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Preface

SPARC® V9 is the standard instruction set architecture developed by SPARC
International for 64-bit SPARC processors. Although the standard serves the needs
of application programmers, some processor functions that primarily affect system
programmers are left uncovered or implementation dependent in the standard. Sun
Microsystems, with its UltraSPARC® Ill implementation, and Fujitsu, with its
SPARC64® V implementation, jointly worked to increase the commonalities between
their processors in the areas that SPARC V9 does not cover. Both companies intend
to continue this collaborative effort for future processor generations.

The SPARC Joint Programming Specification is based on SPARC V9. It first defines the
programmer's model and the hardware behavior common to the processors from
both companies. These aspects of the processors conform to the instruction set
architecture, memory model, error and trap handling specified by The SPARC
Architecture Manual-Version 9 and also conform to additional feature conventions
jointly established by Sun and Fujitsu. Some features, especially initialization, error
detection, error recovery, etc., strongly depend on the specific implementation and
cannot be common. Such features and specific implementation-dependent deviations
from common definitions are detailed in Implementation Supplements that are
companions to this document.

Who Should Use This Book

Programmers who write code for the UltraSPARC 11l processor, the SPARC64 V
processor, and the successors of both processor lines will find this book, combined
with Implementation Supplements, the single depository of information that logic
designers, operating system programmers, or application software programmers can
share to gain a common understanding of the features of SPARC processors from
both Sun Microsystems, Inc., and Fujitsu.
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XVi

How This Book Is Organized

The book is organized in major sections: Commonality, which contains information
that is common to all implementations, and Implementation Supplements. At
present, we describe two implementations: SPARC64 V, the Fujitsu implementation
of SPARC V9, and UltraSPARC IlI, the Sun Microsystems implementation. Other
implementations may be added in the future.

The Commonality section and the Implementation Supplements begin at Chapter
1, page 1, each supplement contains its own index, and all supplements in general
follow the organization of the The SPARC Architecture Manual-Version 9, as follows.

Chapter 1, Overview, describes features, attributes, and components and provides a
high-level view of SPARC V9 and the implementations.

Chapter 2, Definitions, defines terms you should know before reading the book or
parts.

Chapter 3, Architectural Overview, describes processors and instructions.
Chapter 4, Data Formats, presents data types.

Chapter 5, Registers, discusses the two types of registers: general-purpose (working
data) registers and control/status registers.

Chapter 6, Instructions, details nuts and bolts of instructions.
Chapter 7, Traps, describes types, behavior, control, and processing of traps.

Chapter 8, Memory Models, discusses three types of memory models: Total Store
Order, Partial Store Order, and Relaxed Memory Order.

An extensive set of appendixes complements the chapters. Appendixes D, H, I, J,
and K contain material from The SPARC Architecture Manual-Version 9.

Appendix A, Instruction Definitions

Appendix B, IEEE Std 754-1985 Requirements for SPARC V9
Appendix C, Implementation Dependencies

Appendix D, Formal Specification of the Memory Models
Appendix E, Opcode Maps

Appendix F, Memory Management Unit

Appendix G, Assembly Language Syntax

Appendix H, Software Considerations (Informative)

Appendix I, Extending the SPARC V9 Architecture (Informative)
Appendix J, Programming with the Memory Models (Informative)
Appendix K, Changes from SPARC V8 to SPARC V9
Appendix L, Address Space Identifiers
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Appendix N, Interrupt Handling
Appendix O, Reset, RED_state, and Error_state
Appendix P, Error Handling

The Implementation Supplements to the book contain additional appendixes on
implementation-specific topics such as cache organization, performance
instrumentation, and interconnect programming model.

For navigation suggestions, see Chapter 1, Overview.

Editorial Conventions

For editorial conventions, see Chapter 1, Overview. Notational conventions of SPARC
Joint Programming Specification generally follow those of The SPARC Architecture
Manual-Version 9 and differ slightly from the standard Sun Microsystems notational
conventions.

Related Reading

The SPARC Joint Programming Specification refers to these related books:

= The SPARC Architecture Manual-Version 9

= UltraSPARC™ User’s Manual

= Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x
(SPARC International)

= SPARC64™ Processor User’s Guide

See also the bibliography section of Commonality and Implementations.
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C.CHAPTER 1

Overview

The SPARC Joint Programming Specification (SPARC JPS1) specifies a particular subset
of SPARC V9 implementations, including Fujitsu’s SPARC64 V, Sun Microsystem’s
UltraSPARC II11, and certain successors to those processors.

SPARC JPS1 was derived directly from the source text of The SPARC Architecture
Manual-Version 9. Some theoretical material contained in The SPARC Architecture
Manual-Version 9 has been omitted, but for some implementors, this theoretical
information is important. In particular, operating system programmers who write
memory management software, compiler writers who write machine-specific
optimizers, and anyone who writes code to run on all SPARC V9-compatible
machines should obtain and use The SPARC Architecture Manual-Version 9. Readers of
SPARC Joint Programming Specification could profit from using The SPARC Architecture
Manual-Version 9 as a companion text.

Software that is intended to be portable across all SPARC V9 processors should
adhere to The SPARC Architecture Manual-Version 9.

Material in this document identified as relevant to SPARC JPS1 (or just “JPS1”)
processors may not apply to other SPARC V9 processors. Therefore, in Appendixes
D, H, I, J, and K, we duplicated the information contained in the same appendixes of
The SPARC Architecture Manual-Version 9. Because we have added and deleted a
significant number of tables and figures, the table and figure numbers in this guide
are not parallel with the numbers in The SPARC Architecture Manual-Version 9.

In this book, the word architecture refers to the machine details that are visible to an
assembly language programmer or to the compiler code generator. It does not
include details of the implementation that are not visible or easily observable by
software.

In this chapter, we discuss:

= Navigating the SPARC Joint Programming Specification on page 2
= Fonts and Notational Conventions on page 3
= SPARC V9 Architecture on page 5
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1.1

Navigating the SPARC Joint Programming
Specification
If you are new to SPARC, read Chapter 3, Architectural Overview, study the

definitions in Chapter 2, Definitions, then look into the subsequent s and appendixes
for more details in areas of interest to you.

If you are familiar with SPARC V8 but not SPARC V9, you should review the list of
changes in Appendix K. For additional details of architectural changes, review the
following s:

Chapter 4, Data Formats, for a description of the supported data formats
Chapter 5, Registers, for a description of the register set

Chapter 6, Instructions, for a description of the new instructions
Chapter 7, Traps, for a description of the trap model

Chapter 8, Memory Models, for a description of the memory models
Appendix A, Instruction Definitions, for descriptions of the instructions

Finally, if you are familiar with the SPARC V9 architecture and want to familiarize
yourself with the Sun- and Fujitsu-specific implementations, study the following
chapters and appendices in the Sun- and Fujitsu-specific Implementation
Supplements:

Chapter 2, Definitions

Appendix A, Instruction Definitions, for descriptions of specific instruction
extensions

Appendix C, Implementation Dependencies, for descriptions of resolutions of all
SPARC V9 implementation dependencies

Appendix E, Opcode Maps, to see how opcode extensions fit into the SPARC V9
opcode maps

Appendix F, Memory Management Unit, to see the common features of the SPARC
JPS1 Memory Management Unit and the implementation-specific features of that
MMU.

Appendix G, Assembly Language Syntax, to see extensions to the SPARC V9
assembly language syntax; in particular, synthetic instructions are documented in
this appendix
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1.2 Fonts and Notational Conventions

Fonts are used as follows:

= Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

= ltalic font is also used for assembly language terms.

= [talic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

= Typewiter font (Courier) is used for register fields (named bits), instruction
fields, and read-only register fields. For example: “The r s1 field contains....”

= Typewriter fontis used for literals, instruction names, register names, and
software examples.

= UPPERCASE items are acronyms, instruction names, or writable register fields.
Some common acronyms appear in the glossary in Chapter 2, Definitions. Note:
Names of some instructions contain both upper- and lowercase letters.

= Underbar characters join words in register, register field, exception, and trap
names. Note: Such words can be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

= Square brackets, [ ], indicate a numbered register in a register file. For example:
“r [0] contains....”

= Angle brackets, < >, indicate a bit number or colon-separated range of bit
numbers within a field. For example: “Bits FSR<29:28> and FSR<12> are....”

= Curly braces, {}, indicate textual substitution. For example, the string
“ASI_PRIMARY{ LITTLE}” expands to “ASI_PRIMARY” and
“ASI_PRIMARY_LITTLE.”

= The D symbol designates concatenation of bit vectors. A comma (,) on the left
side of an assignment separates quantities that are concatenated for the purpose
of assignment. For example, if X, Y, and Z are 1-bit vectors and the 2-bit vector T
equals 11,, then

X,Y,2) 0[] T

resultsin X=0,Y=1,and Z=1.
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1.2.1

1.2.2

1.2.3

Implementation Dependencies

The implementors of SPARC V9 processors are allowed to resolve some aspects of
the architecture in machine-dependent ways. Each possible implementation
dependency is indicated in The SPARC Architecture Manual-Version 9 by the notation
“IMPL. DEP. #nn: Some descriptive text.” The number nn enumerates the
dependencies in Appendix C. References to SPARC V9 implementation
dependencies are indicated, as in The SPARC Architecture Manual-Version 9, by the
notation “(impl. dep. #nn).” In SPARC Joint Programming Specification, we have
replaced all definitions of and references to SPARC V9 implementation dependencies
with implementation-specific descriptions.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 1001,, FFFF 00004¢). Long binary and hex numbers within
the text have spaces inserted every four characters to improve readability. Within C
or assembly language examples, numbers may be preceded by “0x” to indicate base-
16 (hexadecimal) notation (for example, OxFFFF0000).

Informational Notes

This guide provides several different types of information in notes, as follows:

Programming Note — Programming notes contain incidental information about
implementation-specific programming.

Implementation Note — Implementation notes contain information that is specific
to a particular implementation. Such information may not pertain to other SPARC
V9 implementations.

Compatibility Note — Compatibility notes contain information relevant to the
previous SPARC V8 architecture.

SPARC® Joint Programming Specification (JPS1): Commonality « Release 1.0.4, 31 May 2002



1.3 SPARC V9 Architecture

This section briefly describes features, attributes, and components of the SPARC V9
architecture and, further, describes correct implementation of the architecture
specification and SPARC V9-compliance levels.

1.3.1 Features

SPARC V9 includes the following principal features:
= A linear 64-bit address space with 64-bit addressing.

= 32-bit wide instructions — These are aligned on 32-bit boundaries in memory.
Only load and store instructions access memory and perform 1/0.

= Few addressing modes — A memory address is given as either “register +
register” or “register + immediate.”

= Triadic register addresses — Most computational instructions operate on two
register operands or one register and a constant and place the result in a third
register.

= A large windowed register file — At any one instant, a program sees 8 global
integer registers plus a 24-register window of a larger register file. The windowed
registers can be used as a cache of procedure arguments, local values, and return
addresses.

= Floating point — The architecture provides an IEEE 754-compatible floating-point
instruction set, operating on a separate register file that provides 32 single-
precision (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit)
registers, or a mixture thereof.

= Fast trap handlers — Traps are vectored through a table.

= Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic exchange-
register-with-memory operation; another compares the contents of a register with
a value in memory and exchanges memory with the contents of another register if
the comparison was equal (compare and swap); two others synchronize the order
of shared memory operations as observed by processors.

= Predicted branches — The branch with prediction instructions allows the
compiler or assembly language programmer to give the hardware a hint about
whether a branch will be taken.

= Branch elimination instructions — Several instructions can be used to eliminate
branches altogether (for example, Move on Condition). Eliminating branches
increases performance in superscalar and superpipelined implementations.
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1.3.2

1.3.3

= Hardware trap stack — A hardware trap stack is provided to allow nested traps.
It contains all of the machine state necessary to return to the previous trap level.
The trap stack makes the handling of faults and error conditions simpler, faster,
and safer.

= Relaxed memory order (RMO) model — In addition to the TSO and PSO
memory models defined for SPARC V8, SPARC JPS1 offers a weak memory model
called Relaxed Memory Order, or RMO. RMO allows the hardware to schedule
memory accesses in any order as long as the program computes the correct result
(adheres to processor consistency).

Attributes

SPARC V9 is a processor instruction set architecture (ISA) derived from SPARC V8;
both architectures come from a reduced instruction set computer (RISC) lineage. As
architectures, SPARC V9 and SPARC V8 allow for a spectrum of chip and system
implementations at a variety of price/performance points for a range of applications,
including scientific/engineering, programming, real-time, and commercial
applications.

Design Goals

SPARC JPS1 is designed to be a target for optimizing compilers and high-
performance hardware implementations. Implementations of SPARC JPS1 provide
exceptionally high execution rates and short time-to-market development schedules.

Register Windows

The JPS1 processor is derived from SPARC®, which was formulated at Sun
Microsystems in 1985. SPARC is based on the RISC | and Il designs engineered at the
University of California at Berkeley from 1980 through 1982. The SPARC “register
window” architecture, pioneered in the UC Berkeley designs, allows for
straightforward, high-performance compilers and a reduction in memory load/store
instructions.

Note that supervisor software, not user programs, manages the register windows.
The supervisor can save a minimum number of registers (approximately 24) during
a context switch, thereby optimizing context-switch latency.

System Components

The SPARC V9 architecture allows for a spectrum of 1/0, memory management unit
(MMU), and cache system subarchitectures.
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1.3.4

SPARC JPS1 MMU

The SPARC V9 ISA does not mandate a single MMU design for all system
implementations. Rather, designers are free to use the MMU that is most appropriate
for their application or no MMU at all, if they wish.

Although SPARC V9 allows its implementations freedom in their MMU designs,
SPARC JPS1 defines a common MMU architecture (see Appendix F, Memory
Management Unit) with some specifics left to implementations (see Appendix F in
each Implementation Supplement).

Privileged Software

SPARC V9 does not assume that all implementations must execute identical
privileged software. Thus, certain traits that are visible to privileged software have
been tailored to the requirements of the system.

Binary Compatibility

The most important SPARC V9 architectural mandate is binary compatibility of
nonprivileged programs across implementations. Binaries executed in nonprivileged
mode should behave identically on all SPARC V9 systems when those systems are
running an operating system known to provide a standard execution environment.
One example of such a standard environment is the SPARC V9 Application Binary
Interface (ABI).

Although different SPARC V9 systems can execute nonprivileged programs at
different rates, they will generate the same results as long as they are run under the
same memory model. See Chapter 8, Memory Models, for more information.

Additionally, SPARC V9 is binary upward-compatible from SPARC V8 for
applications running in nonprivileged mode that conform to the SPARC V8 ABI.

Architectural Definition

The SPARC V9 architecture is defined by the s and normative appendixes of The
SPARC Architecture Manual-Version 9. A correct implementation of the architecture
interprets a program strictly according to the rules and algorithms specified in the s
and normative appendixes.

SPARC Joint Programming Specification defines a set of conforming implementations
of the SPARC V9 architecture.
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1.3.5

SPARC V9 Compliance

SPARC International is responsible for certifying that implementations comply with
the SPARC V9 Architecture. Two levels of compliance are distinguished; an
implementation may be certified at either level.

= Level 1 - The implementation correctly interprets all of the nonprivileged
instructions by any method, including direct execution, simulation, or emulation.
This level supports user applications and is the architecture component of the
SPARC V9 ABI.

= Level 2 - The implementation correctly interprets both nonprivileged and
privileged instructions by any method, including direct execution, simulation, or
emulation. A Level 2 implementation includes all hardware, supporting software,
and firmware necessary to provide a complete and correct implementation.

Note that a Level-2-compliant implementation is also Level-1 compliant.

IMPL. DEP. #1: Whether an instruction is implemented directly by hardware,
simulated by software, or emulated by firmware is implementation dependent.

SPARC International publishes a document, Implementation Characteristics of Current
SPARC-V9-based Products, Revision 9.x, listing which instructions are simulated or
emulated in existing SPARC V9 implementations.

Compliant implementations shall not add to or deviate from this standard except in
aspects described as implementation dependent. See Appendix C, Implementation
Dependencies.

An implementation may be claimed to be compliant only if it has been
1. Submitted to SPARC International for testing, and
2. Issued a Certificate of Compliance by SPARC International.

A system incorporating a certified implementation may also claim compliance. A
claim of compliance must designate the level of compliance.

Prior to testing, a statement must be submitted for each implementation; this
statement must:

= Resolve the implementation dependencies listed in Appendix C, Implementation
Dependencies

= Identify the presence (but not necessarily the function) of any extensions
= Designate any instructions that require emulation

These statements become the property of SPARC International and may be released
publicly.

Appendix C of each Implementation Supplement describes the manner in which
implementation dependencies have been resolved.
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C.CHAPTER 2

Definitions

This chapter defines concepts and terminology common to all implementations of

SPARC V9.
AFAR  Asynchronous Fault Address Register.
AFSR  Asynchronous Fault Status Register.
aliased Said of each of two virtual addresses that refer to the same physical address.

address space identifier
(ASI)

application program

ASI
ASR

big-endian

BLD
BST
bypass ASI

byte

clean window

Release 1.0.4, 31 May 2002

An 8-bit value that identifies an address space. For each instruction or data
access, the integer unit appends an ASI to the address. See also implicit ASI.

A program executed with the processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged processor state (for example, as stored in a memory-image dump).

Address space identifier.
Ancillary State Register.

An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

Block load.
Block store.

An ASI that refers to memory and for which the MMU does not perform
address translation (that is, memory is accessed using a direct physical
address).

Eight consecutive bits of data.

A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.
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coherence

completed

consistency

context

copyback

CPI

cross-call

current window

DCTI
demap

deprecated

dispatch

doublet

doubleword

exception

extended word

A set of protocols guaranteeing that all memory accesses are globally visible to
all caches on a shared-memory bus.

A memory transaction is said to be completed when an idealized memory has
executed the transaction with respect to all processors. A load is considered
completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent
load can return the value that was overwritten by the store.

See coherence.

A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

The process of copying back a dirty cache line in response to a cache hit while
snooping.

Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

An interprocessor call in a multiprocessor system.

The block of 24 r registers that is currently in use. The Current Window
Pointer (CWP) register points to the current window.

Delayed control transfer instruction,
To invalidate a mapping in the MMU.

The term applied to an architectural feature (such as an instruction or register)
for which a SPARC V9 implementation provides support only for compatibility
with previous versions of the architecture. Use of a deprecated feature must
generate correct results but may compromise software performance.
Deprecated features should not be used in new SPARC V9 software and may
not be supported in future versions of the architecture.

To send a previously fetched instruction to one or more functional units for
execution. Typically, the instruction is dispatched from a reservation station or
other buffer of instructions waiting to be executed. (Other conventions for this
term exist, but the JPS1 document attempts to use dispatch consistently as
defined here.)

See also issued.

Two bytes (16 bits) of data.

An aligned octlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

A condition that makes it impossible for the processor to continue executing
the current instruction stream without software intervention. See also trap.

An aligned octlet, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.
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f register
fccN

floating-point
exception

floating-point IEEE-754
exception

floating-point operate
(FPop) instructions

floating-point trap
type
floating-point unit

FPRS
FSR

FPU
halfword

hexlet

implementation

implementation
dependent

implicit ASI

informative appendix

initiated
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A floating-point register. SPARC V9 includes single-, double-, and quad-
precision f registers.

One of the floating-point condition code fields f ccO, fcc1, fcc2, or f cc3.

An exception that occurs during the execution of an FPop instruction while the
corresponding bit in FSR. TEMis set to 1. The exceptions are unfinished_FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, or
IEEE_754_exception.

A floating-point exception, as specified by IEEE Std 754-1985. Listed within
this specification as IEEE_754_exception.

Instructions that perform floating-point calculations, as defined by the FPop1
and FPop2 opcodes. FPop instructions do not include FBf cc instructions or
loads and stores between memory and the floating-point unit.

The specific type of a floating-point exception, encoded in the FSR. ft t field.

A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

Floating Point Register State (register).
Floating-Point Status Register.
Floating-point unit.

An aligned doublet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

Sixteen bytes (128 bits) of data.

Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

An aspect of the architecture that can legitimately vary among
implementations. In many cases, the permitted range of variation is specified
in the SPARC V9 standard. When a range is specified, compliant
implementations must not deviate from that range.

The address space identifier that is supplied by the hardware on all instruction
accesses and on data accesses that do not contain an explicit ASI or a reference
to the contents of the ASI register.

An appendix containing information that is useful but not required to create an
implementation that conforms to the SPARC V9 specification. See also
normative appendix.

Synonym: issued.
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12

instruction field

instruction group

instruction set
architecture

integer unit

interrupt request
ISA

issued

U

leaf procedure

little-endian

load

load-store

A bit field within an instruction word.

One or more independent instructions that can be dispatched for simultaneous
execution.

A set that defines instructions, registers, instruction and data memory, the

effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. This specification defines the SPARC JPS1 ISA.

A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and processor state registers, as
defined by this specification.

A request for service presented to the processor by an external device.
Instruction set architecture.

(1) A memory transaction (load, store, or atomic load-store) is said to be
“issued” when a processor has sent the transaction to the memory subsystem
and the completion of the request is out of the processor’s control.

Synonym: initiated.

(2) An instruction (or sequence of instructions) is said to be issued when
released from the processor's in-order instruction fetch unit. Typically,
instructions are issued to a reservation station or other buffer of instructions
waiting to be executed. (Other conventions for this term exist, but the JPS1
document attempts to use "issue" consistently as defined here.)

See also dispatched.

Integer Unit.

A procedure that is a leaf in the program’s call graph; that is, one that does not
call (by using CALL or JMPL) any other procedures.

An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

An instruction that reads (but does not write) memory or reads (but does not

write) location(s) in an alternate address space. Load includes loads into integer
or floating-point registers, block loads, Load Quadword Atomic, and alternate
address space variants of those instructions. See also load-store and store, the

definitions of which are mutually exclusive with load.

An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, and the deprecated SWAP
instruction. See also load and store, the definitions of which are mutually
exclusive with load-store.
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may

Memory Management
Unit (MMU)

must

next program counter
(nPC)

NFO

nonfaulting load

nonprivileged

nonprivileged mode

normative appendix

nontranslating ASI

nPC
NPT
NW NDOWS
OBP

octlet
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A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

The address translation hardware in the SPARC JPS1 implementation that
translates 64-bit virtual address into physical addresses. The MMU is
composed of the TLBs, ASRs, and ASI registers used to manage address
translation. See also context, physical address, and virtual address.

Synonym: shall.

A register that contains the address of the instruction to be executed next if a
trap does not occur.

Nonfault access only.

A load operation that, in the absence of faults or in the presence of a
recoverable fault, completes correctly, and in the presence of a nonrecoverable
fault returns (with the assistance of system software) a known data value
(nominally zero). See speculative load.

An adjective that describes:

(1) the state of the processor when PSTATE. PRI V = 0, that is, nonprivileged
mode;

(2) processor state information that is accessible to software while the
processor is in either privileged mode or nonprivileged mode; for example,
nonprivileged registers, nonprivileged ASRs, or, in general, nonprivileged
state;

(3) an instruction that can be executed when the processor is in either
privileged mode or nonprivileged mode.

The mode in which a processor is operating when PSTATE. PRI V = 0. See also
privileged.

An appendix containing specifications that must be met by an implementation
conforming to the SPARC V9 specification. See also informative appendix.

An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

Next program counter.

Nonprivileged trap.

The number of register windows present in a particular implementation.
OpenBoot PROM.

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.
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opcode
optional
PA

Page Table Entry
(PTE)

PC
PCR
physical address

PIC
PIO
PIPT
POR

prefetchable

privileged

privileged mode

processor

program counter (PC)

PSO

A bit pattern that identifies a particular instruction.
A feature not required for SPARC V9 compliance.

Physical address.

Describes the virtual-to-physical translation and page attributes for a specific
page. A PTE generally means an entry in the page table or in the TLB, but it is
sometimes used as an entry in the TSB (translation storage buffer). In general,
a PTE contains fewer fields than does a TTE. See also TLB and TSB.

Program counter.
Performance Control Register.

An address that maps real physical memory or 1/0 device space. See also
virtual address.

Performance Instrumentation Counter.
Programmed 1/0.

Physically indexed, physically tagged.
Power-on reset.

(1) An attribute of a memory location that indicates to an MMU that PREFETCH
operations to that location may be applied.

(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some 1/0 devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

An adjective that describes:

(1) the state of the processor when PSTATE. PRI V = 1, that is, privileged mode;
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in
general, privileged state;

(3) an instruction that can be executed only when the processor is in privileged
mode.

The mode in which a processor is operating when PSTATE. PRI V = 1. See also
nonprivileged.

The combination of the integer unit and the floating-point unit.

A register that contains the address of the instruction currently being executed
by the IU.

Partial store order.
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PTE
quadlet

quadword

r register
RD

RDPR
RED_state

reserved

reset trap

restricted

rsi,rs2,rd

RMO
SFAR
SFSR

shall
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Page Table Entry.
Four bytes (32 bits) of data.

Aligned hexlet. Note: The definition of this term is architecture dependent and
may be different from that used in other processor architectures.

An integer register. Also called a general-purpose register or working register.
Rounding direction.
Read Privileged Register.

Reset, Error, and Debug state. The processor state when PSTATE. RED=1. A
restricted execution environment used to process resets and traps that occur
when TL = MAXTL - 1.

Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

Reserved instruction fields shall read as 0, unless the implementation supports
extended instructions within the field. The behavior of SPARC V9 processors
when they encounter nonzero values in reserved instruction fields is
undefined.

Reserved bit combinations within instruction fields are defined in Appendix A,
Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap
on these reserved combinations.

Reserved register fields should always be written by software with values of
those fields previously read from that register or with zeroes; they should read
as zero in hardware. Software intended to run on future versions of SPARC V9
should not assume that these fields will read as 0 or any other particular value.
Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

A vectored transfer of control to privileged software through a fixed-address
reset trap table. Reset traps cause entry into RED_st at e.

Describing an address space identifier (ASI) that may be accessed only while
the processor is operating in privileged mode.

The integer or floating-point register operands of an instruction. rs1 and r s2
are the source registers; r d is the destination register.

Relaxed memory order.
Synchronous Fault Address Register.
Synchronous Fault Status Register.

A keyword indicating a mandatory requirement. Designers shall implement all
such mandatory requirements to ensure interoperability with other SPARC V9-
compliant products. Synonym: must.
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should

SI AM

side effect

SIR

speculative load

snooping

store

superscalar

supervisor software
TBA

TLB

TLB hit

TLB miss

TPC

Translation Lookaside
Buffer (TLB)

A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym: it is recommended.

Set interval arithmetic mode instruction.

The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some 1/0 devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

Software-initiated reset.

A load operation that is issued by the processor speculatively, that is, before it
is known whether the load will be executed in the flow of the program.
Speculative accesses are used by hardware to speed program execution and are
transparent to code. An implementation, through a combination of hardware
and system software, must nullify speculative loads on memory locations that
have side effects; otherwise, such accesses produce unpredictable results.
Contrast with nonfaulting load, which is an explicit load that always
completes, even in the presence of recoverable faults.

The process of maintaining coherency between caches in a shared-memory bus
architecture. All cache controllers monitor (snoop) the bus to determine
whether they have a copy of the shared cache block.

An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Store
includes stores from either integer or floating-point registers, block stores,
Partial Store, and alternate address space variants of those instructions. See also
load and load-store, the definitions of which are mutually exclusive with store.

An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

Software that executes when the processor is in privileged mode.
Trap base address.

Translation lookaside buffer.

The desired translation is present in the on-chip TLB.

The desired translation is not present in the on-chip TLB.

Trap-saved PC.

A cache within an MMU that contains recent partial translations. TLBs speed
up closely following translations by often eliminating the need to reread Page
Table Entries from memory.
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trap

TSB

TSO
TTE

unassigned

undefined

unimplemented

unpredictable

unrestricted

user application
program

VA

virtual address

VIS
WDR

word

Release 1.0.4, 31 May 2002

The action taken by the processor when it changes the instruction flow in
response to the presence of an exception, a Tcc instruction, or an interrupt.
The action is a vectored transfer of control to supervisor software through a
table, the address of which is specified by the privileged Trap Base Address
(TBA) register. See also exception.

Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.

Total store order.

Translation table entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the Page Table. In some cases, the term is
explicitly used for the entries in the TSB.

A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as allowing user software to access privileged
state), put the processor into supervisor mode, or put the processor into an
unrecoverable state.

An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

Synonym: undefined.

Describing an address space identifier (ASI) that can be used regardless of the
processor mode; that is, regardless of the value of PSTATE. PRI V.

Synonym: application program.
Virtual address.

An address produced by a processor that maps all systemwide, program-
visible memory. Virtual addresses usually are translated by a combination of
hardware and software to physical addresses, which can be used to access
physical memory.

Visual instruction set.
Watchdog reset.

An aligned quadlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.
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writeback  The process of writing a dirty cache line back to memory before it is refilled.
WRPR  Write Privileged Register.
XIR  Externally initiated reset.
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C.CHAPTER 3

Architectural Overview

SPARC V9 architecture supports 32- and 64-bit integer and 32- 64-, and 128-bit
floating-point as its principal data types. The 32- and 64-bit floating-point types
conform to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std
1596.5-1992. The JPS1 processor defines general-purpose integer, floating-point, and
special state/status register instructions, all encoded in 32-bit-wide instruction
formats. The load/store instructions address a linear, 264-byte virtual address space.

Text in this chapter is excerpted from The SPARC Architecture Manual, Version 9,
edited by David L. Weaver and Tom Germond. Even though the implementation-
specific processor architecture is beginning to differ more significantly from this
earlier, simpler model, the following sections still provide some useful background
for understanding the implementation-specific discussion of the processor
architecture.

= SPARC V9 Processor Architecture on page 19
= Instructions on page 20
= Traps on page 25

3.1

SPARC V9 Processor Architecture

A SPARC V9 processor logically consists of an integer unit (IU) and a floating-point
unit (FPU), each with its own registers. This organization allows for
implementations with concurrent integer and floating-point instruction execution.
Integer registers are 64 bits wide; floating-point registers are 32, 64, or 128 bits wide.
Instruction operands are single registers, register pairs, register quadruples, or
immediate constants.

The processor can run in either of two modes: privileged or nonprivileged. In
privileged mode, the processor can execute any instruction, including privileged
instructions. In nonprivileged mode, an attempt to execute a privileged instruction
causes a trap to privileged software.
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3.1.1

3.1.2

Integer Unit (1U)

The integer unit contains the general-purpose registers and controls the overall
operation of the processor. The 1U executes the integer arithmetic instructions and
computes memory addresses for loads and stores. It also maintains the program
counters and controls instruction execution for the FPU.

In addition, SPARC JPS1 processors implement two additional sets of alternate
global registers: one for MMU handling and another for interrupt handling.

IMPL. DEP. #2: An implementation of the SPARC V9 IU may contain from 64 to 528
general-purpose 64-bit r registers. This corresponds to a grouping of the registers
into 8 global r registers, 8 alternate global r registers, plus a circular stack of from 3
to 32 sets of 16 registers each, known as register windows. The number of register
windows present (NW NDOWS) is implementation dependent in SPARC V9.

NW NDOWS = 8 in SPARC JPS1 processors.

Floating-Point Unit (FPU)

The FPU has thirty-two 32-bit (single-precision) floating-point registers, thirty-two
64-bit (double-precision) floating-point registers, and sixteen 128-bit (quad-
precision) floating-point registers, some of which overlap. Double-precision values
occupy an even-odd pair of single-precision register, and quad-precision values
occupy a quad-aligned group of four single-precision registers.

If an FPU is not present or is not enabled, then an attempt to execute a floating-point
instruction generates an fp_disabled trap. In either case, privileged-mode software
must do the following:

= Enable the FPU and reexecute the trapping instruction, or
= Emulate the trapping instruction

3.2

20

Instructions

Instructions fall into the following basic categories:

= Memory access

= Integer arithmetic / logical / shift
= Control transfer

= State register access

= Floating-point operate

= Conditional move

= Register window management

These classes are discussed in the following subsections.
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3.2.1

Memory Access

Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. They use two r registers or an r register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The Integer
Unit appends an ASI to this address.

The destination field of the load/store instruction specifies either one or two r
registers or one, two, or four f registers that supply the data for a store or that
receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Some versions of integer load instructions
perform sign extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit
destination register. Floating-point load and store instructions support word,
doubleword, and quadword memory accesses.

CASA/CASXA, SWAP, and LDSTUB are special atomic memory access instructions that
concurrent processes use for synchronization and memory updates.

The Atomic Quad Load instruction supplies an indivisible 128-bit (16-byte) load that
is important in certain system software applications.

Memory Alignment Restrictions

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include
instruction fetches) are aligned on 4-byte boundaries; extended-word and
doubleword accesses are aligned on 8-byte boundaries. An improperly aligned
address in a load, store, or load-store instruction causes a trap to occur, with the
possible exception of cases described in Memory Alignment Restrictions on page 108.

Addressing Conventions

SPARC V9 uses big-endian byte order by default: the address of a quadword,
doubleword, word, or halfword is the address of its most significant byte. Increasing
the address means decreasing the significance of the unit being accessed. All
instruction accesses are performed using big-endian byte order. SPARC V9 also can
support little-endian byte order for data accesses only: the address of a quadword,
doubleword, word, or halfword is the address of its least significant byte. Increasing
the address means increasing the significance of the unit being accessed. See
Processor State (PSTATE) Register on page 69 for information about changing the
implicit byte order to little-endian.

Addressing conventions are illustrated in FIGURE 6-4 on page 109 and FIGURE 6-5 on
page 111.
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Load/Store Alternate

Versions of load/store instructions, the load/store alternate instructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to
alternate spaces 0015—7Fy¢ is restricted, and access to alternate spaces 801—FF1g is
unrestricted. Some of the ASls are available for implementation-dependent uses.
Supervisor software can use the implementation-dependent ASIs to access special
protected registers, such as MMU, cache control, and processor state registers, and
other processor- or system-dependent values. See Address Space Identifiers (ASIs) on
page 112 for more information.

Alternate space addressing is also provided for the atomic memory access
instructions LDSTUB, SWAP, and CASA/ CASXA.

Separate | and D Memories

The interpretation of address can be unified, in which case the same translations and
caching are applied to both instructions and data. Alternatively, addresses can be
split, in which case instruction references use one translation mechanism and cache
and data references use another, although the same main memory is shared.

In such split-memory systems, the coherency mechanism may be split, so that a
write into data memory is not immediately reflected in instruction memory. For this
reason, programs that modify their own code (self-modifying code) and that wish to
be portable across all SPARC V9 processors must issue FLUSH instructions, or a
system call with a similar effect, to bring the instruction and data caches into a
consistent state. SPARC JPS1 processors have coherent instruction and data caches.
Therefore, FLUSH instructions are required for self-modifying code on those
processors to flush pipeline instruction buffers that possibly contain modified
instructions but are not required for cache coherency.

Input/Output (170)

SPARC V9 assumes that input/output registers are accessed through load/store
alternate instructions, normal load/store instructions, or read/write Ancillary State
Register instructions (RDASR, \RASR).

IMPL. DEP. #123: The semantic effect of accessing input/Zoutput (1/0) locations is
implementation dependent.

IMPL. DEP. #6: Whether the 1/0 registers can be accessed by nonprivileged code is
implementation dependent.

IMPL. DEP. #7: The addresses and contents of 1/0 registers are implementation
dependent.
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3.2.2

3.2.3

Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and
MEMBAR. Their operation is explained in Flush Instruction Memory on page 236 and
Memory Barrier on page 261, respectively. Note: STBAR is also available, but it is
deprecated and should not be used in newly developed software.

Arithmetic / Logical / Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a result
that is a function of two source operands; the result is either written into a
destination register or discarded. The exception, SETHI , can be used in combination
with another arithmetic or logical instruction to create a 32-bit constant in an r
register.

Shift instructions shift the contents of an r register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of an r
register.

The integer multiply instruction performs a 64 x 64 — 64-bit operation. The integer
division instructions perform 64 + 64 — 64-bit operations. Division by zero causes a
trap. Some versions of the 32-bit multiply and divide instructions set the condition
codes.

The tagged arithmetic instructions assume that the least-significant two bits of each
operand are a data-type tag. These instructions set the integer condition code (i cc)
and extended integer condition code (xcc) overflow bits on 32-bit (i cc) or 64-bit
(xcc) arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero,
i cc is set. The xcc overflow bit is not affected by the tag bits.

Control Transfer

Control-transfer instructions (CTIs) include PC-relative branches and calls, register-
indirect jumps, and conditional traps. Most of the control-transfer instructions are
delayed; that is, the instruction immediately following a control-transfer instruction
in logical sequence is dispatched before the control transfer to the target address is
completed. Note that the next instruction in logical sequence may not be the
instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is called a delay
instruction. A bit in a delayed control-transfer instruction (the annul bit) can cause
the delay instruction to be annulled (that is, to have no effect) if the branch is not
taken (or in the “branch always” case if the branch is taken).
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3.2.4

3.2.5

24

Note — SPARC V8 specified that the delay instruction was always fetched, even if
annulled, and that an annulled instruction could not cause any traps. SPARC V9
does not require the delay instruction to be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link
(JMPL) and return (RETURN) instructions use a register-indirect target address. They
compute their target addresses either as the sum of two r registers or as the sum of
an r register and a 13-bit signed immediate value. The “branch on condition codes
without prediction” instruction provides a displacement of £8 Mbytes; the “branch
on condition codes with prediction” instruction provides a displacement of 1
Mbyte; the “branch on register contents” instruction provides a displacement of +128
Kbytes; and the CALL instruction’s 30-bit word displacement allows a control
transfer to any address within +2 gigabytes (+23! bytes).

Note — The return from privileged trap instructions (DONE and RETRY) get their
target address from the appropriate TPC or TNPC register.

State Register Access

The read and write state register instructions read and write the contents of state
registers visible to nonprivileged software (Y, CCR, ASI, PC, Tl CK, and FPRS). The
read and write privileged register instructions read and write the contents of state
registers visible only to privileged software (TPC, TNPC, TSTATE, TT, Tl CK, TBA,
PSTATE, TL, PI L, C\P, CANSAVE, CANRESTORE, CLEANW N, OTHERW N, WETATE,
and VER).

IMPL. DEP. #8: Software can use read/write ancillary state register instructions to
read/write implementation-dependent processor registers (ASRs 16-31).

IMPL. DEP. #9: Whether each of the implementation-dependent read/write
ancillary state register instructions (for ASRs 16-31) is privileged is implementation
dependent.

Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations;
they are register-to-register instructions that operate on the floating-point registers.
Like arithmetic/logical/shift instructions, FPops compute a result that is a function
of one or two source operands. Specific floating-point operations are selected by a
subfield of the FPop1/FPop2 instruction formats.
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Although not part of JPS1 commonality, the floating-point multiply-add and
multiply-subtract instructions described in A.24 of the SPARC64 V supplement to
JPS1 are expected to be part of the commonality in a future JPS.

3.2.6 Conditional Move

Conditional move instructions conditionally copy a value from a source register to a
destination register, depending on an integer or floating-point condition code or
upon the contents of an integer register. These instructions increase performance by
reducing the number of branches.

3.2.7 Register Window Management

Register window instructions manage the register windows. SAVE and RESTORE are
nonprivileged and cause a register window to be pushed or popped. FLUSHWis
nonprivileged and causes all of the windows except the current one to be flushed to
memory. SAVED and RESTORED are used by privileged software to end a window
spill or fill trap handler.

3.3 Traps

A trap is a vectored transfer of control to privileged software through a trap table
that may contain the first 8 instructions (32 for fill/spill traps) of each trap handler.
The base address of the table is established by software in a state register (the Trap
Base Address Register, TBA). The displacement within the table is encoded in the
type number of each trap and the level of the trap. One-half of the table is reserved
for hardware traps; one-quarter is reserved for software traps generated by trap
(Tcc) instructions; the final quarter is reserved for future expansion of the
architecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It
also causes the CCR, ASI , PSTATE, and CWP registers to be saved in TSTATE. TPC,
TNPC, and TSTATE are entries in a hardware trap stack, where the number of entries
in the trap stack is equal to the number of trap levels supported (which is 5 in a JPS1
processor). A trap also sets bits in the PSTATE register, one of which can enable an
alternate set of global registers for use by the trap handler. Normally, the CWP is not
changed by a trap; on a window spill or fill trap; however, the CWP is changed to
point to the register window to be saved or restored.
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A trap can be caused by a Tcc instruction, an asynchronous exception, an
instruction-induced exception, or an interrupt request not directly related to a
particular instruction. Before executing each instruction, the processor determines if
there are any pending exceptions or interrupt requests. If any are pending, the
processor selects the highest-priority exception or interrupt request and causes a
trap.

See Chapter 7, Traps, for a complete description of traps.
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C.CHAPTER 4

Data Formats

The SPARC V9 architecture recognizes these fundamental data types:

= Signed integer: 8, 16, 32, and 64 bits

= Unsigned integer: 8, 16, 32, and 64 bits

= Graphics data formats: pixel (32-bits), fixed16 (64-bits), and fixed32 (64 bits)
= Floating point: 32, 64, and 128 bits

The widths of the data types are as follows:

= Byte: 8 bits

= Halfword: 16 bits

= Word: 32 bits

= Extended word: 64 bits

= Tagged word: 32 bits (30-bit value plus 2-bit tag) (deprecated)
= Doubleword: 64 bits

= Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width
commensurate with their range. Unsigned integer values, bit vectors, Boolean
values, character strings, and other values representable in binary form are stored as
unsigned integers with a width commensurate with their range. The floating-point
formats conform to the IEEE Standard for Binary Floating-point Arithmetic, IEEE
Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Data formats are described in these sections:

= Signed, Unsigned, and Tagged Integer Data Formats on page 28
= Floating-Point Data Types on page 32
= Graphics Data Formats on page 36

Names are assigned to individual subwords of the multiword data formats as
described in these sections:

= Signed Integer Double on page 30

= Unsigned Integer Double on page 32

= Floating Point, Double Precision on page 33
= Floating Point, Quad Precision on page 34
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Signed, Unsigned, and Tagged Integer
Data Formats

TABLE 4-1 describes the width and ranges of the signed, unsigned, and tagged integer
data formats.

TABLE 4-1  Signed Integer, Unsigned Integer, and Tagged Format Ranges
Data Type Width (bits) Range
Signed integer byte 8 271027 1
Signed integer halfword 16 —215¢0 215 71
Signed integer word 32 =232 1
Signed integer tagged word 32 281028 71
Signed integer double 64 —283 402837 1
Signed extended integer 64 203 10 2031
Unsigned integer byte 8 0to28 1
Unsigned integer halfword 16 0to28 1
Unsigned integer word 32 0t02%2 1
Unsigned integer tagged word 32 0to 2% "1
Unsigned integer double 64 0to2% "1
Unsigned extended integer 64 0to204-1

TABLE 4-2 describes the memory and register alignment for integer data.

TABLE 42 Integer Doubleword Alignment

Required Register
Subformat Address Memory Number Register
Name Subformat Field Alignment Address Alignment Number
SD-0 si gned_dbl _i nt eger <63:32> 0 mod 8 n 0 mod 2 r
SD-1 si gned_dbl _i nt eger <31:0> 4 mod 8 n+4 1 mod 2 r+1
SX si gned_ext _i nt eger <63:0> 0 mod 8 n — r
UD-0 unsi gned_dbl _i nt eger <63:32> 0 mod 8 n 0 mod 2 r
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TABLE 42 Integer Doubleword Alignment (Continued)

Required Register
Subformat Address Memory Number Register
Name Subformat Field Alignment Address Alignment Number
UD-1 unsi gned_dbl _i nt eger <31:0> 4 mod 8 n+4 1 mod 2 r+1
UXx unsi gned_ext _i nt eger <63:0> 0 mod 8 n — r

The data types are illustrated in the following subsections.

4.1.1 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

= Signed integer byte

= Signed integer halfword

= Signed integer word

= Signed integer doubleword
= Signed extended integer

Signed Integer Byte

FIGURE 4-1 illustrates the signed integer byte data format.

S

76 0

FIGURE 4-1 Signed Integer Byte Data Format

Signed Integer Halfword

FIGURE 4-2 illustrates the signed integer halfword data format.

S

1514 0

FIGURE 4-2 Signed Integer Halfword Data Format
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SX

Signed Integer Word

FIGURE 4-3 illustrates the signed integer word data format.

S

3130
FIGURE 4-3 Signed Integer Word Data Format

Signed Integer Double

FIGURE 4-4 illustrates both components (SD-0 and SD-1) of the signed integer double
data format.

SD-0

S signed_dbl_integer<62:32>

3130

SD-1

signed_dbl_integer<31:0>

31

FIGURE 4-4 Signed Integer Double Data Format

Signed Extended Integer

FIGURE 4-5 illustrates the signed extended integer (SX) data format.

signed_ext_integer

63 62

FIGURE 4-5 Signed Extended Integer Data Format
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4.1.2 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

Unsigned integer byte
Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword
Unsigned extended integer

Unsigned Integer Byte

FIGURE 4-6 illustrates the unsigned integer byte data format.

7 0

FIGURE 4-6 Unsigned Integer Byte Data Format

Unsigned Integer Halfword

FIGURE 4-7 illustrates the unsigned integer halfword data format.

15 0

FIGURE 4.7 Unsigned Integer Halfword Data Format

Unsigned Integer Word

FIGURE 4-8 illustrates the unsigned integer word data format.

31 0

FIGURE 4-8 Unsigned Integer Word Data Format
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Unsigned Integer Double

FIGURE 4-9 illustrates both components (UD-0 and UD-1) of the unsigned integer
double data format.

UD-0 unsigned_dbl_integer<63:32>

31 0

UD-1 unsigned_dbl_integer<31:0>

31 0

FIGURE 4-9 Unsigned Integer Double Data Format

Unsigned Extended Integer

FIGURE 4-10 illustrates the unsigned extended integer (UX) data format.

ux

unsigned_ext_integer

63 0

FIGURE 4-10 Unsigned Extended Integer Data Format

4.1.3 Tagged Word

FIGURE 4-11 illustrates the tagged word data format.

tag

31 21 0

FIGURE 4-11 Tagged Word Data Format

4.2 Floating-Point Data Types

Single-precision, double-precision, and quad-precision floating-point data types are
described below.
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4.2.1 Floating Point, Single Precision

FIGURE 4-12 illustrates the floating-point single-precision data format, and TABLE 4-3
describes the formats.

S| exp<7:0>

fraction<22:0>

3130

2322

FIGURE 4-12 Floating-Point Single-Precision Data Format

TABLE 4-3

Floating-Point Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)

f =fraction (23 bits)
u = undefined

Normalized value (0 < e < 255):

Subnormal value (e = 0):

Zero (e =0)

Signalling NaN

Quiet NaN

— 00 (negative infinity)

+ 00 (positive infinity)

(_1)5 X 26—1&/ x 1.f
(-1 x 27 x 0 f
(-1)°=0

s =u; e =255 (max); f =.0uu--uu
(At least one bit of the fraction must be nonzero)

s =u; e =255 (max); f =.luu--uu
s =1;e =255 (max); f =.000--00
s =0; e =255 (max); f =.000--00

4.2.2 Floating Point, Double Precision

FIGURE 4-13 illustrates both components (FD-0 and FD-1) of the floating-point
double-precision data format, and TABLE 4-4 describes the formats.

FD-0

FD-1

S| exp<10:0> fraction<51:32>

3130 2019 0
fraction<31:0>

31 0

FIGURE 4-13 Floating-Point Double-Precision Data Format
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TABLE 4-4 Floating-Point Double-Precision Format Definition

s =sign (1 bit)

e = biased exponent (11 bits)
f =fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047): (1S x 257108 % 1 f

Subnormal value (e = 0): (-1)¢ x 271022 x 0 f

Zero (e =0) (-1)°x0

Signalling NaN s =u; e =2047 (max); f =.0uu--uu

(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e =2047 (max); f =.luu--uu

— 00 (negative infinity) s =1;e =2047 (max); f =.000--00

+ 00 (positive infinity) s =0; e =2047 (max); f =.000--00

4.2.3 Floating Point, Quad Precision

FIGURE 4-14 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 4-5 describes the formats.

FQ-0 |S exp<14:0> fraction<111:96>

3130 1615 0
FQ-1 fraction<95:64>

31 0
FQ-2 fraction<63:32>

31 0
FQ-3 fraction<31:0>

31 0

FIGURE 4-14 Floating-Point Quad-Precision Data Format
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TABLE 4-5 Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e = biased exponent (15 bits)
f =fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767): (-1)S x 287108 1 f

Subnormal value (e = 0): (-1)8 x 2716382 « o f

Zero (e =0) (-13x0

Signalling NaN s =u; e =32767 (max); f =.0uu--uu
(At least one bit of the fraction must be
nonzero)

Quiet NaN s =u; e =32767 (max); f =.luu--uu

— 00 (negative infinity) s =1;e =32767 (max); f =.000--00

+ 00 (positive infinity) s =0; e =32767 (max); f =.000--00

4.2.4 Floating-Point Data Alignment in Memory and
Registers

TABLE 4-6 describes the address and memory alignment for floating-point data.

TABLE 4-6  Floating-Point Doubleword and Quadword Alignment

Required Memory Register

Subformat Address Address Number Register
Name Subformat Field Alignment (big-endian)*  Alignment Number
FD-0 s:exp<10:0>:fract i on<51:32> Omod4’ n 0 mod 2 f

FD-1 fraction<31:0> omod4 ' n+4 1 mod 2 f+1
FQ-0 s: exp<l4:0>:fraction<111:96> Omod4* n 0 mod 4 f

FQ-1 fracti on<95:64> Omod4* n+4 Imod4  f+1
FQ-2 fracti on<63:32> Omod4* n+8 2 mod 4 f+2
FQ-3 fracti on<31:.0> Omod4* n+12 3 mod 4 f+3

*The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-en-
dian accesses are used.

TAIthough a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be double-
word-aligned (that is, the address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/
stores instead of multiple singleword loads/stores).

iAlthough a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-
aligned (that is, the address of its FQ-0 word should be 0 mod 16).
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Graphics Data Formats

Graphics instructions are optimized for short integer arithmetic, where the overhead
of converting to and from floating point is significant. Image components can be 8 or
16 bits; intermediate results are 16 or 32 bits.

Pixel Graphics Format

Pixels consist of four unsigned 8-bit integers contained in a 32-bit word (see
FIGURE 4-15). Typically, they represent intensity values for an image (for example, q,
G, B, R). A SPARC JPS1 processor supports:

= Band interleaved images, with the various color components of a point in the image
stored together

= Band sequential images, with all of the values for one color component stored
together

31 24 23 16 15 8 7 0

FIGURE 4-15 Pixel Graphics Format

Each 8-bit quantity is an unsigned integer. Conventional use is to store a, R, G, and
B values in MSB to LSB order within the pixel format.

Fixed16 Graphics Format

Fixed data values provide an intermediate format with enough precision and
dynamic range for filtering and simple image computations on pixel values.

Conversion from pixel data to fixed data occurs through pixel multiplication.
Conversion from fixed data to pixel data is done with the FPACK instructions, which
clip and truncate to an 8-bit unsigned value. Conversion from 32-bit fixed to 16-bit
fixed is also supported with the FPACKFI X instruction.

Perform rounding by adding 1 to the round bit position. Perform complex
calculations needing more dynamic range or precision by means of floating-point
data.
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4.3.3

The fixed 16-bit data format consists of four 16-bit, signed, fixed-point values
contained in a 64-bit word. FIGURE 4-16 illustrates the Fixed16 Graphics format.

int | frac int | frac int | frac int | frac

63 48 47 32 A 16 15 0

FIGURE 4-16 Fixed16 Graphics Format

Fixed32 Graphics Format

The fixed 32-bit format consists of two 32-bit, signed, fixed-point values contained in
a 64-bit word. FIGURE 4-17 illustrates the Fixed32 Graphics format.

int frac int frac

63 32 A 0

FIGURE 4-17 Fixed32 Graphics Format
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C.CHAPTER 5

Registers

Registers are described in these two main sections:

= Nonprivileged Registers on page 40
= Privileged Registers on page 69

A SPARC JPS1 processor includes three types of registers: general-purpose (working

data), ancillary state (ASRs), and ASI registers.

Working data registers include:

= Integer working registers (r registers) — page 46
= Floating-point working registers (f registers) — page 48

Control/status registers include:

= Program Counter Register (PC) — page 46

= Next Program Counter Register (nPC) — page 46

= Y Register (Y) — page 47

= Condition Codes Register (CCR) — page 54

= Floating-Point Registers State Register (FPRS) — page 55
= Floating-Point State Register (FSR) — page 56

= Address Space Identifier Register (ASI ) — page 67

= Hardware clock-tick counter register (Tl CK) — page 68
= Processor State Register (PSTATE) — page 69

= Trap Level Register (TL) — page 74

= Processor Interrupt Level Register (Pl L) — page 75

= Trap Program Counter Register (TPC) — page 75

= Trap Next Program Counter Register (TNPC) — page 76
= Trap State Register (TSTATE) — page 77

= Trap Type Register (TT) — page 77

= Trap Base Address Register (TBA) — page 78

= \ersion Register (VER) — page 79

= Current Window Pointer Register (CWP) — page 80

= Savable Windows Register (CANSAVE) — page 81

= Restorable Windows Register (CANRESTORE) — page 81
= Other Windows Register (OTHERW N) — page 82
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= Window State Register (WSTATE) — page 82

= Clean Windows Register (CLEANW N) — page 83

= Performance Control Register (PCR) (ASR 16) — page 84

= Performance Instrumentation Counters (Pl C) (ASR 17) — page 85

= Dispatch Control Register (DCR) (ASR 18) — page 86

= Graphics Status Register (GSR) (ASR 19) — page 87

= Set Bit(s) in Per-processor Soft Interrupt Register (SET_SOFTI NT) (ASR 20) —
page 88

= Clear Bit(s) in per-processor Soft Interrupt Register (CLEAR_SOFTI NT) (ASR 21)
— page 88

= Per-processor Soft Interrupt Register (SOFTI NT) (ASR 22) — page 89

= Tick Compare (TI CK_COWPARE) (ASR 23) — page 90

= System hardware clock-tick counter (STI CK) (ASR 24) — page 90

= System Tick Compare (STI CK_COMPARE) (ASR 25) — page 91

= Data Cache Unit Control Register (DCUCR) (ASI 45,5) — page 92

= Virtual Address Data Watchpoint Register (ASI 58,5) —page 95

= Physical Address Data Watchpoint Register (ASI 58,5) — page 96

= Instruction Trap Register — page 96

The ASI registers are defined in Appendix L, Address Space Identifiers.

For convenience, some registers in this are illustrated as fewer than 64 bits wide.
Any bits not shown are reserved for future extensions to the architecture. Such
reserved bits are read as zeroes and, when written by software, should be written
with the values of those bits previously read from that register or with zeroes.

Figures and tables in this chapter are reproduced from The SPARC Architecture
Manual-Version 9.

5.1

5.1.1
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Nonprivileged Registers

The registers described in this subsection are visible to nonprivileged (application or
“user mode”) software.

General-Purpose r Registers

A SPARC JPS1 processor contains 160 general-purpose 64-bit r registers. They are
partitioned into eight global registers, three sets of eight alternate global registers, plus
eight 16-register sets. A register window consists of the current eight in registers,
eight local registers, and eight out registers. See FIGURE 5-1.

At any moment, general-purpose registers appear to nonprivileged software as
shown in FIGURE 5-1.
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i7 r[31]
i6 r[30]
i5 r[29]
i4 r[28]
i3 r[27]
i2 r[26]
i1 r[25]
i0 r[24]
17 r[23]
16 r[22]
15 r[21]
14 r[20]
13 r[19]
12 r[18]
11 r[17]
10 r[16]
o7 r[15]
o6 r[14]
05 r[13]
o4 r[12]
o3 r[11]
02 r[10]
o1 r[9]
o0 r[8]
g7 7]
g6 r[6]
95 (5]
g4 r[4]
g3 r[3]
92 r2]
g1 r[1]
g0 r[0]

FIGURE 5-1 General-Purpose Registers (Nonprivileged View)
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Global r Registers

Registers r [ 0] —r [ 7] refer to a set of eight registers called the global registers (g0—
g7). At any time, one of four sets of eight registers is enabled and can be accessed as
a global register. The currently enabled set of global registers is selected by the
Alternate Global (AG), Interrupt Global (I G, and MMU Global (MG fields in the
PSTATE register. See Processor State (PSTATE) Register on page 69 for a description of
the AG | G and MGfields.

Global register zero (g0) always reads as zero; writes to it have no program-visible
effect.

Windowed r Registers

At any time, an instruction can access the eight global registers and a 24-register
window into the r registers. A register window comprises the 8 in and 8 local
registers of a particular register set, together with the 8 in registers of an adjacent
register set, which are addressable from the current window as out registers. See
TABLE 5-1 and FIGURE 5-2.

TABLE 5-1  Window Addressing

Windowed Register Address I Register Address
in[0] - in[7] r[24] - r[31]
local[0] — local[7] r [16] - r [23]
out[0] - out[7] r[ 8] -r[15]
global[0] — global[7] r[ 0]-r[ 7]

Compatibility Note — Since the PSTATE register is writable only by privileged
software, existing nonprivileged SPARC V8 software operates correctly on a SPARC
JPS1 processor if supervisor software ensures that nonprivileged software sees a
consistent set of global registers.

The number of windows or register sets, NW NDOWS, ranges from 3 to 32 (impl. dep.
#2) in SPARC V9. The total number of r registers in a given implementation is 8 (for
the global registers), plus 24 (8 alternate global registers, 8 interrupt global registers,
and 8 MMU global registers) plus the number of sets times 16 registers/set. In a
SPARC JPS1 processor, NW NDOWS is fixed at 8. Therefore, a JPS1 processor has 160 r
registers.
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Window (CWP — 1)

r[31]
. ins
r[24]
r[23]
. locals
r[16] Window (CWP)
15] 31]
. outs : ins
8] 124]
r[23]
. locals
r[16] Window (CWP + 1)
r[15] r[31]
. outs . ins
[ 8] r[24]
r[23]
: locals
r[16]
15]
. outs
8]
n7]
. globals
1]
" 0] 0
63 0

FIGURE 5-2 Three Overlapping Windows and the Eight Global Registers

The current window in the windowed portion of r registers is given by the current
window pointer (CWP) register. The CWP is decremented by the RESTORE instruction
and incremented by the SAVE instruction. Window overflow is detected by the
CANSAVE register, and window underflow is detected by the CANRESTORE register,
both of which are controlled by privileged software. A window overflow
(underflow) condition causes a window spill (fill) trap.

Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The
outs of the CWP — 1 (modulo NW NDOWS) window are addressable as the ins of the
current window, and the outs in the current window are the ins of the CWP + 1
(modulo NW NDOWS) window. The locals are unique to each window.
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An outs register with address o, where 8 < 0 < 15, refers to exactly the same register
as (0+16) does after the CWP is incremented by 1 (modulo NW NDOWS). Likewise, an
in register with address i, where 24 < i < 31, refers to exactly the same register as
address (i—16) does after the CWP is decremented by 1 (modulo NW NDOWS). See
FIGURE 5-2 on page 43 and FIGURE 5-3 on page 45.

Since CWP arithmetic is performed modulo NW NDOWS, the highest-numbered
implemented window (window 7 in SPARC JPS1) overlaps with window 0. The outs
of window NW NDOWS - 1 are the ins of window 0. Implemented windows are
numbered contiguously from 0 through NW NDOWS —1.

Programming Note — Since the procedure call instructions (CALL and JMPL) do
not change the CWP, a procedure can be called without changing the window. See
Leaf-Procedure Optimization on page 491.

Because the windows overlap, the number of windows available to software is one
less than the number of implemented windows; that is, NW NDOWS — 1 or 7 in SPARC
JPS1. When the register file is full, the outs of the newest window are the ins of the
oldest window, which still contains valid data.

The local and out registers of a register window are guaranteed to contain either
zeroes or an old value that belongs to the current context upon reentering the
window through a SAVE instruction. If a program executes a RESTORE followed by a
SAVE, then the resulting window’s locals and outs may not be valid after the SAVE,
since a trap may have occurred between the RESTORE and the SAVE. However, if the
cl ean_wi ndow protocol is being used, system software must guarantee that
registers in the current window after a SAVE always contains only zeroes or valid
data from that context. See Clean Windows (CLEANWIN) Register on page 83, Savable
Windows (CANSAVE) Register on page 81, and Restorable Windows (CANRESTORE)
Register on page 81.

Register Window Management Instructions on page 120 describes how the windowed
integer registers are managed.
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CWP =0
(Current Window Pointer)

. CANSAVE =4
w1 ins

< SAVE RESTORE
w7
w6 locals w6 ins

CANRESTORE = 1 (Overlap)

w5 locals

w5 outs

OTHERWIN =1

CANSAVE + CANRESTORE + OTHERW N = NW NDOWS5 — 2

The current window (window 0) and the overlap window (window 5)
account for the two windows in the right side of the equation. The
“overlap window” is the window that must remain unused because its ins
and outs overlap two other valid windows.

FIGURE 5-3 Windowed r Registers for NW NDOWS = 8
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5.1.3
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Special r Registers

The use of two of the r registers is fixed, in whole or in part, by the architecture:
= The value of r [0] is always zero; writes to it have no program-visible effect.
= The CALL instruction writes its own address into register r [15] (out register 7).

Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjacent r registers
and require even-odd register alignment. The least significant bit of an r register
number in these instructions is reserved and should be supplied as 0 by software.

When the r [0]-r [1] register pair is used as a destination in LDD or LDDA, only r [1] is
modified. When the r [0]-r [1] register pair is used as a source in STDor STDA, a 0 is
written to the 32-bit word at the lowest address, and the least significant 32 bits of
r [1] are written to the 32-bit word at the highest address.

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a
misaligned (odd) destination register number causes an illegal_instruction trap.

Register Usage

See General-Purpose r Registers on page 40 for information about the conventional
usage of the r registers.

In FIGURE 5-3, NW NDOWS = 8. The eight global registers are not illustrated. CWP =0,
CANSAVE = 4, OTHERW N = 1, and CANRESTORE = 1. If the procedure using window
w0 executes a RESTORE, then window w7 becomes the current window. If the
procedure using window w0 executes a SAVE, then window wl becomes the current
window.

IU Control/Status Registers

The nonprivileged U control/status registers include the program counters (PC and
nPC), the 32-bit multiply/divide (Y) register, and several implementation-dependent
Ancillary State Registers (ASRs), which are defined in Ancillary State Registers (ASRs)
on page 83.

Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed. The nPC
holds the address of the next instruction to be executed if a trap does not occur. The
low-order two bits of PC and nPC always contain 0.
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For a delayed control transfer, the instruction that immediately follows the transfer
instruction is known as the delay instruction. This delay instruction is executed
(unless the control transfer instruction annuls it) before control is transferred to the
target. During execution of the delay instruction, the nPC points to the target of the
control transfer instruction, and the PC points to the delay instruction. See Chapter 6,
Instructions.

The PCis used implicitly as a destination register by CALL, Bi cc, BPcc, BPr, FBf cc,
FBPf cc, JMPL, and RETURN instructions. It can be read directly by an RDPC
instruction.

32-bit Multiply/Divide Register (Y)

The Y register is deprecated; it is provided only for compatibility with previous
versions of the architecture. It should not be used in new SPARC V9 software. It
is recommended that all instructions that reference the Y register (that is, SMUL,
SMULcc, UMJUL, UMJLcc, MJLScc, SDI V, SDI Vcc, UDI V, UDI Vecc, RDY, and WRY
be avoided. For suitable substitute instructions, see the following pages: for the
multiply instructions, see page 369; for the multiply step instruction, see
page 371; for division instructions, see page 361; for the read instruction, see
page 373; and for the write instruction, see page 389.

The low-order 32 bits of the Y register, illustrated in FIGURE 5-4, contain the more
significant word of the 64-bit product of an integer multiplication, as a result of
either a 32-bit integer multiply (SMJUL, SMJLcc, UMJL, UMJLcc) instruction or an
integer multiply step (MJLScc) instruction. The Y register also holds the more
significant word of the 64-bit dividend for a 32-bit integer divide (SDI V, SDI Vcc,
UDI V, UDI Vcc) instruction.

— product<63:32> or dividend<63:32>

63 32 31 0

FIGURE 5-4 Y Register

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as
0.

The Y register is read and written with the RDY and WRY instructions, respectively.
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Ancillary State Registers (ASRs)

SPARC V9 provides for optional ancillary state registers (ASRs). Access to a
particular ASR may be privileged or nonprivileged; see Ancillary State Registers
(ASRs) on page 83 for a more complete description of ASRs

Floating-Point Registers

The Floating Point Unit contains:

= 32 single-precision (32-bit) floating-point registers, numbered f [0], f [1], ... f [31]
= 32 double-precision (64-bit) floating-point registers, numbered f [0], f [2], ... f [62]
= 16 quad-precision (128-bit) floating-point registers, numbered f [0], f [4], ...f [60]
The floating-point registers are arranged so that some of them overlap, that is, are
aliased. The layout and numbering of the floating-point registers are shown in
Tables 5-2, 5-3, and 5-4. Unlike the windowed r registers, all of the floating-point
registers are accessible at any time. The floating-point registers can be read and

written by FPop (FPopl1/FPop2 format) instructions, by load/store single/double/
quad floating-point instructions, and by block load and block store instructions.

TABLE 5-2  Single-Precision Floating-Point Registers, with Aliasing

Operand Register ID From Register
31 f 31<31:0>
30 f 30<31:0>
29 f 29<31:0>
28 f 28<31:0>
f27 f 27<31:0>
26 f 26<31:0>
25 f 25<31:0>
f24 f 24<31:0>
f23 f 23<31:0>
f22 f 22<31:0>
f21 f 21<31:0>
20 f 20<31:0>
19 f 19<31:0>
f18 f 18<31:0>
17 f 17<31:0>
f16 f 16<31:0>
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TABLE 5-2  Single-Precision Floating-Point Registers, with Aliasing (Continued)

Operand Register ID

From Register

f15
f14
13
f12
f11
10
9
18
7
f6
5
4
f3
2
fl
fo

f 15<31:0>
f 14<31:0>
f 13<31:0>
f 12<31:0>
f11<31:0>
f 10<31:0>
f 9<31:0>
f 8<31:0>
f 7<31:0>
f 6<31:0>
f 5<31:0>
f 4<31:0>
f 3<31:0>
f 2<31:0>
f 1<31:0>
f 0<31:0>

TABLE 5-3 Double-Precision Floating-Point Registers, with Aliasing (1 of 3)

Operand Register ID

Operand Field

From Register

62
60
58
56
54
52
50
48
f46
f44
42
40
38

<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>
<63:0>

f 62<63:0>
f 60<63:0>
f 58<63:0>
f 56<63:0>
f 54<63:0>
f 52<63:0>
f 50<63:0>
f 48<63:0>
f 46<63:0>
f 44<63:0>
f 42<63:0>
f 40<63:0>
f 38<63:0>
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TABLE 5-3  Double-Precision Floating-Point Registers, with Aliasing (2 of 3)

Operand Register ID Operand Field From Register
36 <63:0> f 36<63:0>
34 <63:.0> f 34<63:0>
32 <63:0> f 32<63:0>
30 <31.0> f 31<31:0>

<63:32> f 30<31:.0>

<31:0> f 29<31:.0>
28

<63:32> f 28<31:0>

<31:0> f 27<31:0>
126

<63:32> f 26<31:0>

<31:0> f 25<31:0>
24

<63:32> f 24<31:0>

<31:0> f 23<31:0>
122

<63:32> f 22<31:.0>

<31:0> f21<31:0>
120

<63:32> f 20<31:0>

<31:0> f 19<31:0>
f18

<63:32> f 18<31:0>

<31:0> f17<31:0>
f16

<63:32> f 16<31:0>

<31:0> f 15<31:0>
f14

<63:32> f 14<31:0>

<31:0> f 13<31:0>
f12

<63:32> f 12<31:0>

<31:0> f11<31:0>
f10

<63:32> f 10<31:0>

<31:0> f 9<31:0>
8

<63:32> f 8<31:0>

<31:0> f 7<31:0>
f6

<63:32> f 6<31:0>

<31:0> f 5<31:0>
f4

<63:32> f 4<31:0>
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TABLE 5-3  Double-Precision Floating-Point Registers, with Aliasing (3 of 3)

Operand Register ID Operand Field From Register
<31:0> f 3<31:0>

2
<63:32> f 2<31:0>
<31:0> f 1<31:0>

f0
<63:32> f 0<31:0>

TABLE 5-4 Quad-Precision Floating-Point Registers, with Aliasing

Operand Register ID Operand Field From Register

<63:0> f 62<63:0>
f60

<127:64> f 60<63:0>

<63:0> f 58<63:0>
56

<127:64> f 56<63:0>

<63:0> f 54<63:0>
52

<127:64> f 52<63:0>

<63:0> f 50<63:0>
48

<127:64> f 48<63:0>

<63:0> f 46<63:0>
f44

<127:64> f 44<63:0>

<63:0> f 42<63:0>
40

<127:64> f 40<63:0>

<63:0> f 38<63:0>
f36

<127:64> f 36<63:0>

<63:0> f 34<63:0>
32

<127:64> f 32<63:0>

<31:0> f 31<31:0>

<63:32> f 30<31:0>
28

<95:64> f 29<31:0>

<127:96> f 28<31:0>

<31:0> f 27<31:0>

<63:32> f 26<31:0>
24

<95:64> f 25<31:0>

<127:96> f 24<31:0>
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TABLE 5-4 Quad-Precision Floating-Point Registers, with Aliasing (Continued)

Operand Register ID Operand Field From Register
<31:0> f 23<31:.0>
<63:32> f 22<31:0>

120
<95:64> f 21<31:0>
<127:96> f 20<31:0>
<31:0> f 19<31:0>
<63:32> f 18<31:0>

f16
<95:64> f 17<31:0>
<127:96> f 16<31:0>
<31:0> f 15<31:0>
<63:32> f 14<31:0>

f12
<95:64> f 13<31:0>
<127:96> f 12<31:0>
<31:0> f 11<31:0>

~ <63:32> f 10<31:0>
<95:64> f 9<31:.0>
<127:96> f 8<31:0>
<31:0> f 7<31:0>
<63:32> f 6<31:0>

4
<95:64> f 5<31:.0>
<127:96> f 4<31.0>
<31:0> f 3<31:.0>
<63:32> f 2<31:.0>

f0
<95:64> f 1<31:0>
<127:96> f 0<31:0>

Floating-Point Register Number Encoding
Register numbers for single, double, and quad registers are encoded differently in

the 5-bit register number field of a floating-point instruction. If the bits in a register
number field are labeled b<4>-b<0> (where b<4> is the most significant bit of the
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register number), the encoding of floating-point register numbers into 5-bit
instruction fields is as given in TABLE 5-5.

TABLE 5-5  Floating-Point Register Number Encoding

Register Operand Encoding in a 5-bit Register Field in an
Type 6-bit Register Number Instruction

Single 0 b<4> b<3> b<2> b<1l> b<0> b<4> b<3> b<2> b<l> b<0>
Double b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>
Quad b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>

Release 1.0.4, 31 May 2002

Compatibility Note — In SPARC V8, bit 0 of double and quad register numbers
encoded in instruction fields was required to be zero. Therefore, all SPARC V8 floating-
point instructions can run unchanged on a SPARC JPS1 processor, using the encoding in
TABLE 5-5.

Double and Quad Floating-Point Operands

A single f register can hold one single-precision operand; a double-precision
operand requires an aligned pair of f registers, and a quad-precision operand
requires an aligned quadruple of f registers. At a given time, the floating-point
registers can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision values in the lower half of the floating-point register file, plus an
additional 16 double-precision or 8 quad-precision values in the upper half, or
mixtures of the three sizes.

Programming Notes — Data to be loaded into a floating-point double or quad
register that is not doubleword aligned in memory must be loaded into the lower 16
double registers (8 quad registers) by means of single-precision LDF instructions. If
desired, the data can then be copied into the upper 16 double registers (8 quad
registers).

An attempt to execute an instruction that refers to a misaligned floating-point
register operand (that is, a quad-precision operand in a register whose 6-bit register
number is not 0 mod 4) shall cause an fpo_exception_other trap, with FSR. ftt =6
(invalid_fp_register).

Given the encoding in TABLE 5-5, it is impossible to specify a double-precision
register with a misaligned register number.
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SPARC JPS1 does not implement quad-precision operations in hardware. All SPARC
V9 FP quad (including load and store) operations trap to the OS kernel and are
emulated. Whether quad-precision multiply-add and multiply-subtract instructions
are emulated in software is implementation-dependent (impl. dep. #1). Since JPS1
processors do not implement quad floating-point arithmetic operations in hardware,
the fpo_exception_other trap with FSR. f tt =6 (invalid_fp_register) does not occur in
JPS1 processors.

Integer Condition Codes Register (CCR)

The Condition Codes Register (CCR), shown in FIGURE 5-5, holds the integer
condition codes.

CCR XceC icc

7 4 3 0

FIGURE 5-5 Condition Codes Register

CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both the xcc and i cc fields. The
xcc condition codes indicate the result of an operation when viewed as a 64-bit
operation. The i cc condition codes indicate the result of an operation when viewed
as a 32-bit operation. For example, if an operation results in the 64-bit value

0000 0000 FFFF FFFF4g, the 32-bit result is negative (i cc.N is set to 1) but the 64-bit
result is nonnegative (xcc.N is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown
in FIGURE 5-6.

XCC: 7 6 5 4
iccc 3 2 1 0

FIGURE 5-6 Integer Condition Codes (CCR_i cc and CCR_xcc)

The n bits indicate whether the 2’s-complement ALU result was negative for the last
instruction that modified the integer condition codes; 1 = negative, 0 = not negative.

The z bits indicate whether the ALU result was zero for the last instruction that
modified the integer condition codes; 1 = zero, 0 = nonzero.
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5.1.6

The v bits signify whether the ALU result was within the range of (was
representable in) 64-bit (xcc) or 32-bit (i cc) 2’s complement notation for the last
instruction that modified the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’s complement carry (or borrow) occurred during the
last instruction that modified the integer condition codes. Carry is set on addition if
there is a carry out of bit 63 (xcc) or bit 31 (i cc). Carry is set on subtraction if there
is a borrow into bit 63 (xcc) or bit 31 (i cc); 1 =carry, 0 = no carry.

CCR_extended_integer_cond_codes (xcc). Bits 7 through 4 are the 1U condition
codes, which indicate the results of an integer operation, with both of the operands
and the result considered to be 64 bits wide. These bits are modified by the
arithmetic and logical instructions, the names of which end with the letters “cc” (for
example, ANDcc) and by the WRCCR instruction. They can be modified by a DONE or
RETRY instruction, which replaces these bits with the CCR field of the TSTATE
register. The BPcc and Tcc instructions may cause a transfer of control based on the
values of these bits. The MOVcc instruction can conditionally move the contents of an
integer register based on the state of these bits. The FMOVcc instruction can
conditionally move the contents of a floating-point register according to the state of
these bits.

CCR_integer_cond_codes (icc). Bits 3 through 0 are the IU condition codes, which
indicate the results of an integer operation, with both of the operands and the result
considered to be 32 bits wide. These bits are modified by the arithmetic and logical
instructions, the names of which end with the letters “cc” (for example, ANDcc) and
by the WRCCR instruction. They can be modified by a DONE or RETRY instruction,
which replaces these bits with the CCR field of the TSTATE register. The BPcc, Bi cc,
and Tcc instructions may cause a transfer of control based on the values of these
bits. The MOVcc instruction can conditionally move the contents of an integer
register based on the state of these bits. The FMOVcc instruction can conditionally
move the contents of a floating-point register based on the state of these bits.

Floating-Point Registers State (FPRS) Register

The Floating-Point Registers State (FPRS) Register, shown in FIGURE 5-7, holds
control information for the floating-point register file; this information is readable
and writable by nonprivileged software.

FPRS FEF|DU | DL

2 1 0

FIGURE 5-7 Floating-Point Registers State Register
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FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a
floating-point instruction causes an fp_disabled trap. If this bit is set but the
PSTATE. PEF bit is not set, then executing a floating-point instruction causes an
fp_disabled trap; that is, both FPRS. FEF and PSTATE. PEF must be set to enable
floating-point operations.

FPRS_dirty upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f 32—
f 62. It is set whenever any of the upper floating-point registers is modified. The
processor may set it pessimistically; it may be set whenever a floating-point
instruction is issued, even though that instruction never completes and no output
register is modified. The DU bit is cleared only by software.

FPRS_dirty lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f 0—f 31. It is
set whenever any of the lower floating-point registers is modified. The processor
may set it pessimistically; it may be set whenever a floating-point instruction is
issued, even though that instruction never completes and no output register is
modified. The DL bit is cleared only by software.

Floating-Point State Register (FSR)

The FSR register fields, illustrated in FIGURE 5-8, contain FPU mode and status
information. The lower 32 bits of the FSR are read and written by the STFSR and
LDFSR instructions; all 64 bits of the FSR are read and written by the STXFSR and
LDXFSR instructions, respectively. The ver,ftt,and reserved (“—”) fields are not
modified by LDFSR or LDXFSR

— fce3 | fec2 | fee

63 38 37 36 35 34 33 32
RD| — TEM NS — ver ftt  |gne|—| fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

56

FIGURE 5-8 FSR Fields
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Bits 63-38, 29-28, 21-20, and 12 are reserved. When read by an STXFSR instruction,
these bits shall read as zero. Software should issue LDXFSR instructions only with
zero values in these bits, unless the values of these bits are exactly those derived
from a previous STXFSR.

The subsections on pages 57 through 65 describe the remaining fields in the FSR.

FSR_fp_condition_codes (fcc0, fccl, fcc2, fcel)

The four sets of floating-point condition code fields are labeled f ccO, fccl, fcc2,
and fcc3.

Compatibility Note — SPARC V9's f ccO is the same as SPARC V8's f cc.

The f ccO field consists of bits 11 and 10 of the FSR, f cc1 consists of bits 33 and 32,
f cc2 consists of bits 35 and 34, and f cc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the f ccn fields
in the FSR, as selected by the instruction. The f ccn fields are read and written by
STXFSR and LDXFSR instructions, respectively. The f ccO field can also be read and
written by STFSR and LDFSR, respectively. FBf cc and FBPf cc instructions base
their control transfers on these fields. The MOVcc and FMOVcc instructions can
conditionally copy a register, based on the state of these fields.

In TABLE 5-6, f,5; and f,¢, correspond to the single, double, or quad values in the
floating-point registers specified by a floating-point compare instruction’s r s1 and
r s2 fields. The question mark (?) indicates an unordered relation, which is t r ue if
either f.5 or fi, is a signalling NaN or a quiet NaN. If FCMP or FCVPE generates an
fpo_exception_ieee_754 exception, then f ccn is unchanged.

TABLE 5-6  Floating-Point Condition Codes (f ccn) Fields of FSR

Content of fcen Indicated Relation

0 frs1 =frs2

1 frsl < frsZ

2 frsl > fr52

3 frs1 ? frsp (Uunordered)
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FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 5-7 shows the encodings.

TABLE 5-7 Rounding Direction (RD) Field of FSR

RD Round Toward

0 Nearest (even, if tie)
1 0

2 + 00

3 - o0

If GSR. | M= 1, then the value of FSR. RD is ignored and floating-point results are
instead rounded according to GSR. | RND.

FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point
exceptions that can be indicated in the current_exception field (cexc). See FIGURE 5-9
on page 65. If a floating-point operate instruction generates one or more exceptions
and the TEMbit corresponding to any of the exceptions is 1, then this condition
causes an fp_exception_ieee_754 trap. A TEMbit value of 0 prevents the
corresponding exception type from generating a trap.

FSR_nonstandard_fp (NS)

IMPL. DEP. #18: When set to 1, bit 22 causes a SPARC V9 FPU to produce
implementation-defined results that may not correspond to IEEE Std 754-1985.

SPARC V9 implementations are permitted but not encouraged to deviate from IEEE
Std. 754-1985 requirements when the nonstandard mode (NS) bit of the FSR is 1.

For instance, to obtain higher performance, implementations may convert a
subnormal floating-point operand or result to zero when FSR. NS is set. For
implementations in which no nonstandard floating-point mode exists, the NS bit of
the FSR should always read as 0, and writes to it should be ignored.

SPARC JPS1 processors implement FSR. NS; the effects of FSR. NS =1 are as follows:

= If a floating-point source operand is subnormal, it is replaced by a floating-point
zero value of the same sign (instead of causing an exception).

= If a floating-point operation generates a subnormal value, the value is replaced
with a floating-point zero value of the same sign. A JPS1 implementation may
implement this by any of the following methods (impl. dep. #18):
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« Always perform the replacement in hardware, never causing an exception.

« Always perform the replacement in hardware, but also cause an
fp_exception__ieee754 “inexact,” “underflow,” or “division-by-zero”
exception (which may be masked with FSR. TEM).

« Sometimes perform the replacement in hardware, and sometimes cause an
fo_exception_other exception with FSR. f t t = 2 (unfinished_FPop) so that trap
handler software can perform the replacement.

If GSR. | M= 1, then the value of FSR. NS is ignored and the processor operates as if
FSR. NS =0.

FSR_version (ver)

IMPL. DEP. #19: Bits 19 through 17 identify one or more particular implementations
of the FPU architecture.

For each SPARC V9 IU implementation (as identified by its VER. i npl field), there
may be one or more FPU implementations, or none. This field identifies the
particular FPU implementation present. The value in FSR. ver for each
implementation is strictly implementation dependent. Consult the appropriate
document for each implementation for its setting of FSR. ver.

Version number 7 is reserved to indicate that no hardware floating-point controller is
present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR
instructions.

FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point
exception trap occurs, ftt (bits 16 through 14 of the FSR) identifies the cause of the
exception, the “floating-point trap type.” After a floating-point exception occurs, the
ftt field encodes the type of the floating-point exception until an STFSR or an FPop
is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and
LDXFSR instructions do not affect ft t .

Privileged software that handles floating-point traps must execute an STFSR (or
STXFSR) to determine the floating-point trap type. STFSR and STXFSR shall zero
ftt after the store completes without error. If the store generates an error and does
not complete, ftt remains unchanged.
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Programming Note — Neither LDFSR nor LDXFSR can be used for this purpose,

since both leave f tt unchanged. However, executing a nontrapping FPop such as
“f novs % 0, % 0” prior to returning to nonprivileged mode will zero ftt. The

ftt remains valid until the next FPop instruction completes execution.

The ftt field encodes the floating-point trap type according to TABLE 5-8. Note: The
value “7” is reserved for future expansion.

TABLE 5-8  Floating-Point Trap Type (f t t ) Field of FSR)

ftt Trap Type Trap Vector

0 None No trap taken

1 IEEE_754_exception fo_exception_ieee_754

2 unfinished_FPop fo_exception_other

3 unimplemented_FPop fo_exception_other

4 sequence_error Does not occur in SPARC JPS1
5 hardware_error Does not occur in SPARC JPS1
6 invalid_fp_register Does not occur in SPARC JPS1
7 Reserved

IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user
software:

1. The value of aexc is unchanged.

2. The value of cexc is unchanged, except that for an /[EEE_754_exception, a bit
corresponding to the trapping exception is set. The unfinished_FPop,
unimplemented_FPop, sequence_error, and invalid_fp_register floating-point trap
types do not affect cexc.

3. The source and destination registers are unchanged.
4. The value of f ccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an IEEE_754_exception or after recovery from an
unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap
handler reflects the exception causing the trap.
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In the cases of fp_exception_other exceptions with unfinished_FPop or
unimplemented_FPop trap types that do not subsequently generate IEEE traps, the
recovery software should define cexc, aexc, and the destination registers or f ccs,
as appropriate.

ftt = IEEE_754_exception. The IEEE_754_exception floating-point trap type
indicates the occurrence of a floating-point exception conforming to IEEE Std 754-
1985. The exception type is encoded in the cexc field.

The aexc and f ccs fields and the destination f register are not affected by an
IEEE_754_exception trap.

ftt = unfinished_FPop. The unfinished_FPop floating-point trap type indicates
that the processor was unable to generate correct results or that exceptions as
defined by IEEE Std 754-1985 have occurred. Where exceptions have occurred, the
cexc field is unchanged.

IMPL. DEP. #248: The conditions under which an fpo_exception_other exception with
floating-point trap type of unfinished_FPop can occur are implementation
dependent. The standard (recommended) set of conditions is listed in TABLE 5-9. An
implementation may cause fp_exception_other with unfinished_FPop under a
different (but specified) set of conditions.

TABLE 5-9  Standard Conditions Under Which unfinished_FPop Trap Type Can Occur (impl. dep. #248)
Operation Condition causing unfinished_FPop
Double-to-Single-Precision = The condition -25 < eres <1 is true, where eres is the biased result exponent
Conversion (FdTGOs) before rounding.
The kernel trap routine implements the conversion and store the result in the
destination register, correctly setting the FSR. cexc bits.
Single-to-Double Precision = The operand is denormal.
Conversion (FsTQd) The kernel trap routine implements the conversion and stores the result in the

Add or Subtract

destination register, correctly setting the FSR. cexc bits.

= Both operands are denormal,

= One operand is denormal and the other operand is normal (not zero, infinity,
gNaN, sNaN),

= The condition eres <1 is true, where eres is the biased result exponent before
rounding.

The kernel trap routine implements the addition or subtraction and stores the
result in the destination register, correctly setting the FSR. cexc bits.
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TABLE 5-9  Standard Conditions Under Which unfinished_FPop Trap Type Can Occur (impl. dep. #248)

Operation

Condition causing unfinished_FPop

Multiply (except FsMJLd)

Multiply (FsMJLd)

Divide

Square Root

= For single precision, one of the operands is denormal, the other operand is
normal and the condition -25 < (esrcl + esrc2 - 126) is true, where esrcl and
esrc2 are biased exponents of the operands without normalization.

= For double precision, one of the operands is denormal, the other operand is
normal and the condition -54 < (esrcl + esrc2 - 1022) is true, where esrcl and
esrc2 are biased exponents of the operands without normalization.

= For single precision, both operands are normal, FSR. UFM= 0, and the
condition
-25 <eres <1 is true, where eres is the biased result exponent before rounding.

= For double precision, both operands are normal, FSR. UFM= 0, and the
condition -54 < eres <1 is true, where eres is the biased result exponent before
rounding.

The kernel trap routine implements the multiplication and stores the result in

the destination register, correctly setting the FSR. cexc bits.

= Both operands are denormal.

= One operand is denormal and the other operand is normal.

The kernel trap routine implements the multiplication, stores the result in the
destination register, and correctly sets the FSR. cexc bits.

= Both operands are denormal.

= For single precision, the numerator is normal, the denominator is denormal
and the condition (esrcl - esrc2 - 1) <128 is true, where esrcl and esrc2 are
biased exponents of the operands without normalization.

= For double precision, the numerator is normal, the denominator is denormal
and the condition (esrcl - esrc2 - 1) <1024 is true, where esrcl and esrc2 are
biased exponents of the operands without normalization.

= For single precision, the numerator is denormal, the denominator is normal
and the condition -25 < (esrcl - esrc2 + 126) is true, where esrcl and esrc2 are
biased exponents of the operands without normalization.

= For double precision, the numerator is denormal, the denominator is normal
and the condition -54 < (esrcl - esrc2 + 1022) is true, where esrcl and esrc2 are
biased exponents of the operands without normalization.

= For single precision, both operands are normal, FSR. UFM= 0, and the
condition
-25 <eres <1 is true, where eres is the biased result exponent before rounding.

= For double precision, both operands are normal, FSR. UFM= 0, and the
condition -54 < eres <1 is true, where eres is the biased result exponent before
rounding.

The kernel trap routine implements the division, stores the result in the

destination register, and correctly sets the FSR. cexc bits.

= The source operand is a positive denormalized number.

The kernel trap routine implements the square root result, stores the result in
the destination register, and correctly set the FSR. cexc bits.
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ftt = unimplemented_FPop. The unimplemented_FPop floating-point trap type
indicates that the processor decoded an FPop that it does not implement. In this
case, the cexc field is unchanged.

All quad FPop variations in a SPARC JPS1 processor set
ftt = unimplemented_FPop.

ftt = sequence_error. The sequence_error floating-point trap type indicates the
occurrence of one of three abnormal error conditions in the FPU. The
sequence_error floating-point trap type can never occur in a SPARC JPS1 processor.

IMPL. DEP. #25: On implementations without a floating-point queue, an attempt to
read the fg with an RDPR instruction shall cause either an illegal_instruction
exception or an fp_exception_other exception with FSR. ftt set to 4
(sequence_error).

ftt = hardware_error. The hardware_error floating-point trap type indicates that
the FPU detected a catastrophic internal error, such as an illegal state or a parity
error on an f register access. The hardware_error floating-point trap type can never
occur in SPARC JPS1.

ftt = invalid_fp_register. This trap never occurs in a SPARC JPS1 processor since
JPS1 processors do not implement quad floating-point FPops in hardware.

Implementation Note — SPARC JPS1 processors do not implement quad FPops in
hardware, so a quad FPop generates an unimplemented_FPop trap regardless of the
specified f registers. ft t =invalid_fp_register never occurs in SPARC JPS1
processors.

This trap indicates that one or more operands of an FPop are misaligned; that is, a
quad-precision register number in not 0 mod 4. An implementation shall generate an
fp_exception_other trap with FSR. f tt = invalid_fp_register in this case.

FSR_FQ_not_empty (gne)
Since SPARC JPS1 processors do not implement a floating-point queue, FSR. gne
always reads as zero and writes to FSR. gne are ignored.

FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions as long as floating-
point exception traps are disabled through the TEMfield. See FIGURE 5-10 on page 66.
After an FPop completes with ftt =0, the TEMand cexc fields are logically ANDed
together. If the result is nonzero, aexc is left unchanged and an
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fo_exception_ieee_754 trap is generated; otherwise, the new cexc field is ORed into
the aexc field and no trap is generated. Thus, while (and only while) traps are
masked, exceptions are accumulated in the aexc field.

This field is also written with the appropriate value when an LDFSR or LDXFSR
instruction is executed.

FSR_current_exception (cexc)
Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were

generated by the most recently executed FPop instruction. The absence of an
exception causes the corresponding bit to be cleared. See FIGURE 5-11 on page 66.

Note — If the FPop traps and software emulate or finish the instruction, the system
software in the trap handler is responsible for creating a correct FSR. cexc value
before returning to a nonprivileged program.

The cexc bits are set as described in , “Floating-Point Exception Fields,” by the
execution of an FPop that either does not cause a trap or causes an
fo_exception_ieee_754 exception with FSR. ftt = [EEE_754_exception. An IEEE
754 exception that traps shall cause exactly one bit in FSR. cexc to be set,
corresponding to the detected IEEE Std 754-1985 exception.

Floating-point operations which cause an overflow or underflow condition may also
cause an "inexact" condition. For overflow and underflow conditions, FSR. cexc
bits are set and trapping occurs as follows;

= If an IEEE 754 overflow condition occurs:

« if OFME0 and NXMEO, the cexc. of ¢ and cexc. nxc bits are both set to 1, the
other three bits of cexc are set to 0, and an fp_exception_ieee_754 trap does
not occur.

« if OFM=0 and NXME1,the cexc. nxc bit is set to 1,the other four bits of cexc
are set to 0, and an fp_exception_ieee_754 trap does occur.

« if OFMEL, the cexc. of ¢ bit is set to 1, the other four bits of cexc are set to 0,
and an fp_exception_ieee_754 trap does occur,

= If an IEEE 754 underflow condition occurs:

« if UFM=0 and NXM=0, the cexc. uf ¢ and cexc. nxc bits are both set to 1, the
other three bits of cexc are set to 0, and an fp_exception_ieee_754 trap does
not occur.

« if UFM=0 and NXME1, the cexc. nxc bit is set to 1, the other four bits of cexc
are set to 0, and an fp_exception_ieee_754 trap does occur.

« if UFMEL, the cexc. uf c bit is set to 1, the other four bits of cexc are set to 0,
and an fp_exception_ieee_754 trap does occur.
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The above behavior is summarized in Table 5-10 (where “x” indicates “don’t-care™):

TABLE 5-10 Setting of FSR.cexc bits

Exception(s) Current
Detected Trap Enable Exception
in f.p.. ] Mask bits fo_exception_ bits (in
operation (in FSR.TEM) jeee. 754 FSR.cexc)
of uf nx OFM UFM NXM | Trap Occurs? ofc ufc nxc | Notes
- - - X X X no 0 0 0
- -0 X X 0 no 0 0 1
- 0O 0O X 0 0 no 0 1 1 1)
o - 0O 0 X 0 no 1 0 1 )
- - X X 1 yes 0 0 1
- b0 O X 0 1 yes 0 0 1
- o - X 1 X yes 0 1 0
- 0O O X 1 X yes 0 0 0
o - O 1 X X yes 1 0 0 2)
o - O 0 X 1 yes 0 0 1 )
Notes:

(1) When the underflow trap is disabled (UFM=0), underflow is
always accompanied by inexact.

(2) Overflow is always accompanied by inexact.

If the execution of an FPop causes a trap other than fp_exception_ieee_754,
FSR. cexc is left unchanged.

Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per IEEE Std 754-
1985):

NVM | OFM | UFM | DZM | NXM

27 26 25 24 23
FIGURE 5-9 Trap Enable Mask (TEM Fields of FSR
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nva | ofa | ufa | dza | nxa

9 8 7 6 5

FIGURE 5-10 Accrued Exception Bits (aexc) Fields of FSR

nvc | ofc | ufc | dzc | nxc

4 3 2 1 0

FIGURE 5-11 Current Exception Bits (cexc) Fields of FSR

FSR_invalid (nvc, nva). An operand is improper for the operation to be
performed. For example, 0.0 + 0.0 and « — 0 are invalid; 1 = invalid operand(s),
0 = valid operand(s).

FSR_overflow (ofc, ofa). The result, rounded as if the exponent range were
unbounded, would be larger in magnitude than the destination format’s largest
finite number; 1 = overflow, 0 = no overflow.

FSR_underflow (ufc, ufa). The rounded result is inexact and would be smaller in
magnitude than the smallest normalized number in the indicated format;
1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is 0. Otherwise:

If UFM=0: Underflow occurs if a nonzero result is tiny and a loss of accuracy
occurs.

If UFM= 1: Underflow occurs if a nonzero result is tiny.

SPARC V9 allows tininess to be detected either before or after rounding. In all cases
and regardless of the setting of UFM, a SPARC JPS1 processor detects tininess before
rounding (impl. dep. #55).

FSR_division-by-zero (dzc, dza). X + 0.0, where X is subnormal or normalized;
1 =division by zero, 0 = no division by zero.

Note: 0.0 = 0.0 does not set the dzc or dza bits.

FSR_inexact (nxc, nxa). The rounded result of an operation differs from the
infinitely precise unrounded result; 1 = inexact result, 0 = exact result.
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Programming Note — Software must be capable of simulating the operation of the
FPU in order to properly handle the unimplemented_FPop, unfinished_FPop, and
IEEE_754_exception floating-point trap types. Thus, a user application program
always sees an FSR that is fully compliant with IEEE Std 754-1985.

FSR Conformance

IMPL. DEP. #22: An implementation may choose to implement the TEM cexc, and
aexc fields in hardware in either of two ways (both of which comply with IEEE Std
754-1985):

1. Implement all three fields conformant to IEEE Std 754-1985.

2. Implement the inexact (NXM nxa, and nxc) bits of these fields conformant to IEEE
Std 754-1985, plus implement each of the remaining bits in the three fields (for
invalid, overflow, under, and division-by-zero conditions) either:

a. Conformant to |IEEE Std 754-1985, or

b. as a state bit that may be set by software that calculates the IEEE Std 754-1985
value of the bit. For any bit implemented as a state bit:

i. The IEEE exception corresponding to the state bit must always cause an
exception (specifically, an unfinished_FPop exception). During exception
processing in the trap handler, the bit in the state field can be written to the
appropriate value by an LDFSR or LDXFSR instruction.

ii. The state bit must be implemented in such a way that if it is written to a
particular value by an LDFSR or LDXFSR instruction, it will be read back as
the same value by a subsequent STFSR or STXFSR.

Programming Note — Privileged software (or a combination of privileged and
nonprivileged software) must be capable of simulating the operation of the FPU in
order to handle the unimplemented_FPop, unfinished_FPop, and |IEEE_754_exception
floating-point trap types properly. Thus, a user application program always sees an
FSR that is fully compliant with IEEE Std 754-1985.

Address Space Identifier (ASI) Register

The Address Space Identifier Register (FIGURE 5-12) specifies the address space
identifier to be used for load and store alternate instructions that use the “rsi1 +
si mil3” addressing form. Nonprivileged (user-mode) software may write any
value into the ASI register; however, values with bit 7 = 0 indicate restricted ASls.
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TICK

68

When a nonprivileged instruction makes an access that uses an ASI with bit 7=0, a
privileged_action exception is generated. See Address Space Identifiers (ASIs) on page
112 for details.

ASI

7 0

FIGURE 5-12 Address Space ldentifier Register

Tick (TICK) Register

FIGURE 5-13 illustrates the TICK register.

NPT

counter

63 62

FIGURE 5-13 Tick Register

The count er field of the TI CK register is a 63-bit counter that counts processor
clock cycles. Bit 63 of the TI CK register is the nonprivileged trap (NPT) bit, which
controls access to the Tl CK register by nonprivileged software. Privileged software
can always read the Tl CK register with either the RDPR or RDTI CK instruction.
Privileged software can always write the Tl CK register with the WRPR instruction;
there is no WRTI CK instruction.

Nonprivileged software can read the Tl CK register by using the RDTI CK instruction
when TI CK. NPT = 0. When Tl CK. NPT = 1, an attempt by nonprivileged software to
read the Tl CK register causes a privileged_action exception. Nonprivileged software
cannot write the TI CK register.

TI CK. NPT is set to 1 by a power-on reset trap. The value of TI CK. count er is reset
after a power-on reset trap.

After the Tl CK register is written, reading the Tl CK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of the counter. The number of counts between a write and a
subsequent read does not accurately reflect the number of processor cycles between
the write and the read. Software may rely only on read-to-read counts of the TI CK
register for accurate timing, not on write-to-read counts.

IMPL. DEP. #105: The difference between the values read from the TI CK register on
two reads should reflect the number of processor cycles executed between the reads.
If an accurate count cannot always be returned, any inaccuracy should be small,
bounded, and documented. An implementation may implement fewer than 63 bits
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in Tl CK. count er ; however, the counter as implemented must be able to count for
at least 10 years without overflowing. Any upper bits not implemented must read as
Zero.

Programming Note — TI CK. NPT may be used by a secure operating system to
control access by user software to high-accuracy timing information. The operation
of the timer might be emulated by the trap handler, which could read

TI CK. count er and “fuzz” the value to lower accuracy.

5.2

5.2.1

PSTATE| IG |[MG | CLE| TLE MM RED | PEF | AM |PRIV| IE AG

Privileged Registers

The registers described in this subsection are visible only to software running in
privileged mode; that is, when PSTATE. PRI V = 1. Privileged registers are written
with the WRPR instruction and read with the RDPR instruction.

Processor State (PSTATE) Register

The PSTATE register (FIGURE 5-14) holds the current state of the processor. There is
only one instance of the PSTATE register. See Chapter 7, Traps, for more details.

1 10 9 8 7 6 5 4 3 2 1 0

FIGURE 5-14 PSTATE Fields

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is
visible to the next instruction executed. The privileged RDPR and WRPR instructions
are used to read and write PSTATE, respectively.

Subsections on pages 69 through 74 describe the fields contained in the PSTATE
register.

Global Register Sets

The SPARC JPS1 processor provides Interrupt and MMU Global Register sets in
addition to the two global register sets specified by SPARC V9. The currently active
set of global registers is specified by the AG | G and MG bits according to TABLE 5-11.
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Note — The | Gand MGfields are saved on the trap stack along with the 10 bits of the
PSTATE register that are defined in SPARC V9.

TABLE 5-11 PSTATE Global Register Selection Encoding

AG IG MG  Globals selected for use Automatically Set by t
0 0 0 Normal Global registers
0 0 1 MMU Global registers fast_instruction_access_MMU_miss,

fast_data_access__MMU_miss,
fast_data_access_protection,
data_access_exception,
instruction_access_exception

Interrupt Global registers interrupt_vector_trap

Reserved'

0
1
0 Alternate Global registers any trap other than those listed above
1 Reserved'

0

Reserved'

, B B, R, O O
P, P, O O Kk, k.

1 Reserved'

T A VRPR to PSTATE using a reserved combination of AG, | G and MG bit values
causes an illegal_instruction exception.

* Since PSTATE is preserved in the TSTATE register when a trap occurs, the
previous value of these bits are normally restored upon return from a trap
(via DONE or RETRY instruction)

When an interrupt_vector_trap (trap type = 604¢) is taken, the SPARC JPS1 processor
selects the Interrupt Global Registers by setting | Gand clearing AGand M&G When a
fast_instruction_access_MMU_miss, fast_data_access__MMU_miss,
fast_data_access_protection, data_access_exception, or
instruction_access_exception trap is taken, the processor selects the MMU Global
Registers by setting MG and clearing AGand | G. When any other type of trap occurs,
the processor selects the Alternate Global Registers by setting AGand clearing | G
and MG

Executing a DONE or RETRY instruction restores the previous {AG | G, MG} state before
the trap is taken. Programmers can also set or clear these three bits by writing to the
PSTATE register with a WRPR instruction.

Note — Attempting to “wr pr %pst at e” to a reserved encoding for | G MG, and AG
(more than one bit set) results in an illegal_instruction exception. However, the
processor does not check for a reserved encoding in TSTATE. Hence, executing a
DONE or RETRY may result in undefined behavior in this case.
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PSTATE interrupt_globals (IG). When PSTATE. | G= 1, the processor interprets
integer register numbers in the range 0-7 as referring to the interrupt global register
set. See Note on page 70. When an interrupt_vector trap (trap type = 60,¢) is taken,
SPARC V9 sets | Gand clears AGand MG

PSTATE_MMU_globals (MG). When PSTATE. MG =1, the processor interprets
integer register numbers in the range 0-7 as referring to the MMU global register
set. This bit must not be set if either AGor | Gis also set. See Note on page 70.

The SPARC JPS1 processor sets MGand clears | Gand AG when any of the following
traps are taken:

= fast_instruction_access_MMU_miss trap (trap type = 64,6—6715)
= fast_data_access_MMU_miss trap (trap type = 68,¢—6B¢)

= fast_data_access_protection trap (trap type = 6C15—6F1g)

= data_access_exception trap (trap type = 304¢)

= instruction_access_exception trap (trap type = 084¢)

PSTATE_current_little_endian (CLE)

When PSTATE. CLE =1, all data reads and writes using an implicit ASI are
performed in little-endian byte order with an ASI of ASI _PRI MARY_LI TTLE. When
PSTATE. CLE =0, all data reads and writes using an implicit ASI are performed in
big-endian byte order with an ASI of ASI _PRI MARY. Instruction accesses are always
big-endian.

PSTATE trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and
the PSTATE. TLE bit is copied into PSTATE. CLE in the new PSTATE register. This
behavior allows system software to have a different implicit byte ordering than the
current process. Thus, if PSTATE. TLE is set to 1, data accesses using an implicit ASI
in the trap handler are little-endian. The original state of PSTATE. CLE is restored
when the original PSTATE register is restored from the trap stack.

PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. The defined
values in SPARC V9 are shown in TABLE 5-12.

TABLE 5-12 MM Encodings

MM Value SPARC V9

00 Total Store Order (TSO)
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TABLE 5-12 MM Encodings

MM Value SPARC V9

01 Partial Store Order (PSO)

10 Relaxed Memory Order (RMO)
11 Reserved

The current memory model is determined by the value of PSTATE. MM Software
should always refrain from using the combination 11 because it is reserved for future
SPARC V9 extensions.

= Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores
are ordered with respect to earlier loads and stores. Thus, loads can bypass earlier
stores but cannot bypass earlier loads; stores cannot bypass earlier loads and
stores. Programs that execute correctly in either PSO or RMO will execute
correctly in the TSO model.

= Partial Store Order (PSO) — Loads and stores ordered with respect to earlier
loads; atomic load-stores are ordered with respect to loads. Explicit MVEMBAR
instructions are required to order store and atomic load-store instructions with
respect to each other.

= Relaxed Memory Order (RMQO) — Hardware can schedule memory accesses in
any order, as long as the program computes the correct result. In other words,
RMO places no ordering constraints on memory references beyond those required
for processor self-consistency. When ordering is required, it must be provided
explicitly in the programs by MEMBAR instructions.

IMPL. DEP. #113: Whether the PSO or RMO models are supported by SPARC V9
systems is implementation dependent.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode
designation into PSTATE. MMis implementation dependent.

PSTATE_RED_state (RED)

PSTATE. RED (Reset, Error, and Debug state) is set whenever the SPARC JPS1
processor takes a RED state disrupting or nondisrupting trap. See RED_state on page
133. The IU sets PSTATE. RED when any hardware reset occurs. It also sets
PSTATE. RED when a trap is taken while TL = (MAXTL - 1). Software can exit
RED_st at e by one of two methods:

1. Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE
and clears PSTATE. RED if it was 0 in the stacked copy.

2. Write a 0 to PSTATE. RED with a WRPR instruction.
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Programming Note — Changing PSTATE. RED may cause a change in address
mapping on some systems. It is recommended that writes of PSTATE. RED be placed
in the delay slot of a JMPL; the target of this JMPL should be in the new address
mapping. The JMPL sets the nPC, which becomes the PC for the instruction that
follows the W\RPR' in its delay slot. The effect of the WRPR instruction is immediate.

PSTATE_enable_floating-point (PEF)

When set to 1, the PEF bit enables the floating-point unit, which allows privileged
software to manage the FPU. For the FPU to be usable, both PSTATE. PEF and
FPRS. FEF must be set. Otherwise, any floating-point instruction (including the
future JPS-specific multiply-add and multiply-subtract instructions) that tries to
reference the FPU causes an fp_disabled trap.

PSTATE_address_mask (AM)

When PSTATE. AM= 1, the high-order 32 bits of all instruction and data addresses
are set to 0 in the following cases:

= Before data addresses are sent out of the processor
= For instruction accesses to caches (both internal and external)

= Before being stored to a general-purpose register for CALL, JMPL, and RDPC
instructions (impl. dep. #125; see below)

= Before being stored to TPC[n] and TNPC[n] when a trap occurs (impl. dep. #125;
see specific SPARC JPS1 Implementation Supplements)

When an ASI _PHYS_* ASI is used in a load or store instruction, the setting of
PSTATE. AMis ignored and the full 64-bit address is used. (See ASI 144,
ASI _PHYS _USE_EC, for an example.)

IMPL. DEP. #125: When PSTATE. AM= 1, the value of the high-order 32-bits of the PC
transmitted to the specified destination register(s) by CALL, JMPL, RDPC, and saved
during a trap is implementation dependent.

IMPL. DEP. #241: When PSTATE. AM=1 and an exception occurs, the value written
to the more-significant 32 bits of the Data Synchronous Fault Address Register
(DSFAR) is implementation dependent.

The PSTATE. AMbit must be set when 32-bit software is executed.

PSTATE_privileged_mode (PRIV)

When PSTATE. PRI V =1, the processor is in privileged mode.
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PSTATE_interrupt_enable (IE)

When PSTATE. | E = 1, the processor can accept interrupts.

PSTATE_alternate_globals (AG)

When PSTATE. AG= 1, the processor interprets integer register numbers in the range
0-7 as referring to the alternate global register set. See Note on page 70. When | G,
MG, and AGare all 0, the processor interprets integer register numbers in the range 0-
7 as referring to the normal global register set.

PSTATE. AGis set automatically when any trap other than the following occurs:

= fast_instruction_access_MMU_miss (tt = 64,6-674¢)
= fast_data_access_MMU_miss (tt = 68,6—6B1g)

= fast_data_access_protection (tt =6C5—6F;¢)

= data_access_exception (tt = 304¢)

= instruction_access_exception (tt = 0845)

= interrupt_vector (tt = 604g)

Setting this bit is mutually exclusive with setting the PSTATE. MGor PSTATE. | Gbit;
at most, one of them may be set at any given time. A SPARC JPS1 processor resets
| Gand MG any time it automatically sets AG.

Trap Level Register (TL)

The trap level register (FIGURE 5-15) specifies the current trap level. TL =0 is the
normal (nontrap) level of operation. TL >0 implies that one or more traps are being
processed. The maximum valid value that the TL register may contain is MAXTL,
which is always equal to the number of supported trap levels beyond level 0; MAXTL
must be = 4. See Chapter 7, Traps, for more details about the TL register.

SPARC JPS1 supports five trap levels beyond level 0; that is, MAXTL =5 in a SPARC
JPS1 processor (impl. dep. #101).

After a power-on rest (POR), TL is set to MAXTL (5 in SPARC JPS1).

TL TL

2 0

FIGURE 5-15 Trap Level Register
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5.2.4

Programming Note — Writing the TL register with a value greater than MAXTL (5
for SPARC JPS1) causes the value MAXTL to be written.

Writing the TL register with a wrpr % | instruction does not alter any other machine
state; that is, it is not equivalent to taking or returning from a trap.

Processor Interrupt Level (PIL) Register

The processor interrupt level (PI L; see FIGURE 5-16) is the interrupt level above
which the processor will accept an interrupt. Interrupt priorities are mapped so that
interrupt level 2 has greater priority than interrupt level 1, and so on. See Section 7.1
on page 132 for a list of exception and interrupt priorities.

PIL PIL
3 0

FIGURE 5-16 Processor Interrupt Level Register

Compatibility Note — On SPARC V8 processors, the level 15 interrupt is considered
to be nonmaskable, so it has different semantics from other interrupt levels. SPARC
V9 processors do not treat level 15 interrupts differently from other interrupt levels.
See Externally Initiated Reset (XIR) Traps on page 158.

Trap Program Counter (TPC) Registers

The TPC register (FIGURE 5-17) contains the program counter (PC) from the previous
trap level. There are MAXTL instances of the TPC (five in SPARC JPS1) , but only one
is accessible at any time. The current value in the TL register determines which
instance of the TPC register is accessible. An attempt to read or write the TPC
register when TL = 0 causes an illegal_instruction exception.
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PC from trap while TL =0 00
PC from trap while TL =1 00
PC from trap while TL =2 00
PC from trap while TL = MAXTL-1 00
63 210

FIGURE 5-17 Trap Program Counter Register

After a power-on reset the contents of TPC[1] through TPC[MAXTL] are undefined.
During normal operation, the value of TPC[n], when n is greater than the current
trap level (n > TL), is undefined.

Trap Next Program Counter (TNPC) Registers

The TNPC register, shown in FIGURE 5-18, is the next program counter (nPC) from the
previous trap level. There are MAXTL instances (five in SPARC JPS1) of the TNPC, but
only one is accessible at any time. The current value in the TL register determines
which instance of the TNPC register is accessible. An attempt to read or write the
TNPC register when TL = 0 causes an illegal_instruction exception.

TNPC4 nPC from trap while TL =0 00
TNPC, nPC from trap while TL =1 00
TNPC; nPC from trap while TL =2 00
TNPCyaxTL nPC from trap while TL = MAXTL-1 00
63 210

FIGURE 5-18 Trap Next Program Counter Register
After a power-on reset, the contents of TNPC[1] through TNPC[MAXTL] are undefined.

During normal operation, the value of TNPC[n], when n is greater than the current
trap level (n > TL), is undefined.
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5.2.6 Trap State (TSTATE) Registers

The Trap State (TSTATE) Register, shown in FIGURE 5-19, contains the state from the
previous trap level, comprising the contents of the CCR, ASI , CWP, and PSTATE
registers from the previous trap level. There are MAXTL instances (five in SPARC
JPS1) of the TSTATE register, but only one is accessible at a time. The current value
in the TL register determines which instance of TSTATE is accessible. An attempt to
read or write the TSTATE register when TL = 0 causes an illegal_instruction

exception.
TSTATE4|ccR from TL =0 ASlfromTL =0 — PSTATE from TL =0 — |CWPfromTL =0
TSTATE,|ceR from TL =1 ASlfrom TL =1 — PSTATE from TL =1 —  |CcWPfromTL =1
TSTATE3|cCR from TL =2 ASlfrom TL =2 — PSTATE from TL =2 —  |CWPfromTL =2
TSTATEpMAXTL| COR from TL = MAXTL-1 ASIfrom TL = MAXTL-1| — | PSTATE from TL =MAXTL-1| __ |CWP from TL = MAXTL-1
39 32 31 24 23 20 19 87 5 4 0

FIGURE 5-19 Trap State Register

After a power-on reset the contents of TSTATE[1] through TSTATE[MAXTL] are
undefined. During normal operation the value of TSTATE[n], when n is greater than
the current trap level (n > TL), is undefined.

Because of the addition of the | Gand MG bits in the PSTATE register in SPARC JPS1,
a 12-bit PSTATE value is stored in TSTATE instead of the 10-bit value specified in
SPARC V9.

5.2.7 Trap Type (TT) Registers

The TT register (FIGURE 5-20) normally contains the trap type of the trap that caused
entry to the current trap level. On a reset trap, the TT field contains the trap type of
the reset (see TABLE 7-1 on page 134). There are MAXTL (5 in SPARC JPS1) instances of
the TT register, but only one is accessible at a time. The current value in the TL
register determines which instance of the TT register is accessible. An attempt to
read or write the TT register when TL = 0 causes an illegal_instruction exception.
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TT, Trap type from trap while TL = 0

TT, Trap type from trap while TL = 1

TT;3 Trap type from trap while TL = 2

TTmaxTL |Trap type from trap while TL = MAXTL-1
8 0

FIGURE 5-20 Trap Type Register

After a power-on reset the contents of TT[1] through TT[MAXTL-1] are undefined and
TT[ MAXTL] = 00144. During normal operation the value of TT[n], when n is greater
than the current trap level (n > TL) is undefined.

Trap Base Address (TBA) Register

The TBA register (FIGURE 5-21) provides the upper 49 bits of the address used to select
the trap vector for a trap. The lower 15 bits of the TBA always read as zero, and
writes to them are ignored.

Trap Base Address 000 0000 0000 0000
63 15 14 0
FIGURE 5-21 Trap Base Address Register
The full address for a trap vector is specified by the TBA, TL, TT[ TL], and five
zeroes, as shown in FIGURE 5-22.
TBA<63:15> TL>0 TTr. |00000
63 15 14 13 5 4 0
FIGURE 5-22 Trap Vector Address Format
Note — The “TL>0" bitis 0 if TL = 0 when the trap was taken, and 1 if TL >0 when
the trap was taken. This implies that there are two trap tables: one for traps from
TL =0 and one for traps from TL > 0. See Chapter 7, Traps, for more details on trap
vectors.
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Version (VER) Register

The version register, shown in FIGURE 5-23, specifies the fixed parameters pertaining
to a particular processor implementation and mask set. The VER register is read-only,
readable by the RDPR instruction.

manuf impl mask — maxtl — |maxwin

63

48 47 32 3 24 23 16 15 87 5 4 0

FIGURE 5-23 Version Register

IMPL. DEP. #104: VER. manuf contains a 16-bit manufacturer code. This field is
optional and, if not present, shall read as 0. VER. manuf may indicate the original
supplier of a second-sourced chip. It is intended that the contents of VER. manuf
track the JEDEC semiconductor manufacturer code as closely as possible. If the
manufacturer does not have a JEDEC semiconductor manufacturer code, SPARC
International will assign a value for VER. manuf .

IMPL. DEP. #13: VER. i npl uniquely identifies an implementation or class of
software-compatible implementations of the architecture. Values FFF0,5—FFFF 4 are
reserved and are not available for assignment.

The value of VER. i npl is assigned as described in Implementation Dependency
Categories on page 399.

VER. mask specifies the current mask set revision and is chosen by the implementor.
It generally increases numerically with successive releases of the processor but does
not necessarily increase by one for consecutive releases.

VER. maxt | contains the maximum number of trap levels supported by an
implementation (impl. dep. #101), that is, MAXTL, the maximum value of the
contents of the TL register.

VER. maxwi n contains the maximum index number available for use as a valid CWP
value in an implementation; that is, VER. maxwi n contains the value NWW NDOWS - 1
(impl. dep. #2).

For a SPARC JPS1 processor, MAXTL =5 and MAXW N = NW NDOWS — 1 = 7; therefore,
VER. maxt| =5 and VER maxwi n =7.
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Register-Window State Registers

The state of the register windows is determined by a set of privileged registers. They
can be read/written by privileged software using the RDPR/WRPR instructions. In
addition, these registers are modified by instructions related to register windows
and are used to generate traps that allow supervisor software to spill, fill, and clean
register windows.

IMPL. DEP. #126: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERW N, and
CLEANW N contain values in the range 0 to NW NDOAS - 1. The effect of writing a
value greater than NW NDOWS - 1 to any of these registers is undefined. Although the
width of each of these five registers is nominally 5 bits, the width is implementation
dependent and shall be between [ log,(NW NDOWS) | and 5 bits, inclusive. If fewer
than 5 bits are implemented, the unimplemented upper bits shall read as 0 and
writes to them shall have no effect. All five registers should have the same width.

Because NW NDOWS = 8 in SPARC JPS1, only the lower 3 bits are implemented in the
CWP, CANSAVE, CANRESTORE, CLEANW N, and OTHERW N registers (impl. dep. #126).
When any of these registers are moved into a 64-bit integer register with an RDPR
instruction, the most significant 61 bits are set to 0. When any are written with a
WRPR instruction, the most significant 61 bits are ignored.

For details of how the window-management registers are used by hardware, see
Register Window Management Instructions on page 120.

Programming Note — CANSAVE, CANRESTORE, and OTHERW N must never be set
to 7. Setting any of these to 7 violates the register window state definition in section
6.4.1. Notice that hardware does not enforce this restriction; it is up to system
software to keep the window state consistent.

Current Window Pointer (CWP) Register

The CWP register, shown in FIGURE 5-24, is a counter that identifies the current
window into the set of integer registers. See Register Window Management Instructions
on page 120 and Chapter 7, Traps, for information on how hardware manipulates the
CWP register.

CwWP

4 3 2 0

FIGURE 5-24 Current Window Pointer Register
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Implementation Note — Since NW NDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CWP register are unused and always read as 0.

Compatibility Note — The following differences between SPARC V8 and SPARC V9
are visible only to privileged software; they are invisible to nonprivileged software.

1. In SPARC V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC VS8,
the opposite is true: SAVE decrements PSR. CWP and RESTORE increments PSR. CWP.

2. PSR. CWP in SPARC V8 is changed on each trap. In SPARC V9, CWP is affected only
by a trap caused by a window fill or spill exception.

Savable Windows (CANSAVE) Register

The CANSAVE register, shown in FIGURE 5-25, contains the number of register
windows following CWP that are not in use and are, hence, available to be allocated
by a SAVE instruction without generating a window spill exception.

CANSAVE

4 32 0

FIGURE 5-25 CANSAVE Register

Implementation Note — Since NW NDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CANSAVE register are unused and always read as 0.

Restorable Windows (CANRESTORE) Register

The CANRESTORE register, shown in FIGURE 5-26, contains the number of register
windows preceding CWP that are in use by the current program and can be restored
(by the RESTORE instruction) without generating a window fill exception.

CANRESTORE

4 32 0

FIGURE 5-26 CANRESTORE Register
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Implementation Note — Since NW NDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the CANRESTORE register are unused and always read as 0.

Other Windows (OTHERWIN) Register

The OTHERW N register, shown in FIGURE 5-27, contains the count of register
windows that will be spilled/filled by a separate set of trap vectors based on the
contents of WSTATE_OTHER. If OTHERW N is zero, register windows are spilled/filled
by use of trap vectors based on the contents of WGTATE_NORMAL.

The OTHERW N register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by use of separate spill/fill
vectors.

OTHERWIN

4 3 2 0

FIGURE 5-27 OTHERW N Register

Implementation Note — Since NW NDOWS = 8 on a SPARC JPS1 processor, bits 4:3 of
the OTHERW N register are unused and always read as 0.

Window State (WSTATE) Register

The WSTATE register, shown in FIGURE 5-28, specifies bits that are inserted into
TT1.<4:2> on traps caused by window spill and fill exceptions. These bits are used
to select one of eight different window spill and fill handlers. If OTHERW N = 0 at the
time a trap is taken because of a window spill or window fill exception, then the
WSTATE. NORMAL bits are inserted into TT[ TL] . Otherwise, the WSTATE. OTHER bits
are inserted into TT[ TL] . See Register Window Management Instructions on page 120,
for details of the semantics of OTHERW N.

WSTATE OTHER NORMAL

5 3 2 0

FIGURE 5-28 WSTATE Register
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5.2.11

Clean Windows (CLEANWIN) Register

The CLEANW N register, shown in FIGURE 5-29, contains the number of windows that
can be used by the SAVE instruction without causing a clean_window exception.

CLEANWIN

4 3 2 0

FIGURE 5-20 CLEANW N Register

Implementation Note — Since NW NDOWS = 8 on a SPARC JPS1 processor, bits 4.3 of
the CLEANW N register are unused and always read as 0.

The CLEANW N register counts the number of register windows that are “clean” with
respect to the current program; that is, register windows that contain only zeroes,
valid addresses, or valid data from that program. Registers in these windows need
not be cleaned before they can be used. The count includes the register windows that
can be restored (the value in the CANRESTORE register) and the register windows
following CWP that can be used without cleaning. When a clean window is requested
(by a SAVE instruction) and none is available, a clean_window exception occurs to
cause the next window to be cleaned.

Programming Note — CLEANW N must never be set to a value greater than 6.
Setting CLEANW N > 6 would violate the register window state definition. Note:
Hardware does not enforce this restriction; it is up to system software to keep the
window state consistent.

Ancillary State Registers (ASRS)

The SPARC V9 architecture provides for up to 25 ancillary state registers (ASRS),
numbered from 7 through 31. ASRs numbered 7-15 are reserved for future use by
the architecture and should not be referenced by software.

An ASR is read and written with the RDASR and WRASR instructions, respectively. An
RDASR or WRASR instruction is privileged if the accessed register is privileged.

The SPARC V9 architecture leaves ASRs numbered 16-31 available for
implementation-dependent uses. SPARC JPS1 processors implement ASRs 16
through 25; the ASRs are defined in the subsections that follow.

Release 1.0.4, 31 May 2002 C. Chapter 5 « Registers 83



Performance Control Register (PCR) (ASR 16)

The PCRis a read/write register used to control performance monitoring events
collected in counter pairs, via the Performance Instrumentation Counter (Pl C)
register (ASR 17) (see page 85). Unused PCR bits read as zero; they should be written
only with zeroes or with values previously read from them.

When the processor is operating in privileged mode (PSTATE. PRI V = 1), PCR may
be freely read and written by software.

IMPL. DEP. #250: When the processor is operating in nonprivileged mode

(PSTATE. PRI V = 0), the accessibility of PCRas a unit and of individual fields of PCR
is implementation dependent. Also, which exception is raised upon detection of an
access privilege violation is implementation dependent.

See Appendix Q, Performance Instrumentation, in each Implementation Supplement
for a detailed discussion of the PCR and PI C register usage and event count
definitions.

The Performance Control Register is illustrated in FIGURE 5-30 and described in
TABLE 5-13.

— impl. dep. — impl. dep. | SU |-| SL 'C;T;g'- UT| ST| PRIV
63 48 47 32 31 27 26 17 16 1110 9 4 3 2 1 0
FIGURE 5-30 Performance Control Register (PCR) (ASR 16)
IMPL. DEP. #207: The values and semantics of bits 47:32, 26:17, and bit 3 of the PCR
are implementation dependent.
TABLE 5-13 PCR Bit Description
Bit Field Description
47:32 — These bits are implementation dependent (impl. dep #207).
26:17 — These bits are implementation dependent (impl. dep. #207).
16:11 SuU Six-bit field selecting 1 of 64 event counts in the upper half (bits <63:32>) of the PIC.
9:4 SL Six-bit field selecting 1 of 64 event counts in the lower half (bits <31:0>) of the PIC.
3 — This bit is implementation dependent (impl. dep. #207).
2 ur User Trace Enable. If set to 1, events in nonprivileged (user) mode are counted.
1 ST System Trace Enable. If set to 1, events in privileged (system) mode are counted.
Notes:
If both PCR. UT and PCR. ST are set to 1, all selected events are counted.
If both PCR. UT and PCR. ST are zero, counting is disabled.
PCR. UT and PCR. ST are global fields which apply to all PIC pairs.
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TABLE 5-13 PCR Bit Description (Continued)

Bit Field Description

0 PRI V Privileged. If PCR. PRI V =1, a nonprivileged (PSTATE. PRI V = 0) attempt to access Pl C
(via an RDPI C or WRPI C instruction) will result in a privileged_action exception.

PCR. PRI V may also have implementation-dependent effects on the accessibility (via
RDPCR and WRPCR instructions) of fields in PCR itself (impl. dep. #250).

Performance Instrumentation Counter (PIC) Register (ASR
17)

The PI Cis a general-access, read/write register. However, if the PRI V bit of the PCR
(ASR 16) is set, attempted access by nonprivileged (user) code causes a
privileged_action exception.

Multiple PI Cs may be implemented. Each is accessed by way of ASR 17, using an
implementation-dependent PI C pair selection field in PCR (ASR 16) (impl. dep.
#207). Read/write access to the Pl Cwill access the PI CU/PI CL counter pair selected
by PCR.

The PI Cis described below and illustrated in FIGURE 5-31.

Bit Field Description

63:32 Pl CU 32-bit counter representing the count of an event selected by the SU field of the Performance
Control Register (PCR) (ASR 16). See Appendix Q, Performance Instrumentation, in
Implementation Supplements for a detailed definition of these counters.

31:0 Pl CL 32-bit counter representing the count of an event selected by the SL field of the Performance
Control Register (PCR) (ASR 16). See Appendix Q, Performance Instrumentation, in
Implementation Supplements for a detailed definition of these counters.

PICU PICL

63 32 31 0

FIGURE 5-31 Performance Instrumentation Counter (Pl C) (ASR 17)

Counter Overflow. On overflow, a counter wraps to 0, SOFTI NT register bit 15 is
set to 1, and an interrupt level 15 trap is generated. The counter overflow trap is
triggered on the transition from value FFFF FFFF ¢ to value 0.
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Dispatch Control Register (DCR) (ASR 18)

The DCR is a read/write register. Unused bits read as 0; unused bits should be
written only with zero or values previously read from them. The DCR is a privileged
register; attempted access by nonprivileged (user) code causes a privileged_opcode
trap.

The Dispatch Control Register is illustrated in FIGURE 5-32 and described in
TABLE 5-14.

— impl. dep. BPE| RPE| SI |— |IMPll ms

63

dep
1413 6 5 4 3 2 1
FIGURE 5-32 Dispatch Control Register (ASR 18)

IMPL. DEP. #204: The existence, values, and semantics of DCR bits 5:3 and 0 are
implementation dependent. If each is implemented, standard (recommended)
semantics are as described below. If not implemented, each bit reads as 0 and writes
to it are ignored.

TABLE 5-14 DCR Bit Description

Bit Field

Description

63:14 —
13:6 —

5 BPE

4 RPE

Reserved.

IMPL. DEP. #203: The values and semantics of bits 13:6 and 1 of DCR are implementation
dependent.

Branch and Return Control

Branch Prediction Enable. When BPE = 1, conditional branches are predicted through
internal hardware. When BPE = 0, all branches are predicted not taken. After power-on
reset initialization, this bit is set to 0. This bit is also automatically set to 0 on any trap
causing RED_st at e entry (but not cleared when privileged code enters RED_st at e by
setting the RED bit in PSTATE).

Return Address Prediction Enable. When RPE = 0, the return address prediction stack is
disabled. Even when encountering a JMPL instruction, instruction fetch will continue on
a sequential path until the return address is generated and a mispredict is signalled.
When RPE = 1, the processor may attempt to predict the target address of JMPL
instructions and prefetch subsequent instructions accordingly.

After power-on reset initialization, this bit is set to 0. This bit is also automatically set to
0 on any trap causing a RED_st at e entry (but left unchanged when privileged code
enters RED_st at e by setting PSTATE. RED).
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TABLE 5-14 DCR Bit Description (Continued)

Bit Field Description
Instruction Dispatch Control

3 S Single Issue Disable. When SI = 0, only one instruction will be outstanding at a time.
Superscalar instruction dispatch is disabled, and only one instruction is executed at a
time. When SI = 1, normal pipelining is enabled. The processor can issue new
instructions prior to the completion of previously issued instructions.

After power-on reset initialization, this bit is set to 0. This bit is also automatically zeroed
on any trap causing RED_st at e entry (but left unchanged when privileged code enters
RED_st at e by setting PSTATE.RED).

2 — Reserved.

1 — IMPL. DEP. #203: The values and semantics of bits 13:6 and 1 of DCR are implementation
dependent.

0 M5 Multiscalar Dispatch Enable. When MS = 0, the processor operates in scalar mode,
issuing and executing one instruction at a time. Pipelined operation is still controlled by
the SI bit. M5 = 1 enables superscalar (normal) instruction issue.

After power-on reset initialization, this bit is set to 0. The bit is also zeroed automatically
on any trap causing RED_st at e entry (but left unchanged when privileged code enters
RED_st at e by setting PSTATE. RED).
Graphics Status Register (GSR) (ASR 19)
The Graphics Status Register is a nonprivileged read/write registerimplicitly
referenced by many VIS instructions®. The GSR can be read through RDGSR (see A.51
on page 313) and written through WRGSR (see A.70 on page 350).
The GSRiis illustrated in FIGURE 5-33 and described in TABLE 5-15.
MASK — IM | IRND — SCALE ALIGN
63 32 31 28 27 26 25 24 8 7 3 2 0
FIGURE 5-33 Graphic Status Register (GSR) (ASR 19)
TABLE 5-15 GSR Bit Description

Bit Field Description

63:32 MASK<31:0> This field specifies the mask used by the BSHUFFLE instruction. The field contents are

set by the BMASK instruction.

31:28 Reserved

27 M Interval Mode: When | M= 1, the values in FSR. RD and FSR. NS are ignored; the

processor operates as if FSR. NS = 0 and rounds floating-point results according to
GSR. | RND.

1. Sun Microsystems’ “Visual Instruction Set”
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TABLE 5-15 GSR Bit Description (Continued)

Bit

Field

Description

26:25

24:8
73
2:0

I RND<1:0> IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR. | M= 1), as

follows:

E]
z
o

Round toward ...
Nearest (even if tie)
0

+ oo

oomn—‘o‘

— 00

When GSR. | M= 1, the value in GSR. | RND overrides the value in FSR. RD.

Reserved
SCALE<4:0> Shift count in the range 0-31, used by the PACK instructions for formatting.
ALl G\<2:0> Least three significant bits of the address computed by the last executed

AL| GNADDRESS or ALI GNADDRESS LI TTLE instruction.
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Accesses to the Graphics Status Register cause an fp_disabled trap if PSTATE. PEF or
FPRS. FEF is 0.

SET_SOFTINT (Set Bit(s) in Per-Processor SOFTINT Register)
(ASR 20)

A Write State Register instruction (WRSOFTI NT_SET) to ASR 20 sets the
corresponding bits in the SOFTI NT Register (ASR 22) (see page 89); that is, when set,
bits 16:0 in ASR 20 set the corresponding bits in ASR 22. Other bits in ASR 20 are
ignored.

ASR 20 is a privileged, write-only register.

FIGURE 5-34 illustrates the SET_SOFTI NT Register.

— ASR 22 Bits to be set

63

17 16 0

FIGURE 5-3¢ SET_SOFTINT Register (ASR 20)

CLEAR_SOFTINT (Clear Bit(s) in Per-Processor SOFTINT
Register) (ASR 21)

A Write State Register instruction (WRSOFTI NT_CLR) to ASR 21 clears the
corresponding bits in the SOFTI NT register(ASR 22) (see page 89); that is, when set,
bits 16:0 in ASR 21 clear the corresponding bits in ASR 22. Other bits in ASR 21 are
ignored.
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ASR 21 is a privileged, write-only register.

FIGURE 5-35 illustrates the CLEAR_SOFTI NT Register.

— ASR 22 Bits to be cleared

63 17 16 0

FIGURE 5-35 CLEAR_SOFTI NT Register (ASR 21)

SOFTINT Register (ASR 22)

Privileged software uses this privileged, read/write register to schedule interrupts.
SOFTI NT can be read with a RDSOFTI NT instruction (Read State Register 22) and
written with a WRSOFTI NT instruction (Write State Register 22).

The SOFTI NT Register is illustrated in FIGURE 5-36 and described in TABLE 5-16.

—_ SM INT_LEVEL ™

63 17 16 15 10

FIGURE 5-36 SOFTI| NT Register (ASR 22)

TABLE 5-16 SOFTI NT Bit Description

Bit Field Description

16 STI CK_I NT When the STI CK_COMPARE (ASR 25) register’s | NT_DI S (interrupt
(SM disable) field is 0 (that is, system tick compare is enabled) and its
STl CK_CMPR field matches the value in the STI CK register, then the
STI CK_I NT field in ASR 22 is set to 1 and a level 14 interrupt is
generated. See System Tick Compare (STICK_COMPARE) Register (ASR
25) on page 91 for details.
15:1 I NT_LEVEL When a bit is set within this field (bits 15:1), an interrupt is caused at
the corresponding interrupt level.
Note: | NT_LEVEL<14> is shared by level-14 interrupt,
(interrupt_level_14), STI CK_COMPARE interrupt, and TI CK_COVPARE
interrupt.
Note: | NT_LEVEL<15> is shared by level-15 interrupt
(interrupt_level_15) and Pl C overflow interrupt.
0 TI CK_I NT  When the TI CK_COWVPARE (ASR 23) register’s | NT_DI S (interrupt
(™™ disable) field is 0 (that is, tick compare is enabled) and its TI CK_CMPR
field matches the value in the Tl CK register, then the TI CK_I NT field
in ASR 22 is set to 1 and a level-14 interrupt is generated. See Tick
Compare (TICK_COMPARE) Register (ASR 23) for details.

See Section N.5 for additional information regarding the SOFTI NT register.
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Tick Compare (TICK_COMPARE) Register (ASR 23)

The TI CK register is used for fine-grained measurements of time in processor cycles.
The Tl CK_COMPARE register allows system software to cause a trap when the TI CK
register reaches a specified value. Nonprivileged accesses to this register cause a
privileged_opcode trap (see Exception and Interrupt Descriptions on page 161). After a
power-on reset trap, the | NT_DI S bit is set to 1 (disabling tick compare interrupts)
and the Tl CK_CMPR value is set to 0.

The Tl CK_COMPARE Register is described below and illustrated in FIGURE 5-37.

Bit Field Description

63 INT_DI S Interrupt Disable. If set, tick compare interrupts are disabled.

62:0 TI CK_CMPR Tick Compare Field. When this field exactly matches TI CK. count er and
TI CK_COMPARE. | NT_DI S=0, a TI CK_I NT is posted in the SOFTI NT register. This has
the effect of posting a level-14 interrupt to the processor when the processor has
(PI'L <14) and (PSTATE.lI E = 1). The level-14 interrupt handler must check
SOFTI NT<14>, TI CK_I NT, and STI CK_I| NT to determine which was the source of the
level-14 interrupt.

TICK_COMPARE |INT_DIS TICK_CMPR

63 62 0

FIGURE 5-37 T| CK_COVPARE Register

System Tick (STICK) Register (ASR 24)

The count er field of the STI CK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor. Bit 63 of the STI CK register is
the nonprivileged trap (NPT) bit, which controls access to the STI CK register by
nonprivileged software. Privileged software can always read the STI CK register with
RDSTI CK instruction. Privileged software can always write the STI CK register with
the WRSTI CK instruction.

The STI CK register is illustrated in FIGURE 5-38 and described below.

STICK [NPT] counter

63 62 0
FIGURE 5-38 STI CK Register

Nonprivileged software can read the STI CK register by using the RDSTI CK
instruction when STI CK. NPT = 0. When STI CK. NPT =1, an attempt by
nonprivileged software to read the STI CK register causes a privileged_action
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exception. Nonprivileged software cannot write the STI CK register. If
PSTATE. PRI V = 0 when WRSTI CK instruction is executed, a privileged_opcode
exception is signalled.

STI CK. NPT is set to 1 by a power-on reset trap. The value of STI CK. count er is
cleared after a power-on reset trap.

After the STI CK register is written, reading the STI CK register returns a value
incremented (by 1 or more) from the last value written, rather than from some
previous value of the counter.

Note — The STI CK register is unaffected by any reset other than a power-on reset.

System Tick Compare (STICK_COMPARE) Register (ASR 25)

The System Tick (STI CK) register provides a synchronized systemwide clock that
can be used for timestamping. The STI CK_COVPARE register allows system software
to cause a trap when the STI CK register reaches a specified value. Nonprivileged
accesses to this register cause a privileged_opcode trap (see Exception and Interrupt
Descriptions on page 161). After a power-on reset trap, the | NT_DI S bit is set to 1
(disabling system tick compare interrupts), and the STI CK_CMPR value is set to 0.

The System Tick Compare Register is defined below and illustrated in FIGURE 5-39.

Bit Field

Description

63 INT_DI'S Interrupt Disable. If set, system tick compare interrupts are disabled.
62:0 STI CK_CMPR  System Tick Compare Field. When this field exactly matches STI CK.count er and

STI CK_COWPARE. | NT_DI S=0, a STI CK_I NT is posted in the SOFTI NT register.
This has the effect of posting a level-14 interrupt to the processor when the processor
has (Pl L < 14) and (PSTATE.l E = 1). The level-14 interrupt handler must check
SOFTI NT<14>, TI CK_I NT, and STI CK_I| NT to determine which was the source of the
level-14 interrupt.

STICK_COMPARE (INT_DIS STICK_CMPR

5.2.12

63 62 0
FIGURE 5-39 STI CK_COWPARE Register

Registers Referenced Through ASIs

In this section the Data Cache Unit Control Register, Data Watchpoint registers
(virtual address data watchpoint and physical address data watchpoint), and the
Instruction Trap Register are described.
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Data Cache Unit Control Register (DCUCR)
ASI 45,5 (ASI _DCU_CONTRCOL_REG STER) , VA = 04g

The Data Cache Unit Control Register contains fields that control several memory-
related hardware functions. The functions include instruction, prefetch, write and
data caches, MMUSs, and watchpoint setting.

After a power-on reset (POR), all fields of DCUCR are set to 0. After a WDR, XIR, or
SIR, all fields of DCUCR defined in this section are set to 0. The effect of reset on
implementation-dependent fields of DCUCR is implementation dependent (impl. dep.
#240).

The Data Cache Unit Control Register is illustrated in FIGURE 5-40 and described in
TABLE 5-17. In the table, bits are grouped by function rather than by strict bit
sequence.

CP

(i-d.) |G

Implementation-dependent PM VM PR | PW| VR | VW — DM |[IM | DC | IC

63

TABLE 5-17

50 49

48 47 41 40 33 32 25 24 23 22 21 20 4 3 2 1 0

FIGURE 5-40 DCU Control Register Access Data Format (ASI 455)

DCUCR Description

Bits

Field

Type Use — Description

49:48

47:41

CP, CV

RW  IMPL. DEP. #232: Whether CP and CV bits are implemented in the DCU Control
Register is implementation dependent in JPS1.
If CP is implemented, it determines the physical cacheability of memory accesses
when the IMMU or DMMU is disabled (I M= 0 or DM=0). 1 = cacheable,
0 = noncacheable.
If CV is implemented, it determines the virtual cacheability of memory accesses
when the DMMU is disabled (DM= 0); 1 = cacheable, 0 = noncacheable.
If CP is implemented, the TTE E (side effect) bit is set to the complement of CP
when MMUs are enabled.
Note: The CP and CV bits of DCUCR must be changed with care. It is recommended
that a MEMBAR #Sync be executed before and after CP or CV is changed. Also,
software must manage cache states to be consistent before and after CP or CV is
changed.

impl. dep. IMPL. DEP. #240: The presence and semantics of bits 47:41 of DCUCR are

implementation dependent. If any of these bits is not implemented, it reads as 0
and writes to it are ignored.
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TABLE 5-17

DCUCR Description (Continued)

Bits

Field Type

Use — Description

40:33

32:25

24,23

22,21

20:4

PM7:0>

VIMKT:0>

PR, PW

VR, VW

DM

Watchpoint Control

DCU Physical Address Data Watchpoint Mask. The Physical Address Data
Watchpoint Register contains the physical address of a 64-bit word to be watched.
The 8-bit Physical Address Data Watch Point Mask controls which byte(s) within
the 64-bit word should be watched. If all 8 bits are cleared, the physical watchpoint
is disabled. If the watchpoint is enabled and a data reference overlaps any of the
watched bytes in the watchpoint mask, then a physical watchpoint trap is
generated. Watchpoint behavior for a Partial Store instruction may differ (see impl.
dep. #249).

Please see the table in the VMfield description.

DCU Virtual Address Data Watchpoint Mask. The Virtual Address Data
Watchpoint Register contains the virtual address of a 64-bit word to be watched.
This 8-bit mask controls which byte(s) within the 64-bit word should be watched. If
all 8 bits are cleared, then the virtual watchpoint is disabled. If watchpoint is
enabled and a data reference overlaps any of the watched bytes in the watchpoint
mask, then a virtual watchpoint trap is generated. Watchpoint behavior for a
Partial Store instruction may differ (see impl. dep. #249).

VA/PA data watchpoint byte mask examples are shown below.

Least Significant 3 Bits of
Watchpoint Mask  Address of Bytes Watched
(PMor VM 7654 3210

0046 Watchpoint disabled
01y 0000 0001
3245 0011 0010
FFig 1111 1111

DCU Physical Address Data Watchpoint Enable. If PR (PW is 1, then a data read
(write) that matches the range of addresses in the Physical Watchpoint Register
causes a watchpoint trap. If both PR and PWare set, a watchpoint trap will occur on
either a read or write access.

DCU Virtual Address Data Watchpoint Enable. If VR (VW is 1, then a data read
(write) that matches the range of addresses in the Virtual Watchpoint Register
causes a watchpoint trap. If both VR and VWare set, a watchpoint trap will occur on
either a read or write access.

Reserved.
MMU Control

DMMU Enable. If DM= 0, the DMMU is disabled (pass-through mode).
Note: When the MMU/TLB is disabled, a virtual address is passed through as a
physical address.

IMMU Enable. If | M= 0, the IMMU is disabled (pass-through mode).
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TABLE 5-17

DCUCR Description (Continued)

Bits

Field

Type

Use — Description

Cache Control

IMPL. DEP. #252: The presence of DCUCR bit 1 (DCUCR. DC, Data Cache Enable) is
implementation dependent. If DC is not implemented, it reads as zero, writes to it
are ignored, and software should only write zero or a value previously read from
DC to DC. The remainder of this description assumes that DC is implemented. The
function of DC is to enable/disable operation of the data cache closest to the
processor (D-cache); DC= 1 enables the D-cache and DC = 0 disables it. When
DC =0, memory accesses (loads, stores, atomic load-stores) are satisfied by caches
lower in the cache hierarchy. It is implementation dependent whether or not
memory accesses update the D-cache while the D-cache is disabled (DC = 0). If
memory accesses do not update the D-cache, then when the D-cache is reenabled
(DC is set to 1) any D-cache lines still marked as “valid” may be inconsistent with
the state of memory or other caches. In that case, software must handle any
inconsistencies by flushing the inconsistent lines from the D-cache.

IMPL. DEP. #253: The presence of DCUCR bit 0 (DCUCR. | C, Instruction Cache Enable)
is implementation dependent. If | Cis not implemented, it reads as zero, writes to it
are ignored, and software should only write zero or a value previously read from
| Cto | C. The remainder of this description assumes that | Cis implemented. The
function of | Cis to enable/disable operation of the instruction cache closest to the
processor (I-cache); | C=1 enables the I-cache and | C= 0 disables it. When | C=0,
instruction fetches are satisfied by caches lower in the cache hierarchy. It is
implementation dependent whether or not instruction fetches update the I-cache
while the I-cache is disabled (I C=0). If instruction fetches do not update the I-
cache, then when the I-cache is reenabled (I Cis set to 1) any I-cache lines still
marked as “valid” may be inconsistent with the state of memory or other caches. In
that case, software must handle any inconsistencies by invalidating the inconsistent
lines in the I-cache.
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Data Watchpoint Registers

SPARC JPS1 processors implement “break before” watchpoint traps. When the
address of a data access matches a preset physical or virtual watchpoint address,
instruction execution is stopped immediately before the watched memory location is
accessed. TABLE 5-18 lists ASls that are affected by the two watchpoint traps.

TABLE 5-18 ASIs Affected by Watchpoint Traps

ASI Type

Data Watchpoint If Watchpoint If
ASI Range MMU  Matching VA Matching PA

Translating ASls 0416_1116' 1816_1916’ 2416_2C16' on Y Y

7016_7116' 7816_7916’ 8016—FF16 off

N Y
Bypass ASIs 1416_1516' 1C16 —1D16 — N Y
Nontranslating ASIs  30,6-6Fg, 7216-7715, 7TA16-7F 16 — N N
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For 128-bit (quad) atomic load and 64-byte block load and store instructions, a
watchpoint trap is generated only if the watchpoint overlaps the lowest-address
eight bytes of the access.

To avoid trapping infinitely, software should emulate the instruction that caused the
trap and return from the trap by using a DONE instruction or turn off the watchpoint
before returning from a watchpoint trap handler.

IMPL. DEP. #244: Implementation-dependent feature(s) may be present that degrade
the reliability of data watchpoints. If such features are present, it must be possible to
disable them such that data watchpoints function as described in this section.
Furthermore, those features should be disabled by default.

Two 64-bit data watchpoint registers provide the means to monitor data accesses
during program execution. When Virtual/Physical Data Watchpoint is enabled, the
virtual/physical addresses of all data references are compared against the content of
the corresponding watchpoint register. If a match occurs, a VA_watchpoint or
PA_watchpoint trap is signalled before the data reference instruction is completed.
The virtual address watchpoint trap has higher priority than the physical address
watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Each
zero bit in the byte mask causes the comparison to ignore the corresponding byte in
the address. These watchpoint byte masks and the watchpoint enable bits reside in
the Data Cache Unit Control Register.

Virtual Address Data Watchpoint Register
ASI 5816! VA = 3816

Name: VA Data Watchpoint Register

FIGURE 5-41 illustrates the Virtual Address Watchpoint Register,

where: DB_VA is the most significant 61 bits of the 64-bit virtual data watchpoint
address.

DB_VA —

63 32 0

FIGURE 5-41 VA Data Watchpoint Register Format
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Physical Address Data Watchpoint Register
ASI 5816' VA:4016
Name: PA Data Watchpoint Register

FIGURE 5-42 illustrates the PA Data Watchpoint Register,

where: DB_PA is the most significant 61 bits of the physical data watchpoint address.
The minimum width of a SPARC JPS1 physical address is 43 bits (impl. dep. #224).

DB_PA ‘ — ‘
63 32 0

FIGURE 5-42 PA Data Watchpoint Register Format

Note — Implementations may provide fewer than 64 bits of physical address space
(impl. dep. #224). Therefore, software is responsible for zero-extending any physical
address narrower than 64 bits out to a full 64 bits before writing that address into the
PA Data Watchpoint Register.

Instruction Trap Register
ASI 6016 (ASI _I 1 U_I NST_TRAP), VA=044

The Instruction Trap Register can be used to generate a trap whenever an instruction
belonging to a specified class of instruction is dispatched.

IMPL. DEP. #205: The presence of the Instruction Trap Register in a SPARC JPS1
processor is implementation dependent. If implemented, the standard
(recommended) implementation is as described in this section.

When an instruction is dispatched and its opcode bits match the pattern specified in
the Instruction Trap Register, then an illegal_instruction exception occurs. A range of
opcodes can be specified through the use of the Mask and Mat ch fields of the
Instruction Trap Register.

Note — If an instruction breakpoint triggers an illegal_instruction trap, the
illegal_instruction trap has a higher priority than that of a privileged_opcode trap.
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The Instruction Trap Register is described below and illustrated in FIGURE 5-43.

Bits Field Type Description

63:32 Mask RW A “1” entry enables comparison of the corresponding Mat ch bit against the
issued instructions. Bit 63 corresponds to Mat ch bit 31, bit 32 to Mat ch bit 0.
This field is initialized to all zeroes on power-on reset. If Mask is all zeroes, then
the Instruction Trap Register never generates a trap.

31:0 Mat ch RW Contains a bit pattern to match against the issued instruction stream. If a match
is found, an illegal_instruction exception is generated. Specifically:

illegal_instruction generated when ( (instruction & Mask) = (Match & Mask)) &&
(Mask! =0)

Mask Match

63 32 31 0

FIGURE 5-43 Instruction Trap Register

IMPL. DEP. #245: On SPARC JPS1 processors, the encoding of the least significant 11
bits of the displacement field of CALL and branch (BPcc, FBPf cc, Bi cc, BPr)
instructions in an instruction cache is implementation-dependent. Specifically, those
bits' encoding in an instruction cache is not necessarily the same as their architectural
encoding (which appears in main memory).

Caution — The 32-bit instruction value matched against the Instruction Trap
Register is the instruction word fetched from the instruction cache. However, the
encoding of the least significant 11 bits of CALL and branch instructions may be
different in the instruction cache from the architecturally specified encoding (impl.
dep. #245, above). Therefore, software intended to be portable across SPARC JPS1
implementations that write the Instruction Trap Register to cause a trap on CALL or
branch instructions must set bits 10:0 of the Mask field to 0 to mask out the
implementation-dependent bits from the comparison.
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Notes — (1) The Instruction Trap Register generates an exception based on
instruction opcodes, not on their addresses (as do traditional breakpoints).

(2) A store to the Instruction Trap Register requires MEMBAR #Sync plus either
FLUSH, DONE, or RETRY before the point that its effect must be visible to instruction
accesses. That is, MEMBAR #Sync alone is not sufficient. In either case, one of these
instructions must be executed before the next noninternal store or load of any type,
to avoid data corruption.

As a historical note: This mechanism was designed to provide a way around
hardware errors that may be found in silicon during bringup. For example, if an
instruction is failing on a particular mask set, it can be trapped and emulated in
software with the Instruction Trap Register mechanism.

Interrupt ASI Registers

See Interrupt ASI Registers on page 556 for detailed descriptions of ASI register used
in handling interrupts.

Floating-Point Deferred-Trap Queue (FQ)

If present in an implementation, the FQ contains sufficient state information to
implement resumable, deferred floating-point traps.

IMPL. DEP. #23: Floating-point traps may be precise or deferred. If deferred, a
floating-point deferred-trap queue (FQ) shall be present.

The FQ can be read with the read privileged register (RDPR) floating-point queue
instruction. In a given implementation, it may also be readable or writable through
privileged load/store double alternate instructions (LDDA, STDA) or by read/write
ancillary state register instructions (RDASR, WRASR).

IMPL. DEP. #24: The presence, contents of, and operations upon the FQ are
implementation dependent.

If an FQ is present, supervisor software must be able to deduce the exception-
causing instruction’s opcode, operands, and address from its FQ entry. This also
must be true of any other pending floating-point operation in the queue.

In an implementation with a floating-point queue, an attempt to read the FQ with a
RDPR instruction when the FQ is empty (FSR. gne = 0) shall cause an
fp_exception_other trap with FSR. ftt set to 4 (sequence_error).

In an implementation without an FQ, the gne bit in the FSRis always 0 and an
attempt to read FQ with an RDPR instruction causes an illegal_instruction exception.
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No SPARC JPS1 implementations are expected to make use of deferred traps for
floating-point exceptions or to implement a floating-point deferred-trap queue.

Integer Unit Deferred-Trap Queue

An implementation may contain zero or more IU deferred-trap queues. Such a queue
contains sufficient state to implement resumable deferred traps caused by the 1U.
Note: Deferred floating-point traps are handled by the floating-point deferred-trap
queue.

IMPL. DEP. #16: The existence, contents, and operation of an 1U deferred-trap queue
are implementation dependent; it is not visible to user application programs under
normal conditions.

No SPARC JPS1 implementations are expected to implement an U deferred-trap
gueue.
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C.CHAPTER 6

Instructions

6.1

Instructions are accessed by the processor from memory and are executed, annulled,
or trapped. Instructions are encoded in 4 major formats and partitioned into 11
general categories. We describe instructions in these sections:

= Instruction Execution on page 101
= Instruction Formats and Fields on page 102
= Instruction Categories on page 106
= Register Window Management on page 126

Instruction Execution

The instruction at the memory location specified by the program counter is fetched
and then executed. Instruction execution may change program-visible processor
and/or memory state. As a side effect of its execution, new values are assigned to
the program counter (PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes
it impossible to complete normal execution. Such an exception may in turn generate
a precise trap. Other events may also cause traps: an exception caused by a previous
instruction (a deferred trap), an interrupt or asynchronous error (a disrupting trap),
or a reset request (a reset trap). If a trap occurs, control is vectored into a trap table.
See Chapter 7, Traps, for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter is copied into the PC, and the nPCis incremented by 4 (ignoring overflow, if
any). If the instruction is a control-transfer instruction, the next program counter is
copied into the PC and the target address is written to nPC. Thus, the two program
counters provide for a delayed-branch execution model.
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For each instruction access and each normal data access, the IU appends an 8-bit

address space identifier, or ASI, to the 64-bit memory address. Load/store alternate
instructions (see Address Space Identifiers (ASIs) on page 112) can provide an arbitrary
ASI with their data addresses or can use the ASI value currently contained in the ASI

register.

6.2 Instruction Formats and Fields

Instructions are encoded in four major 32-bit formats and several minor formats, as
shown in FIGURE 6-1, FIGURE 6-2 on page 103, and FIGURE 6-3 on page 104.

Format 1 (op = 1): CALL

op disp30

31 30 29

Format 2 (op = 0): SETHI and Branches (Bi cc, BPcc, BPr, FBf cc, FBPf cc)

op rd op2 imm22
op |a cond op2 disp22
op | a cond op2 |ccliccO| p disp19
op al0]| rcond op2 d16hi | p rs1 d16lo
31 30 29 28 25 24 22 21 20 19 18 14 13 0

FIGURE 6-1 Summary of Instruction Formats: Formats 1 and 2
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Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr , MEMBAR, Prefetch, Load, and Store

op rd op3 rs1 i=0 — rs2
op rd op3 rs1 i=1 simm13
op fcn op3 rs1 i=0 — rs2
op fen op3 rs1 i=1 simm13
op — op3 rs1 i=0 — rs2
op — op3 rs1 i=1 simm13
op rd op3 rs1 i=0| rcond —_ rs2
op rd op3 rs1 i=1| rcond simm10
op rd op3 rs1 i=1 — rs2
op rd op3 rs1 i=1 — cmask mmask
op rd op3 rs1 i=0 imm_asi rs2
op impl-dep op3 impl-dep op2 impl-dep
op rd op3 rs1 i=0| x — rs2
op rd op3 rs1 i=1x=0| — shent32
op rd op3 rs1 i=1x=1 — shcnt64
op rd op3 — opf rs2
op 000 |ccl|ccO| op3 rs1 opf rs2
op rd op3 rs1 opf rs2
op rd op3 rs1 —
op fen op3 —
op rd op3 —

31 30 29 25 24 19 18 14 13 12 11 10 9 7 6 5 4 3

FIGURE 6-2 Summary of Instruction Formats: Format 3
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Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op rd op3 rs1 i=0| cctecO — rs2
op rd op3 rs1 i=1|cc1ccO) simm11

op rd op3 cc2 cond i=0|cc1|ccO) — rs2
op rd op3 cc2| cond i=1|{cc1|ccO simm11

op rd op3 rs1 i=1|cc1ccO) — sw_trap#
op rd op3 rs1 0 rcond opf_low rs2
op rd op3 0 cond opf_cc opf_low rs2

31 30 29 19 18 17 14 13 12 11 10 9 7 6 5 4 0

FIGURE 6-3 Summary of Instruction Formats: Format 4

The instruction fields are interpreted as described in TABLE 6-1.

TABLE 6-1 Instruction Field Interpretation (1 of 3)

Field

Description

a

cc2,ccl, ccO

The a bit annuls the execution of the following instruction if the branch is
conditional and not taken, or if it is unconditional and taken.

cc2, ccl, and ccO specify the condition codes (i cc, xcc, fcc0,fccl, fcc2,

f cc3) to be used in the following instructions:

= Branch on Floating-Point Condition Codes with Prediction Instructions
(FBPf cc)

« Branch on Integer Condition Codes with Prediction (BPcc)

Floating-Point Compare Instructions (FCMP and FCVPE)

= Move Integer Register If Condition Is Satisfied (MOVcc)

= Move Floating-Point Register If Condition Is Satisfied (FMOVcc)

« Trap on Integer Condition Codes (Tcc).

In instructions such as Tcc that do not contain the cc2 bit, the missing cc2 bit

takes on a default value. See TABLE E-10 on page 434 for a description of these

fields’ values.
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TABLE 6-1 Instruction Field Interpretation (2 of 3)

Field Description

cmask This 3-bit field specifies sequencing constraints on the order of memory
references and the processing of instructions before and after a MEMBAR
instruction.

cond This 4-bit field selects the condition tested by a branch instruction. See
Appendix E, Opcode Maps, for descriptions of its values.

d16hi,d16l o These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended,
PC-relative displacement for a branch-on-register-contents with prediction
(BPr) instruction.

di sp19 This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for

di sp22, di sp30

fcn

i 22

i mm_asi

impl-dep

mask

op, op2

op3

opf

opf _cc

opf _| ow

an integer branch-with-prediction (BPcc) instruction or a floating-point
branch-with-prediction (FBPf cc) instruction.

These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative
displacements for a branch or call, respectively.

This 5-bit field provides additional opcode bits to encode the DONE, RETRY, and
PREFETCH(A) instructions.

The i bit selects the second operand for integer arithmetic and load/store
instructions. If i =0, then the operand isr[rs2].Ifi =1, then the operand is
si mmlO, si mml1, or si mml3, depending on the instruction, sign-extended to
64 bits.

This 22-bit field is a constant that SETHI places in bits 31:10 of a destination
register.

This 8-bit field is the address space identifier in instructions that access
alternate space.

The meaning of these fields is completely implementation dependent for
| MPDEP2A and | MPDEP2B instructions.

This 4-bit field imposes order constraints on memory references appearing
before and after a MEMBAR instruction.

These 2- and 3-bit fields encode the three major formats and the Format 2
instructions. See Appendix E, Opcode Maps, for descriptions of their values.

This 6-bit field (together with one bit from op) encodes the Format 3
instructions. See Appendix E, Opcode Maps, for descriptions of its values.

This 9-bit field encodes the operation for a floating-point operate (FPop)
instruction. See Appendix E, Opcode Maps, for possible values and their
meanings.

Specifies the condition codes to be used in FMOVc ¢ instructions. See cc0, ccl,
and cc2 above for details.

This 6-bit field encodes the specific operation for a Move Floating-Point

Register if condition is satisfied (FMOVcc) or Move Floating-Point Register if
contents of integer register match condition (FMOVr ) instruction.
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TABLE 6-1 Instruction Field Interpretation (3 of 3)
Field Description
p This 1-bit field encodes static prediction for BPcc and FBPf cc instructions;
branch prediction bit (p) encodings are shown below.
p Branch Prediction
0 Predict that branch will not be taken
1 Predict that branch will be taken
rcond This 3-bit field selects the register-contents condition to test for a move, based
on register contents (MOVr or FMOVr ) instruction or a Branch on Register
Contents with Prediction (BPr ) instruction. See Appendix E, Opcode Maps, for
descriptions of its values.
rd This 5-bit field is the address of the destination (or source) r or f register(s) for
a load, arithmetic, or store instruction.
rsi This 5-bit field is the address of the first r or f register(s) source operand.
rs2 This 5-bit field is the address of the second r or f register(s) source operand
withi =0.
shcnt 32 This 5-bit field provides the shift count for 32-bit shift instructions.
shcnt 64 This 6-bit field provides the shift count for 64-bit shift instructions.
si 10 This 10-bit field is an immediate value that is sign-extended to 64 bits and used
as the second ALU operand for a MOVr instruction when i =1.
simil This 11-bit field is an immediate value that is sign-extended to 64 bits and used
as the second ALU operand for a MOVcc instruction wheni = 1.
simi3 This 13-bit field is an immediate value that is sign-extended to 64 bits and used
as the second ALU operand for an integer arithmetic instruction or for a load/
store instruction wheni =1
sw_t rap# This 7-bit field is an immediate value that is used as the second ALU operand
for a Trap on Condition Code instruction.
X The x bit selects whether a 32- or 64-bit shift will be performed.

6.3
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Instruction Categories

SPARC V9 instructions can be grouped into the following categories:

= Memory access

= Memory synchronization

= Integer arithmetic

= Control transfer (CTI)

= Conditional moves

= Register window management
= State register access
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6.3.1

= Privileged register access

= Floating-point operate

= Implementation dependent
= Reserved

Each of these categories is described in the following subsections.

Memory Access Instructions

Load, store, load-store, and PREFETCH instructions are the only instructions that
access memory. All of the instructions except Compare and Swap use either two r
registers or an r register and si L3 to calculate a 64-bit byte memory address.
Compare and Swap uses a single r register to specify a 64-bit byte memory address.
To this 64-bit address, the IU appends an ASI that encodes address space
information.

The destination field of a memory reference instruction specifies the r or f
register(s) that supply the data for a store or that receive the data from a load or
LDSTUB. For SWAP, the destination register identifies the r register to be exchanged
atomically with the calculated memory location. For Compare and Swap, an r
register is specified, the value of which is compared with the value in memory at the
computed address. If the values are equal, then the destination field specifies the r
register that is to be exchanged atomically with the addressed memory location. If
the values are unequal, then the destination field specifies the r register that is to
receive the value at the addressed memory location; in this case, the addressed
memory location remains unchanged.

The destination field of a PREFETCH instruction (f cn) is used to encode the type of
the prefetch.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-
bit), and doubleword (64-bit) accesses. Floating-point load and store instructions
support word, doubleword, and quadword memory accesses. LDSTUB accesses
bytes, SWAP accesses words, CASA accesses words, and CASXA accesses doublewords.
The Atomic Quad Load instruction accesses a quadword (16 bytes) Block load and
store access eight consecutive doublewords. PREFETCH accesses at least 64 bytes.
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Programming Note — By settingi =1 and rs1 =0, you can access any location in
the lowest or highest 4 Kbytes of an address space without using a register to hold
part of the address.

Memory Alignment Restrictions

Halfword accesses must be aligned on 2-byte boundaries, word accesses (which
include instruction fetches) must be aligned on 4-byte boundaries, extended word
and doubleword accesses must be aligned on 8-byte boundaries, quadword accesses
must be aligned on 16-byte boundaries, and Block load and Block store accesses
must be aligned on 64-byte boundaries.

Double-precision floating-point values may be aligned on word boundaries.
However, if so aligned, doubleword loads/stores may not be used to access them,
resulting in less efficient and nonatomic accesses.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with these exceptions:

= An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned causes an LDDF_mem_address_not_aligned exception.

= An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned causes an STDF_mem_address_not_aligned exception.

Addressing Conventions

The processor uses big-endian byte order for all instruction accesses and, by default,
for data accesses. It is possible to access data in little-endian format by using selected
ASls. It is also possible to change the default byte order for implicit data accesses.
See Processor State (PSTATE) Register on page 69 for more information.!

1.See also Cohen, D., “On Holy Wars and a Plea for Peace,” Computer 14:10 (October 1981), pp. 48-
54.
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Big-endian Addressing Convention. Within a multiple-byte integer, the byte with
the smallest address is the most significant; a byte’s significance decreases as its
address increases. The big-endian addressing conventions are illustrated in

FIGURE 6-4 and described below the figure.

Byte Address
7 0
Halfword Address<0> = 0 1
15 8|7 0
Word Address<1:0> = 00 01 10 "
31 24|23 16(15 8|7 0
Doubleword / Address<2:0> = 000 001 010 011
Extended word 63 56| 55 48|47 40|39 32
Address<2:0> = 100 101 110 111
31 2423 16|15 8|7 0
Quadword Address<3:0> = 0000 0001 0010 0011
127 120| 119 112111 104|103 %
Address<3:0> = 0100 0101 0110 0111
95 88| 87 80|79 72|71 64
Address<3:0> = 1000 1001 1010 1011
63 56 | 55 48|47 40|39 32
Address<3:0> = 1100 1101 1110 1111
31 2423 16|15 8|7 0

FIGURE 6-4 Big-endian Addressing Conventions

byte A load/store byte instruction accesses the addressed byte in both big- and
little-endian modes.

halfword For a load/store halfword instruction, two bytes are accessed. The most
significant byte (bits 15-8) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the address + 1.

Release 1.0.4, 31 May 2002 C. Chapter 6 - Instructions 109



110

word

doubleword or
extended word

quadword

For a load/store word instruction, four bytes are accessed. The most significant
byte (bits 31-24) is accessed at the address specified in the instruction; the least
significant byte (bits 7-0) is accessed at the address + 3.

For a load/store extended or floating-point load/store double instruction,
eight bytes are accessed. The most significant byte (bits 63-56) is accessed at
the address specified in the instruction; the least significant byte (bits 7-0) is
accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-
endian words are accessed. The word at the address specified in the instruction
corresponds to the even register specified in the instruction; the word at
address + 4 corresponds to the following odd-numbered register.

For a load/store quadword instruction, 16 bytes are accessed. The most
significant byte (bits 127-120) is accessed at the address specified in the
instruction; the least significant byte (bits 7-0) is accessed at the address + 15.

SPARC® Joint Programming Specification (JPS1): Commonality + Release 1.0.4, 31 May 2002



Little-endian Addressing Convention.

Within a multiple-byte integer, the byte

with the smallest address is the least significant; a byte’s significance increases as its
address increases. The little-endian addressing conventions are illustrated in
FIGURE 6-5 and defined below the figure.

Byte Address
Halfword Address<0> =
Word Address<1:0>

Doubleword / Address<2:0>
Extended word

Address<2:0>

Quadword Address<3:0>
Address<3:0>

Address<3:0>

Address<3:0>

7 0
0 1

7 0|15 8
00 01 10 11

7 0|15 8|23 16| 31 24
000 001 010 011

7 0|15 8| 23 16 31 24
100 101 110 111

39 32| 47 40| 55 48|63 56
0000 0001 0010 0011

7 0|15 8| 23 16/ 31 24
0100 0101 0110 0111

39 32| 47 40| 55 48|63 56
1000 1001 1010 1011

7 64| 79 72| 87 80|95 88
1100 1101 1110 1111

103 96| 111 104| 119 112|127 120

FIGURE 6-5 Little-endian Addressing Conventions

byte A load/store byte instruction accesses the addressed byte in both big- and

little-endian modes.

halfword

For a load/store halfword instruction, two bytes are accessed. The least

significant byte (bits 7-0) is accessed at the address specified in the instruction;

the most significant byte (bits 15-8) is accessed at the address + 1.
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word For a load/store word instruction, four bytes are accessed. The least significant
byte (bits 7-0) is accessed at the address specified in the instruction; the most
significant byte (bits 31-24) is accessed at the address + 3.

doubleword or

extended word  For a load/store extended or floating-point load/store double instruction,
eight bytes are accessed. The least significant byte (bits 7-0) is accessed at the
address specified in the instruction; the most significant byte (bits 63-56) is
accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two
little-endian words are accessed. The word at the address specified in the
instruction corresponds to the even register in the instruction; the word at the
address specified in the instruction +4 corresponds to the following odd-
numbered register. With respect to little endian memory, an LDD (STD}
instruction behaves as if it is composed of two 32-bit loads (stores), each of
which is byte-swapped independently before being written into each
destination register (memory word).

quadword  For a load/store quadword instruction, 16 bytes are accessed. The least
significant byte (bits 7-0) is accessed at the address specified in the instruction;
the most significant byte (bits 127-120) is accessed at the address + 15.

Address Space Identifiers (ASIs)

Load and store instructions provide an implicit ASI value of ASI _PRI MARY,

ASI _PRI MARY_LI TTLE, ASI _NUCLEUS, or ASI _NUCLEUS_LI TTLE (see Addressing
and Alternate Address Spaces on page 173). Load and store alternate instructions
provide an explicit ASI, specified by the i mm_asi instruction field wheni =0, or
the contents of the ASI register wheni =1.

ASIs 0045 through 7F4¢ are restricted; only privileged software is allowed to access
them. An attempt to access a restricted ASI by nonprivileged software results in a
privileged_action exception. ASls 80,4 through FFg are unrestricted; software is
allowed to access them whether the processor is operating in privileged or
nonprivileged mode, as summarized in TABLE 6-2.

TABLE 6-2  Allowed Accesses to ASls

Processor State

Value Access Type (PSTATE.PRIV) Result of ASI Access
0016-7F16 Restricted Nonprivileged (0) privileged_action exception
Privileged (1) Valid access
8015—-FF1g Unrestricted Nonprivileged (0) Valid access
Privileged (1) Valid access
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6.3.2

IMPL. DEP. #29: In SPARC V9, many ASIs were defined to be implementation
dependent. Some of those ASls have been allocated for standard uses in SPARC
JPS1. Others remain implementation dependent in SPARC JPS1. See TABLE L-1 on
page 539 for details.

IMPL. DEP. #30: In SPARC V9, an implementation could choose to decode only a
subset of the 8-bit ASI specifier. In SPARC JPS1 implementations, all 8 bits of each
ASI specifier must be decoded. Refer to Appendix L, Address Space Identifiers, of this
specification for details.

Separate Instruction Memory

A SPARC V9 implementation may choose to access instruction and data through the
same address space and use hardware to keep data and instruction memory
consistent at all times. It may also choose to overload independent address spaces
for data and instructions and allow them to become inconsistent when data writes
are made to addresses shared with the instruction space.

A SPARC V9 program containing self-modifying code should use FLUSH
instruction(s) after executing stores to modify instruction memory and before
executing the modified instruction(s), to ensure the consistency of program
execution.

Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the
order and completion of memory references. Ordering MEMBARS induce a partial
ordering between sets of loads and stores and future loads and stores. Sequencing
MVEMBARS exert explicit control over completion of loads and stores (or other
instructions). Both barrier forms are encoded in a single instruction, with
subfunctions bit-encoded in an immediate field.

Integer Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions
that compute a result that is a function of two source operands. They either write the
result into the destination register r [ r d] or discard it. One of the source operands is
always r [ r s1] . The other source operand depends on the i bit in the instruction; if
i =0, thentheoperandisr[rs2];ifi =1, then the operand is the constant si mmL0,
si mmL1, or si nl3 sign-extended to 64 bits.

Note: The value of r [0] always reads as zero, and writes to it are ignored.
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Setting Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer
condition codes (i cc and xcc) as a side effect; the other does not affect the
condition codes. A special comparison instruction for integer values is not needed
since it is easily synthesized with the “subtract and set condition codes” (SUBcc)
instruction. See Synthetic Instructions on page 484 for details.

Shift Instructions

Shift instructions shift an r register left or right by a constant or variable amount.
None of the shift instructions change the condition codes.

Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI ) writes a 22-
bit constant from the instruction into bits 31 through 10 of the destination register. It
clears the low-order 10 bits and high-order 32 bits, and it does not affect the
condition codes. Its primary use is to construct constants in registers.

Integer Multiply/Divide

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer
divide instructions perform 64 + 64 - 64-bit operations. For compatibility with
SPARC V8, 32 x 32 - 64-bit multiply instructions, 64 + 32 - 32-bit divide
instructions, and the multiply step instruction are provided. Division by zero causes
a division_by_zero exception.

Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is
the two low-order bits of each operand. If either of the two operands has a nonzero
tag or if 32-bit arithmetic overflow occurs, tag overflow is detected. If tag overflow
occurs, then TADDcc and TSUBcc set the CCR. i cc. V bit; if 64-bit arithmetic
overflow occurs, then they set the CCR. xcc. V bit.

The trapping versions (TADDcc TV, TSUBccTV) are deprecated. See A.71.16 and
A.71.17 for details.

Control-Transfer Instructions (CTIs)

These are the basic control-transfer instruction types:
= Conditional branch (Bi cc, BPcc, BPr, FBf cc, FBPf cc)
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= Unconditional branch

= Call and link (CALL)

= Jump and link (JMPL, RETURN)
= Return from trap (DONE, RETRY)
= Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program
counter (nPC) or by changing the value of both the program counter (PC) and the
next program counter (NPC). When only the next program counter, nPC, is changed,
the effect of the transfer of control is delayed by one instruction. Most control
transfers in SPARC V9 are of the delayed variety. The instruction following a
delayed control transfer instruction is said to be in the delay slot of the control
transfer instruction. Some control transfer instructions (branches) can optionally
annul, that is, not execute, the instruction in the delay slot, depending upon whether
the transfer is taken or not taken. Annulled instructions have no effect upon the
program-visible state, nor can they cause a trap.

Programming Note — The annul bit increases the likelihood that a compiler can
find a useful instruction to fill the delay slot after a branch, thereby reducing the
number of instructions executed by a program. For example, the annul bit can be
used to move an instruction from within a loop to fill the delay slot of the branch
that closes the loop.

Likewise, the annul bit can be used to move an instruction from either the “else” or
“then” branch of an “if-then-else” program block to the delay slot of the branch that
selects between them. Since a full set of conditions is provided, a compiler can
arrange the code (possibly reversing the sense of the condition) so that an instruction
from either the “else” branch or the “then” branch can be moved to the delay slot.

Use of annulled branches provided some benefit in older, single-issue SPARC
implementations. JPS1 processors are superscalar SPARC implementations, on which
the only benefit of annulled branches might be a slight reduction in code size.
Therefore, the use of annulled branch instructions is no longer encouraged.

TABLE 6-3 defines the value of the program counter and the value of the next
program counter after execution of each instruction. Conditional branches have two
forms: branches that test a condition (including branch-on-register), represented in
the table by Bcc, and branches that are unconditional, that is, always or never taken,
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represented in the table by B. The effect of an annulled branch is shown in the table
through explicit transfers of control, rather than by fetching and annulling the
instruction.

TABLE 6-3  Control Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New nPC
Non-CTls — — — — nPC nPC+ 4
Bcc PC-relative Yes Yes 0 nPC EA
Bcc PC-relative Yes No 0 nPC nPC+4
Bcc PC-relative Yes Yes 1 nPC EA
Bcc PC-relative Yes No 1 nPC+4 nPC+ 8
B PC-relative Yes Yes 0 nPC EA
B PC-relative Yes No 0 nPC nPC+ 4
B PC-relative Yes Yes 1 EA EA+4
B PC-relative Yes No 1 nPC+4 nPC+ 8
CALL PC-relative Yes — — nPC EA
JMPL, RETURN Register-indirect Yes — — nPC EA
DONE Trap state No — — TNPC[ TL] TNPC[ TL] +4
RETRY Trap state No — — TPC[ TL] TNPC[ TL]
Tcc Trap vector No Yes — EA EA+4
Tcc Trap vector No No — nPC nPC+ 4
The effective address, EA in TABLE 6-3, specifies the target of the control transfer
instruction. The effective address is computed in different ways, depending on the
particular instruction.
= PC-relative effective address — A PC-relative effective address is computed by
sign extending the instruction’s immediate field to 64-bits, left-shifting the word
displacement by two bits to create a byte displacement, and adding the result to
the contents of the PC.
= Register-indirect effective address — A register-indirect effective address
computes its target address as eitherr[rs1] +r[rs2] ifi =0, or
r[rsi] +sign_ext(simml3) ifi =1.
= Trap vector effective address — A trap vector effective address first computes the
software trap number as the least significant 7 bits of r[ rs1] +r[rs2] if
i =0, or as the least significant 7 bits of r[ r s1] + sw_trap# ifi = 1. The trap
level, TL, is incremented. The hardware trap type is computed as 256 + sw_trap#
and stored in TT[ TL] . The effective address is generated by concatenation of the
contents of the TBA register, the “TL > 0” bit, and the contents of TT[ TL] . See Trap
Base Address (TBA) Register on page 78 for details.
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= Trap state effective address — A trap state effective address is not computed but
is taken directly from either TPC[ TL] or TNPC[ TL] .

Compatibility Note — SPARC V8 specified that the delay instruction was always
fetched, even if annulled, and that an annulled instruction could not cause any traps.
SPARC V9 does not require the delay instruction to be fetched if it is annulled.

SPARC V8 left as undefined the result of executing a delayed conditional branch that
had a delayed control transfer in its delay slot. For this reason, programmers should
avoid such constructs when backward compatibility is an issue.

Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul
bit is 0, the instruction in the delay slot is always executed. If the annul bit is 1, the
instruction in the delay slot is not executed unless the conditional branch is taken.
Note: The annul behavior of a taken conditional branch is different from that of an
unconditional branch.

Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition
is “always”; it never transfers control if its specified condition is “never.” If the
annul bit is 0, then the instruction in the delay slot is always executed. If the annul
bit is 1, then the instruction in the delay slot is never executed. Note: The annul
behavior of an unconditional branch is different from that of a taken conditional
branch.

CALL and JMPL Instructions

The CALL instruction writes the contents of the PC, which points to the CALL
instruction itself, into r [15] (out register 7) and then causes a delayed transfer of
control to a PC-relative effective address. The value written into r [15] is visible to
the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL
instruction itself, into r [ r d] and then causes a register-indirect delayed transfer of
control to the address given by “r[rsl1] + r[rs2]” or “r[rsl1l] + asigned
immediate value.” The value written into r [ r d] is visible to the instruction in the
delay slot.

When PSTATE. AM= 1, the value of the high-order 32 bits transmitted to r [15] by the
CALL instruction or to r [ rd] by the JMPL instruction is zero.
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RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in
nonprivileged mode. RETURN combines the control-transfer characteristics of a JMPL
instruction with r [0] specified as the destination register and the register-window
semantics of a RESTORE instruction.

DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a
trap. These instructions restore the machine state to values saved in the TSTATE
register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of nPC associated with the
instruction that caused the trap, that is, the next logical instruction in the program.
DONE presumes that the trap handler did whatever was requested by the program
and that execution should continue.

Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field
matches the current state of the condition code register specified by its cc field;
otherwise, it executes as a NOP. If the trap is taken, it increments the TL register,
computes a trap type that is stored in TT[TL], and transfers to a computed address in
the trap table pointed to by TBA. See Trap Base Address (TBA) Register on page 78.

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken,
256 plus the 7 least significant bits of the sum of the Tcc’s source operands is written
to TT[TL]. The only visible difference between a software trap generated by a Tcc
instruction and a hardware trap is the trap number in the TT register. See Chapter 7,
Traps, for more information.

Programming Note — Tcc can be used to implement breakpointing, tracing, and
calls to supervisor software. Tcc can also be used for runtime checks, such as out-of-
range array index checks or integer overflow checks.

Conditional Move Instructions

This subsection describes two groups of instructions that copy or move the contents
of any integer or floating-point register.
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MOVcc and FMOVcc Instructions. The MOVcc and FMOVcc instructions copy the
contents of any integer or floating-point register to a destination integer or floating-
point register if a condition is satisfied. The condition to test is specified in the
instruction and may be any of the conditions allowed in conditional delayed control-
transfer instructions. This condition is tested against one of the 6 sets of condition
codes (i cc, xcc, fccO,fccl, fcc2, and f cc3), as specified by the instruction. For
example:

fmovdg % cc2, % 20, 9% 22

moves the contents of the double-precision floating-point register % 20 to register
% 22 if floating-point condition code number 2 (f cc2) indicates a greater-than
relation (FSR. f cc2 = 2). If f cc2 does not indicate a greater-than relation

(FSR. f cc2 # 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in
programs. In most implementations, branches will be more expensive than the
MOVcc or FMOVcc instructions. For example, the following C statement:

if (A>B) X =1; else X = 0;
can be coded as

cnp % 0, % 2 ! (A > B)
or %90, 0, % 3 I set X =0
novg o%cc, %0,1, %3 ! overwite X with 1 if A>B

which eliminates the need for a branch.
MOVr and FMOVr Instructions. The MOVr and FMOVr instructions allow the
contents of any integer or floating-point register to be moved to a destination integer

or floating-point register if the contents of a register satisfy a specified condition.
The conditions to test are enumerated in TABLE 6-4.

TABLE 6-4 MOVr and FMOVr Test Conditions

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero
LZ Less than zero

LEZ Less than or equal to zero
GZ Greater than zero

Release 1.0.4, 31 May 2002 C. Chapter 6 ¢ Instructions 119



6.3.4

120

Any of the integer registers may be tested for one of the conditions, and the result
used to control the move. For example,

movrnz %2, %4, %6

moves integer register % 4 to integer register % 6 if integer register % 2 contains a
nonzero value.

MOVr and FMOVr can be used to eliminate some branches in programs or can
emulate multiple unsigned condition codes by using an integer register to hold the
result of a comparison.

Register Window Management Instructions

This subsection describes the instructions that manage register windows in SPARC
JPS1. The privileged registers affected by these instructions are described in Register-
Window State Registers on page 80.

SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register
window by incrementing the CWP register.

If CANSAVE = 0, then execution of a SAVE instruction causes a window_spill
exception.
If CANSAVE # 0 but the number of clean windows is zero, that is,

(CLEANW N- CANRESTORE) =0
then SAVE causes a clean_window exception.
If SAVE does not cause an exception, it performs an ADD operation, decrements
CANSAVE, and increments CANRESTORE. The source registers for the ADD are from
the old window (the one to which CWP pointed before the SAVE), while the result is

written into a register in the new window (the one to which the incremented CWP
points).

RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the
CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causes a window_fill
exception.
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If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are from
the old window (the one to which CWP pointed before the RESTORE), and the result
is written into a register in the new window (the one to which the decremented CWP
points).

Programming Note — This note describes a common convention for use of register
windows, SAVE, RESTORE, CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure
requires a register window, it executes a SAVE instruction. A routine that does not
allocate a register window of its own (possibly a leaf procedure) should not modify
any windowed registers except out registers 0 through 6. See Leaf-Procedure
Optimization on page 491.

A procedure that uses a register window returns by executing both a RESTORE and a
JMPL instruction. A procedure that has not allocated a register window returns by
executing a JMPL only. The target address for the JMPL instruction is normally 8 plus
the address saved by the calling instruction, that is, the instruction after the
instruction in the delay slot of the calling instruction.

The SAVE and RESTORE instructions can be used to atomically establish a new
memory stack pointer in an r register and switch to a new or previous register
window. See Register Allocation Within a Window on page 494.

SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a
window spill has completed successfully. It increments CANSAVE:

CANSAVE — (CANSAVE + 1)

If the saved window belongs to a different address space (OTHERW N # 0), it
decrements OTHERW N:

OTHERW N ~ (OTHERW N - 1)

Otherwise, the saved window belongs to the current address space (OTHERW N = 0),
so SAVED decrements CANRESTORE:

CANRESTORE ~ (CANRESTORE - 1)

RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a
window has been filled successfully. It increments CANRESTORE:
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CANRESTORE ~ (CANRESTORE + 1)

If the restored window replaces a window that belongs to a different address space
(OTHERW N# 0), it decrements OTHERW N:

OTHERW N ~ (OTHERW N - 1)

Otherwise, the restored window belongs to the current address space
(OTHERW N = 0), so RESTORED decrements CANSAVE:

CANSAVE — (CANSAVE - 1)

If CLEANW N is less than NW NDOWSB — 1, the RESTORED instruction increments
CLEANW N:

if (CLEANW N < (N\W NDOWS — 1)) then CLEANW N — (CLEANW N + 1)

Flush Windows Instruction

The FLUSHWiInstruction flushes all of the register windows, except the current
window, by performing repetitive spill traps. The FLUSHWinstruction causes a spill
trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as

NW NDOWS — 2 — CANSAVE

If this number is nonzero, the FLUSHWinstruction causes a spill trap. Otherwise,
FLUSHWhas no effect. If the spill trap handler exits with a RETRY instruction, the
FLUSHWiInstruction continues causing spill traps until all the register windows
except the current window have been flushed.

6.3.5 State Register Access

The read/write state register instructions access program-visible state and status
registers. These instructions read/write the state registers into/from r registers. A
read/write Ancillary State Register instruction is privileged only if the accessed
register is privileged.

The supported RDASR and WRASR instructions are described in TABLE 6-5; for more
information see Ancillary State Registers (ASRs) on page 83.

TABLE 6-5 Supported RDASR and WRASR Instructions

ASR # ASR Name Description R, W? Priv?
0 yb Y register (deprecated) RW  No
2 CCR Condition Codes Register RW  No
3 ASI ASI RW No
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TABLE 6-5 Supported RDASR and VWRASR Instructions (Continued)

ASR # ASR Name Description R, W? Priv?

4 TI CK Tick (timer) R Yes/No?
5 PC Program Counter R No

6 FPRS Floating-Point Register Status RW  No

16 PCR Performance Control Register RW  Yes/No?
17 PIC Performance Instrumentation Counters RW  Yes/No®
18 DCR Dispatch Control Register RW  Yes

19 GSR Graphics Status Register RW  No

20 Set SOFTI NT Set bits in SOFTI NT W Yes

21 Clear SOFTI NT Clear bits in SOFTI NT W Yes

22 SOFTI NT Software interrupt register RW  Yes

23 Tl CK_COVPARE Tl CK compare RW  Yes

24  STICK System TI CK (timer) RW  Yes/No*
25 STI CK_COVPARE STl CK compare RW  Yes

26-31 Implementation — — —
dependent

=

. Writes are always privileged; reads are privileged if TI CK. NPT = 1; otherwise, reads are nonprivileged.

2. If PCR. NC= 0, access is always privileged. If PCR. NC# 0 and PCR. PRI V=0, access is nonprivileged; otherwise,
access is privileged.

3. All accesses are privileged if PCR. PRI V = 1; otherwise, all accesses are nonprivileged.
4. Writes are always privileged; reads are privileged if STI CK. NPT = 1; otherwise, reads are nonprivileged.

6.3.6 Privileged Register Access

The read/write privileged register instructions access state and status registers that
are visible only to privileged software. These instructions read/write privileged
registers into/from r registers. The read/write privileged register instructions are
privileged.

6.3.7 Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally triadic-register-address
instructions. They compute a result that is a function of one or two source operands
and place the result in one or more destination f registers, with two exceptions:

= Floating-point convert operations, which use one source and one destination
operand
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= Floating-point compare operations, which do not write to an f register but update
one of the f ccn fields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPopl and FPop2
opcodes and does not include branches based on the floating-point condition codes
(FBf cc and FBPf cc) or the load/store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc
instructions do for the integer registers. See MOVcc and FMOVcc Instructions on page
119.

The FMOVr instructions function for the floating-point registers as the MOvr
instructions do for the integer registers. See MOVr and FMOVr Instructions on page
119.

If no floating-point unit is present or if PSTATE. PEF = 0 or FPRS. FEF =0, then any
instruction, including an FPop instruction, that attempts to access an FPU register
generates an fp_disabled exception.

All FPop instructions clear the ft t field and set the cexc field unless they generate
an exception. Floating-point compare instructions also write one of the f ccn fields.
All FPop instructions that can generate IEEE exceptions set the cexc and aexc
fields unless they generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcce(s,d,q),
FMOVr (s,d,q), and FNEGQ(s,d,q) cannot generate IEEE exceptions, so they clear cexc
and leave aexc unchanged.

IMPL. DEP. #3: An implementation may indicate that a floating-point instruction did
not produce a correct IEEE Std 754-1985 result by generating an fp_exception_other
exception with FSR. f tt = unfinished_FPop or unimplemented FPop. In this case,
privileged software must emulate any functionality not present in the hardware.

SPARC JPS1 processors do not implement any quad-precision floating-point
operations in hardware. Instead, these operations cause an fp_exception_other trap
with FSR. f tt = unimplemented_FPop, and system software emulates quad
operations (impl. dep. #1).

See ftt = unfinished_FPop on page 61 to see which instructions can produce an
unfinished_FPop exception. See ftt = unimplemented_FPop on page 63 to see which
instructions can produce an unimplemented_FPop exception.

Implementation-Dependent Instructions

SPARC V9 provides two instructions that are entirely implementation dependent:
| MPDEP1 and | MPDEP2.

In SPARC JPS1, the | MPDEP1 opcode space is used by graphics instructions.
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In SPARC JPS1, | MPDEP2A is subdivided into | MPDEP2A and | MPDEP2B. | MPDEP2A
remains implementation dependent. However, some implementations use the

| MPDEP2B opcode space for floating-point multiply-add/multiply-subtract
instructions, which are expected to be incorporated into a future JPS. Therefore, for
future compatibility, it is recommended that SPARC JPS1 implementations not use

| MPDEP2B instructions, unless they are used in compatibility with the Fujitsu/HAL
SPARC64 V implementation.

Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned causes a trap.
Specifically:

= Attempting to execute a reserved FPop causes an fp_exception_other exception
(with FSR. ftt = unimplemented_FPop).

= Attempting to execute any other reserved opcode causes an illegal_instruction
exception (see illegal_instruction, page 163).

= Attempting to execute an FPop with a nonzero value in a reserved instruction
field should cause an fp_exception_other exception (with
FSR. ftt = unimplemented_FPop).t

= Attempting to execute a Tcc instruction with a nonzero value in a reserved
instruction field causes an illegal_instruction exception.

= Attempting to execute any other instruction with a nonzero value in a reserved
instruction field should cause an illegal_instruction exception.t

See Appendix E, Opcode Maps, for a complete enumeration of the reserved opcodes.

Summary of Unimplemented Instructions

Certain SPARC V9 instructions are not implemented in hardware in SPARC JPS1
processor. Executing any of these instructions results in implementation-dependent
behavior, described in TABLE 6-6.

TABLE6-6  SPARC JPS1 Actions on Unimplemented Instructions

Instructions Trap Taken SPARC JPS1-specific Behavior
Quad FPops (including FdAMJLQ) fo_exception_other FSR. ftt = unimplemented_FPop
POPC illegal_instruction (none)

RDPR FQ illegal_instruction There is no FQ

L DQF illegal_instruction (none)

STQF illegal_instruction (none)

1. Although itis recommended that this exception is generated, a JPS1 implementation may ignore
the contents of reserved instruction fields (in instructions other than Tcc).
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Programming Note — The operating system emulates all of these instructions
except RDPR FQ

6.4

6.4.1

126

Register Window Management

The state of the register windows is determined by the contents of the set of
privileged registers described in Register Window Management Instructions on page
120. Those registers are affected by the instructions described in Register Window
Management on page 126. Privileged software can read/write these state registers
directly by using RDPR/WRPR instructions.

Register Window State Definition

For the state of the register windows to be consistent, the following must always be
true:

CANSAVE + CANRESTORE + OTHERW N = NW NDOWS - 2

FIGURE 5-3 on page 45 shows how the register windows are partitioned to obtain the
above equation. The partitions are as follows:

= The current window and the window that overlaps two other valid windows and
so must not be used (in FIGURE 5-3, windows 0 and 5, respectively). They are
always present and account for the 2 subtracted from NW NDOWS in the right side
of the equation.

= Windows that do not have valid contents and can be used (through a SAVE
instruction) without causing a spill trap. These windows (windows 1-4 in
FIGURE 5-3) are counted in CANSAVE.

= Windows that have valid contents for the current address space and that can be
used (through the RESTORE instruction) without causing a fill trap. These
windows (window 7 in FIGURE 5-3) are counted in CANRESTORE.

= Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows through a SAVE (RESTORE)
instruction results in a spill (fill) trap to a separate set of trap vectors, as discussed
in the following subsection. These windows (window 6 in FIGURE 5-3) are counted
in OTHERW N.
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In addition,
CLEANW N = CANRESTORE

since CLEANW N is the sum of CANRESTORE and the number of clean windows
following CWP.

For the window-management features of the architecture described in this section to
be used, the state of the register windows must be kept consistent at all times, except
within the trap handlers for window spilling, filling, and cleaning. While window
traps are being handled, the state may be inconsistent. Window spill/fill trap
handlers should be written so that a nested trap can be taken without destroying
state.

Programming Note — System software is responsible for keeping the state of the
register windows consistent at all times. Failure to do so will cause undefined
behavior. For example, CANSAVE, CANRESTORE, and OTHERW N must never be
greater than or equal to 7 (NW NDOWS — 1).

Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register
windows, support clean windows, and implement the FLUSHWinstruction.

Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next
register window is occupied (CANSAVE = 0). An overflow causes a spill trap that
allows privileged software to save the occupied register window in memory, thereby
making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the
previous register window is not valid (CANRESTORE = 0). An underflow causes a fill
trap that allows privileged software to load the registers from memory.

Clean-Window Trap

The processor provides the clean_window trap so that software can create a secure
environment in which it is guaranteed that register windows contain only data from
the same address space.

A clean register window is one in which all of the registers, including uninitialized
registers, contain either 0 or data assigned by software executing in the address
space to which the window belongs. A clean window cannot contain register values
from another process, that is, software operating in a different address space.
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Supervisor software specifies the number of windows that are clean with respect to
the current address space in the CLEANW N register. This number includes register
windows that can be restored (the value in the CANRESTORE register) and the
register windows following CWP that can be used without cleaning. Therefore, the
number of clean windows that are available to be used by the SAVE instruction is

CLEANW N — CANRESTORE

The SAVE instruction causes a clean_window exception if this value is 0. This
behavior allows supervisor software to clean a register window before it is accessed
by a user.

Vectoring of Fill/Spill Traps

To make handling of fill and spill traps efficient, SPARC V9 provides multiple trap
vectors for the fill and spill traps. These trap vectors are determined as follows:

= Supervisor software can mark a set of contiguous register windows as belonging
to an address space different from the current one. The count of these register
windows is kept in the OTHERW N register. A separate set of trap vectors
(fill_n_other and spill_n_other) is provided for spill and fill traps for these register
windows (as opposed to register windows that belong to the current address
space).

= Supervisor software can specify the trap vectors for fill and spill traps by
presetting the fields in the WSTATE register. This register contains two subfields,
each three bits wide. The WSTATE. NORMAL field determines one of eight spill (fill)
vectors to be used when the register window to be spilled (filled) belongs to the
current address space (OTHERW N = 0). If the OTHERW N register is nonzero, the
WSTATE. OTHER field selects one of eight fill_n_other (spill_n_other) trap vectors.

See Chapter 7, Traps, for more details on how the trap address is determined.

CWP on Window Traps

On a window trap, the CWP is set to point to the window that must be accessed by
the trap handler, as follows. (Note: All arithmetic on CWP is done modulo
NW NDOWS.)

= If the spill trap occurs because of a SAVE instruction (when CANSAVE = 0), there
is an overlap window between the CWP and the next register window to be
spilled:

CWP — (CWP + 2) mod NW NDOAS

If the spill trap occurs because of a FLUSHWiInstruction, there can be unused
windows (CANSAVE) in addition to the overlap window between the CWP and the
window to be spilled:

SPARC® Joint Programming Specification (JPS1): Commonality + Release 1.0.4, 31 May 2002



CWP — (CWP + CANSAVE + 2) mod NW NDOWS

Implementation Note — All spill traps can use
CWP — (CWP + CANSAVE + 2) mod NW NDOWS
since CANSAVE is 0 whenever a trap occurs because of a SAVE instruction.

= On afill trap, the window preceding CWP must be filled:

CWP — (CWP - 1) mod NW NDOWS
= On a clean_window trap, the window following CWP must be cleaned. Then

CWP — (CWP + 1) mod NW NDOWS

Window Trap Handlers

The trap handlers for fill, spill, and clean_window traps must handle the trap
appropriately and return, by using the RETRY instruction, to reexecute the trapped
instruction. The state of the register windows must be updated by the trap handler,
and the relationships among CLEANW N, CANSAVE, CANRESTORE, and OTHERW N
must remain consistent. Follow these recommendations:

= A spill trap handler should execute the SAVED instruction for each window that it
spills.

= A fill trap handler should execute the RESTORED instruction for each window that
it fills.

= A clean_window trap handler should increment CLEANW N for each window that
it cleans:

CLEANW N — (CLEANW N + 1)

Window trap handlers in SPARC JPS1 can be very efficient. See Example Code for Spill
Handler on page 504 for details and sample code.
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C.CHAPTER 7

Traps

A trap is a vectored transfer of control to supervisor software through a trap table
that contains the first eight (32 for clean_window, spill, fill,
fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and
fast_data_access_protection traps) instructions of each trap handler. The base
address of the table is established by supervisor software, by writing the Trap Base
Address (TBA) register. The displacement within the table is determined by the trap
type and the current trap level (TL). One-half of the table is reserved for hardware
traps; one-quarter is reserved for software traps generated by Tcc instructions; the
remaining quarter is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to do the
following:

1. Save certain processor state (program counters, CWP, ASI , CCR, PSTATE, and the
trap type) on a hardware register stack.

2. Enter privileged execution mode with a predefined PSTATE.
3. Begin executing trap handler code in the trap vector.

When the trap handler has finished, it uses either a DONE or RETRY instruction to
return.

A trap may be caused by a Tcc instruction, an instruction-induced exception, a reset,
an asynchronous error, or an interrupt request not directly related to a particular
instruction. The processor must appear to behave as though, before executing each
instruction, it determines if there are any pending exceptions or interrupt requests. If
there are pending exceptions or interrupt requests, the processor selects the highest-
priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to
continue executing the current instruction stream without software intervention. A
trap is the action taken by the processor when it changes the instruction flow in
response to the presence of an exception, interrupt, or Tcc instruction.
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A catastrophic error exception is due to the detection of a hardware malfunction
from which, due to the nature of the error, the state of the machine at the time of the
exception cannot be restored. Since the machine state cannot be restored, execution
after such an exception may not be resumable. An example of such an error is an
uncorrectable bus parity error.

IMPL. DEP. #31: The causes and effects of catastrophic errors are implementation-
dependent. They may cause precise, deferred, or disrupting traps.

Traps are described in these sections:

= Processor States, Normal and Special Traps on page 132
= Trap Categories on page 137

= Trap Control on page 140

= Trap-Table Entry Addresses on page 141

= Trap Processing on page 149

= Exception and Interrupt Descriptions on page 161

7.1 Processor States, Normal and Special
Traps

The processor is always in one of three discrete states:
= execut e_st at e, which is the normal execution state of the processor

= RED st at e (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL — 1, and for processing
hardware- and software-initiated resets

= error_state, which is a halted state that is entered as a result of a trap when
TL = MAXTL

Traps processed in execut e_st at e are called normal traps. Traps processed in
RED st at e are called special traps.
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7.1.1

Release 1.0.4, 31 May 2002

FIGURE 7-1 shows the pro

cessor state diagram.

Trap or SIR @
MAXTL
Trap @ Trap or SIR@
TL = MAXTL-1, TL = MAXTL
Trap or SIR @
TL< MAXTL,
RED =1
execute_state RED_state error_state
DONE
RETRY Trap or SIR@
RED =0 TL < MAXTL
\
/
N
_ 7 por, S 7
Trap @ (impl. dep. #212) xR - =
TL < MAXTL-1 (impl. dep. #254)
Any State
Including Power Off
FIGURE 7-1  Processor State Diagram
RED _state

RED_st at e is an acronym for Reset, Error, and Debug state. The processor enters
RED_st at e under any one of the following conditions:

= A trap is taken when TL = MAXTL -1.
= A POR, WDR, or XIR reset occurs.

= An SIR occurs when TL < MAXTL.

= System software sets PSTATE. RED =1.

RED_st at e serves two mutually exclusive purposes:

= During trap processing, it indicates that no more trap levels are available; that is,
if another nested trap is taken, the processor will enter err or _st at e and halt.
RED_st at e provides system software with a restricted execution environment.

= It provides the execution environment for all reset processing.

RED_st at e is indicated by PSTATE. RED. When this bit is set, the processor is in
RED_st at e; when this bit is clear, the processor is not in RED_st at e, independent
of the value of TL. Executing a DONE or RETRY instruction in RED_st at e restores
the stacked copy of the PSTATE register, which clears the PSTATE. RED flag if the
stacked copy had it cleared. System software can also set or clear the PSTATE. RED
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flag with a WRPR instruction, which also forces the processor to enter or exit
RED_st at e, respectively. In this case, the WRPR instruction should be placed in the
delay slot of a jump so that the PC can be changed in concert with the state change.

Programming Notes — Setting TL = MAXTL with a WRPR instruction does not also
set PSTATE. RED =1 nor does it alter any other machine state. The values of
PSTATE. RED and TL are independent.

Setting PSTATE. RED with a WRPR instruction causes the processor to execute in
RED_st at e. This results in the execution environment, as defined in RED_state
Execution Environment on page 135. However, it is different from a RED_st at e trap
in the sense that there are no trap-related changes in the machine state (for example.,
TL does not change).

RED_state Trap Table

Traps occurring in RED_st at e or traps that cause the processor to enter RED_st at e
use an abbreviated trap vector. The RED_st at e trap vector is constructed so that it
can overlay the normal trap vector if necessary. TABLE 7-1 illustrates the RED st at e
trap vector layout.

TABLE7-1  RED_st at e Trap Vector Layout

Offset TT Reason

0046 0 Reserved (SPARC V8 reset)

2016 1 Power-on reset (POR)

4044 2 Watchdog reset (WDR)

6046 3t Externally initiated reset (XIR)

8016 4 Software-initiated reset (SIR)

Al * All other exceptions in RED_st at e

TT=2if awatchdog reset occurs while the processor isnotin err or _st at e; TT = trap type of the exception that
caused entry into er r or _st at e if a watchdog reset (WDR) occursinerror_st ate.

TT=3ifan externally_initiated_reset (XIR) occurs while the processor is notinerror _st at e; TT = trap type of
the exception that caused entry into er r or _st at e if the externally initiated reset occurs in err or _st at e.

"TT = trap type of the exception. See TABLE 7-3 on page 144.

IMPL. DEP. #114: The RED_st at e trap vector is located at an implementation-
dependent address referred to as RSTVaddr. The value of RSTVaddr is a constant
within each implementation.
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RED_state Execution Environment

In RED_st at e, the processor is forced to execute in a restricted environment by
overriding the values of some processor controls and state registers.

The values are overridden, not set, allowing them to be switched atomically.
IMPL. DEP. #115: A processor’s behavior in RED_state is implementation dependent.

When RED_st at e is entered because of component failures, the handler should
attempt to recover from potentially catastrophic error conditions or to disable the
failing components. When RED_st at e is entered after a reset, the software should
create the environment necessary to restore the system to a running state.

RED_state Entry Traps

The following traps are processed in RED_st at e in all cases.

= Power-on reset (POR) — Implemented in hardware in SPARC JPS1 processors;
not really a trap.

= Watchdog reset (WDR) — Implemented in hardware in SPARC JPS1; this trap is
used as a recovery mechanism from err or _st at e in SPARC JPS1. Upon an
entry to error _st at e, the processor automatically invokes a watchdog reset to
enter RED_st at e.

=« Externally initiated reset (XIR) — Implemented in hardware in SPARC JPS1;
typically used as a nonmaskable interrupt method for debug.

In addition, the following trap is processed in RED_st at e if TL < MAXTL when the

trap is taken. Otherwise, it is processed in error _st at e.

= Software-initiated reset (SIR)

Traps that occur when TL = MAXTL - 1 also set PSTATE. RED = 1; that is, any trap
handler entered with TL = MAXTL runs in RED_st at e.

Any non-reset trap that sets PSTATE. RED = 1 or that occurs when PSTATE. RED=1
branches to a special entry in the RED_st at e trap vector at RSTVaddr + AOq.

RED_state Software Considerations
In effect, RED_st at e reserves one level of the trap stack for recovery and reset
processing. Software should be designed to require only MAXTL - 1 trap levels for

normal processing. That is, any trap that causes TL = MAXTL is an exceptional
condition that should cause entry to RED_st at e.
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7.1.2
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The architected value for MAXTL in SPARC JPS1 is 5; typical usage of the trap levels
is shown in TABLE 7-2.

TABLE 7-2  Typical Usage for Trap Levels

TL Usage

0 Normal execution

1 System calls; interrupt handlers; instruction emulation
2 Window spill /fill

3 Page-fault handler

4 Reserved for error handling

5 RED_st at e handler

Programming Note — To log the state of the processor, RED_st at e-handler
software needs either a spare register or a preloaded pointer to a save area. To
support recovery, the operating system might reserve one of the alternate global
registers (for example, %&a7) for use in RED_st at e.

Error_state

The processor enters er r or _st at e when a trap occurs while the processor is
already at its maximum supported trap level, that is, when TL = MAXTL.

IMPL. DEP. #39: The processor may enter err or _st at e when an implementation
dependent error condition occurs.

IMPL. DEP. #40: Effects when err or _st at e is entered are implementation-
dependent, but it is recommended that as much processor state as possible be
preserved upon entry to err or _st at e. In addition, a SPARC JPS1 processor may
have other err or _st at e entry traps that are implementation dependent.

IMPL. DEP. #254: The means of exiting err or _st at e are implementation
dependent. A suggested method is for the processor, upon entering er r or _st at e,
to automatically generate a watchdog_reset (WDR).

SPARC® Joint Programming Specification (JPS1): Commonality « Release 1.0.4, 31 May 2002



7.2

7.2.1

[.2.2

Trap Categories

An exception or interrupt request can cause any of the following trap types:

= Precise trap

= Deferred trap

= Disrupting trap
= Reset trap

Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-

visible state has been changed by the trap-inducing instructions. When a precise trap

occurs, several conditions must be true.

= The PCsaved in TPC[ TL] points to the instruction that induced the trap and the
nPC saved in TNPC[ TL] points to the instruction that was to be executed next.

= All instructions issued before the one that induced the trap have completed
execution.

= Any instructions issued after the one that induced the trap remain unexecuted.
Among the actions the trap handler software might take after a precise trap are
these:

= Return to the instruction that caused the trap and reexecute it by executing a
RETRY instruction (PC — old PC, nPC ~ old nPC).

= Emulate the instruction that caused the trap and return to the succeeding
instruction by executing a DONE instruction (PC — old nPC, nPC~ old nPC + 4).

= Terminate the program or process associated with the trap.

Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself or by one or more other instructions.

Associated with a particular deferred-trap implementation, the following must exist:

= An instruction that causes a potentially outstanding deferred-trap exception to be
taken as a trap

= Privileged instructions that access the state information needed by the supervisor
software to emulate the deferred-trap-inducing instruction and to resume
execution of the trapped instruction stream
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Programming Note — Resuming execution may require the emulation of
instructions that had not completed execution at the time of the deferred trap, that
is, those instructions in the deferred-trap queue.

IMPL. DEP. #32: Whether any deferred traps (and, possibly, associated deferred-trap
queues) are present is implementation dependent.

Among the actions software can take after a deferred trap are these:

= Emulate the instruction that caused the exception, emulate or cause to execute
any other execution-deferred instructions that were in an associated deferred-trap
state queue, and use RETRY to return control to the instruction at which the
deferred trap was invoked.

= Terminate the program or process associated with the trap.

Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is
caused by a condition (for example, an interrupt) rather than directly by a particular
instruction; that cause distinguishes it from precise and deferred traps. When a
disrupting trap has been serviced, trap handler software normally arranges for
program execution to resume where it left off. That differentiates disrupting traps
from reset traps, which trap to a unique reset address from which execution of the
program that was running when the reset occurred is never expected to resume.

Disrupting traps are controlled by a combination of the Processor Interrupt Level
(PI'L) register and the Interrupt Enable (I E) field of PSTATE. A disrupting trap
condition is ignored when interrupts are disabled (PSTATE. | E = 0) or when the
condition’s interrupt level is less than or equal to that specified in PI L.

A disrupting trap may be due either to an interrupt request not directly related to a
previously executed instruction or to an exception related to a previously executed
instruction. Interrupt requests may be either internal or external. An interrupt
request can be induced by the assertion of a signal not directly related to any
particular processor or memory state, for example, the assertion of an “1/0 done”
signal.

A disrupting trap related to an earlier instruction causing an exception is similar to a
deferred trap in that it occurs after instructions following the trap-inducing
instruction have modified the processor or memory state. The difference is that the
condition that caused the instruction to induce the disrupting trap may lead to
unrecoverable errors, since the implementation may not preserve the necessary state.
An example is an ECC data-access error reported after the corresponding load
instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.
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7.2.5

Among the actions that trap-handler software might take after a disrupting trap are
these:

= Use RETRY to return to the instruction at which the trap was invoked
(PC ~ old PC, nPC —~ old nPC).

= Terminate the program or process associated with the trap.

Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware
determines that the machine must be reset to a known state. Reset traps differ from
disrupting traps in that trap handler software for resets is never expected to resume
execution of the program that was running when the reset trap occurred.

IMPL. DEP. #37: Some of a processor’s behavior during a reset trap is
implementation dependent. See Special Trap Processing on page 155 for details.

The following reset traps are defined for SPARC V9:

= Software-initiated reset (SIR) — Initiated by software by executing the SIR
instruction.

= Power-on reset (POR) — Initiated when power is applied (or reapplied) to the
processor.

= Watchdog reset (WDR) — Initiated in response to watchdog timer overflow or
entry into error _st at e (impl. dep. #254).

= Externally initiated reset (XIR) — Initiated in response to an external signal. This
reset trap is normally used for critical system events, such as power failure.

Uses of the Trap Categories

The SPARC V9 trap model makes the following stipulations:

1. Reset traps, except software_initiated_reset traps, occur asynchronously to
program execution.

2. When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. These exceptions are:

= Software_initiated_reset

= instruction_access_exception

= privileged_action

= privileged_opcode

= trap_instruction

= instruction_access_error

= clean_window

« fp_disabled

» LDDF_mem_address_not_aligned
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» STDF_mem_address_not_aligned

« LDQF_mem_address_not_aligned (not used in SPARC JPS1)
« STQF_mem_address_not_aligned (not used in SPARC JPS1)
» tag_overflow

= Spill_n_normal

= spill_n_other

« fill_n_normal

« fill_n_other

IMPL. DEP. #33: Exceptions that occur as the result of program execution may be
precise or deferred, although it is recommended that such exceptions be precise.
Examples are mem_address_not_aligned, division_by_zero.

An exception caused after the initial access of a multiple-access load or store
instruction (load/store doubleword, block load, block store, LDSTUB, CASA,
CASXA, or SWAP) that causes a catastrophic exception may be precise, deferred, or
disrupting. Thus, a trap due to the second memory access can occur after the
processor or memory state has been modified by the first access.

Implementation-dependent catastrophic exceptions may cause precise, deferred,
or disrupting traps (impl. dep. #31).

Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is dispatched.

7.3

140

Trap Control

Several registers control how any given trap is processed:

The interrupt enable (I E) field in PSTATE and the processor interrupt level (PI L)
register control interrupt processing.

The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable
(PEF) field in PSTATE, and the trap enable mask (TEM in the FSR control floating-
point traps.

The TL register, which contains the current level of trap nesting, controls whether
a trap causes entry to execute_state, RED state,orerror_state.

PSTATE. TLE determines whether implicit data accesses in the trap routine will
be performed with the big- or little-endian byte order.
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7.3.2

PIL Control

Between the execution of instructions, the U prioritizes the outstanding exceptions
and interrupt requests. At any given time, only the highest priority exception or
interrupt request is taken as a trap. When there are multiple outstanding exceptions
or interrupt requests, SPARC V9 assumes that lower-priority interrupt requests will
persist and lower-priority exceptions will recur if an exception-causing instruction is
reexecuted.

For interrupt requests, the IlU compares the interrupt request level against the
processor interrupt level (PI L) register. If the interrupt request level is greater than
PI L, then the processor takes the interrupt request trap, assuming there are no
higher-priority exceptions outstanding.

IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the
method by which an interrupt request is removed are implementation dependent.

TEM Control

The occurrence of floating-point traps of type IEEE_754_exception can be controlled
with the user-accessible trap enable mask (TEM) field of the FSR. If a particular bit of
TEMis 1, the associated /IEEE_754_exception can cause an fp_exception_ieee_754
trap.

If a particular bit of TEMis 0, the associated /IEEE_754_exception does not cause an
fo_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in
the FSR's accrued exception field (aexc).

If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the
destination f register, f ccn, and aexc fields remain unchanged. However, if an
IEEE_754_exception does not result in a trap, then the f register, f ccn, and aexc
fields are updated to their new values.

7.4

Trap-Table Entry Addresses

Privileged software initializes the trap base address (TBA) register to the upper 49
bits of the trap-table base address. Bit 14 of the vector address (the TL>0 field) is set
based on the value of TL at the time the trap is taken; thatis, to 0 if TL =0 and to 1
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if TL > 0. Bits 13-5 of the trap vector address are the contents of the TT register. The
lowest five bits of the trap address, bits 4-0, are always 0 (hence, each trap-table
entry is at least 2° or 32 bytes long). FIGURE 7-2 illustrates the trap vector address.

TBA<63:15>

TL>0

TTr

00000,

63

74.1

7.4.2

FIGURE 7-2 Trap Vector Address

Trap Table Organization

The trap table layout is as illustrated in FIGURE 7-3.

Trap Table Contents

Value of TL Hard ;
Before the Trap ardware traps
Spilllfill traps
TL=0
Software traps
Reserved
Hardware traps
Spilllfill traps
TL>0 P P
Software traps
Reserved

FIGURE 7-3 Trap Table Layout

Trap Type

00046—07F 4
08046—0FF 4
10046—7F g

18045—1FF g

20046—27F 16
28045—2FF 1
30046—37F 15
38046—3FF g

14

13

The trap table for TL = 0 comprises 512 thirty-two-byte entries; the trap table for
TL >0 comprises 512 more 32-byte entries. Therefore, the total size of a full trap
table is 512 x 32 x 2, or 32 Kbytes. However, if privileged software does not use
software traps (Tcc instructions) at TL > 0, the table can be made 24 Kbytes long.

Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into
the current 9-bit TT register (TT[ TL] ) by hardware. Control is then transferred into
the trap table to an address formed by the TBA register (TL>0) and TT[ TL] (see Trap
Base Address (TBA) Register on page 78). The lowest five bits of the address are
always 0; each entry in the trap table may contain the first eight instructions of the
corresponding trap handler.
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Programming Notes — The trap type for the clean_window exception is 0244.
Three subsequent trap vectors (025,5-027,¢) are reserved to allow for an inline
(branchless) trap handler. Three subsequent trap vectors are reserved for each spill/
fill vector, to allow for an inline (branchless) trap handler.

The spill/fill, clean_window, and MMU-related traps
(fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and
fast_data_access_protection) trap types are spaced such that their trap-table entries
are 128 bytes (32 instructions) long in SPARC JPS1. This length allows the complete
code for one spill/fill routine, a clean_window routine, or a normal MMU miss
handling routine to reside in one trap-table entry.

When a special trap occurs, the TT register is set as described in RED_state on page
133. Control is then transferred into the RED_st at e trap table to an address formed
by the RSTVaddr and an offset depending on the condition.

TT values 000,4—0FF,4 are reserved for hardware traps. TT values 100,4-17F;¢ are
reserved for software traps (traps caused by execution of a Tcc instruction). TT
values 1804¢—1FF¢ are reserved for future uses.

IMPL. DEP. #35: TT values 0604¢ to 07F ¢ are reserved for implementation-dependent
exceptions. The existence of implementation_dependent_n traps and whether any
that do exist are precise, deferred, or disrupting is implementation dependent. TT
values 060, through 06F;4 are defined for JPS1 processors and 0704 through 07F ¢
remain implemenation-dependent; see TABLE 7-3 and Appendix C, Implementation
Dependencies.

The assignment of TT values to traps is shown in TABLE 7-3; TABLE 7-4 lists the traps
in priority order. Traps marked with an open bullet (O) are optional and possibly
implementation dependent. Traps marked with a closed bullet (e ) are mandatory;
that is, hardware must detect and trap these exceptions and interrupts and must set
the defined TT values. In the table, AG = alternate globals, MG = MMU globals, and
| G=interrupt globals. “-NA-" means “not applicable”.
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TABLE 7-3  Exception and Interrupt Requests, by TT Value (1 of 2)

SPARC JPS1 Global Register

V9 M/O M/O Exception or Interrupt Request TT Set Priority
. . Reserved 0004¢ -NA- -NA-
. . power_on_reset 00144 AG 0

a . watchdog_reset 00244 AG

a . externally_initiated_reset 00346 AG 1

. . software_initiated_reset 00446 AG 1

. ) RED_state_exception 00546 AG 1

. . Reserved 0061600715 -NA- -NA-
° . instruction_access_exception 008:¢ MG

O 0 instruction_access_MMU_miss 0096 ME impl. dep.)t 2

a . instruction_access_error 00A5 AG 3

. . Reserved 00B,5—-00F 15 -NA- -NA-
. . illegal_instruction 01046 AG 7

° ° privileged_opcode 01144 AG 6

a a unimplemented_LDD 01244 AG 6

g a unimplemented_STD 01345 AG 6

. . Reserved 014,6-01F 5 -NA- -NA-
. . fo_disabled 02046 AG 8

0 . fo_exception_ieee_754 02146 AG 1

0 . fo_exception_other 02244 AG 1

. ° tag_overflow 02344 AG 14

a . clean_window 024,027, AG 10

. . division_by_zero 02844 AG 15

0 0 internal_processor_error 0294 impl. dep. impl. dep
. . Reserved 02A16—02F 15 -NA- -NA-
. . data_access_exception 03044 MG 12

0 0 data_access_MMU_miss 03146 M impl. dep.)t 12

a . data_access_error 03244 AG 12

O O data_access_protection 03346 MG(impl. dep.)t 12

. . mem_address_not_aligned 03444 AG 10

0 ° LDDF_mem_address_not_aligned (impl. dep. #109) 03546 AG 10

O ° STDF_mem_address_not_aligned (impl. dep.#110) 03646 AG 10

° . privileged_action 03744 AG 1
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TABLE 7-3  Exception and Interrupt Requests, by TT Value (2 of 2)

SPARC JPS1 Global Register

V9 M/O M/O Exception or Interrupt Request TT Set Priority
0 0 LDQF_mem_address_not_aligned (impl. dep. #111) 03846 AG 10

0 0 STQF_mem_address_not_aligned (impl. dep. #112) 03946 AG 10

. . Reserved 03A6—03F ;5 -NA- -NA-
a a async_data_error 04046 impl. dep. 2

. . interrupt_level_n (n = 1-15) 041,¢-04F ¢ AG 32-n
. . Reserved 050,—05F 15 -NA- -NA-
a . interrupt_vector 06016 IG 16

g . PA_watchpoint 06146 AG 12

a . VA_watchpoint 06244 AG 1

a . ECC_error 06315 AG 33

a . fast_instruction_access_MMU_miss 064,067, MG 2

a . fast_data_access_MMU_miss 068,—06B15 MG 12

0 . fast_data_access_protection 06C15—06F15 MG 12

O O implementation_dependent_exception_n (impl. dep. #35)  070,4-07F  impl. dep. impl. dep.
. . spill_n_normal (n = 0-7) 080,6-09F 5 AG 9

] ° spill_n_other (n = 0-7) 0A0,5-0BF5 AG 9

. . fill_n_normal (n = 0-7) 0C0,5-0DF;cAG 9

. . fill_n_other (n = 0-7) 0EO0,6—0FF15 AG 9

. . trap_instruction 100,4-17F15 AG 16

. . Reserved 180,6-1FF5 -NA- -NA-

T Global register set is implementation-dependent, but use of MMU Globals (MG) is recommended
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TABLE 7-4  Exception and Interrupt Requests, by Priority (0 = Highest; larger number = lower priority)

SPARC JPS1 Global Register

V9 M/O M/O Exception or Interrupt Request TT Set Priority §
° ° power_on_reset (POR) 00144 AG

O ° externally_initiated_reset (XIR) 00346 AG 1
O ° watchdog_reset (WDR) 0024 AG 1
° ) software_initiated_reset (SIR) 00446 AG 1
° ) RED_state_exception 00546 AG 1
0 0 instruction_access_MMU_miss 00946 MS(impl. dep.)t 2
O O async_data_error 04046 impl. dep. 2
O . fast_instruction_access_MMU_miss 06416067, MG 2
O . instruction_access_error 00A 4 AG 3
° . instruction_access_exception 00846 MG 5
° ° privileged_opcode 01144 AG 6
O O unimplemented_LDD 01244 AG 6
O O unimplemented_STD 01344 AG 6
° ) illegal_instruction 01046 AG 7
. . fo_disabled 02044 AG 8
° ° spill_n_normal (n = 0-7) 080,6-09F15 AG 9
° ) spill_n_other (n = 0-7) 0A0,6—0BF;5 AG 9
. . fill_n_normal (n = 0-7) 0C0,6—-0DF15AG 9
. . fill_n_other (n = 0-7) 0E04—0FF15 AG 9
O ° clean_window 024,6-027,5 AG 10
O . LDDF_mem_address_not_aligned (impl. dep. #109) 03544 AG 10
O ° STDF_mem_address_not_aligned (impl. dep. #110) 03644 AG 10
O 0 LDQF_mem_address_not_aligned (impl. dep. #111) 03846 AG 10
O O STQF_mem_address_not_aligned (impl. dep. #112) 03946 AG 10
° ° mem_address_not_aligned 03446 AG 10
O ° fo_exception_ieee_754 02146 AG 11
O . fp_exception_other 02246 AG 11
° . privileged_action 03746 AG 11
O ° VA_watchpoint 06246 AG 11
° ° data_access_exception 03044 MG 12
O ° fast_data_access_MMU_miss 0681—06B,5 MG 12
0 0 data_access_MMU_miss 0314 M3(impl. dep.)t 12
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TABLE 7-4  Exception and Interrupt Requests, by Priority (0 = Highest; larger number = lower priority)
SPARC JPS1 Global Register

V9 M/O M/O Exception or Interrupt Request TT Set Priority §
O ° data_access_error 03244 AG 12

O ° PA_watchpoint 06146 AG 12

O . fast_data_access_protection 06C—06F5 MG 12

O O data_access_protection 03345 M3 impl. dep.)t 12

° ) tag_overflow 02346 AG 14

° ° division_by_zero 0284 AG 15

° ) trap_instruction 100,4-17F15 AG 16

O . interrupt_vector 06046 I G 16

° ° interrupt_level_n (n = 1-15) 041,6—04F1 AG 32-n

O . ECC_error 06346 AG 33

O 0 implementation_dependent_exception_n (impl. dep. #35)  070,4—07F;5 impl. dep. impl. dep.
O O internal_processor_error 02946 impl. dep. impl. dep

t Global register set is implementation-dependent, but use of MMU Globals (MG) is recommended

t Although these trap priorities are recommended, all trap priorities are implementation dependent (impl.
dep. #36 on page 148), including relative priorities within a given priority level.

Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined on the basis of the contents of
the OTHERW N and WSTATE registers as described below and shown in FIGURE 7-4.

Bit Field Description
8:6 SPILL_OR FI LL 010, for spill traps; 011, for fill trap
5 OTHER (OTHERW N # 0)
4:2 WI'YPE If (OTHER) then WSTATE. OTHER; else WSTATE. NORMAL
Trap Type SPILL_OR_FILL |OTHER WTYPE 0 0
8 6 5 4 2 1 0

FIGURE 7-4 Trap Type Encoding for Spill/Fill Traps
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7.4.3

7.4.4

148

Trap Priorities

TABLE 7-3 on page 144 and TABLE 7-4 on page 146 show the assignment of traps to TT
values and the relative priority of traps and interrupt requests. Priority 0 is highest
and greater priority numbers indicate lower priority; that is, if X <Y, a pending
exception or interrupt request with priority X is taken instead of a pending
exception or interrupt request with priority Y.

IMPL. DEP. #36: The priorities of particular traps are relative and are implementation
dependent, because a future version of the architecture may define new traps, and
an implementation may define implementation-dependent traps that establish new
relative priorities.

However, the TT values for the exceptions and interrupt requests shown in TABLE 7-3
and TABLE 7-4 must remain the same for every implementation.

The trap priorities given above always need to be considered in light of how the
processor actually issues and executes instructions. For example, if an
instruction_access_error occurs (priority 3), it will be taken even if the instruction
was an Sl R (priority 1). This situation occurs because the processor gets the
instruction_access_error during instruction fetch and never actually issues or
executes the instruction, so the Sl Rinstruction is never seen by the execution units
of the processor. This is an obvious case, but there are other more subtle cases.

In summary, the trap priorities are used to prioritize traps that occur in the same
clock cycle. They do not take into consideration that an instruction may be alive for
multiple cycles and that a trap may be detected and initiated early in the life of an
instruction. Once the early trap is taken, any errors that might have occurred later in
the instruction’s life will not be seen.

Details of Supported Traps

MMU Traps

SPARC JPS1 supports three 32-instruction traps for handling the most performance
sensitive MMU traps:

» fast_instruction_access_MMU_miss

n fast_data_access_MMU_miss

» fast_data_access_protection

The first two traps are taken when the TLBs miss on an instruction or data access.
The third type of trap is taken when a protection violation occurs. The common case
of this trap occurs when a write request is made to a page marked as clean in the
TLB.
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Each of these trap vectors takes up 4 slots in the trap table; this means that each trap
handler can contain up to 32 instructions before a branch is needed.

Other SPARC JPS1 Implementation-Specific Traps

SPARC JPS1 supports the following trap types in addition to those in SPARC V9:

interrupt_vector_trap
PA_watchpoint
VA_watchpoint
ECC_error

Unimplemented SPARC V9 Traps in SPARC JPS1

instruction_access_MMU_miss
unimplemented_LDD
unimplemented_STD
data_access_MMU_miss
data_access_protection
async_data_error
LDQF_mem_address_not_aligned
STQF_mem_address_not_aligned

7.5

Trap Processing

The processor’s action during trap processing depends on the trap type, the current
level of trap nesting (given in the TL register), and the processor state. When a trap
occurs, the global registers are replaced with one of three sets of trap global
register—MMU globals, interrupt globals, or alternate globals—based on the type of
trap.

All traps use normal trap processing, except those due to reset requests, catastrophic
errors, traps taken when TL = MAXTL — 1, and traps taken when the processor is in
RED st at e. These traps use special RED_st at e trap processing.

During normal operation, the processor is in execut e_st at e. It processes traps in
execut e_st at e and continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there
are no more levels on the trap stack, so the processor enters err or _st at e and
halts. To avoid this catastrophic failure, SPARC V9 provides the RED_st at e
processor state. Traps processed in RED_st at e use a special trap vector and a
special trap-vectoring algorithm. RED_st at e vectoring and the setting of the TT
value for RED_st at e traps are described in RED_state Trap Table on page 134.
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Traps that occur with TL = MAXTL — 1 are processed in RED_st at e. In addition, reset
traps are also processed in RED_st at e. Reset trap processing is described in Power-
On Reset (POR) Traps on page 157. Finally, supervisor software can force the
processor into RED_st at e by setting the PSTATE. RED flag to 1.

Once the processor has entered RED_st at e, no matter how it got there, all
subsequent traps are processed in RED_st at e until software returns the processor
to execut e_st at e or a normal or SIR trap is taken when TL = MAXTL, which puts
the processor in err or _st at e. TABLE 7-5, TABLE 7-6, and TABLE 7-7 describe the
processor mode and trap-level transitions involved in handling traps.

TABLE 7-5  Trap Received While in execut e_state
New State, After Receiving Trap Type
. Normal Trap XIR,
Original State or Interrupt POR WDR (Impl. Dep.) SIR
execute_state execute_state RED state RED_st ate RED state
TL < MAXTL -1 TL -~ TL+1 TL = MAXTL TL -~ TL+1 TL -~ TL+1
execute_state RED st ate RED st ate RED_st at e RED st ate
TL = MAXTL -1 TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
execut e_st at ef error_state RED_ st ate RED state error_state
TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
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This state occurs when software changes TL to MAXTL and does not set PSTATE. RED, or if it clears PSTATE. RED
while at MAXTL.

TABLE 7-6  Trap Received While in RED_st at e
New State, After Receiving Trap Type
.. Normal Trap XIR,

Original State or Interrupt POR WDR (Impl. Dep.) SIR

RED_ st ate RED st ate RED st ate RED_st ate RED state
TL < MAXTL -1 TL -~ TL+1 TL = MAXTL TL « TL+1 TL - TL+1

RED st ate RED st ate RED st ate RED st ate RED st ate
TL = MAXTL -1 TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL

RED st ate error_state RED st ate RED st ate error_state

TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL TL = MAXTL
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TABLE 7-7  Reset Received While inerror _state
New State, After Receiving Trap Type
. . Normal Trap XIR,

Orlginal State or Interrupt POR WDR (Impl. Dep.) SIR
error_state RED st ate RED st ate
TL < MAXTL -1 TL = MAXTL TL « TL+1
error_state RED st ate RED st ate
TL = MAXTL-1 TL = MAXTL TL = MAXTL
error_state RED st ate RED st ate

TL = MAXTL TL = MAXTL TL = MAXTL

Implementation Note — The processor does not recognize interrupts while it is in
error_state.

75.1 Normal Trap Processing

A trap other than a fast MMU trap (see Section 7.5.2 on page 153) or an interrupt
vector trap (see Section 7.5.3 on page 154) causes the following state changes to
occur:

= If the processor is already in RED_st at e, the new trap is processed in
RED st at e unless TL = MAXTL. See Normal Traps When the Processor Is in
RED_state on page 160.

= If the processor is in execut e_st at e and the trap level is one less than its
maximum value, that is, TL = MAXTL-1, then the processor enters RED_st at e.
See RED_state on page 133 and Normal Traps with TL = MAXTL - 1 on page 155.

= If the processor is in either execut e_st at e or RED_st at e and the trap level is
already at its maximum value, that is, TL = MAXTL, then the processor enters
error_stat e. See Error_state on page 136.

Otherwise, the trap uses normal trap processing, and the following state changes
occur:

= The trap level is set. This provides access to a fresh set of privileged trap-state
registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL -« TL+1
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= EXisting state is preserved.

TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI ~ ASI
TSTATE[ TL] . PSTATE ~ PSTATE
TSTATE[ TL] . CWP ~ QWP
TPC[ TL] -~ PC
TNPC[ TL] ~ nPC
= The trap type is preserved.
TT[ TL] ~ the trap type
= The PSTATE register is updated to a predefined state.
PSTATE. MM is unchanged
PSTATE. RED <0
PSTATE. PEF ~ 1 (FPU is present)
PSTATE. AM ~ 0 (address masking is turned off)

PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)

PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 0 (interrupt globals are disabled)

PSTATE. CLE ~ PSTATE. TLE (set endian mode for traps)
PSTATE. TLE is unchanged

= For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

« If TT[ TL] =024,4 (a clean_window trap), then CWP — CWP + 1.

= If (08015 < TT[ TL] < OBF4g) (window spill trap), then CWP
CWP + CANSAVE + 2.

« If (0C05 < TT[ TL] < OFF4¢) (window fill trap), then CWP — CWP — 1.
For non-register-window traps, CWP is not changed.
= Control is transferred into the trap table:
PC  « TBA<63:15> || (TL>0) || TT[TL] |] 00000
nPC — TBA<63:15> || (TL>0) || TT[ TL] [] 00100
where “(TL>0)"is 0 if TL=0, and 1 if TL > 0.
Interrupts are ignored as long as PSTATE. | E=0.

Programming Note — State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken while TL = n-1;
however, software can change any of these values with a WRPR instruction when
TL =n.
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7.5.2

Fast MMU Trap Processing

Fast MMU traps (fast_instruction_access_MMU_miss,
fast_data_access_MMU_miss, and fast_data_access_protection) cause the following
state changes to occur:

If the processor is already in RED_st at e, the new trap is processed in
RED st at e unless TL = MAXTL. See Normal Traps When the Processor Is in
RED_state on page 160.

If the processor is in execut e_st at e and the trap level is one less than its
maximum value, that is, TL = MAXTL-1, then the processor enters RED_st at e.
See RED_state on page 133 and Normal Traps with TL = MAXTL -1 on page 155.

If the processor is in either execut e_st at e or RED_st at e and the trap level is
already at its maximum value, that is, TL = MAXTL, then the processor enters
error_state. See Error_state on page 136.

Otherwise, the trap uses normal trap processing, and the following state changes
occur:

The trap level is set. This provides access to a fresh set of privileged trap-state
registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL « TL+1

Existing state is preserved:
TSTATE[ TL] . CCR — CCR
TSTATE[ TL] . ASI ~ ASI
TSTATE[ TL] . PSTATE ~ PSTATE
TSTATE[ TL] . CWP ~ CWP
TPC[ TL] ~ PC
TNPC[ TL] ~ nPC

The trap type is preserved.
TT[ TL] ~ the trap type

The PSTATE register is updated to a predefined state.
PSTATE. MM is unchanged
PSTATE. RED ~ 0
PSTATE. PEF ~ 1 (FPU is present)
PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)
PSTATE. AG ~ 0 (alternate globals are disabled)
PSTATE. MG ~ 1 (global regs are replaced with MMU globals)
PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE — PSTATE. TLE (set endian mode for traps)
PSTATE. TLE is unchanged
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7.5.3
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For non-register-window traps, CWP is not changed.
Control is transferred into the trap table:
PC  « TBA<63:15> || (TL>0) || TT[ TL] [] 00000
nPC — TBA<63:15> || (TL>0) [] TT[ TL] [] 00100
where “(TL>0)"is 0 if TL=0, and 1 if TL > 0.
Interrupts are ignored as long as PSTATE. | E=0.

Programming Note — State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken while TL =n - 1;
however, software can change any of these values with a WRPR instruction when
TL =n.

Interrupt Vector Trap Processing

An interrupt_vector trap causes the following state changes to occur:

If the processor is already in RED_st at e, the new trap is processed in
RED_st at e unless TL = MAXTL. See Normal Traps When the Processor Is in
RED_state on page 160.

If the processor is in execut e_st at e and the trap level is one less than its
maximum value, that is, TL = MAXTL - 1, the processor enters RED_st at e. See
RED_state on page 133 and Normal Traps with TL = MAXTL - 1 on page 155.

If the processor is in either execut e_st at e or RED_st at e and the trap level is
already at its maximum value, that is, TL = MAXTL, then the processor enters
error_stat e. See Error_state on page 136.

Otherwise, the trap uses normal trap processing, and the following state changes
occur:

The trap level is set. This provides access to a fresh set of privileged trap-state
registers used to save the current state, in effect, pushing a frame on the trap
stack.

TL -« TL+1

Existing state is preserved.
TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI ~ AS
TSTATE[ TL] . PSTATE ~ PSTATE
TSTATE[ TL] . CWP ~ QWP
TPC[ TL] - PC
TNPC[ TL] ~ nPC

The trap type is preserved.
TT[ TL] ~ the trap type
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7.5.4

= The PSTATE register is updated to a predefined state.

PSTATE. MM is unchanged

PSTATE. RED <0

PSTATE. PEF ~ 1 (FPU is present)

PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)

PSTATE. AG ~ 0 (alternate globals are disabled)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 1 (global regs are replaced with interrupt globals)
PSTATE. CLE ~ PSTATE. TLE (set endian mode for traps)
PSTATE. TLE is unchanged

= For non-register-window traps, CWP is not changed.
= Control is transferred into the trap table:
PC  « TBA<63:15> || (TL>0) || TT[TL] |] 00000
nPC . TBA<63:15> [| (TL>0) [| TT[TL] [] 00100
where “(TL>0)"is 0 if TL=0, and 1 if TL > 0.
Interrupts are ignored as long as PSTATE. | E=0.

Programming Note — State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only
changed autonomously by the processor when a trap is taken while TL =n - 1;
however, software can change any of these values with a WRPR instruction when
TL =n.

Special Trap Processing

The following conditions invoke special trap processing:

= Traps taken with TL = MAXTL -1

= Power-on reset traps

= Watchdog reset traps

= Externally initiated reset traps

= Software-initiated reset traps

= Traps taken when the processor is already in RED_st at e

IMPL. DEP. #38: Implementation-dependent registers may or may not be affected by
the various reset traps.

Normal Traps with TL = MAXTL -1

Normal traps that occur when TL = MAXTL — 1 are processed in RED_st at e. The
following state changes occur:
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= The trap level is advanced.

TL « MAXTL

= Existing state is preserved.
TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI ~ ASI
TSTATE[ TL] . PSTATE ~ PSTATE
TSTATE[ TL] . CWP ~ CWP
TPC[ TL] ~ PC
TNPC[ TL] ~ nPC

= The trap type is preserved.
TT[ TL] < the trap type
= The PSTATE register is set as follows:

PSTATE. MM — 00, (TSO)

PSTATE. RED ~ 1 (enter RED_st at e)

PSTATE. PEF ~ 1 (FPU is present)

PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0O (interrupts are disabled)

PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE ~ PSTATE. TLE (set endian mode for traps)
PSTATE. TLE — undefined!

= For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[ TL] = 02444 (a clean_window trap), then CWP — CWP + 1.

If (08046 < TT[ TL] < 0BF4g) (window spill trap), then CWP
CWP + CANSAVE + 2.

If (0C0.5 < TT[ TL] < OFF;5) (window fill trap), then CWP — CWP — 1.
For non-register-window traps, CWP is not changed.
= Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_st at e trap table.
PC — RSTVaddr <63:8> || 1010 0000,
nPC  — RSTVaddr <63:8> || 1010 0100,

1 Note that this differs from SPARC V9.
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Power-On Reset (POR) Traps

POR traps occur when power is applied to the processor. If the processor is in
error_state, a POR brings the processor out of error _st at e and places it in
RED st at e. Processor state is undefined after POR, except for the following:

= The trap level is set.
TL « MAXTL
= The trap type is set.
TT[TL] ~ 00146
= The PSTATE register is set as follows:

PSTATE. MM ~ 00, (TSO)
PSTATE. RED ~ 1 (enter RED_st at e)
PSTATE. PEF ~ 1 (FPU is present)
PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)
PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)
PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE ~ 0 (big-endian mode for nontraps)
PSTATE. TLE ~ 0 (big-endian mode for traps)
= The Tl CK register is protected.
TI CK. NPT ~ 1 (TI CK unreadable by nonprivileged software)

= Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_st at e trap table.

PC ~ RSTVaddr <63:8> D 0010 0000,

nPC RSTVaddr <63:8> || 0010 0100,

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

See SPARC JPS1 Implementation Supplements for more details.

Watchdog Reset (WDR) Traps

The WDR reset in SPARC JPS1 occurs when a watchdog timer overflows or to
provide automatic recovery from er r or _st at e (impl. dep. #254). There are several
causes of er r or _st at e entry (impl. dep. #39), including but not limited to SIR with
TL = MAXTL and implementation-dependent watchdog timeout.

Processor state is undefined after WDR, except for the following:

= The trap level is set.
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TL « min (TL + 1, MAXTL)
= Existing state is preserved.

TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI < ASI
TSTATE[ TL] . PSTATE . PSTATE
TSTATE[ TL] . CWP - oW
TPC] TL] < PC
TNPC] TL] < nPC

= The trap type is set.
TT[TL] ~ 00244
= The PSTATE register is set as follows:

PSTATE. MM ~ 00, (TSO)

PSTATE. RED ~ 1 (enter RED st at e)

PSTATE. PEF ~ 1 (FPU is present)

PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)

PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE — PSTATE. TLE (set endian mode for traps)
PSTATE. TLE ~ undefined?

= Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_st at e trap table.

PC RSTVaddr <63:8> || 0100 0000,

nPC ~ RSTVaddr <63:8> D 0100 0100,

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that
cannot be masked by | E=0 or PI L. Typically, XIR is used for critical system events
such as power failure, reset button pressed, failure of external components that does
not require a WDR (which aborts operations), or systemwide reset in a
multiprocessor. The following state changes occur:

= EXisting state is preserved.

TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI — ASI
TSTATE[ TL] . PSTATE . PSTATE

1 Note that this differs from SPARC V9.
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TSTATE[ TL] . CWP < oW
TPC] TL] < PC
TNPC] TL] < nPC

= The trap type is set.
TT[ TL] ~ 00344
= The PSTATE register is set as follows:

PSTATE. MM ~ 00, (TSO)

PSTATE. RED — 1 (enter RED st at e)

PSTATE. PEF ~ 1 (FPU is present)

PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)

PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE — PSTATE. TLE (set endian mode for traps)
PSTATE. TLE — undefined?

= Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_st at e trap table.

PC RSTVaddr<63:8> || 0110 0000,

nPC . RSTVaddr <63:8> || 0110 0100,

For any reset when TL = MAXTL, for all n<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

See Externally Initiated Reset (XIR) on page 564 and Appendix O of Implementation
Supplements for more information.

Software-Initiated Reset (SIR) Traps

SIR traps are initiated by execution of an S| R instruction in privileged mode.
Supervisor software uses the SIR trap as a panic operation or a metasupervisor trap.
The following state changes occur:

=« If TL = MAXTL, then enter err or _st at e. Otherwise, do the following:

= The trap level is set.

TL « TL+1

= Existing state is preserved.
TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI ~ ASI

TSTATE[ TL] . PSTATE ~ PSTATE
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TSTATE[ TL] . CWP oY
TPC] TL] ~ PC
TNPC[ TL] — undefined?

= The trap type is set.
TT[TL] ~ 0445
= The PSTATE register is set as follows:

PSTATE. MM ~ 00, (TSO)

PSTATE. RED — 1 (enter RED st at e)

PSTATE. PEF ~ 1 (FPU is present)

PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)

PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE — PSTATE. TLE (set endian mode for traps)
PSTATE. TLE — undefined?

= Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_state trap table.

PC RSTVaddr <63:8> || 1000 0000,

nPC . RSTVaddr <63:8> || 1000 0100,

For any reset when TL = MAXTL, for all n < MAXTL, the values in TPC[n], TNPC[n],
and TSTATE[n] are undefined.

See Software-Initiated Reset (SIR) on page 565 and Appendix O of Implementation
Supplements for more information.

Normal Traps When the Processor Is in RED_state

Normal traps taken when the processor is already in RED_st at e are also processed
in RED_st at e, unless TL = MAXTL, in which case the processor enters
error_state.

Assuming that TL < MAXTL, the processor state shall be set as follows:

= The trap level is set.

TL « TL+1

= EXisting state is preserved.
TSTATE[ TL] . CCR ~ CCR
TSTATE[ TL] . ASI ~ AS|

TSTATE[ TL] . PSTATE « undefined?!

1 Note that this differs from SPARC V9.
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TSTATE[ TL] . CWP oW

TPC] TL] < PC
TNPC] TL] < nPC

= The trap type is preserved.
TT[ TL] « trap type
= The PSTATE register is set as follows:

PSTATE. MM ~ 00, (TSO)

PSTATE. RED ~ 1 (enter RED st at e)

PSTATE. PEF ~ 1 (FPU is present)

PSTATE. AM ~ 0 (address masking is turned off)
PSTATE. PRI V ~ 1 (the processor enters privileged mode)
PSTATE. | E ~ 0 (interrupts are disabled)

PSTATE. AG ~ 1 (global regs are replaced with alternate globals)
PSTATE. MG ~ 0 (MMU globals are disabled)

PSTATE. | G ~ 0 (interrupt globals are disabled)
PSTATE. CLE — PSTATE. TLE (set endian mode for traps)
PSTATE. TLE — undefined?

= For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

If TT[ TL] = 02444 (a clean_window trap), then CWP — CWP + 1.

If (080, < TT[ TL] < OBF;¢) (window spill trap), then
CWP — CWP + CANSAVE + 2.

If (0C01 < TT[ TL] < OFFq¢) (window fill trap), then CWP — CWP -1,
= For non-register-window traps, CWP is not changed.
= Implementation-specific state changes; for example, disabling an MMU.
= Control is transferred into the RED_st at e trap table.

PC .~ RSTVaddr<63:8> || 1010 0000,

nPC ~ RSTVaddr <63:8> D 1010 0100,

7.6 Exception and Interrupt Descriptions

The following sections describe the various exceptions and interrupt requests and
the conditions that cause them. Each exception and interrupt request describes the
corresponding trap type as defined by the trap model. SPARC JPS1 defines five
categories of traps:

= Traps defined by SPARC V9 as mandatory

1 Note that this differs from SPARC V9
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Traps that are defined by SPARC V9 as optional but that are mandatory in SPARC
JPS1

Traps that are defined by SPARC V9 as optional and that remain optional in
SPARC JPS1

Traps that are defined by SPARC V9 as implementation dependent and optional
but that are mandatory in SPARC JPS1

Traps that are defined by SPARC V9 as implementation dependent and that
remain implementation dependent in SPARC JPS1

All other trap types are reserved.

Note: This encoding differs from that shown in The SPARC Architecture Manual-
Version 9. Each trap is marked as precise, deferred, disrupting, or reset. Example
exception conditions are included for each exception type. Appendix A, Instruction
Definitions, enumerates which traps can be generated by each instruction.

Traps Defined by SPARC V9 As Mandatory

SPARC V9 defines the following traps as mandatory.

data_access_exception [t t =0304¢] (Precise) — An exception occurred on an
attempted data access. Detailed information regarding the error is logged into the
FTYPE field of Data Synchronous Fault Status Register (ASI 58;g, VA = 184).
Below is the list of exceptions that cause a data_access_exception exception.

« Invalid ASI — An attempt to do load or store with undefined or reserved ASI
or a disallowed instruction/ASI combination (see Block Load and Store ASls on
page 548 and Partial Store ASls on page 548).

« lllegal Access to Strongly Ordered Page — An attempt to access a strongly
ordered page by any type of load instruction with nonfaulting ASI.

An attempt to access a strongly ordered page by FLUSH instruction.

« lllegal Access to Non-Faulting-Only Page — An attempt to access a non-
faulting-only page by any type of load or store instruction or FLUSH
instruction with ASI other than nonfaulting ASI.

« lllegal Access to Noncacheable Page —AnN attempt to access a noncacheable
page by atomic instructions (CASA, CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA),
or an attempt to access a noncacheable page by atomic quad load instructions
(LDDA with ASI = 2446, 2C4g), Or an attempt to access a noncacheable page by
FLUSH instruction.

division_by zero [tt =028;¢] (Precise) — An integer divide instruction
attempted to divide by zero.

fill_n_normal [tt =0CO0,5—0DF¢] (Precise)
fill_n_other [t t = 0EO0,5—0FFg] (Precise)
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A RESTORE or RETURN instruction has determined that the contents of a register
window must be restored from memory.

Compatibility Note — The SPARC V9 fill_n_* exceptions supersede the SPARC V8
window_underflow exception.

= fp_disabled [tt =020,¢] (Precise) — An attempt was made to execute an FPop, a
floating-point branch, or a floating-point load/store instruction while an FPU was
not present, PSTATE. PEF =0, or FPRS. FEF = 0.

= illegal_instruction [tt = 010,5] (Precise) — An attempt was made to execute an
instruction with an unimplemented opcode, an | LLTRAP instruction, an
instruction with invalid field usage, instruction breakpoints, or an instruction that
would result in illegal processor state. Note: Unimplemented FPop instructions
generate fp_exception_other traps.

illegal_instruction is generated in the following cases:

An instruction encoding does not match any of the opcode map definitions (see
Appendix E, Opcode Maps).

An instruction is not implemented in hardware (if the op and op3 fields of the
instruction decode as an FPop, then an fp_exception_other exception, with
ftt =3, will be generated instead of illegal_instruction).

An illegal value is present in an instruction i field.

An illegal value is present in a field that is explicitly defined for an instruction,
such ascc2, ccl, ccO, fcn,inpl, op2 (I MPDEP2A, | MPDEP2B), r cond, or
opf _cc.

Illegal register alignment (such as odd r d value in a doubleword load
instruction).

RDASR instruction with r s1 = 1, 7-14, 20-21, or 26-31.
RDASR with r s1 =15 and nonzero r d.

RDPR with r s1 = 16-30.

RDPR with rs1 < 3 when TL = 0.

VWRPR with rd = 15-31.

WRPR with r d <3 when TL = 0.

WRPR to PSTATE register that attempts to set more than one of bits | G MG, and
AG

Illegal r d value for LDXFSR, STXFSR, or the deprecated instructions LDFSR or
STFSR

lllegal r d value for W\RPR
Illegal r s1 value for RDPR
WRASR instruction with rd =1, 4, 5, 7-14, 26-31.
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» WRASRwith rd =15 and nonzero rs1.

« WRASRwithrd=15andi =0.

« DONE or RETRY when TL =0.

« | LLTRAP instruction.

« Instruction breakpoint occurred (impl. dep. #205).

« A reserved instruction field in Tcc instruction is nonzero.

If a reserved instruction field in an instruction other than Tcc is nonzero, an
illegal_instruction exception should be generated.’

= instruction_access_exception [tt = 008,¢] (Precise) — A protection exception
occurred on an instruction access, typically as a result of an attempt to access a
privileged page while the processor was executing in nonprivileged mode.

= interrupt_level n [tt = 041,5-04F¢] (Disrupting) — An interrupt request level
of n was presented to the 1U, while PSTATE. | E=1 and (interrupt request
level > PI L).

= mem_address_not_aligned [tt = 034,5] (Precise) — A load/store instruction
generated a memory address that was not properly aligned according to the
instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address. (See also Section L.3.2 on page 546.)

= power_on_reset (POR) [tt =001;5] (Reset) — An external signal was asserted.
This trap is issued to bring a system reliably from the power-off to the power-on
state.

= privileged_action [tt = 037,5] (Precise) — An action defined to be privileged has
been attempted while PSTATE. PRI V = 0. Examples: a data access by
nonprivileged software using an ASI value with its most significant bit=0 (a
restricted ASI), or an attempt to read the Tl CK register by nonprivileged software
when Tl CK. NPT = 1.

= privileged_opcode [tt = 011;¢] (Precise) — An attempt was made to execute a
privileged instruction while PSTATE. PRI V = 0.

Compatibility Note — privileged_opcode’s trap type is identical to that of the SPARC
V8 privileged_instruction trap. The name was changed to distinguish it from the new
privileged_action trap type.

= RED_state_exception [tt = 005,5] — Caused when TL = MAXTL -1 and a trap
occurs, an event that bring the processor into RED_st at e.

= software_initiated_reset (SIR) [t t = 004,¢] (Precise/Reset) — Caused by the
execution of the WRSI R, write to S| R register, instruction. It allows system
software to reset the processor.

L Since itis not strictly required that a nonzero value in a reserved field of an instruction other
than Tcc causes an illegal__instruction exception, a JPS1 implementation may ignore the contents
of reserved instruction fields (for instructions other than Tcc).
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spill_n_normal [t t =080,5—09F¢] (Precise)
spill_n_other [tt = 0A0,5—0BFg] (Precise)

A SAVE or FLUSHWiInstruction has determined that the contents of a register
window must be saved to memory.

Compatibility Note — The SPARC V9 spill_n_* exceptions supersede the SPARC V8
window_overflow exception.

tag_overflow [t t =023,¢] (Precise) — A TADDccTV or TSUBcc TV instruction was
executed, and either 32-bit arithmetic overflow occurred or at least one of the tag
bits of the operands was nonzero.

trap_instruction [t t = 100,4—17F¢] (Precise) — A Tcc instruction was executed
and the trap condition evaluated to TRUE.

SPARC V9 Optional Traps That Are Mandatory in
SPARC JPS1

SPARC V9 defines the following traps as optional. However, the traps are mandatory
in SPARC JPS1.

clean_window [t t = 024,5—027,¢] (Precise) — A SAVE instruction discovered that
the window about to be used contains data from another address space; the
window must be cleaned before it can be used.

IMPL. DEP. #102: An implementation may choose either to implement automatic
cleaning of register windows in hardware or to generate a clean_window trap,
when needed, so that window(s) can be cleaned by software. If an
implementation chooses the latter option, then support for this trap type is
mandatory.

data_access_error [t t =032¢] (Precise or Deferred) — An error occurred on a
data access.

externally_initiated_reset (XIR) [t t = 003,¢] (Reset) — An external signal was
asserted. This trap is used for catastrophic events such as power failure, reset
button pressed, and systemwide reset in multiprocessor systems.

fp_exception_ieee_754 [tt = 021,¢] (Precise) — An FPop instruction generated
an IEEE_754_exception and its corresponding trap enable mask (TEM bit was 1.
The floating-point exception type, IEEE_754_exception, is encoded in the

FSRftt, and specific IEEE_754_exception information is encoded in FSR.cexc.

fp_exception_other [t t = 022,¢] (Precise) — An FPop instruction generated an
exception other than an IEEE_754_exception. Examples: the FPop is
unimplemented, or there was a sequence or hardware error in the FPU. The
floating-point exception type is encoded in the FSR's ftt field.
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= instruction_access_error [tt = 00A¢] (Precise) — An error occurred on an
instruction access.

= LDDF mem_address_not_aligned [t t =035;5] (Precise) — An attempt was
made to execute an LDDF instruction and the effective address was not
doubleword aligned. See Section A.26, Load Floating-Point and Section A.27, Load
Floating-Point from Alternate Space.

« STDF_mem_address_not_aligned [tt =036,5] (Precise) — An attempt was
made to execute an STDF instruction and the effective address was not
doubleword aligned. See A.61, Store Floating-Point on page 330.

= watchdog reset (WDR) [tt = 002,¢] (Reset) — This trap occurs when the
watchdog timer overflows or as a transition from error _st ate to RED _state
(impl. dep. #254).

7.6.3 SPARC V9 Optional Traps That Are Optional in
SPARC JPS1

SPARC V9 defines the following traps as optional. The traps remain optional in
SPARC JPSL1.

= data_access_MMU_miss [tt = 031;4] (Precise or Deferred) (impl. dep. #) — This
exception is generally superseded by fast_data_access_MMU_miss (see section
7.6.4).

= data_access_protection [tt = 033,5] (Precise or Deferred) (impl. dep. #) — This
exception is generally superseded by fast_data_access_protection (see section
7.6.4).

= LDQF _mem_address_not_aligned [tt = 038,¢] (Precise or Deferred) — An
attempt was made to execute an LDQF instruction and the effective address was
word aligned but not quadword aligned. Use of this exception is implementation
dependent (impl. dep. #111). A separate trap entry for this exception supports fast
software emulation of the LDQF instruction when the effective address is word
aligned but not quadword aligned. See A.26, Load Floating-Point on page 242.

= STQF_mem_address_not_aligned [t t =039;4] (Precise) — An attempt was
made to execute an STQF instruction and the effective address was word aligned
but not quadword aligned. Use of this exception is implementation dependent
(impl. dep. #112). A separate trap entry for the exception supports fast software
emulation of the STQF instruction when the effective address is word aligned but
not quadword aligned. See A.61, Store Floating-Point on page 330.

= instruction_access_MMU_miss [tt =009;4] (Precise, Deferred, or Disrupting)
(impl. dep. #) — This exception is generally superseded by
fast_instruction_access_MMU_miss (see section 7.6.4).

= unimplemented LDD [tt =012,¢] (Precise) — An attempt was made to execute
an LDD instruction, which is not implemented in hardware on this
implementation (impl. dep. #107).
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= unimplemented_STD [tt = 013,4] (Precise) — An attempt was made to execute
an STD instruction, which is not implemented in hardware on this
implementation (impl. dep. #108).

7.6.4 SPARC V9 Implementation-Dependent, Optional
Traps That Are Mandatory in SPARC JPS1

SPARC V9 defines the following traps as implementation dependent and optional.
The traps are mandatory in SPARC JPS1.

= ECC error[tt =063:5] (Disrupting) — The trap to signal the detection of
hardware errors asynchronous to the instruction execution, or to request to save
the information logged for the error that was detected and corrected by the
processor.

Implementation Note — Some implementations may refer to this trap by the name
“corrected_ECC_error.”

« fast_data_access_MMU_miss [tt =068, -06B,¢] (Precise) — During an
attempted data access, the MMU detected that a translation lookaside buffer did
not contain a translation for the virtual address (that is, a TLB miss occurred).
Four trap vectors are allocated for this trap, allowing a TLB miss handler of up to
32 instructions to fit within the trap vector area.

= fast_data_access_protection [tt = 06C,5-06F;¢] (Precise) — During an
attempted data write access (by a store or load-store instruction), the instruction
had appropriate access privilege but the MMU signalled that the location was
write-protected (write to a read-only location). Note that on a JPS1 processor, an
attempt to read or write to a privileged location while in nonprivileged mode
causes the higher-priority data_access_exception instead of this exception. Four
trap vectors are allocated for this trap, allowing a trap handler of up to 32
instructions to fit within the trap vector area.

= fast_instruction_access_MMU_miss [tt = 0645 —067,5] (Precise) — During an
attempted instruction access, the MMU detected a TLB miss. Four trap vectors are
allocated for this trap, allowing a trap handler of up to 32 instructions to fit
within the trap vector area.

= interrupt_vector _trap [t t = 0604¢] (Disrupting) — The processor has received an
interrupt request.

= PA_watchpoint [t t = 061;¢] (Precise) — The processor has detected a physical-
address breakpoint.

= VA_watchpoint [t t =062;5] (Precise) — The processor has detected a virtual-
address breakpoint.
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7.6.5 SPARC JPS1 Implementation-Dependent Traps

The following traps are implementation dependent in SPARC JPSL1.

= async_data_error [tt = 040,4] (Precise, Deferred, or Disrupting) — An
implementation-dependent exception (impl. dep. #31, #218) that indicates that
one or more unrecoverable or uncorrectable but recoverable errors have been
detected in the processor. This may include errors detected in the architectural
registers (general-purpose registers, floating-point registers, ASRs, or ASI
registers) and other core processor hardware. A single async_data_error
exception may indicate multiple errors and may occur asynchronously to
instruction execution. An async_data_error exception may cause a precise,
deferred, or disrupting trap. When async_data_error causes a disrupting trap, the
TPC and TNPC stacked by the trap do not necessarily indicate the instruction or
data access that caused the error.

Compatibility Note — The SPARC V9 async_data_error supersedes the less general
SPARC V8 data_store_error exception.

IMPL. DEP. #218: Whether async_data_error exception is implemented is
implementation dependent. If it does exist, it indicates that an error is detected in
a processor core and its trap type is 40,5. The SPARC V9 async_data_error
supersedes the less general SPARC V8 data_store_error exception.

= fast_ ECC_error[tt =070,5] (Precise) — A single-bit or multiple-bit ECC error is
detected.

IMPL. DEP. #: Whether or not a fast_ECC_error trap exists is implementation
dependent. If it does exist, it indicates that an ECC error was detected in an
external cache and its trap type is 0704g.

= internal_processor_error [tt = 029,4] (Precise, Deferred, or Disrupting) — A
serious internal error occurred in the main processor (impl. dep. #).
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C.CHAPTER 8

Memory Models

The SPARC V9 memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores seem to be performed in the
order in which they appear in the dynamic control flow of the program. The actual
order in which they are processed by the memory may be different. The purpose of
the memory models is to specify what constraints, if any, are placed on the order of
memory operations.

The memory models apply both to uniprocessor and to shared memory
multiprocessors. Formal memory models are necessary for precise definitions of the
interactions between multiple processors and input/output devices in a shared
memory configuration. Programming shared memory multiprocessors requires a
detailed understanding of the operative memory model and the ability to specify
memory operations at a low level in order to build programs that can safely and
reliably coordinate their activities. See Appendix J, Programming with the Memory
Models, for additional information on the use of the models in programming real
systems.

Although this chapter contains a great deal of theoretical information, we have
included that information so the discussion of the implementation-specific memory
models has sufficient background.

We describe memory models in these sections:

= Overview on page 170

= Memory, Real Memory, and 1/0O Locations on page 171
= Addressing and Alternate Address Spaces on page 173
= SPARC V9 Memory Model on page 175
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8.1

170

Overview

The SPARC V9 architecture is a model that specifies the behavior observable by
software on SPARC V9 systems. Therefore, access to memory can be implemented in
any manner, as long as the behavior observed by software conforms to that of the
models described here and defined in Appendix D, Formal Specification of the Memory
Models.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC V9
processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure SPARC V8 compatibility.

IMPL. DEP. #113: Whether the PSO or RMO models are supported by SPARC V9
systems is implementation dependent.

FIGURE 8-1 shows the relationship of the various SPARC V9 memory models, from
the least restrictive to the most restrictive. Programs written assuming one model
will function correctly on any included model.

RMO PSO

FIGURE 8-1 Memory Models: Least Restrictive (RMO) to Most Restrictive (TSO)

SPARC V9 provides multiple memory models so that:
= Implementations can schedule memory operations for high performance.
= Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix
D, Formal Specification of the Memory Models. If there is a conflict in interpretation
between the informal description provided here and the formal models, the formal
models supersede the informal description.

There is no preferred memory model for SPARC V9. Programs written for Relaxed
Memory Order will work in both Partial Store Order and Total Store Order.
Programs written for Partial Store Order will work in Total Store Order. Programs
written for a weak model, such as RMO, may execute more quickly, since the model
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exposes more scheduling opportunities, but may also require extra instructions to
ensure synchronization. Multiprocessor programs written for a stronger model will
behave unpredictably if run in a weaker model.

Machines that implement sequential consistency (also called strong ordering or strong
consistency) automatically support programs written for TSO, PSO, and RMO.
Sequential consistency is not a SPARC V9 memory model. In sequential consistency,
the loads, stores, and atomic load-stores of all processors are performed by memory
in a serial order that conforms to the order in which these instructions are issued by
individual processors. A machine that implements sequential consistency may
deliver lower performance than an equivalent machine that implements a weaker
model. Although particular SPARC V9 implementations may support sequential
consistency, portable software must not rely on having this model available.

Notes About the Implementation of the Memory Models

From the programmer’s point of view, a SPARC V9 implementation completely
supports the memory models specified in SPARC V9.

SPARC V9 does not specify exactly how the hardware must support a particular
SPARC V9 memory model, except that the hardware support for the V9 memory
model must guarantee that a correct program written for that memory model will
run correctly on the hardware. For example, a slightly stronger (more restrictive)
hardware memory model might be used than that required by the SPARC V9
memory model.

8.2 Memory, Real Memory, and 1/0
Locations

Memory is the collection of locations accessed by the load and store instructions
(described in Appendix A, Instruction Definitions). Each location is identified by an
address consisting of two elements: an address space identifier (ASI), which identifies
an address space, and a 64-bit address, which is a byte offset into that address space.
Memory addresses may be interpreted by the memory subsystem to be either
physical addresses or virtual addresses; addresses may be remapped and values
cached, provided that memory properties are preserved transparently and coherency
is maintained.

When two or more data addresses refer to the same datum, the address is said to be
aliased. In this case, the processor and memory system must cooperate to maintain
consistency; that is, a store to an aliased address must change all values aliased to
that address.
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Memory addresses identify either real memory or 1/0 locations.

Real memory stores information without side effects. A load operation returns the
value most recently stored. Operations are side-effect-free in the sense that a load,
store, or atomic load-store to a location in real memory has no program-observable
effect, except upon that location.

1/0 locations may not behave like memory and may have side effects. Load, store,
and atomic load-store operations performed on 1/0 locations may have observable
side effects, and loads may not return the value most recently stored. The value
semantics of operations on 1/0 locations are not defined by the memory models, but
the constraints on the order in which operations are performed is the same as it
would be if the 170 locations were real memory. The storage properties, contents,
semantics, ASI assignments, and addresses of 1/0 registers are implementation
dependent.

IMPL. DEP. #118: The manner in which 1/0 locations are identified is
implementation dependent.

IMPL. DEP. #120: The coherence and atomicity of memory operations between
processors and 1/0 DMA memory accesses are implementation dependent.

Implementation Note — Operations to 170 locations are not guaranteed to be
sequentially consistent among themselves, as they are in SPARC V8.

SPARC V9 does not distinguish real memory from 1/0 locations in terms of
ordering. All references, both to 1/0 locations and real memory, conform to the
memory model’s order constraints. References to 1/0 locations may need to be
interspersed with MEMBAR instructions to guarantee the desired ordering.

Systems supporting SPARC V8 applications that use memory mapped 1/0 locations
must ensure that SPARC V8 sequential consistency of /0 locations can be
maintained when those locations are referenced by a SPARC V8 application. The
MMU either must enforce such consistency or cooperate with system software or the
processor to provide it.

IMPL. DEP. #121: An implementation may choose to identify certain addresses and
use an implementation-dependent memory model for references to them.
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8.3

Addressing and Alternate Address
Spaces

An address in SPARC V9 is a tuple consisting of an 8-bit address space identifier
(ASI) and a 64-bit byte-address offset in the specified address space. Memory is byte-
addressed, with halfword accesses aligned on 2-byte boundaries, word accesses
(which include instruction fetches) aligned on 4-byte boundaries, extended-word
and doubleword accesses aligned on 8-byte boundaries, and quadword quantities
aligned on 16-byte boundaries. With the possible exception of the cases described in
Memory Alignment Restrictions on page 108, an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that
is guaranteed to be atomically read or written is an aligned doubleword.! Also,
memory references to different bytes, halfwords, and words in a given doubleword
are treated for ordering purposes as references to the same location. Thus, the unit of
ordering for memory is a doubleword.

Notes — The doubleword is the coherency unit for update, but programmers should
not assume that doubleword floating-point values are updated as a unit unless they
are doubleword-aligned and always updated with double-precision loads and
stores. Some programs use pairs of single-precision operations to load and store
double-precision floating-point values when the compiler cannot determine that
they are doubleword aligned.

Also, although quad-precision operations are defined in the SPARC V9 architecture,
the granularity of loads and stores for quad-precision floating-point values may be
word or doubleword.

The processor provides an address space identifier with every address. This ASI may
serve several purposes:

= To identify which of several distinguished address spaces the 64-bit address offset
is addressing

= To provide additional access control and attribute information, for example, to
identify the processing that is to be performed if an access fault occurs, or to
specify the endianness of the reference

= To specify the address of an internal control register in the processor, cache, or
memory management hardware

1. Two exceptions to this are the special ASI _NUCLEUS_QUAD _LDD[ _L] and ASI _QUAD_LDD_PHYS[ _L]
which provide hardware support for an atomic quad load to be used for TTE loads from TSBs.
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The memory management hardware can associate an independent 264-byte memory
address space with each ASI. If this is done, it becomes possible to allow system
software easy access to the address space of the faulting program when processing
exceptions or to implement access to a client program’s memory space by a server
program.

The architecturally specified ASls are listed in Appendix L, Address Space Identifiers.

When TL =0, normal accesses by the processor to memory when fetching
instructions and performing loads and stores implicitly specify ASI _PRI MARY or
ASI _PRI MARY_LI TTLE, depending on the setting of the PSTATE. CLE bit.

When TL > 0, the implicit ASI for instruction fetches is ASI _NUCLEUS; loads and
stores will use ASI _NUCLEUS if PSTATE. CLE =0 or ASI _NUCLEUS_LI TTLE if
PSTATE. CLE =1 (impl. dep. #124).

SPARC V9 supports the PRI MARY{ _LI| TTLE} , SECONDARY{ _LI TTLE}, and
NUCLEUS{ LI TTLE} address spaces.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASI is either contained in the instruction (for the register-register
addressing mode) or taken from the ASI register (for register-immediate addressing).

ASls are either nonrestricted or restricted. A nonrestricted ASI is one that may be
used independently of the privilege level (PSTATE. PRI V) at which the processor is
running. Restricted ASIs require that the processor be in privileged mode for a legal
access to occur. Restricted ASls have their high-order bit equal to 0. The relationship
between processor state and ASI restriction is shown in TABLE 6-2 on page 112.

Several restricted ASls are provided as mandated by SPARC V9:

ASI _AS | F_USER_PRI MARY{ LI TTLE} and

ASI _AS | F_USER_SECONDARY{ LI TTLE}. The intent of these ASlIs is to give
system software efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the
unrestricted ASI _PRI MARY{ _LI TTLE}. The secondary address space, which is
accessed by the unrestricted ASI _SECONDARY{ LI TTLE}, is provided to allow a
server program to access a client program’s address space.

ASI _PRI MARY_NOFAULT{ _LI TTLE} and ASI _SECONDARY_NOFAULT{ _LI TTLE}
support nonfaulting loads. These ASls are aliased to ASI _PRI MARY{ _LI TTLE} and
AS| _SECONDARY{ _LI TTLE}, respectively, and have exactly the same action. They
may be used to color (that is, distinguish into classes) loads in the instruction stream
so that, in combination with a judicious mapping of low memory and a specialized
trap handler, an optimizing compiler can move loads outside of conditional control
structures.
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Notes — Nonfaulting loads allow optimizations that move loads ahead of
conditional control structures that guard their use; thus, they can minimize the
effects of load latency by improving instruction scheduling. The semantics of
nonfaulting loads are the same as for any other load, except when nonrecoverable
catastrophic faults occur (for example, a reference to a nonexisting or invalid page).
When such a fault occurs, it is ignored and the hardware and system software
cooperate to make the load appear to complete normally, returning a zero result. The
compiler’s optimizer generates load-alternate instructions with the ASI field or
register set to ASI _ PRI MARY_NOFAULT{ _LI TTLE} or

ASI _SECONDARY_NOFAULT{ _LI TTLE} for those loads it determines should be
nonfaulting.

To minimize unnecessary processing if a fault does occur, map low addresses
(especially address zero) to a page of all zeroes, so that references through a NULL
pointer do not cause unnecessary traps.

8.4

8.4.1

SPARC V9 Memory Model

The SPARC V9 processor architecture specifies the organization and structure of a
SPARC V9 central processing unit but does not specify a memory system
architecture. Appendix F, Memory Management Unit, summarizes the MMU support
required by a SPARC JPS1 processor. Appendix F of the Implementation
Supplements describe implementations.

The memory models specify the possible order relationships between memory-
reference instructions issued by a processor and the order and visibility of those
instructions as seen by other processors. The memory model is intimately
intertwined with the program execution model for instructions.

SPARC V9 Program Execution Model

The SPARC V9 processor model consists of three units: an Issue Unit, a Reorder
Unit, and an Execute Unit, as shown in FIGURE 8-2.

The Issue Unit reads instructions over the instruction path from memory and issues
them in program order to the Reorder Unit. Program order is precisely the order
determined by the control flow of the program and the instruction semantics, under
the assumption that each instruction is performed independently and sequentially.
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Processor

Issue | | Reorder | | Execute
Unit Unit Unit Instruction Path

Data Path

Memory

FIGURE 8-2 Processor Model: Uniprocessor System

Issued instructions are collected and potentially reordered in the Reorder Unit, and
then dispatched to the Execute Unit. Instruction reordering allows an
implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of
program execution are the same as they would be if the instructions were performed
in program order. This property is called processor self-consistency.

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another processor, be identical to the result that
would be observed if the instructions were performed in program order. In the
model in FIGURE 8-2, instructions are issued in program order and placed in the
reorder buffer. The processor is allowed to reorder instructions, provided it does not
violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are these:

1. An instruction cannot be performed until all earlier instructions that set a register
it uses have been performed (read-after-write hazard; write-after-write hazard).

2. Aninstruction cannot be performed until all earlier instructions that use a register
it sets have been performed (write-after-read hazard).

Implementation Note — An implementation can avoid blocking instruction
execution in case 2 and the write-after-write hazard in case 1 by using a renaming
mechanism that provides the old value of the register to earlier instructions and the
new value to later uses.

The data-flow order constraints for memory-reference instructions are those for
register reference instructions, plus the following additional constraints:

1. A memory-reference instruction that sets (stores to) a location cannot be
performed until all previous instructions that use (load from) the location have
been performed (write-after-read hazard).
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2. A memory-reference instruction that uses (loads) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) the
location have been performed (read-after-write hazard).

Memory-barrier instructions (VEMBAR and STBAR) and the active memory model
specified by PSTATE. MMalso constrain the issue of memory-reference instructions.
See MEMBAR Instruction on page 179 and Memory Models on page 181 for a detailed
description.

The constraints on instruction execution assert a partial ordering on the instructions
in the reorder buffer. Every one of the several possible orderings is a legal execution
ordering for the program. See Appendix D, Formal Specification of the Memory Models,
for more information.

Processor/Memory Interface Model

Each processor in a multiprocessor system is modeled as shown in FIGURE 8-3; that is,
having two independent paths to memory: one for instructions and one for data.

Memory Transactions

in Memory Order
Processors ry

Instructions

Data

i L Memory

FIGURE 8-3 Data Memory Paths: Multiprocessor System

Data caches are maintained by hardware to be consistent (coherent). Instruction
caches need not be kept consistent with data caches and therefore require explicit
program action to ensure consistency when a program modifies an executing
instruction stream. Memory is shared in terms of address space, but it may be
nonhomogeneous and distributed in an implementation. Mapping and caches are
ignored in the model, since their functions are transparent to the memory model.?

2. The model described here is only a model; implementations of SPARC V9 systems are unconstrained as long
as their observable behaviors match those of the model.
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In real systems, addresses may have attributes that the processor must respect. The
processor executes loads, stores, and atomic load-stores in whatever order it chooses,
as constrained by program order and the current memory model. The ASI-address
couples it generates are translated by a memory management unit (MMU), which
associates attributes with the address and may, in some instances, abort the memory
transaction and signal an exception to the CPU.

For example, a region of memory may be marked as nonprefetchable, noncacheable,
read-only, or restricted. It is the MMU'’s responsibility, working in conjunction with
system software, to ensure that memory attribute constraints are not violated. See
Appendix F of the Implementation Supplements for more information.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory
transactions to the memory. The memory performs transactions in memory order. The
memory unit may perform transactions submitted to it out of order; hence, the
execution unit must not concurrently submit two or more transactions that are
required to be ordered.

The memory accepts transactions, performs them, and then acknowledges their
completion. Multiple memory operations may be in progress at any time and may be
initiated in a nondeterministic fashion in any order, provided that all transactions to
a location preserve the per-processor partial orders. Memory transactions may
complete in any order. Once initiated, all memory operations are performed
atomically: loads from one location all see the same value, and the result of stores is
visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is a total order that
preserves the partial orderings of each processor’s transactions to this address. There
may be many legal total orders for a given program’s execution.
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MEMBAR Instruction

MEMBAR serves two distinct functions in SPARC V9. One variant of the MEMBAR, the
ordering MEMBAR, provides a way for the programmer to control the order of loads
and stores issued by a processor. The other variant of MEMBAR, the sequencing
MEMBAR, enables the programmer to explicitly control order and completion for
memory operations. Sequencing MEMBARs are needed only when a program requires
that the effect of an operation becomes globally visible rather than simply being
scheduled.? Because both forms are bit-encoded into the instruction, a single VEVMBAR
can function both as an ordering MEMBAR and as a sequencing MEMBAR.

Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a
single processor. Sets of loads and stores that appear before the MEMBAR in program
order are ordered with respect to sets of loads and stores that follow the MEMBAR in
program order. Atomic operations (LDSTUB( A) , SWAP( A) , CASA, and CASXA) are
ordered by MEMBAR as if they were both a load and a store, since they share the
semantics of both. An STBAR instruction, with semantics that are a subset of
MEMBAR, is provided for SPARC V8 compatibility. MVEMBAR and STBAR operate on all
pending memory operations in the reorder buffer, independently of their address or
ASI, ordering them with respect to all future memory operations. This ordering
applies only to memory-reference instructions issued by the processor issuing the
MEMBAR. Memory-reference instructions issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in TABLE 8-1. For example,
MEMBAR 01,6, written as “menbar #LoadLoad” in assembly language, requires that
all load operations appearing before the MEMBAR in program order complete before
any of the load operations following the MEMBAR in program order complete. Store
operations are unconstrained in this case. MEMBAR 08,5 (#St or eSt or e) is equivalent
to the STBAR instruction; it requires that the values stored by store instructions
appearing in program order prior to the STBAR instruction be visible to other
processors before issuing any store operations that appear in program order
following the STBAR.

In TABLE 8-1 these ordering relationships are specified by the “<m” symbol, which
signifies memory order. See Appendix D, Formal Specification of the Memory Models,
for a formal description of the <m relationship.

TABLE 8-1  Ordering Relationships Selected by Mask

Ordering Relation, Earlier < Later Suggested Assembler Tag Mask Value nmask Bit #

Load <m Load #LoadLoad 01y 0

3. Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other system functions. Using a sequencing MEMBARwhen one is
not needed may cause a degradation of performance. See Appendix J, Programming with the Memory Models,
for examples of the use of sequencing MEMBARS.
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TABLE 8-1  Ordering Relationships Selected by Mask

Ordering Relation, Earlier < Later Suggested Assembler Tag Mask Value nmask Bit #
Store <m Load #St or eLoad 0214 1
Load <m Store #LoadSt ore 0446 2
Store <m Store #StoreStore 0846 3

Selections may be combined to form more powerful barriers. For example, a MEVBAR
instruction with a mask of 094 (#LoadLoad | #St or eSt or e) orders loads with
respect to loads and stores with respect to stores, but it does not order loads with
respect to stores, or vice versa.

Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. The
three sequencing MEMBAR options each have a different degree of control and a
different application.

= Lookaside Barrier — Ensures that loads following this MEMBAR are from memory
and not from a lookaside into a write buffer. Lookaside Barrier requires that
pending stores issued prior to the MEMBAR be completed before any load from
that address following the MEMBAR may be issued. A Lookaside Barrier MEMBAR
may be needed to provide lock fairness and to support some plausible 1/0
location semantics. See the example in J.14.2, The Control and Status Register (CSR).

= Memory Issue Barrier — Ensures that all memory operations appearing in
program order before the sequencing MEMBAR complete before any new memory
operation may be initiated. See the example in J.14.1, I/O Registers with Side Effects.

= Synchronization Barrier — Ensures that all instructions (memory reference and
others) preceding the MEMBAR complete and that the effects of any fault or error
have become visible before any instruction following the MEMBAR in program
order is initiated. A Synchronization Barrier VEMBAR fully synchronizes the
processor that issues it.

TABLE 8-2 shows the encoding of these functions in the MEMBAR instruction.

TABLE 8-2  Sequencing Barrier Selected by Mask

Sequencing Function Assembler Tag Mask Value cmask Bit #
Lookaside Barrier #Lookasi de 1044 0
Memory Issue Barrier #Mem ssue 2044 1
Synchronization Barrier #Sync 4016 2
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Memory Models

The SPARC V9 memory models are defined below in terms of order constraints
placed upon memory-reference instruction execution, in addition to the minimal set
required for self-consistency. These order constraints take the form of MEMBAR
operations implicitly performed following some memory-reference instructions.

Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond
those required for processor self-consistency. When ordering is required, it must be
provided explicitly in the programs by MEMBAR instructions.

Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in the RMO memory model will execute
correctly in the PSO model.

The rules for PSO are these:

= Loads are blocking and ordered with respect to earlier loads.

= Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures the following behavior:

= Each load and atomic load-store instruction behaves as if it were followed by a
MEMBAR with a mask value of 054.

= Explicit MEMBAR instructions are required to order store and atomic load-store
instructions with respect to each other.

Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC V8
programs. Programs that execute correctly in either RMO or PSO will execute
correctly in the TSO model.

Following are the rules for TSO:

= Loads are blocking and ordered with respect to earlier loads.

= Stores are ordered with respect to stores.

= Atomic load-stores are ordered with respect to loads and stores.

Thus, TSO ensures the following behavior:

= Each load instruction behaves as if it were followed by a MEMBAR with a mask
value of 05¢4.

Release 1.0.4, 31 May 2002 C. Chapter 8 « Memory Models 181



8.4.5

8.4.6

182

= Each store instruction behaves as if it were followed by a MEMBAR with a mask of
0845

= Each atomic load-store behaves as if it were followed by a MEMBAR with a mask of
0Dq6.

Mode Control

The memory model is specified by the 2-bit state in PSTATE. MM described in
PSTATE_mem_model (MM) on page 71.

Writing a new value into PSTATE. MMcauses subsequent memory reference
instructions to be performed with the order constraints of the specified memory
model.

SPARC V9 processors need not provide all three memory models; undefined values
of PSTATE. MMhave implementation-dependent effects.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode
designation into PSTATE. MMis implementation dependent.

Except when a trap enters RED_st at e, PSTATE. MMis left unchanged when a trap is
entered and the old value is stacked. When RED_st at e is entered, the value of
PSTATE. MMis set to TSO.

Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to
construct mutual-exclusion mechanisms in software, SPARC V9 provides three
hardware primitives for mutual exclusion:

= Compare and Swap (CASA and CASXA)
= Load Store Unsigned Byte (LDSTUB and LDSTUBA)
= Swap (SWAP and SWAPA)

Each of these instructions has the semantics of both a load and a store in all three
memory models. They are all atomic, in the sense that no other store to the same
location can be performed between the load and store elements of the instruction.
All of the hardware mutual-exclusion operations conform to the memory models
and may require barrier instructions to ensure proper data visibility.

When the hardware mutual-exclusion primitives address 1/0 locations, the results
are implementation dependent. In addition, the atomicity of hardware mutual-
exclusion primitives is guaranteed only for processor memory references and not
when the memory location is simultaneously being addressed by an 1/0 device such
as a channel or DMA.
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Compare-and-Swap (CASA, CASXA)

Compare-and-swap is an atomic operation that compares a value in a processor
register to a value in memory and, if and only if they are equal, swaps the value in
memory with the value in a second processor register. Both 32-bit (CASA) and 64-bit
(CASXA) operations are provided. The compare-and-swap operation is atomic in the
sense that once it begins, no other processor can access the memory location
specified until the compare has completed and the swap (if any) has also completed
and is potentially visible to all other processors in the system.

Compare-and-swap is substantially more powerful than the other hardware
synchronization primitives. It has an infinite consensus number; that is, it can
resolve, in a wait-free fashion, an infinite number of contending processes. Because
of this property, compare-and-swap can be used to construct wait-free algorithms
that do not require the use of locks. See Appendix J, Programming with the Memory
Models, for examples.

Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in
memory. SWAP has a consensus number of two; that is, it cannot resolve more than
two contending processes in a wait-free fashion.

Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FFg into
the addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like
SWAP, it has a consensus number of two and so cannot resolve more than two
contending processes in a wait-free fashion.

Synchronizing Instruction and Data Memory

The SPARC V9 memory models do not require that instruction and data memory
images be consistent at all times. The instruction and data memory images may
become inconsistent if a program writes into the instruction stream. As a result,
whenever instructions are modified by a program in a context where the data (that
is, the instructions) in the memory and the data cache hierarchy may be inconsistent
with instructions in the instruction cache hierarchy, some special programmatic
action must be taken.

The FLUSH instruction will ensure consistency between the in-flight instruction
stream and the data references in the processor executing FLUSH. The programmer
must ensure that the modification sequence is robust under multiple updates and
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concurrent execution. Since, in general, loads and stores may be performed out of
order, appropriate MEMBAR and FLUSH instructions must be interspersed as needed
to control the order in which the instruction data are mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the
doubleword target of the FLUSH by the processor executing the FLUSH appear to
execute after any loads, stores, and atomic load-stores issued by the processor to that
address prior to the FLUSH. FLUSH acts as a barrier for instruction fetches in the
processor on which it executes and has the properties of a store with respect to
MVEMBAR operations.

FLUSH has zero latency on the issuing processor; the modified instruction stream is
immediately available.*

IMPL. DEP. #122: The latency between the execution of FLUSH on one processor and
the point at which the modified instructions have replaced outdated instructions in a
multiprocessor is implementation dependent.

Programming Note — Because FLUSH is designed to act on a doubleword and
because, on some implementations, FLUSH may trap to system software, it is
recommended that system software provide a user-callable service routine for
flushing arbitrarily sized regions of memory. On some implementations, this routine
would issue a series of FLUSH instructions; on others, it might issue a single trap to
system software that would then flush the entire region.

On a SPARC JPS1 processor:

= A FLUSH instruction flushes the processor pipeline and synchronizes the
processor.

= Coherency between instruction and data memories is maintained with hardware;
therefore, the address in the operands of a FLUSH instruction may be ignored (but
must be supplied by software for SPARC V9 compatibility).

Programming Note — Although SPARC JPS1 processors maintain coherency
between instruction and data caches in hardware, SPARC V9 implementations in
general are not required to do so (and some do not). Therefore, portable SPARC V9
software:

(1) must always assume that store instructions (except Block Store with Commit) do
not coherently update I-cache(s);

(2) must, in every FLUSH instruction, supply the address of the instruction or
instructions that were modified.

4. SPARC V8 specified a five-instruction latency. Invalidation of instructions in the instruction cache during
their execution is likely to force an instruction-cache fault.
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C.APPENDIX A

Instruction Definitions

The SPARC Joint Programming Specification extends the standard SPARC V9
instruction set with four classes of instructions:

= Low-power mode: SHUTDOWN (A.59)

= Enhanced graphics functionality: instructions for alignment (A.2); array handling
(A.3); BMASK and BSHUFFLE (A.5); edge handling (A.12); logical operations on
floating-point registers (A.33); and partitioned arithmetic and pixel manipulation
(A.43 to A.47)

= Efficient memory access: partial store (A.42); short floating-point loads and stores
(A.58); atomic load quadword (A.30); and block load and store (A.4)

= Efficient interval arithmetic: SI AM(A.55) and all instructions that reference
GSR. I M

Related instructions are grouped into subsections. Each subsection consists of these
parts:

1. A table of the opcodes defined in the subsection with the values of the field(s)
that uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations a dash
(—) indicates that the field is reserved for future versions of the architecture and
shall be 0 in any instance of the instruction. If a conforming SPARC V9
implementation encounters nonzero values in these fields, its behavior is
undefined. See Appendix I, Extending the SPARC V9 Architecture, for information
about extending the SPARC V9 instruction set.

3. A list of the suggested assembly language syntax; the syntax notation is described
in Appendix G, Assembly Language Syntax.

4. A description of the features, restrictions, and exception-causing conditions.

5. A list of exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, fast_instruction_access_MMU_miss,
fast_ECC_errorT, async_data_errorT, ECC_error (corrected ECC_error), WDR,
and interrupts are not listed because they can occur on any instruction. A

Release 1.0.4, 31 May 2002 C. Appendix A - Instruction Definitions 185



floating-point operation that is not implemented in hardware generates an
fo_exception_other exception with f t t = unimplemented_FPop when executed.
Non-floating-point instructions not implemented in hardware shall generate an
illegal_instruction exception and therefore will not generate any of the other
exceptions listed. The illegal_instruction exception is not listed because it can
occur on any instruction that triggers an instruction breakpoint or contains an
invalid field.

This appendix does not include any timing information (in either cycles or clock
time), since timing is implementation dependent.

TABLE A-2 summarizes the instruction set; the instruction definitions follow the table.
Within TABLE A-2, throughout this appendix, and in Appendix E, Opcode Maps,
certain opcodes are marked with mnemonic superscripts. The superscripts and their
meanings are defined in TABLE A-1.

TABLE A-1

Opcode Superscripts

Superscript

Meaning

D
P

PAH
PASR
PNPT
PNC

PPCR

Deprecated instruction

Privileged opcode

Privileged action if bit 7 of the referenced ASI is 0

Privileged opcode if the referenced ASR register is privileged
Privileged action if PSTATE. PRI V =0 and (S)TI CK. NPT =1
Privileged action if PCR. PRI V=1

Privileged access to PCR (impl. dep. #250)

TABLE A-2  Instruction Set (1 of 6)

Ext. to
Operation Name Page V9?
ADD (ADDcc) Add (and modify condition codes) 192
ADDC (ADDCcc) Add with carry (and modify condition codes) 192
AL|I GNADDRESS{ _LI TTLE} Calculate address for misaligned data 194 O
AND (ANDcc) And (and modify condition codes) 259
ANDN (ANDNcc) And not (and modify condition codes) 259
ARRAY(8,16,32) 3-D array addressing instructions 196 O
BPcc Branch on integer condition codes with prediction 210
Bi ccP Branch on integer condition codes 358
BMASK Set the GSR. MASK field 203 O

f Implementation-dependent exception; see SPARC JPS1 Implementation-Dependent Traps on page

168.
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TABLE A-2  Instruction Set (2 of 6)
Ext. to

Operation Name Page V9?
BPr Branch on contents of integer register with prediction 205
BSHUFFLE Permute bytes as specified by GSR. MASK 203 O
CALL Call and link 213
CASAP»s Compare and swap word in alternate space 214
CASXAPas! Compare and swap doubleword in alternate space 214

DONEP Return from trap 217
EDGE(8,16,32){ L} Edge handling instructions 218 O
FABS(s,d,q) Floating-point absolute value 231
FADD(s,d,q) Floating-point add 221

FALI GNDATA Perform data alignment for misaligned data 194 O
FAND(S} Logical AND operation 256 O
FANDNOT (1,2){S} Logical AND operation with one inverted source 256 O
FBf ccP Branch on floating-point condition codes 355

FBPf cc Branch on floating-point condition codes with prediction 207
FCWP(s,d,q) Floating-point compare 223
FCMPE(s,d,q) Floating-point compare (exception if unordered) 223
FCMP(GT,LE,NE,EQ)(16,32) Pixel compare operations 292 O
FDI V(s,d,q) Floating-point divide 233

FdMULqg Floating-point multiply double to quad 233
FEXPAND Pixel expansion 299 O
Fi TO(s,d,q) Convert integer to floating-point 229

FLUSH Flush instruction memory 236
FLUSHW Flush register windows 238
FMOV(s,d,q) Floating-point move 231
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 264
FMOV(s,d,q)r Move f-p reg. if integer reg. contents satisfy condition 270
FMUL(s,d,q) Floating-point multiply 233
FMUL8x16 8x16 partitioned product 287 O
FMUL8x16(AU,AL) 8x16 upper/lower a partitioned product 288 O
FMUL8(SU,UL)x16 8x16 upper/lower partitioned product 289 O
FMULD8(SU,UL)x16 8x16 upper/lower partitioned product 290 O
FNAND{ S} Logical NAND operation 256 O
FNEG(s,d,q) Floating-point negate 231

FNOR{ S} Logical NOR operation 256
FNOT(1,2){ S} Copy negated source 256 O
FPACK(16,32, FI X) Pixel packing 296, O

297, 298
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TABLE A-2  Instruction Set (3 of 6)

Ext. to
Operation Name Page V9?
FPADD(16,32){S} Pixel add (single) 16- or 32-bit 284 O
FPMVERGE Pixel merge 300 O
FONE{ S} One fill 256 0
FOR{ S} Logical OR operation 256 O
FORNOT(1,2){ S} Logical OR operation with one inverted source 256 O
FPSUB(16,32){ S} Pixel subtract (single) 16- or 32-bit 284 O
FsMULd Floating-point multiply single to double 233
FSQRT(s,d,q) Floating-point square root 235
FSRC(1,2){ S} Copy source 256 O
F(s,d,q)TG Convert floating point to integer 225
F(s,d,q)TO(s,d,q) Convert between floating-point formats 227
F(s,d,q)TOx Convert floating point to 64-bit integer 225
FSUB(s,d,q) Floating-point subtract 221
FXNOR{ S} Logical XNOR operation 256 O
FXOR{ S} Logical XOR operation 256 O
FxTO(s,d,q) Convert 64-bit integer to floating-point 229
FZERO( S} Zero fill 256 0
| LLTRAP Illegal instruction 239
| MPDEP2A Implementation-dependent instructions 240
| MPDEP2B Implementation-dependent instructions (reserved) 240
JMPL Jump and link 241
LDDP Load integer doubleword 365
LDDAP: Pas Load integer doubleword from alternate space 367
LDDA ASI _NUCLEUS_QUAD* Load integer quadword, atomic 251 O
L DDF Load double floating-point 242
LDDFAPAs! Load double floating-point from alternate space 199
LDDFA ASI _BLK* Block loads 199 O
LDDFA ASI _FL* Short floating point loads 326 O
LDF Load floating-point 242
LDFAPAs Load floating-point from alternate space 242
LDFSRP Load floating-point state register lower 364
LDQF Load quad floating-point 242
LDQ:AF’ASI Load quad floating-point from alternate space 242
LDSB Load signed byte 247
LDSBAPAs! Load signed byte from alternate space 249
LDSH Load signed halfword 247
LDSHAPs! Load signed halfword from alternate space 249
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TABLE A-2  Instruction Set (4 of 6)

Ext. to
Operation Name Page V9?
LDSTUB Load-store unsigned byte 253
LDSTUBAPAs! Load-store unsigned byte in alternate space 254
LDSW Load signed word 247
LDSWAPAsi Load signed word from alternate space 249
LDuUB Load unsigned byte 247
LDUBAPAs! Load unsigned byte from alternate space 249
LDUH Load unsigned halfword 247
L DUHAPAs! Load unsigned halfword from alternate space 249
LDUW Load unsigned word 247
L DUWAPAs! Load unsigned word from alternate space 249
LDX Load extended 247
LDXAPas! Load extended from alternate space 249
LDXFSR Load floating-point state register 242
MVEMBAR Memory barrier 261
MOVcc Move integer register if condition is satisfied 272
MOVr Move integer register on contents of integer register 277
MULSccP Multiply step (and modify condition codes) 371
MULX Multiply 64-bit integers 279
NOP No operation 281
OR (ORcc) Inclusive-or (and modify condition codes) 259
ORN (ORNcc) Inclusive-or not (and modify condition codes) 259
PDI ST Pixel component distance 294 O
POPC Population count 301
PREFETCH Prefetch data 303
PREFETCHAPAs! Prefetch data from alternate space 303
RDASI Read ASI register 313
RDASRPAsR Read ancillary state register 313
RDCCR Read condition codes register 313
RDDCR? Read dispatch control register 313
RDFPRS Read floating-point registers state register 313
RDGSR Read graphic status register 313
RDPC Read program counter 313
RDPCRPPcR Read performance control register 313
RDP| CPpic Read performance instrumentation counters 313
RDPR® Read privileged register 311
RDSOFTI NTP Read per-processor soft interrupt register 313
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TABLE A-2  Instruction Set (5 of 6)

Ext. to
Operation Name Page V9?
RDSTI| CKPNeT Read system TICK register 313
RDSTI CK_CMPR® Read system TICK compare register 313
RDTI CKPneT Read TI CK register 313
RDTI CK_CMWPR? Read TICK compare register 313
RDYP Read Y register 373
RESTORE Restore caller’s window 318
RESTORED” Window has been restored 321
RETRY? Return from trap and retry 217
RETURN Return 316
SAVE Save caller’s window 318
SAVED" Window has been saved 321
sDI VP (SDI veeP) 32-bit signed integer divide (and modify condition codes) 361
SDI VX 64-bit signed integer divide 279
SETHI Set high 22 bits of low word of integer register 323
SHUTDOWN Shut down the processor 328 O
SI AM Set Interval Arithmetic Mode 322 O
SIR Software-initiated reset 329
SLL Shift left logical 324
SLLX Shift left logical, extended 324
SMULP (SMuLccDP) Signed integer multiply (and modify condition codes) 369
SRA Shift right arithmetic 324
SRAX Shift right arithmetic, extended 324
SRL Shift right logical 324
SRLX Shift right logical, extended 324
STB Store byte 336
STBAPAs Store byte into alternate space 338
STBARP Store barrier 374
sTDP Store doubleword 377
STDAD: Pasi Store doubleword into alternate space 379
STDF Store double floating-point 330
STDFAPas! Store double floating-point into alternate space 333
STDFA ASI _BLK* Block stores 199 O
STDFA ASI _FL* Short floating point stores 326 O
STDFA ASI _PST* Partial Store instructions 282 O
STF Store floating-point 330
STFAP»s Store floating-point into alternate space 333
STFSRP Store floating-point state register 375

190 SPARC® Joint Programming Specification (JPS1): Commonality *« Release 1.0.4, 31 May 2002



TABLE A-2  Instruction Set (6 of 6)

Ext. to

Operation Name Page V9?
STH Store halfword 336
STHAPAs Store halfword into alternate space 338

STQF Store quad floating-point 330
STQFAPas! Store quad floating-point into alternate space 333

STW Store word 336
STWAPAS Store word into alternate space 338

STX Store extended 336
STXAPAs Store extended into alternate space 338
STXFSR Store extended floating-point state register 330

SUB (SUBcc) Subtract (and modify condition codes) 340

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 340

swapP Swap integer register with memory 381
SWAPAP: Pas Swap integer register with memory in alternate space 383
TADDcc (TADDcc TVP) Tagged add and modify condition codes (trap on overflow) 342, 385
Tcc Trap on integer condition codes 344

TSUBcc (TSUBccTVP)
uD! VP (UDI VecP)

Tagged subtract and modify condition codes (trap on overflow) 343, 387
Unsigned integer divide (and modify condition codes) 361

UDI VX
UMULP (UmuLcceP)
VRASI

VRASRPAsr

WRCCR

WRDCR”

WRFPRS

VRGSR

VRPCRPPCR

VRP| CPPic

VRPR®

WRSOFTI NTP
WRSOFTI NT_CLRP
VRSOFTI NT_SET"
VRTI CK_CMPRP
WRSTI CKP

WRSTI CK_CMPRP
WRYP

XNOR (XNORcc)
XOR (XORcc)

64-bit unsigned integer divide

Unsigned integer multiply (and modify condition codes)

Write ASI register

Write ancillary state register

Write condition codes register

Write dispatch control register

Write floating-point registers state register
Write graphic status register

Write performance control register

Write performance instrumentation counters register
Write privileged register

Write per-processor soft interrupt register

Clear bits of per-processor soft interrupt register
Set bits of per-processor soft interrupt register
Write TICK compare register

Write System TICK register

Write System TICK compare register

Write Y register

Exclusive-nor (and modify condition codes)
Exclusive-or (and modify condition codes)

279
369
350
350
350
350
350
350
350
350
347
350
350
350
350
350
350
389
259
259

Release 1.0.4, 31 May 2002

C. Appendix A - Instruction Definitions 191



Al Add

Add

Opcode

Op3

Operation

ADD
ADDcc
ADDC
ADDCcc

00 0000
01 0000
00 1000
011000

Add

Add and modify cc’s

Add with Carry

Add with Carry and modify cc’s

Format (3)

10

rd

op3

rs1 i=0 — rs2

10

rd

op3

rs1 i=1 simm13

31 30 29 25 24

Description:

192

19 18

14 13 12 5 4 0

Assembly Language Syntax

add
addcc
addc

addccc

regrsy, feg_or_imm, reg,q
regyst, reg_or_imm, reg,q
regrst, reg_or_imm, regyq

regrsy, feg_or_imm, reg,q

ADD and ADDcc compute “r[rs1] +r[rs2]”ifi=0,or

“r[rsl] +sign_ext (simil3)”ifi=1, and write the sum intor[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry
(i cc. c) bit; that is, they compute “r[rsl] +r[rs2] +icc.c” or
“r[rsl] +sign_ext(simml3) + icc.c”and write the sumintor[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR. i cc and CCR. xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different.
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Add

Programming Note — ADDC and ADDCcc read the 32-bit condition codes’ carry bit
(CCR. i cc. ¢), not the 64-bit condition codes’ carry bit (CCR. xcc. c).

Compatibility Note — ADDC and ADDCcc were named ADDX and ADDXcc,
respectively, in SPARC V8.

Exceptions: None
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Alignment Instructions (VIS I)

A.2

Alignment Instructions (VIS I)

Opcode opf Operation
AL| GNADDRESS 00001 1000 Calculate address for misaligned data access
ALl GNADDRESS LI TTLE 000011010 Calculate address for misaligned data access
little-endian

FALI GNDATA 00100 1000 Perform data alignment for misaligned data

Format (3)

10 rd 110110 rs1 opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax
al i gnaddr redrsi, regrsp, regeg
al i gnaddr | redrsis relrsy, 'edrg
faligndata fregrss, fregrsny, fregeg

Description:  ALI GNADDRESS adds two integer values, r [ rs1] and r [rs2], and stores the result

(with the least significant 3 bits forced to 0) in the integer register r [ r d] . The least
significant 3 bits of the result are stored in the GSR. al i gn field.

ALl GNADDRESS LI TTLE is the same as ALI GNADDRESS except that the 2’s
complement of the least significant 3 bits of the result is stored in GSR. al i gn.

Note — ALI GNADDR LI TTLE generates the opposite-endian byte ordering for a
subsequent FALI GNDATA operation.

FALI GNDATA concatenates the two 64-bit floating-point registers specified by r s1
and r s2 to form a 128-bit (16-byte) intermediate value. The contents of the first
source operand form the more-significant 8 bytes of the intermediate value, and the
contents of the second source operand form the less significant 8 bytes of the
intermediate value. Bytes in the intermediate value are numbered from most
significant (byte 0) to least significant (byte 15). Eight bytes are extracted from the
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Alignment Instructions (VIS I)

intermediate value and stored in the 64-bit floating-point destination register
specified by rd. GSR. al i gn specifies the number of the most significant byte to
extract (and, therefore, the least significant byte extracted from the intermediate
value is numbered GSR. al i gn+7).

A byte-aligned 64-bit load can be performed as shown in CODE EXAMPLE A-1.

CODE EXAMPLE A-1 Byte-Aligned 64-Bit Load

al i gnaddr  Address, Offset, Address
| dd [ Address], %0

| dd [ Address + 8], %2
faligndata %0, %2, %4

Exceptions: fo_disabled
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Three-Dimensional Array Addressing Instructions (VIS 1)

A.3

Format (3)

Three-Dimensional Array Addressing
Instructions (VIS I)

Opcode opf Operation

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address
ARRAY16 00001 0010 Convert 16-bit 3D address to blocked byte address

ARRAY32 00001 0100 Convert 32-bit 3D address to blocked byte address

10

rd

110110 rs1 opf rs2

31 30 29

Description

196

25 24 19 18 14 13 5 4 0

Assembly Language Syntax

array8 €Qrs1, M€Qrs2s €Qrq
arrayl6 re0ys1, €0rs2, redrq

array32 T€Qrs1: M€0rs2, M€0rq

These instructions convert three-dimensional (3D) fixed-point addresses contained
inr[rsl] to a blocked-byte address; they store the result in r [ rd] . Fixed-point
addresses typically are used for address interpolation for planar reformatting
operations. Blocking is performed at the 64-byte level to maximize external cache
block reuse, and at the 64-Kbyte level to maximize TLB entry reuse, regardless of the
orientation of the address interpolation. These instructions specify an element size of
8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits (ARRAY32). The second operand,
r[rs2], specifies the power-of-2 size of the X and Y dimensions of a 3D image
array. The legal values for r s2 and their meanings are shown in TABLE A-3. lllegal
values produce undefined results in the destination register, r[ rd] .

TABLE A-3 3D r[rs2] Array X/Y Dimensions

r[rs2] value Number of elements
0 64
1 128
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Three-Dimensional Array Addressing Instructions (VIS 1)

TABLE A-3 3D r[rs2] Array X/Y Dimensions (Continued)

r[rs2] value Number of elements
2 256
3 512
4 1024
5 2048
63 55 54 44 43 33 32 22 21 11 10 0
Z integer Z fraction Y integer Y fraction X integer X fraction

FIGURE A-1 Three-Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the following blocked-address

formats.
Upper Middle Lower
VA Y X VA Y X VA Y X
20 17 17 17 13 9 5 4 2 0
+ 2 isrc2 + 2 isrc2 + isrc2

FIGURE A-2 Three-Dimensional Array Blocked-Address Format (Ar r ay 8)

Upper Middle Lower
0
Z Y X Z Y X Z Y X
21 18 18 18 14 10 6 5 3 1 0
+ 2 isrc2 +2 isrc2 +isrc2
FIGURE A-3 Three-Dimensional Array Blocked-Address Format (Arr ay16)
Upper Middle Lower
00
zZ Y X Z Y X zZ Y X
22 19 19 19 15 11 7 6 4 2 0
+ 2 isrc2 + 2 isrc2 + isrc2

FIGURE A-4 Three Dimensional Array Blocked-Address Format (Ar r ay32)
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Three-Dimensional Array Addressing Instructions (VIS 1)

The bits above Z upper are set to 0. The number of zeroes in the least significant bits
is determined by the element size. An element size of 8 bits has no zeroes, an
element size of 16 bits has one zero, and an element size of 32 bits has two zeroes.
Bits in X and Y above the size specified by r [ r s2] are ignored.

The code fragment in CODE EXAMPLE A-2 shows assembly of components along an
interpolated line at the rate of one component per clock.

CODE EXAMPLE A-2 Assembly of Components Along an Interpolated Line

add Addr, DeltaAddr, Addr
array8 Addr, 9%g0, bAddr
| dda [ bAddr] ASI _FL8_ PRI MARY, data

faligndata data, accum accum

Exceptions None
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A4

Block Load and Store (VIS 1)

Block Load and Store (VIS )

Opcode imm_asi ASI Value Operation
LDDFA AS| _BLK_AIl UP 7046 64-byte block load/store from/to primary
STDFA address space, user privilege
LDDFA ASI _BLK_AI US Tl 64-byte block load/store from/to secondary
STDFA address space, user privilege
LDDFA AS| _BLK_AIl UPL 7816 64-byte block load/store from/to primary
STDFA address space, little-endian, user privilege
LDDFA ASI _BLK_AI USL 7915 64-byte block load/store from/to secondary
STDFA address space, little-endian, user privilege
LDDFA ASI _BLK_P FO4g 64-byte block load/store from/to primary
STDFA address space
LDDFA ASI _BLK S Flyg 64-byte block load/store from/to secondary
STDFA address space
LDDFA ASI _BLK_PL F816 64-byte block load/store from/to primary
STDFA address space, little-endian
LDDFA ASI _BLK_SL F916 64-byte block load/store from/to secondary
STDFA address space, little-endian
STDFA ASI _BLK_ COWM T_P EOqg 64-byte block commit store to primary
address space
STDFA ASI _BLK COWM T_S Elg 64-byte block commit store to secondary
address space
Format (3) LDDFA
11 rd 110011 rs1 i=0 imm_asi rs2
11 rd 110011 rs1 i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
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Block Load and Store (VIS 1)

Format (3) STDFA

1

rd

110111 rs1 i=0 imm_asi rs2

1

rd

110111 rs1 i=1 simm_13

31 30 29

Description

200

25 24 19 18 14 13 5 4 0

Assembly Language Syntax

| dda [ reg_addr] imm_asi, freg,q
| dda [ reg_plus_imm] %@asi, freg.q
stda fregyq, [ reg_addr] imm_asi

stda freg g, [ reg_plus_imm] %@si

A block load or store instruction uses an LDDFA or STDFA instruction combined with
a block transfer ASI. Block transfer ASls allow block loads and stores to be
performed accessing the same address space as normal loads and stores. Little-
endian ASls (those with an ‘L’ suffix) access data in little-endian format; otherwise,
the access is assumed to be big-endian. Byte swapping is performed separately for
each of the eight double-precision registers used by the instruction. Endianness does
not matter if these instructions are only being used for a block copy operation.

A block store with commit forces the data to be written to memory and invalidates
copies in all caches present. As a result,a block store with commit maintains
coherency with the I-cache. It does not, however, flush instructions that have
already been fetched into the pipeline before executing the modified code. If a block
store with commit is used to write modified instructions, a FLUSH instruction must
still be executed to guarantee that the instruction pipeline is flushed. (See
Synchronizing Instruction and Data Memory on page 183 for more information.)

LDDFA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned
memory area into the eight double-precision floating-point registers specified by r d.
The lowest-addressed eight bytes in memory are loaded into the lowest-numbered
double-precision destination register. An illegal_instruction exception occurs if the
floating-point registers are not aligned on an eight-double-precision register
boundary. The least significant 6 bits of the memory address must be 0 or a
mem_address_not_aligned exception occurs.

STDFA with a block transfer ASI stores data from the eight double-precision floating-
point registers specified by r s1 to a 64-byte-aligned memory area. The lowest-
addressed eight bytes in memory are stored from the lowest-numbered double-

t Although all stores on JPS1 processors coherently update the instruction cache (see page 184), stores (other
than Block Store with Commit) on SPARC V9 implementations in general do not maintain coherency between
instruction and data caches.
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Block Load and Store (VIS 1)

precision r d. An illegal_instruction exception occurs if the floating-point registers are
not aligned on an eight-register boundary. The least significant 6 bits of the memory
address must be 0 or a mem_address_not_aligned exception occurs.

ASIs EO g and El,¢ are only used for block store-with-commit operations; they are
not used for block load operations. See Block Load and Store ASls on page 548 for
more information.

Programming Note — Block load does not provide register dependency interlocks,
as ordinary load instructions do.

Before block load data can be referenced, a second block load (to a different set of
registers) or a MEMBAR #Sync must be performed. If a second block load is used to
synchronize against returning data, the processor will continue execution before all
data has been returned. The programmer is then responsible for scheduling
instructions so registers are only used when they become valid.

To determine when data is valid, the programmer must count instruction groups
containing FP operate instructions (not FP loads or stores). The lowest-numbered
destination register of the first block load may be referenced in the first instruction
group following the second block load, using an FP operate instruction only.

The second-lowest-numbered destination register of the first block load may be
referenced in the second instruction group containing an FP operate instruction, and
so on.

If this block-load/block-load synchronization mechanism is used, the initial
reference to the block load data must be an FP operate instruction (not an FP store),
and only instruction groups with FP operate instructions are counted when
determining block load data availability.

If these rules are violated, data from before or after the block load may be returned
by a reference to any of the block load’s destination registers.

If a MEMBAR #Sync is used to synchronize on block load data, there are no
restrictions on data usage, although performance will be lower than if block-load/
block-load synchronization is used. No other MEMBARs can be used to provide data
synchronization for block load.

FP operate instructions can be issued in a single instruction group with FP stores. If
block-load/block-load synchronization is used, FP operates and FP stores can be
interlaced. This allows an FP operate instruction, such as FMOVD or FALI GNDATA, to
reference the returning data before using the data in any FP store (normal store or
block store).

The processor also continues execution, without register interlocks, before all the
store data for block stores are transferred from the register file.
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Block Load and Store (VIS 1)

If store source registers are overwritten before the next block store or MEVMBAR

#Sync instruction, then the following rule must be observed: The first register can
be overwritten in the same instruction group as the block store, the second register
can be overwritten in the instruction group following the block store, and so on. If
this rule is violated, the block store may use the old or the new (overwritten) data.

When determining correctness for a code sample, note that JPS1 implementations
may interlock more than required above. For example, there may be partial register
interlocks, such as on the lowest-number register.

Code that does not meet the above constraints may appear to work on a particular
implementation. However, to be portable across all SPARC JPS1 implementations, all
of the above rules should be followed.

fp_disabled

PA_watchpoint (recognized on only the first 8 bytes of a transfer)
VA_watchpoint (recognized on only the first 8 bytes of a transfer)
illegal_instruction (misaligned r d)

mem_address_not_aligned

data_access_exception

data_access_error

fast_data_access_MMU_miss

fast_data_access_protection
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Byte Mask and Shuffle Instructions (VIS II)

A5

Byte Mask and Shuffle Instructions (VIS I1)

Opcode opf Operation

BMASK 00001 1001 Set the GSR. MASK field in preparation for a
following BSHUFFLE instruction

BSHUFFLE 00100 1100 Permute bytes as specified by GSR. MASK

Format (3)
10 rd 110110 rs1 opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Assembly Language Syntax
bmask re0rs1, M€Qrs2, M€Qrg
bshuffle freg sy, fregrsp, fregeq
Description:  BMASK adds two integer registers, r [rs1] and r [ rs2], and stores the result in the

integer register r [ r d] . The least significant 32 bits of the result are stored in the
GSR. mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers specified by r s1
(more-significant half) and r s2 (less significant half) to form a 16-byte value. Bytes
in the concatenated value are numbered from most significant to least significant,
with the most significant byte being byte 0. BSHUFFLE extracts 8 of those 16 bytes
and stores the result in the 64-bit floating-point register specified by r d. Bytes in the
r d register are also numbered from most to least significant, with the most
significant being byte 0. The following table indicates which source byte is extracted
from the concatenated value for each byte in r d.
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Destination Byte (in r [ r d] ) Source Byte

0 (most significant) (r[rs1] D r [rs2])[ GSR. mask<31:28>]
(r[rs1] [] rlrs2][ GSR mask<27:24>]
(r[rs1] [] rrs2])[ GSR mask<23:20>]
(r[rs1] [] rirs2])[ GSR mask<19:16>]
(r[rs1] [] r[rs2])[ GSR mask<15:12>]
(r[rs1] [] rlrs2][ GSR mask<11:8>]

(r[rs1] [] rlrs2][ GSR mask<7:4>]

~N o o B~ W N -

(least significant) (r[rs1] D r[rs2])[ GSR. mask<3:0>]

Exceptions: fo_disabled
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Branch on Integer Register with Prediction (BPr)

A.6 Branch on Integer Register with
Prediction (BPr)

Opcode rcond Operation RegisterContents Test
— 000 Reserved —

BRz 001 Branch on Register Zero r[rsl] =0
BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rsl] <0
BRLZ 011 Branch on Register Less Than Zero r[rsi] <0

— 100 Reserved —

BRNZ 101 Branch on Register Not Zero r[rsl] #0

BR&Z 110 Branch on Register Greater Than Zero r[rsil] >0
BRCEZ 111 Branch on Register Greater Than or Equal to Zero r[rsl] =0

Format (2)
00 |a|0 rcond 011 d16hi | p rs1 d16lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0

Assembly Language Syntax

brz{,a}{, pt|, pn} regys;, label
brlez{,a}{,pt],pn} reg,s;., label
brlz{,a}{,pt]|,pn} reg,s;., label
brnz{, a}{, pt|, pn} reg,sy., label
brgz{, a}{, pt|, pn} regys;, label
brgez{, a}{, pt| . pn} regps1, label
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Programming Note — To set the annul bit for BPr instructions, append “, a” to the
opcode mnemonic. For example, use “brz, a % 3,label.” In the preceding table,
braces signify that the “, a” is optional. To set the branch prediction bit p, append
either “, pt ” for predict taken or “, pn” for predict not taken to the opcode
mnemonic. If neither “, pt ” nor “, pn” is specified, the assembler shall default to

“ pt”.

Description These instructions branch based on the contents of r [ r s1] . They treat the register
contents as a signed integer value.

A BPr instruction examines all 64 bits of r [ r s1] according to the r cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;
that is, the instruction causes a PC-relative, delayed control transfer to the address
“PC+ (4 *si gn_ext (d16hi D d16l o) ).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the
value of the annul bit. If the branch is not taken and the annul bit (a) is 1, the delay
instruction is annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to
be taken. A 1 in the p bit indicates that the branch is expected to be taken; a 0
indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, Instructions.

Implementation Note — If this instruction is implemented by tagging each register
value with an N (negative) bit and Z (zero) bit, use the table below to determine if
rcond is TRUE:

Branch Test

BRNZ not Z

BRZ z

BRCEZ not N

BRLZ N

BRLEZ N orz
BRG&Z not (N or 2)

Exceptions illegal_instruction (if r cond = 000, or 100,)
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Branch on Floating-Point Condition Codes with Prediction (FBPfcc)

A.7 Branch on Floating-Point Condition
Codes with Prediction (FBPfcc)

Opcode cond Operation fcc Test
FBPA 1000 Branch Always 1

FBPN 0000 Branch Never 0

FBPU 0111 Branch on Unordered U

FBPG 0110 Branch on Greater G

FBPUG 0101 Branch on Unordered or Greater GorU
FBPL 0100 Branch on Less L

FBPUL 0011 Branch on Unordered or Less LoruU
FBPLG 0010 Branch on Less or Greater LorG
FBPNE 0001 Branch on Not Equal LorGorU
FBPE 1001 Branch on Equal E

FBPUE 1010 Branch on Unordered or Equal EoruU
FBPGE 1011 Branch on Greater or Equal EorG
FBPUGE 1100 Branch on Unordered or Greater or Equal EorGorU
FBPLE 1101 Branch on Less or Equal EorL
FBPULE 1110 Branch on Unordered or Less or Equal EorLoru
FBPO 1111 Branch on Ordered EorLorG

Format (2)
00 | a cond 101 ccllccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0
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Branch on Floating-Point Condition Codes with Prediction (FBPfcc)

ccl D cc0 Condition Code
00 fcco
01 fccl
10 fcc2
1 fcc3

Assembly Language Syntax

fba{, a}{, pt|, pn} % ccn, label
fon{, a}{, pt|, pn} % ccn, label

fbu{,a}{, pt],pn} % ccn, label

fbg{,a}{,pt|, pn} % ccn, label

fbug{, a}{, pt|, pn} % ccn, label

fol {,a}{, pt],pn} % ccn, label

fbul {,a}{,pt]|,pn} % ccn, label

fblg{,a}{,pt|, pn} % ccn, label

fbne{,a}{, pt|, pn} % ccn, label (synonym: f bnz)
fbe{,a}{,pt],pn} % ccn, label (synonym: f bz)
fbue{, a}{,pt|, pn} % ccn, label

fbge{, a}{, pt|, pn} % ccn, label

fbuge{, a}{, pt|, pn} % ccn, label

fole{,a}{,pt|, pn} % ccn, label

fbul e{,a}{,pt], pn} % ccn, label

fbo{,a}{, pt|, pn} % ccn, label

Programming Note — To set the annul bit for FBPf cc instructions, append “, a” to
the opcode mnemonic. For example, use “f bl , a % cc3, | abel .” In the preceding
table, braces signify that the “, a” is optional. To set the branch prediction bit,
append either “, pt ” (for predict taken) or “pn” (for predict not taken) to the opcode
mnemonic. If neither “, pt ” nor “, pn” is specified, the assembler shall default to

“, pt”. To select the appropriate floating-point condition code, include “% cc0”,
“% ccl”, “% cc2”, or “% cc3” before the label.
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Description:

Exceptions

Branch on Floating-Point Condition Codes with Prediction (FBPfcc)

Unconditional branches and Fcc-conditional branches are described below.

Unconditional branches (FBPA, FBPN) — If its annul field is 0, an FBPN (Floating-
Point Branch Never with Prediction) instruction acts like a NOP. If the Branch
Never’s annul field is 0, the following (delay) instruction is executed; if the annul
field is 1, the following instruction is annulled (not executed). In no case does an
FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address

“PC+ (4 xsi gn_ext (di sp19)).” If the annul field of the branch instruction is 1,
the delay instruction is annulled (not executed). If the annul field is 0, the delay
instruction is executed.

Fcc-conditional branches — Conditional FBPf cc instructions (except FBPA and
FBPN) evaluate one of the four floating-point condition codes (f cc0, fccl, fcc2,
f cc3) as selected by cc0 and cc1, according to the cond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address

“PC+ (4 xsi gn_ext (di sp19)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed,
regardless of the value of the annul field. If a conditional branch is not taken and
the a (annul) field is 1, the delay instruction is annulled (not executed). Note: The
annul bit has a different effect on conditional branches than it does on
unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is
expected to be taken. A 1 in the p bit indicates that the branch is expected to be
taken. A 0 indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 6, Instructions.

If FPRS. FEF = 0 or PSTATE. PEF =0, or if an FPU is not present, an FBPf cc
instruction is not executed and instead, an fp_disabled exception is generated.

Compatibility Note — Unlike SPARC V8, SPARC V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBf cc,
FBPf cc).

fp_disabled
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A.8

Branch on Integer Condition Codes with Prediction (BPcc)

Branch on Integer Condition Codes with
Prediction (BPcc)

Opcode cond Operation icc Test
BPA 1000 Branch Always 1
BPN 0000 Branch Never 0
BPNE 1001 Branch on Not Equal not Z
BPE 0001 Branch on Equal z
BPG 1010 Branch on Greater not (Z or (N xor V))
BPLE 0010 Branch on Less or Equal Z or (N xor V)
BPGE 1011 Branch on Greater or Equal not (N xor V)
BPL 0011 Branch on Less N xor V
BPGU 1100 Branch on Greater Unsigned not (C or 2)
BPLEU 0100 Branch on Less or Equal Unsigned Corz
BPCC 1101 Branch on Carry Clear (Greater Than or Equal, not C
Unsigned)
BPCS 0101 Branch on Carry Set (Less than, Unsigned) C
BPPOS 1110 Branch on Positive not N
BPNEG 0110 Branch on Negative N
BPVC 1111 Branch on Overflow Clear not vV
BPVS 0111  Branch on Overflow Set \Y
Format (2)
00 |a cond 001 ccl|ccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0
ccl D cc0 ICondition Code
00 icc
01 —
10 Xce
11 —
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Description:

Branch on Integer Condition Codes with Prediction (BPcc)

Assembly Language Syntax

ba{, a}{, pt|, pn}
bn{, a}{, pt|. pn}
bne{, a}{, pt|, pn}
be{, a}{, pt|, pn}
bg{, a}{, pt|, pn}
bl e{,a}{, pt], pn}
bge{, a}{, pt|, pn}
bl {,a}{,pt|,pn}
bgu{, a}{, pt|, pn}
bl eu{, a}{, pt], pn}
bee{, a}{, pt|, pn}
bes{, a}{, pt|, pn}
bpos{, a}{, pt|, pn}
bneg{, a}{, pt|, pn}
bve{, a}{,pt|, pn}
bvs{, a}{, pt|, pn}

i_