return
506 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

T_EXAMPLE_TRAP: ! Supervisor trap handler for T_EXAMPLE_TRAP tra
save ! Create a window for the user trap handler

!Set CWP for new window in TSTATE
rdpr %tstate, %l6
rdpr %cwp, %l5
bclr TSTATE_CWP, %l6
wrpr %l6, %l5, %tstate

rdpr %tpc,%l6 !Put PC for trapped instruction in local re
rdpr %tnpc,%l7 !Put nPC for trapped instruction in local re
.. !Get the address of the user trap handler i

! for example, from a supervisor data struc

wrpr %l5, %tnpc ! Put PC for user trap handler in %tnp
done ! Execute user trap handler.

USER_EXAMPLE_TRAP: !User trap handler for T_EXAMPLE_TRAP trap

.. !Execute trap handler logic. Local register
! can be used as scratch.

jmpl %l6 !Return to retry the trapped instruction.
return %l7

CODE EXAMPLE H-6 User Trap Handler
Release 1.0.4, 31 May 2002 C. Appendix H • Software Considerations 507

508 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX I

Extending the SPARC V9
Architecture

This appendix contains only material from The SPARC Architecture Manual, Version 9
and describes how extensions can be effectively added to the SPARC V9 architecture.
The appendix is informative only. It is not part of the SPARC V9 specification.

The appendix describes the two approved methods for adding new instructions:
with read and write ancillary state register (ASR) and with implementation-
dependent (IMPDEP2A) instructions. An implementor who wants to define and
implement a new SPARC V9 instruction should, if possible, use one of those
methods.

Caution – Programs that use SPARC V9 architectural extensions may not be
portable and likely will not conform to any current or future SPARC V9 binary
standards.

I.1 Read/Write Ancillary State Registers
(ASRs)
The first method of adding instructions to SPARC V9 is through the use of the
implementation-dependent Write Ancillary State Register (WRASR) and Read
Ancillary State Register (RDASR) instructions operating on ASRs 16–31. Through a
read/write instruction pair, any instruction that requires an rs1, reg_or_imm, and
rd field can be implemented. A WRASR instruction can also perform an arbitrary
operation on two register sources, or on one register source and a signed immediate
value, and place the result in an ASR. A subsequent RDASR instruction can read the
result ASR and place its value in an integer destination register.
Release 1.0.4, 31 May 2002 C. Appendix I • Extending the SPARC V9 Architecture 509

I.2 Implementation-Dependent and
Reserved Opcodes
The meaning of “reserved” for SPARC V9 opcodes differs from its meaning in
SPARC V8. The SPARC V9 definition of “reserved” allows implementations to use
reserved opcodes for implementation-specific purposes. While a hardware
implementation that uses reserved opcodes will be SPARC V9-compliant, SPARC V9
ABI-compliant programs cannot use these reserved opcodes and remain compliant.
A SPARC V9 platform that implements instructions using reserved opcodes must
provide software libraries that provide the interface between SPARC V9 ABI-
compliant programs and these instructions. Graphics libraries provide a good
example of this. Hardware platforms have many diverse implementations of
graphics acceleration hardware, but graphics application programs are insulated
from this diversity through libraries.

There is no guarantee that a reserved opcode will not be used for additional
instructions in a future version of the SPARC architecture. Implementors who use
reserved opcodes should keep this fact in mind.

In some cases, forward compatibility may not be an issue; for example, in an
embedded application, binary compatibility may not be an issue. These
implementations can use any reserved opcodes for extensions.

Even when forward compatibility is an issue, future SPARC revisions are likely to
contain few changes to opcode assignments, given that backward compatibility with
previous versions must be maintained. It is recommended that implementations
wishing to remain forward-compatible use the new IMPDEP2A reserved opcodes
with op3<5:0> = 11 01112.

It is further recommended that SPARC International be notified of any use of
IMPDEP2A or other reserved opcodes. When and if future revisions to SPARC are
contemplated and if any SPARC V9 implementations have made use of reserved
opcodes, SPARC International will make every effort not to use those opcodes.
Coordinating through SPARC International provides feedback and cooperation in
the choice of opcodes and maximizes the probability of forward compatibility. Given
the historically small number of implementation-specific changes, coordinating
through SPARC International should be sufficient to ensure future compatibility.

Note that SPARC JPS1 has already made use of many IMPDEP1 opcodes (see TABLE
E-12 on page 435). Specific JPS1 implementations have used additional opcodes from
IMPDEP1 and/or IMPDEP2; see individual JPS1 Implementation Supplements for
details.
510 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX J

Programming with the Memory
Models

This appendix contains only material from The SPARC Architecture Manual, Version 9,
and describes how to program with the SPARC V9 memory models. An intuitive
description of the models is provided in Chapter 8, Memory Models. A complete
formal specification appears in Appendix D, Formal Specification of the Memory
Models. In this appendix, general programming guidelines are given first, followed
by specific examples showing how low-level synchronization can be implemented in
TSO, PSO, and RMO.

Note that code written for a weaker memory model will execute correctly in any of
the stronger memory models. Furthermore, the only possible difference between
code written for a weaker memory model and the corresponding code for a stronger
memory model is the presence of memory ordering instructions (MEMBARs) that are
not needed for the stronger memory model. Hence, transforming code from/to a
stronger memory model to/from a weaker memory model means adding/removing
certain memory ordering instructions.1 The required memory ordering directives are
monotonically ordered with respect to the strength of the memory model, with the
weakest memory model requiring the strongest memory ordering instructions.

The code examples given below are written to run correctly using the RMO memory
model. The comments on the MEMBAR instructions indicate which ordering
constraints (if any) are required for the PSO and TSO memory models.

1. MEMBAR instructions specify seven independent ordering constraints; thus, there are cases where the
transition to a stronger memory model allows the use of a less restrictive MEMBAR instruction but still requires
a MEMBAR instruction. To demonstrate this property, the code examples given in this appendix use multiple
MEMBAR instructions if some of the ordering constraints are needed in some but not all memory models.
Multiple, adjacent MEMBAR instructions can always be replaced with a single MEMBAR instruction by ORing
the arguments.
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 511

J.1 Memory Operations
Programs access memory via five types of operations, namely, load, store, LDSTUB,
SWAP, and compare-and-swap. Load copies a value from memory or an I/O location
to a register. Store copies a value from a register into memory or an I/O location.
LDSTUB, SWAP, and compare-and-swap are atomic load-store instructions that store a
value into memory or an I/O location and return the old value in a register. The
value written by the atomic instructions depends on the instruction. LDSTUB stores
all ones in the accessed byte, SWAP stores the supplied value, and compare-and-swap
stores the supplied value only if the old value equals the second supplied value.

Memory order and consistency are controlled by MEMBAR instructions. For example,
a MEMBAR #StoreStore (equivalent to a STBAR in SPARC V8) ensures that all
previous stores have been performed before subsequent stores and atomic load-
stores are executed by memory. This particular memory order is guaranteed
implicitly in TSO, but PSO and RMO require this instruction if the correctness of a
program depends on the order in which two store instructions can be observed by
another processor.

Note – Memory order is of concern only to programs containing multiple threads
that share writable memory and that may run on multiple processors, and to those
programs that reference I/O locations. Note that from the processor’s point of view,
I/O devices behave like other processors

FLUSH is not a memory operation, but it is relevant here in the context of
synchronizing stores with instruction execution. When a processor modifies an
instruction at address A, it does a store to A followed by a FLUSH A. The FLUSH
ensures that the change made by the store will become visible to the instruction fetch
units of all processors in the system.

J.2 Memory Model Selection
Given that all SPARC V9 systems are required to support TSO, programs written for
any memory model will be able to run on any SPARC V9 system. However, a system
running with the TSO model generally will offer lower performance than PSO or
RMO because less concurrency is exposed to the CPU and the memory system. The
motivation for weakening the memory model is to allow the CPU to issue multiple,
concurrent memory references in order to hide memory latency and increase access
bandwidth. For example, PSO and RMO allow the CPU to initiate new store
operations before an outstanding store has completed.
512 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Using a weaker memory model for an MP (multiprocessor) application that exhibits
a high degree of read-write memory sharing with fine granularity and a high
frequency of synchronization operations may result in frequent MEMBAR instructions.

In general, it is expected that the weaker memory models offer a performance
advantage for multiprocessor SPARC V9 implementations.

J.3 Processors and Processes
In the SPARC V9 memory models, the term “processor” may be replaced
systematically by the term “process” or “thread,” as long as the code for switching
processes or threads is written properly. The correct process-switch sequence is
given in Process Switch Sequence on page 519. If an operating system implements this
process-switch sequence, application programmers may completely ignore the
difference between a process/thread and a processor.

J.4 Higher-Level Programming Languages
and Memory Models
The SPARC V9 memory models are defined at the machine instruction level. Special
attention is required to write the critical parts of MP/MT (multithreaded)
applications in a higher-level language. Current higher-level languages do not
support memory ordering instructions and atomic operations. As a result, MP/MT
applications that are written in a higher-level language generally will rely on a
library of MP/MT support functions, for example, the parmacs library from Argonne
National Laboratory.1 The details of constructing and using such libraries are
beyond the scope of this document.

Compiler optimizations such as code motion and instruction scheduling generally
do not preserve the order in which memory is accessed, but they do preserve the
data dependencies of a single thread. Compilers do not, in general, deal with the
additional dependency requirements to support sharing read-write data among
multiple concurrent threads. Hence, the memory semantics of a SPARC V9 system in
general are not preserved by optimizing compilers. For this reason, and because
memory ordering directives are not available from higher-level languages, the
examples presented in this appendix use assembly language.

1. Lusk, E. L., R.A. Overbeek, “Use of Monitors in Fortran: A Tutorial on the Barrier, Self-scheduling Do-Loop,
and Askfor Monitors,” TR# ANL-84-51, Argonne National Laboratory, June 1987.
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 513

Future compilers may have the ability to present the programmer with a
sequentially consistent memory model despite the underlying hardware’s providing
a weaker memory model.1

J.5 Portability and Recommended
Programming Style
Whether a program is portable across various memory models depends on how it
synchronizes access to shared read-write data. Two aspects of a program’s style are
relevant to portability:

■ Good semantics refers to whether the synchronization primitives chosen and the
way in which they are used are such that changing the memory model does not
involve making any changes to the code that uses the primitives.

■ Good structure refers to whether the code for synchronization is encapsulated
through the use of primitives such that when the memory model is changed,
required changes to the code are confined to the primitives.

Good semantics are a prerequisite for portability, and good structure makes porting
easier.

Programs that use single-writer/multiple-reader locks to protect all access to shared
read-write data are portable across all memory models. The code that implements
the lock primitives themselves is portable across all models only if it is written to
run correctly on RMO. If the lock primitives are collected into a library, then, at
worst, only the library routines must be changed. Note that mutual exclusion
(mutex) locks are a degenerate type of single-writer/multiple-readers lock.

Programs that use write locks to protect write accesses but read without locking are
portable across all memory models only if writes to shared data are separated by
MEMBAR #StoreStore instructions and if reading the lock is followed by a MEMBAR
#LoadLoad instruction. If the MEMBAR instructions are omitted, the code is portable
only across TSO and Strong Consistency,2 but generally it will not work with PSO
and RMO. The code that implements the lock primitives is portable across all models
only if it is written to run correctly on RMO. If the lock routines are collected into a
library, the only possible changes not confined to the library routines are the MEMBAR
instructions.

1. See Gharachorloo, K., S.V. Adve, A. Gupta, J.L. Hennessy, and M.D. Hill, “Programming for Different
Memory Consistency Models,” Journal of Parallel and Distributed Systems, 15:4, August 1992.

2. Programs that assume a sequentially consistent memory are not guaranteed to run correctly on any SPARC
V9-compliant system, since TSO is the strongest memory model required to be supported. However,
sequential consistency is the most natural and intuitive programming model. This motivates the
development of compiler techniques that allow programs written for sequential consistency to be translated
into code that runs correctly (and efficiently) on systems with weaker memory models.
514 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Programs that do synchronization without using single-writer/multiple-reader
locks, write locks, or their equivalent are, in general, not portable across different
memory models. More precisely, the memory models are ordered from RMO (which
is the weakest, least constrained, and most concurrent), PSO, TSO, to sequentially
consistent (which is the strongest, most constrained, and least concurrent). A
program written to run correctly for any particular memory model will also run
correctly in any of the stronger memory models, but not vice versa. Thus, programs
written for RMO are the most portable, those written for TSO are less so, and those
written for strong consistency are the least portable. This general relationship
between the memory models is shown graphically in FIGURE J-1.

The style recommendations may be summarized as follows: Programs should use
single-writer/multiple-reader locks, or their equivalent, when possible. Other lower-
level forms of synchronization (such as Dekker’s algorithm for locking) should be
avoided when possible. When use of such low-level primitives is unavoidable, it is
recommended that the code be written to work on the RMO model to ensure
portability. Additionally, lock primitives should be collected together into a library
and written for RMO to ensure portability.

Appendix D, Formal Specification of the Memory Models, describes a tool and method
that allows short code sequences to be formally verified for correctness.

Strong Consistency

TSO

PSO

RMO

FIGURE J-1 Portability Relations Among Memory Models
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 515

J.6 Spin Locks
A spin lock is a lock for which the “lock held” condition is handled by busy waiting.
The code in CODE EXAMPLE J-1 shows how spin locks can be implemented with
LDSTUB. A nonzero value for the lock represents the locked condition, and a zero
value means that the lock is free. Note that the code busy-waits by doing loads to
avoid generating expensive stores to a potentially shared location. The MEMBAR
#StoreStore in UnLockWithLDSTUB ensures that pending stores are completed
before the store that frees the lock.

The code in CODE EXAMPLE J-2 shows how spin locks can be implemented with CASA.
Again, a nonzero value for the lock represents the locked condition; a zero value
means the lock is free. The nonzero lock value (ID) is supplied by the caller and may
be used to identify the current owner of the lock. This value is available while
spinning and could be used to maintain a timeout or to verify that the thread
holding the lock is still running. As in the previous case, the code busy-waits by
doing loads, not stores.

CODE EXAMPLE J-1 Lock and Unlock with LDSTUB

LockWithLDSTUB(lock)

retry:
ldstub [lock],%l0
tst %l0
be out
nop

loop:
ldub [lock],%l0
tst %l0
bne loop
nop
ba,a retry

out:
membar #LoadLoad | #LoadStore

UnLockWithLDSTUB(lock)
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
stub %g0,[lock]
516 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

J.7 Producer-Consumer Relationship
In a producer-consumer relationship, the producer process generates data and puts
it into a buffer, while the consumer process takes data from the buffer and uses it. If
the buffer is full, the producer process stalls when trying to put data into the buffer.
If the buffer is empty, the consumer process stalls when trying to remove data.

FIGURE J-2 shows the buffer data structure and register usage. CODE EXAMPLE J-3
shows the producer and consumer code. The code assumes the existence of two
procedures, IncrHead and IncrTail, which increment the head and tail pointers
of the buffer in a wraparound manner and return the incremented value, but do not
modify the pointers in the buffer.

LockWithCAS(lock, ID)
retry:

mov [ID],%l0
cas [lock],%g0,%l0
tst %l0
be out
nop

loop:
ld [lock],%l0
tst %l0
bne loop
nop
ba,a retry

out:
membar #LoadLoad | #LoadStore !See CODE EXAMPLE J-1

UnLockWithCAS(lock)
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
st %g0,[lock]

CODE EXAMPLE J-2 Lock and Unlock with CAS
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 517

bufhead

buftail

bufdata

l

l

l

buffer Buffer Empty Condition:
bufhead == buftail

Buffer Full Condition:
IncrTail(buffer) == bufheadbuffer+4

(= %i0)

Buffer Data Structure:

Register Usage: %i0 and %i1

%o0

%l0 and %l1

parameters

local values

result

FIGURE J-2 Data Structures for Producer-Consumer Code

Produce(buffer, data)
call IncrTail

full:
ld [%i0],%l0
cmp %l0,%o0
be full
ld [%i0+4],%l0
st %i1,[%l0]
membar #StoreStore !RMO and PSO only
st %o0,[%i0+4]

Consume(buffer)
ld [%i0],%l0

empty:
ld [%i0+4],%l1
cmp %l0,%l1
be empty
call IncrHead
ld [%l0],%l0
membar #LoadStore !RMO only
st %o0,[%i0]
mov %l0,%o0

CODE EXAMPLE J-3 Producer and Consumer Code
518 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

J.8 Process Switch Sequence
This section provides code that must be used during process or thread switching to
ensure that the memory model seen by a process or thread is the one seen by a
processor. The HeadSequence must be inserted at the beginning of a process or
thread when it starts executing on a processor. The TailSequence must be inserted
at the end of a process or thread when it relinquishes a processor.

CODE EXAMPLE J-4 shows the head and tail sequences. The two sequences refer to a
per-process variable tailDone. The value 0 for tailDone means that the process is
running; the value –1 (all ones) means that the process has completed its tail
sequence and may be migrated to another processor if the process is runnable. When
a new process is created, tailDone is initialized to –1.

The MEMBAR in HeadSequence is required to be able to provide a switching
sequence that ensures that the state observed by a process in its source processor
will also be seen by the process in its destination processor. Since flushes and stores
are totally ordered, the head sequence need not do anything special to ensure that
flushes performed prior to the switch are visible by the new processor.

Programming Note – A conservative implementation may simply use a MEMBAR
with all barriers set.

HeadSequence(tailDone)
nrdy:

ld [tailDone],%l0
cmp %l0,-1
bne nrdy
st %g0, [tailDone]
membar #StoreLoad

TailSequence(tailDone)
mov -1,%l0
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only (combine with above)
st %l0,[tailDone]

CODE EXAMPLE J-4 Process or Thread Switch Sequence
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 519

J.9 Dekker’s Algorithm
Dekker’s algorithm is the classical sequence for synchronizing entry into a critical
section, using loads and stores only. We show this example here to illustrate how one
may ensure that a store followed by a load in issuing order will be executed by the
memory system in that order. Dekker’s algorithm is not a valid synchronization
primitive for SPARC V9, because it requires a sequentially consistent (SC) memory
model in order to work. Dekker’s algorithm (and similar synchronization sequences)
can be coded on RMO, PSO, and TSO by adding appropriate MEMBAR instructions.
This example also illustrates how future compilers can provide the equivalent of
sequential consistency on systems with weaker memory models.

CODE EXAMPLE J-5 shows the entry and exit sequences for Dekker’s algorithm.

P1Entry()
mov -1,%l0

busy:
st %l0,[A]
membar #StoreLoad
ld [B],%l1
tst %l1
bne,a busy
st %g0,[A]

P1Exit()
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
st %g0,[A]

P2Entry()
mov -1,%l0

busy:
st %l0,[B]
membar #StoreLoad
ld [A],%l1
tst %l1
bne,a busy
st %g0,[B]

P2Exit()
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
st %g0,[B]

CODE EXAMPLE J-5 Dekker’s Algorithm
520 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The locations A and B are used for synchronization. A = 0 means that process P1 is
outside its critical section, and any other value means that P1 is inside it; similarly,
B = 0 means that P2 is outside its critical section, and any other value means that P2
is inside it.

Dekker’s algorithm guarantees mutual exclusion, but it does not guarantee freedom
from deadlock. In this case, it is possible that both processors end up trying to enter
the critical region without success. The code above tries to address this problem by
briefly releasing the lock in each retry loop. However, both stores are likely to be
combined in a store buffer, so the release has no chance of success. A more realistic
implementation would use a probabilistic back-off strategy that increases the
released period exponentially while waiting. If any randomization is used, such an
algorithm will avoid deadlock with arbitrarily high probability.

J.10 Code Patching
The code patching example illustrates how to modify code that is potentially being
executed at the time of modification. Two common uses of code patching are in
debuggers and dynamic linking.

Code patching involves a modifying process, Pm, and one or more target processes
Pt. For simplicity, assume that the sequence to be modified is four instructions long:
the old sequence is (Old1, Old2, Old3, Old4) and the new sequence is (New1, New2,
New3, New4). There are two examples: noncooperative modification, in which the
changes are made without cooperation from Pt; and cooperative modification, in
which the changes require explicit cooperation from Pt.

In noncooperative modification, illustrated in CODE EXAMPLE J-6, changes are made
in reverse execution order.

NonCoopPatch(addr, instructions...)
st %i4,[%i0+12]
flush %i0+12
membar #StoreStore !RMO and PSO only
st %i3,[%i0+8]
flush %i0+8
membar #StoreStore !RMO and PSO only
st %i2,[%i0+4]
flush %i0+4
membar #StoreStore !RMO and PSO only
st %i1,[%i0]
flush %i0

CODE EXAMPLE J-6 Noncooperative Code Patching
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 521

The three partially modified sequences (Old1, Old2, Old3, New4), (Old1, Old2, New3,
New4), and (Old1, New2, New3, New4) must be legal sequences for Pt, in that Pt must
do the right thing if it executes any of them. Additionally, none of the locations to be
modified, except the first, may be the target of a branch. The code assumes that %i0
contains the starting address of the area to be patched and %i1, %i2, %i3, and %i4
contain New1, New2, New3, and New4.

The constraint that all partially modified sequences must be legal is quite restrictive.
When this constraint cannot be satisfied, noncooperative code patching may require
the target processor to execute FLUSH instructions. One method of triggering such a
non-local FLUSH would be to send an interrupt to the target processor.

In cooperative code patching, illustrated in CODE EXAMPLE J-7, changes to
instructions can be made in any order.

When Pm is finished with the changes, it writes into the shared variable done to
notify Pt. Pt waits for done to change from 0 to some other value as a signal that the
changes have been completed. The code assumes that %i0 contains the starting
address of the area to be patched, %i1, %i2, %i3, and %i4 contain New1, New2,
New3, and New4, and %g1 contains the address of done. The FLUSH instructions in Pt
ensure that the instruction buffer of Pt’s processor is flushed so that the old
instructions are not executed.

CoopPatch(addr, instructions...) !%i0 = addr, %i1..%i4 = instructions
st %i1,[%i0]
st %i2,[%i0+4]
st %i3,[%i0+8]
st %i4,[%i0+12]
mov -1,%l0
membar #StoreStore !RMO and PSO only
st %l0,[%g1]

TargetCode()
wait:

ld [%g1],%l0
cmp %l0,0
be wait
flush A
flush A+4
flush A+8
flush A+12

A:
Old1
Old2
Old3
Old4

CODE EXAMPLE J-7 Cooperative Code Patching
522 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

J.11 Fetch_and_Add
Fetch_and_Add performs the sequence a = a + b atomically with respect to other
Fetch_and_Adds to location a. Two versions of Fetch_and_Add are shown. The
first (CODE EXAMPLE J-8) uses the routine LockWithLDSTUB described above. This
approach uses a lock to guard the value. Since the memory model dependency is
embodied in the lock access routines, the code does not depend on the memory
model.1

Fetch_and_Add originally was invented to avoid lock contention and to provide an
efficient means to maintain queues and buffers without cumbersome locks. Hence,
using a lock is inefficient and contrary to the intentions of the Fetch_and_Add. The
CAS synthetic instruction allows a more efficient version, as shown in CODE EXAMPLE
J-9.

1. Inlining of the lock-access functions with subsequent optimization may break this code.

/*Fetch and Add using LDSTUB*/
int Fetch_And_Add(Index, Increment, Lock)

int *Index;
int Increment;
int *Lock;
{

int old_value;
LockWithLDSTUB(Lock);
old_value = *Index;
*Index = old_value + Increment;
UnlockWithLDSTUB(Lock);
return(old_value);

}

CODE EXAMPLE J-8 Fetch and Add with LDSTUB

FetchAndAddCAS(address, increment)!%i0 = address, %i1 = increment
retry:

ld [%i0],%l0
add %l0,%i1,%l1
cas [%i0],%l0,%l1
cmp %l0,%l1
bne retry
mov %l1,%o0 !return old value

CODE EXAMPLE J-9 Fetch and Add with CAS
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 523

J.12 Barrier Synchronization
Barrier synchronization ensures that each of N processes is blocked until all of them
reach a given state. The point in the flow of control at which this state is reached is
called the barrier; hence the name. The code uses the variable Count initialized to N.
As each process reaches its desired state, it decrements Count and waits for Count
to reach zero before proceeding further.

Similar to the fetch and add operation, barrier synchronization is easily
implemented using a lock to guard the counter variable, as shown in CODE EXAMPLE
J-10.

The CAS implementation of barrier synchronization, shown in CODE EXAMPLE J-11,
avoids the extra lock access.

/*Barrier Synchronization using LDSTUB*/
Barrier(Count,Lock)
int *Count;
int *Lock;
{

LockWithLdstUB(Lock);
*Count = *Count - 1;
UnlockWithLdstUB(Lock);
while(*Count > 0) { ; /*busy-wait*/ }

}

CODE EXAMPLE J-10 Barrier Synchronization with LDSTUB

BarrierCAS(Count) !%i0 = address of counter
variable
retry:

ld [%i0],%l0
add %l0,-1,%l1
cas [%i0],%l0,%l1
cmp %l0,%l1
bne retry
nop

wait:
ld [%i0],%l0
tst %l0
bne wait
nop

CODE EXAMPLE J-11 Barrier Synchronization with CAS
524 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

A practical barrier synchronization must be reusable because it is typically used
once per iteration in applications that require many iterations. Barriers that are
based on counters must have means to reset the counter. One solution to this
problem is to alternate between two complementary versions of the barrier: one that
counts down to 0 and the other that counts up to N. In this case, passing one barrier
also initializes the counter for the next barrier.

Passing a barrier can also signal that the results of one iteration are ready for
processing by the next iteration. In this case, RMO and PSO require a MEMBAR
#StoreStore instruction prior to the barrier code to ensure that all local results
become globally visible prior to passing the barrier.

Barrier synchronization among a large number of processors will lead to access
contention on the counter variable, which may degrade performance. This problem
can be solved by use of multiple counters. The butterfly barrier uses a divide-and-
conquer technique to avoid any contention and can be implemented without atomic
operations.1

J.13 Linked List Insertion and Deletion
Linked lists are dynamic data structures that might be used by a multithreaded
application. As in the previous examples, a lock can be used to guard access to the
entire data structure. However, single locks guarding large and frequently shared
data structures can be inefficient.

In CODE EXAMPLE J-12, the CAS synthetic instruction is used to operate on a linked list
without explicit locking. Each list element starts with an address field that contains
either the address of the next list element or zero. The head of the list is the address
of a variable that holds the address of the first list element. The head is zero for
empty lists.

In the example, there is little difference in performance between the CAS and lock
approaches; however, more complex data structures can allow more concurrency.
For example, a binary tree allows the concurrent insertion and removal of nodes in
different branches.

1. Brooks, E. D., “The Butterfly Barrier,” International Journal of Parallel Programming 15(4), pp. 295-307, 1986.
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 525

J.14 Communicating with I/O Devices
I/O accesses may be reordered just as other memory reference are reordered.
Because of this, the programmer must take special care to meet the constraint
requirements of physical devices, in both the uniprocessor and multiprocessor cases.

Accesses to I/O locations require sequencing MEMBARs under certain circumstances
to properly manage the order of accesses arriving at the device and the order of
device accesses with respect to memory accesses. The following rules describe the
use of MEMBARs in these situations. Maintaining the order of accesses to multiple
devices will require higher-level software constructs, which are beyond the scope of
this discussion.

1. Accesses to the same I/O location address:

■ A store followed by a store is ordered in all memory models.

■ A load followed by a load requires a MEMBAR #LoadLoad in RMO only.

ListInsert(Head, Element) !%i0 = Head addr, %i1 = Element addr
retry:

ld [%i0],%l0
st %l0, [%i1]
mov %i1, %l1
cas [%i0],%l0,%l1
cmp %l0,%l1
bne retry
nop

ListRemove(Head) !%i0 = Head addr
retry:

ld [%i0],%o0
tst %o0
be empty
nop
ld [%o0],%l0
cas [%i0],%o0,%l0
cmp %o0,%l0
bne retry

empty:
nop

CODE EXAMPLE J-12 List Insertion and Removal
526 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Compatibility Note – This MEMBAR is not needed in implementations that provide
SPARC V8 compatibility for I/O accesses in RMO.

■ A load followed by a store is ordered in all memory models.

■ A store followed by a load requires MEMBAR #Lookaside between the accesses
for all memory models; however, implementations that provide SPARC V8
compatibility for I/O accesses in any of TSO, PSO, and RMO do not need the
MEMBAR in any model that provides this compatibility.

2. Accesses to different I/O location addresses:

■ The appropriate ordering MEMBAR is required to guarantee order within a range of
addresses assigned to a device.

■ Device-specific synchronization of completion, such as reading back from an
address after a store, may be required to coordinate accesses to multiple devices.
This is beyond the scope of this discussion.

3. Accesses to an I/O location address and a memory address.

■ A MEMBAR #MemIssue is required between an I/O access and a memory access if
it is required that the I/O access reaches global visibility before the memory
access reaches global visibility. For example, if the memory location is a lock that
controls access to an I/O address, then MEMBAR #MemIssue is required between
the last access to the I/O location and the store that clears the lock.

4. Accesses to different I/O location addresses within an implementation-dependent
range of addresses are strongly ordered once they reach global visibility. Beyond
the point of global visibility there is no guarantee of global order of accesses arriving
at different devices having disjoint implementation-dependent address ranges
defining the device. Programmers can rely on this behavior from implementations.

5. Accesses to I/O locations protected by a lock in shared memory that is
subsequently released, with attention to the above barrier rules, are strongly
ordered with respect to any subsequent accesses to those locations that respect the
lock.

J.14.1 I/O Registers with Side Effects
I/O registers with side effects are commonly used in hardware devices such as
UARTs. One register is used to address an internal register of the I/O device, and a
second register is used to transfer data to or from the selected internal register.

In CODE EXAMPLE J-13 and CODE EXAMPLE J-14, let X be the address of a device with
two such registers; X.P is a port register, and X.D is a data register. The address of an
internal register is stored into X.P; that internal register can then be read or written
by loading into or storing from X.D.
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 527

Access to these registers, of course, must be protected by a mutual-exclusion lock to
ensure that multiple threads accessing the registers do not interfere. The sequencing
MEMBAR is required to ensure that the store actually completes before the load is
issued.

J.14.2 The Control and Status Register (CSR)
A control and status register is an I/O location that is updated by an I/O device
independent of access by the processor. For example, such a register might contain
the current sector under the head of a disk drive.

In CODE EXAMPLE J-15, let Y be the address of a control and status register that is read
to obtain status and written to assert control. Bits read differ from the last data that
was stored to them.

Access to these registers, of course, must be protected by a mutual-exclusion lock to
ensure that multiple threads accessing the registers do not interfere. The sequencing
MEMBAR is needed to ensure the value produced by the load comes from the register
and not from the write buffer, since the write has side-effects. No MEMBAR is needed
between the load and the store because of the anti-dependency on the memory
address.

st %i1, [X+P]
membar #StoreStore ! PSO and RMO only
st %i2, [X+D]

CODE EXAMPLE J-13 I/O Registers with Side-Effects: Store Followed by Store

st %i1, [X+P]
membar #StoreLoad |#MemIssue ! RMO only
ld [X+D], %i2

CODE EXAMPLE J-14 I/O Registers with Side Effects: Store Followed by Load

ld [Y], %i1 ! obtain status
st %i2, [Y] ! write a command
membar #Lookaside ! make sure we really read the register
ld [Y], %i3 ! obtain new status

CODE EXAMPLE J-15 Accessing a Control/Status Register
528 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

J.14.3 The Descriptor
In CODE EXAMPLE J-16, let A be the address of a descriptor in memory. After the
descriptor is initialized with information, the address of the descriptor is stored into
device register D or made available to some other portion of the program that will
make decisions based upon the value(s) in the descriptor. It is important to ensure
that the stores of the data have completed before making the address (and hence the
data in the descriptor) visible to the device or program component.

Access must be protected by a mutual-exclusion lock to ensure that multiple threads
accessing the registers do not interfere. In addition, the agent reading the descriptor
must use a load-barrier MEMBAR after reading D to ensure that the most recent values
are read.

J.14.4 Lock-Controlled Access to a Device Register
Let A be a lock in memory that is used to control access to a device register D. The
code that accesses the device might look like that shown in CODE EXAMPLE J-17.

The sequencing MEMBAR is needed to ensure that another CPU which grabs the lock
and loads from the device register will actually see any changes in the device
induced by the store. The ordering MEMBARs in the lock and unlock code (see Spin

st %i1, [A]
st %i2, [A+4]
... ! more stores
membar #StoreStore ! PSO and RMO only
st A, [D]

CODE EXAMPLE J-16 Accessing a Memory Descriptor

set A, %l1 ! address of lock
set D, %l2 ! address of device register
call lock ! lock(A);
mov %l1, %o0
ld [%l2], %i1 ! read the register

... ! do some computation

st %i2, [%l2] ! write the register
membar #MemIssue ! all memory models
call unlock ! unlock(A);
mov %l1, %o0

CODE EXAMPLE J-17 Accessing a Device Register
Release 1.0.4, 31 May 2002 C. Appendix J • Programming with the Memory Models 529

Locks on page 516), while ensuring correctness when protecting ordinary memory,
are insufficient for this purpose when accessing device registers. Compare with I/O
Registers with Side Effects on page 527.
530 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX K

Changes from SPARC V8 to SPARC
V9

This appendix contains only material from The SPARC Architecture Manual, Version 9,
The appendix is informative only. It is not part of the SPARC V9 specification.

SPARC V9 is complementary to the SPARC V8 architecture; it does not replace it.
SPARC V9 was designed to be a higher-performance peer to SPARC V8.

Application software for the 32-bit SPARC V8 (Version 8) microprocessor
architecture can execute, unchanged, on SPARC V9 systems. SPARC V8 software
executes natively on SPARC V9-conformant processors; no special compatibility
mode is required.

Changes to the SPARC V9 architecture since SPARC V8 are in seven main areas: the
trap model, data formats, endianness, the registers, alternate address space access,
the instruction set, and the memory model.

K.1 Trap Model
The trap model, visible only to privileged software, has changed substantially.

■ Instead of one level of traps, four or more levels are now supported. This allows
first-level trap handlers, notably register window spill and fill (formerly called
overflow and underflow) traps, to execute much faster. Such trap handlers can
now execute without costly run-time checks for lower-level trap conditions, such
as page faults or a misaligned stack pointer. Also, multiple trap levels support
more robust fault-tolerance mechanisms.

■ Most traps no longer change the CWP. Instead, the trap state (including the CWP
register) is saved in register stacks called TSTATE, TT, TPC, and TNPC.

■ New instructions (DONE and RETRY) are used instead of RETT to return from a
trap handler.
Release 1.0.4, 31 May 2002 C. Appendix K • Changes from SPARC V8 to SPARC V9 531

■ A new instruction (RETURN) is provided for returning from a trap handler
running in nonprivileged mode, providing support for user trap handlers.

■ Terminology about privileged-mode execution has changed: from “supervisor/
user” to “privileged/nonprivileged.”

■ A new processor state, RED_state, has been added to facilitate processing resets
and nested traps that would exceed MAXTL.

K.2 Data Formats
Data formats for extended (64-bit) integers have been added.

K.3 Little-Endian Support
Data accesses can be either big-endian or little-endian. Bits in the PSTATE register
control the implicit endianness of data accesses. Special ASI values are provided to
allow specific data accesses to be in a specific endianness.

K.4 Little-Endian Byte Order
In SPARC V8, all instruction and data accesses were performed in big-endian byte
order. SPARC V9 supports both big- and little-endian byte orders for data accesses
only; instruction accesses in SPARC V9 are always performed using big-endian
order.

K.5 Registers
These privileged SPARC V8 registers have been deleted:

■ PSR: Processor State Register
■ TBR: Trap Base Register
■ WIM: Window Invalid Mask
532 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

These registers have been widened from 32 to 64 bits:

■ All integer registers
■ All state registers: FSR, PC, nPC, Y

The contents of the following register has changed:

■ FSR: Floating-Point State Register: fcc1, fcc2, and fcc3 (additional floating-
point condition code) bits have been added and the register widened to 64 bits.

These SPARC V9 registers are fields within a register in SPARC V8:

■ PIL: Processor Interrupt Level register
■ CWP: Current Window Pointer register
■ TT[MAXTL]: Trap Type register
■ TBA: Trap Base Address register
■ VER: Version register
■ CCR: Condition Codes Register

These registers have been added:

■ Sixteen additional double-precision floating-point registers, f[32]–f [62], which
are aliased with and overlap eight additional quad-precision floating-point
registers, f [32]–f[60]

■ FPRS: Floating-Point Register State register

■ ASI: ASI register

■ PSTATE: Processor State register

■ TL: Trap Level register

■ TPC[MAXTL]: Trap Program Counter register

■ TNPC[MAXTL]: Trap Next Program Counter register

■ TSTATE[MAXTL]: Trap State register

■ TICK: Hardware clock-tick counter

■ CANSAVE: Savable windows register

■ CANRESTORE: Restorable windows register

■ OTHERWIN: Other Windows register

■ CLEANWIN: Clean Windows register

■ WSTATE: Window State register

The SPARC V9 CWP register is incremented during a SAVE instruction and
decremented during a RESTORE instruction. Although this is the opposite of
PSR.CWP’s behavior in SPARC V8, the only software it should affect is a few trap
handlers that operate in privileged mode, and those must be rewritten for SPARC V9
anyway. This change will have no effect on nonprivileged software.
Release 1.0.4, 31 May 2002 C. Appendix K • Changes from SPARC V8 to SPARC V9 533

K.6 Alternate Space Access
In SPARC V8, access to all alternate address spaces is privileged. In SPARC V9, loads
and stores to ASIs 0016–7F16 are privileged; those to ASIs 8016–FF16 are
nonprivileged. That is, load- and store-alternate instructions to one-half of the
alternate spaces can now be used in user code.

K.7 Instruction Set
All changes to the instruction set were made such that application software written
for SPARC V8 can run unchanged on a SPARC V9 processor. Application software
written for SPARC V8 should not even be able to detect that its instructions now
process 64-bit values.

The definitions of the following instructions were extended or modified to work
with the 64-bit model:

■ FCMP, FCMPE: Floating-Point Compare: Can set any of the four floating-point
condition codes

■ LDUW, LDUWA (same as “LD, LDA” in SPARC V8)

■ LDFSR, STFSR: Load/Store FSR: Only affect low-order 32 bits of FSR

■ RDASR/WRASR: Read/Write State Registers: Access additional registers

■ SAVE/RESTORE

■ SETHI

■ SRA, SRL, SLL: Shifts: Split into 32-bit and 64-bit versions

■ Tcc: (was Ticc): Operates with either the 32-bit integer condition codes (icc), or
the 64-bit integer condition codes (xcc)

■ All other arithmetic operations now operate on 64-bit operands and produce 64-
bit results. Application software written for SPARC V8 cannot detect that
arithmetic operations are now 64 bits wide. This is due to retention of the 32-bit
integer condition codes (icc), addition of 64-bit integer condition codes (xcc),
and the carry-propagation rules of two’s-complement arithmetic.

The following instructions have been added to provide support for 64-bit operations
and/or addressing:

■ F[sdq]TOx: Convert floating point to 64-bit word

■ FxTO[sdq]: Convert 64-bit word to floating point

■ FMOV[dq]: Floating-point Move, double and quad

■ FNEG[dq]: Floating-point Negate, double and quad
534 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ FABS[dq]: Floating-point Absolute Value, double and quad

■ LDDFA, STDFA, LDFA, STFA: Alternate address space forms of LDDF, STDF, LDF,
and STF

■ LDSW: Load a signed word

■ LDSWA: Load a signed word from an alternate space

■ LDX: Load an extended word

■ LDXA: Load an extended word from an alternate space

■ LDXFSR: Load all 64 bits of the FSR register

■ STX: Store an extended word

■ STXA: Store an extended word into an alternate space

■ STXFSR: Store all 64 bits of the FSR register

The following instructions have been added to support the new trap model:

■ DONE: Return from trap and skip instruction that trapped

■ RDPR and WRPR: Read and Write privileged registers

■ RESTORED: Adjust state of register windows after RESTORE

■ RETRY: Return from trap and reexecute instruction that trapped

■ RETURN: Return

■ SAVED: Adjust state of register windows after SAVE

■ SIR: Signal Monitor (generate software-initiated reset)

The following instructions have been added to support implementation of higher-
performance systems:

■ BPcc: Branch on integer condition code with prediction

■ BPr: Branch on integer register contents with prediction

■ CASA, CASXA: Compare and Swap from an alternate space

■ FBPfcc: Branch on floating-point condition code with prediction

■ FLUSHW: Flush windows

■ FMOVcc: Move floating-point register if condition code is satisfied

■ FMOVr: Move floating-point register if integer register contents satisfy condition

■ LDQF(A), STQF(A): Load/Store Quad Floating-point (in an alternate space)

■ MOVcc: Move integer register if condition code is satisfied

■ MOVr: Move integer register if register contents satisfy condition

■ MULX: Generic 64-bit multiply

■ POPC: Population Count

■ PREFETCH, PREFETCHA: Prefetch Data

■ SDIVX, UDIVX: Signed and Unsigned 64-bit divide
Release 1.0.4, 31 May 2002 C. Appendix K • Changes from SPARC V8 to SPARC V9 535

The definitions of the following instructions have changed:

■ IMPDEPn: SPARC V8 CPop instructions have been replaced by VIS, IMPDEP2A,
and IMPDEP2B instructions.

The following instruction was added to support memory synchronization:

■ MEMBAR: Memory barrier

The following instructions have been deleted:

■ Coprocessor loads and stores

■ RDTBR and WRTBR: TBR no longer exists. It has been replaced by TBA, which can
be read/written with RDPR/WRPR instructions.

■ RDWIM and WRWIM: WIM no longer exists. WIM has been subsumed by several
register-window state registers.

■ RDPSR and WRPSR: PSR no longer exists. It has been replaced by several separate
registers which are read/written with other instructions.

■ RETT: Return from trap (replaced by DONE/RETRY).

■ STDFQ: Store Double from Floating-point Queue (replaced by the RDPR FQ
instruction).

K.8 Memory Model
SPARC V9 defines a new memory model called Relaxed Memory Order (RMO). This
very weak model allows the CPU hardware to schedule memory accesses such as
loads and stores in nearly any order, as long as the program computes the correct
answer. Hence, the hardware can instantaneously adjust to resource contentions and
schedule accesses in the most efficient order, leading to much faster memory
operations and better performance.
536 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX L

Address Space Identifiers

This appendix describes address space identifiers (ASIs) in the following sections:

■ Address Space Identifiers and Address Spaces on page 537
■ ASI Values on page 538
■ ASI Assignments on page 538

L.1 Address Space Identifiers and Address
Spaces
A SPARC V9 processor provides an address space identifier (ASI) with every address
sent to memory. The ASI does the following:

■ Distinguishes between different address spaces
■ Provides an attribute that is unique to an address space
■ Maps internal control and diagnostics registers within a processor

The memory management hardware uses a 64-bit virtual address and an 8-bit ASI to
generate a physical address. This physical address space can be accessed through
virtual-to-physical address mapping or through the MMU bypass mode.

SPARC V9 also extended the limit of virtual addresses from 32 bits to 64 bits for each
address space. SPARC V9 supports 32-bit addressing through masking of the upper
32 bits to 0 when the address mask (AM) bit in the PSTATE register is set.
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 537

L.2 ASI Values
The SPARC V9 address space identifier (ASI) is evenly divided into restricted and
unrestricted halves. ASIs in the range 0016–7F16 are restricted. ASIs in the range
8016–FF16 are unrestricted. An attempt by nonprivileged software to access a
restricted ASI causes a privileged_action trap.

ASIs in the ranges 0416–1116, 1816–1916, 2416–2C16, 7016–7116, 7816–7916, and 8016–
FF16 are called normal or translating ASIs. These ASIs are translated by the MMU.

Bypass ASIs are in the range 1416–1516 and 1C16–1D16. These ASIs are not translated
by the MMU. Instead, they pass through their virtual addresses as physical
addresses.

Implementation-dependent ASIs may or may not be translated by the MMU. See
Appendix L in the Implementation Supplement for a given implementation for
detailed information about specific implementation-dependent ASIs.

L.3 ASI Assignments
Every load or store address in a SPARC V9 processor has an 8-bit Address Space
Identifier (ASI) appended to the virtual address (VA). The VA plus the ASI fully
specify the address. For instruction fetches and for data loads or stores that do not
use the load or store alternate instructions, the ASI is an implicit ASI generated by
the hardware. If a load alternate or store alternate instruction is used, the value of
the ASI can be specified in the %asi register or as an immediate value in the
instruction. In practice, ASIs are not only used to differentiate address spaces but are
also used for other functions like referencing registers in the MMU unit.

L.3.1 Supported ASIs
TABLE L-1 lists both the SPARC V9 architecture-defined ASIs and ASIs that were not
defined in SPARC V9 but are required for JPS1 processors.

ASIs marked with a closed bullet (●) are SPARC V9 architecture-defined ASIs. All
operand sizes are supported when accessing one of these ASIs.

ASIs marked with an open bullet (❍) were not defined in SPARC V9 but are required
to be implemented in all JPS1 processors. These ASIs can be used only with LDXA,
STXA, LDDFA, or STDFA instructions, unless otherwise noted. An attempt to access
538 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

any of these ASIs with other load or store alternate instructions (for example, using
a byte-, halfword-, or word-length access) causes a data_access_exception trap,
unless otherwise noted.

The word "decoded" in the Virtual Address column of TABLE L-1 indicates that the
the supplied virtual address is decoded by the processor.

Attempting to access an address space described as "Implementation dependent" in
TABLE L-1 produces implementation-dependent results.

TABLE L-1 JPS1 ASIs (1 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description

0016–0316 ● — — — Implementation dependent1

0416 ● ASI_NUCLEUS (ASI_N) RW — Implicit address space,
nucleus privilege, TL > 0

0516–0B16 ● — — — Implementation dependent1

0C16 ● ASI_NUCLEUS_LITTLE (ASI_NL) RW — Implicit address space,
nucleus privilege, TL > 0,
little-endian

0D16–0F16 ● — — — Implementation dependent1

1016 ● ASI_AS_IF_USER_PRIMARY (ASI_AIUP) RW2 — Primary address space, user
privilege

1116 ● ASI_AS_IF_USER_SECONDARY (ASI_AIUS) RW2 — Secondary address space,
user privilege

1216–1316 ● — — — Implementation dependent1

1416 ❍ ASI_PHYS_USE_EC RW3,4 (decoded) Physical address external
cacheable only

1516 ❍ ASI_PHYS_BYPASS_EC_WITH_EBIT RW3 (decoded) Physical address,
noncacheable, with side effect

1616–1716 ● — — — Implementation dependent1

1816 ● ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

RW2 — Primary address space, user
privilege, little-endian

1916 ● ASI_AS_IF_USER_SECONDARY_LITTLE
(ASI_AIUSL)

RW2 — Secondary address space,
user privilege, little-endian

1A16–1B16 ● — — — Implementation dependent1

1C16 ❍ ASI_PHYS_USE_EC_LITTLE
(ASI_PHYS_USE_EC_L)

RW 3,4 (decoded) Physical address, external
cacheable only, little-endian

1D16 ❍ ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE
(ASI_PHYS_BYPASS_EC_WITH_EBIT_L)

RW 3 (decoded) Physical address,
noncacheable, with side
effect, little-endian

1E16–2316 ● — — — Implementation dependent1

2416 ❍ ASI_NUCLEUS_QUAD_LDD R5,9 (decoded) Cacheable, 128-bit atomic
ldda
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 539

2516–2B16 ● — — — Implementation dependent1

2C16 ❍ ASI_NUCLEUS_QUAD_LDD_LITTLE
(ASI_NUCLEUS_QUAD_LDD_L)

R5,9 (decoded) Cacheable, 128-bit atomic
ldda, little-endian

2D16–3316 ● — — — Implementation dependent1

3416 ❍ (reserved for
ASI_ATOMIC_QUAD_LDD_PHYS)

— — Implementation dependent1

3516–3B16 ● — — — Implementation dependent1

3C16 ❍ (reserved for
ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE)

— — Implementation dependent1

3D16–4416 ● — — — Implementation dependent1

4516 ❍ ASI_DCU_CONTROL_REGISTER
(ASI_DCUCR)

RW 016 Data Cache Unit Control
Register

4616–4716 ❍ — — — Implementation dependent1

4816 ❍ ASI_INTR_DISPATCH_STATUS
(ASI_MONDO_SEND_CTRL)

R5 016 Interrupt vector dispatch
status

4916 ❍ ASI_INTR_RECEIVE
(ASI_MONDO_RECEIVE_CTRL)

RW 016 Interrupt vector receive status

4A16 ❍ (reserved for interconnect
configuration)

— — Implementation dependent1

4B16 ● — RW 016 Implementation dependent1

4C16 ❍ ASI_ASYNC_FAULT_STATUS (ASI_AFSR) RW 016 Async fault status register

4D16 ❍ ASI_ASYNC_FAULT_ADDR (ASI_AFAR) R 016 Async fault address register

4E16–4F16 ● — — — Implementation dependent1

5016 ❍ ASI_IMMU_...

5016 ❍ ASI_IMMU_TAG_TARGET R5 016 IMMU tag target register

5016 ❍ ASI_IMMU_SFSR RW 1816 IMMU sync fault status
register

5016 ❍ ASI_IMMU_TSB_BASE RW 2816 IMMU TSB base register

5016 ❍ ASI_IMMU_TAG_ACCESS RW 3016 IMMU TLB tag access register

5016 ❍ ASI_IMMU_TSB_PEXT_REG RW 4816 IMMU TSB primary extension
register

5016 ❍ ASI_IMMU_TSB_NEXT_REG RW 5816 IMMU TSB nucleus extension
register

5116 ❍ ASI_IMMU_TSB_8KB_PTR_REG R5 016 IMMU TSB 8-Kbyte pointer
register

5216 ❍ ASI_IMMU_TSB_64KB_PTR_REG R5 016 IMMU TSB 64-Kbyte pointer
register

TABLE L-1 JPS1 ASIs (2 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description
540 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

5316 ❍ ASI_SERIAL_ID‡ (semantics and encoding
are implementation dependent)

R5 016
12 Implementation dependent

(impl. dep. #258) 7

5416 ❍ ASI_ITLB_DATA_IN_REG W10 016 IMMU TLB data in register

5516 ❍ ASI_ITLB_DATA_ACCESS_REG RW 016–
20FF816

IMMU TLB data access
register

5516 ● Implementation dependent
(impl. dep. #239)

4000016–
60FF816

Implementation dependent 1

5616 ❍ ASI_ITLB_TAG_READ_REG R5 <17:0> IMMU TLB tag read register

5716 ❍ ASI_IMMU_DEMAP W10 (decoded;
see F.10.11)

IMMU TLB demap

5816 ❍ ASI_DMMU_...

5816 ❍ ASI_DMMU_TAG_TARGET_REG R5 016 DMMU tag target register

5816 ❍ ASI_PRIMARY_CONTEXT_REG RW 816 I/D MMU primary context
register

5816 ❍ ASI_SECONDARY_CONTEXT_REG RW 1016 DMMU secondary context
register

5816 ❍ ASI_DMMU_SFSR RW 1816 DMMU sync fault status
register

5816 ❍ ASI_DMMU_SFAR RW 2016 DMMU sync fault address
register

5816 ❍ ASI_DMMU_TSB_BASE RW 2816 DMMU TSB register

5816 ❍ ASI_DMMU_TAG_ACCESS RW 3016 DMMU TLB tag access
register

5816 ❍ ASI_DMMU_VA_WATCHPOINT_REG RW 3816 DMMU VA data watchpoint
register

5816 ❍ ASI_DMMU_PA_WATCHPOINT_REG RW 4016 DMMU PA data watchpoint
register

5816 ❍ ASI_DMMU_TSB_PEXT_REG RW 4816 DMMU TSB primary ext
register

5816 ❍ ASI_DMMU_TSB_SEXT_REG RW 5016 DMMU TSB secondary ext
register

5816 ❍ ASI_DMMU_TSB_NEXT_REG RW 5816 DMMU TSB nucleus ext
register

5916 ❍ ASI_DMMU_TSB_8KB_PTR_REG R5 016 DMMU TSB 8-K pointer
register

5A16 ❍ ASI_DMMU_TSB_64KB_PTR_REG R5 016 DMMU TSB 64-K pointer
register

5B16 ❍ ASI_DMMU_TSB_DIRECT_PTR_REG R5 016 DMMU TSB direct pointer
register

TABLE L-1 JPS1 ASIs (3 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 541

5C16 ❍ ASI_DTLB_DATA_IN_REG W10 016 DMMU TLB data in register

5D16 ❍ ASI_DTLB_DATA_ACCESS_REG RW VA<18>=0 DMMU TLB data access
register

5D16 ● Implementation dependent
(impl. dep. #239)

4000016–
60FF816

Implementation dependent 1

5E16 ❍ ASI_DTLB_TAG_READ_REG R5 <17:0> DMMU TLB tag read register

5F16 ❍ ASI_DMMU_DEMAP W10 (decoded;
see F.10.11)

DMMU TLB demap

6016 ❍ ASI_IIU_INST_TRAP RW 016 Instruction breakpoint
register

6116–6E16 ● — — — Implementation dependent1

6F16 ❍ (reserved for ASI_BARRIER_SYNCH_P) — — Implementation dependent1

7016 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW2,8 (decoded) Primary address space, block
load/store, user privilege

7116 ❍ ASI_BLOCK_AS_IF_USER_SECONDARY
(ASI_BLK_AIUS)

RW2,8 (decoded) Secondary address space,
block load/store, user priv

7216–7616 ● — — Implementation dependent1

7716 ❍ ASI_INTR_DATA0_W W10 4016 Outgoing interrupt vector
data Register 0 H

7716 ❍ ASI_INTR_DATA1_W W10 4816 Outgoing interrupt vector
data Register 0 L

7716 ❍ ASI_INTR_DATA2_W W10 5016 Outgoing interrupt vector
data Register 1 H

7716 ❍ ASI_INTR_DATA3_W W10 5816 Outgoing interrupt vector
data Register 1 L

7716 ❍ ASI_INTR_DATA4_W W10 6016 Outgoing interrupt vector
data Register 2 H

7716 ❍ ASI_INTR_DATA5_W W10 6816 Outgoing interrupt vector
data Register 2 L

7716 ❍ ASI_INTR_DISPATCH_W W10 7016 Interrupt vector dispatch

7716 ❍ ASI_INTR_DATA6_W W10 8016 Outgoing interrupt vector
data Register 3 H

7716 ❍ ASI_INTR_DATA7_W W10 8816 Outgoing interrupt vector
data Register 3 L

7716 ❍ ASI_INTR_DISPATCH_W W10 010000007016–
8FFFFFC07016

Interrupt vector dispatch

7816 ❍ ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
(ASI_BLK_AIUPL)

RW 2,8 016 Primary address space, block
load/store, user privilege,
little-endian

TABLE L-1 JPS1 ASIs (4 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description
542 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

7916 ❍ ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

(ASI_BLK_AIUSL)
RW2,8 016 Secondary address space,

block load/store, user
privilege, little-endian

7A16-7E16 ● — — — Implementation dependent1

7F16 ❍ ASI_INTR_DATA0_R R5 4016 Incoming interrupt vector
data Register 0 H

7F16 ❍ ASI_INTR_DATA1_R R5 4816 Incoming interrupt vector
data Register 0 L

7F16 ❍ ASI_INTR_DATA2_R R5 5016 Incoming interrupt vector
data Register 1 H

7F16 ❍ ASI_INTR_DATA3_R R5 5816 Incoming interrupt vector
data Register 1 L

7F16 ❍ ASI_INTR_DATA4_R R5 6016 Incoming interrupt vector
data Register 2 H

7F16 ❍ ASI_INTR_DATA5_R R5 6816 Incoming interrupt vector
data Register 2 L

7F16 ❍ ASI_INTR_DATA6_R R5 8016 Incoming interrupt vector
data Register 3 H

7F16 ❍ ASI_INTR_DATA7_R R5 8816 Incoming interrupt vector
data Register 3 L

8016 ● ASI_PRIMARY (ASI_P) RW — Implicit primary address
space

8116 ● ASI_SECONDARY (ASI_S) RW — Secondary address space

8216 ● ASI_PRIMARY_NO_FAULT (ASI_PNF) R5 — Primary address space, no
fault

8316 ● ASI_SECONDARY_NO_FAULT (ASI_SNF) R5 — Secondary address space, no
fault

8416–8716 ● — — — Reserved

8816 ● ASI_PRIMARY_LITTLE (ASI_PL) RW — Implicit primary address
space, little-endian

8916 ● ASI_SECONDARY_LITTLE (ASI_SL) RW — Secondary address space,
little-endian

8A16 ● ASI_PRIMARY_NO_FAULT_LITTLE
(ASI_PNFL)

R5 — Primary address space, no
fault, little-endian

8B16 ● ASI_SECONDARY_NO_FAULT_LITTLE
(ASI_SNFL)

R5 — Physical address,
noncacheable, with side
effect, little-endian

8C16–BF16 ● — — — Reserved

C016 ❍ ASI_PST8_PRIMARY (ASI_PST8_P) W11 (decoded) Primary address space, 8×8-
bit partial store

TABLE L-1 JPS1 ASIs (5 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 543

C116 ❍ ASI_PST8_SECONDARY (ASI_PST8_S) W11 (decoded) Secondary address space,
8x8-bit partial store

C216 ❍ ASI_PST16_PRIMARY (ASI_PST16_P) W11 (decoded) Primary address space, 4×16-
bit partial store

C316 ❍ ASI_PST16_SECONDARY (ASI_PST16_S) W11 (decoded) Secondary address space,
4×16-bit partial store

C416 ❍ ASI_PST32_PRIMARY (ASI_PST32_P) W11 (decoded) Primary address space, 2x32-
bit partial store

C516 ❍ ASI_PST32_SECONDARY (ASI_PST32_S) W11 (decoded) Secondary address space,
2×32-bit partial store

C616–C716 ● — — — Implementation dependent1

C816 ❍ ASI_PST8_PRIMARY_LITTLE
(ASI_PST8_PL)

W11 (decoded) Primary address space, 8x8-
bit partial store, little-endian

C916 ❍ ASI_PST8_SECONDARY_LITTLE
(ASI_PST8_SL)

W11 (decoded) Secondary address space,
8×8-bit partial store, little-
endian

CA16 ❍ ASI_PST16_PRIMARY_LITTLE
(ASI_PST16_PL)

W11 (decoded) Primary address space, 4x16-
bit partial store, little-endian

CB16 ❍ ASI_PST16_SECONDARY_LITTLE
(ASI_PST16_SL)

W11 (decoded) Secondary address space,
4×16-bit partial store, little-
endian

CC16 ❍ ASI_PST32_PRIMARY_LITTLE
(ASI_PST32_PL)

W11 (decoded) Primary address space, 2×32-
bit partial store, little-endian

CD16 ❍ ASI_PST32_SECONDARY_LITTLE
(ASI_PST32_SL)

W11 (decoded) Second address space, 2×32-
bit partial store, little-endian

CE16–CF16 ● — — — Implementation dependent1

D016 ❍ ASI_FL8_PRIMARY (ASI_FL8_P) RW8 (decoded) Primary address space, one 8-
bit floating-point load/store

D116 ❍ ASI_FL8_SECONDARY (ASI_FL8_S) RW8 (decoded) Second address space, one 8-
bit floating-point load/store

D216 ❍ ASI_FL16_PRIMARY (ASI_FL16_P) RW8 (decoded) Primary address space, one
16-bit floating-point load/
store

D316 ❍ ASI_FL16_SECONDARY (ASI_FL16_S) RW8 (decoded) Second address space, one 16-
bit floating-point load/store

D416–D716 ● — — — Implementation dependent1

D816 ❍ ASI_FL8_PRIMARY_LITTLE (ASI_FL8_PL) RW8 (decoded) Primary address space, one 8-
bit floating point load/store,
little-endian

TABLE L-1 JPS1 ASIs (6 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description
544 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

#2
D916 ❍ ASI_FL8_SECONDARY_LITTLE
(ASI_FL8_SL)

RW8 (decoded) Second address space, one 8-
bit floating point load/store,
little-endian

DA16 ❍ ASI_FL16_PRIMARY_LITTLE
(ASI_FL16_PL)

RW8 (decoded) Primary address space, one
16-bit floating-point load/
store, little-endian

DB16 ❍ ASI_FL16_SECONDARY_LITTLE
(ASI_FL16_SL)

RW8 (decoded) Second address space, one 16-
bit floating point load/store,
little-endian

DC16–DF16 ● — — — Implementation dependent1

E016 ❍ ASI_BLOCK_COMMIT_PRIMARY
(ASI_BLK_COMMIT_P)

W6,11 (decoded) Primary address space,
8x8- byte block store commit
operation

E116 ❍ ASI_BLOCK_COMMIT_SECONDARY
(ASI_BLK_COMMIT_S)

W6,11 (decoded) Secondary address space,
8x8-byte block store commit
operation

E216–EE16 ● — — — Implementation dependent1

EF16 ❍ (reserved for ASI_BARRIER_SYNCH) — — Implementation dependent1

F016 ❍ ASI_BLOCK_PRIMARY (ASI_BLK_P) RW8 (decoded) Primary address space, 8x8-
byte block load/store

F116 ❍ ASI_BLOCK_SECONDARY (ASI_BLK_S) RW8 (decoded) Secondary address space,
block load/store

F216–F716 ● — — — Implementation dependent1

F816 ❍ ASI_BLOCK_PRIMARY_LITTLE
(ASI_BLK_PL)

RW8 (decoded) Primary address space, block
load/store, little endian

F916 ❍ ASI_BLOCK_SECONDARY_LITTLE
(ASI_BLK_SL)

RW8 (decoded) Secondary address space,
block load/store, little endian

FA16–FF16 ● — — — Implementation dependent1

 [shaded areas in this footnote list are to be deleted] *OLD* Note #

1 Implementation dependent ASI (impl. dep. #29); available for use by
implementors. Software that references this ASI may not be portable.

L-1 #1

2 Causes a data_access_exception trap if the page being accessed is privileged. L-1 #3, L-2 #6
3 8-bit, 16-bit, 32-bit, and 64-bit accesses are allowed. L-2 #2
4 Can be used with LDSTUBA, SWAPA, CAS(X)A. L-2 #5
5 Read(load)-only ASI; a store to this ASI causes a data_access_exception

exception.
L-2 #1(R), L-1

6 May only be used in an STDDA instruction. Use of this ASI in any other store
instrution causes a data_access_exception.

—

TABLE L-1 JPS1 ASIs (7 of 7)

ASI Value

SPARC
V9 (●);
JPS1
(❍) ASI Name (and Abbreviation)

Access
Type(s)

Virtual
Address (VA) Description
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 545

L.3.2 Special Memory Access ASIs
This section describes special memory access ASIs that are not specified in SPARC
V9 and are not described in other sections.

ASI 1416 (ASI_PHYS_USE_EC)

When this ASI is specified in any memory access instructions, hardware does the
following:

■ VA is passed through to PA, and CONTEXT values are disregarded.

■ Address masking is ignored (PSTATE.AM; see PSTATE_address_mask (AM) on
page 73); the VA is used. The VA passed through PA is implementation dependent
(impl. dep. #224).

■ Memory access behaves as if its byte order is big-endian.

Even if data address translation is disabled, the access with this ASI is still a
cacheable access.

ASI 1516 (ASI_PHYS_BYPASS_EC_WITH_EBIT)

Accesses with this ASI bypass the external cache and behave as if the side effect bit
(E bit) is set. When this ASI is specified in any memory access instructions, hardware
does the following:

■ VA is passed through to PA, and CONTEXT values are disregarded.

7 Implementation dependent ASI (impl. dep. #258), intended for use for a part
identification number that is unique to each chip. Software that references this
ASI may not be portable.

L-2 #7, #8

8 May only be used in a LDDFA or STDFA instruction. Use in any other load or
store instrution causes a data_access_exception exception.

L-2 #4

9 May only be used in an LDDA instruction. Use of this ASI in any other load
instrution causes a data_access_exception.

(replaces
L-2 #3)

10 Write(store)-only ASI; a load from this ASI causes a data_access_exception. L-2 #1(W)
11 Write(store)-only ASI; a load from this ASI causes an exception (see section

L.3.2 for details)
—

12 An implementation may or may not decode the virtual address when this ASI
is accessed, but for future compatibility software should always supply VA = 0.

—

‡ This ASI was named ASI_DEVICE_ID+SERIAL_ID in older documents —

 [shaded areas in this footnote list are to be deleted] *OLD* Note #
546 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

■ Address masking is ignored (PSTATE.AM; see PSTATE_address_mask (AM) on
page 73); the VA is used. The VA passed through PA is implementation dependent
(impl. dep. #224).

■ Memory access behaves as if its byte order is big-endian.

ASI 1C16 (ASI_PHYS_USE_EC_LITTLE)

Accesses with this ASI are cacheable. This ASI is a little-endian version of ASI 1416.
When this ASI is specified in any memory access instructions, hardware does the
following:

■ VA is passed through to PA, and CONTEXT values are disregarded.

■ Address masking is ignored (PSTATE.AM; see PSTATE_address_mask (AM) on
page 73); the VA is used. The VA passed through PA is implementation dependent
(impl. dep. #224).

■ Memory access behaves as if its byte order is little-endian.

ASI 1D16 (ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE)

Accesses with this ASI bypass the external cache and behave as if the side effect bit
(E bit) is set. This ASI is a little-endian version of ASI 1516. When this ASI is
specified in any memory access instructions, hardware does the following:

■ VA is passed through to PA, and CONTEXT values are disregarded.

■ Address masking is ignored (PSTATE.AM; see PSTATE_address_mask (AM) on
page 73); the VA is used. The VA passed through PA is implementation dependent
(impl. dep. #224).

■ Memory access behaves as if its byte order is little-endian.

ASIs 2416 and 2C16 (Load Quadword ASIs)

ASIs 2416 (ASI_NUCLEUS_QUAD_LDD) and 2C16
(ASI_NUCLEUS_QUAD_LDD_LITTLE) exist for use with the LDDA instruction as
Load Quadword operations (see A.30 on page 251).

When these ASIs are used with LDDA for Load Quadword, a
mem_address_not_aligned exception is generated if the operand address is not 16-
byte aligned.

If these ASIs are used with any other Load Alternate instruction or any Store
Alternate instruction, a data_access_exception is always generated and
mem_address_not_aligned is not generated.
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 547

ASI 6016 (ASI_IIU_INST_TRAP)

See Instruction Trap Register on page 96 for a description of ASI 6016 and its uses.

Block Load and Store ASIs

ASIs 7016, 7116, 7816, 7916, E016, E116, F016, F116, F816, and F916 exist for use with
LDDFA and STDFA instructions as Block Load and Block Store operations (see A.4 on
page 199).

When these ASIs are used with LDDFA (STDFA) for Block Load (Store), a
mem_address_not_aligned exception is generated if the operand address is not 64-
byte aligned.

ASIs E016 and E116 are only defined for use in Block Store with Commit operations
(using the STDFA opcode). Neither ASI E016 nor E116 should be used with LDDFA;
however, if it is, the following behavior occurs:

1. IMPL. DEP. #255: For LDDFA with ASI E016 or E116, if a destination register
number rd is specified which is not a multiple of 8 ("misaligned" rd), it is
implementation dependent whether the processor generates a
data_access_exception or illegal_instruction exception.

2. IMPL. DEP. #256: For LDDFA with ASI E016 or E116, if a memory address is
specified with less than 64-byte alignment, it is implementation dependent
whether the processor generates a data_access_exception,
mem_address_not_aligned, or LDDF_mem_address_not_aligned exception.

3. If both rd and the memory address are correctly aligned, a
data_access_exception occurs.

If a Block Load or Block Store ASI is used with any other Load Alternate or Store
Alternate instruction, a data_access_exception exception is always generated and
mem_address_not_aligned is not generated.

Partial Store ASIs

ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction as Partial
Store operations (see A.42 on page 282).

When these ASIs are used with STDFA for Partial Store, a mem_address_not_aligned
exception is generated if the operand address is not 8-byte aligned and an
illegal_instruction exception is generated if i = 1 in the instruction.
548 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

If one of these ASIs is used with a Store Alternate instruction other than STDFA or
with a Load Alternate instruction other than LDDFA, a data_access_exception
exception is generated and mem_address_not_aligned,
LDDF_mem_address_not_aligned, and illegal_instruction (for i = 1) are not
generated.

None of these Partial Store ASIs should be used with LDDFA; however, if any of ASIs
C016–C516 or C816–CD16 is used with LDDFA, the LDDFA behaves as follows:

1. IMPL. DEP. #257: For LDDFA with ASI C016–C516 or C816–CD16, if a memory
address is specified with less than 8-byte alignment, it is implementation
dependent whether the processor generates a data_access_exception,
mem_address_not_aligned, or LDDF_mem_address_not_aligned exception.

2. If the memory address is correctly aligned, the processor generates a
data_access_exception.

Short Floating-Point Load and Store ASIs

ASIs D016–D316 and D816–DB16 exist for use with the LDDFA and STDFA instructions
as Short Floating-point Load and Store operations (see A.58 on page 326).

When ASI D216, D316, DA16, or DB16 is used with LDDFA (STDFA) for a 16-bit Short
Floating-point Load (Store), a mem_address_not_aligned exception is generated if
the operand address is not halfword-aligned.

If any of these ASIs are used with any other Load or Store Alternate instruction, a
data_access_exception is always generated and mem_address_not_aligned is not
generated.
Release 1.0.4, 31 May 2002 C. Appendix L • Address Space Identifiers 549

550 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX M

Caches and Cache Coherency

For implementation-dependent caches and cache coherency information, please refer
to Appendix M in specific SPARC JPS1 Implementation Supplements.
Release 1.0.4, 31 May 2002 C. Appendix M • Caches and Cache Coherency 551

552 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX N

Interrupt Handling

Processors and I/O devices can interrupt a selected processor by assembling and
sending an interrupt packet consisting of eight 64-bit words of interrupt vector data.
The contents of these data are defined by software convention. Thus, hardware
interrupts and cross-calls can have the same hardware mechanism for interrupt
delivery and can share a common software interface for processing.

The interrupt requesting/receiving mechanism is a two-step process: the sending of
an interrupt request on a vector data register to the target and the scheduling of the
received interrupt request on the target upon receipt.

An interrupt request packet is sent by the interrupter through the interrupt vector
dispatch mechanism and is received by the specified target through the interrupt
vector receive mechanism. Upon receipt of an interrupt request packet, a special trap
is invoked on the target processor. The trap handler software invoked in the target
processor then schedules the interrupt request to itself by posting the interrupt into
SOFTINT register at the desired interrupt level.

Note that the processor may not send an interrupt request packet to itself through
the interrupt dispatch mechanism. Separate sets of dispatch (outgoing) and receive
(incoming) interrupt data registers allow simultaneous interrupt dispatching and
receiving.

In the following sections, we describe these aspects of interrupt handling:

■ Interrupt Vector Dispatch on page 554
■ Interrupt Vector Receive on page 555
■ Interrupt Global Registers on page 556
■ Interrupt ASI Registers on page 556
■ Software Interrupt Register (SOFTINT) on page 560
Release 1.0.4, 31 May 2002 C. Appendix N • Interrupt Handling 553

N.1 Interrupt Vector Dispatch
To dispatch an interrupt or cross-call, a processor or I/O device first writes to the
Outgoing Interrupt Vector Data Registers according to an established software
convention, described below. A subsequent write to the Interrupt Vector Dispatch
Register (see Interrupt Vector Dispatch Register on page 557) triggers the interrupt
delivery. The status of the interrupt dispatch can be read by polling the
ASI_INTR_DISPATCH_STATUS’s BUSY and NACK bits. A MEMBAR #Sync should
be used before polling begins to ensure that earlier stores are completed. If both
NACK and BUSY are cleared, the interrupt has been successfully delivered to the
target processor. With the NACK bit cleared and BUSY bit set, the interrupt delivery is
pending. Finally, if the delivery cannot be completed (if it is rejected by the target
processor), the NACK bit is set. The pseudocode sequence in CODE EXAMPLE N-1 sends
an interrupt.

The ASI_INTR_DISPATCH_STATUS Register contains 32 pairs of BUSY/NACK bit
pairs enabling interrupts to be pipelined. Specifying a unique pair of BUSY/NACK
bits to be used for each interrupt when writing the Interrupt Dispatch Register
enables up to 32 interrupts to be outstanding at one time.

Note – The processor may not send an interrupt vector to itself through outgoing
interrupt vector data registers. Doing so causes undefined interrupt vector data to be
returned.

CODE EXAMPLE N-1 Code Sequence for Interrupt Dispatch

Read state of ASI_INTR_DISPATCH_STATUS; Error if BUSY

<no pending interrupt dispatch packet>

Repeat

Begin atomic sequence(PSTATE.IE ← 0)

Store to IV data reg 0 at ASI_INTR_W, VA=0x40 (optional)

Store to IV data reg 1 at ASI_INTR_W, VA=0x48 (optional)

Store to IV data reg 2 at ASI_INTR_W, VA=0x50 (optional)

Store to IV data reg 3 at ASI_INTR_W, VA=0x58 (optional)

Store to IV data reg 4 at ASI_INTR_W, VA=0x60 (optional)

Store to IV data reg 5 at ASI_INTR_W, VA=0x68 (optional)

Store to IV data reg 6 at ASI_INTR_W, VA=0x80 (optional)

Store to IV data reg 7 at ASI_INTR_W, VA=0x88 (optional)

Store to IV dispatch at ASI_INTR_W, VA<63:29>=0,
554 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Note – To avoid deadlocks, enable interrupts for some period before retrying the
atomic sequence. Alternatively, implement the atomic sequence with locks without
disabling interrupts.

N.2 Interrupt Vector Receive
When an interrupt is received, all eight Interrupt Data Registers are updated,
regardless of which are being used by software. This update is done in conjunction
with the setting of the BUSY bit in the ASI_INTR_RECEIVE register. At this point,
the processor inhibits further interrupt packets from the system bus. If interrupts are
enabled (PSTATE.IE = 1), then an interrupt trap (implementation-dependent trap
type 6016) is generated. Software reads the ASI_INTR_RECEIVE register and
Incoming Interrupt Data Registers to determine the entry point of the appropriate
trap handler. All of the external interrupt packets are processed at the highest
interrupt priority level and are then reprioritized as lower-priority interrupts in the
software handler. CODE EXAMPLE N-2 illustrates interrupt receive handling.

VA<28:24>=BUSY/NACK bit #,VA<23:14>=ITID,

VA<13:0>=0x70 initiates interrupt delivery

Membar #Sync (wait for stores to finish)

Poll state of ASI_INTR_DISPATCH_STATUS (BUSY, NACK)

Loop if BUSY

End atomic sequence(PSTATE.IE ← 1)

CODE EXAMPLE N-2 Code Sequence for an Interrupt Receive

Read state of ASI_INTR_RECEIVE; Error if !BUSY

Read from IV data reg 0 at ASI_SDB_INTR_R, VA=0x40 (optional)

Read from IV data reg 1 at ASI_SDB_INTR_R, VA=0x48 (optional)

Read from IV data reg 2 at ASI_SDB_INTR_R, VA=0x50 (optional)

Read from IV data reg 3 at ASI_SDB_INTR_R, VA=0x58 (optional)

Read from IV data reg 4 at ASI_SDB_INTR_R, VA=0x60 (optional)

Read from IV data reg 5 at ASI_SDB_INTR_R, VA=0x68 (optional)

Read from IV data reg 6 at ASI_SDB_INTR_R, VA=0x80 (optional)

Read from IV data reg 7 at ASI_SDB_INTR_R, VA=0x88 (optional)

CODE EXAMPLE N-1 Code Sequence for Interrupt Dispatch (Continued)
Release 1.0.4, 31 May 2002 C. Appendix N • Interrupt Handling 555

N.3 Interrupt Global Registers
A separate set of global registers is implemented to expedite interrupt processing.
As described in Interrupt Vector Receive, above, the processor takes an
implementation-dependent interrupt trap after receiving an interrupt packet.
Software uses a number of scratch registers while determining the appropriate
handler and constructing the interrupt state.

A separate set of eight Interrupt Global Registers (IGRs) replaces the eight
programmer-visible global registers during interrupt processing. After an interrupt
trap is dispatched, the hardware selects the interrupt global registers by setting the
PSTATE.IG field. The PSTATE extension is described in Section 5.2.1, Processor State
(PSTATE) Register, on page 5-69. The previous value of PSTATE is restored from the
trap stack by a DONE or RETRY instruction on exit from the interrupt handler.

N.4 Interrupt ASI Registers
MEMBAR #Sync is generally needed after stores to interrupt ASI registers to avoid
unnecessary effects caused by possible prefetches to the locations with side effect.
For examples, see Section 8.9.1, Instruction Prefetch to Side-Effect Locations, in the
Implementation Supplements to this specification.

N.4.1 Outgoing Interrupt Vector Data<7:0> Register
ASI_INTR_W (data 0): ASI = 7716, VA<63:0> = 4016
ASI_INTR_W (data 1): ASI = 7716, VA<63:0> = 4816
ASI_INTR_W (data 2): ASI = 7716, VA<63:0> = 5016
ASI_INTR_W (data 3): ASI = 7716, VA<63:0> = 5816
ASI_INTR_W (data 4): ASI = 7716, VA<63:0> = 6016
ASI_INTR_W (data 5): ASI = 7716, VA<63:0> = 6816
ASI_INTR_W (data 6): ASI = 7716, VA<63:0> = 8016
ASI_INTR_W (data 7): ASI = 7716, VA<63:0> = 8816

Determine the appropriate handler

Handle interrupt or reprioritize this trap and

set the SOFTINT register

CODE EXAMPLE N-2 Code Sequence for an Interrupt Receive (Continued)
556 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Name: ASI_INTR_W: Outgoing Interrupt Vector Data Registers (privileged, write-
only).

TABLE N-1 describes the register field of the eight Outgoing Interrupt Vector Data
Registers.

A write to these eight registers modifies the outgoing Interrupt Dispatch Data
Registers.

Nonprivileged access to this register causes a privileged_action trap. An attempt to
read this register causes a data_access_exception trap.

N.4.2 Interrupt Vector Dispatch Register
ASI 7716

VA<63:39> = 0
VA<38:29> = SID<9:0> (see impl. dep. #246)
VA<28:24> = BUSY/NACK bit pair # (BN),
VA<23:14> = interrupt target identifier (ITID),
VA<13:0> = 7016

Name: ASI_INTR_DISPATCH_W (interrupt dispatch) (Privileged, write-only)

TABLE N-2 describes the fields of the Interrupt Vector Dispatch Register.

A write to this ASI triggers an interrupt vector dispatch to the target CPU identified
with ITID (Interrupt Target ID), using BUSY/NACK bit pair BN along with the
contents of the eight Interrupt Vector Data Registers.

TABLE N-1 Outgoing Interrupt Vector Data Register Format

Bits Field Type Description

63:0 Data W Interrupt data.

TABLE N-2 Interrupt Vector Dispatch Register Format

Bits Field Type Description

VA<28:24> BN W Specifies which of the BUSY/NACK bit pairs to use for the interrupt. 016
in this field (which current software is using) selects BUSY/NACK bits
ASI_INTR_DISPATCH_STATUS<1:0> for backward compatibility. 116 in
this field selects BUSY/NACK bits ASI_INTR_DISPATCH_STATUS<3:2>.

VA<23:14> ITID W Interrupt Target ID. Specifies the interrupt target CPU using the BUSY/
NACK bit pair BN, along with the contents of the eight Interrupt Vector
Data Registers.
Release 1.0.4, 31 May 2002 C. Appendix N • Interrupt Handling 557

IMPL. DEP. #246: When the Interrupt Vector Dispatch Register is written, the source
module identifier (SID) is supplied in VA<38:29>. Which, if any, of the ten VA<38:29>
bits are interpreted by hardware is implementation dependent.

A read from the Interrupt Vector Dispatch Register causes a data_access_exception
trap. Nonprivileged access to this register causes a privileged_action trap.

N.4.3 Interrupt Vector Dispatch Status Register
ASI 4816

VA<63:0> = 0

Name: ASI_INTR_DISPATCH_STATUS (Privileged, read-only)

TABLE N-3 describes the fields of the Interrupt Vector Dispatch Status Register.

IMPL. DEP. #243: The number of BUSY/NACK bit pairs implemented in the Interrupt
Vector Dispatch Status Register is implementation dependent.

The status of up to 32 outgoing interrupts can be read from
ASI_INTR_DISPATCH_STATUS BUSY/NACK bits. This register contains up to 32
pairs of BUSY/NACK bit pairs: the pair at <1:0> is referred to as pair 0, <3:2> as pair
1, and so on up to pair 31 at bits <63:62>. The VA<28:24> field of the Interrupt
Dispatch Register specifies which BUSY/NACK bit pair will be used for the interrupt.

Writes to this ASI cause a data_access_exception trap. Nonprivileged access to this
register causes a privileged_action trap.

N.4.4 Incoming Interrupt Vector Data<7:0>
ASI_INTR_R (data 0): ASI = 7F16, VA<63:0> = 4016
ASI_INTR_R (data 1): ASI = 7F16, VA<63:0> = 4816
ASI_INTR_R (data 2): ASI = 7F16, VA<63:0> = 5016
ASI_INTR_R (data 3): ASI = 7F16, VA<63:0> = 5816
ASI_INTR_R (data 4): ASI = 7F16, VA<63:0> = 6016

TABLE N-3 Interrupt Dispatch Status Register Format

Bits Field Type Description

odd NACK R Set if interrupt dispatch has failed. Cleared at the start of every interrupt
dispatch attempt; set when a dispatch has failed.

even BUSY R Set when there is an outstanding dispatch.
558 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

ASI_INTR_R (data 5): ASI = 7F16, VA<63:0> = 6816
ASI_INTR_R (data 6): ASI = 7F16, VA<63:0> = 8016
ASI_INTR_R (data 7): ASI = 7F16, VA<63:0> = 8816

Name: ASI_INTR_R

TABLE N-4 describes the register field of the eight Incoming Interrupt Vector Data
Registers.

A read from these registers returns incoming interrupt information from the
incoming Interrupt Receive Data Registers.

Nonprivileged access to this register causes a privileged_action trap.

N.4.5 Interrupt Vector Receive Register
ASI 4916

VA<63:0> = 0

Name: ASI_INTR_RECEIVE (Privileged)

TABLE N-5 describes the fields of the Interrupt Receive Register.

The status of an incoming interrupt can be read from ASI_INTR_RECEIVE. The
BUSY bit is cleared by writing 0 to this register.

TABLE N-4 Incoming Interrupt Vector Data Register Format

Bits Field Type Use — Description

63:0 Data R Interrupt data.

TABLE N-5 Interrupt Receive Register Format

Bits Field Type Description

63:11 R Reserved.

10:6 SID_U R Most significant (Upper) 5 bits of the physical module ID (MID) of the
interrupter. Source ID bits <9:5> of interrupter.

5 BUSY RW Set when an interrupt vector is received. The BUSY bit must be cleared by
software writing 0.

4:0 SID_L R Least significant (Lower) 5 bits of the physical module ID (MID) of the
interrupter.
Release 1.0.4, 31 May 2002 C. Appendix N • Interrupt Handling 559

IMPL. DEP. #247: Which, if any, of the 10 bits of the physical module ID (MID) of the
interrupt source is set by hardware in the SID_U and SID_L fields of the Interrupt
Vector Receive Register is implementation dependent. Also, the source of the
physical module ID (MID) bits is implementation dependent.

Nonprivileged access to the Interrupt Vector Receive Register causes a
privileged_action trap.

N.5 Software Interrupt Register (SOFTINT)
To schedule interrupt vectors for processing at a later time, each processor can send
itself signals by setting bits in the SOFTINT register.

TABLE 5-16 on page 89 describes the fields of the SOFTINT register.

The SOFTINT register (ASR 1616) is used for communication from nucleus (TL > 0)
code to kernel (TL = 0) code. Interrupt packets and other service requests can be
scheduled in queues or mailboxes in memory by the nucleus, which then sets
SOFTINT<n> to cause an interrupt at level <n>.

Nonprivileged access to this register causes a privileged_opcode trap.

N.5.1 Setting the Software Interrupt Register
Setting SOFTINT<n> is done by a write to the SET_SOFTINT register (ASR 1416),
with bit n corresponding to the interrupt level set. The value written to the
SET_SOFTINT register is effectively ORed into the SOFTINT register. This approach
allows the interrupt handler to set one or more bits in the SOFTINT register with a
single instruction.

Read accesses to the SET_SOFTINT register cause an illegal_instruction trap.
Nonprivileged accesses to this register cause a privileged_opcode trap.

When the nucleus returns, if (PSTATE.IE = 1) and (n > PIL), then the processor
will receive the highest-priority interrupt IRL<n> of the asserted bits in
SOFTINT<16:0>. The processor then takes a trap for the interrupt request, and the
nucleus sets the return state to the interrupt handler at that PIL and returns to
TL = 0. In this manner, the nucleus can schedule services at various priorities and
process them according to their priority.
560 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

N.5.2 Clearing the Software Interrupt Register
When all interrupts scheduled for service at level n have been serviced, the kernel
writes to the CLEAR_SOFTINT register (ASR 1516) with bit n set, to clear that
interrupt. The complement of the value written to the CLEAR_SOFTINT register is
effectively ANDed with the SOFTINT register. This approach allows the interrupt
handler to clear one or more bits in the SOFTINT register with a single instruction.

Read accesses to the CLEAR_SOFTINT register cause an illegal_instruction trap.
Nonprivileged write accesses to this register cause a privileged_opcode trap.

The timer interrupt TICK_INT and system timer interrupt STICK_INT are
equivalent to SOFTINT<14> and have the same effect.

Note – To avoid a race condition between the kernel clearing an interrupt and the
nucleus setting it, the kernel should examine the queue for any valid entries again
after clearing the interrupt bit

TABLE N-6 summarizes the SOFTINT ASRs.

TABLE N-6 SOFTINT ASRs

ASR Value ASR Name Type Description

1416 SET_SOFTINT W Set bit(s) in Soft Interrupt Register.

1516 CLEAR_SOFTINT W Clear bit(s) in Soft Interrupt Register.

1616 SOFTINT RW Per-processor Soft Interrupt Register.
Release 1.0.4, 31 May 2002 C. Appendix N • Interrupt Handling 561

562 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX O

Reset, RED_state, and Error_state

RED_state (Reset, Error, and Debug state) is a restricted execution state reserved
for processing traps that occur when TL = MAXTL − 1 and for processing hardware-
and software-initiated resets.

This chapter examines RED_state in the following sections:

■ RED_state Characteristics on page 563
■ Resets on page 564
■ RED_state Trap Vector on page 565
■ Machine States on page 565

O.1 RED_state Characteristics
A reset or trap that sets PSTATE.RED (including a trap in RED_state) will clear the
DCU Control Register, including the enable bits for I-cache, D-cache, IMMU,
DMMU, and virtual and physical watchpoints. The characteristics of RED_state
include the following:

■ The default access in RED_state is noncacheable, so there must be noncacheable
scratch memory somewhere in the system.

■ The D-cache, watchpoints, and DMMU can be enabled by software in
RED_state, but any trap will disable them again.

■ The IMMU and consequently the I-cache are always disabled in RED_state.
Disabling overrides the enable bits in the DCU control register.

■ When PSTATE.RED is explicitly set by a software write, there are no side effects
other than disabling the IMMU. Software must create the appropriate state itself.

■ Trap when TL = MAXTL − 1 immediately brings the processor into RED_state.
In addition, trap when TL = MAXTL immediately brings the processor into
error_state. Recovery from error_state, regardless of the means (impl.
dep. #254), returns the processor to RED_state.
Release 1.0.4, 31 May 2002 C. Appendix O • Reset, RED_state, and Error_state 563

■ Any trap while in RED_state will cause the processor to enter error_state.

■ A SIR instruction generates an SIR trap on the local processor.

■ Trap to software-initiated reset causes an SIR trap on the processor and brings the
processor into RED_state.

■ The External Reset pin generates an XIR trap, which is used for system debug.

■ The caches continue to snoop and maintain coherence if DMA or other processors
are still issuing cacheable accesses.

Note – Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a JMPL
is not recommended. A noncacheable instruction prefetch can be made to the JMPL
target, which may be in a cacheable memory area. This condition could result in a
bus error on some systems and cause an instruction access error trap. Exiting
RED_state with DONE or RETRY avoids the problem.

O.2 Resets
Reset priorities from highest to lowest are power-on resets (POR, hard or soft),
externally initiated reset (XIR), watchdog reset (WDR), and software-initiated reset (SIR).

Please refer to Reset Traps on page 139 and Special Trap Processing on page 155. See
also Section O.2 in SPARC JPS1 Implementation Supplements for implementation-
specific details.

O.2.1 Externally Initiated Reset (XIR)
An externally initiated reset (XIR) is sent to the processor through an external
hardware pin. It causes a SPARC V9 XIR, which has a trap type 316 at physical
address offset 6016. XIR has higher priority than all other resets except hard POR and
soft POR.

XIR affects only one processor, rather than the entire system. Memory state, cache
state, and most Control Status Register state (see TABLE O-1) are unchanged. System
coherency is not guaranteed to be maintained through an XIR reset. The saved PC
and nPC will only be approximate because the trap is not precise with respect to
pipeline state. An XIR will reset internal pipeline state machines to free a hardware
pipeline hang condition.
564 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

O.2.2 error_state and Watchdog Reset (WDR)
A SPARC JPS1 processor enters error_state when a trap occurs at TL = MAXTL.

If the processor automatically exits error_state using WDR (impl. dep. #254), the
processor signals itself internally to take a watchdog reset (WDR) and sets TT = 2.
The WDR traps at physical address offset 4016.

WDR affects only one processor, rather than the entire system. CWP updates due to
window traps that cause watchdog traps are the same as the no watchdog trap case.

O.2.3 Software-Initiated Reset (SIR)
A software-initiated reset is initiated by a SIR instruction within any processor. This
per-processor reset has a trap type 4 at physical address offset 8016. SIR affects only
one processor, rather than the entire system.

O.3 RED_state Trap Vector
When a SPARC V9 processor processes a reset or trap that enters RED_state, it
takes a trap at an offset relative to the RED_state_trap_vector base address
(RSTVaddr).

■ In SPARC V9, RSTVaddr is fixed at virtual address FFFF FFFF F000 000016.

■ RSTVaddr passes through to an implementation-dependent physical address
(impl. dep. #114).

O.4 Machine States
TABLE O-1 shows the machine states created as a result of any reset or when
RED_state is entered.

TABLE O-1 Machine State After Reset and When Entering RED_state (1 of 4)

Name Fields POR WDR XIR SIR RED_state‡

Integer registers Undefined Undefined

Floating-point registers Undefined Undefined
Release 1.0.4, 31 May 2002 C. Appendix O • Reset, RED_state, and Error_state 565

RSTVaddr VA = FFFF FFFF F000 000016
PA = implementation dependent (impl. dep. #114)

PC

nPC

RSTV | 2016

RSTV | 2416

RSTV | 4016

RSTV | 4416

RSTV | 6016

RSTV | 6416

RSTV | 8016

RSTV | 8416

RSTV | A016

RSTV | A416

PSTATE MM

RED

PEF

AM

PRIV

IE

AG

CLE

TLE

IG

MG

0 (TSO)
1 (RED_state)
1 (FPU on)
0 (Full 64-bit address
1 (Privileged mode)
0 (Disable interrupts)
1 (Alternate globals
selected)
0 (Current little-endian)
0 (Trap little-endian)
0 (Interrupt globals not
selected)
0 (MMU globals not
selected)

0 (TSO)
1 (RED_state)
1 (FPU on)
0 (Full 64-bit address)
1 (Privileged mode)
0 (Disable interrupts)
1 (Alternate globals selected)

PSTATE.TLE

Undefined
0 (Interrupt globals not selected)

0 (MMU globals not selected)

TBA<63:15> Undefined Undefined

Y Undefined Undefined

PIL Undefined Undefined

CWP Undefined Undefined except for register window traps

TT[TL] 1 trap type
or 2†

3 4 trap type

CCR Undefined Undefined
UndefinedASI Undefined

TL MAXTL Min(TL+1, MAXTL)

TPC[TL]

TNPC[TL]

Undefined
Undefined

PC

nPC

Impl. dep.
Impl. dep

PC

nPC

TSTATE CCR

ASI

PSTATE

CWP

PC

nPC

Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

CCR

ASI

PSTATE

CWP

PC

nPC

TICK NPT

counter

1
Restart at 0

Undefined
Count

Undefined
Restart at 0

Undefined
Count

CANSAVE Undefined Undefined

CANRESTORE Undefined Undefined

TABLE O-1 Machine State After Reset and When Entering RED_state (2 of 4)

Name Fields POR WDR XIR SIR RED_state‡
566 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

OTHERWIN Undefined Undefined

CLEANWIN Undefined Undefined

WSTATE OTHER

NORMAL

Undefined
Undefined

Undefined
Undefined

VER MANUF

IMPL

MASK

MAXTL

MAXWIN

Implementation dependent (impl. dep. #104)
Implementation dependent (impl. dep. # 13)
Mask dependent
5
7

FSR all 0 Undefined

FPRS all Undefined Undefined

Non-SPARC V9 ASRs

SOFTINT Undefined Undefined

TICK_COMPARE INT_DIS

TICK_CMPR

1 (off)
0

Undefined
Undefined

STICK NPT

counter

1
0

Undefined
Count

STICK_COMPARE INT_DIS

TICK_CMPR

1 (off)
0

Undefined
Undefined

PCR Implementation dependent

PIC Implementation dependent

GSR IM

others
0
Undefined

Undefined
Undefined

DCR MS

SI

RPE

BPE

0 (impl. dep. # 204)
0 (impl. dep. # 204)
0 (impl. dep. # 204)
0 (impl. dep. # 204)

Undefined (impl. dep. # 204)

bits 13:6
bit 1

(impl. dep. #203)
(impl. dep. #203)

Non-SPARC V9 ASIs

DCUCR bits 47:41 (impl. dep. #240)

all others 0 (off) 0 (off)

INST_BREAKPOINT all 0 (off) Undefined

VA_DATA_WATCHPOINT Undefined Undefined

PA_DATA_WATCHPOINT Undefined Undefined

TABLE O-1 Machine State After Reset and When Entering RED_state (3 of 4)

Name Fields POR WDR XIR SIR RED_state‡
Release 1.0.4, 31 May 2002 C. Appendix O • Reset, RED_state, and Error_state 567

*This register is read-only from the system.
‡ Processor states are only updated according to this table if RED_state is entered because of a reset or a trap. If RED_state is entered

because the PSTATE.RED bit was explicitly set to 1, then software must create the appropriate states itself.

UPDATED - this register field is updated from its shadow register.
† If WDR occurs in error_state, then it preserves the trap type of the trap that caused entry into error_state. If WDR occurs outside

of error_state, it sets TT[TL] to 2.

I_SFSR, D_SFSR ASI

FT

E

CTXT

PRIV

W

OW
(overwrite)
FV (SFSR
valid)
NF

TM

Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

0

Undefined
Undefined

Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

Undefined

Undefined
Undefined

D_SFAR Undefined Undefined

Interrupt Vector
Dispatch Status register
(ASI_INTR_DISPATCH)

all 0 Undefined

Interrupt Vector Receive
register
(ASI_INTR_RECEIVE)

BUSY 0 Undefined

MID Undefined Undefined

AFAR PA Undefined Undefined

AFSR all Impl. dep. Undefined

TABLE O-1 Machine State After Reset and When Entering RED_state (4 of 4)

Name Fields POR WDR XIR SIR RED_state‡
568 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX P

Error Handling

This appendix describes processor behavior to operating system and OpenBoot
PROM programmers writing error diagnosis and recovery code for the SPARC JPS1
processor. The information provides them with the basics in the intent and
assumptions in defining error handling.

A traditional approach to handling errors in SPARC is to share the process over
hardware and software. This approach gives us much more information about the
error for later analysis and maintains flexibility in the process of error handling than
do the alternatives. As the latest member in SPARC V9, the JPS1 processor follows
tradition and takes a hardware-software combined approach in handling errors.

Errors are detected by hardware and are signalled through a trap to the recovery
software, which is usually operating system software. The most basic part of the
information is recorded in hardware and is saved by the recovery software for later
analysis. The major part of the error information (for example, contents of critical
part in main storage) is also saved by the software for later analysis. In many
respects, maintaining data integrity is a key objective in error handling.

Errors are categorized by severity into few classes. Depending on the severity of
error, the way to signal an error varies. Traps range from a request just to save the
error information recorded by hardware to a request for immediate processing of an
error with software.

Some errors provide sufficient cause to halt the entire system immediately, because
of possible loss of system consistency. Such cases can signal system hardware
directly without software intervention, requesting error handling from system
hardware or a service processor for appropriate recovery.

Error handling is described in the following sections:

■ Error Classes and Signalling on page 570
■ Corrective Actions on page 571
■ Related Traps on page 578
■ Related Registers/Error Logging on page 579
■ Signalling/Special ECC on page 580
Release 1.0.4, 31 May 2002 C. Appendix P • Error Handling 569

P.1 Error Classes and Signalling
An error is categorized according to its severity and its characteristics with respect to
instruction execution.

P.1.1 Error Classes in Severity
The classes of error in order of severity are as follows:

1. Hardware-corrected errors. Hardware tries to correct the error automatically. A
trap is optionally generated to log the error conditions when the error is corrected
to enable the actions for preventive maintenance. Upon failure to correct the error,
the processor could invoke a trap requesting software recovery.

2. Software-correctable errors. Hardware does not correct the error automatically.
Instead, it invokes a trap requesting the recovery software to correct the error.
Corrective actions are expected from the recovery software. If recovery is
successful, the system should continue the operation.

3. Uncorrectable errors. The error is by its nature uncorrectable, and hardware
invokes a trap to signal the occurrence of the error to appropriate recovery
software. Depending on the condition under which the error occurs, the system
may be able to recover from the error and continue operation. If not, it may be
able to isolate the error to a particular process and terminate it. Otherwise, the
software should shut down the system gracefully.

4. Fatal errors. By its nature, the error indicates either loss of system consistency or
a system interconnect protocol error. It is dangerous to continue operation in this
situation because of the impending threat of a failure to maintain data integrity.
Therefore, upon the detection of the error, the processor generates an ERROR
signal to its interconnect, expecting to be halted/reset by the system. System
actions induced by the ERROR signal are system-implementation-dependent.

P.1.2 Errors Asynchronous to Instruction Execution
Some errors can be detected asynchronously to instruction execution; other errors
are detected in the course of an instruction execution.

An error asynchronous to instruction execution is signalled either through a
disrupting trap to the processor or through an ERROR signal to system hardware to
induce a system reset, depending on the severity of the error.
570 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

The errors signalled through a disrupting trap do not directly affect the result of
programs, and it is difficult to locate programs affected by the error without any
visible effect. Therefore, the actions in response to the errors asynchronous to
instruction execution are to save the error information for preventive maintenance.

Errors signalled with an ERROR are meant either to be loss of system consistency or
a protocol error on system interconnect.

On the other hand, an error detected in the course of an instruction execution is
signalled through an error trap to the instruction, with additional information
recorded in hardware. The trap is either precise or deferred. The program (process)
affected by the error should be given a corrected response, or if the error is
uncorrectable, the process should be terminated appropriately.

IMPL. DEP. #208: The order in which errors are captured in instruction execution is
implementation dependent in SPARC JPS1. Ordering could be in program order or
in the order of detection.

Note – Both hardware and software must take special care in handling a deferred
trap invoked with an error. Hardware must record the state information of the
privileged_mode bit (PSTATE.PRIV) either upon detection of the error or upon
execution of the instruction that encounters the error. Software must insert an error
barrier at the environmental boundary to make valid the privileged/nonprivileged
status information recorded by hardware.

P.2 Corrective Actions
Errors are handled by invocation of one of the following actions:

■ Reset-inducing ERROR signal. A fatal error generates an ERROR signal to
induce a system reset. Both an error detected in the course of instruction
execution and an error asynchronous to instruction execution may generate an
ERROR signal (impl. dep. #212).

■ Precise traps. Either a software-correctable error or an uncorrectable error
generates a precise trap to request software to intervene before normal processor
execution continues. An error detected in the course of an instruction execution
generates this type of trap.

■ Deferred traps. An uncorrectable error requiring immediate attention generates a
deferred trap to request software intervention. The recovery software examines
the recorded error information to determine the extent of the damage caused by
the error. Depending on the observed effect, the system may need to be brought
Release 1.0.4, 31 May 2002 C. Appendix P Error Handling 571

down, or it may continue to run when the effect is within the user program. In
any event, the error does not require immediate reset for the system. An error
detected in the course of an instruction execution generates this type of trap.

■ Disrupting traps. Either an instruction-induced error or an error asynchronous to
instruction execution generates this type of trap to request logging and clearing.
The error does not otherwise affect processor execution.

Although traps have some implementation-dependent characteristics for signalling
errors, the following subsections describe trap types and trap names corresponding
to the actions described above. Relation between errors and actions is depicted in
FIGURE P-1.

IMPL. DEP. #209: Precision of the trap to signal an instruction-induced error of
which recovery requires software intervention is implementation dependent in
SPARC JPS1.

FIGURE P-1 Error Classes and Corrective Actions

(Synchronous) Errors

Precise Trap

Deferred Trap

Disrupting Trap

ERROR Signal

Hardware-Corrected Error

Software-Correctable Error

 Errors Asynchronous to
 Instruction Execution

Error Classes Error Signalling

Uncorrectable Error

Fatal Error

Uncorrectable Error

Uncorrectable Error

Software-Uncorrectable
but Recoverable Error

Instruction-Induced
572 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

P.2.1 Reset-Inducing ERROR Signal
It is usually impossible to recover a system or a coherence domain that suffers loss
of system or domain coherency because of various error conditions in caches or in
the system interconnect that carries coherency transactions. The characteristic
examples of such error conditions are an interconnect address error and an error in
E-cache tag status information.

Upon the detection of an error condition that indicates loss of system or domain
coherency, the system or processor tries to stop everything to maintain data integrity
by shutting down the system or domain as soon as possible. The error class that
indicates loss of system/domain coherence is called fatal error, as defined in the
preceding section. When a fatal error is detected by a processor, the processor asserts
its ERROR output signal to system hardware. Although the processor expects the
system to generate a system reset for entire system or coherence domain in response
to the ERROR output signal, the actual response of the system when it receives an
ERROR signal depends on the system design.

IMPL. DEP. #210: The following aspects of the ERROR output signal are
implementation dependent in SPARC JPS1:

■ The causes of the ERROR signal
■ Whether each of the causes of the ERROR signal, when it generates the ERROR

signal, halts the processor or allows the processor to continue running
■ The exact semantics of the ERROR signal

For exact definitions of the causes and semantics of the ERROR output signal, please
refer to individual JPS1 Implementation Supplements.

To provide basic information for fault analysis on a fatal error, the processor
preserves some part of the contents of error logging registers beyond the system/
domain reset induced by the ERROR signal. For the definitions of machine states
after reset, please refer to Appendix O, Reset, RED_state, and Error_state, of JPS1
Implementation Supplements.

The expected scenario is as follows:

After the system/domain reset in response to an ERROR signal, system/domain
initialization software takes charge of system recovery. During the system
initialization process, the software examines error logging registers to locate the
source of the reset and the cause of the fatal error. The software further saves the
information, including the contents of error logging registers, to provide later fault
analysis with as much information as possible.

IMPL. DEP. #211: The information that the error logging registers preserves beyond
the reset induced by an ERROR signal is implementation dependent in SPARC JPS1.
Release 1.0.4, 31 May 2002 C. Appendix P Error Handling 573

Although most fatal errors that lead to an assertion of ERROR signal do not cause
any special processor behavior, in some cases, depending on the implementation,
there are a few fatal errors for which the processor asserts an ERROR signal and
begins a trap execution.

IMPL. DEP. #212: Generation of a trap along with assertion of an ERROR signal upon
detection of a fatal error is implementation dependent in SPARC JPS1.

P.2.2 Precise Traps
A precise trap occurs before any program-visible state has been modified by the
instruction to which the TPC points. When a precise trap occurs, several conditions
are true:

1. The PC saved in TPC[TL] points to the instruction that induced the trap and the
nPC saved in TNPC[TL] points to the instruction that was to be executed next.

2. All instructions issued before the instruction pointed to by the TPC have
completed execution.

3. Any instructions issued after the instruction pointed to by the TPC remain
unexecuted.

A precise trap is invoked when a software-correctable error or an uncorrectable error
is detected. By its definition, a precise trap is only generated with an error detected
in the course of an instruction execution.

A precise trap is signalled when an error that needs software intervention for
recovery is detected. Depending on the condition under which the error occurs, the
system may be able to recover from the error and continue operation. If not, it may
be able to isolate the error to a particular process and terminate it. Otherwise, the
software should shut down the system gracefully. State information saved in the
trap stack can help the software error handler identify the privileged state under
which the error is detected.

P.2.3 Deferred Traps
Depending on the implementation of instruction execution control, there may be
cases in which completion of instruction execution is out of its program order. If an
error is detected in the course of such instruction, the error is signalled with a
deferred trap. Deferred traps may corrupt the processor state. Such traps lead to
termination of the currently executing process or result in a system shutdown if the
system state has been corrupted. Error logging information allows software to
determine if system state has been corrupted.
574 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

In SPARC JPS1 processors, the privileged state information related to the error is
logged into one of the error status registers. A bit in the error status register
indicates the privileged state of the processor, either when it detects the error or
when it executes the instruction that encounters the error. For details, refer to the
Implementation Supplements.

Note – In SPARC JPS1, Asynchronous Fault Status Register (AFSR) may contain a
bit to indicate the privileged state bit (AFSR.PRIV) associated with the error.

IMPL. DEP. #213: The existence of the AFSR.PRIV bit is implementation dependent.
If AFSR.PRIV is implemented, it is implementation dependent whether the logged
AFSR.PRIV indicates the privileged state upon the detection of an error or upon the
execution of an instruction that induces the error. For the former implementation to
be effective, operating software must provide error barriers appropriately.

See Error Barriers, below, for more information.

IMPL. DEP. #214: Whether an implementation provides an enable/disable control
feature for deferred traps is implementation dependent in SPARC JPS1.

Error Barriers

A MEMBAR #Sync instruction provides an error barrier for deferred traps. It ensures
that deferred traps from earlier memory references are not reported after the
MEMBAR. To provide error isolation between processes, use a MEMBAR #Sync when
context switching or whenever the error logging information that identifies
AFSR.PRIV bit is changed. Note that traps do not provide the same function as
MEMBAR #Sync.

IMPL. DEP. #215: DONE and RETRY instructions may implicitly provide an error
barrier function as MEMBAR #Sync. Whether DONE and RETRY instructions provide
an error barrier is implementation dependent in SPARC JPS1.

TPC, TNPC, and Deferred Traps

After a deferred trap, the contents of TPC[TL] and TNPC[TL] are undefined. They
do not generally contain the oldest nonexecuted instruction and its next PC. Because
of this, execution cannot normally be resumed from the point that the trap is taken.

Deferred Trap Handler Functionality

The following is a possible sequence to handle an error signalled through a deferred
trap. In this sequence, a pair of error logging registers—an error status register and
an error address register—is assumed as described above.

1. Log the error(s).
Release 1.0.4, 31 May 2002 C. Appendix P Error Handling 575

2. Reset the error logging bits in the error status register. Perform a MEMBAR #Sync
to complete internal state changes.

3. Panic if the error occurs under privileged state not performing an intentional
peek/poke (See Special Access Sequence for Recovering Deferred Traps on page 576);
otherwise, try to continue.

4. Validate the faulty location, if required, based on the information logged.

5. Abort the current process.

6. For user-process uncorrectable errors in a conventional UNIX system, once all
processes using the physical page in error have been signalled and terminated, as
part of the normal page recycling mechanism, clear the uncorrectable error from
main memory by zeroing the page, using block store instructions.

7. Resume execution.

Special Access Sequence for Recovering Deferred Traps

A special access sequence is required for intentional peeks and pokes to determine
device presence and correctness, and for I/O accesses from hardened drivers that
must survive faults in an I/O device. This special access sequence allows the error
trap handler to recover predictably, even though the trap is deferred. One possible
sequence is described here.

The procedure is for an error signalled for data reference, meaning that the sequence
is executed in a data_access_error trap handler.

The_peeker:
<set a flag indicating special peek sequence is about to
occur. This flag includes specifying the handler as a
Special_peek_handler if a deferred TO/BERR does occur>

MEMBAR #Sync /* error barrier for deferred traps, [1] see
 explanation below*/

<call routine to do the peek>

<reset the peek_sequence>

<check success/failure indication from peek>

Do_the_peek_routine:
<perform load. If deferred trap occurs, execution will never
resume here>

MEMBAR #Sync /* error barrier; make sure load takes */

<indicate peek success>

<return to peeker>
576 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Special_peek_handler:
<indicate peek failure>

<return to peeker as if returning from Do_the_peek_routine>

Deferred_trap_handler: (TL = 1)
 <If the deferred trap handler sees a UE or TO or BERR and

the peek_sequence_flag is set, it resumes execution at the
Special_peek_handler (by setting TPC and TNPC)>

Other than the load (or store, in the case of poke), Do_the_peek_routine should
not have any other side effect since the deferred trap means that the code is not
restartable. Execution after the trap is resumed in Special_peek_handler.

The code in Deferred_trap_handler must be able to recognize any deferred
traps that happen as a result of hitting the error barrier in The_peeker as not being
from the peek operation. This will typically be part of setting the
peek_sequence_flag.

A MEMBAR #Sync is required as the first instruction in the trap table entry for
Deferred_trap_handler to collect all potential trapping stores together to avoid
a RED_state exception (see Error Barriers on page 575).

TPC or AFAR can be used to identify whether a deferred trap came from a peek or
poke sequence. If TPC is used, the locality of the trap to Do_the_peek_routine
must be ensured by use of an error barrier, as in the example above. If AFAR is used,
the presence of orphaned errors, resulting from the asynchronous activity of the
instruction fetcher, must be considered. If an orphaned error occurs, then the source
of the TO or BERR report cannot be determined from the AFAR. Given the error
barrier sequence above, it is reasonable to expect that the TO or BERR resulted from
the peek or poke and to proceed accordingly. To reduce the likelihood of this event,
orphaned errors could be cleaned at point [1] above. The source of the TO or BERR
could be confirmed by retrying the peek or poke: If the TO or BERR happens again,
the system can continue with the normal peek or poke failure case. If the TO or BERR
does not happen, the system must panic.

The peek access should be preceded and followed by MEMBAR #Sync instructions.
The destination register of the access may be destroyed, but no other state will be
corrupted. If TPC points to the MEMBAR #Sync following the access, then the trap
handler knows that a recoverable error has occurred and resumes execution after
setting a status flag. The trap handler must set TNPC to TPC + 4 before resuming
because the contents of TNPC are otherwise undefined.

P.2.4 Disrupting Traps
Disrupting traps, like deferred traps, may have changed their program-visible state
since the instruction that caused them. The following are true for a disrupting trap:
Release 1.0.4, 31 May 2002 C. Appendix P Error Handling 577

1. The PC saved in TPC[TL] points to a valid instruction that will be executed by the
program, and the nPC saved in TNPC[TL] points to the instruction that will be
executed after that one.

2. All instructions issued before the one pointed to by the TPC have completed
execution.

3. Any instructions issued after the one pointed to by the TPC remain unexecuted.

Errors that lead to disrupting traps are hardware-corrected errors and uncorrectable
errors. A hardware-corrected error in the course of an instruction execution, an
uncorrectable error, or a hardware-corrected error triggered with an asynchronous
event may cause a disrupting trap.

The disrupting trap handler should save the information on the error logged in error
status registers. No special operations such as cache flushing are required for
correctness after a disrupting trap. However, for many errors, it is appropriate to
correct the data that produced the original error so that later references to the same
faulty data do not produce the same trap again. For uncorrectable errors, software
must determine the recovery mechanism with the minimum system impact.

For hardware-corrected errors, SPARC JPS1 implementations should provide a
mechanism to enable and disable traps for software error handling. In some cases,
software disables these disrupting traps and only reads the logging information
periodically to gather error statistics for later preventive maintenance.

Note – To prevent multiple traps from the same error, software should not reenable
interrupts until after the disrupting error status bit in AFSR is cleared.

P.3 Related Traps
SPARC JPS1 processors use the following traps for error signalling:

■ data_access_error [tt = 3216]: An error, either precise or deferred, detected
during execution of data reference. The error is detected in the course of a
memory reference instruction execution.

■ instruction_access_error [tt = 0A16]: An error, either precise or deferred,
detected during instruction fetch reference. The error is detected in the course of
an instruction fetch reference.

■ ECC_error [tt = 6316]: A disrupting trap. Either an error corrected automatically
by hardware or an uncorrectable error. Both an instruction-inducing error and an
error asynchronous to instruction execution are possible.
578 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

IMPL. DEP. #216: The precision of a data_access_error trap is implementation
dependent in SPARC JPS1.

IMPL. DEP. #217: The precision of an instruction_access_error trap is
implementation dependent in SPARC JPS1.

The followings traps are used in SPARC JPS1 processors as JPS1 implementation-
dependent traps. See the Implementation Supplement for details.

■ fast_ECC_error [tt = 7016]: A precise trap for the system to be able to continue
operation. A single-bit or multiple-bit ECC error is detected (impl. dep. #202).

■ async_data_error [tt = 4016]: An implementation-dependent trap (impl. dep.
#31, #218) that signifies an urgent error, to be processed as soon as possible.
Precise, deferred, or disrupting. When async_data_error is not precise, the TPC
and TNPC stacked by the trap are not necessarily related to the instruction or data
access that caused the error.

IMPL. DEP. #218: Whether async_data_error trap is implemented is
implementation dependent. If it does exist, it indicates that an error is detected in
a processor core and its trap type is 4016.

P.4 Related Registers/Error Logging
Although the SPARC JPS1 processor contains some error logging registers,
information about an error is always recorded in a pair of error logging registers: an
error status register to identify causes of error, and an error address register to get
address information for an error. Therefore, the amount of information for an error
does not exceed two 64-bit words. Note that an error status register and an error
address register do not mean a single entity each. Rather, they mean one of multiple
status registers and one of multiple address registers paired to the status register. In
each error condition, the valid pair of error logging register varies, for convenience
in software error handling.

In addition, for instruction-related errors signalled as an instruction_access_error
trap, address information is provided in TPC[TL], not in an explicit logging register.

The following registers are provided in the SPARC JPS1 processor for error handling:

■ Instruction Synchronous Fault Status Register (ISFSR: ASI = 5016, VA = 1816)

■ Data Synchronous Fault Status Register (DSFSR: ASI = 5816, VA = 1816)

■ Data Synchronous Fault Address Register (DSFAR: ASI = 5816, VA = 2016)

■ Asynchronous Fault Status Register (AFSR: ASI = 4C16, VA = 016)

■ Asynchronous Fault Address Register (AFAR: ASI = 4D16, VA = implementation
dependent)
Release 1.0.4, 31 May 2002 C. Appendix P Error Handling 579

IMPL. DEP. #219: Allocation of Asynchronous Fault Address Register (AFAR) is
implementation dependent in SPARC JPS1. There may be one instance or multiple
instances of AFAR. Although the ASI for AFAR is defined as 4D16, the virtual address
of AFAR if there are multiple AFARs is implementation dependent in SPARC JPS1.

IMPL. DEP. #220: Whether the implementation supports additional logging/control
registers for error handling is implementation dependent in SPARC JPS1.

Note that an error signalled through a precise trap may be logged in AFSR/AFAR
pair, whereas an error signalled through a deferred trap is never logged in a
synchronous status/address register pair. For details about error logging
mechanisms, refer to the appropriate Implementation Supplement.

These error status and error address registers may be overwritten with subsequent
error(s) depending on the implementation. For overwriting policies, refer to the
appropriate Implementation Supplement.

P.5 Signalling/Special ECC
The SPARC JPS1 processor provides a special feature for memory-related errors. The
feature is called as signalling ECC or special ECC, depending on the implementation.
This feature aids in survival and diagnosis of an error in a coherent domain; it
avoids misprocessing of bad memory data.

If bad data is replaced with a good data upon detection of an error, the other
processes that share the data could continue processing without knowledge of
erroneous data even if they receive replaced data. To prevent the use of “fixed”
faulty data, the SPARC JPS1 processor replaces the data that has a bad ECC code
with an uncorrectable ECC error generated in a predetermined method. In addition
to preventing the use of faulty data, the signalling/special ECC may be used for
locating the faulty component in a system by embedding module ID code into the
replaced data.

For details, refer to the appropriate Implementation Supplement.

IMPL. DEP. #221: The method to generate “special” or “signalling” ECCs and
whether processor-ID is embedded into the data associated with special/signalling
ECCs is implementation dependent in SPARC JPS1.
580 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

C.APPENDIX Q

Performance Instrumentation

For implementation-dependent performance instrumentation information, please
refer to Appendix Q in specific SPARC JPS1 Implementation Supplements.
Release 1.0.4, 31 May 2002 C. Appendix Q • Performance Instrumentation 581

582 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Bibliography

General References
Boney, Joel. “SPARC Version 9 Points the Way to the Next Generation RISC,” SunWorld,
October 1992, pp. 100-105.

Cohen, D., “On Holy Wars and a Plea for Peace.” Computer 14:10, October 1981, pp. 48-
54.

Comer, Douglas. “The Ubiquitous B-Tree.” ACM Computing Surveys, Vol. 11, No. 2, June
1979.

Implementation Characteristics of Current SPARC V9-based Products, Revision 9.x, SPARC
International, Inc.

Knuth, Donald. The Art of Computer Programming, Volume 3, Searching and Sorting. Addi-
son-Wesley, 1974.

Weaver, David L., editor. The SPARC Architecture Manual, Version 8, Prentice-Hall, Inc.,
1992.

Weaver, David L., and Tom Germond, eds. The SPARC Architecture Manual-Version 9,
Prentice-Hall, Inc., 1994.
Release 1.0.4, 31 May 2002 C. Bibliography • 583

584 SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

Index
A
a field of instructions 104, 206, 209, 210, 214, 356,

359
accrued exception (aexc) field of FSR register 60, 61,

63, 141, 392, 400
ADD instruction 192, 485
ADDC instruction 192
ADDcc instruction 192, 325, 485
ADDCcc instruction 192
address

64-bit virtual data watchpoint 95
aliased 171
aliasing 439
memory 171
operand syntax 481
physical 171
physical address data watchpoint 96
space identifier (ASI) 171, 537
virtual 171
virtual address

data watchpoint 95
watchpoint priority 95

virtual passed to physical 93
address mask (AM) field of PSTATE register 73
address space 5
address space identifier (ASI)

accessing MMU registers 458
affected by watchpoint traps 94
alternate address spaces, privileged/

nonprivileged 534
appended to memory address 21, 102
architecturally specified 174
bit 7 setting for privileged_action exception 334

bypass 9, 94, 538
definition 9
encoding address space information 107
explicit values 112
imm_asi instruction field 105
implicit values 112
load floating-point instructions 243
load from TLB Data Access register 462
load from TLB Data In register 462
load from TLB Tag Read register 462
load integer doubleword instructions 366
load integer instructions 248
nontranslating 13, 94
operations 452, 457
with prefetch instructions 305
restricted 174, 452, 538
restriction indicator 67
SPARC V9 address 173
unrestricted 174, 505, 538

address space identifier (ASI) register
for load/store alternate instructions 68
and imm_asi instruction field 112
and LDDA instruction 367
and LDSTUBA instruction 254
load floating-point from alternate space

instructions 244
load integer from alternate space instructions 250
with prefetch instructions 305
for register-immediate addressing 174
restoring saved state 217
saved trap state 503
saving state 131
state after reset 566
and STDA instruction 379
Release 1.0.4, 31 May 2002 C. Index 1

store floating-point into alternate space
instructions 334

store integer to alternate space instructions 339
and SWAPA instruction 383
after trap 25
and TSTATE Register 77
and write state register instructions 351

addressing conventions 108
addressing modes 5
ADDX instruction (SPARC V8) 193
ADDXcc instruction (SPARC V8) 193
AFAR, See Asynchronous Fault Address Register

(AFAR)
AFSR, See Asynchronous Fault Status Register

(AFSR)
alias

address 171
floating-point registers 48

ALIGNADDRESS instruction 194
ALIGNADDRESS_LITTLE instruction 194
alignment

data (load/store) 21, 108, 173
doubleword 21, 108, 173
extended-word 108
halfword 21, 108, 173
instructions 21, 108, 173
integer registers 365, 367, 548
maintaining 491
memory 164, 173
quadword 21, 108, 173
stack pointer 491
word 21, 108, 173

alternate address space 305
alternate global registers 20, 40, 42, 503
alternate globals enable (AG) field of PSTATE

register 42, 74
alternate space instructions 22, 67, 534
ancillary state registers (ASRs) 83–91

access 48
adding instructions to SPARC V9 509
assembly language syntax 476
I/O register access 22
I/U control/status 46
number 83
possible registers included 315, 352
privileged 400
reading/writing implementation-dependent

processor registers 400
writing to 351

AND instruction 259
ANDcc instruction 259, 485
ANDN instruction 259, 486
ANDNcc instruction 259
annul bit

in branch instructions 206
in conditional branches 357
in control transfer instruction 47

annulled branches 206
application program 9, 67, 99, 532, 534
architectural extensions 509
architecture, meaning for SPARC V9 1
arguments to a subroutine 488
arithmetic overflow 55
ARRAY16 instruction 196
ARRAY32 instruction 196
ARRAY8 instruction 196
ASI, See address space identifier (ASI)
ASI_AFAR 540
ASI_AFSR 540
ASI_AIUP 539
ASI_AIUPL 539
ASI_AIUS 539
ASI_AIUSL 539
ASI_AS_IF_USER_PRIMARY 174, 503, 539
ASI_AS_IF_USER_PRIMARY_LITTLE 174, 503, 539
ASI_AS_IF_USER_SECONDARY 174, 539
ASI_AS_IF_USER_SECONDARY_LITTLE 174, 539
ASI_ASYNC_FAULT_ADDR 540
ASI_ASYNC_FAULT_STATUS 540
ASI_ATOMIC_QUAD_LDD_PHYS 540
ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE 540
ASI_BARRIER_SYNCH 545
ASI_BARRIER_SYNCH_P 542
ASI_BLK_AIUP 542
ASI_BLK_AIUPL 542
ASI_BLK_AIUS 542
ASI_BLK_AIUSL 543
ASI_BLK_COMMIT_P 545
ASI_BLK_COMMIT_S 545
ASI_BLK_P 545
ASI_BLK_PL 545
ASI_BLK_S 545
ASI_BLK_SL 545
ASI_BLOCK_AS_IF_USER_PRIMARY 542
ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 542
ASI_BLOCK_AS_IF_USER_SECONDARY 542
ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE

543
2 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

ASI_BLOCK_COMMIT_PRIMARY 545
ASI_BLOCK_COMMIT_SECONDARY 545
ASI_BLOCK_PRIMARY 545
ASI_BLOCK_PRIMARY_LITTLE 545
ASI_BLOCK_SECONDARY 545
ASI_BLOCK_SECONDARY_LITTLE 545
ASI_DCU_CONTROL_REGISTER 92, 540
ASI_DCUCR 540
ASI_DEVICE_ID+SERIAL_ID 546
ASI_DMMU 541
ASI_DMMU_DEMAP 542
ASI_DMMU_PA_WATCHPOINT_REG 541
ASI_DMMU_SFAR 541
ASI_DMMU_SFSR 541
ASI_DMMU_TAG_ACCESS 541
ASI_DMMU_TAG_TARGET_REG 541
ASI_DMMU_TSB_64KB_PTR_REG 541
ASI_DMMU_TSB_8KB_PTR_REG 541
ASI_DMMU_TSB_BASE 541
ASI_DMMU_TSB_DIRECT_PTR_REG 541
ASI_DMMU_TSB_NEXT_REG 541
ASI_DMMU_TSB_PEXT_REG 541
ASI_DMMU_TSB_SEXT_REG 541
ASI_DMMU_VA_WATCHPOINT_REG 541
ASI_DTLB_DATA_ACCESS_REG 542
ASI_DTLB_DATA_IN_REG 542
ASI_DTLB_TAG_READ_REG 542
ASI_FL16_P 544
ASI_FL16_PL 545
ASI_FL16_PRIMARY 544
ASI_FL16_PRIMARY_LITTLE 545
ASI_FL16_S 544
ASI_FL16_SECONDARY 544
ASI_FL16_SECONDARY_LITTLE 545
ASI_FL16_SL 545
ASI_FL8_P 544
ASI_FL8_PL 544
ASI_FL8_PRIMARY 544
ASI_FL8_PRIMARY_LITTLE 544
ASI_FL8_S 544
ASI_FL8_SECONDARY 544
ASI_FL8_SECONDARY_LITTLE 545
ASI_FL8_SL 545
ASI_IIU_INST_TRAP 542, 548
ASI_IMMU 540
ASI_IMMU_DEMAP 541
ASI_IMMU_SFSR 540
ASI_IMMU_TAG_TARGET 540
ASI_IMMU_TSB_64KB_PTR_REG 540

ASI_INTR_DATA0_R 543
ASI_INTR_DATA0_W 542
ASI_INTR_DATA1_R 543
ASI_INTR_DATA1_W 542
ASI_INTR_DATA2_R 543
ASI_INTR_DATA2_W 542
ASI_INTR_DATA3_R 543
ASI_INTR_DATA3_W 542
ASI_INTR_DATA4_R 543
ASI_INTR_DATA4_W 542
ASI_INTR_DATA5_R 543
ASI_INTR_DATA5_W 542
ASI_INTR_DATA6_R 543
ASI_INTR_DATA6_W 542
ASI_INTR_DATA7_R 543
ASI_INTR_DATA7_W 542
ASI_INTR_DISPATCH 568
ASI_INTR_DISPATCH_STATUS 554, 557, 558
ASI_INTR_DISPATCH_STATUS.BUSY bit 554
ASI_INTR_DISPATCH_STATUS.NACK bit 554
ASI_INTR_DISPATCH_W 542, 557
ASI_INTR_RECEIVE 540, 555, 559, 568
ASI_INTR_W 554, 557
ASI_ITLB_DATA_ACCESS_REG 541
ASI_ITLB_DATA_IN_REG 541
ASI_ITLB_TAG_READ_REG 541
ASI_MONDO_RECEIVE_CTRL 540
ASI_MONDO_SEND_CTRL 540
ASI_N 539
ASI_NL 539
ASI_NUCLEUS 454, 539
ASI_NUCLEUS_LITTLE 454, 539
ASI_NUCLEUS_QUAD_LDD 547
ASI_NUCLEUS_QUAD_LDD_L 540
ASI_NUCLEUS_QUAD_LDD_LITTLE 540, 547
ASI_P 543
ASI_PHYS_BYPASS_EC_WITH_EBIT 456, 539, 546
ASI_PHYS_BYPASS_EC_WITH_EBIT_L 539
ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE 539,

547
ASI_PHYS_USE_EC 539, 546
ASI_PHYS_USE_EC_L 539
ASI_PHYS_USE_EC_LITTLE 539, 547
ASI_PL 543
ASI_PNF 543
ASI_PNFL 543
ASI_PRIMARY 112, 174, 454, 543
ASI_PRIMARY_* 454
ASI_PRIMARY_CONTEXT_REG 541
Release 1.0.4, 31 May 2002 C. Index 3

ASI_PRIMARY_LITTLE 71, 174, 454, 543
ASI_PRIMARY_NO_FAULT 468, 543
ASI_PRIMARY_NO_FAULT_LITTLE 468, 543
ASI_PRIMARY_NOFAULT 174, 175
ASI_PST16_P 282, 544
ASI_PST16_PL 282, 544
ASI_PST16_PRIMARY 544
ASI_PST16_PRIMARY_LITTLE 544
ASI_PST16_S 282, 544
ASI_PST16_SECONDARY 544
ASI_PST16_SECONDARY_LITTLE 544
ASI_PST16_SL 282
ASI_PST32_P 282, 544
ASI_PST32_PL 282, 544
ASI_PST32_PRIMARY 544
ASI_PST32_PRIMARY_LITTLE 544
ASI_PST32_S 282, 544
ASI_PST32_SECONDARY 544
ASI_PST32_SECONDARY_LITTLE 544
ASI_PST32_SL 282, 544
ASI_PST8_P 282, 543
ASI_PST8_PL 282, 544
ASI_PST8_PRIMARY 543
ASI_PST8_PRIMARY_LITTLE 544
ASI_PST8_S 282, 544
ASI_PST8_SECONDARY 544
ASI_PST8_SECONDARY_LITTLE 544
ASI_PST8_SL 282, 544
ASI_S 543
ASI_SDB_INTR 556, 558
ASI_SDB_INTR_R 555
ASI_SECONDARY 174, 505, 543
ASI_SECONDARY_CONTEXT_REG 541
ASI_SECONDARY_LITTLE 505, 543
ASI_SECONDARY_NO_FAULT 468, 543
ASI_SECONDARY_NO_FAULT_LITTLE 468, 543
ASI_SECONDARY_NOFAULT 174, 175
ASI_SERIAL_ID 541
ASI_SL 543
ASI_SNF 543
ASI_SNFL 543
asr_reg 476
ASRs, See ancillary state registers (ASRs)
assembler, synthetic instructions 484
async_data_error exception 168, 243, 250, 253, 368,

579
Asynchronous Fault Address Register (AFAR) 568,

577, 579
Asynchronous Fault Status Register (AFSR) 568,

575, 579
atomic

load quadword 251
memory operations 179, 182, 251
store doubleword instruction 377, 379
store instructions 336, 339

atomic load-store instructions 107, 215
compare and swap 214
load-store unsigned byte 253, 381, 383
load-store unsigned byte to alternate space 254
swap r register with alternate space memory 383
swap r register with memory 215, 381

atomicity 172, 405
automatic variables 489

B
BA instruction 358, 359, 432
BCC instruction 358, 432
BCLR synthetic instruction 486
BCS instruction 358, 432
BE instruction 358, 432
Berkeley RISCs 6
BG instruction 358, 432
BGE instruction 358, 432
BGU instruction 358, 432
Bicc instructions 47, 55, 358, 427, 432
big-endian byte order 21, 71, 108
binary compatibility 7
bit vector concatenation 3
BL instruction 432
BLD, See block load instructions
BLE instruction 358, 432
BLEU instruction 358, 432
block

load instructions 48, 199
store instructions 48, 199

with commit 200, 548
block load instructions 368, 548
block store instructions 380, 548
BMASK instruction 203
BN instruction 309, 358, 359, 432, 484
BNE instruction 358, 432
BNEG instruction 358, 432
BP instructions 433
BPA instruction 210, 432
BPCC instruction 210, 432
BPcc instructions 47, 55, 104, 105, 106, 210, 309, 434
BPCS instruction 210, 432
4 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

BPE instruction 210, 432
BPG instruction 210, 432
BPGE instruction 210, 432
BPGU instruction 210, 432
BPL instruction 210, 432
BPLE instruction 210, 432
BPLEU instruction 210, 432
BPN instruction 210, 432
BPNE instruction 210, 432
BPNEG instruction 210, 432
BPOS instruction 358, 432
BPPOS instruction 210, 432
BPr instructions 47, 105, 106, 205, 432
BPVC instruction 210, 432
BPVS instruction 210, 432
branch

annulled 206
delayed 101
elimination 119, 120
fcc-conditional 209, 357
icc-conditional 360
prediction bit 206
unconditional 209, 211, 356, 359
with prediction 5

branch if contents of integer register match
condition instructions 205

branch on floating-point condition codes
instructions 355

branch on floating-point condition codes with
prediction instructions 207

branch on integer condition codes instructions, See
Bicc instructions

branch on integer condition codes with prediction
(BPcc) instructions 210

breakpoint
data, See watchpoints
instruction, See Instruction Trap Register

BRGEZ instruction 205
BRGZ instruction 205
BRLEZ instruction 205
BRLZ instruction 205
BRNZ instruction 205
BRZ instruction 205
BSET synthetic instruction 486
BSHUFFLE instruction 203
BST, See block store instructions
BTOG synthetic instruction 486
BTST synthetic instruction 485
BVC instruction 358, 432

BVS instruction 358, 432
bypass ASI 9, 94
bypass ASIs 538
byte

addressing 111
data format 27
order 21, 108
order, big-endian 21, 71
order, implicit 71
order, little-endian 21, 71

C
cache

data 177
instruction 177
miss 309
nonconsistent instruction cache 177
system 6

caching, TSB 444
call chain, walking 489
CALL instruction

address in out register 488
description 213
destination register 47
determining a procedure’s return address 488
displacement 24
does not change CWP 44
and JMPL instruction 241
leaf procedure 491
writing address into r[15] 46

CALL synthetic instruction 484
CANRESTORE register 81, 566
CANSAVE register 81, 566
carry (C) bit of condition fields of CCR 55
CAS synthetic instruction 179, 485
CASA instruction 22, 107, 183, 214, 253, 254, 381,

383, 485
CASX synthetic instruction 179, 183, 485
CASXA instruction 22, 107, 183, 214, 253, 254, 381,

383, 485
catastrophic_error exception 132, 162
cc0 field of instructions 433
cc0 field of instructions 104, 209, 210, 223, 274
cc1 field of instructions 433
cc1 field of instructions 104, 209, 210, 223, 274
cc2 field of instructions 433
cc2 field of instructions 104, 274
CCR, See condition codes (CCR) register
Release 1.0.4, 31 May 2002 C. Index 5

certificate of compliance 8
clean register window 44, 83, 120, 127, 129, 165, 318
clean windows (CLEANWIN) register 80, 83, 120,

127, 128, 129, 311, 347, 405, 567
clean_window exception 83, 120, 128, 139, 143, 165,

319, 320, 403
CLEAR_SOFTINT pseudo-register 89, 123, 561
CLEAR_SOFTINT register 88
clipping values, See FPACK instructions
clock cycle 68
clock-tick register (STICK) 90
clock-tick register (TICK) 68, 90, 164, 311, 347, 403
CLR synthetic instruction 486
CMP synthetic instruction 341, 484
code

kernel 560
nucleus 560

coherence
and address remapping 171
between processors 405
data cache 177
memory 172
unit, memory 173

compare and swap instructions 214
comparison instruction 114, 341
compatibility with SPARC V8, See SPARC V8

compatibility
complex calculations, fixed data format 36
compliance

certificate of 8
certification process 8
claim 8
Level I 8
Level II 8
SPARC V9 457

compliant SPARC V9 implementation 7
concatenation of bit vectors 3
cond field of instructions 105, 209, 210, 266, 274, 356,

359
condition codes 215

adding 342
extended integer (Xcc) 55
floating-point 356
icc field 54
integer 54
results of integer operation (icc) 55
subtracting 340, 343
trapping on 345
xcc field 54

condition codes (CCR) register 25, 54, 77, 122, 131,
192, 217, 351, 371, 566

conditional branches 209, 357, 360
conditional move instructions 25
conforming SPARC V9 implementation 7
const22 field of instructions 239
constants, generating 323
context

during TLB miss 445, 446
selection for translation 453
unused 440
used to form TSB Tag Target 448

Context field of Tag Access Register, See Tag Access
Register

Context field of TTE 440
context register

determination of 453
Nucleus 460
Primary 459
Secondary 460

context-ID register 446
control and status registers 46
control-transfer instructions (CTIs) 23, 217
conventions

font 3
notational 3
software 487

conversion
between floating-point formats instructions 227,

393
floating-point to integer instructions 225, 396
integer to floating-point instructions 229
pixel to fixed 36
planar to packed 300

counter field of STICK register 90
counter field of TICK register 68
cross-domain call 504
CTI, See control transfer instructions
current exception (cexc) field of FSR register 58, 60,

61, 63, 64, 64, 65, 124, 165, 392, 400
current window pointer (CWP) register

and CALL/JMPL instructions 44
and clean windows 83, 128
definition 10
and FLUSHW instruction 238
function 80
incremented/decremented 43, 319
and overlapping windows 43
range of values 80, 405
6 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

reading CWP with RDPR instruction 311
and RESTORE instruction 120, 318
restored during DONE or RETRY 217
and SAVE instruction 120, 318
saved during a trap 131
after spill trap 128
state after reset 566
after trap 25
and TSTATE Register 77
on window trap 128
writing CWP with WRPR instruction 347

current_little_endian (CLE) field of PSTATE register
71, 71, 174

D
D superscript on instruction name 186
d16hi field of instructions 105, 206
d16lo field of instructions 105, 206
data

aggregate
argument passed by value 488
examples of 488

breakpoint, See watchpoints
cache

coherence 177
and RED_state 563

fixed-to-pixel conversion 36
flow order constraints

memory reference instructions 176
register reference instructions 176

formats
byte 27
doubleword 27
extended word 27
halfword 27
quadword 27
tagged word 27
word 27

memory 183
MMU, See D-MMU
pixel-to-fixed conversion 36
types

floating-point 27
signed integer 27
unsigned integer 27
width 27

watchpoint
behavior 95

exception 283
physical address 96
register format 95
virtual address 95

Data Cache Enable bit 94
Data Cache Unit Control Register, See DCUCR
Data Synchronous Fault Address Register, See D-

SFAR
Data Synchronous Fault Status Register, See D-SFSR
data_access_error exception 162, 202, 216, 243, 248,

252, 253, 255, 283, 327, 332, 335, 336, 339, 366,
376, 378, 380, 576, 578

data_access_exception exception 71, 167, 216, 243,
245, 253, 255, 331, 334, 336, 339, 378, 380, 382,
384, 443, 448, 449, 450, 456, 458, 468, 547, 548,
549, 558

data_access_MMU_miss exception 403, 449, 450
data_access_protection exception 202, 248, 250,

252, 283, 327, 366, 368, 449, 450, 467
DB_PA field of PA Data Watchpoint register 96
DCR

branch and return control 86
fields

BPE (branch prediction enable) 86
MS (multiscalar dispatch enable) 87
RPE (return address prediction enable) 86
SI (single issue disable) 87

instruction dispatch control 87
layout 86
RDASR/WRASR support 123
state after reset and in RED_state 567

DCUCR
access data format 92
clearing 563
CP (cacheability) field 92
CV (cacheability) field 92
DC (data cache enable) field 94
DM (DMMU enable) field 93
IC (instruction cache enable) field 94
IMI (IMMU enable) field 93
overriding enable bits 563
PM (PA data watchpoint mask) field 93
PR/PW (PA watchpoint enable) fields 93
RED_state 455
after reset 567
VM (VA data watchpoint mask) field 93
VR/VW (VA data watchpoint enable) fields 93
watchpoint byte masks/enable bits 95

DEC synthetic instruction 485
Release 1.0.4, 31 May 2002 C. Index 7

DECcc synthetic instruction 485
deferred trap

catastrophic error exception 401
error barrier 575
floating-point 312
handling of 575
Impl. Dep. 138
occurrence 137
processor state corruption 574
queue, floating-point (FQ) 311
software actions 138
TPC/TNPC 575
vs. disrupting trap 138

Dekker's algorithm 515
delay instruction 23, 47, 206, 209, 212, 217, 316, 356,

488, 492
delayed branch 101
delayed control transfer 47, 206
demap operation and output 471
deprecated instructions

BA 358
BCC 358
BCS 358
BE 358
BG 358
BGE 358
BGU 358
Bicc 358
BLE 358
BLEU 358
BN 358
BNE 358
BNEG 358
BPOS 358
BVC 358
BVS 358
FBA 355
FBE 355
FBG 355
FBGE 355
FBL 355
FBLE 355
FBLG 355
FBN 355
FBNE 355
FBO 355
FBU 355
FBUE 355
FBUGE 355

FBUL 355
FBULE 355
LDD 365
LDDA 367
LDFSR 364
MULScc 47, 371
RDY 47, 313, 373
SDIV 47, 361
SDIVcc 47, 361
SMUL 47, 369
SMULcc 47, 369
STD 377
STDA 379
STFSR 375
SWAP 381
SWAPA 383
TSUBccTV 385, 387
UDIV 47, 361
UDIVcc 47, 361
UMUL 47, 369
UMULcc 47, 369
WRY 47, 350, 389

Direct Pointer Register 467
disp19 field of instructions 105, 209, 210
disp22 field of instructions 105, 356, 359
disp30 field of instructions 105, 213
Dispatch Control Register, See DCR
disrupting traps 138, 139, 401
divide instructions 23, 279, 361
divide-by-zero mask (DZM) bit of TEM field of FSR

register 65
division_by_zero exception 114, 162, 280
division-by-zero accrued (dza) bit of aexc field of

FSR register 66
division-by-zero current (dzc) bit of cexc field of

FSR register 66
D-MMU

and RED_state 563
context register usage 455
determining ASI value and endianness 453
Direct Pointer register 467
disabled 456
Enable bit 455
enable bits 455
memory operation summary 451
Nucleus Context Register 460
Registers:Primary, Secondary, Nucleus 459
Secondary Context Register 460

D-MMU Tag Access Register
8 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

context field after data_access_exception 449
DONE instruction 55, 70, 131, 133, 163, 217

modifying condition codes 55
restoring AG, IG, MG bits 70
target address 24

doublet 10
doubleword

addressing 112
alignment 21, 108, 173
data format 27
definition 10
in memory 46

D-SFAR
defined 470
description 458
error logging 579
state after reset 568

D-SFSR
and ASI operations 458
bit description 467
error logging 579
FTYPE field upon data_access_exception 162
state after reset 568

E
ECC_error exception 167, 578
EDGE16 instruction 218
EDGE16L instruction 218
EDGE16LN instruction 218
EDGE16N instruction 218
EDGE32 instruction 218
EDGE32L instruction 218
EDGE32LN instruction 218
EDGE32N instruction 218
EDGE8 instruction 218
EDGE8L instruction 218
EDGE8LN instruction 218
EDGE8N instruction 218
emulating multiple unsigned condition codes 120
enable floating-point (FEF) field of FPRS register 56,

73, 124, 140, 162, 209, 243, 245, 331, 334, 357
enable floating-point (PEF) field of PSTATE register

56, 73, 124, 140, 162, 209, 243, 245, 331, 334, 357,
495

enable RED_state field (RED) of PSTATE register
133

error_state 132, 133, 135, 136, 149, 151, 153, 154, 160,
402

and watchdog reset 565
errors

deferred 574, 575
disrupting 577
hardware-corrected 578
logging 578
recoverable ECC errors 578
uncorrectable 578

exceptions
See also trap and traps
async_data_error 243, 250, 253, 368
catastrophic_error 132, 162
causing traps 131
clean_window 83, 120, 128, 139, 143, 165, 319, 320,

403
data_access_error 162, 202, 216, 243, 248, 252,

253, 255, 283, 327, 332, 335, 336, 339, 366, 375,
378, 380

data_access_exception 216, 243, 245, 253, 255,
331, 334, 336, 339, 378, 380, 382, 384

data_access_MMU_miss 403
data_access_protection 202, 248, 250, 252, 283,

327, 366, 368
definition 131
division_by_zero 114, 162, 280
fill_n_normal 140, 162, 317, 320
fill_n_other 140, 317, 320
fp_disabled 56, 124, 139, 140, 162, 209, 222, 226,

228, 230, 232, 234, 243, 245, 269, 271, 276, 331,
334, 357, 364, 375, 496

fp_exception_ieee_754 57, 64, 65, 141, 165, 222,
226, 228, 230, 234, 392

fp_exception_other 53, 63, 125, 165, 222, 224, 226,
228, 230, 232, 234, 235, 271, 401

illegal_instruction 46, 63, 75, 77, 125, 163, 206, 212,
217, 239, 243, 276, 278, 302, 312, 314, 321, 331,
346, 349, 365, 366, 367, 368, 375, 377, 378, 379,
380, 402

implementation_dependent_n 143, 401
instruction_access_error 139
instruction_access_exception 139, 164
internal_processor_error 168
LDDF_mem_address_not_aligned 108, 140, 165,

243, 245, 331, 334, 404
LDQF_mem_address_not_aligned 245
mem_address_not_aligned 108, 164, 216, 241,

243, 245, 248, 250, 316, 317, 331, 334, 336, 339,
366, 368, 375, 378, 380, 382, 384

pending 26
Release 1.0.4, 31 May 2002 C. Index 9

privileged_action 68, 90, 112, 139, 164, 216, 245,
250, 254, 255, 314, 315, 334, 339, 368, 379, 380,
384

privileged_instruction (SPARC V8) 164
privileged_opcode 139, 164, 217, 312, 321, 349
spill_n_normal 140, 164, 238, 320
spill_n_other 140, 164, 238, 320
STDF_mem_address_not_aligned 108, 140, 165,

166, 331, 334, 404
tag_overflow 114, 165, 342, 343, 385, 386, 388
trap_instruction 139, 165, 345, 346
unimplemented_LDD 403
unimplemented_STD 404
window_fill 82, 120, 316, 491
window_spill 82, 491

excpetions
data_access_exception 548, 549
illegal_instruction 548, 549
LDDF_mem_address_not_aligned 548, 549
mem_address_not_aligned 548, 549

execute unit 175
execute_state 132, 149, 151, 153, 154
extended word addressing 112
extended word data format 27
extensions, architectural 509
External Reset pin 564
externally_initiated_reset (XIR) 133, 134, 135, 139,

155, 158, 165, 564

F
f registers 20, 141, 392, 402
FABSd instruction 231, 430, 431
FABSq instruction 231, 430, 431
FABSs instruction 231
FADDd instruction 221
FADDq instruction 221
FADDs instruction 221
FALIGNDATA instruction 194
FAND instruction 256
FANDNOT1 instruction 256
FANDNOT1S instruction 256
FANDNOT2 instruction 257
FANDNOT2S instruction 257
FANDS instruction 256
fast_data_access_MMU_miss exception 70, 71, 445,

448, 449, 450, 469
fast_data_access_protection exception 70, 71, 443,

448, 449, 450

fast_ECC_error exception 168, 579
fast_instruction_access_MMU_miss exception 70,

71, 445, 448, 449, 468, 470
fast_instruction_MMU_miss exception 469
FBA instruction 355, 356, 432
FBE instruction 355, 432
FBfcc instructions 47, 57, 124, 162, 355, 357, 427, 432
FBG instruction 355, 432
FBGE instruction 355, 432
FBL instruction 355, 432
FBLE instruction 355, 432
FBLG instruction 355, 432
FBN instruction 355, 356, 432
FBNE instruction 355, 432
FBO instruction 355, 432
FBPA instruction 207, 209, 432
FBPcc instructions 105
FBPE instruction 207, 432
FBPfcc instructions 47, 57, 104, 106, 124, 207, 357,

427, 432, 434
FBPG instruction 207, 432
FBPGE instruction 207, 432
FBPL instruction 207, 432
FBPLE instruction 207, 432
FBPLG instruction 207, 432
FBPN instruction 207, 209, 432
FBPNE instruction 207, 432
FBPO instruction 207, 432
FBPU instruction 207, 432
FBPUE instruction 207, 432
FBPUG instruction 207, 432
FBPUGE instruction 207, 432
FBPUL instruction 207, 432
FBPULE instruction 207, 432
FBU instruction 355, 432
FBUE instruction 355, 432
FBUG instruction 355, 432
FBUGE instruction 355, 432
FBUL instruction 355, 432
FBULE instruction 355, 432
fcc-conditional branches 209, 357
FCMP instructions 434
FCMP* instructions 57, 223
FCMPd instruction 223, 393, 431
FCMPE instructions 434
FCMPE* instructions 57, 223
FCMPEd instruction 223, 393, 431
FCMPEQ instruction 293
FCMPEq instruction 223, 393, 431
10 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

FCMPEQ16 instruction 292
FCMPEQ32 instruction 292
FCMPEs instruction 223, 393, 431
FCMPG instruction 293
FCMPGT16 instruction 292
FCMPGT32 instruction 292
FCMPL instruction 293
FCMPLE16 instruction 292
FCMPLE32 instruction 292
FCMPNE instruction 293
FCMPNE16 instruction 292
FCMPNE32 instruction 292
FCMPq instruction 223, 393, 431
FCMPs instruction 223, 393, 431
fcn field of instructions 217, 304
FDIVd instruction 233
FDIVq instruction 233
FDIVs instruction 233
FdMULq instruction 233
FdTOi instruction 225, 396
FdTOq instruction 227, 393
FdTOs instruction 227, 393
FdTOx instruction 225, 430, 431
FEXPAND instruction 295, 299
FEXPAND operation 299
fill register window 43, 120, 121, 126, 127, 128, 129,

162, 318, 319, 321, 503
fill_n_normal exception 140, 162, 162, 317, 320
fill_n_other exception 140, 162, 317, 320
FiTOd instruction 229
FiTOq instruction 229
FiTOs instruction 229
fixed-point scaling 287
floating point complex calculations 36
floating-point add and subtract instructions 221
floating-point compare instructions 57, 223, 223, 393
floating-point condition code bits 356
floating-point condition codes (fcc) fields of FSR

register 57, 60, 61, 141, 209, 224, 357, 392, 477
floating-point data type 27
floating-point deferred-trap queue (FQ) 98, 311, 312,

401
floating-point enable (FEF) field of FPRS register

495
floating-point exception 59
floating-point move instructions 231
floating-point multiply and divide instructions 233
floating-point operate (FPop) instructions 24, 59, 64,

105, 123, 124, 162, 163, 165, 364

floating-point registers 53, 392, 402, 490
floating-point registers state (FPRS) register 55, 123,

314, 351, 567
floating-point square root instructions 235
floating-point state (FSR) register 56, 64, 67, 331,

364, 375, 392, 400, 567
floating-point trap type (ftt) field of FSR register 64
floating-point trap type (ftt) field of FSR register 56,

59, 64, 124, 165, 331, 375, 392
floating-point trap types

fp_disabled 73
FPop_unfinished 124
FPop_unimplemented 124
IEEE_754_exception 60, 61, 64, 67, 141, 165, 392
invalid_fp_register 53, 60, 232, 235
numeric values 60
sequence_error 60, 63, 401
unfinished_FPop 60, 61, 67, 234, 392
unimplemented_FPop 60, 67, 222, 224, 226, 228,

230, 234, 269, 271, 392
floating-point traps

deferred 312
precise 312

floating-point unit (FPU) 20
FLUSH instruction 184, 236, 405, 495, 512
flush instruction memory, See FLUSH instruction
FLUSH latency 405
flush register windows instruction 238
FLUSHW instruction 25, 122, 127, 128, 164, 238, 489
FMOVA instruction 264
FMOVcc instruction 264
FMOVcc instructions 55, 57, 104, 105, 119, 124, 264,

268, 269, 276, 433
FMOVccd instruction 431
FMOVccq instruction 431
FMOVccs instruction 431
FMOVCS instruction 264
FMOVd instruction 231, 430, 431
FMOVDcc instruction 266
FMOVE instruction 264
FMOVFA instruction 265
FMOVFE instruction 265
FMOVFG instruction 265
FMOVFGE instruction 265
FMOVFL instruction 265
FMOVFLE instruction 265
FMOVFLG instruction 265
FMOVFN instruction 265
FMOVFNE instruction 265
Release 1.0.4, 31 May 2002 C. Index 11

FMOVFO instruction 265
FMOVFU instruction 265
FMOVFUE instruction 265
FMOVFUG instruction 265
FMOVFUGE instruction 265
FMOVFUL instruction 265
FMOVFULE instruction 265
FMOVG instruction 264
FMOVGE instruction 264
FMOVGU instruction 264
FMOVL instruction 264
FMOVLE instruction 264
FMOVLEU instruction 264
FMOVN instruction 264
FMOVNE instruction 264
FMOVNEG instruction 264
FMOVPOS instruction 264
FMOVq instruction 231, 430, 431
FMOVQcc instruction 266
FMOVr instructions 105, 106, 124, 270, 433
FMOVRGEZ instruction 270
FMOVRGZ instruction 270
FMOVRLEZ instruction 270
FMOVRLZ instruction 270
FMOVRNZ instruction 270
FMOVRZ instruction 270
FMOVs instruction 231
FMOVScc instruction 266
FMOVVC instruction 264
FMOVVS instruction 264
FMUL8SUx16 instruction 286, 289
FMUL8ULx16 instruction 286, 289
FMUL8x16 instruction 286, 287
FMUL8x16AL instruction 286, 288
FMUL8x16AU instruction 286, 288
FMULd instruction 233
FMULD8SUx16 instruction 286, 290
FMULD8ULx16 instruction 286, 291
FMULq instruction 233
FMULs instruction 233
FNAND instruction 256
FNANDS instruction 256
FNEGd instruction 231, 430, 431
FNEGq instruction 231, 430, 431
FNEGs instruction 231
FNOR instruction 256
FNORS instruction 256
FNOT1 instruction 256
FNOT1S instruction 256

FNOT2 instruction 256
FNOT2S instruction 256
FONE instruction 256
FONES instruction 256
FOR instruction 256
formats, instruction 102
FORNOT1 instruction 256
FORNOT1S instruction 256
FORNOT2 instruction 256
FORNOT2S instruction 256
FORS instruction 256
fp_disabled exception 56, 73, 124, 139, 140, 162, 209,

222, 226, 228, 230, 232, 234, 243, 245, 269, 271,
276, 327, 331, 334, 357, 364, 375, 496

fp_exception exception 64
fp_exception_ieee_754 "invalid" exception 226
fp_exception_ieee_754 exception 57, 64, 65, 141,

165, 222, 226, 228, 230, 234, 392
fp_exception_other exception 53, 61, 63, 124, 125,

163, 165, 186, 222, 224, 226, 228, 230, 232, 234,
235, 271, 392, 400, 401

FPACK instructions 36, 295–299
FPACK16 instruction 295, 296
FPACK16 operation 296
FPACK32 instruction 295, 297
FPACK32 operation 297
FPACKFIX instruction 295, 298
FPACKFIX instruction, conversion 36
FPACKFIX operation 299
FPADD16 instruction 284
FPADD16S instruction 284
FPADD32 instruction 284
FPADD32S instruction 284
FPMERGE instruction 295, 300
FPop, See floating-point operate (FPop) instructions
FPRS register

See also floating-point registers state (FPRS)
register

description 55
FEF field 351

FPSUB16 instruction 284
FPSUB16S instruction 284
FPSUB32 instruction 284
FPSUB32S instruction 284
FQ, See floating-point deferred trap queue
FqTOd instruction 227, 393
FqTOi instruction 225, 396
FqTOs instruction 227, 393
FqTOx instruction 225, 430, 431
12 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

frame pointer register 488
freg 476
FsMULd instruction 233
FSQRTd instruction 235
FSQRTq instruction 235
FSQRTs instruction 235
FSR, See floating-point state (FSR) register
FSRC1 instruction 256
FSRC1S instruction 256
FSRC2 instruction 256
FSRC2S instruction 256
FsTOd instruction 227, 393
FsTOi instruction 225, 396
FsTOq instruction 227, 393
FsTOx instruction 225, 430, 431
FSUBd instruction 221
FSUBq instruction 221
FSUBs instruction 221
function return value 488
functional choice, implementation-dependent 399
FXNOR instruction 256
FXNORS instruction 256
FXOR instruction 256
FXORS instruction 256
FxTOd instruction 229, 430, 431
FxTOq instruction 229, 430, 431
FxTOs instruction 229, 430, 431
FZERO instruction 256
FZEROS instruction 256

G
generating constants 323
global registers 5, 20, 40, 42, 42, 489
graphics data format

8-bit 36
fixed 16-bit 36

Graphics Status Register, See GSR
GSR

fields
ALIGN 88
IM (interval mode) field 87
IRND (rounding) 88
MASK 87
SCALE 88

RDASR/WRASR support 123
state after reset 567

H
halfword

addressing 111
alignment 21, 108, 173
data format 27

halt 149
hardware

dependency 398
table walking 448
TLB 473
traps 143

hardware-corrected errors 578

I
i field of instructions 105, 192, 236, 238, 241, 242,

244, 247, 249, 253, 254, 260, 274, 277, 279, 301,
304, 314, 316, 361, 364, 365, 367, 369, 371, 373

I/D
MMU Demap Operation 459
MMU TLB Tag Access Registers 461
MMU TSB Pointer register 467

I/D TSB Tag Target registers 458
icc field of CCR register 54, 55, 192, 212, 260, 275,

340, 342, 345, 360, 362, 363, 370, 371, 372
icc-conditional branches 360
IE, Invert Endianness bit 441
IEEE Std 754-1985 11, 19, 58, 61, 65, 67, 124, 391, 400
IEEE_754_exception floating-point trap type 11, 60,

61, 64, 67, 141, 165, 392
IER register (SPARC V8) 352
illegal_instruction exception 46, 63, 75, 77, 125, 163,

186, 206, 212, 217, 239, 243, 276, 278, 302, 310,
312, 314, 321, 331, 346, 349, 365, 366, 367, 368,
375, 377, 378, 379, 380, 402, 548, 549

ILLTRAP instruction 163, 239
images

band interleaved 36
band sequential 36

imm_asi field of instructions 105, 112, 214, 242, 244,
247, 249, 253, 254, 304, 364, 365, 367

imm22 field of instructions 105
I-MMU

context register usage 455
determining ASI value and endianness 453
disabled 456
Enable bit 93, 455
enable bits 455
memory operation summary 451
Release 1.0.4, 31 May 2002 C. Index 13

Registers: Primary, Seconday, Nucleus 459
IMPDEP1 instruction 240
IMPDEP1 instructions 435
IMPDEP2A instruction 163
IMPDEP2A instructions 124, 240, 403, 509
IMPDEP2B instruction 163
IMPDEP2B instructions 124, 240
impl field of VER register 59
implementation dependency 397
implementation note 4
implementation number (impl) field of VER register

79
implementation_dependent_n exception 143, 401
implementation-dependent functional choice 399
implementation-dependent instructions, See

IMPDEP2A instructions
implicit

ASI 112
byte order 71

in registers 40, 43, 318, 488
INC synthetic instruction 485
INCcc synthetic instruction 485
inexact accrued (nxa) bit of aexc field of FSR register

66, 395
inexact current (nxc) bit of cexc field of FSR register

66, 395, 396
inexact mask (NXM) bit of TEM field of FSR register

65
inexact quotient 362, 363
infinity 396
initiated 11
input/output (I/O) locations

access by nonprivileged code 400
addressing by primitives 182
behavior 172
contents and addresses 400
identifying 172, 404
order 172
semantics 405
value semantics 172

input/output (I/O) register access 22
Instruction Breakpoint Register 567
instruction breakpoint, See Instruction Trap Register
instruction cache

disabled in RED_state 563
Instruction Cache Enable bit 94
instruction fields

a 104, 206, 210, 214, 356, 359
cc0 104, 209, 210, 223, 274

cc1 104, 209, 210, 223, 274
cc2 104, 274
cond 105, 209, 210, 266, 274, 356, 359
const22 239
d16hi 105, 206
d16lo 105, 206
definition 12
disp19 105, 209, 210
disp22 105, 356, 359
disp30 105, 213
fcn 217, 304
i 105, 192, 236, 238, 241, 242, 244, 247, 249, 253,

254, 260, 274, 277, 279, 301, 304, 314, 316, 361,
364, 365, 367, 369, 371, 373

imm_asi 105, 112, 214, 242, 244, 247, 249, 304, 364,
365, 367

imm22 105
mmask 105, 374
op3 105, 192, 214, 217, 236, 238, 241, 242, 244, 247,

249, 253, 254, 260, 279, 304, 311, 314, 316, 361,
364, 365, 367, 369, 371, 373

opf 105, 221, 223, 225, 227, 229, 231, 233, 235
opf_cc 105, 266
opf_low 105, 266, 270
p 106, 206, 209, 210
rcond 106, 206, 270, 277
rd 106, 192, 214, 221, 225, 227, 229, 231, 233, 235,

241, 242, 244, 247, 249, 253, 254, 260, 266, 270,
274, 277, 279, 301, 311, 314, 361, 364, 365, 367,
369, 371, 373, 509

reg_or_imm 509
reserved 185
rs1 106, 192, 206, 214, 221, 223, 233, 236, 241, 242,

244, 247, 249, 253, 254, 260, 270, 277, 279, 304,
311, 314, 316, 361, 364, 365, 367, 369, 371, 373,
509

rs2 106, 192, 214, 221, 223, 225, 227, 229, 231, 233,
235, 236, 241, 242, 244, 247, 249, 253, 254, 260,
266, 270, 274, 277, 279, 301, 304, 316, 361, 364,
365, 367, 369, 371

shcnt32 106
shcnt64 106
simm10 106, 277
simm11 106, 274
simm13 106, 192, 236, 241, 242, 244, 247, 249, 253,

254, 260, 279, 301, 304, 316, 361, 364, 365, 367,
369, 371

sw_trap# 106
x 106
14 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

instruction MMU, See I-MMU
instruction set architecture (ISA) xv, 6, 11, 12
Instruction Synchronous Fault Status Register, See I-

SFSR
Instruction Trap Register

exception 96, 98
Mask field 97
Match field 97
store 98

instruction_access_error (ISA) exception 578, 579
instruction_access_error exception 139
instruction_access_exception (ISA) exception 139
instruction_access_exception exception 71, 164,

443, 448, 449, 456, 468, 470
instruction_access_MMU_miss exception 449
instructions

alignment 21, 108, 173, 194
array addressing 196
atomic 215
atomic load-store 107, 214, 215, 253, 254, 381, 383
block load and store 200
branch if contents of integer register match

condition 205
branch on floating-point condition codes 355
branch on floating-point condition codes with

prediction 207
branch on integer condition codes 358
branch on integer condition codes with

prediction 210
breakpoint trap priority 96
cache 177
cache consistency 177
causing illegal instruction 239
compare and swap 214
comparison 114, 341
conditional move 25
control-transfer (CTIs) 23, 217
convert between floating-point formats 227, 393
convert floating-point to integer 225, 396
convert integer to floating-point 229
count of number of bits 301
divide 23, 279, 361
DONE 70, 217
edge handling 219
fetches 108
floating-point add and subtract 221
floating-point compare 57, 223, 223, 393
floating-point move 231
floating-point multiply and divide 233

floating-point operate (FPop) 24, 59, 64, 364
floating-point square root 235
flush instruction memory 236, 512
flush register windows 238
formats 5, 102
generate software-initiated reset 329
implementation-dependent, See IMPDEP2A

instructions
jump and link 24, 241
load 512
load floating-point 107, 364
load floating-point from alternate space 244
load integer 107, 247, 365
load integer from alternate space 249, 367
load quadword 251
load-store unsigned byte 215, 253, 381, 383
load-store unsigned byte to alternate space 254
logical 259
logical operate 258
memory 183
move floating-point register if condition is true

264
move floating-point register if contents of integer

register satisfy condition 270
move integer register if condition is satisfied 272
move integer register if contents of integer

register satisfies condition 277
move on condition 5
multiply 23, 279, 369, 369
ordering MEMBAR 113
partial store 283
partitioned add/subtract 285
partitioned multiply 286
permuting bytes specified by GSR.MASK 203
pixel compare 292
pixel component distance 294
pixel formatting (PACK) 295
prefetch data 303
read privileged register 311
read state register 24, 313, 373
register window management 25
reordering 176
reserved 125
reserved fields 185
RETRY 70, 217
RETURN vs. RESTORE 316
sequencing MEMBAR 113
set high bits of low word 323
set interval arithmetic mode 322
Release 1.0.4, 31 May 2002 C. Index 15

setting GSR.MASK field 203
shift 23, 324
shift count 324
short floating-point load/store 327
shut down to enter power-down mode 328
software-initiated reset 329
store 336, 512
store floating point 107, 330
store floating-point into alternate space 333, 333
store integer 107, 336
store integer into alternate space 338
subtract 340, 340
swap r register with alternate space memory 383
swap r register with memory 381
synthetic 484
tagged addition 342
tagged arithmetic 23
tagged subtraction 343
test-and-set 183
timing 186
trap on condition codes 345
trap on integer condition codes 344
trap register 96, 97
unimplemented 125
write privileged register 347
write state register 351
writing privileged register 348

integer unit (IU)
condition codes 55
deferred-trap queue 99
description 20

interconnect configuration ASI (4A16) 540
internal_processor_error exception 168
interrupt

enable (IE) field of PSTATE register 74, 138, 140,
164

level 75
request 12, 26, 131
trap 555
vector dispatch 554
vector dispatch register 557
vector dispatch status register 558, 568
vector receive 555
vector receive register 559, 568

interrupt target identifier (ID), See ITID field of
Interrupt Vector Dispatch register

interrupt_level_14 exception 89
interrupt_level_15 exception 89
interrupt_vector trap 71

interrupt_vector_trap exception 70, 167
INTR_DISPATCH, See Interrupt Vector Dispatch

Status register
INTR_RECEIVE, See Interrupt Vector Receive

register
invalid accrued (nva) bit of aexc field of FSR register

66
invalid current (nvc) bit of cexc field of FSR register

66, 396
invalid mask (NVM) bit of TEM field of FSR register

65
invalid_exception exception 226
invalid_fp_register floating-point trap type 53, 60,

232, 235
IPREFETCH synthetic instruction 484
ISA, See instruction set architecture
I-SFSR

and ASI operations 458
bit description 467
error logging 579
NF field always 0 468
state after reset 568

issue unit 175, 175
italic font, in assembly language syntax 475
ITID field of Interrupt Vector Dispatch register 555,

557

J
JMP synthetic instruction 484
JMPL instruction

computing target address 24
description 241
destination register 47
does not change CWP 44
leaf procedure 491
mapping to synthetic instructions 484
mem_address_not_alligned exception 164
reexecuting trapped instruction 316

jump and link (JMPL) instruction 24, 241

K
kernel code 560

L
LD instruction (SPARC V8) 248
LDD instruction 46, 247, 365, 403
16 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

LDDA instruction 46, 249, 251, 367, 403, 547
LDDF instruction 108, 165, 242, 364
LDDF_mem_address_not_aligned exception 108,

140, 165, 243, 245, 334, 404, 548, 549
LDDFA instruction 108, 199, 244, 283, 326, 548, 549
LDF instruction 242, 364
LDFA instruction 244
LDFSR instruction 57, 59, 60, 67, 163, 364
LDQF instruction 125, 242, 364
LDQF_mem_address_not_aligned exception 166,

245
LDQFA instruction 244
LDSB instruction 247, 365
LDSBA instruction 249, 367
LDSH instruction 247, 365
LDSHA instruction 249, 367
LDSTUB instruction 107, 179, 183, 253, 254, 516
LDSTUBA instruction 253, 254
LDSW instruction 247, 365
LDSWA instruction 249, 367
LDUB instruction 247, 365
LDUBA instruction 249, 367
LDUH instruction 247, 365
LDUHA instruction 249, 367
LDUW instruction 247, 365
LDUWA instruction 249, 367
LDX instruction 247, 365
LDXA instruction 249, 367
LDXFSR instruction 56, 57, 59, 60, 67, 163, 242, 364
leaf procedure

description 491
modifying windowed registers 121
optimization 491, 492
space allocation 491

Level I compliance (SPARC V9) 8
Level II compliance (SPARC V9) 8
little-endian byte order 12, 21, 71
load

block, See block load instructions
short floating-point, See short floating-point load

instructions
load floating-point from alternate space instructions

244
load floating-point instructions 364
load instructions 12, 107, 512
load integer from alternate space instructions 249,

367
load integer instructions 247, 365
load quadword atomic 251

load quadword atomic instruction 368, 547
LoadLoad MEMBAR relationship 179, 262
LoadLoad predefined constant 482
loads

from alternate space 22, 67, 112, 534
nonfaulting 174, 175

load-store alignment 21, 108, 173
load-store instructions 21

compare and swap 214
definition 12
and fast_data_access_protection exception 167
load-store unsigned byte 215, 253, 381, 383
load-store unsigned byte to alternate space 254
swap r register with alternate space memory 383
swap r register with memory 215, 381

LoadStore MEMBAR relationship 180, 262
LoadStore predefined constant 482
local registers 40, 43, 318, 489, 494
logical instructions 259
Lookaside MEMBAR relationship 262
Lookaside predefined constant 482
lower registers dirty (DL) field of FPRS register 56

M
machine state

after reset 565
in RED_state 565

manufacturer (manuf) field of VER register 79, 403
mask number (mask) field of VER register 79
maximum trap levels (MAXTL) field of VER register

79
MAXTL 74, 133, 135, 151, 153, 154, 329

for SPARC JPS1 74
may (keyword) 13
mem_address_not_aligned exception 108, 164, 216,

241, 243, 245, 248, 250, 316, 317, 327, 331, 334,
336, 339, 366, 368, 375, 378, 380, 382, 384, 448,
449, 451, 458, 468, 547, 548, 549

MEMBAR
#LoadLoad 179, 262, 482
#LoadStore 180, 262, 482
#StoreLoad 180, 262, 482
#StoreStore 180, 262, 482
#Sync 458, 470, 576

error isolation 575
instruction 105, 113, 172, 177, 179–180, 181, 184,

236, 261, 314, 374, 512, 556
membar_mask 482
Release 1.0.4, 31 May 2002 C. Index 17

MemIssue MEMBAR relationship 262
MemIssue predefined constant 482
memory

access instructions 21, 107
alignment 173
atomic operations 182
atomicity 405
coherence 171, 172, 405
coherency unit 173
data 183
instruction 183
models 169
ordering unit 173
real 172
reference instructions, data flow order

constraints 176
stack layout 490

Memory Management Unit (MMU) 6, 437
memory model 181–184

barrier synchronization 524
Dekker's algorithm 515
issuing order 520
mode control 182
mutex (mutual exclusion) locks 514
operations 511
partial store order (PSO) 170, 181, 404, 511
portability and recommended programming

style 513
processors and processes 512
relaxed memory order (RMO) 170, 181, 404, 511
sequential consistency 171
SPARC V9 181
spin lock 515
strong 171
strong consistency 171, 514, 520
total store order (TSO) 170, 181, 182, 511
weak 170

memory order
pending transactions 178
program order 175
SPARC V9 6

memory_model (MM) field of PSTATE register 71,
177, 182, 405

microkernel 505
mmask field of instructions 105, 374
MMU

accessing registers 458
behavior during reset 455
bypass 472

bypass mode 537
D Synchronous Fault Address Register 458
D TSB Secondary Extension Registers 459
demap 470

all 471
context 470, 472
operation syntax 471
page 470, 472

disable 455
global registers 448
I/D Synchronous Fault Status Registers 458, 467
I/D TLB Data Access Registers 459
I/D TLB Data In Registers 459
I/D TLB Tag Access register 458
I/D TLB Tag Read Register 459
I/D TSB 64K Pointer Registers 459
I/D TSB 8K Pointer Registers 459
I/D TSB Direct Pointer Register 459
I/D TSB Extension Registers 466
I/D TSB Nucleus Extension Register 459
I/D TSB Primary Extension Register 459
I/D TSB register 458
I/D TSB Registers 465
page sizes 437
Physical Watchpoint Address 459
Primary Context Register 458
Secondary Context Register 458
SPARC V9 compliance 457
Synchronous Fault Address Registers 470
Synchronous Fault Status Register

fault types 469
Tag Target Registers 464
Virtual Watchpoint Address 458

mode
nonprivileged 7, 19
privileged 19, 69, 174
user 40, 67, 489

MOV synthetic instruction 486
MOVA instruction 272
MOVCC instruction 272
MOVcc instructions 55, 57, 104, 106, 119, 268, 269,

272, 276, 432, 433
MOVCS instruction 272
move floating-point register if condition is true 264
move floating-point register if contents of integer

register satisfy condition 270
MOVE instruction 272
move integer register if condition is satisfied

instructions 272
18 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

move integer register if contents of integer register
satisfies condition instructions 277

move on condition instructions 5
MOVFA instruction 273
MOVFE instruction 273
MOVFG instruction 273
MOVFGE instruction 273
MOVFL instruction 273
MOVFLE instruction 273
MOVFLG instruction 273
MOVFN instruction 273
MOVFNE instruction 273
MOVFO instruction 273
MOVFU instruction 273
MOVFUE instruction 273
MOVFUG instruction 273
MOVFUGE instruction 273
MOVFUL instruction 273
MOVFULE instruction 273
MOVG instruction 272
MOVGE instruction 272
MOVGU instruction 272
MOVL instruction 272
MOVLE instruction 272
MOVLEU instruction 272
MOVN instruction 272
MOVNE instruction 272
MOVNEG instruction 272
MOVPOS instruction 272
MOVr instructions 106, 119, 277, 433
MOVRGEZ instruction 277
MOVRGZ instruction 277
MOVRLEZ instruction 277
MOVRLZ instruction 277
MOVRNZ instruction 277
MOVRZ instruction 277
MOVVC instruction 272
MOVVS instruction 272
multiple unsigned condition codes, emulating 120
multiply instructions 23, 279, 369, 369
multiprocessor synchronization instructions 214,

381, 383
multiprocessor system 177, 236, 307, 381, 383, 405
MULX instruction 279
must (keyword) 13
mutex (mutual exclusion) locks 514
M-way set-associative TSB 444

N
NaN (not-a-number)

conversion to integer 396
converting floating-point to integer 226
quiet 224, 393
signalling 57, 224, 228, 393
transformation 393

NEG synthetic instruction 485
negative (N) bit of condition fields of CCR 54
negative infinity 396
nested traps 6
next program counter (nPC) 25, 46, 46, 76, 101, 217,

281, 505, 566, 578
nonfaulting load 13, 174, 175, 442, 456, 469
nonleaf routine 241
nonprivileged

mode 7, 9, 19, 60
registers 40
software 55

nonprivileged trap (NPT) field of STICK register 90
nonprivileged trap (NPT) field of TICK register 68,

314
nonstandard floating-point, See floating-point status

register (FSR) NS field
nontranslating ASI 13, 94
nonvirtual memory 307
NOP instruction 209, 281, 304, 345, 356, 359
normal traps 132, 142, 151, 151, 152, 152, 154, 155
NOT synthetic instruction 485
note

implementation 4
programming 4

nPC register, See next program counter (nPC)
Nucleus code 560
Nucleus Context Register 460
number of windows (maxwin) field of VER register

79
number of windows (maxwin) field of VER register

128
NWINDOWS 20, 42, 44, 80, 318, 319, 399, 405

O
op3 field of instructions 105, 192, 214, 217, 236, 238,

241, 242, 244, 247, 249, 253, 254, 260, 279, 304,
311, 314, 316, 361, 364, 365, 367, 369, 371, 373

opcode
definition 14
Mask 97
Release 1.0.4, 31 May 2002 C. Index 19

Match 97
reserved 510

opf field of instructions 105, 221, 223, 225, 227, 229,
231, 233, 235

opf_cc field of instructions 433
opf_cc field of instructions 105, 266
opf_low field of instructions 105, 266, 270
OR instruction 259, 486
ORcc instruction 259, 484
ordering MEMBAR instructions 113
ordering unit, memory 173
ORN instruction 259
ORNcc instruction 259
other windows (OTHERWIN) register 80, 82, 121,

122, 126, 128, 238, 311, 319, 347, 405, 505, 567
out register #7 46
out registers 40, 43, 44, 318, 488
overflow

causing spill trap 127
window 504

overflow (V) bit of condition fields of CCR 55, 114
overflow accrued (ofa) bit of aexc field of FSR

register 66
overflow current (ofc) bit of cexc field of FSR

register 66
overflow mask (OFM) bit of TEM field of FSR

register 65

P
p field of instructions 106, 206, 209, 210
P superscript on instruction name 186
PA Data Watchpoint Register

DB_PA field 96
format 96
state after reset 567

PA_watchpoint exception 95, 167
packed-to-planar conversion 300
packing instructions, See FPACK instructions
page fault 307
parameters to a subroutine 488
partial store instructions 282, 380, 548
partial store order (PSO) memory model 72, 170,

170, 181, 404, 511
PASI superscript on instruction name 186
PASR superscript on instruction name 186
PC register, See program counter (PC)
PCR

fields
PRIV 85
SL (select lower bits of PIC) field 84
ST(system trace enable) field 84
SU (select upper bits of PIC) field 84
UT (user trace enable) field 84

RDASR/WRASR support 123
state after reset 567

PDIST instruction 294
Performance Control Register, See PCR
Performance Instrumentation Counter, See PIC

register
physical address

data watchpoint 96
memory address 171

PIC register
and PCR 84
PICL field 85
PICU field 85
RDASR/WRASR support 123
state after reset 567

PIL, See processor interrupt level (PIL) register
pixel instructions

comparison 292
component distance 294
formatting 295

pixel multiplication 36
planar-to-packed conversion 300
PNPT superscript on instruction name 186
POPC instruction 125, 301
POR, See power_on_reset (POR)
positive infinity 396
power failure 139, 158
power_on_reset (POR) 133, 135, 155
power-on reset (POR) 68, 91
PPCR superscript on instruction name 186
PPIC superscript on instruction name 186
precise floating-point traps 312
precise trap

catastrophic error exception 401
conditions 574
conditions for 137
software actions 137
vs. disrupting trap 138

predefined constants
LoadLoad 482
lookaside 482
MemIssue 482
20 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

StoreLoad 482
StoreStore 482
Sync 482

predict bit 206
prefetch

for one read 306
for one write 307
for several reads 306
for several writes 306
instruction 309
page 307

prefetch data instruction 303
PREFETCH instruction 107, 303, 304, 403, 456
prefetch_fcn 482
PREFETCHA instruction 303, 403
Primary Context Register 459
priority

traps 141, 145, 147
VA vs. PA_watchpoint 95

privileged
mode 19, 69, 174
registers 69
software 7, 43, 59, 73, 112, 142, 238, 403

privileged (PRIV) field of PSTATE register 73, 164,
174, 215, 245, 254, 314, 334, 339, 379, 383

privileged mode (PRIV) field of PSTATE register 73
privileged_action exception 68, 90, 112, 139, 164, 216,

245, 250, 254, 255, 314, 315, 334, 339, 368, 379,
380, 384, 448, 449, 450, 452, 538, 557, 558, 559, 560
PIC access 85

privileged_instruction exception (SPARC V8) 164
privileged_opcode exception 139, 164, 217, 312, 321,

349, 560
processor

execute unit 175
halt 149
issue unit 175, 175
logical organization 19
model 175
reorder unit 175
self-consistency 176
state diagram 133

processor interrupt level (PIL) register 75, 138, 140,
164, 311, 347, 560, 566

processor state (PSTATE) register 25, 42, 69, 71, 77,
131, 133, 217, 311, 347, 566

processor states
error_state 133, 136, 149, 151, 153, 154, 160, 402
execute_state 149, 151, 153, 154

RED_state 133, 135, 143, 149, 151, 152, 153, 154,
155, 156, 160, 182, 404

program counter (PC) 25, 46, 46, 75, 101, 123, 131,
213, 217, 241, 281, 505, 566, 578

program order 175, 176
programming note 4
PSO, See partial store order (PSO) memory model
PSR register (SPARC V8) 352
PSTATE

AM field 537
global register selection encodings 70
IE field 560
IG field 70, 556
illegal_instruction exception 163
MG field 70
PEF field 351
PRIV field 13, 14, 443, 450
RED field 87, 563

Q
Quad FPop instructions 125
quadword

addressing 112
alignment 21, 108, 173
data format 27
definition 15

queue not empty (qne) field of FSR register 63, 392
quiet NaN (not-a-number) 57, 224, 393

R
r register

#15 46
categories 40
number in IU 399
special-purpose 46
alignment 365, 367

rational quotient 362
R-A-W, See read-after-write memory hazard
rcond field of instructions 433
rcond field of instructions 106, 206, 270, 277
rd field of instructions 106, 192, 214, 221, 225, 227,

229, 231, 233, 235, 241, 242, 244, 247, 249, 253,
254, 260, 266, 270, 274, 277, 279, 301, 311, 314,
361, 364, 365, 367, 369, 371, 373, 509

RDASI instruction 313, 313, 373
RDASR instruction 22, 83, 163, 313, 313, 373, 374,

402, 486, 509
Release 1.0.4, 31 May 2002 C. Index 21

RDCCR instruction 313, 313, 373
RDDCR instruction 313
RDFPRS instruction 313, 313, 373
RDGSR instruction 87, 313
RDPC instruction 47, 313, 313, 373
RDPCR instruction 85, 313
RDPIC instruction 85, 313
RDPR FQ instruction 125
RDPR instruction 69, 79, 80, 126, 163, 311, 315
RDSOFTINT instruction 89, 313
RDSTICK instruction 90, 313
RDSTICK_CMPR instruction 313
RDTICK instruction 313, 313, 315, 373
RDTICK_CMPR instruction 313
RDY instruction 47, 486
read privileged register (RDPR) instruction 311
read state register instructions 24, 313, 373
read-after-write memory hazard 176, 177
real memory 172
real-time software 494
RED_state 132, 133, 135, 143, 149, 151, 152, 153, 154,

155, 156, 160, 182, 404, 455, 456, 563
MMU behavior 455
restricted environment 135
trap vector 134, 404, 565

RED_state (RED) field of PSTATE register 71, 133
RED_state trap table 143
RED_state trap vector address (RSTVaddr) 404
reference MMU 7, 475
reg 476
reg_or_imm field of instructions 482, 509
reg_plus_imm 481
regaddr 482
register reference instructions, data flow order

constraints 176
register window management instructions 25
register windows 6, 43, 488, 489

clean 83, 120, 127, 129, 165
fill 43, 120, 121, 126, 127, 128, 129, 162, 319, 321
spill 43, 120, 121, 122, 126, 127, 128, 129, 164, 319,

321
registers 567

accessing MMU registers 458
address space identifier (ASI) 131, 174, 217, 244,

250, 254, 305, 334, 339, 351, 367, 379, 383, 503
allocation within a window 494
alternate global 20
alternate global 40, 42, 503
ancillary state registers (ASRs) 22, 48, 83, 509

ASI 68, 77, 566
CANRESTORE 81, 566
CANSAVE 81, 566
clean windows (CLEANWIN) 80, 83, 120, 127,

128, 129, 311, 347, 405
CLEAR_SOFTINT 88, 561
clock-tick (TICK) 164
condition codes register (CCR) 77, 131, 192, 217,

351, 371
control and status 39, 46
current window pointer (CWP) 43, 77, 80, 80, 83,

128, 131, 217, 238, 311, 318, 319, 347, 405
Data Cache Unit Control (DCUCR) 92
dispatch control register (DCR) 86
f (floating point) 141, 392, 402
floating-point 20, 53, 402, 490
floating-point deferred-trap queue (FQ) 312
floating-point registers state (FPRS) 55, 314, 351
floating-point state (FSR) 56, 64, 67, 364, 375, 392,

400
frame pointer 488
global 5, 20, 40, 42, 42, 489, 494
graphics status (GSR) 87
IER (SPARC V8) 352
in 40, 43, 318, 488
Instruction Trap 96
Interrupt Vector Dispatch register 557
Interrupt Vector Dispatch Status register 558, 568
Interrupt Vector Receive register 559, 568
local 40, 43, 318
MMU Tag Target 464
nonprivileged 40
other windows (OTHERWIN) 80, 82, 121, 122,

126, 128, 238, 311, 319, 347, 405, 505, 567
out 40, 43, 44, 318, 488
out #7 46
PA_WATCHPOINT 567
PC 46
performance control (PCR) 84
performance instrumentation counter (PIC) 85
privileged 69
processor interrupt level (PIL) 75, 311, 347
processor state (PSTATE) 42, 69, 71, 77, 131, 133,

217, 311, 347
PSR (SPARC V8) 352
r 40
r register #15 46
r register, general-purpose 399
renaming mechanism 176
22 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

restorable windows (CANRESTORE) 43, 80, 83,
120, 121, 122, 126, 127, 128, 311, 319, 321, 347,
405, 505

savable windows (CANSAVE) 43, 80, 81, 120,
121, 122, 127, 128, 238, 311, 319, 321, 347, 405

SET_SOFTINT 88, 560
SOFTINT 88, 560
stack pointer 488, 489
STICK 90
STICK_COMPARE 567
TBA 566
TBR (SPARC V8) 352
TICK 68, 90, 91, 311, 347, 566
TICK_COMPARE 90, 567
trap base address (TBA) 78, 131, 141, 311, 347
trap level (TL) 74, 74, 75, 76, 77, 78, 79, 82, 131,

217, 311, 312, 321, 329, 347, 348
trap next program counter (TNPC) 76, 311, 347
Trap Program Counter 469
trap program counter (TPC) 75, 311, 312, 347
trap state (TSTATE) 70, 77, 217, 311, 347
trap type (TT) 77, 78, 82, 142, 149, 159, 311, 346,

347, 401, 566
update 469
version register (VER) 79, 311
WIM (SPARC V8) 352
window state (WSTATE) 80, 82, 128, 238, 311,

319, 347, 504, 505
window usage models 494
working 39
WSTATE 567
Y 47, 47, 361, 369, 371, 389, 566

relaxed memory order (RMO) memory model 72,
170, 181, 404, 511

renaming mechanism, register 176
reorder unit 175
reordering instruction 176
reserved

fields in instructions 185
instructions 125
opcodes 510

reset
externally_initiated_reset (XIR) 133, 134, 135, 139,

155, 158, 165
global 455
power_on_reset (POR) 133, 135, 155, 164, 164
power-on 68, 91
processing 133
PSTATE.RED 563

request 133, 164
reset trap 68, 77, 91, 138, 139
software_initiated_reset (SIR) 133, 135, 139, 149,

159, 164, 564
trap 402
trap vector address, See RSTVaddr
watchdog_reset (WDR) 155, 158, 166

Reset, Error, and Debug state, See RED_state
restorable windows (CANRESTORE) register 43, 80,

83, 120, 121, 122, 126, 127, 128, 311, 319, 321, 347,
405, 505

RESTORE instruction 318–320
actions 120
avoiding normal register-window mechanism

494
and current window 46
decrementing CWP register 43
fill trap 127, 162
followed by SAVE instruction 44
leaf-procedure optimization 491, 492
managing register windows 25
operation 318
performance trade-off 319
relationship to %sp 489
and restorable windows (CANRESTORE)

register 81
restoring register window 319
role in register state partitioning 126
SPARC V9 vs. SPARC V8 81

RESTORE synthetic instruction 484
RESTORED instruction 121, 129, 320, 321, 321, 503

use by privileged software 25
restricted address space identifier 112
restricted ASI 452, 538
RET synthetic instruction 484, 492
RETL synthetic instruction 484, 492
RETRY instruction 24, 55, 70, 129, 131, 133, 139, 163,

217
restoring AG, IG, MG bits 70

return address 488, 491
RETURN instruction 316–317

computing target address 24
destination register 47
fill trap 162
mem_address_not_aligned exception 164
operation 316
reexecuting trapped instruction 316
support for nonprivileged trap handlers 505

RMO, See relaxed memory order (RMO) memory
Release 1.0.4, 31 May 2002 C. Index 23

model
rounding

behavior in GSR 87
for floating-point results 58
image computations 36
in signed division 363

rounding direction (RD) field of FSR register 58, 222,
225, 227, 229, 234, 235

routine, nonleaf 241
rs1 field of instructions 106, 192, 206, 214, 221, 223,

233, 236, 241, 242, 244, 247, 249, 253, 254, 260,
270, 277, 279, 304, 311, 314, 316, 361, 364, 365,
367, 369, 371, 373, 509

rs2 field of instructions 106, 192, 214, 221, 223, 225,
227, 229, 231, 233, 235, 236, 241, 242, 244, 247,
249, 260, 266, 270, 274, 277, 279, 301, 304, 361,
364, 365, 367, 369, 371

RSTVaddr 143, 404, 565

S
savable windows (CANSAVE) register 43, 80, 81,

120, 121, 122, 127, 128, 238, 311, 319, 321, 347, 405
SAVE instruction 318–320

actions 120
after a callee is entered 488
after RESTORE instruction 316
avoiding normal register-window mechanism

494
clean_window exception 128, 165
and current window 46
decrementing CWP register 43
in leaf procedure optimization 492
leaf procedure 241, 491
and local/out registers of register window 44
managing register windows 25
no clean window available 83
number of usable windows 83
operation 318
performance trade-off 319
relationship to %sp 489
role in register state partitioning 126
and savable windows (CANSAVE) register 81
SPARC V9 vs. SPARC V8 81
spill trap 127, 128, 164

SAVE synthetic instruction 484
SAVED instruction 25, 121, 129, 320, 321, 321, 503
scaling of the coefficient 287
SDIV instruction 47, 361

SDIVcc instruction 47, 361
SDIVX instruction 279
Secondary Context Register 460
self-consistency, processor 176
self-modifying code 237, 495
sequence_error floating-point trap type 60, 63, 165,

401
sequencing MEMBAR instructions 113
sequential consistency memory model 171
SET synthetic instruction 484
SET_SOFTINT pseudo-register 88, 123, 560
SET_SOFTINT register 88
SETHI instruction 23, 105, 114, 281, 323, 323, 484,

490
SFAR Fault Address field 470
SFSR

bit description 467
update policy 469

shall (keyword) 15
shared memory 169, 514, 516, 522
shcnt32 field of instructions 106
shcnt64 field of instructions 106
shift count encodings 325
shift instructions 23, 114, 324
short floating-point load and store instructions 326,

549
short floating-point load instructions 368
short floating-point store instructions 380
should (keyword) 16
SHUTDOWN instruction 328
SIAM instruction 322
side effects 172
signalling ECC 580
signalling NaN (not-a-number) 57, 224, 228, 393
signed integer data type 27
sign-extended 64-bit constant 106
sign-extension 485
SIGNX synthetic instruction 485
simm10 field of instructions 106, 277
simm11 field of instructions 106, 274
simm13 field of instructions 106, 192, 236, 241, 242,

244, 247, 249, 253, 254, 260, 279, 301, 304, 316,
361, 364, 365, 367, 369, 371

single-issue mode, See DCUCR SI (single-issue
disable) field

SIR instruction 139, 159, 164, 329, 351, 565
SIR, See software_initiated_reset (SIR)
SLL instruction 324, 324
SLLX instruction 324, 324, 485
24 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

SMUL instruction 47, 369
SMULcc instruction 47, 369
SOFTINT register 88, 89, 123, 560
software conventions 487
software interrupt (SOFTINT) register

after reset & in RED_state 567
clearing 561
in code sequence for Interrupt Receive 556
scheduling interrupt vectors 560
setting 560

software translation table 438
software trap 142, 143, 143, 345
software_initiated_reset (SIR) 133, 135, 139, 149, 155,

159, 164, 329, 564, 565
software_trap_number 483
SPARC V8 compatibility

ADDC/ADDCcc renamed 193
current window pointer (CWP) register

differences 81
delay instruction 24
delay instruction fetch 117
executing delayed conditional branch 117
existing nonprivileged SPARC V8 software 42
instruction between FBfcc /FBPfcc 209
LD, LDUW instructions 248
level 15 interrupt 75
operations to I/O locations 172
read state register instructions 315
STA instruction renamed 339
STBAR instruction 263, 374
STD instruction 378
STDA instruction 380
STFSR instruction 375
tagged add instructions 386
tagged subtract instructions 388
Ticc instruction 346
UNIMP instruction renamed 239
window_overflow exception superseded 164
window_underflow exception superseded 162
write state register instructions 352

SPARC V9
compliance 14, 457
features 5
memory models 181

SPARC V9 Application Binary Interface (ABI) 7, 8
special traps 132, 143
spill register window 43, 120, 121, 122, 126, 127, 128,

129, 164, 319, 321, 503
spill windows 318

spill_n_normal exception 164, 238, 320
spill_n_other exception 164, 238, 320
spin lock 515
SRA instruction 324, 324, 485
SRAX instruction 324, 324
SRL instruction 324, 324
SRLX instruction 324, 324
ST instruction 486
stack frame 319
stack pointer alignment 491
stack pointer register 488, 489
STB instruction 336, 486
STBA instruction 338
STBAR instruction 177, 179, 263, 314
STD instruction 46, 404
STDA instruction 46, 404
STDF instruction 108, 165, 166, 330
STDF_mem_address_not_aligned exception 108,

140, 165, 166, 331, 334, 404
STDFA instruction 108, 199, 282, 326, 333, 333, 548,

549
STF instruction 330
STFA instruction 333
STFSR instruction 56, 57, 59, 67, 163
STH instruction 336, 486
STHA instruction 338
STICK register 90, 123, 313, 567
STICK_COMPARE register 91, 123, 313, 567
STICK_INT 561
store

block, See block store instructions
partial, See partial store instructions
short floating-point, See short floating-point store

instructions
store floating-point into alternate space instructions

333
store instructions 16, 107, 167, 512
StoreLoad MEMBAR relationship 180, 262
StoreLoad predefined constant 482
stores to alternate space 22, 67, 112, 534
StoreStore MEMBAR relationship 180, 262
StoreStore predefined constant 482
STQF instruction 125, 330
STQF_mem_address_not_aligned exception 166
STQFA instruction 333, 333
strong consistency memory model 171, 514, 520
strong ordering 171
STW instruction 336
STWA instruction 338
Release 1.0.4, 31 May 2002 C. Index 25

STX instruction 336
STXA instruction 338
STXFSR instruction 56, 57, 59, 67, 163, 330
SUB instruction 340, 340, 485
SUBC instruction 340, 340
SUBcc instruction 114, 340, 340, 484
SUBCcc instruction 340, 340
subtract instructions 340
supervisor software 22, 42, 60, 63, 131, 149, 159, 400,

487, 503, 505
supervisor-mode trap handler 142
sw_trap# field of instructions 106
SWAP instruction 107, 179, 183, 253, 254, 381, 516
swap r register with alternate space memory

instructions 383
swap r register with memory instructions 215, 381
SWAPA instruction 253, 254, 383
Sync MEMBAR relationship 262
Sync predefined constant 482
Synchronous Fault Address Register (SFAR) 470
Synchronous Fault Status Register (SFSR)

fault types 469
register bits 467

synthetic instructions
BCLR 486
BSET 486
BTOG 486
BTST 485
CALL 484
CAS 485
CASX 485
CLR 486
CMP 341, 484
DEC 485
DECcc 485
INC 485
INCcc 485
IPREFETCH 484
JMP 484
MOV 486
NEG 485
NOT 485
RESTORE 484
RET 484, 492
RETL 484, 492
SAVE 484
SET 484
SIGNX 485
TST 484

synthetic instructions in assembler 484
system call 504
system clock-tick register (STICK) 91
system software 164, 174, 184, 237, 402, 489, 491,

495, 503, 504, 505
System Tick Compare Register, See

STICK_COMPARE register
System Tick Register, See STICK register
system timer interrupt, STICK_INT 561

T
TA instruction 344, 432
TADDcc instruction 114, 342
TADDccTV instruction 114, 165
Tag Access Register 445, 460, 461
tag overflow 114
tag_overflow exception 114, 165, 342, 343, 385, 386,

388
tagged arithmetic 114
tagged arithmetic instructions 23
tagged word data format 27
tagged words 27
TBA register 566
TBR register (SPARC V8) 352
TCC instruction 344
Tcc instructions 25, 55, 104, 125, 131, 142, 143, 163,

165, 344, 428, 432, 434
TCS instruction 344, 432
TE instruction 344, 432
test-and-set instruction 183
TG instruction 344, 432
TGE instruction 344, 432
TGU instruction 344, 432
Ticc instruction (SPARC V8) 346
TICK register 68, 123, 566
TICK_COMPARE register 90, 123, 567
TICK_INT 561
timer interrupt, TICK_INT 561
timer registers, See TICK register and STICK register
timing of instructions 186
tininess (floating-point) 66
TL instruction 344, 432
TL register 348

TL = MAXTL 563
TLB

and RED_state 455
bypass operation 473
Data Access register 462
26 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

data In register 445
data in register 462, 463
demap operation 473
hardware 473
hit 16
instruction 449
miss

fast handling 448
handler 439, 445
MMU behavior 439
reloading TLB 443

miss/refill sequence 445
missing entry 445
operations 473
read operation 473
replacement policy 473
required conditions 448
specialized miss handler code 457
Tag Access Registers 460
translation operation 473
write operation 473

TLE instruction 344, 432
TLEU instruction 344, 432
TN instruction 344, 432
TNE instruction 344, 432
TNEG instruction 344, 432
TNPC register 75, 137, 578
total order 178
total store order (TSO) memory model 72, 170, 170,

181, 182, 511
TPC register 75, 577, 578
TPOS instruction 344, 432
Translation

Storage Buffer (TSB) 443, 465, 466
Table Entry (TTE) 440, 449

Translation Table Entry, See TTE
trap

See also exceptions and traps
definition 131
ECC_error 167
fast_data_access_MMU_miss 70
fast_data_access_protection 70
fast_instruction_access_MMU_miss 70
fp_disabled

GSR access 351
level 74
model 139
out register overflow 488
priority 141, 145, 147

processing 149
stack 6, 70, 151, 153, 154
VA_/PA_watchpoint 95
vector, RED_state 134

trap base address (TBA) register 78, 131, 141, 311,
347

trap categories
deferred 138
disrupting 138, 139
precise 138
reset 139

trap enable mask (TEM) field of FSR register 58, 63,
65, 140, 141, 165, 400

trap handler 217
supervisor-mode 142
user 60, 395, 505

trap level (TL) register 74, 74, 75, 76, 77, 78, 79, 82,
131, 217, 311, 312, 321, 329, 347, 348, 566

trap next program counter (TNPC) register 76, 311,
347, 566

trap on integer condition codes instructions 344
trap program counter (TPC) register 75, 311, 312,

347, 469, 566
trap state (TSTATE) register 70, 77, 217, 311, 347, 566
trap type (TT) register 77, 78, 82, 142, 149, 159, 311,

346, 347, 401, 566
trap_instruction (ISA) exception 139, 165, 345, 346
trap_little_endian (TLE) field of PSTATE register 71,

71
traps

See also exceptions and trap
causes 26, 26
deferred 137, 401
definition 25
disrupting 137, 401
hardware 143
nested 6
normal 132, 142, 151, 151, 152, 152, 154, 155
precise 137, 401
reset 77, 137, 138, 139, 149, 402
software 143, 345
software_initiated_reset (SIR) 155
special 132, 143
window fill 143
window spill 143

TSB
cacheability 444
caching 444
demap operation 471
Release 1.0.4, 31 May 2002 C. Index 27

Direct Pointer registers 466
Extension Register 446, 447, 459, 466
I/D Translation Storage Buffer Register 464
indexing support 443
miss handler 445
organization 444
pointer logic hardware 474
Pointer register 467
register, computing 64-Kbyte pointer 443
required conditions 448
split 447
Split field 465
Tag Target register 448, 464
TSB_Base field 465
TSB_Size field 465

TSO, See total store order (TSO) memory model
TST synthetic instruction 484
TSTATE, See trap state (TSTATE) register
TSUBcc instruction 114, 343
TSUBccTV instruction 114, 165
TTE

Context field 440
CP field 442
CV field 442
E field 442
G field 440, 443
L field 442
NFO field 441
P field 443
PA field 441
Size field 440
Soft2 field 441
V field 440
VA_tag field 440
W field 443

TVC instruction 344, 432
TVS instruction 344, 432
typewriter font, in assembly language syntax 475

U
UDIV instruction 47, 361
UDIVcc instruction 47, 361
UDIVX instruction 279
UMUL instruction 47, 369
UMULcc instruction 47, 369
unconditional branches 209, 211, 356, 359
uncorrectable errors 578
underflow 127

underflow accrued (ufa) bit of aexc field of FSR
register 66, 395

underflow current (ufc) bit of cexc field of FSR
register 66, 395

underflow mask (UFM) bit of TEM field of FSR
register 65, 66, 394, 395

unfinished_FPop floating-point trap type 60, 61, 67,
124, 234, 392

UNIMP instruction (SPARC V8) 239
unimplemented instructions 125
unimplemented_FPop floating-point trap type 60,

63, 67, 124, 222, 224, 226, 228, 230, 234, 269, 271,
392

unimplemented_LDD exception 166, 403
unimplemented_STD exception 166, 404
unrestricted address space identifier 505
unsigned integer data type 27
upper registers dirty (DU) field of FPRS register 56
user

mode 40, 67, 489
program 400
software 495
trap handler 60, 395, 505

V
VA Data Watchpoint Register

DB_VA field 95
state after reset 567

VA_watchpoint exception 95, 167
value clipping, See FPACK instructions
value semantics of input/output (I/O) locations 172
variables, automatic 489
version (ver) field of FSR register 59
version register (VER) 79, 311, 567
virtual address

data watchpoint 95
memory address 171

virtual memory 307
VIS instructions 87

encoding 435
Visual Instruction Set, See VIS instructions

W
walking the call chain 489
W-A-R, See write-after-read memory hazard
watchdog_reset (WDR) 136, 155, 158, 166, 411, 565
watchpoints
28 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

data registers 94
PA/VA watchpoint traps 450
and RED_state 563
trap 449

W-A-W, See write-after-write memory hazard
WDR, See watchdog_reset (WDR)
WIM register (SPARC V8) 352
window fill exception, See also fill_n_normal

exception
window fill trap handler 25
window overflow 43, 127, 504
window spill exception, See also spill_n_normal

exception
window spill trap handler 25
window state (WSTATE) register

description 82
and fill/spill exceptions 128
NORMAL field 128
OTHER field 128
overview 80
reading WSTATE with RDPR instruction 311
and spill/fill traps 505
spill exception 238
spill handler example 504
spill trap 319
writing WSTATE with WRPR instruction 347

window underflow 43, 127
window, clean 318
window_fill exception 82, 120, 143, 316, 491
window_spill exception 82, 143
windows, register 489
word

addressing 112
alignment 21, 108, 173
data format 27

WRASI instruction 350
WRASR instruction 22, 83, 163, 350, 402, 486, 509

WRDCR instruction 350
WRGSR instruction 350
WRPCR instruction 350
WRPIC instruction 350
WRSOFTINT instruction 350
WRSOFTINT_CLR instruction 350
WRSOFTINT_SET instruction 350
WRSTICK instruction 350
WRSTICK_CMPR instruction 350
WRTICK_CMP instruction 350

WRCCR instruction 55, 350
WRFPRS instruction 350

WRGSR instruction 87
WRIER instruction (SPARC V8) 352
write privileged register instruction 347
write-after-read memory hazard 176
write-after-write memory hazard 176
WRPCR instruction 85
WRPIC instruction 85
WRPR instruction 68, 69, 80, 126, 134, 163, 347, 347
WRPSR instruction (SPARC V8) 352
WRSOFTINT instruction 89
WRSOFTINT_CLR instruction 88
WRSOFTINT_SET instruction 88
WRTBR instruction (SPARC V8) 352
WRWIM instruction (SPARC V8) 352
WRY instruction 47, 350, 486
WSTATE register 567

X
x field of instructions 106
xcc field of CCR register 55, 192, 212, 260, 275, 340,

342, 362, 363, 370, 372
XIR, See externally_initiated_reset (XIR)
XNOR instruction 259, 485
XNORcc instruction 259
XOR instruction 259, 486
XORcc instruction 259

Y
Y register 47, 47, 122, 361, 369, 371, 389, 566

Z
zero (Z) bit of condition fields of CCR 54
Release 1.0.4, 31 May 2002 C. Index 29

30 C. Index SPARC® Joint Programming Specification (JPS1): Commonality • Release 1.0.4, 31 May 2002

	SPARC® Joint Programming Specification (JPS1): Commonality
	Contents
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Editorial Conventions
	Related Reading

	Overview
	1.1 Navigating the SPARC Joint Programming Specification
	1.2 Fonts and Notational Conventions
	1.2.1 Implementation Dependencies
	1.2.2 Notation for Numbers
	1.2.3 Informational Notes

	1.3 SPARC V9 Architecture
	1.3.1 Features
	1.3.2 Attributes
	Design Goals
	Register Windows

	1.3.3 System Components
	SPARC JPS1 MMU
	Privileged Software
	Binary Compatibility

	1.3.4 Architectural Definition
	1.3.5 SPARC V9 Compliance

	Definitions
	Architectural Overview
	3.1 SPARC V9 Processor Architecture
	3.1.1 Integer Unit (IU)
	3.1.2 Floating-Point Unit (FPU)

	3.2 Instructions
	3.2.1 Memory Access
	Memory Alignment Restrictions
	Addressing Conventions
	Load/Store Alternate
	Separate I and D Memories
	Input/Output (I/O)
	Memory Synchronization

	3.2.2 Arithmetic / Logical / Shift Instructions
	3.2.3 Control Transfer
	3.2.4 State Register Access
	3.2.5 Floating-Point Operate
	3.2.6 Conditional Move
	3.2.7 Register Window Management

	3.3 Traps

	Data Formats
	4.1 Signed, Unsigned, and Tagged Integer Data Formats
	4.1.1 Signed Integer Data Types
	Signed Integer Byte
	Signed Integer Halfword
	Signed Integer Word
	Signed Integer Double
	Signed Extended Integer

	4.1.2 Unsigned Integer Data Types
	Unsigned Integer Byte
	Unsigned Integer Halfword
	Unsigned Integer Word
	Unsigned Integer Double
	Unsigned Extended Integer

	4.1.3 Tagged Word

	4.2 Floating-Point Data Types
	4.2.1 Floating Point, Single Precision
	4.2.2 Floating Point, Double Precision
	4.2.3 Floating Point, Quad Precision
	4.2.4 Floating-Point Data Alignment in Memory and Registers

	4.3 Graphics Data Formats
	4.3.1 Pixel Graphics Format
	4.3.2 Fixed16 Graphics Format
	4.3.3 Fixed32 Graphics Format

	Registers
	5.1 Nonprivileged Registers
	5.1.1 General-Purpose r Registers
	Global r Registers
	Windowed r Registers
	Overlapping Windows

	5.1.2 Special r Registers
	Register-Pair Operands
	Register Usage

	5.1.3 IU Control/Status Registers
	Program Counters (PC, nPC)
	32-bit Multiply/Divide Register (Y)
	Ancillary State Registers (ASRs)

	5.1.4 Floating-Point Registers
	Floating-Point Register Number Encoding
	Double and Quad Floating-Point Operands

	5.1.5 Integer Condition Codes Register (CCR)
	CCR Condition Code Fields (xcc and icc)

	5.1.6 Floating-Point Registers State (FPRS) Register
	FPRS_enable_fp (FEF)
	FPRS_dirty_upper (DU)
	FPRS_dirty_lower (DL)

	5.1.7 Floating-Point State Register (FSR)
	FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)
	FSR_rounding_direction (RD)
	FSR_trap_enable_mask (TEM)
	FSR_nonstandard_fp (NS)
	FSR_version (ver)
	FSR_floating-point_trap_type (ftt)
	FSR_accrued_exception (aexc)
	FSR_current_exception (cexc)
	Floating-Point Exception Fields
	FSR Conformance

	5.1.8 Address Space Identifier (ASI) Register
	5.1.9 Tick (TICK) Register

	5.2 Privileged Registers
	5.2.1 Processor State (PSTATE) Register
	Global Register Sets
	PSTATE_current_little_endian (CLE)
	PSTATE_trap_little_endian (TLE)
	PSTATE_mem_model (MM)
	PSTATE_RED_state (RED)
	PSTATE_enable_floating-point (PEF)
	PSTATE_address_mask (AM)
	PSTATE_privileged_mode (PRIV)
	PSTATE_interrupt_enable (IE)
	PSTATE_alternate_globals (AG)

	5.2.2 Trap Level Register (TL)
	5.2.3 Processor Interrupt Level (PIL) Register
	5.2.4 Trap Program Counter (TPC) Registers
	5.2.5 Trap Next Program Counter (TNPC) Registers
	5.2.6 Trap State (TSTATE) Registers
	5.2.7 Trap Type (TT) Registers
	5.2.8 Trap Base Address (TBA) Register
	5.2.9 Version (VER) Register
	5.2.10 Register-Window State Registers
	Current Window Pointer (CWP) Register
	Savable Windows (CANSAVE) Register
	Restorable Windows (CANRESTORE) Register
	Other Windows (OTHERWIN) Register
	Window State (WSTATE) Register
	Clean Windows (CLEANWIN) Register

	5.2.11 Ancillary State Registers (ASRs)
	Performance Control Register (PCR) (ASR 16)
	Performance Instrumentation Counter (PIC) Register (ASR 17)
	Dispatch Control Register (DCR) (ASR 18)
	Graphics Status Register (GSR) (ASR 19)
	SET_SOFTINT (Set Bit(s) in Per-Processor SOFTINT Register) (ASR 20)
	CLEAR_SOFTINT (Clear Bit(s) in Per-Processor SOFTINT Register) (ASR 21)
	SOFTINT Register (ASR 22)
	Tick Compare (TICK_COMPARE) Register (ASR 23)
	System Tick (STICK) Register (ASR 24)
	System Tick Compare (STICK_COMPARE) Register (ASR 25)

	5.2.12 Registers Referenced Through ASIs
	Data Cache Unit Control Register (DCUCR)
	Data Watchpoint Registers
	Instruction Trap Register
	Interrupt ASI Registers

	5.2.13 Floating-Point Deferred-Trap Queue (FQ)
	5.2.14 Integer Unit Deferred-Trap Queue

	Instructions
	6.1 Instruction Execution
	6.2 Instruction Formats and Fields
	6.3 Instruction Categories
	6.3.1 Memory Access Instructions
	Memory Alignment Restrictions
	Addressing Conventions
	Big-endian Addressing Convention
	Little-endian Addressing Convention

	Address Space Identifiers (ASIs)
	Separate Instruction Memory
	Memory Synchronization Instructions

	6.3.2 Integer Arithmetic Instructions
	Setting Condition Codes
	Shift Instructions
	Set High 22 Bits of Low Word
	Integer Multiply/Divide
	Tagged Add/Subtract

	6.3.3 Control-Transfer Instructions (CTIs)
	Conditional Branches
	Unconditional Branches
	CALL and JMPL Instructions
	RETURN Instruction
	DONE and RETRY Instructions
	Trap Instruction (Tcc)
	Conditional Move Instructions
	MOVcc and FMOVcc Instructions
	MOVr and FMOVr Instructions

	6.3.4 Register Window Management Instructions
	SAVE Instruction
	RESTORE Instruction
	SAVED Instruction
	RESTORED Instruction
	Flush Windows Instruction

	6.3.5 State Register Access
	6.3.6 Privileged Register Access
	6.3.7 Floating-Point Operate (FPop) Instructions
	6.3.8 Implementation-Dependent Instructions
	6.3.9 Reserved Opcodes and Instruction Fields
	6.3.10 Summary of Unimplemented Instructions

	6.4 Register Window Management
	6.4.1 Register Window State Definition
	6.4.2 Register Window Traps
	Window Spill and Fill Traps
	Clean-Window Trap
	Vectoring of Fill/Spill Traps
	CWP on Window Traps
	Window Trap Handlers

	Traps
	7.1 Processor States, Normal and Special Traps
	7.1.1 RED_state
	RED_state Trap Table
	RED_state Execution Environment
	RED_state Entry Traps
	RED_state Software Considerations

	7.1.2 Error_state

	7.2 Trap Categories
	7.2.1 Precise Traps
	7.2.2 Deferred Traps
	7.2.3 Disrupting Traps
	7.2.4 Reset Traps
	7.2.5 Uses of the Trap Categories

	7.3 Trap Control
	7.3.1 PIL Control
	7.3.2 TEM Control

	7.4 Trap-Table Entry Addresses
	7.4.1 Trap Table Organization
	7.4.2 Trap Type (TT)
	Trap Type for Spill/Fill Traps

	7.4.3 Trap Priorities
	7.4.4 Details of Supported Traps
	MMU Traps
	Other SPARC JPS1 Implementation-Specific Traps
	Unimplemented SPARC V9 Traps in SPARC JPS1

	7.5 Trap Processing
	7.5.1 Normal Trap Processing
	7.5.2 Fast MMU Trap Processing
	7.5.3 Interrupt Vector Trap Processing
	7.5.4 Special Trap Processing
	Normal Traps with TL��=�MAXTL�–�1
	Power-On Reset (POR) Traps
	Watchdog Reset (WDR) Traps
	Externally Initiated Reset (XIR) Traps
	Software-Initiated Reset (SIR) Traps
	Normal Traps When the Processor Is in RED_state

	7.6 Exception and Interrupt Descriptions
	7.6.1 Traps Defined by SPARC V9 As Mandatory
	7.6.2 SPARC V9 Optional Traps That Are Mandatory in SPARC JPS1
	7.6.3 SPARC V9 Optional Traps That Are Optional in SPARC JPS1
	7.6.4 SPARC V9 Implementation-Dependent, Optional Traps That Are Mandatory in SPARC JPS1
	7.6.5 SPARC JPS1 Implementation-Dependent Traps

	Memory Models
	8.1 Overview
	Notes About the Implementation of the Memory Models

	8.2 Memory, Real Memory, and I/O Locations
	8.3 Addressing and Alternate Address Spaces
	8.4 SPARC V9 Memory Model
	8.4.1 SPARC V9 Program Execution Model
	8.4.2 Processor/Memory Interface Model
	8.4.3 MEMBAR Instruction
	Ordering MEMBAR Instructions
	Sequencing MEMBAR Instructions

	8.4.4 Memory Models
	Relaxed Memory Order (RMO)
	Partial Store Order (PSO)
	Total Store Order (TSO)

	8.4.5 Mode Control
	8.4.6 Hardware Primitives for Mutual Exclusion
	Compare-and-Swap (CASA, CASXA)
	Swap (SWAP)
	Load Store Unsigned Byte (LDSTUB)

	8.4.7 Synchronizing Instruction and Data Memory

	Instruction Definitions
	A.1 Add
	A.2 Alignment Instructions (VIS I)
	A.3 Three-Dimensional Array Addressing Instructions (VIS I)
	A.4 Block Load and Store (VIS I)
	A.5 Byte Mask and Shuffle Instructions (VIS II)
	A.6 Branch on Integer Register with Prediction (BPr)
	A.7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	A.8 Branch on Integer Condition Codes with Prediction (BPcc)
	A.9 Call and Link
	A.10 Compare and Swap
	A.11 DONE and RETRY
	A.12 Edge Handling Instructions (VIS I, II)
	A.13 Floating-Point Add and Subtract
	A.14 Floating-Point Compare
	A.15 Convert Floating-Point to Integer
	A.16 Convert Between Floating-Point Formats
	A.17 Convert Integer to Floating-Point
	A.18 Floating-Point Move
	A.19 Floating-Point Multiply and Divide
	A.20 Floating-Point Square Root
	A.21 Flush Instruction Memory
	A.22 Flush Register Windows
	A.23 Illegal Instruction Trap
	A.24 Implementation-Dependent Instructions
	A.25 Jump and Link
	A.26 Load Floating-Point
	A.27 Load Floating-Point from Alternate Space
	A.28 Load Integer
	A.29 Load Integer from Alternate Space
	A.30 Load Quadword, Atomic (VIS I)
	A.31 Load-Store Unsigned Byte
	A.32 Load-Store Unsigned Byte to Alternate Space
	A.33 Logical Operate Instructions (VIS I)
	A.34 Logical Operations
	A.35 Memory Barrier
	A.36 Move Floating-Point Register on Condition (FMOVcc)
	A.37 Move Floating-Point Register on Integer Register Condition (FMOVr)
	A.38 Move Integer Register on Condition (MOVcc)
	A.39 Move Integer Register on Register Condition (MOVr)
	A.40 Multiply and Divide (64-bit)
	A.41 No Operation
	A.42 Partial Store (VIS I)
	A.43 Partitioned Add/Subtract Instructions (VIS I)
	A.44 Partitioned Multiply Instructions (VIS I)
	A.44.1 FMUL8x16 Instruction
	A.44.2 FMUL8x16AU Instruction
	A.44.3 FMUL8x16AL Instruction
	A.44.4 FMUL8SUx16 Instruction
	A.44.5 FMUL8ULx16 Instruction
	A.44.6 FMULD8SUx16 Instruction
	A.44.7 FMULD8ULx16 Instruction

	A.45 Pixel Compare (VIS I)
	A.46 Pixel Component Distance (PDIST) (VIS I)
	A.47 Pixel Formatting (VIS I)
	A.47.1 FPACK16
	A.47.2 FPACK32
	A.47.3 FPACKFIX
	A.47.4 FEXPAND
	A.47.5 FPMERGE

	A.48 Population Count
	A.49 Prefetch Data
	A.49.1 SPARC V9 Prefetch Variants
	Prefetch for Several Reads (fcn�=�0)
	Prefetch for One Read (fcn�=�1)
	Prefetch for Several Writes (and Possibly Reads) (fcn�=�2)
	Prefetch for One Write (fcn�=�3)
	Prefetch Page (fcn�=�4)

	A.49.2 SPARC JPS1 Prefetch Variants (fcn�=�20–23)
	Strong Prefetch for Several Reads (fcn =20)
	Strong Prefetch for One Read (fcn = 21)
	Strong Prefetch for Several Writes (fcn = 22)
	Strong Prefetch for One Write (fcn = 23)

	A.49.3 Implementation-Dependent Prefetch Variants (fcn�=�16–19, 24–31)
	A.49.4 General Comments

	A.50 Read Privileged Register
	A.51 Read State Register
	A.52 RETURN
	A.53 SAVE and RESTORE
	A.54 SAVED and RESTORED
	A.55 Set Interval Arithmetic Mode (VIS II)
	A.56 SETHI
	Format (2)
	Description
	Exceptions

	A.57 Shift
	Format (3)
	Description
	Exceptions

	A.58 Short Floating-Point Load and Store (VIS I)
	Format (3) LDDFA
	Format (3) STDFA
	Description
	Exceptions

	A.59 SHUTDOWN (VIS I)
	Format (3)
	Description
	Exceptions

	A.60 Software-Initiated Reset
	Format (3)
	Description
	Exceptions

	A.61 Store Floating-Point
	Format (3)
	Description
	Exceptions

	A.62 Store Floating-Point into Alternate Space
	Format (3)
	Description
	Exceptions

	A.63 Store Integer
	Format (3)
	Description
	Exceptions

	A.64 Store Integer into Alternate Space
	Format (3)
	Description
	Exceptions

	A.65 Subtract
	Format (3)
	Description
	Exceptions

	A.66 Tagged Add
	Format (3)
	Description
	Exceptions

	A.67 Tagged Subtract
	Format (3)
	Description
	Exceptions

	A.68 Trap on Integer Condition Codes (Tcc)
	Format (4)
	Description
	Description (Effect on Privileged State)
	Exceptions

	A.69 Write Privileged Register
	Format (3)
	Description
	Exceptions

	A.70 Write State Register
	Format (3)
	Description
	Exceptions

	A.71 Deprecated Instructions
	A.71.1 Branch on Floating-Point Condition Codes (FBfcc)
	A.71.2 Branch on Integer Condition Codes (Bicc)
	A.71.3 Divide (64-bit / 32-bit)
	A.71.4 Load Floating-Point Status Register
	A.71.5 Load Integer Doubleword
	A.71.6 Load Integer Doubleword from Alternate Space
	A.71.7 Multiply (32-bit)
	A.71.8 Multiply Step
	A.71.9 Read Y Register
	A.71.10 Store Barrier
	A.71.11 Store Floating-Point Status Register Lower
	A.71.12 Store Integer Doubleword
	A.71.13 Store Integer Doubleword into Alternate Space
	A.71.14 Swap Register with Memory
	A.71.15 Swap Register with Alternate Space Memory
	A.71.16 Tagged Add and Trap on Overflow
	A.71.17 Tagged Subtract and Trap on Overflow
	A.71.18 Write Y Register

	IEEE Std 754-1985 Requirements for SPARC V9
	B.1 Traps Inhibiting Results
	B.2 NaN Operand and Result Definitions
	B.2.1 Untrapped Result in Different Format from Operands
	B.2.2 Untrapped Result in Same Format as Operands

	B.3 Trapped Underflow Definition (UFM�=�1)
	B.4 Untrapped Underflow Definition (UFM�=�0)
	B.5 Integer Overflow Definition
	B.6 Floating-Point Nonstandard Mode

	Implementation Dependencies
	C.1 Definition of an Implementation Dependency
	C.2 Hardware Characteristics
	C.3 Implementation Dependency Categories
	C.4 List of Implementation Dependencies

	Formal Specification of the Memory Models
	D.1 Processors and Memory
	D.2 Overview of the Memory Model Specification
	D.3 Memory Transactions
	D.3.1 Memory Transactions
	D.3.2 Program Order
	D.3.3 Dependence Order
	D.3.4 Memory Order

	D.4 Specification of Relaxed Memory Order (RMO)
	D.4.1 Value Atomicity
	D.4.2 Store Atomicity
	D.4.3 Atomic Memory Transactions
	D.4.4 Memory Order Constraints
	D.4.5 Value of Memory Transactions
	D.4.6 Termination of Memory Transactions
	D.4.7 Flush Memory Transaction

	D.5 Specification of Partial Store Order (PSO)
	D.6 Specification of Total Store Order (TSO)
	D.7 Examples of Program Executions
	D.7.1 Observation of Store Atomicity
	D.7.2 Dekker’s Algorithm
	D.7.3 Indirection Through Processors
	D.7.4 PSO Behavior
	D.7.5 Application to Compilers
	D.7.6 Verifying Memory Models

	Opcode Maps
	Memory Management Unit
	F.1 Virtual Address Translation
	F.2 Translation Table Entry (TTE)
	F.3 Translation Storage Buffer
	F.3.1 TSB Indexing Support
	F.3.2 TSB Cacheability
	F.3.3 TSB Organization

	F.4 Hardware Support for TSB Access
	F.4.1 Typical TLB Miss/Refill Sequence
	F.4.2 TSB Pointer Formation
	Input Values for TSB Pointer Formation
	TSB Pointer Formation

	F.4.3 Required TLB Conditions
	F.4.4 Required TSB Conditions
	F.4.5 MMU Global Registers Selection

	F.5 Faults and Traps
	F.6 MMU Operation Summary
	F.7 ASI Value, Context, and Endianness Selection for Translation
	F.8 Reset, Disable, and RED_state Behavior
	F.9 SPARC V9 “MMU Requirements” Annex
	F.10 Internal Registers and ASI Operations
	F.10.1 Accessing MMU Registers
	F.10.2 Context Registers
	F.10.3 Instruction/Data MMU TLB Tag Access Registers
	F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers
	Data In and Data Access Registers
	I/D MMU TLB Tag Read Register
	I/D MMU TLB Tag Access Register

	F.10.5 I/D TSB Tag Target Registers
	F.10.6 I/D TSB Base Registers
	F.10.7 I/D TSB Extension Registers
	F.10.8 I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct Pointer Registers
	TSB 8-Kbyte and 64-Kbyte Pointer Registers
	Direct Pointer Register

	F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)
	F.10.10 Synchronous Fault Addresses
	IMMU Fault Address
	DMMU Fault Address

	F.10.11 I/D MMU Demap

	F.11 MMU Bypass
	F.12 Translation Lookaside Buffer Hardware
	F.12.1 TLB Operations
	F.12.2 TLB Replacement Policy
	F.12.3 TSB Pointer Logic Hardware Description

	Assembly Language Syntax
	G.1 Notation Used
	G.1.1 Register Names
	reg
	freg
	asr_reg
	i_or_x_cc
	fccn

	G.1.2 Special Symbol Names
	G.1.3 Values
	G.1.4 Labels
	G.1.5 Other Operand Syntax
	reg_plus_imm
	address
	membar_mask
	prefetch_fcn (prefetch function)
	regaddr (register-only address)
	reg_or_imm (register or immediate value)
	reg_or_imm10 (register or immediate value)
	reg_or_imm11 (register or immediate value)
	reg_or_shcnt (register or shift count value)
	software_trap_number

	G.1.6 Comments

	G.2 Syntax Design
	G.3 Synthetic Instructions

	Software Considerations
	H.1 Nonprivileged Software
	H.1.1 Registers
	In and Out Registers
	Local Registers
	Register Windows and %sp
	Global Registers
	Floating-Point Registers
	The Memory Stack

	H.1.2 Leaf-Procedure Optimization
	H.1.3 Example Code for a Procedure Call
	H.1.4 Register Allocation Within a Window
	H.1.5 Other Register-Window-Usage Models
	H.1.6 Self-Modifying Code
	H.1.7 Thread Management
	H.1.8 Minimizing Branch Latency
	Conditional Moves
	Branch or Move Based on Register Contents

	H.1.9 Prefetch
	H.1.10 Nonfaulting Load

	H.2 Supervisor Software
	H.2.1 Trap Handling
	H.2.2 Example Code for Spill Handler
	H.2.3 Client-Server Model
	Splitting the Register Windows
	ASI_SECONDARY{_LITTLE}

	H.2.4 User Trap Handlers

	Extending the SPARC V9 Architecture
	I.1 Read/Write Ancillary State Registers (ASRs)
	I.2 Implementation-Dependent and Reserved Opcodes

	Programming with the Memory Models
	J.1 Memory Operations
	J.2 Memory Model Selection
	J.3 Processors and Processes
	J.4 Higher-Level Programming Languages and Memory Models
	J.5 Portability and Recommended Programming Style
	J.6 Spin Locks
	J.7 Producer-Consumer Relationship
	J.8 Process Switch Sequence
	J.9 Dekker’s Algorithm
	J.10 Code Patching
	J.11 Fetch_and_Add
	J.12 Barrier Synchronization
	J.13 Linked List Insertion and Deletion
	J.14 Communicating with I/O Devices
	J.14.1 I/O Registers with Side Effects
	J.14.2 The Control and Status Register (CSR)
	J.14.3 The Descriptor
	J.14.4 Lock-Controlled Access to a Device Register

	Changes from SPARC V8 to SPARC V9
	K.1 Trap Model
	K.2 Data Formats
	K.3 Little-Endian Support
	K.4 Little-Endian Byte Order
	K.5 Registers
	K.6 Alternate Space Access
	K.7 Instruction Set
	K.8 Memory Model

	Address Space Identifiers
	L.1 Address Space Identifiers and Address Spaces
	L.2 ASI Values
	L.3 ASI Assignments
	L.3.1 Supported ASIs
	L.3.2 Special Memory Access ASIs
	ASI 1416 (ASI_PHYS_USE_EC)
	ASI 1516 (ASI_PHYS_BYPASS_EC_WITH_EBIT)
	ASI 1C16 (ASI_PHYS_USE_EC_LITTLE)
	ASI 1D16 (ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE)
	ASIs 2416 and 2C16 (Load Quadword ASIs)
	ASI 6016 (ASI_IIU_INST_TRAP)
	Block Load and Store ASIs
	Partial Store ASIs
	Short Floating-Point Load and Store ASIs

	Caches and Cache Coherency
	Interrupt Handling
	N.1 Interrupt Vector Dispatch
	N.2 Interrupt Vector Receive
	N.3 Interrupt Global Registers
	N.4 Interrupt ASI Registers
	N.4.1 Outgoing Interrupt Vector Data<7:0> Register
	N.4.2 Interrupt Vector Dispatch Register
	N.4.3 Interrupt Vector Dispatch Status Register
	N.4.4 Incoming Interrupt Vector Data<7:0>
	N.4.5 Interrupt Vector Receive Register

	N.5 Software Interrupt Register (SOFTINT)
	N.5.1 Setting the Software Interrupt Register
	N.5.2 Clearing the Software Interrupt Register

	Reset, RED_state, and Error_state
	O.1 RED_state Characteristics
	O.2 Resets
	O.2.1 Externally Initiated Reset (XIR)
	O.2.2 error_state and Watchdog Reset (WDR)
	O.2.3 Software-Initiated Reset (SIR)

	O.3 RED_state Trap Vector
	O.4 Machine States

	Error Handling
	P.1 Error Classes and Signalling
	P.1.1 Error Classes in Severity
	P.1.2 Errors Asynchronous to Instruction Execution

	P.2 Corrective Actions
	P.2.1 Reset-Inducing ERROR Signal
	P.2.2 Precise Traps
	P.2.3 Deferred Traps
	Error Barriers
	TPC, TNPC, and Deferred Traps
	Deferred Trap Handler Functionality
	Special Access Sequence for Recovering Deferred Traps

	P.2.4 Disrupting Traps

	P.3 Related Traps
	P.4 Related Registers/Error Logging
	P.5 Signalling/Special ECC

	Performance Instrumentation
	General References
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

