
White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 1 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

White paper
Advanced Software for the FUJITSU
Supercomputer PRIMEHPC FX1000

Fujitsu Limited

Contents

Features of HPC Middleware 2

Application Development 4

Job Operations Management 9

System Operations Management 13

Distributed File System 15

Power Management 18

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 2 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

HPC middleware overview
The HPC middleware FUJITSU Software Technical Computing Suite (or
simply Technical Computing Suite) developed by Fujitsu provides a
exascale system operation and application environment for the K
computer(*1) and other supercomputers. The CPUs mounted in the
FUJITSU Supercomputer PRIMEHPC FX1000 (or simply PRIMEHPC
FX1000) have the ARM(*2) architecture and the versatility to support a
wide range of software, including Technical Computing Suite. Fujitsu
shares the experience and technology gained from the development of
this HPC middleware with the community so that we can improve HPC
usability together.
The structure of the HPC middleware in the PRIMEHPC FX1000 is shown
in the following figure, with an overview provided below.

■ Operating system
Running a Red Hat Enterprise Linux distribution as the OS, the
PRIMEHPC FX1000 can be used in the same way as x86 clusters.
Operability can be improved using scripts in Python, Ruby, or another
language. Furthermore, the PRIMEHPC FX1000 has OS assistant cores
mounted for the following purposes.

• Reducing system noise

System noise (OS jitter) interferes with job execution. For example,
in a system with tens of thousands of nodes, the interference
increases in proportion to the increase in the number of nodes and
may degrade performance.
In a typical Linux server, the average noise ratio is at the 10-3 level,
whereas in the PRIMEHPC FX1000, the average noise ratio is at the
10-5 level, cutting system noise to one-fifth of PRIMEHPC FX100.
The PRIMEHPC FX1000 also has improved computational
parallelism and throughput for massively parallel programs.

Table 1 Comparison of system noise

 PRIMEHPC FX1000 PRIMEHPC FX100 x86 cluster
Average noise
ratio

1.02 x 10-5 5.10 x 10-5 1.08 x 10-3

• Asynchronous communication processing
Computations can be performed with the MPI non-blocking
communication function during MPI communication within a user
program (the period of communication is from a communication
start function call to a communication wait function call).
In the PRIMEHPC FX1000, an MPI asynchronous communication
thread is allocated to an assistant core, and communication and
computation are processed asynchronously. The MPI asynchronous
communication thread is processed with high priority even if the
CPU is overloaded. This processing is implemented in the Linux
kernel as the guaranteed response function for MPI
communication.

• Promoting the separation of file I/O processes and jobs

I/O processes are routed to use the FEFS (Fujitsu Exabyte File
System) connected to an InfiniBand or other data transfer network
from a compute node that is interconnected through an
interconnect. In the K computer and the PRIMEHPC FX10, I/O
processes are routed by I/O exclusive nodes (compute nodes that
are also relay nodes). But in the PRIMEHPC FX1000, the processes
are routed by the assistant cores, which eliminate the need for I/O
exclusive nodes. Also, the assistant cores can also process the FEFS
client function of compute nodes, so file I/O processes and job
communication processes can be separated.

■ Operations software
Many users can execute their programs concurrently because the
operations software allocates computer resources effectively. The
software helps the whole system continue to operate even if a single
point of failure occurs. The software also helps integrate and facilitate
management of a large-scale system.

• System operations management

This software provides an integrated centralized system
management view for a large-scale system that has hundreds to
tens of thousands of compute nodes. From the centralized
management view, operators can easily control system start and
stop, and enable automatic system operations for failure
monitoring and isolation of faulty components. As an extension of
the base technology for large-scale system management from our
experience with the K computer, the software can also manage
hybrid configurations of PRIMEHPC FX1000 and x86 clusters.

• Job operations management

This software makes it possible not only to execute a single job
that uses tens of thousands of nodes but also to effectively execute
a wide variation of numerous user jobs. Many user jobs can share
large-scale system resources among themselves when sharing and
job priorities have been set for the job scheduler.

PRIMEHPC FX1000

Red Hat Enterprise Linux for ARM

Technical Computing Suite
Operations software Distributed file system Application development

(Fujitsu Development Studio)FEFS
(Fujitsu Exabyte File

System)

System operations
management

Job operations
management

Compiler/Runtime

Math libraries

Development
assistance tool

Power management

Features of HPC Middleware

Figure 1 HPC middleware structure

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 3 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

• Power management
A newly provided power management function leverages hardware
power performance to the fullest.

■ Distributed file system (FEFS)
Based on the file system of the K computer, the FEFS is a high-speed
file system supporting large-scale systems. The following FEFS features
enable high-speed access without delays in a large-scale environment.
• Hundreds of thousands of clients can stably access a file system

consisting of thousands of storage devices (OSS/OST)(*3).
• The file system can support large volumes of data up to the

exabyte level.
• The massive file I/O of one user does not affect the file I/O of other

users.

■ Application development (Fujitsu Development Studio)
This integrated software suite is used to develop (compile, debug, tune,
etc.) and execute scientific computing programs written in Fortran, C,
or C++. It supports parallelization technology such as automatic
parallelization, OpenMP, and MPI.

• Compiler/Runtime, math libraries

They support instructions in new HPC extension of Arm, Scalable
Vector Extension(SVE), and new language standards. Scientific
computing programs can perform high-speed parallel processing
by leveraging the PRIMEHPC FX1000 hardware functions.
The upward compatibility option for PRIMEHPC FX10 and PRIMEHPC
FX100 applications supports continued use of user assets.

• Development assistance tool
The application development environment makes available the
process cost information for the large page memory allocation
function and deallocation function. It can graphically display the
information collected from the application layer by the operating
system and effectively tune applications for a massively parallel
computer.

New Technical Computing Suite initiatives
We are working on the performance improvement to answer the
massive exascale operations and the improvement of convenience in
operation of private supercomputer system by mid- and small-scale
centers and business users.

■ High-speed execution of applications
With improved usability and performance, the development assistance
tool has the following features:

• High-speed execution of applications using SVE, as SIMD efficiency

has increased due to enhanced compiler optimization
• Improved usability in a de facto standard development

environment using Eclipse(*4)

■ Efficient use of parallel computing systems
Functional enhancements for operations software are improving the
system utilization rate.

• Users can select the virtual environments optimized for their jobs

when submitting the jobs.

• Scheduling performance is 10 times better than with the old
system, and responsiveness for job information display has
improved.

• The efficiency of maintenance is higher with the rolling update
function, which makes possible partial maintenance that does not
stop the operation of the whole system.

• The abundant APIs available are compatible with schedulers from
other companies. User-specific scheduling algorithms can be
installed as add-ons, improving support for the myriad
requirements of joint research centers.

■ Power-saving operation with power management functions
Power consumption by jobs can be taken into account as a
computational resource in job scheduling. This feature can prevent
computer centers from exceeding their power consumption capacity.
Also, end users can optimally tune the power efficiency of their
applications with the power measurement/control API.

*1 The K computer has been jointly developed by RIKEN and Fujitsu. K
computer is a registered trademark of RIKEN.

*2 ARM and the ARM logo are trademarks or registered trademarks of ARM
Limited or its affiliates.

*3 The OSS (object storage server) is a server for controlling file data. The OST
(object storage target) is a storage device connected to the OSS.

*4 Eclipse is a trademark or registered trademark of the Eclipse Foundation,
Inc. in the United States and other countries.

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 4 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Application development environment overview
The PRIMEHPC FX1000 contains Fujitsu Development Studio, in
addition to application development environments such as GCC
included in Red Hat Enterprise Linux, to maximize PRIMEHPC FX1000
performance.
The PRIMEHPC FX1000 is a hierarchical distributed parallel
supercomputer consisting of many cores and combining compute
nodes with the Tofu interconnect D to share a memory space.

Fujitsu Development Studio provides Fortran, C, and C++ compilers and
runtimes, math libraries, and a development assistance tool. With the
tool, Fujitsu Development Studio maximizes PRIMEHPC FX1000
performance by speeding up processing on individual layers (i.e.,
cores), within a node, and between nodes.

Fujitsu Development Studio configuration
The C and C++ compilers of Fujitsu Development Studio can run in
clang mode, which is compatible with Clang/LLVM. Open-source
applications can run easily in clang mode.
Furthermore, to support various forms of use, Fujitsu Development
Studio provides two compilers: a cross compiler that runs on the
PRIMERGY, and the native compiler that runs on the PRIMEHPC
FX1000.

Compliance with the latest standards and industry standard
specifications
Fujitsu Development Studio complies with the latest standards and
industry standard specifications, making it easy to develop applications
based on the latest standards and to run open-source applications on
the PRIMEHPC FX1000.

Table 2 Supported standards

Language Supported specifications
Fortran Part of ISO/IEC 1539-1:2018 (Fortran 2018 standard)

ISO/IEC 1539-1:2010 (Fortran 2008 standard)
ISO/IEC 1539-1:2004, JIS X 3001-1:2009 (Fortran 2003
standard)
ISO/IEC 1539-1:1997, JIS X 3001-1:1998 (Fortran 95
standard)
Fortran 90 and Fortran 77 standards

C ISO/IEC 9899:2011 (C11 standard)
ISO/IEC 9899:1999 (C99 standard)
ISO/IEC 9899:1990 (C89 standard)
* Extension specifications of the GNU compiler are also
supported.

C++ Part of ISO/IEC 14882:2017 (C++17 standard)
ISO/IEC 14882:2014 (C++14 standard)
ISO/IEC 14882:2011 (C++11 standard)
ISO/IEC 14882:2003 (C++03 standard)
* Extension specifications of the GNU compiler are also
supported.

OpenMP Part of OpenMP API Version 5.0
OpenMP API Version 4.5

MPI Part of Message-Passing Interface Standard Version 3.1
and 4.0 (tentative name)

Core speed-up functions
■ Vectorization functions
The Fortran, C, and C++ compilers of Fujitsu Development Studio have
vectorization functions that utilize the SVE (Scalable Vector Extension)
function of the A64FX mounted in the PRIMEHPC FX1000.

PCle
controller

Tofu
interface

C

C

C

C

N
O
C

H
BM

2
H

BM
2

H
BM

2
H

BM
2

CMG CMG

CMG CMG

CMG: Core Memory Group NOC: Network on Chip

ABCXYZ

x

Fujitsu Development Studio

Fortran

OpenMP

COARRAY

BLAS
LAPACK
SSL II

MPI

C/C++

OpenMP

ScaLAPACK
SSL II/MPI

IDE

Profilers

DebuggerInter-node

Each node

Development
assistance toolMath librariesCompiler/Runtime

Single core

Application Development

Figure 2 PRIMEHPC FX1000 compute nodes

Figure 3 Tofu interconnect D

Figure 4 Fujitsu Development Studio configuration

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 5 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

SVE can be used to vectorize complex loops that contain IF statements
and math functions. Furthermore, vectorization using a SIMD
instruction with SVE masking can speed up a loop that has a small
number of repetitions, on which vectorization has had little effect in
the past. A unique feature of SVE is that the created SIMD binaries with
varying SIMD register widths can be transported between machines
that have different SIMD register widths.
Figure 5 shows the performance for different data access patterns of a
SVE instruction.
The data access speed of the PRIMEHPC FX1000 is 2.0 to 2.3 times
better than the speed of the PRIMEHPC FX100.

■ SIMD register utilization according to the data type
The A64FX can make parallel calculations using a 512-bit width SIMD
registesr with 8, 16, and 32 elements for double-precision,
single-precision, and half-precision floating-point numbers,
respectively, and 8, 16, 32, and 64 elements for 8-byte, 4-byte, 2-byte,
and 1-byte integers, respectively. The Fortran, C, and C++ compilers of
Fujitsu Development Studio use this function to improve the
performance of scientific calculation applications, which use mainly
floating-point calculations, and a wide range of applications involving
integer calculations.

■ Software pipelining function
The Fortran, C, and C++ compilers of Fujitsu Development Studio have a
sophisticated instruction-scheduling function called software
pipelining.
The software pipelining function arranges the order of the instructions
in a loop in a program such that one cycle overlaps the next cycle. This
arrangement considers the number of computing units, the latency of
individual instructions, the number of registers, and so forth when
increasing the parallelism of the instructions in the loop for faster
execution.
The Fortran, C, and C++ compilers also have the following functions
that promote software pipelining.
• Loop segmentation function

A greater number of instructions in a loop inhibits software
pipelining because there is a shortage of registers. The loop
segmentation function promotes software pipelining by
segmenting a loop containing many instructions into multiple
loops so that software pipelining can be applied to the loops. To do

so, the function considers the number of registers, the number of
memory access times, cache efficiency, and so forth.

• No-branch type of inline expansion of math functions
A loop that calls a math function cannot be pipelined because the
processing requires conditional branches even if the function is
expanded inline. The Fortran, C, and C++ compilers of Fujitsu
Development Studio promote software pipelining through inline
expansion without branches for trigonometric functions,
exponential functions, and square roots. To do so, the compilers
use the trigonometric function auxiliary instruction, exponential
function auxiliary instruction, and reciprocal approximation
instruction.
Figure 6 shows the performance of basic calculations and math
functions. The PRIMEHPC FX1000 has 2.3 to 4.2 times better
performance than the PRIMEHPC FX100 for loops that include basic
calculations and math functions.

■ Intelligent prefetch function
The A64FX has two prefetch functions to prevent the processing
slowdown caused by a cache miss. One is a hardware prefetch function
with automatic memory prefetching by hardware for simple memory
access patterns, and the other is a prefetch instruction that supports
complex memory access patterns.
The intelligent prefetch function of the Fortran, C, and C++ compilers of
Fujitsu Development Studio leaves simple memory access patterns to
be handled by the high-performance hardware prefetch function. If the
hardware prefetch function cannot handle a memory access pattern,
this function generates a fetch instruction for that pattern.
This intelligent prefetching includes the function of tuning the prefetch
interval for each loop to streamline prefetching.

■ Sector cache instruction function
The sector cache function of the A64FX makes it possible to use part of
the cache as high-speed memory.
The Fortran, C, and C++ compilers of Fujitsu Development Studio have
the sector cache instruction function, which uses a simple instruction
line to specify the data to be stored in the sector cache. The function
can be used to store repeatedly used data in high-speed memory to
prevent performance degradation.

■ FP16 (half-precision floating-point type) support
The A64FX and the Fortran, C, and C++ compilers of Fujitsu
Development Studio support the FP16 type.

Figure 5 Performance comparison between data access
patterns

Figure 6 Performance comparison for functions, four
arithmetic operations, and square roots

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 6 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

For some types of AI algorithms such as those for machine learning,
arithmetic precision can be reduced to the FP16 type. The performance
of SIMD calculations is two times better with FP16 than with
conventional FP32 (single-precision floating-point type). Using FP16
can improve the performance of not only conventional scientific
calculation applications but also AI applications.

■ Faster math libraries using internal core speed-up functions
Fujitsu Development Studio provides fast math libraries. Internal core
speed-up functions have been applied to these libraries, listed in the
following table. BLAS and LAPACK are well-known in the linear algebra
field, Fujitsu math library SSL II is used by a wide range of R&D users
because its algorithms cover many fields, and the fast
quadruple-precision basic-arithmetic library delivers high performance
by handling quadruple-precision values in the double-double format.
Applications can be faster simply by calling these math libraries.

Table 3 Math libraries (Sequential libraries) (thread-safe)

Sequential libraries (thread-safe)

BLAS, LAPACK These linear calculation libraries developed in
the United States and released by Netlib are a
de facto standard. BLAS has about 80
routines, and LAPACK has about 400 routines.
Some BLAS routines support FP16.

SSL II Library of about 300 Fortran routines covering
a wide range of fields

C-SSL II C interface for SSL II
Fast
quadruple-precision
basic-arithmetic
library

This library represents and calculates
quadruple-precision values in the
double-double format. There are some thread
parallelization routines.

Figure 7 shows the performance of a BLAS matrix product routine.
The BLAS matrix product routine on the A64FX shows that the
single-precision type has two times better performance than the
double-precision type and FP16 has two times better performance than
the single-precision type.

Higher speeds with internal node parallelization
■ Thread parallelization function
To use many cores in a PRIMEHPC FX1000 node, the Fortran, C, and C++
compilers of Fujitsu Development Studio support an industry standard

specification, OpenMP, which provides automatic parallelization for
loops and thread parallelization.
The A64FX has a high-speed hardware barrier mechanism for thread
parallelization. The runtime library of Fujitsu Development Studio uses
this hardware barrier for high-speed execution of parallelized threads.

■ Faster MPI with support for network layers
The A64FX has four mounted CMGs (core memory groups) and employs
the NUMA (non-uniform memory access) architecture to connect the
CMGs through a ring bus. The PRIMEHPC FX1000 connects the A64FX
through the Tofu interconnect D. As a result, in process parallelization
across different CMGs, connections are made on the two network layers
of the Tofu interconnect D and ring bus within the A64FX.
In addition to the Tofu interconnect D, the Alltoall algorithm of the
Fujitsu Development Studio MPI includes an algorithm optimized to
reduce communication path conflicts in the A64FX ring bus, as shown
in Figure 8. This algorithm raises A64FX performance by maximizing
ring bus performance as shown in Figure 9.

■ Faster math libraries using thread parallelization function
Fujitsu Development Studio provides fast math libraries supporting
thread parallelization. The libraries are BLAS, LAPACK, and SSL II.
Applications can be faster with thread parallelization by calling these
math libraries.

0
500

1000
1500
2000
2500
3000
3500

0 1000 2000 3000 4000
Matrix size (M = N = K)

A64FX, 2.2 GHz, 12 cores

FP16 Single-precision Double-precision

GFlops

A64FX

CMG

CMG CMG

CMGCMG

CMG CMG

CMG

Communication

MPI process

CMG (Core Memory Group)

Communication path conflict
Ring bus

Communication using conventional algorithm Communication using A64FX-dedicated algorithm

A64FX

0

10000

20000

30000

40000

50000

1024 8192 65536 524288 4194304 33554432

Latency [μsec]

Message length [Byte]

Intra-node MPI_Alltoall performance (4 processes)

Conventional algorithm

A64FX-decicated collective communication algorithm

Figure 7 Matrix product performance

Figure 8 A64FX-dedicated collective
communication algorithm

Figure 9 Performance of A64FX-dedicated Alltoall algorithm

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 7 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Table 4 Math libraries (Thread parallel libraries)
BLAS, LAPACK The interface is the same as for the

sequential libraries. Also included is PLASMA,
which is a task parallel version of LAPACK.
They can also be used from Python (NumPy,
SciPy).

SSL II thread
parallel
functions

They are thread parallel versions of about 80
important routines. The interface is different
from that of the sequential library SSL II, so
they can be used concurrently.

C-SSL II thread
parallel
functions

C interface for SSL II thread parallelization

Higher speeds with parallelization between nodes
■ Faster MPI using the Tofu interconnect D
The Tofu and Tofu2 mounted in the PRIMEHPC FX10 and PRIMEHPC
FX100 have four network interfaces per node, whereas the Tofu
interconnect D in the PRIMEHPC FX1000 has six network interfaces.
This is a significant enhancement of communication capabilities from
four-way simultaneous communication to six-way simultaneous
communication.
The Fujitsu Development Studio MPI uses this enhanced feature to
improve collective communication algorithms, including Allgather and
Bcast, which require a wide communication bandwidth for each node.

■ Faster math libraries using the MPI parallelization function
Fujitsu Development Studio provides fast math libraries having MPI
parallelization. The libraries are ScaLAPACK and SSL II/MPI.
Applications can be faster with MPI parallelization by calling these
math libraries.

Table 5 Math libraries (MPI parallelization libraries)
ScaLAPACK MPI parallelization library of BLAS and LAPACK.

This library has about 200 routines.
SSL II/MPI MPI parallelization library with

three-dimensional FFT functions

Application development assistance tool
■ Integrated development environment
Fujitsu Development Studio has Eclipse, which is an integrated
open-source development environment, and Parallel Tools Platform
(PTP), which is an extension plug-in for application development in the
scientific calculation field.

With PTP, users can check and compile source code, submit jobs, check
the job status, and retrieve/display performance information
seamlessly on Eclipse using the job scheduler.

■ Profilers
• Performance analysis procedure

Depending on conditions, users can employ one of two
performance analysis procedures. Performance can analyzed
efficiently with the basic profiler, detailed profiler, and CPU
performance analysis report shown in the following figure,
depending on conditions.

• Step-by-step performance analysis with profilers
The basic profiler, detailed profiler, and CPU performance analysis
report support performance analysis of applications.
The basic profiler takes samples of the overall performance trend
and cost distribution information for an application. The collected
cost distribution information helps a user grasp the overall
application performance from displayed costs for individual
procedures, loops, and lines.
The detailed profiler is used to obtain more detailed performance
information on hotspots identified by the basic profiler. With the
detailed profiler, users can get a grasp of performance conditions
and the statistical communication status of the MPI in the specified
section.
The CPU performance analysis report uses graphs and tables to
systematically and clearly display the PMU (performance
monitoring unit) counters contained in the CPU. With the CPU
performance analysis report, users can get a grasp of application
bottlenecks in detail.

0

5000

10000

15000

20000

25000

30000

35000

40000

1024 16384 262144 4194304 67108864 1073741824

Bandw
idth

[M
B/s]

Message length[Byte]

384 nodes MPI_Bcast performance

Conventional algorithm New algorithm

Novice, or user who does
not grasp which sections
of app have high cost

User who grasps which
sections of app have
high cost

Basic profiler

Detailed
profiler

CPU
performance

analysis
report

Get grasp of overall performance trend
of app:
• FLOPS value, memory throughput,

uneven load balance between threads, etc.

Identify high-cost sections:
• Individual procedures, loops, and lines

Collect statistical data on high-cost
sections:
• Number of execution times and average

processing time per section
• Number of communication times and

average message length

Make detailed analysis of high-cost
sections:
• Cycle accounting by PMU, memory cache

busy status, SIMD usage status, instruction
mix, etc.

Figure 10 Performance of dedicated collective communication
algorithm supporting 6-way communication (Bcast)

Figure 11 Performance analysis procedure

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 8 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

■ Parallel execution debugger
Fujitsu Development Studio has three debugging functions useful in
actual application execution scenarios. They support the investigation
of frequently occurring problems (abnormal end, deadlock, etc.) in
large-scale parallel processing. The de facto standard GDB is the
debugger engine used for the parallel execution debugger.
• Abnormal end investigation function

This function collects execution information for an application that
abnormally ended with a signal during large-scale parallel
execution. The collected execution information (bug trace, series of
instructions including the signal issuing address, register contents,
and memory map) is displayed clearly and succinctly by the
function.

• Deadlock investigation function
An application may not end or not return a response during
large-scale parallel execution. This function collects application
execution information (bug trace, local/argument variable values
for each frame, and memory map) from all the processes of such
an application. The collected information is displayed clearly and
succinctly by the function.

• Debugging function using command files
This function enables GDB command files to be used for debugging
in the job environment. Different command files can be specified
for individual processes, enabling flexible debugging that suits
application characteristics.

Figure 12 Example of a CPU performance analysis report

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 9 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Purpose of developing Job schedulers
Users of the PRIMEHPC FX1000 can run many jobs without concern,
even in a large-scale system, because of Fujitsu's continuous efforts to
develop batch job execution environments (job schedulers). The
PRIMEHPC FX1000 has a job scheduler based on two job schedulers.
One is the large-scale job scheduler of the performance-proven K
computer, which has approximately 80,000 nodes. The other is the
PRIMEHPC FX100 job scheduler, which has an improved system
operating ratio in small-scale centers and enhanced operation
functions that work together with x86 server jobs. Developed in
addition to these features, the PRIMEHPC FX1000 job scheduler has
the following job operation functions required for large-scale systems.

 Functions for reliable control of many jobs (large-scale support)

A large-scale system needs to control many jobs at the same time.
And even when so many jobs are running, the large-scale system
must not place stress on system users. To meet these requirements,
the job scheduler has been enhanced for better performance.

 Support of myriad requirements for a joint research center
(operability)
A number of joint research centers run large-scale systems, with
meticulous operation policies on job execution varying slightly
from one center to another. For the PRIMEHPC FX1000, Fujitsu has
added the following functions for flexible customization of job
scheduling reflecting the operation policies on job execution at
each center:

- Job execution environments improving usability for users
executing jobs

- Customization functions that enable fine-grained operation of
centers

Joint research centers operate with many users and run many different
jobs requiring varying node sizes. The following function was
developed to improve the system operating ratio in an environment
involving a variety of jobs.

 High operating ratio function: Adaptive elapsed-time job

scheduling
High-priority jobs may cause the system operating ratio to
deteriorate. For example, the operating ratio temporarily
deteriorates when a large-scale job reserves a large number of
nodes. To improve the system operating ratio, job scheduling
segments time into small units to allow corresponding shifts in the
timing of job execution.

These functional enhancements, discussed below, are characteristic of
the PRIMEHPC FX1000.

Functions for reliable control of many jobs (large-scale support)
The improved performance of the job scheduler enables stress-free use
of the system even when many jobs are running.

■ Improved job scheduling performance
The improved scheduling algorithm considers situations where many
users submit many small-scale jobs. As a result of this improvement,
scheduling is finished in a short time—for example, several seconds
when 10,000 small-scale jobs are submitted simultaneously.

■ Improved performance in reading job information
There was a problem with the amount of time taken to read job
information when the number of jobs was large. Now, improved
information search processing using an OSS (open-source software)
database finds information quickly even when there are one million
jobs, for example.

■ Improved job operation performance
Improvements in job-related operations (delete, fix, change
parameters) enable users to perform the operations without stress
even when many jobs are targeted.

29.15

17.64

0.35 0.4
0

5

10

15

20

25

30

35

1/83
1/44

10,000 jobs submitted
simultaneously to 1 node

10,000 jobs submitted
simultaneously to 12 nodes

(1 Tofu unit)

Scheduling tim
e (seconds)

Before improvement

After improvement

379 379

20 207.75 0.19 1.68 0.040

50

100

150

200

250

300

350

400

All jobs Specific jobs All jobs Specific jobs

1/49 1/1995

1/5001/12

1 million unfinished jobs 1 million finished jobs

Tim
e before job inform

ation display
com

m
and to starts to display inform

ation
after being executed (seconds)

Before improvement

After improvement

Job Operations Management

Figure 13 Reduction in scheduling time

Figure 14 Reduction in job information reading time

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 10 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Job execution environments improving usability for users executing
jobs
One function has been developed to deploy job execution
environments specially tuned to the applications at individual centers.
From the job execution environments made available to the centers
and deployed in their systems, users can select and use the suitable
environments for their jobs. Another function allows users to use the
job execution environments that they themselves have prepared, in
addition to the environments already deployed by the administrator.
The available job execution environments are as follows.
 Docker mode

In this mode, all the programs of a job, which include the user's job
script, are executed on the container started from the container
image specified at the job submission time. Since the OS packaged
in the Docker image can be used to execute the job, it is easy to
deploy the software environment required for application
execution.

 KVM mode
KVM can run users' job programs. KVM mode uses KVM together
with the open-source software QEMU to manage virtual machines.
With hardware-based virtualization support, jobs can be executed
in this high-speed hardware virtualization environment. This mode
is useful for developers of modules on the OS kernel layer and
other users who need the privileges and rights to execute
programs.

Customization functions that enable fine-grained operation of
centers
The PRIMEHPC FX1000 job scheduler provides the following
customization functions to optimize operation in user environments:

 Custom resource function for arbitrary resource scheduling
 Hook function that controls the flow of job execution
 Job statistics customization function that enables users to select

statistics items and create new statistics items
 Scheduler plug-in function for users to incorporate their own

scheduling algorithms
 Command API for users to create their own commands and

operation support tools

Here are details on the enhanced job scheduler functions of the
PRIMEHPC FX1000.

■ Custom resource function
Users can define any resource, such as a software license or the
expected power consumption of a job, with this function. For example,
a software license (floating license) that limits the number of
concurrently used jobs and processes, can be defined as a custom
resource. Likewise, a software license (node-locked license) that limits
the number of nodes used, can be defined. Once a user specifies the
necessary number of software licenses when submitting a job, the job
is scheduled to run in a time slot with an allowable number of
compute nodes.

■ Hook function
Available to the administrator, the hook function is a mechanism
providing a process (exit process) that is triggered by the occurrence of
a specific event during job execution. The administrator can use exit
processes to control job execution and change job attributes. For
example, the administrator can allow an existing process to check
whether the budget allocated to the user executing a job is sufficient
and to reject the execution of the job if it is insufficient.

■ Job statistics customization function
The job scheduler statistics function of the PRIMEHPC FX1000 job
scheduler records job information (job statistics). The recorded
information includes the quantity of nodes, CPU time, memory, and
other resources used by a job, the job execution time, and the
restriction values specified for job processes.
The job statistics customization function is used to select which items
to record as job statistics. Users also use the function to define and
record their own items. Statistics items defined by the administrator
can be set to any value by the hook function described above. As with
ordinary statistics items, users can choose to display their own defined
statistics items as relevant information for end users or to record them
as job statistics items.

■ Scheduler plug-in function
Using the scheduler plug-in function, the administrator can define and
incorporate a scheduling algorithm in the PRIMEHPC FX1000 job
scheduler to substitute it for the scheduling algorithm of the job
scheduler. The scheduler plug-in function can optimize the job priority
evaluation formula and control methods for the operation of a center,
making possible more precise control by the administrator.

■ Command API
The command API is a set of interfaces providing functions (job
operation and information retrieval) that are equivalent to the end
user commands provided by the PRIMEHPC FX100 job scheduler. The
administrator and end users can use the command API to enhance the
functions of existing commands, create their own commands, and
create utilities for operating the system or controlling system behavior.

High operating ratio function: Adaptive elapsed-time job scheduling
This function can specify a minimum execution time for a job when the
job is submitted. A job with a specified minimum execution time is
guaranteed to run for this minimum time. After the minimum
execution time has elapsed since the start of job execution, if the job is
not finished and nothing is preventing the job from continuing, the job
continues to run.

880 870
971

21 23
73

0

200

400

600

800

1000

1200

1/42 1/38 1/14

Delete job Fix job Change parameter

Job operation com
m

and processing
tim

e (seconds)

Before improvement

After improvement

Figure 15 Reduction in job operation time

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 11 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

■ Operating ratio improvement example 1
A job can be completed earlier with the high operating ratio function.
The example below shows jobs executing computational tasks that
require a total of 3 hours.

(a) Submitting 1 job that takes three hours to execute
(b) Submitting 3 jobs, each taking 1 hour to execute
(c) Consecutively submitting jobs, each with a specified minimum

execution time of 1 hour

Figure 17(a) requires an available compute node for 3 continuous
hours. The job takes 5 hours and 30 minutes to finish since the start of
the job is delayed due to the unavailability of nodes for an amount of
time.
In Figure 17(b), one job can start early but the start of the other two
jobs is delayed, so the jobs take 4 hours and 30 minutes to finish.
In Figure 17(c), there is no gap between jobs since the jobs can
continue running until the start of execution of the subsequent jobs.
For this reason, the time taken to complete the series of computational
tasks is 4 hours, which is the shortest among the three methods.

■ Operating ratio improvement example 2
The compute nodes in the entire system are expected to have a higher
usage rate when many jobs are submitted with minimum job
execution times specified.
A usage rate trend analysis on the K computer revealed that a job with
a long execution time specified will affect the scheduling of a
large-scale job.

In this case, since some compute nodes would be available until the
large-scale job begins, the backfill function starts a low-priority job
earlier. However, the long job that began before the start of the
low-priority job may finish earlier than scheduled, in which case the
large-scale job cannot begin until the end of the low-priority job.
Consequently, many compute nodes would be left unused for some
time.

Time

pjsub elapse=30:00- …

Job submitted with minimum
time (30 minutes) specified for
job execution

30 minutes

Submitted job

Other jobs

0:00:00 0:30:00 1:00:00 1:30:00

30 minutes

Execution time extended so as not
to interfere with execution of other
jobs (30 minutes longer)

Time

Submitted job Other jobs

0:00:00 2:00:00 4:00:00 6:00:001:00:00 3:00:00 5:00:00

1.5 hours

Time
0:00:00 2:00:00 4:00:00 6:00:001:00:00 3:00:00 5:00:00

Submitted job Other jobs
30 minutes

Time
0:00:00 2:00:00 4:00:00 6:00:001:00:00 3:00:00 5:00:00

Submitted job Other jobs
30 minutes

30 minutes

(a) Submitting 1 job that takes 3 hours to execute

(b) Submitting 3 jobs that each take 1 hour to execute

(c) Consecutively submitting jobs, each with a specified
minimum execution time of 1 hour

Effect of high operating
ratio function

Time

Long job Large-scale job

Present time

TimePresent time

Time

Next job cannot begin even when
long job ends early, so compute
nodes left idle

Present time

Long job Large-scale jobLow-priority job

Figure 16 Example of a job with a minimum
execution time specified

Figure 17 Operating ratio improvement example 1

Figure 18 Large-scale job is waiting

Figure 19 Impact from the early end of a long job

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 12 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

After the backfill function starts execution early for a job that has a
minimum execution time specified, execution of that job is suspended
at the end of the preceding running job. This allows a large-scale job to
start early and avoids leaving many compute nodes unused.

TimePresent time

TimePresent time

Low-priority job suspended at end
of preceding job so that execution
of next job starts early

Long job Large-scale jobLow-priority job

Figure 20 Operating ratio improvement example 2

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 13 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Effective management of system operations
System operations management is ever more important as systems
grow larger in scale to increase system performance. The latest
supercomputer systems, which are the largest-scale systems, tend to
consist of thousands to tens of thousands of compute nodes. Due to
that size, they need a function facilitating status management and
operation control to operate efficiently.
The system operations management function of the PRIMEHPC FX1000
was developed by Fujitsu based on our operations management
experience with the K computer, which has over 80,000 compute
nodes. This capability to efficiently manage large-scale systems has
the following features:

• Flexible and efficient system operations

- Centralized management of clusters
- Integrated management from installation to maintenance and

routine task monitoring
• High availability and continuous operation

- Automatic job resubmission upon fault detection
- Redundancy of important nodes, and automatic node

switching
- Partial maintenance to avoid suspension of a computing

center

The features of the system operations management function and how
they work are described below.

Flexible and efficient system operations
■ Centralized management of clusters
The PRIMEHPC FX1000, x86 servers, and storage groups with disk
devices are considered to be clusters. Operations are managed per
cluster.
One cluster may consist of the PRIMEHPC FX1000 and an x86 server,
making up a flexible job execution environment enabling end users to
submit jobs from one login node to one compute node.

■ Integrated management from installation to maintenance and

routine task monitoring
From the management node, the administrator can centrally manage
tasks from installation to maintenance. Here are a few examples.

• Software installation using a distributed processing installer

Generally, installation of the OS and various packages on a large
number of nodes is extremely time-consuming. The subsequent
management of the installed software is also difficult. Therefore,
the PRIMEHPC FX1000 provides an installer specially designed for
large-scale installation. This installer enables centralized
implementation of the initial settings required as packages and
job execution environments.

• Standardized system configuration information and status
display
Users and administrators want to get a wide range of information.
The PRIMEHPC FX1000 offers a great variety of information about
each node in the system configuration, including hardware and
software configuration information. The hardware information
includes the number of installed CPUs and amount of installed
memory on the node, and the software configuration information
includes the assigned IP address and role of the node. There is
also node state-related information, such as whether the node
power is on and whether hardware has failed or software has a
defect.
The larger the system scale becomes, the wider the range of
information that users and administrators want to know. The
system configuration information is handled by a variety of
commands, depending on the user and use scenario, which have
a standardized command display and specification formats to
prevent confusion among users. All the various software designed
for the PRIMEHPC FX1000 have standardized forms of expression
for the system configuration information.

High availability and continuous operation
■ Automatic job resubmission upon fault detection
The PRIMEHPC FX1000 can detect node failures and remove the failed
nodes from operation. The PRIMEHPC FX1000 detects the failures in
two ways.
The first method is system monitoring by software. Using the
hierarchical structure of node groups, the software efficiently collects
the status of nodes and services to detect node failures while
distributing the monitoring load. The second method is linking with
failure notification by hardware. Through the internal PRIMEHPC
FX1000 mechanism for notification of node- and interconnect-related
hardware failures, node failures can be instantly detected.
The failed nodes detected by those methods are excluded from the
operation targets. To continue operation after a node fails, the
PRIMEHPC FX1000 terminates the processing of all the jobs running on
the node, and the jobs are automatically restarted on available nodes.

■ Redundancy of important nodes, and automatic node switching
The important nodes essential to operations management in the
PRIMEHPC FX1000 include the system management node and
compute cluster management node. If any of these nodes cannot start
due to failure, all or part of system operations are suspended, and
operation cannot continue. To prevent that situation and continue
operation, the PRIMEHPC FX1000 can configure all of these nodes in a
redundant configuration as active and standby systems. The detection
of a failure in the active node will result in automatic switching of the
system to the standby system to continue operation.

■ Partial maintenance to avoid suspension of a computing center
To perform maintenance on bundles of software, large-scale systems
will stop operation longer than other systems if all nodes must be

System Operations Management

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 14 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

restarted to update settings. However, some bundles do not
necessarily require node restarts, and other bundles can run with the
existing version, depending on the repairs in the software. A rolling
update implements partial maintenance on these latter bundles
without stopping job operations of an entire cluster. During the update,
job operations continue on some of the compute nodes in the cluster.
rpm in each system software package provides additional package
management information per bundle. The information includes the
availability of rolling updates and the necessary post-repair system
operations (node restart, service restart, what is not required, etc.).
Armed with this information, administrators can visualize the work
required in their software maintenance and minimize the operation
suspension time of computing centers.

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 15 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

"FEFS" is the name of the distributed file system that provides the high
reliability required for supercomputer-level processing power. The FEFS
is also stable, since file system stability is directly related to the
stability of a supercomputer. The implemented file system also delivers
high I/O parallel performance as it is important to minimize the file I/O
time of tens of thousands of nodes. Otherwise, the supercomputer
cannot make full use of its computing capabilities.
As discussed below, the FEFS achieves both high performance and
high reliability.

Cluster-type file system based on Lustre
FEFS stands for Fujitsu Exabyte File System, which is a cluster-type
distributed file system. Originally based on the open-source Lustre
2.10, which is the de facto standard for HPC file systems, the FEFS has
not just inherited the excellent performance and functions of Lustre,
such as high parallelization and scalability, but gone further with
enhancements featuring high performance, stability, and usability. It
can be widely adapted to massive-scale systems, such as the
K computer, and to medium- and small-scale center operations.

Many successes with large-scale systems
Inheriting the technology gained through the development and
operation of the K computer, the FEFS proved itself to be a success
with the K computer and then achieved further success with Fujitsu's
x86 cluster systems and PRIMEHPC FX10/FX100, helping promote the
stable operation of the systems.

■ High scalability of over a terabyte per second
The FEFS is a cluster-type file system that can scale out total
throughput in proportion to the number of object storage servers used.
To obtain the required throughput, it is necessary to prepare the
number of units appropriate to the required performance.

The PRIMEHPC FX1000 has up to 8 compute nodes that are also relay
nodes per rack, and it has a mounted InfiniBand adapter for access to

the FEFS file servers. The number of nodes equipped with InfiniBand
can be selected flexibly according to performance requirements, and
throughput performance can be scaled out in proportion to the
number of nodes.

■ Elimination of interference on parallel applications
An important factor to getting the best super-parallel MPI application
performance with tens of thousands of nodes is to eliminate
interference from the system daemons. The start of a system daemon
delays the synchronization process between parallel processes and
extends the application runtime. The FEFS has completely eliminated
file system daemon processes that run periodically, reducing the
impact on the application runtime.
The PRIMEHPC FX1000 has 48 compute cores and 2 or 4 assistant cores
for the OS. The system daemons for I/O processing run on the assistant
cores. By making applications exclusively use the compute cores, the
system has successfully eliminated interference to job execution.

■ Load distribution by multi-MDS in metadata access
Metadata access tends to be a major bottleneck to system
performance. A file system consisting of multiple pairs of MDS and MDT
can distribute the metadata access load. By increasing the number of
multi-MDS pairs, the file system increases the number of managed
files.

MDS
(active)

OSS
(active)

MDS
(active)

OSS
(active)

OSS
(active)

OSS
(active)

FEFS system

PRIMEHPC FX1000 node group

Compute node
(and relay node)

Compute
node

Compute
node

Compute
node

Compute
node

Compute
node

Compute
node

Data transfer network

Pre/Post-
processing

node

Login
node

Compute cluster
management

node

Tofu interconnect D

Compute node
(and relay node)

Compute node
(and relay node)

Assistant cores Compute cores

Exclusively for applicationsI/O processing

PRIMEHPC FX1000 main unit

Ethernet InfiniBand

Boot disk

Compute node

Compute node (and relay node)

MDT0 MDT1

/

Accessing /mnt/userAccessing /mnt

MDS
(active)

MDS
(active)

user

JobJobJob

Distributed File System

Figure 21 PRIMEHPC FX1000+FEFS system configuration

Figure 22 I/O processing and compute processing separated
utilizing assistant cores

Figure 23 Metadata management by subdirectory

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 16 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Reliability of continuous operation when hardware fails
High reliability as well as performance is essential to stable operation
of a large-scale system. In a cluster-type file system consisting of many
file servers, storage devices, and network devices, system operation is
required to continue even when part of the system fails or stops. So it
needs to be fault tolerant. The FEFS improves fault tolerance through
hardware redundancy. Also, by using node monitoring and automatic
switching in link with system management software, the file system
can continue in service even during maintenance or when a single
point of failure occurs.

■ Fault tolerance
The ability to automatically detect a failure and bypass the fault
location to continue file system services is a critical feature for a
large-scale file system consisting of over hundreds of file servers and
storage devices.
The FEFS can provide continuous service as a file system by duplicating
hardware components and using software-controlled switching of
servers and I/O communication paths, even if a single point of failure
occurs.
In the PRIMEHPC FX1000, if communication is disabled by an
InfiniBand error on a compute node for relaying input/output for the
shared file system (FEFS) in the FX server, the communication path is
automatically switched to use InfiniBand on another of these relay
nodes. The result is continued access to file servers and improved fault
tolerance.

■ Hierarchical node monitoring and automatic switching
Large-scale systems require a scheme that can detect failures and
automatically notify the affected nodes.
One scheme used so far is node state monitoring based on the
monitoring of packet exchanges between compute nodes and file
servers. However, one problem with this scheme is the very high
number of generated monitoring packets. The number is exponentially
proportional to the system scale. The resulting heavy packet
transmissions hamper MPI communication between compute nodes
and data communication between compute nodes and file servers.
Working together with system management software, the FEFS
minimizes communication loads through hierarchical node monitoring
and control of switching between nodes. The FEFS monitors the nodes
represented in a multi-tier tree with the following hierarchy: nodes
inside the PRIMEHPC FX1000 rack, node groups each consisting of

multiple racks, and higher-order node groups other than the preceding
node groups.

Functions for improved operability
A large-scale system is used by many users, so the system must ensure
that a tremendous amount of file I/O activity by any particular user
does not affect other users. It must also ensure that file access by jobs
on compute nodes does not affect responses to users on login nodes.
The FEFS overcomes these challenges with the fair share QoS function
for every user and the response-guaranteed QoS function for login
nodes.

■ Fair share QoS function for every user
If many users are using a login node at the same time, a large amount
of file I/O by any of the users may drastically slow down the file I/O of
the other users.
In the FEFS, to prevent massive I/O requests from a single user and I/O
bandwidth occupation, the client side can limit the number of I/O
requests that a user can issue.

■ Response-guaranteed QoS function for login nodes
Access response to users is directly linked with usability, so it is more
important than the access response to jobs.

PRIMEHPC FX1000 rack

IB switch

IB switch
Multiple
InfiniBand paths

Server redundancy
(failover)

Multipath

RAID configuration

OSS
(active)

OSS
(active)

MDS
(active)

MDS
(active)

RAID device

RAID 10

RAID device

RAID 6

RAID device

RAID 6

RAID controller
redundancy

RAID device

RAID 10

Management
node (sub)

Compute
node

Compute
node

Compute
node

Management network

MDT

MDS MDS

OST

OSS OSS

OST OST

OSS OSS

OST

Management
node (main)

Management
node (sub)

Failover pair
Monitoring target MDT

Monitoring range

Compute node
with boot

server function

With QoS: Effect of user A is suppressed

Without QoS: Delayed by effect of user A

Login node

Login node

User A

User B

QoS control

Server
ServerFair

Multiple I/O

User A

User B

Unfair

Figure 24 Fault tolerance

Figure 25 Node monitoring and automatic switching

Figure 26 Fair access between multiple users using QoS

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 17 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

To ensure access response to the users on a login node, the FEFS has a
function for allocating server threads that process I/O requests by node
group. Thus, even during file I/O by jobs on a compute node, the
system can still respond to a user who is accessing the file from the
login node.

Contribution to the Lustre community
An extensive open-source community has helped develop and support
Lustre. As a member of the community, Fujitsu contributes to the
progress of Lustre.
Through the development of supercomputers, Fujitsu has solved
problems as they occurred and provided feedback to the community,
leading to higher Lustre performance and consistent quality. These
efforts are also aimed at advancing distributed file systems for HPC.

Without QoS: Delayed by effect of compute node
Server

With QoS: Effect of compute node is suppressed

Compute nodes

Login node

Compute nodes

Login node

Server

QoS control

Disk
DiskFair

Unfair Multiple I/O

Figure 27 Response guarantee for the login node

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 18 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Power-saving initiatives
As the scale of supercomputer systems has grown from tens of
thousands to hundreds of thousands of compute nodes, power
consumption has also increased. Supercomputers are consuming
increasing amounts of power amid the rising interest of society as a
whole to save energy. So the following challenges need to be
addressed.

• Due to system expansion, power facilities cannot supply enough

power.
• System power consumption has to be restricted based on the

power-saving plans of the installed facilities.

To address the above issues, the PRIMEHPC FX1000 provides a power
knob that controls the CPU frequency and memory access to suppress
power consumption. However, HPC has certain job execution
performance requirements. To manage power and keep job execution
performance at HPC levels at the same time, studies on power
management in HPC on system operation and job control are actively
being conducted.
Aiming to save power without affecting job execution performance,
Fujitsu provides the features described below. Figure 28 shows the
system administrator reducing power consumption on the operation
side and end users reducing power consumption while considering the
execution performance of their jobs.

Power management functions for the system administrator
■ Power-saving mode switching function
Compute nodes consume power even while on standby and not
executing any jobs. Standby power is not related to job execution, so it
is considered as wasted power consumption and must be reduced.
The power-saving mode switching function automatically switches the
CPUs and memory of standby compute nodes to power-saving mode to
minimize standby power.
The PRIMEHPC FX1000 offers power knobs for the standby compute
nodes not executing any jobs. The power knobs are automatically
applied to eliminate wasted standby power consumption. Figure 29
shows the situation of the power-saving mode switching function
applying a power knob and the resulting change in power
consumption.

As shown in Figure 29, this function applies the power knob at the
same time that the execution of Job A ends, thereby reducing power
consumption. Immediately before the execution of Job B begins, the
function stops the application of the power knob. Job B can then be
executed without being affected by the power knob.

■ Power capping scheduler
Power facilities set power-saving plans with targets for reducing total
system power consumption. Once a target value is set for total system
power consumption, job scheduling can produce results close to the
set target if the power consumption of jobs can be predicted.
The power capping scheduler predicts the power consumption of newly
submitted jobs based on the power consumed by jobs executed in the
past. The scheduler schedules each job according to the predicted
power consumption of the job.
In order to evaluate power management with the power capping
scheduler, Kyushu University provided Fujitsu with data on job
operations under an actual supercomputer environment. The data was
used to simulate transitions in total system power consumption. Figure
30 shows transitions in total system power consumption over
1,000,000 seconds (approximately 11 days) in operations with and
without the power capping scheduler. Table 8 shows the average,
maximum, and minimum total system power consumption during the
simulation period.

Apply power knob to
standby compute node

Program

Standby
compute nodes

Compute nodes
executing jobs

Job

Modify program to
reduce job power
consumption

Select power knob to apply
during job execution

Maximum, minimum, and average
job power consumption

Submit

Compile

Set target value for
system power consumption

Output total system
power consumption

Execute job
Predict job power consumption and schedule jobs
to keep total system power consumption close to
target value

Power capping scheduler

Job power
consumption

statistical
information

Power API

Power knob setting function

Power-saving mode switching function

Power knob applied by
power knob operation

and Power API to reduce
power consumption

Power knob applied by power-
saving mode switching function
to reduce power consumption

Power management function for system administrator Power management function for end user

Cluster management node

End userSystem administrator

System power
consumption
visualization

assistance function

System management node

ProgramProgram

Job A Job B

Time

Job execution status

Power consumption
of compute node

Standby state

Standby power reduced
by power knob

Power Management

Figure 28 Functional configuration of power management

Figure 29 Power consumption transitions due to the
power-saving mode switching function

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 19 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Table 8 Comparison of total system power consumption

 With power capping
scheduler

Without power capping
scheduler

Average total system
power consumption

283 kW 462 kW

Maximum total system
power consumption

393 kW 714 kW

Minimum total system
power consumption

159 kW 206 kW

As shown in Figure 30, total system power consumption changes
significantly to a maximum of 714 kW when the power capping
scheduler is not operating. On the other hand, when the power
capping scheduler is operating, total system power consumption does
not change significantly but remains around 300 kW, which is the
target value for total system power consumption.
Figure 30 also shows that job scheduling by the power capping
scheduler keeps the average value in close proximity to the target
since the value without the power capping scheduler is 462 kW
whereas it stands at 283 kW with the power capping scheduler.

■ System power consumption visualization assistance function
This function monitors power management with the power-saving
mode switching function and the power capping scheduler. Using the
provided commands and API of this function, the administrator can
view the total system power consumption.

Power management functions for end users
The PRIMEHPC FX1000 provides a wide range of power knobs to, for
example, control the CPU frequency, restrict memory access, and limit
the number of commands issued. From the available choices, end
users can select the appropriate power knob for the processing of their
own jobs. End users have two methods for applying a power knob: one
method is to specify the power knob when submitting a job, and the
other method is to specify it within a program.

■ Power knob setting function
When submitting jobs, end users can specify the power knobs they
want to apply. The specified power knobs are applied during job
execution.

An example of an executed command is shown below.

$ pjsub -L freq=1800 -L node=10 run

In this example, pjsub is the command for submitting the job. In
addition, freq instructs the power knob to change the CPU frequency,
node is the number of compute nodes to execute the job, and run is
the name of the executed job. The example sets the CPU frequency to
1.8 GHz (1,800 MHz) for the compute nodes (10 nodes) executing the
job run.
The following figures show the case of the above command executing
the job run. The job repeats compute processing and I/O processing at
a regular interval. Figure 31 shows transitions of processing within the
job, and Figure 32 shows transitions in job power consumption.

With the power knob setting function, the specified power knob
remains applied from immediately before job execution begins until
immediately after job execution ends. If the CPU frequency is 2 GHz
normally, the above job command will lower the CPU frequency to 1.8
GHz for the whole job execution period. As shown in Figure 31, the
lower frequency does not affect I/O processing, which does not use the
CPU much, whereas the processing time of compute processing
increases due to the lower frequency and consequently increases the
total job execution time. However, as shown in Figure 32, power
consumption by the job remains constantly lower due to the lower
frequency. Even though this function may increase the total job
execution time, end users can easily reduce job power consumption by
specifying a power knob in a command option when submitting their
jobs.

■ Power API
The PRIMEHPC FX1000 provides a library that enables application of
any of the available power knobs at any time. With this library, end
users can specify the power knobs they want to apply from the source
code of their own jobs. The API specifications of the library are based
on the library interface (Sandia Power API) suggested by Sandia
National Laboratories.
Using an API provided by the Power API, end users can apply any
power knob at any time from the source code of a job.

0

100

200

300

400

500

600

700

800

0 200,000 400,000 600,000 800,000 1,000,000
Time (seconds)

Without power capping scheduler

With power capping scheduler

Target value (300 kW)

Total system
 pow

er consum
ption (kW

)

Compute
processing I/O processing Compute

processing I/O processing Compute
processing

Time

Compute
processing I/O processing Compute

processing I/O processing Compute
processing

Execution increasing as a whole

Compute processing time increasing

Without set power knob

With set power knob

CPU
frequency
decreased

CPU
frequency
restored

Time

Execution increasing as a whole

Without set power knob

With set power knob
Power consumption

drops across entire job
execution period

Power consumption

CPU
frequency
decreased

CPU
frequency
restored

Figure 30 Simulation with the power capping
scheduler operating

Figure 31 Internal job processing transitions depending on
whether a power knob is set

Figure 32 Power consumption transition depending on
whether a power knob is set

White paper Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000

Page 20 of 20 https://www.fujitsu.com/global/products/computing/servers/supercomputer/index.html

Figure 33 shows transitions in power consumption with a program
modified to lower the CPU frequency only during I/O processing by the
Power API in a job that repeats compute processing and I/O processing
at a regular interval. In the situation shown in Figure 33, the CPU
frequency is assumed to be 2 GHz normally, and I/O processing does
not use the CPU much. An end user can lower the CPU frequency
during only I/O processing, reducing power consumption in this
processing period without increasing the total job execution time.
Even though the end user will need to modify the program to specify
the appropriate power knob for the correct time by using the Power API,
power consumption can be reduced without affecting the total job
execution time.

■ Job power consumption statistical information
This function enables end users to view statistical information such as
the average, maximum, and minimum power consumption of a job. So
users can check the status of job power consumption in operations
with the power knob setting function and the Power API.

Job action

Job power consumption
(Power API)

Time

Compute
processing I/O processing Compute

processing I/O processing Compute
processing

Power consumption when no power knob is set

Power consumption when power knob is set

Power consumption
drops during I/O

processing

CPU
frequency
restored

CPU
frequency
restored

CPU
frequency
decreased

CPU
frequency
decreased

Figure 33 Job power consumption transitions
due to the Power API

 Reference
For more information about the PRIMEHPC FX1000, contact
our sales personnel or visit the following website:

https://www.fujitsu.com/global/products/computing/servers/s
upercomputer/index.html

 Advanced Software for the FUJITSU Supercomputer PRIMEHPC FX1000
Fujitsu Limited
First Edition November 12, 2019
2019-11-12-EN

- ARM and the ARM logo are trademarks or registered trademarks of ARM Limited or its affiliates.
- Eclipse is a trademark or registered trademark of Eclipse Foundation, Inc. in the U.S. and other countries.
- Other company names and product names are the trademarks or registered trademarks of their respective

owners.
- Trademark indications are omitted for some system and product names in this document.

This document shall not be reproduced or copied without the permission of the publisher.
All Rights Reserved, Copyright © FUJITSU LIMITED 2019

	Features of HPC Middleware
	Application Development
	Job Operations Management
	System Operations Management
	Distributed File System
	Power Management

