

SPARC Enterprise

アドミニストレーションガイド

C120-E378-01

SPARC[®] Enterprise T2000 サーバ アドミニストレーションガイド

Manual Code : C120-E378-01 Part No. 875-4146-10 April 2007 Copyright 2007 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

本書には、富士通株式会社により提供および修正された技術情報が含まれています。

Sun Microsystems, Inc. および富士通株式会社は、それぞれ本書に記述されている製品および技術に関する知的所有権を所有または管理しています。これらの製品、技術、および本書は、著作権法、特許権などの知的所有権に関する法律および国際条約により保護されています。これらの製品、技術、および本書に対してSun Microsystems, Inc. および富士通株式会社が有する知的所有権には、 http://www.sun.com/patentsに掲載されているひとつまたは複数の米国特許、および米国ならびにその他の国におけるひとつまたは複数の特許または出願中の特許が含まれています。

本書およびそれに付属する製品および技術は、その使用、複製、頒布および逆コンパイルを制限するライセンスのもとにおいて頒布されま す。富士通株式会社とSun Microsystems, Inc. およびそのライセンサーの書面による事前の許可なく、このような製品または技術および本書 のいかなる部分も、いかなる方法によっても複製することが禁じられます。本書の提供は、明示的であるか黙示的であるかを問わず、本製 品またはそれに付随する技術に関するいかなる権利またはライセンスを付与するものでもありません。本書は、富士通株式会社またはSun Microsystems, Inc. の一部、あるいはそのいずれかの関連会社のいかなる種類の義務を含むものでも示すものでもありません。

本書および本書に記述されている製品および技術には、ソフトウェアおよびフォント技術を含む第三者の知的財産が含まれている場合があ ります。これらの知的財産は、著作権法により保護されているか、または提供者から富士通株式会社および/またはSun Microsystems, Inc. ヘライセンスが付与されているか、あるいはその両方です。

GPL または LGPL が適用されたソースコードの複製は、GPL または LGPL の規約に従い、該当する場合に、一般ユーザーからのお申し込み に応じて入手可能です。富士通株式会社またはSun Microsystems, Inc.にお問い合わせください。

この配布には、第三者が開発した構成要素が含まれている可能性があります。

本製品の一部は、カリフォルニア大学からライセンスされている Berkeley BSD システムに基づいていることがあります。UNIX は、X/Open Company Limited が独占的にライセンスしている米国ならびに他の国における登録商標です。

Sun、Sun Microsystems、Sunのロゴ、Java、Netra、Solaris、Sun StorEdge、docs.sun.com、OpenBoot、SunVTS、SunSolve、CoolThreads、J2EEおよびSun Fireは、米国およびその他の国におけるSun Microsystems, Inc.の商標または登録商標です。

富士通および富士通のロゴマークは、富士通株式会社の登録商標です。

すべての SPARC 商標は、SPARC International, Inc. のライセンスを受けて使用している同社の米国およびその他の国における登録商標です。SPARC 商標が付いた製品は、Sun Microsystems, Inc. が開発したアーキテクチャーに基づくものです。

SPARC64 は、Fujitsu Microelectronics, Inc. および富士通株式会社が SPARC International, Inc. のライセンスを受けて使用している同社の商 標です。

OPEN LOOK および SunTM Graphical User Interface は、Sun Microsystems, Inc. が自社のユーザーおよびライセンス実施権者向けに開発しました。Sun Microsystems, Inc. は、コンピュータ産業用のビジュアルまたはグラフィカル・ユーザーインタフェースの概念の研究開発における Xerox 社の先駆者としての成果を認めるものです。Sun Microsystems, Inc. は Xerox 社から Xerox Graphical User Interfaceの非独占的ライセンスを取得しており、このライセンスは、OPEN LOOK GUIを実装しているかまたはSunの書面によるライセンス契約を満たすSun Microsystems, Inc. のライセンス実施権者にも適用されます。

United States Government Rights - Commercial use. U.S. Government users are subject to the standard government user license agreements of Sun Microsystems, Inc. and Fujitsu Limited and the applicable provisions of the FAR and its supplements.

免責条項:本書または本書に記述されている製品や技術に関して富士通株式会社、Sun Microsystems, Inc. またはそのいずれかの関連会社が 行う保証は、製品または技術の提供に適用されるライセンス契約で明示的に規定されている保証に限ります。このような契約で明示的に規 定された保証を除き、富士通株式会社、Sun Microsystems, Inc. およびそのいずれかの関連会社は、製品、技術、または本書に関して、明 示、黙示を問わず、いかなる種類の保証も行いません。これらの製品、技術、または本書は、現状のまま提供され、商品性、特定目的への 適合性または第三者の権利の非侵害の黙示の保証を含みそれに限定されない、明示的であるか黙示的であるかを問わない、なんらの保証 も、かかる免責が法的に無効とされた場合を除き、行われないものとします。このような契約で明示的に規定されていないかぎり、富士通 株式会社、Sun Microsystems, Inc. またはそのいずれかの関連会社は、いかなる法理論のもとの第三者に対しても、その収益の損失、有用性 またはデータに関する損失、あるいは業務の中断について、あるいは間接的損害、特別損害、付随的損害、または結果的損害について、そ のような損害の可能性が示唆されていた場合であっても、適用される法律が許容する範囲内で、いかなる責任も負いません。

本書は、「現状のまま」提供され、商品性、特定目的への適合性または第三者の権利の非侵害の黙示の保証を含みそれに限定されない、明 示的であるか黙示的であるかを問わない、なんらの保証も、かかる免責が法的に無効とされた場合を除き、行われないものとします。

原典: SPARC Enterprise T2000 Server Administration Guide Manual Code: C120-E378-01EN

目次

はじめに xi

1. システムコンソールの構成 1

システムとの通信 1

システムコンソールの役割 3

システムコンソールの使用方法 3

シリアル管理ポートおよびネットワーク管理ポートを使用したデフォル トのシステムコンソール接続 4

システムコンソールの代替構成 6

グラフィックスモニターを使用したシステムコンソールへのアクセス 7 システムコントローラへのアクセス 7

シリアル管理ポートの使用方法 7

▼ シリアル管理ポートを使用する 8

ネットワーク管理ポートの使用方法 8

▼ ネットワーク管理ポートを使用可能にする 9 端末サーバを使用したシステムコンソールへのアクセス 10

▼ 端末サーバを使用してシステムコンソールにアクセスする 11
 TIP 接続を使用したシステムコンソールへのアクセス 12

▼ TIP 接続を使用してシステムコンソールにアクセスする 13
 /etc/remote ファイルの変更 14

iii

▼ /etc/remote ファイルを変更する 14

英数字端末を使用したシステムコンソールへのアクセス 15

- ▼ 英数字端末を使用してシステムコンソールにアクセスする 15
- ローカルグラフィックスモニターを使用したシステムコンソールへのアクセ ス 16
 - ▼ ローカルグラフィックスモニターを使用してシステムコンソールに アクセスする 16
- システムコントローラとシステムコンソールの切り替え 18
- ALOM CMT sc> プロンプト 19
 - 複数のコントローラセッションを介したアクセス 20

sc> プロンプトの表示方法 21

- OpenBoot ok プロンプト 21
 - ok プロンプトの表示方法 22

正常な停止 22

ALOM CMT の break または console コマンド 23

L1-A (Stop-A) キーまたは Break キー 23

手動システムリセット 24

詳細情報 24

ok プロンプトの表示 24

▼ ok プロンプトを表示する 25

システムコンソールの OpenBoot 構成変数の設定 26

RAS 機能およびシステムファームウェアの管理 27
 ALOM CMT およびシステムコントローラ 27

ALOM CMT へのログイン 28

- ▼ ALOM CMT にログインする 29
- ▼ 環境情報を表示する 29

システム LED の解釈 30

ロケータ LED の制御 31

OpenBoot の緊急時の手順 32

SPARC Enterprise T2000 システムでの OpenBoot の緊急時の手順 33

Stop-Aの機能 33

Stop-Nの機能 33

▼ OpenBoot 構成をデフォルトに戻す 33

Stop-Fの機能 34

Stop-Dの機能 34

自動システム回復 34

auto-boot オプション 35

エラー処理の概要 35

リセットシナリオ 37

自動システム回復ユーザーコマンド 37

自動システム回復の使用可能および使用不可への切り替え 38

▼ 自動システム回復を使用可能にする 38

▼ 自動システム回復を使用不可にする 39

自動システム回復情報の取得 39

デバイスの構成解除および再構成 40

▼ デバイスを手動で構成解除する 40

▼ デバイスを手動で再構成する 41

システム障害情報の表示 41

▼ システム障害情報を表示する 42

マルチパスソフトウェア 42

詳細情報 42

FRU 情報の格納 43

▼ 使用可能な FRU PROM に情報を格納する 43

3. ディスクボリュームの管理 45

要件 45

ディスクボリューム 45

RAID 技術 46

統合ストライプボリューム (RAID 0) 46

統合ミラーボリューム (RAID 1) 47

ハードウェアの RAID 操作 48

- RAID ではないディスクの物理ディスクスロット番号、物理デバイス名、お よび論理デバイス名 49
- ▼ ハードウェアミラー化ボリュームを作成する 49
- ▼ デフォルトの起動デバイスのハードウェアミラー化ボリュームを作成す る 52
- ▼ ハードウェアストライプ化ボリュームを作成する 54
- ▼ Solaris オペレーティングシステムで使用するハードウェア RAID ボ リュームを構成してラベルを付ける 55
- ▼ ハードウェア RAID ボリュームを削除する 58
- ▼ ミラー化ディスクのホットプラグ操作を実行する 60
- ▼ ミラー化されていないディスクのホットスワップ操作を実行する 61
- A. OpenBoot 構成変数 67

索引 71

図目次

- 図 1-1 システムコンソールの設定 4
- 図 1-2 シャーシの背面入出力パネル—SC シリアル管理ポートがデフォルトのコンソール接続 5
- 図 1-3 端末サーバと SPARC Enterprise T2000 サーバのパッチパネル接続 11
- 図 1-4 SPARC Enterprise T2000 サーバとほかのシステムの間の TIP 接続 13
- 図 1-5 システムコンソールとシステムコントローラの個別のチャネル 18
- 図 2-1 SPARC Enterprise T2000 シャーシのロケータボタン 31
- 図 3-1 ディスクのストライプ化の図 47
- 図 3-2 ディスクのミラー化の図 48

表目次

- 表 1-1 システムとの通信手段 2
- 表 1-2 一般的な端末サーバに接続するためのピンのクロス接続 12
- 表 1-3 ok プロンプトの表示方法 25
- 表 1-4 システムコンソールに影響を与える OpenBoot 構成変数 26
- 表 2-1 LED の動作と意味 30
- 表 2-2 LED の動作とその意味 30
- 表 2-3 リセットシナリオ用の仮想キースイッチの設定 37
- 表 2-4 リセットシナリオ用の ALOM CMT 変数の設定 37
- 表 2-5 装置識別名およびデバイス 40
- 表 3-1 ディスクスロット番号、論理デバイス名、および物理デバイス名 49
- 表 A-1 システム構成カードに格納されている OpenBoot 構成変数 67

はじめに

『SPARC Enterprise T2000 サーバ アドミニストレーションガイド』は、経験豊富な システム管理者を対象としています。このマニュアルでは、SPARC Enterprise T2000 サーバの全般的な情報と、サーバの構成および管理に関する詳細な手順について説明 します。このマニュアルに記載されている情報を利用するには、コンピュータネット ワークの概念および用語に関する実践的な知識があり、Solaris™ オペレーティング システム (Solaris OS) を熟知している必要があります。

注 – サーバのハードウェア構成の変更、または診断の実行に関する情報は、 『SPARC Enterprise T2000 サーバ サービスマニュアル』(C120-E377) を参照してく ださい。

安全な使用のために

このマニュアルには当製品を安全に使用していただくための重要な情報が記載されて います。当製品を使用する前に、このマニュアルを熟読してください。また、このマ ニュアルは大切に保管してください。

富士通は、使用者および周囲の方の身体や財産に被害を及ぼすことなく安全に使って いただくために細心の注意を払っています。本製品を使用する際は、マニュアルの説 明に従ってください。

マニュアルの構成

このマニュアルは、次の章で構成されています。

- 第1章では、システムコンソールとそのアクセス方法について説明します。
- 第2章では、Advanced Lights Out Manager (ALOM) システムコントローラによる環境監視、自動システム回復 (ASR)、マルチパスソフトウェアなど、システムファームウェアの構成に使用するツールについて説明します。また、デバイスを手動で構成解除および再構成する方法についても説明します。
- 第3章では、RAID (Redundant Array of Independent Disks)の概念と、SPARC Enterprise T2000 サーバのシステムボード上の Serial Attached SCSI (SAS) ディス クコントローラを使用した RAID ディスクボリュームの構成および管理方法につ いて説明します。

また、このマニュアルには、次の付録があります。

 ● 付録 A では、すべての OpenBoot[™] 構成変数の一覧および各構成変数の簡単な説 明を示します。

関連マニュアル

SPARC Enterpriseシリーズのすべてのマニュアルは、次のウェブサイトで最新版を提供しています。

国内

http://primeserver.fujitsu.com/sparcenterprise/manual/

海外

http://www.fujitsu.com/sparcenterprise/manual/

タイトル	説明	コード
SPARC Enterprise T2000 サーバ プロダクトノート	最新の製品の更新および問題に関する 情報	C120-E374
SPARC Enterprise T2000 サーバ 設置計画マニュアル	設置計画のためのサーバ仕様	C120-H017
SPARC Enterprise T2000 サーバ はじめにお読みください	システムを設置し、迅速に稼動させるた めの参照先マニュアルに関する情報	C120-E372XA
SPARC Enterprise T2000 サーバ 製品概要	サーバの機能の概要	C120-E373
SPARC Enterprise T2000 サーバ インストレーションガイド	ラック搭載、ケーブル配線、電源投入、 および構成に関する詳細情報	C120-E376
SPARC Enterprise T2000 サーバ サービスマニュアル	サーバの障害追跡のための診断の実行方 法と、サーバの部品の取り外しおよび交 換方法	C120-E377
Advanced Lights out Management (ALOM)	Advanced Lights Out Manager (ALOM) ソフトウェアを使用する方法	C120-E386
CMT v1.x ガイド		
SPARC Enterprise T2000 サーバ 安全に使用していただくために	本製品の安全性および適合性に関する情 報	C120-E375XA

注 – 本製品の最新情報はプロダクトノートで確認してください。プロダクトノート はウェブサイトにだけ公開されています。

『Enhanced Support Facility 3.x』CD-ROMで提供されるもの

■ リモート保守サービス

タイトル	コード
Enhanced Support Facilityユーザーズガイド REMCS編	C112-B067

UNIX コマンドについて

このマニュアルには、システムの停止、システムの起動、およびデバイスの構成など に使用する基本的な UNIX® コマンドと操作手順に関する説明は含まれていない可能 性があります。これらについては、以下を参照してください。

- 使用しているシステムに付属のソフトウェアマニュアル
- 下記にある Solaris[™] オペレーティングシステムのマニュアル

http://docs.sun.com

書体と記号について

書体または記号*	意味	例
AaBbCc123	コマンド名、ファイル名、ディレ クトリ名、画面上のコンピュータ 出力、コード例。	.login ファイルを編集します。 ls -a を実行します。 % You have mail.
AaBbCc123	ユーザーが入力する文字を、画面 上のコンピュータ出力と区別して 表します。	% su Password:
AaBbCc123	コマンド行の可変部分。実際の名 前や値と置き換えてください。	rm <i>filename</i> と入力します。
ſ J	参照する書名を示します。	『Solaris ユーザーマニュアル』
Γ	参照する章、節、または、強調す る語を示します。	第6章「データの管理」を参照。 この操作ができるのは「スーパー ユーザー」だけです。
\	枠で囲まれたコード例で、テキス トがページ行幅を超える場合に、 継続を示します。	<pre>% grep '^#define \ XV_VERSION_STRING'</pre>

* 使用しているブラウザにより、これらの設定と異なって表示される場合があります。

シェルプロンプトについて

シェル	プロンプト	
UNIX の C シェル	machine_name%	
UNIX の Bourne シェルと Korn シェル	\$	
スーパーユーザー (シェルの種類を問わない)	#	

マニュアルへのコメント

本マニュアルに関するご意見、ご要望または内容に不明確な部分がございましたら、下記内容 を具体的にご記入の上、担当 SE、販売員または担当講師にお渡しください。

御提出日	200	年	月	日	ŀ	マニュアル番号	
御氏名					-	マニュアル名称	
(社名・所属・課名 など)							
連絡先	TEL	()	_			

ページ	行	区分*	要/否**	内	容

*A:御意見 B:御要望 C:内容不明瞭(間違い、説明不足、用語不統一、誤字・脱字、 その他)の記号で御記入ください。

** 御意見、御要望の内容に対する当社からの回答の必要性について御記入ください。

*** 記入欄が不足した場合には、お手数ですが別用紙に御記入のうえ添付してください。

本マニュアルで下記の項目について、気が付かれた箇所に〇印を御記入ください。

技術レベル(良、普通、不良)	図解の量(多い、普通、少ない)
構成(良、普通、不良)	実例の量(多い、普通、少ない)
内容の正確さ(良、普通、不良)	誤字・脱字(多い、少ない)
文章の理解のしやすさ(良、普通、不良)	索引(良、普通、不良)

	所属		氏名	(株)富士通ラー	・ニングメディア
担当 SE	ビル			受付 No	受付担当印
担当販売員		支 店			
		会社			
担当講師	部	課	TEL.		

第1章

システムコンソールの構成

この章では、システムコンソールの概要、および SPARC Enterprise T2000 サーバで のシステムコンソールのさまざまな構成方法について説明します。また、システムコ ンソールとシステムコントローラとの関係の理解にも役立ちます。

- 1ページの「システムとの通信」
- 7ページの「システムコントローラへのアクセス」
- 18ページの「システムコントローラとシステムコンソールの切り替え」
- 19 ページの「ALOM CMT sc> プロンプト」
- 21 ページの「OpenBoot ok プロンプト」
- 26 ページの「システムコンソールの OpenBoot 構成変数の設定」

注 - サーバのハードウェア構成の変更、または診断の実行に関する情報は、使用するサーバのサービスマニュアルを参照してください。

システムとの通信

システムソフトウェアのインストールや問題の診断には、システムと低レベルで通信 するための手段が必要です。「システムコンソール」は、この低レベルでの通信を行 うための機能です。メッセージの表示やコマンドの実行に、システムコンソールを使 用します。システムコンソールは、コンピュータごとに1つだけ設定できます。 システムの初期インストール時には、シリアル管理ポート (SER MGT) が、システム コンソールにアクセスするためのデフォルトのポートになります。インストール後、 別のデバイスからの入力を受信し、別のデバイスへの出力を送信するように、システ ムコンソールを構成できます。表 1-1 に、これらのデバイスと、このマニュアルでの 参照先を示します。

表 1-1 システムとの通信手段

 使用可能なデバイス	インス トール時	インス トール後	参照先
シリアル管理ポート (SER MGT) に 接続された端末サーバ。			
	Х	Х	7 ページの「システムコントローラへのアクセ ス」
	Х	Х	10 ページの「端末サーバを使用したシステムコ ンソールへのアクセス」
	Х	Х	26 ページの「システムコンソールの OpenBoot 構成変数の設定」
シリアル管理ポート (SER MGT) に 接続された英数字端末または同様の デバイス。			
	Х	Х	7 ページの「システムコントローラへのアクセ ス」
	Х	Х	15 ページの「英数字端末を使用したシステムコ ンソールへのアクセス」
	Х	Х	26 ページの「システムコンソールの OpenBoot 構成変数の設定」
シリアル管理ポート (SER MGT) に 接続された TIP 回線。			
	Х	Х	7 ページの「システムコントローラへのアクセ ス」
	Х	Х	12 ページの「TIP 接続を使用したシステムコン ソールへのアクセス」
		Х	14 ページの「/etc/remote ファイルの変更」
	Х	Х	26 ページの「システムコンソールの OpenBoot 構成変数の設定」
ネットワーク管理ポート (NET MGT) に接続された Ethernet 回 線。			
		Х	8 ページの「ネットワーク管理ポートの使用方 法」

表 1-1 システムとの通信手段 (続き)

使用可能なデバイス	インス トール時	インス トール後	参照先
ローカルのグラフィックスモニター (グラフィックスアクセラレータ カード、グラフィックスモニター、 マウス、およびキーボード)。			
		Х	16 ページの「ローカルグラフィックスモニター を使用したシステムコンソールへのアクセス」
		Х	26 ページの「システムコンソールの OpenBoot 構成変数の設定」

システムコンソールの役割

システムコンソールは、システムの起動中に、ファームウェアベースのテストによっ て生成された状態メッセージおよびエラーメッセージを表示します。テストの実行後 は、ファームウェアに対してシステムの動作を変更するための特別なコマンドを入力 できます。起動処理中に実行するテストの詳細は、使用しているサーバのサービスマ ニュアルを参照してください。

オペレーティングシステムが起動すると、システムコンソールは UNIX システム メッセージを表示し、UNIX コマンドを受け付けるようになります。

システムコンソールの使用方法

システムコンソールを使用するには、システムに入出力デバイスを接続する必要があります。最初に、そのハードウェアを構成し、適切なソフトウェアもインストールおよび設定する必要がある場合があります。

また、システムコンソールが SPARC Enterprise T2000 サーバの背面パネルの適切な ポートに確実に設定されている必要があります。通常、このポートにハードウェアコ ンソールデバイスが接続されます (図 1-1 を参照)。これを実行するには OpenBoot 構 成変数の input-device および output-device を設定します。

図 1-1 システムコンソールの設定

シリアル管理ポートおよびネットワーク管理ポートを使用し たデフォルトのシステムコンソール接続

このサーバのシステムコンソールは、システムコントローラを介した入出力のみが可 能であるように事前構成されています。システムコントローラには、シリアル管理 ポート (SER MGT) またはネットワーク管理ポート (NET MGT) のいずれかを介して アクセスします。ネットワーク管理ポートは、デフォルトでは DHCP を介してネッ トワーク構成を取得し、SSH を使用した接続を許可するように構成されています。 シリアル管理ポートまたはネットワーク管理ポートのいずれかを介して ALOM CMT に接続したあとに、このネットワーク管理ポートの構成を変更できます。 通常、次のハードウェアデバイスのいずれかをシリアル管理ポートに接続します。

- 端末サーバ
- 英数字端末または同様のデバイス
- 別のコンピュータに接続されている TIP 回線

これらの制限によって、設置場所でのセキュリティー保護されたアクセスが提供されます。

図 1-2 シャーシの背面入出力パネル—SC シリアル管理ポートがデフォルトのコンソール接続

注 – USB ポート2 および3 はフロントパネルにあります。

TIP 回線を使用すると、SPARC Enterprise T2000 サーバへの接続に使用するシステムで、ウィンドウ表示およびオペレーティングシステムの機能を使用できます。

シリアル管理ポートは、汎用シリアルポートではありません。シリアルプリンタを接続する場合など、サーバで汎用シリアルポートを使用する場合は、SPARC Enterprise T2000 の背面パネルにある標準の9 ピンシリアルポートを使用します。Solaris OS では、このポートは TTYA と認識されます。 端末サーバを使用してシステムコンソールにアクセスする手順については、10ページの「端末サーバを使用したシステムコンソールへのアクセス」を参照してください。

英数字端末を使用してシステムコンソールにアクセスする手順については、15ページの「英数字端末を使用したシステムコンソールへのアクセス」を参照してください。

TIP 回線を使用してシステムコンソールにアクセスする手順については、12 ページの 「TIP 接続を使用したシステムコンソールへのアクセス」を参照してください。

このサーバのシステムコンソールは、システムコントローラを介した入出力のみが可 能であるように事前構成されています。システムコントローラには、シリアル管理 ポート (SER MGT) またはネットワーク管理ポート (NET MGT) のいずれかを介して アクセスします。ネットワーク管理ポートは、デフォルトでは DHCP を介してネッ トワーク構成を取得し、SSH を使用した接続を許可するように構成されています。 シリアル管理ポートまたはネットワーク管理ポートのいずれかを介して ALOM CMT に接続したあとに、このネットワーク管理ポートの構成を変更できます。詳細は、8 ページの「ネットワーク管理ポートの使用方法」を参照してください。

システムコンソールの代替構成

デフォルトの構成では、システムコントローラの警告およびシステムコンソールの出 力は、同じウィンドウに混在して表示されます。システムの初期インストール後は、 グラフィックスカードのポートに対して入出力データを送受信するように、システム コンソールをリダイレクトできます。

次の理由から、コンソールポートをデフォルトの構成のままにすることをお勧めしま す。

- デフォルトの構成では、シリアル管理ポートおよびネットワーク管理ポートを使用すると、最大8つの追加ウィンドウを開いて、システムコンソールの動作を表示することができます。これによって、システムコンソールの動作に影響を与えることはありません。コンソールがグラフィックスカードのポートにリダイレクトされている場合は、これらの接続を開くことはできません。
- デフォルトの構成では、シリアル管理ポートおよびネットワーク管理ポートを使用すると、簡単なエスケープシーケンスまたはコマンドを入力することによって、同じデバイスでシステムコンソールの出力とシステムコントローラの出力を切り替えることができます。システムコンソールがグラフィックスカードのポートにリダイレクトされている場合は、エスケープシーケンスおよびコマンドが機能しません。
- システムコントローラはコンソールメッセージのログを保持しますが、システム コンソールがグラフィックスカードのポートにリダイレクトされている場合は、 一部のメッセージが記録されません。問題に関してご購入先に問い合わせる場合 に、記録されなかった情報が重要になる場合があります。

システムコンソール構成を変更するには、OpenBoot 構成変数を設定します。詳細 は、26 ページの「システムコンソールの OpenBoot 構成変数の設定」を参照してく ださい。

グラフィックスモニターを使用したシステムコンソールへの アクセス

SPARC Enterprise T2000 サーバには、マウス、キーボード、モニター、またはビッ トマップグラフィックス表示用のフレームバッファーは付属していません。サーバに グラフィックスモニターを取り付けるには、PCI スロットにグラフィックスアクセラ レータカードを取り付け、モニター、マウス、およびキーボードを正面または背面の 適切な USB ポートに接続する必要があります。

システムの起動後に、取り付けた PCI カードに対応する適切なソフトウェアドライ バのインストールが必要になる場合があります。ハードウェアに関する手順の詳細 は、16ページの「ローカルグラフィックスモニターを使用したシステムコンソール へのアクセス」を参照してください。

注 - POST 診断は、ローカルグラフィックスモニターに状態メッセージおよびエラー メッセージを表示することはできません。

システムコントローラへのアクセス

このあとのセクションでは、システムコントローラへのアクセス方法について説明します。

シリアル管理ポートの使用方法

この手順では、システムコンソールがシリアル管理ポートおよびネットワーク管理 ポートを使用する (デフォルトの構成である) ことを前提としています。

シリアル管理ポートに接続されているデバイスを使用してシステムコンソールにアク セスする場合は、まず、ALOM CMT システムコントローラとその sc> プロンプト にアクセスします。ALOM CMT システムコントローラに接続したあとで、システム コンソールに切り替えることができます。

ALOM CMT システムコントローラカードの詳細は、使用しているサーバの ALOM CMT のマニュアルを参照してください。

▼ シリアル管理ポートを使用する

- 1. 接続しているデバイスのシリアルポートのパラメータが、次のように設定されている ことを確認します。
 - 9600 ボー
 - 8ビット
 - パリティーなし
 - ストップビット1
 - ハンドシェークなし
- 2. ALOM CMT セッションを確立します。

手順については、使用しているサーバの ALOM CMT のマニュアルを参照してください。

システムコンソールに接続するには、ALOM CMT のコマンドプロンプトで、次のように入力します。

SC> console

console コマンドによって、システムコンソールに切り替わります。

4. sc> プロンプトに戻るには、#. (ハッシュ記号とピリオド) エスケープシーケンスを 入力します。

ok #.

入力した文字は画面に表示されません。

ALOM CMT システムコントローラの使用方法については、使用しているサーバの ALOM CMT のマニュアルを参照してください。

ネットワーク管理ポートの使用方法

ネットワーク管理ポートは、デフォルトでは DHCP を介してネットワーク設定を取得し、SSH を使用した接続を許可するように構成されています。使用しているネットワークに合わせてこれらの設定の変更が必要となる場合があります。使用しているネットワーク上で DHCP および SSH を使用できない場合は、シリアル管理ポートを使用してシステムコントローラに接続し、ネットワーク管理ポートを再構成してください。7ページの「シリアル管理ポートの使用方法」を参照してください。

注 - シリアル管理ポートを使用してはじめてシステムコントローラに接続する場 合、デフォルトのパスワードはありません。ネットワーク管理ポートを使用してはじ めてシステムコントローラに接続する場合のデフォルトのパスワードは、シャーシの シリアル番号の下8桁になります。シャーシのシリアル番号は、サーバの背面で示さ れているか、サーバに付属する印刷物のシステム情報シートに記載されています。シ ステムの初期構成時にパスワードを割り当てる必要があります。詳細は、使用してい るサーバの設置マニュアルおよび ALOM CMT のマニュアルを参照してください。

ネットワーク管理ポートに静的 IP アドレスを割り当てるか、動的ホスト構成プロト コル (DHCP) を使用して別のサーバから IP アドレスを取得するようにポートを構成 することができます。ネットワーク管理ポートは、Telnet クライアントまたは SSH クライアントからの接続を受け付けるように構成できますが、両方を受け付けるよう には構成できません。

データセンターは、システム管理に独立したサブネットを提供することがよくありま す。データセンターがそのように構成されている場合は、ネットワーク管理ポートを このサブネットに接続してください。

注 – ネットワーク管理ポートは 10/100 BASE-T ポートです。ネットワーク管理ポートに割り当てられる IP アドレスは、SPARC Enterprise T2000 サーバのメイン IP アドレスとは別の一意の IP アドレスで、ALOM CMT システムコントローラの接続のみに使用されます。

▼ ネットワーク管理ポートを使用可能にする

- 1. ネットワーク管理ポートに Ethernet ケーブルを接続します。
- シリアル管理ポートを使用して ALOM CMT システムコントローラにログインします。

シリアル管理ポートへの接続の詳細は、7ページの「システムコントローラへのアク セス」を参照してください。

- 3. 次のコマンドのいずれかを入力します。
 - ネットワークで静的 IP アドレスを使用する場合は、次のように入力します。

sc> setsc if_network true
sc> setsc netsc_ipaddr ip-address
sc> setsc netsc_ipnetmask ip-netmask
sc> setsc netsc_ipgateway ip-address

■ ネットワークで動的ホスト構成プロトコル (DHCP) を使用する場合は、次のよう に入力します。

sc> setsc netsc_dhcp true

- 4. 次のいずれかのコマンドを入力します。
 - Secure Shell (SSH)を使用してシステムコントローラに接続する場合は、次のコマンドを入力します。

sc> setsc if_connection ssh

Telnet を使用してシステムコントローラに接続する場合は、次のコマンドを入力します。

sc> setsc if_connection telnet

5. 新しい設定が有効になるように、システムコントローラをリセットします。

SC> resetsc

6. システムコントローラをリセットしたあと、システムコントローラにログインし、 shownetwork コマンドを実行してネットワーク設定を確認します。

SC> shownetwork

ネットワーク管理ポートを使用して接続する場合は、前述の手順3で指定した IP アドレスに対して、手順4で入力した値に基づき telnet または ssh コマンドを使用します。

端末サーバを使用したシステムコンソールへのア クセス

次の手順では、SPARC Enterprise T2000 サーバのシリアル管理ポート (SER MGT) に 端末サーバを接続して、システムコンソールにアクセスすることを前提としていま す。

▼ 端末サーバを使用してシステムコンソールにアクセスする

1. シリアル管理ポートから使用している端末サーバへの物理的な接続を完了します。

SPARC Enterprise T2000 サーバのシリアル管理ポートは、データ端末装置 (DTE) ポートです。シリアル管理ポートのピン配列は、Cisco AS2511-RJ 端末サーバを使用 できるように Cisco が提供するシリアルインタフェースブレークアウトケーブルの RJ-45 ポートのピン配列に対応しています。ほかのメーカーの端末サーバを使用する 場合は、SPARC Enterprise T2000 サーバのシリアルポートのピン配列が、使用する 予定の端末サーバのピン配列と対応することを確認してください。

サーバのシリアルポートのピン配列が、端末サーバの RJ-45 ポートのピン配列に対応 する場合は、次の2つの接続オプションがあります。

- シリアルインタフェースブレークアウトケーブルを SPARC Enterprise T2000 サーバに直接接続します。詳細は、7ページの「システムコントローラへのアクセス」を参照してください。
- シリアルインタフェースブレークアウトケーブルをパッチパネルに接続し、サーバのメーカーが提供するストレートのパッチケーブルを使用してパッチパネルをサーバに接続します。

図 1-3 端末サーバと SPARC Enterprise T2000 サーバのパッチパネル接続

シリアル管理ポートのピン配列が端末サーバの RJ-45 ポートのピン配列と対応してい ない場合は、SPARC Enterprise T2000 サーバのシリアル管理ポートの各ピンを端末 サーバのシリアルポートの対応するピンに接続するクロスケーブルを作成する必要が あります。

表 1-2 に、ケーブルで実現する必要があるクロス接続を示します。

(RJ-45 コネクタ) のビン	
ピン1 (RTS)	ピン1 (CTS)
ピン 2 (DTR)	ピン2 (DSR)
ピン 3 (TXD)	ピン 3 (RXD)
ピン 4 (Signal Ground)	ピン 4 (Signal Ground)
ピン 5 (Signal Ground)	ピン 5 (Signal Ground)
ピン 6 (RXD)	ピン 6 (TXD)
ピン 7 (DSR/DCD)	ピン7 (DTR)
ピン 8 (CTS)	ピン 8 (RTS)

SPARC Enterprise T2000 のシリアルポート 端末サーバのシリアルポートのピン

表 1-2 一般的な端末サーバに接続するためのピンのクロス接続

2. 接続しているデバイスで端末セッションを開き、次のように入力します。

% telnet IP-address-of-terminal-server port-number

たとえば、IP アドレスが 192.20.30.10 の端末サーバのポート 10000 に接続された SPARC Enterprise T2000 サーバの場合は、次のように入力します。

% telnet 192.20.30.10 10000

TIP 接続を使用したシステムコンソールへのアク セス

ほかのシステムのシリアルポートをシリアル管理ポート (SER MGT) に接続して SPARC Enterprise T2000 サーバのシステムコンソールにアクセスする場合は、この 手順に従ってください (図 1-4)。

図 1-4 SPARC Enterprise T2000 サーバとほかのシステムの間の TIP 接続

▼ TIP 接続を使用してシステムコンソールにアクセスする

1. RJ-45 シリアルケーブルを接続します。必要に応じて、DB-9 または DB-25 アダプタ を使用します。

このケーブルおよびアダプタは、ほかのシステムのシリアルポート(通常は TTYB)と SPARC Enterprise T2000 サーバの背面パネルのシリアル管理ポートを接続します。 シリアルケーブルおよびアダプタのピン配列、パーツ番号などの詳細は、使用してい るサーバのサービスマニュアルを参照してください。

2. システム上の /etc/remote ファイルに hardwire のエントリが含まれていること を確認します。

1992 年以降に出荷された Solaris OS ソフトウェアのほとんどのリリースでは、 /etc/remote ファイルに適切な hardwire エントリが含まれています。ただし、シ ステムで動作している Solaris OS ソフトウェアのバージョンがそれよりも古い場合、 または /etc/remote ファイルが変更されている場合は、編集が必要である可能性が あります。詳細は、14 ページの「/etc/remote ファイルの変更」を参照してくださ い。

3. システムのシェルツールウィンドウで、次のように入力します。

% tip hardwire

システムは、次のように表示して応答します。

connected

これで、シェルツールはシステムのシリアルポートを使用して SPARC Enterprise T2000 サーバに接続される Tip ウィンドウになりました。SPARC Enterprise T2000 サーバの電源が完全に切断されているときや、サーバを起動した直後でも、この接続 は確立され維持されます。

注 – コマンドツールではなく、シェルツールまたは CDE 端末 (dtterm など) を使用 してください。コマンドツールウィンドウでは、一部の Tip コマンドが正しく動作し ない場合があります。

/etc/remote ファイルの変更

この手順は、古いバージョンの Solaris OS ソフトウェアが動作しているシステムから Tip 接続を使用して SPARC Enterprise T2000 サーバにアクセスする場合に必要にな る場合があります。システムの /etc/remote ファイルが変更されており、適切な hardwire エントリが存在しない場合にも、この手順の実行が必要になる場合があり ます。

SPARC Enterprise T2000 サーバへの Tip 接続の確立に使用するシステムのシステム コンソールに、スーパーユーザーとしてログインしてください。

- ▼ /etc/remote ファイルを変更する
- 1. システムにインストールされている Solaris OS ソフトウェアのリリースレベルを確認します。次のように入力します。

uname -r

システムからリリース番号が返されます。

- 2. 表示された番号に応じて、次のいずれかの処理を実行します。
 - uname -r コマンドによって表示された番号が 5.0 以上である場合は、次の手順 を実行します。

Solaris OS ソフトウェアは、/etc/remote ファイルに hardwire の適切なエン トリが設定された状態で出荷されます。このファイルが変更され、hardwire エ ントリが変更または削除されている可能性がある場合は、次の例と比較してエン トリを確認し、必要に応じてファイルを編集してください。

hardwire:\
 :dv=/dev/term/b:br#9600:el=^C^S^Q^U^D:ie=%\$:oe=^D:

注– システムのシリアルポート B ではなくシリアルポート A を使用する場合は、このエントリを編集して /dev/term/b を /dev/term/a に置き換えてください。

 ■ uname -r コマンドによって表示された番号が 5.0 未満である場合は、次の手順 を実行します。

/etc/remote ファイルを確認し、次のエントリが存在しない場合は追加してください。

hardwire:\

:dv=/dev/ttyb:br#9600:el=^C^S^Q^U^D:ie=%\$:oe=^D:

注 – システムのシリアルポート B ではなくシリアルポート A を使用する場合は、このエントリを編集して /dev/ttyb を /dev/ttya に置き換えてください。

これで、/etc/remote ファイルが適切に構成されました。SPARC Enterprise T2000 サーバのシステムコンソールへの Tip 接続の確立を続行してください。詳細は、12 ページの「TIP 接続を使用したシステムコンソールへのアクセス」を参照してください。

TTYB にリダイレクトしているシステムコンソールの設定を、シリアル管理ポートおよびネットワーク管理ポートを使用するように戻す場合は、26 ページの「システムコンソールの OpenBoot 構成変数の設定」を参照してください。

英数字端末を使用したシステムコンソールへのア クセス

SPARC Enterprise T2000 サーバのシリアル管理ポート (SER MGT) に英数字端末のシ リアルポートを接続することによって、SPARC Enterprise T2000 サーバのシステム コンソールにアクセスする場合は、この手順を実行してください。

▼ 英数字端末を使用してシステムコンソールにアクセスする

1. シリアルケーブルの一方の端を、英数字端末のシリアルポートに接続します。

ヌルモデムシリアルケーブルまたは RJ-45 シリアルケーブルおよびヌルモデムアダプ タを使用してください。このケーブルを端末のシリアルポートコネクタに接続してく ださい。

- 2. シリアルケーブルのもう一方の端を SPARC Enterprise T2000 サーバのシリアル管理 ポートに接続します。
- 3. 英数字端末の電源コードを AC 電源に接続します。

- 4. 英数字端末の受信設定を次のように設定します。
 - 9600 ボー
 - 8 ビット
 - パリティーなし
 - ストップビット1
 - ハンドシェークプロトコルなし

端末の設定方法については、使用している端末に付属するマニュアルを参照してくだ さい。

英数字端末を使用すると、システムコマンドを実行してシステムメッセージを表示で きます。必要に応じて、ほかのインストール手順または診断手順に進んでください。 完了したら、英数字端末のエスケープシーケンスを入力してください。

ALOM CMT システムコントローラの接続および使用方法の詳細は、使用している サーバの ALOM CMT のマニュアルを参照してください。

ローカルグラフィックスモニターを使用したシス テムコンソールへのアクセス

システムの初期インストール後は、ローカルグラフィックスモニターを取り付けて、 システムコンソールにアクセスするように設定できます。ローカルグラフィックスモ ニターは、システムの初期インストールの実行、または電源投入時自己診断 (Power-On Self-Test、POST) メッセージの表示には使用できません。

ローカルグラフィックスモニターを取り付けるには、次のものが必要です。

- サポートされている PCI ベースのグラフィックスフレームバッファーカードおよびソフトウェアドライバ
- フレームバッファーをサポートするための適切な解像度のモニター
- サポートされている USB キーボード
- サポートされている USB マウスおよびマウスパッド

▼ ローカルグラフィックスモニターを使用してシステムコン ソールにアクセスする

1. グラフィックスカードを適切な PCI スロットに取り付けます。

取り付けは、認定された保守プロバイダが実行する必要があります。詳細は、使用し ているサーバのサービスマニュアルを参照するか、認定された保守プロバイダに問い 合わせてください。

2. モニターのビデオケーブルを、グラフィックスカードのビデオポートに接続します。 つまみねじを固く締めて、接続を固定してください。

- 3. モニターの電源コードを AC 電源に接続します。
- USB キーボードケーブルを SPARC Enterprise T2000 サーバの背面パネルの USB ポートのいずれかに接続し、USB マウスケーブルを別の USB ポートに接続します (図 1-2)。
- 5. ok プロンプトを表示します。

詳細は、24ページの「ok プロンプトの表示」を参照してください。

OpenBoot 構成変数を適切に設定します。

既存のシステムコンソールから、次のように入力します。

ok setenv input-device keyboard ok setenv output-device screen

注 – ほかにも多くのシステム構成変数があります。これらの変数は、システムコン ソールへのアクセスに使用するハードウェアデバイスには影響を与えませんが、一部 の構成変数は、システムが実行する診断テストおよびシステムがコンソールに表示す るメッセージに影響を与えます。詳細は、使用しているサーバのサービスマニュアル を参照してください。

7. 次のように入力して、変更を有効にします。

ok reset-all

パラメータの変更がシステムに保存されます。OpenBoot 構成変数 auto-boot? が デフォルト値の true に設定されている場合、システムは自動的に起動します。

注 - パラメータの変更を保存するには、フロントパネルの電源ボタンを使用して、 システムの電源を再投入することもできます。

ローカルグラフィックスモニターを使用すると、システムコマンドを実行してシステ ムメッセージを表示できます。必要に応じて、ほかのインストール手順または診断手 順に進んでください。

システムコンソールをリダイレクトして、シリアル管理ポートおよびネットワーク管 理ポートに戻す場合は、26ページの「システムコンソールの OpenBoot 構成変数の 設定」を参照してください。

システムコントローラとシステムコン ソールの切り替え

サーバの背面パネルには、SER MGT および NET MGT というラベルが付いた、シス テムコントローラの2つの管理ポートがあります。システムコンソールがシリアル管 理ポートおよびネットワーク管理ポートを使用するように構成されている (デフォル トの構成である)場合、これらのポートを使用することによって、システムコンソー ルと ALOM CMT コマンド行インタフェース (ALOM CMT プロンプト)の両方に 別々のチャネルでアクセスできます (図 1-5 を参照)。

図 1-5 システムコンソールとシステムコントローラの個別のチャネル

シリアル管理ポートおよびネットワーク管理ポートからシステムコンソールにアクセ スできるように構成されている場合は、これらのポートのどちらかを使用して接続す ると、ALOM CMT コマンド行インタフェースとシステムコンソールのどちらにもア クセスできます。いつでも ALOM CMT プロンプトとシステムコンソールを切り替 えることができますが、1 つの端末ウィンドウまたはシェルツールから両方に同時に アクセスすることはできません。
端末またはシェルツールに表示されるプロンプトは、アクセスしているチャネルを示 しています。

- # または % プロンプトが表示される場合は、システムコンソールにアクセスして おり、Solaris OS が動作していることを示します。
- ok プロンプトが表示される場合は、システムコンソールにアクセスしており、 サーバは OpenBoot ファームウェアの制御下で動作していることを示します。
- sc> プロンプトが表示される場合は、システムコントローラにアクセスしている ことを示します。

注 – テキストまたはプロンプトが表示されない場合は、コンソールメッセージがし ばらく生成されていない可能性があります。この場合は、端末の Enter または Return キーを押してプロンプトを表示します。

システムコントローラからシステムコンソールに切り替えるには、次の手順を実行します。

■ sc> プロンプトで console コマンドを入力します。

システムコンソールからシステムコントローラに切り替えるには、次の手順を実行します。

■ システムコントローラのエスケープシーケンスを入力します。

デフォルトのエスケープシーケンスは、「#.」(ハッシュ記号とピリオド)です。

システムコントローラとシステムコンソール間の通信に関する詳細は、次を参照して ください。

- 1ページの「システムとの通信」
- 19 ページの「ALOM CMT sc> プロンプト」
- 21 ページの「OpenBoot ok プロンプト」
- 7ページの「システムコントローラへのアクセス」
- 使用しているサーバの ALOM CMT のマニュアル

ALOM CMT SC> プロンプト

ALOM CMT システムコントローラは、サーバから独立して、システムの電源状態に 関係なく動作します。サーバを AC 電源に接続すると、ALOM CMT システムコント ローラはただちに起動し、システムの監視を開始します。 注 – ALOM CMT システムコントローラの起動メッセージを表示するには、英数字 端末をシリアル管理ポートに接続してから、AC 電源コードを SPARC Enterprise T2000 サーバに接続する必要があります。

システムを AC 電源に接続してシステムとの対話手段を確保すると、システムの電源 状態に関係なくいつでも ALOM CMT システムコントローラにログインできます。 また、シリアル管理ポートおよびネットワーク管理ポートからアクセスできるように システムコンソールが構成されていれば、OpenBoot の ok プロンプト、あるいは Solaris の # または % プロンプトから、ALOM CMT のプロンプト (sc>) にアクセス することもできます。

sc> プロンプトは、ALOM CMT システムコントローラと直接対話していることを示 します。このプロンプトは、システムの電源状態に関係なく、シリアル管理ポートま たはネットワーク管理ポートを使用してシステムにログインしたときに、最初に表示 されます。

注 – ALOM CMT システムコントローラにはじめてアクセスしたときに管理コマン ドを実行すると、それ以降のアクセスで使用するために、デフォルトのユーザー名 admin に対するパスワードを作成するようにコントローラから求められます。この 初期構成を行なったあとは、ALOM CMT システムコントローラにアクセスするたび に、ユーザー名およびパスワードの入力を求めるプロンプトが表示されます。

詳細は、次のセクションを参照してください。

24 ページの「ok プロンプトの表示」

18ページの「システムコントローラとシステムコンソールの切り替え」

複数のコントローラセッションを介したアクセス

ALOM CMT セッションでは、シリアル管理ポートで1つのセッション、ネットワーク管理ポートで最大8つのセッションの、合計で最大9つのセッションを同時に有効にできます。これらの各セッションのユーザーは、sc>プロンプトでコマンドを実行できます。ただし、システムコンソールにアクセスできるユーザーは一度に1人のみで、システムコンソールがシリアル管理ポートおよびネットワーク管理ポートを介してアクセスできるように構成されている場合にかぎられます。詳細は、次のセクションを参照してください。

7ページの「システムコントローラへのアクセス」

8ページの「ネットワーク管理ポートの使用方法」

システムコンソールのアクティブユーザーがログアウトするまで、ALOM CMT のそ の他のセッションでは、システムコンソールの動作を受動的に表示することしかでき ません。ただし、console -f コマンドを使用できる場合は、このコマンドによっ てユーザーはシステムコンソールへのアクセスを交互に取得できます。詳細は、使用 しているサーバの ALOM CMT のマニュアルを参照してください。

sc> プロンプトの表示方法

sc> プロンプトを表示するには、次のようなさまざまな方法があります。

- システムコンソールがシリアル管理ポートおよびネットワーク管理ポートに接続 されている場合は、ALOM CMT のエスケープシーケンス (#.) を入力できます。
- シリアル管理ポートに接続されたデバイスから、システムコントローラに直接ログインできます。詳細は、7ページの「システムコントローラへのアクセス」を参照してください。
- ネットワーク管理ポートを介した接続を使用して、システムコントローラに直接 ログインできます。詳細は、8ページの「ネットワーク管理ポートの使用方法」を 参照してください。

OpenBoot ok プロンプト

Solaris OS がインストールされている SPARC Enterprise T2000 サーバは、異なる 「実行レベル」で動作します。実行レベルの詳細は、Solaris のシステム管理マニュ アルを参照してください。

多くの場合、SPARC Enterprise T2000 サーバは、実行レベル2または実行レベル3 で動作します。実行レベル2および3は、システムおよびネットワーク資源にフルア クセスできるマルチューザー状態です。場合によっては、実行レベル1でシステムを 動作させることもあります。実行レベル1は、シングルユーザーによる管理状態で す。もっとも下位の動作状態は、実行レベル0です。この状態では、システムの電源 を安全に切断できます。

SPARC Enterprise T2000 サーバが実行レベル 0 である場合は、ok プロンプトが表示 されます。このプロンプトは、OpenBoot ファームウェアがシステムを制御している ことを示しています。

次に示すさまざまな状況では、制御が OpenBoot ファームウェアに移行します。

- デフォルトでは、オペレーティングシステムをインストールするまでは、システムは OpenBoot ファームウェアの制御下で起動されます。
- OpenBoot 構成変数 auto-boot? を false に設定すると、システムは ok プロンプトまで起動します。

- オペレーティングシステムが停止すると、システムは正常の手順で実行レベル0
 に移行します。
- オペレーティングシステムがクラッシュすると、システムは OpenBoot ファーム ウェアの制御下に戻ります。
- 起動処理中に、オペレーティングシステムが実行できないような重大な問題が ハードウェアで検出されると、システムは OpenBoot ファームウェアの制御下に 戻ります。
- システムの実行中にハードウェアに重大な問題が発生すると、オペレーティングシステムは実行レベル0に移行します。
- システムを意図的にファームウェアの制御下に置くと、ファームウェアベースの コマンドが実行されます。

管理者はこれらの最後の状況にかかわることがもっとも多く、そのため ok プロンプトの表示が必要になる場合が多くなります。ok プロンプトを表示する方法の概要は、22 ページの「ok プロンプトの表示方法」を参照してください。詳細な手順については、24 ページの「ok プロンプトの表示」を参照してください。

ok プロンプトの表示方法

システムの状態およびシステムコンソールへのアクセス方法に応じて、ok プロンプトを表示するさまざまな方法があります。次に、ok プロンプトの表示方法を、推奨する順に示します。

- 正常な停止
- ALOM CMT の break および console コマンドの組み合わせ
- L1-A (Stop-A) キーまたは Break キー
- 手動システムリセット

次に、これらの方法の概要を示します。詳細な手順については、24 ページの「ok プロンプトの表示」を参照してください。

注 – 原則として、オペレーティングシステムを中断する前には、ファイルのバック アップを行い、ユーザーにシステムの停止を警告してから、正常な手順でシステムを 停止するようにしてください。ただし、特にシステムに障害が発生した場合などで、 このような事前の手順を行うことができない場合もあります。

正常な停止

ok プロンプトを表示するには、Solaris のシステム管理マニュアルに記載されている ように、適切なコマンド (shutdown、init、uadmin コマンドなど) を実行して、 オペレーティングシステムを停止することをお勧めします。また、システムの電源ボ タンを使用して、システムの正常な停止を開始することもできます。 システムを正常に停止すると、データの損失を防ぎ、ユーザーにあらかじめ警告する ことができ、停止時間は最小限になります。通常、Solaris OS が動作し、ハードウェ アに重大な障害が発生していなければ、正常な停止を実行できます。

また、ALOM CMT コマンドプロンプトからシステムの正常な停止を実行することも できます。

ALOM CMT of break state console avvi

sc> プロンプトから break を入力すると、実行中の SPARC Enterprise T2000 サーバ は強制的に OpenBoot ファームウェアの制御下に移行します。オペレーティングシス テムがすでに停止している場合は、break ではなく console コマンドを使用して、 ok プロンプトを表示できます。

注 – システムの制御を強制的に OpenBoot ファームウェアに渡したあとに、probescsi、probe-scsi-all、probe-ide などの特定の OpenBoot コマンドを実行す ると、システムがハングアップする可能性があることに注意してください。

L1-A (Stop-A) キーまたは Break キー

システムの正常な停止が不可能であるか、実際的でない場合には、キーボードで L1-A (Stop-A) キーシーケンスを入力して、ok プロンプトを表示できます。SPARC Enterprise T2000 サーバに英数字端末が接続されている場合は、Break キーを押して ください。

注 – システムの制御を強制的に OpenBoot ファームウェアに渡したあとに、probescsi、probe-scsi-all、probe-ide などの特定の OpenBoot コマンドを実行す ると、システムがハングアップする可能性があることに注意してください。

注 – ok プロンプトを表示するためのこれらの方法は、システムコンソールが適切な ポートにリダイレクトされている場合にのみ機能します。詳細は、26 ページの「シ ステムコンソールの OpenBoot 構成変数の設定」を参照してください。

手動システムリセット

注意 – 手動システムリセットを強制的に実行すると、システムの状態データが失われるため、この方法は最後の手段として使用してください。手動システムリセットを 実行するとすべての状態情報が失われるため、同じ問題がふたたび発生するまでこの 問題の原因の障害追跡を行うことはできません。

サーバをリセットするには、ALOM CMT の reset コマンドを使用するか、または poweron と poweroff コマンドを使用してください。手動システムリセットの実行 または電源の再投入による ok プロンプトの表示は、最後の手段です。これらのコマ ンドを使用すると、システムの一貫性および状態情報がすべて失われます。手動シス テムリセットを実行すると、サーバのファイルシステムが破壊される可能性がありま すが、通常、破壊されたファイルシステムは fsck コマンドで復元します。この方法 は、ほかに手段がない場合にのみ使用してください。

注意 – ok プロンプトにアクセスすると、Solaris OS は中断されます。

動作中の SPARC Enterprise T2000 サーバから ok プロンプトにアクセスすると、 Solaris OS は中断され、システムがファームウェアの制御下に置かれます。また、オ ペレーティングシステムの下で実行中のすべてのプロセスも中断され、その状態を回 復できなくなることがあります。

ok プロンプトから実行するコマンドによっては、システムの状態に影響を及ぼす可 能性があります。これは、オペレーティングシステムを、中断した時点の状態から再 開できない場合があることを意味します。ほとんどの場合は go コマンドを実行する と再開されますが、一般的には、システムを ok プロンプトに移行したときは、オペ レーティングシステムに戻すためにシステムの再起動が必要になると考えておいてく ださい。

詳細情報

OpenBoot ファームウェアの詳細は、『OpenBoot 4.x Command Reference Manual』を参照してください。このマニュアルのオンライン版は、Solaris ソフト ウェアに同梱される OpenBoot Collection AnswerBook に含まれています。

ok プロンプトの表示

このセクションでは、ok プロンプトを表示するいくつかの方法について説明しま す。ok プロンプトの表示方法には、推奨する順序があります。各方法を使用する状 況については、21 ページの「OpenBoot ok プロンプト」を参照してください。

注意 - ok プロンプトを表示すると、すべてのアプリケーションおよびオペレーティングシステムソフトウェアが中断されます。ok プロンプトからファームウェアコマンドを実行し、ファームウェアベースのテストを実行したあとは、中断した箇所からシステムを再開できないことがあります。

可能な場合は、この手順を開始する前にシステムのデータをバックアップしてください。また、すべてのアプリケーションを終了または停止して、サービスを停止することをユーザーに警告してください。適切なバックアップおよび停止手順については、 Solaris のシステム管理マニュアルを参照してください。

▼ ok プロンプトを表示する

1. ok プロンプトを表示するために使用する方法を決定します。

詳細は、21 ページの「OpenBoot ok プロンプト」を参照してください。

2. 表 1-3 の適切な手順に従います。

表 1-3 ok プロンプトの表示方法

表示方法	作業手順
Solaris OS の正常な停 止	シェルまたはコマンドツールウィンドウから、Solaris のシステム 管理マニュアルに記載されている適切なコマンド (たとえば、 shutdown、init コマンド) を実行します。
L1-A (Stop-A) キー または Break キー	 SPARC Enterprise T2000 サーバに直接接続されているキーボードから、Stop キーと A キーを同時に押します。* - または -
	 システムコンソールにアクセスするように構成されている英数字 端末で、Break キーを押します。
ALOM CMT の break および console コマンド	sc> プロンプトで、break コマンドを入力します。オペレーティ ングシステムソフトウェアが動作しておらず、サーバがすでに OpenBoot ファームウェアの制御下にある場合は、次に console コマンドを実行します。
手動システムリセット	sc> プロンプトで、次のように入力します。 sc> bootmode bootscript="setenv auto-boot? false" Enter を押します。 次のコマンドを入力します。 sc> reset

* OpenBoot 構成変数 input-device=keyboard が必要です。詳細は、16 ページの「ローカルグラフィック スモニターを使用したシステムコンソールへのアクセス」および 26 ページの「システムコンソールの OpenBoot 構成変数の設定」を参照してください。

システムコンソールの OpenBoot 構成変 数の設定

SPARC Enterprise T2000 のシステムコンソールは、デフォルトでシリアル管理ポー トおよびネットワーク管理ポート (SER MGT および NET MGT) に接続されます。た だし、システムコンソールを、ローカルグラフィックスモニター、キーボード、およ びマウスにリダイレクトすることができます。また、システムコンソールをリダイレ クトして、シリアル管理ポートおよびネットワーク管理ポートに戻すこともできま す。

一部の OpenBoot 構成変数は、システムコンソールの入力元および出力先を制御します。次の表に、これらの変数を設定して、シリアル管理ポートとネットワーク管理 ポート、またはローカルグラフィックスモニターをシステムコンソール接続として使 用する方法を示します。

表 1-4 シン	ステムコンソー	ルに影響を与える	o OpenBoot	構成変数
----------	---------	----------	------------	------

	システムコンソールの出力先の設定		
OpenBoot 構成変数名	シリアル管理ポートおよび ネットワーク管理ポート	ローカルグラフィックスモニター/ USB キーボードおよびマウス [*]	
output-device	virtual-console	screen	
input-device	virtual-console	keyboard	

* POST には出力をグラフィックスモニターに送信する機構がないため、POST 出力は依然としてシリアル管理 ポートに送信されます。

シリアル管理ポートは、標準のシリアル接続としては機能しません。プリンタなどの 従来のシリアルデバイスをシステムに接続する場合は、シリアル管理ポートではなく ttya に接続する必要があります。

sc> プロンプトおよび POST メッセージは、シリアル管理ポートおよびネットワーク 管理ポートを使用する場合にのみ表示できることに注意することが重要です。また、 システムコンソールがローカルグラフィックスモニターにリダイレクトされると、 ALOM CMT の console コマンドは無効となります。

表 1-4 に示す OpenBoot 構成変数以外にも、システムの動作に影響を与え、システム の動作を決定する構成変数があります。これらの構成変数については、付録 A で詳 細に説明します。

第2章

RAS 機能およびシステムファーム ウェアの管理

この章では、システムコントローラの ALOM CMT や自動システム回復 (ASR) など の信頼性、可用性、保守性 (RAS) 機能およびシステムファームウェアの管理方法に ついて説明します。また、デバイスを手動で構成解除および再構成する方法、および マルチパスソフトウェアについても説明します。

この章は、次のセクションで構成されています。

- 27 ページの「ALOM CMT およびシステムコントローラ」
- 32 ページの「OpenBoot の緊急時の手順」
- 34 ページの「自動システム回復」
- 40ページの「デバイスの構成解除および再構成」
- 41ページの「システム障害情報の表示」
- 42 ページの「マルチパスソフトウェア」
- 43 ページの「FRU 情報の格納」

注 – この章では、障害追跡および診断の詳細な手順については説明しません。障害 の分離および診断の手順については、使用しているサーバのサービスマニュアルを参 照してください。

ALOM CMT およびシステムコントロー ラ

ALOM CMT システムコントローラでは、サーバごとに合計9つの並行セッションが サポートされており、ネットワーク管理ポートを介した8つの接続とシリアル管理 ポートを介した1つの接続を使用できます。 ALOM CMT アカウントにログインすると、ALOM CMT のコマンドプロンプト (sc>) が表示され、ALOM CMT のコマンドを入力できるようになります。使用する コマンドに複数のオプションがある場合は、次の例に示すように、オプションを分け て入力するか、またはまとめて入力できます。コマンドの意味はまったく同じです。

sc> poweroff -f -y
sc> poweroff -fy

ALOM CMT へのログイン

環境の監視と制御は、すべて ALOM CMT システムコントローラの ALOM CMT に よって処理されます。ALOM CMT のコマンドプロンプト (sc>) は、ALOM CMT と の対話手段を提供します。sc> プロンプトの詳細は、19 ページの「ALOM CMT sc> プロンプト」を参照してください。

ALOM CMT システムコントローラへの接続手順については、次のセクションを参照 してください。

- 7ページの「システムコントローラへのアクセス」
- 8ページの「ネットワーク管理ポートの使用方法」

注 – この手順では、システムコンソールがシリアル管理ポートおよびネットワーク 管理ポートを使用するように構成されている (デフォルトの構成である) ことを前提 としています。

▼ ALOM CMT にログインする

1. システムコンソールにログインしている場合は、#. (ハッシュ記号とピリオド) を入 カして sc> プロンプトを表示します。

ハッシュ記号のキーを押し、次にピリオドキーを押してください。次に Return キー を押してください。

2. ALOM CMT のログインプロンプトでログイン名を入力し、Return を押します。

デフォルトのログイン名は admin です。

```
Advanced Lights Out Manager 1.4 Please login: admin
```

3. パスワードプロンプトでパスワードを入力し、Return を 2 回押して、sc> プロンプトを表示します。

```
Please Enter password:
```

SC>

注 – デフォルトのパスワードはありません。システムの初期構成時にパスワードを 割り当てる必要があります。詳細は、使用しているサーバの設置マニュアルおよび ALOM CMT のマニュアルを参照してください。

注意 - 最適なシステムセキュリティー保護のために、デフォルトのシステムログイン名およびパスワードを初期設定時に変更することをお勧めします。

ALOM CMT システムコントローラを使用すると、システムの監視、ロケータ LED の点灯と消灯、または ALOM CMT システムコントローラカード自体での保守作業 を実行できます。詳細は、使用しているサーバの ALOM CMT のマニュアルを参照 してください。

▼ 環境情報を表示する

- 1. ALOM CMT システムコントローラにログインします。
- 2. showenvironment コマンドを使用して、サーバのその時点での環境状態を表示します。

このコマンドで表示できる情報には、温度、電源装置の状態、フロントパネルの LED の状態などがあります。 **注** – サーバがスタンバイモードのときは、一部の環境情報を使用できないことがあります。

注 - このコマンドの使用には、ALOM CMT のユーザー権限は必要ありません。

システム LED の解釈

SPARC Enterprise T2000 サーバの LED の動作は、米国規格協会 (American National Standards Institute、ANSI) の状態インジケータ規格 (Status Indicator Standard、SIS) に準拠しています。表 2-1 に、これらの LED の標準的な動作を示します。

表 2-1 LED の動作と意味

LED の動作	意味
消灯	色で示される状態は存在しません。
常時点灯	色で示される状態が存在します。
スタンバイ点滅	システムは最小レベルで機能しており、すべての機能を再開できま す。
ゆっくり点滅	色で示される一時的な活動または新しい活動が発生しています。
すばやく点滅	注意が必要です。
フィードバック点滅	ディスクドライブの活動など、点滅率に比例した活動が発生してい ます。

LED には、表 2-2 で説明するような意味が割り当てられています。

表 2-2 LED の動作とその意味

色	動作	定義	説明
白色	消灯	安定した状態	
	すばやく点滅	4Hz 周期で連続 する、一定間隔 の点灯および消 灯	このインジケータは、特定の格納装置、ボード、ま たはサブシステムの位置を確認する場合に役立ちま す。 例: ロケータ LED
青色	消灯	安定した状態	
	常時点灯	安定した状態	青色が点灯の場合は、該当する部品の保守作業を悪 影響を与えずに実行できます。 例: 取り外し可能 LED

色	動作	定義	説明
黄色/オレンジ 色	消灯	安定した状態	
	ゆっくり点滅	1Hz 周期で連続 する、一定間隔 の点灯および消 灯	このインジケータは、新しい障害状態を信号で伝え ます。保守が必要です。 例: 保守要求 LED
	常時点灯	安定した状態	オレンジ色のインジケータは、保守作業が完了して システムが通常機能に戻るまで点灯したままです。
緑色	消灯	安定した状態	
	スタンバイ点滅	ー瞬の短い点灯 (0.1 秒)と、それ に続く長い消灯 (2.9 秒)で構成さ れる周期の連続	システムは最小レベルで動作中であり、ただちにす べての機能が動作可能です。 例: システム動作状態 LED
	常時点灯	安定した状態	通常状態。保守作業を必要としないで機能している システムまたは部品
	ゆっくり点滅		直接の比例フィードバックが不要または不可能であ る一時的な切り替えイベントが発生しています。

表 2-2 LED の動作とその意味 (続き)

ロケータ LED の制御

ロケータ LED は、sc> プロンプトで制御するか、またはシャーシの正面にあるロ ケータボタンで制御します。

図 2-1 SPARC Enterprise T2000 シャーシのロケータボタン

● ロケータ LED を点灯するには、ALOM CMT のコマンドプロンプトで、次のように 入力します。

sc> **setlocator on** Locator LED is on.

● ロケータ LED を消灯するには、ALOM CMT のコマンドプロンプトで、次のように 入力します。

sc> setlocator off
Locator LED is off.

● ロケータ LED の状態を表示するには、ALOM CMT のコマンドプロンプトで、次の ように入力します。

sc> **showlocator** Locator LED is on.

注 – setlocator および showlocator コマンドを使用する場合に、ユーザー権限 は必要ありません。

OpenBoot の緊急時の手順

最新のシステムに USB (Universal Serial Bus) キーボードが導入されたため、 OpenBoot の緊急時の手順の一部を変更する必要があります。特に、USB 以外のキー ボードを使用するシステムで使用可能だった Stop-N、Stop-D、および Stop-F コ マンドが、SPARC Enterprise T2000 サーバなどの USB キーボードを使用するシステ ムではサポートされません。このセクションでは、以前の USB 以外のキーボードの 機能に慣れているユーザーを対象として、USB キーボードを使用する、より新しい システムで実行可能な同様の OpenBoot の緊急時の手順について説明します。

SPARC Enterprise T2000 システムでの OpenBoot の緊急時の手順

このあとのセクションでは、SPARC Enterprise T2000 サーバなどの USB キーボード を使用するシステムで Stop コマンドの機能を実行する方法について説明します。こ れらと同じ機能は、Advanced Lights Out Manager (ALOM) システムコントローラ ソフトウェアを使用して実行できます。

Stop-A の機能

Stop-A (中止) キーシーケンスは、標準キーボードを使用するシステムの場合と同様 に機能しますが、サーバをリセットしたあとの最初の数秒間は機能しません。また、 ALOM CMT の break コマンドを実行することもできます。詳細は、22 ページの 「ok プロンプトの表示方法」を参照してください。

Stop-N の機能

Stop-N 機能は使用できません。ただし、シリアル管理ポートまたはネットワーク管理ポートを使用してアクセスできるようにシステムコンソールが構成されている場合は、次の手順を完了することによって Stop-N 機能をほぼ同じように実行できます。

▼ OpenBoot 構成をデフォルトに戻す

- 1. ALOM CMT システムコントローラにログインします。
- 2. 次のコマンドを入力します。

```
sc> bootmode reset_nvram
sc> bootmode bootscript="setenv auto-boot? false"
sc>
```

注 – poweroff コマンドおよび poweron コマンド、または reset コマンドを 10 分 以内に実行しないと、ホストサーバは bootmode コマンドを無視します。

引数を指定せずに bootmode コマンドを実行すると、現在の設定を表示できます。

```
sc> bootmode
Bootmode: reset_nvram
Expires WED SEP 09 09:52:01 UTC 2005
bootscript="setenv auto-boot? false"
```

3. 次のコマンドを入力して、システムをリセットします。

```
sc> reset Are you sure you want to reset the system [y/n]? {\bf y} sc>
```

 システムがデフォルトの OpenBoot 構成変数で起動するときにコンソール出力を表示 するには、console モードに切り替えます。

SC>	console
ok	

5. set-defaults を入力して、カスタマイズした IDPROM 値をすべて破棄して、すべ ての OpenBoot 構成変数をデフォルト設定に戻します。

Stop-F の機能

Stop-Fの機能は、USB キーボードを使用するシステムでは使用できません。

Stop-D の機能

Stop-D (診断) キーシーケンスは、USB キーボードを使用するシステムではサポート されていません。ただし、ALOM CMT の setkeyswitch コマンドを使用し、仮想 キースイッチを diag に設定すると、Stop-D 機能をほぼ同じように実行できます。 詳細は、使用しているサーバの ALOM CMT のマニュアルを参照してください。

自動システム回復

このシステムは、メモリーモジュールまたは PCI カードの障害に対応する自動シス テム回復 (ASR) 機能を備えています。

自動システム回復機能によって、システムは、ハードウェアに関する特定の致命的で はない故障または障害が発生したあとに動作を再開できます。ASR が使用可能に なっていると、システムのファームウェア診断は、障害の発生したハードウェア部品 を自動的に検出します。システムファームウェアに組み込まれた自動構成機能によっ て、障害の発生した部品を構成解除し、システムの動作を回復することができます。 障害の発生した部品がなくてもシステムが動作可能であるかぎり、ASR 機能によっ て、オペレータの介入なしにシステムが自動的に再起動されます。 **注** – ASR は、使用可能に設定しないと起動されません。詳細は、38 ページの「自動 システム回復の使用可能および使用不可への切り替え」を参照してください。

ASR の詳細は、使用しているサーバのサービスマニュアルを参照してください。

auto-boot オプション

システムファームウェアは、auto-boot?と呼ばれる構成変数を格納します。この 構成変数は、リセットのたびにファームウェアが自動的にオペレーティングシステム を起動するかどうかを制御します。SPARC Enterprise プラットフォームのデフォル ト設定は true です。

通常、システムで電源投入時診断で不合格になると、auto-boot?は無視され、オ ペレータが手動でシステムを起動しないかぎりシステムは起動されません。自動起動 は、一般的に、縮退状態のシステムの起動には適切ではありません。このため、 SPARC Enterprise T2000 サーバの OpenBoot ファームウェアには、 auto-boot-on-error?というもう1つの設定があります。この設定は、サブシス テムの障害が検出された場合に、システムが縮退起動を試みるかどうかを制御しま す。自動縮退起動を使用可能にするには、auto-boot?および auto-boot-onerror? スイッチの両方を true に設定する必要があります。スイッチを設定するに は、次のように入力します。

```
ok setenv auto-boot? true
ok setenv auto-boot-on-error? true
```

注 – auto-boot-on-error?のデフォルト設定は false です。この設定を true に変更しないかぎり、システムは縮退起動を試みません。また、縮退起動を使用可能 にした場合でも、致命的で回復不可能なエラーがあるときは、システムは縮退起動を 試みません。致命的で回復不可能なエラーの例については、35 ページの「エラー処 理の概要」を参照してください。

エラー処理の概要

電源投入シーケンスでのエラー処理は、次の3つの状況のいずれかに分類されます。

 POST または OpenBoot ファームウェアがエラーを検出しない場合、auto-boot? が true であるときは、システムが起動を試みます。

- POST または OpenBoot ファームウェアが致命的ではないエラーのみを検出した場合、auto-boot? が true および auto-boot-on-error? が true であるときは、システムが起動を試みます。致命的ではないエラーには、次のものがあります。
 - SAS サブシステムの障害。この場合、起動ディスクへの有効な代替パスが必要です。詳細は、42ページの「マルチパスソフトウェア」を参照してください。
 - Ethernet インタフェースの障害。
 - USB インタフェースの障害。
 - シリアルインタフェースの障害。
 - PCI カードの障害。
 - メモリーの障害。DIMM に障害が発生すると、ファームウェアは障害モジュールに関連する論理バンク全体を構成解除します。システムが縮退起動を試みるには、障害のないほかの論理バンクがシステム内に存在している必要があります。

注 – POST または OpenBoot ファームウェアが通常の起動デバイスに関連する致命的 ではないエラーを検出した場合、OpenBoot ファームウェアは障害のあるデバイスを 自動的に構成解除し、boot-device 構成変数で次に指定されている起動デバイスか らの起動を試みます。

- POST または OpenBoot ファームウェアが致命的エラーを検出した場合、autoboot? または auto-boot-on-error? の設定に関係なく、システムは起動され ません。致命的で回復不可能なエラーには、次のものがあります。
 - すべての CPU の障害
 - すべての論理メモリーバンクの障害
 - フラッシュ RAM の巡回冗長検査 (CRC) の障害
 - 重大な現場交換可能ユニット (FRU)の PROM 構成データの障害
 - 重大なシステム構成カード (SCC) の読み取り障害
 - 重大な特定用途向け集積回路 (ASIC) の障害

致命的エラーの障害追跡の詳細は、使用しているサーバのサービスマニュアルを参照 してください。

リセットシナリオ

3つの ALOM CMT 構成変数 diag_mode、diag_level、および diag_trigger は、システムのリセットイベントが発生したときに、システムがファームウェア診断 を実行するかどうかを制御します。

仮想キースイッチまたは ALOM CMT 変数が次のように設定されていないかぎり、 標準のシステムリセットプロトコルは POST を完全に省略します。

表 2-3 リセットシナリオ用の仮想キースイッチの設定

キースイッチ	值
仮想キースイッチ	diag

表 2-4 リセットシナリオ用の ALOM CMT 変数の設定

変数	值
diag_mode	normal または service
diag_level	min または max
diag_trigger	power-on-reset error-reset

これらの変数のデフォルト設定は、次のとおりです。

- diag_mode = normal
- diag_level = min
- diag_trigger = power-on-reset

したがって、ASR はデフォルトで使用可能になっています。手順については、38 ページの「自動システム回復の使用可能および使用不可への切り替え」を参照してく ださい。

自動システム回復ユーザーコマンド

ALOM CMT コマンドは、ASR 状態情報の取得、および手動によるシステムデバイ スの構成解除または再構成を行う場合に使用できます。詳細は、次のセクションを参 照してください。

- 40ページの「デバイスの構成解除および再構成」
- 41ページの「デバイスを手動で再構成する」
- 39ページの「自動システム回復情報の取得」

自動システム回復の使用可能および使用不可への 切り替え

自動システム回復 (ASR) 機能は、使用可能にするまで起動されません。ASR を使用 可能にするには、OpenBoot だけでなく ALOM CMT でも構成変数を変更する必要が あります。

▼ 自動システム回復を使用可能にする

1. sc> プロンプトで、次のように入力します。

```
sc> setsc diag_mode normal
sc> setsc diag_level max
sc> setsc diag_trigger power-on-reset
```

2. ok プロンプトで、次のように入力します。

```
ok setenv auto-boot true
ok setenv auto-boot-on-error? true
```

注 - OpenBoot 構成変数の詳細は、使用しているサーバのサービスマニュアルを参照 してください。

3. 次のように入力して、パラメータの変更を有効にします。

ok **reset-all**

パラメータの変更はシステムに永続的に保存されます。また、OpenBoot 構成変数 auto-boot? が true (デフォルト値) に設定されている場合、システムは自動的に起 動します。

注 – パラメータの変更を保存するには、フロントパネルの電源ボタンを使用して、 システムの電源を再投入することもできます。

▼ 自動システム回復を使用不可にする

1. ok プロンプトで、次のように入力します。

ok setenv auto-boot-on-error? false

2. 次のように入力して、パラメータの変更を有効にします。

ok reset-all

パラメータの変更はシステムに永続的に保存されます。

注 - パラメータの変更を保存するには、フロントパネルの電源ボタンを使用して、 システムの電源を再投入することもできます。

自動システム回復 (ASR) 機能を使用不可にすると、ふたたび使用可能にするまで起動されません。

自動システム回復情報の取得

自動システム回復 (ASR) の影響を受けるシステムコンポーネントの状態に関する情報を取得するには、次の手順を実行します。

● sc> プロンプトで、次のように入力します。

SC> showcomponent

showcomponent コマンドの出力で使用不可とマークされているデバイスは、システ ムファームウェアを使用して手動で構成解除されたものです。また、 showcomponent コマンドでは、ファームウェア診断で不合格になり、システム ファームウェアによって自動的に構成解除されたデバイスの一覧も表示されます。

詳細は、次のセクションを参照してください。

- 34 ページの「自動システム回復」
- 38ページの「自動システム回復の使用可能および使用不可への切り替え」
- 39 ページの「自動システム回復を使用不可にする」
- 40ページの「デバイスの構成解除および再構成」
- 41ページの「デバイスを手動で再構成する」

デバイスの構成解除および再構成

縮退起動機能をサポートするために、ALOM CMT ファームウェアでは disablecomponent コマンドが提供されています。このコマンドを使用すると、シ ステムデバイスを手動で構成解除できます。このコマンドは、ASR データベース内 にエントリを作成することによって、指定されたデバイスに「使用不可」のマークを 付けます。手動またはシステムのファームウェア診断によって disabled とマーク されたデバイスは、OpenBoot PROM など、ほかの層のシステムファームウェアに渡 される前にシステムのマシン記述から削除されます。

▼ デバイスを手動で構成解除する

● sc> プロンプトで、次のように入力します。

sc> disablecomponent asr-key

asr-key には、表 2-5 に示す装置識別名のいずれかを指定します。

注 – 装置識別名では大文字と小文字は区別されません。装置識別名は大文字と小文字のどちらでも入力できます。

表 2-5 装置識別名およびデバイス

装置識別名	デバイス
MB/CMPcpu_number/Pstrand_number	CPU 素線 (番号: 0 ~ 31)
PCIEslot_number	PCI-E スロット (番号: 0 ~ 2)
PCIX <i>slot_number</i>	PCI-X (番号: 0 ~ 1)
IOBD/PCIEa	PCI-E leaf A (/pci@780)
IOBD/PCIEb	PCI-E leaf B (/pci@7c0)
ТТҮА	DB9 シリアルポート
MB/CMP0/CHchannel_number/Rrank_number/Ddimm_number	DIMMS

▼ デバイスを手動で再構成する

1. sc> プロンプトで、次のように入力します。

sc> enablecomponent asr-key

asr-keyには、表 2-5 に示す任意の装置識別名を指定します。

注 - 装置識別名では大文字と小文字は区別されません。装置識別名は大文字と小文字のどちらでも入力できます。

ALOM CMT の enablecomponent コマンドを使用すると、以前に disablecomponent コマンドで構成解除したデバイスを再構成できます。

システム障害情報の表示

ALOM CMT ソフトウェアを使用すると、現在検出されているシステム障害を表示で きます。showfaults コマンドでは、障害 ID、障害の発生した FRU デバイス、およ び障害メッセージが標準出力に表示されます。また、showfaults コマンドでは POST の結果も表示されます。次に例を示します。

sc> showfaults ID FRU Fault 0 FT0.FM2 SYS_FAN at FT0.FM2 has FAILED.

-v オプションを追加すると、時間が表示されます。

SC> showfaults -v		
ID Time	FRU	Fault
0 MAY 20 10:47:32	FT0.FM2	SYS_FAN at FT0.FM2 has FAILED.

showfaults コマンドの詳細は、使用しているサーバの ALOM CMT のマニュアル を参照してください。

▼ システム障害情報を表示する

● sc> プロンプトで、次のように入力します。

SC> showfaults -v

マルチパスソフトウェア

マルチパスソフトウェアを使用すると、ストレージデバイス、ネットワークインタフェースなどの入出力デバイスへの冗長物理パスを定義および制御できます。デバイスへの現在のパスが使用不可になった場合、可用性を維持するために、マルチパスソフトウェアは自動的に代替パスに切り替えることができます。この機能を「自動フェイルオーバー」と呼びます。マルチパス機能を活用するには、冗長ネットワークインタフェースや、同一のデュアルポートストレージアレイに接続されている2つのホストバスアダプタなどの冗長ハードウェアを使用して、サーバを構成する必要があります。

SPARC Enterprise T2000 サーバでは、3 つの異なる種類のマルチパスソフトウェアを 使用できます。

- Solaris IP Network Multipathing ソフトウェアは、IP ネットワークインタフェー ス用のマルチパスおよび負荷分散機能を提供します。
- VERITAS Volume Manager (VVM) ソフトウェアには、Dynamic Multipathing (DMP) と呼ばれる機能が含まれており、入出力スループットを最適化するディス クマルチパスおよびディスクロードバランスを提供します。
- Sun StorEdge[™] Traffic Manager は、Solaris 8 release 以降の Solaris OS に完全に 統合されたアーキテクチャーであり、入出力デバイスの単一のインスタンスから 複数のホストコントローラインタフェースを介して入出力デバイスにアクセスで きるようにします。

詳細情報

Solaris IP Network Multipathing を構成および管理する方法の手順については、使用 している Solaris リリースに付属する『IP ネットワークマルチパスの管理』を参照し てください。

VVM およびその DMP 機能の詳細は、VERITAS Volume Manager ソフトウェアに付 属するマニュアルを参照してください。

Sun StorEdge Traffic Manager の詳細は、使用している Solaris OS のマニュアルを参照してください。

FRU 情報の格納

▼ 使用可能な FRU PROM に情報を格納する

● sc> プロンプトで、次のように入力します。

setfru -c data

第3章

ディスクボリュームの管理

ここでは、RAID (Redundant Array of Independent Disks) の概念と、SPARC Enterprise T2000 サーバのオンボード Serial Attached SCSI (SAS) ディスクコント ローラを使用した RAID ディスクボリュームの構成および管理方法について説明しま す。

この章は、次のセクションで構成されています。

- 45 ページの「要件」
- 45 ページの「ディスクボリューム」
- 46 ページの「RAID 技術」
- 48 ページの「ハードウェアの RAID 操作」

要件

SPARC Enterprise T2000 サーバで RAID ディスクボリュームを構成して使用するに は、適切なパッチをインストールする必要があります。SPARC Enterprise T2000 サーバのパッチに関する最新情報は、使用するシステムの最新の『プロダクトノー ト』を参照してください。パッチのインストール手順は、パッチに付属するテキスト 形式の README ファイルに記載されています。

ディスクボリューム

SPARC Enterprise T2000 サーバのオンボードディスクコントローラでは、「ディス クボリューム」とは、1 つ以上の完全な物理ディスクから構成される、論理的なディ スクデバイスを意味します。 ボリュームが作成されると、オペレーティングシステムは、そのボリュームを単一の ディスクとして使用し維持します。ソフトウェアは、この論理的なボリュームの管理 層を提供することによって、物理的なディスクデバイスによる制約をなくします。

SPARC Enterprise T2000 サーバのオンボードディスクコントローラでは、最大2つ のハードウェア RAID ボリュームを作成できます。コントローラは、2 ディスク構成 の RAID 1 (統合ミラー、IM) ボリューム、または2~4 ディスク構成の RAID 0 (統 合ストライプ、IS) ボリュームのいずれかをサポートします。

注 - 新しいボリュームを作成すると、ディスクコントローラ上でボリュームが初期 化されるため、ジオメトリ、サイズなどのボリュームのプロパティーが不明な状態に なります。ハードウェアコントローラを使用して作成した RAID ボリュームは、 Solaris オペレーティングシステムで使用する前に、format(1M)を使用して構成お よびラベル付けを行う必要があります。詳細は、55 ページの「Solaris オペレーティ ングシステムで使用するハードウェア RAID ボリュームを構成してラベルを付ける」 または format(1M) のマニュアルページを参照してください。

ボリュームの移行 (RAID ボリュームの全ディスクメンバーの、ある SPARC Enterprise T2000 シャーシから別の SPARC Enterprise T2000 シャーシへの再配置) は サポートされていません。この操作を行う必要がある場合は、ご購入先に問い合わせ てください。

RAID 技術

RAID 技術は、複数の物理ディスクで構成される論理ボリュームの構築を可能にし、 データの冗長性の提供またはパフォーマンスの向上、あるいはその両方を実現しま す。SPARC Enterprise T2000 サーバのオンボードディスクコントローラでは、RAID 0 および RAID 1 の両方のボリュームがサポートされます。

このセクションでは、オンボードディスクコントローラがサポートする、次の RAID 構成について説明します。

- 統合ストライプ (IS) ボリューム (RAID 0)
- 統合ミラー (IM) ボリューム (RAID 1)

統合ストライプボリューム (RAID 0)

統合ストライプボリュームは、ボリュームを2つ以上の物理ディスク上で初期化し、 ボリュームに書き込まれたデータを各物理ディスクへ交互に割り当てる方式、つまり ディスク間でのデータの「ストライプ化」によって構成されます。 統合ストライプボリュームは、すべてのメンバーディスクの合計容量と等しい大きさの論理ユニット (LUN)を提供します。たとえば、72G バイトのドライブによる 3 ディスク構成の IS ボリュームの容量は、216G バイトになります。

図 3-1 ディスクのストライプ化の図

注意 – IS ボリューム構成には、データの冗長性はありません。そのため、1 つの ディスクに障害が発生するとボリューム全体の障害となり、すべてのデータが失われ ます。IS ボリュームを手動で削除すると、そのボリューム上のすべてのデータが失わ れます。

IS ボリュームでは、IM ボリュームや単一のディスクに比べて、優れたパフォーマン スを提供する可能性が高くなります。特定のワークロード、特に、一部の書き込み ワークロード、または読み取り/書き込みが混在するワークロードでは、入出力操作 が高速に処理されます。これは、入出力操作がラウンドロビン方式で処理され、連続 する各ブロックが各メンバーディスクに交互に書き込まれるためです。

統合ミラーボリューム (RAID 1)

ディスクのミラー化 (RAID 1) は、データの冗長性、つまり異なる 2 つのディスクに 格納されたすべてのデータの 2 つの完全なコピーを作成することによって、ディスク の障害時にデータの損失を防ぐ技術です。1 つの論理ボリュームは、2 つの異なる ディスクに複製されます。

図 3-2 ディスクのミラー化の図

オペレーティングシステムがミラー化されたボリュームに書き込みを行う際は、常に 両方のディスクが更新されます。2つのディスクは、常にまったく同じ情報を保持し ます。オペレーティングシステムがミラー化されたボリュームから読み取りを行う際 は、その時点でよりアクセスしやすいディスクから読み取りを行うため、読み取り操 作のパフォーマンスを向上できます。

注意 - オンボードディスクコントローラを使用して RAID ボリュームを作成する と、メンバーディスク上のすべてのデータが削除されます。ディスクコントローラの ボリューム初期化処理では、各物理ディスクの一部が、メタデータおよびコントロー ラが使用するその他の内部情報のために予約されます。ボリュームの初期化の完了後 は、format(1M)を使用して、そのボリュームの構成およびラベル付けを実行できま す。これで、ボリュームを Solaris オペレーティングシステムで使用できるようにな ります。

ハードウェアの RAID 操作

SPARC Enterprise T2000 サーバでは、Solaris OS の raidctl ユーティリティーを使用したミラー化およびストライプ化が、SAS コントローラによってサポートされています。

raidctl ユーティリティーを使用して作成したハードウェア RAID ボリュームは、 ボリューム管理ソフトウェアを使用して作成したボリュームとは若干異なります。ソ フトウェアボリュームでは、各デバイスは仮想デバイスツリーに独自のエントリを持 ち、読み取り/書き込み操作は両方の仮想デバイスに対して実行されます。ハード ウェア RAID ボリュームでは、デバイスツリーに表示されるデバイスは1つのみで す。メンバーディスクデバイスはオペレーティングシステムには表示されず、SAS コ ントローラによってのみアクセスされます。

RAID ではないディスクの物理ディスクスロット 番号、物理デバイス名、および論理デバイス名

ディスクのホットスワップ手順を実行するには、取り付けまたは取り外しを行うドラ イブの物理デバイス名または論理デバイス名を知っている必要があります。使用して いるシステムでディスクエラーが発生すると、多くの場合、障害が発生する可能性の あるディスクまたは障害が発生したディスクに関するメッセージがシステムコンソー ルに表示されます。この情報は、/var/adm/messages ファイルにも記録されま す。

これらのエラーメッセージでは、通常、障害が発生したハードディスクドライブを、 その物理デバイス名 (/devices/pci@1f,700000/scsi@2/sd@1,0 など) または論理デ バイス名 (cot1do など) で表します。また、アプリケーションによっては、ディスク のスロット番号 (0 ~ 3) が報告される場合もあります。

表 3-1 に、各ハードドライブの内蔵ディスクスロット番号と、論理デバイス名および 物理デバイス名との対応関係を示します。

表 3-1 ディスクスロット番号、論理デバイス名、および物理デバイス名

ディスクスロット番号	論理デバイス名 ¹	物理デバイス名
スロット 0	c0t0d0	/devices/pci@780/pci@0/pci@9/scsi@0/sd@0,0
スロット1	c0t1d0	/devices/pci@780/pci@0/pci@9/scsi@0/sd@1,0
スロット2	c0t2d0	/devices/pci@780/pci@0/pci@9/scsi@0/sd@2,0
スロット3	c0t3d0	/devices/pci@780/pci@0/pci@9/scsi@0/sd@3,0

1 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

▼ ハードウェアミラー化ボリュームを作成する

1. raidctl コマンドを実行して、ハードドライブに対応する論理デバイス名および物 理デバイス名を確認します。

raidctl
No RAID volumes found.

詳細は、49ページの「RAID ではないディスクの物理ディスクスロット番号、物理デバイス名、および論理デバイス名」を参照してください。

前述の例は、RAID ボリュームが存在しないことを示しています。次に別の例を示します。

# raidctl						
RAID	Volume	RAID	RAID	Disk		
Volume	Туре	Status	Disk	Status		
c0t0d0	IM	OK	c0t0d0	OK		
			c0t1d0	OK		

この例では、1 つの IM ボリュームが使用可能になっています。このボリュームは、 完全に同期化されオンラインになっています。

SPARC Enterprise T2000 サーバのオンボード SAS コントローラでは、最大 2 つの RAID ボリュームを構成できます。ボリュームを作成する前に、メンバーディスクが 使用可能で、ボリュームがすでに 2 つ作成されていないことを確認してください。

RAID 状態は、RAID ボリュームがオンラインで、完全に同期化されている場合には OK と表示されますが、IM の主および二次メンバーディスク間でデータがまだ同期化 中である場合には RESYNCING と表示されることもあります。また、メンバーディス クに障害が発生した場合またはオフラインになっている場合には、RAID 状態が DEGRADED になることがあります。最後に、RAID 状態は FAILED となることもあ り、これはボリュームの削除および再初期化が必要であることを意味します。この障 害は、IS ボリュームのいずれかのメンバーディスクを損失するか、または IM ボ リュームの 2 つのディスクを両方とも損失した場合に発生する可能性があります。

「Disk Status」列には、各物理ディスクの状態が表示されます。メンバーディスクご とに、オンラインで正常に機能していることを示す OK が表示される場合と、ディス クのハードウェアまたは構成に関する問題に対処する必要があることを示す FAILED、MISSING、または OFFLINE が表示される場合があります。

たとえば、シャーシから二次ディスクが取り外された IM は、次のように表示されま す。

# raidctl						
RAID	Volume	RAID	RAID	Disk		
Volume	Туре	Status	Disk	Status		
c0t0d0	IM	DEGRADED	c0t0d0	OK		
			c0t1d0	MISSING		

ボリュームおよびディスクの状態に関する詳細は、raidct1(1M)のマニュアルページを参照してください。

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

2. 次のコマンドを入力します。

raidctl -c primary secondary

RAID ボリュームは、デフォルトでは対話形式で作成します。次に例を示します。

```
# raidctl -c c0t0d0 c0t1d0
Creating RAID volume c0t0d0 will destroy all data on member disks,
proceed
(yes/no)? yes
Volume 'c0t0d0' created
#
```

別の方法として、メンバーディスクについて把握しており、両方のメンバーディスク 上のデータを失っても問題がないことを確認済みである場合には、-f オプションを 使用して強制的にボリュームを作成できます。次に例を示します。

```
# raidctl -f -c c0t0d0 c0t1d0
Volume 'c0t0d0' created
#
```

RAID ミラーを作成すると、二次ドライブ (この例では c0t1d0) は Solaris デバイス ツリーに表示されなくなります。

3. 次のコマンドを入力して、RAID ミラーの状態を確認します。

# raidctl					
RAID	Volume	RAID	RAID	Disk	
Volume	Туре	Status	Disk	Status	
c0t0d0	IM	RESYNCING	c0t0d0 c0t1d0	OK OK	

前述の例は、RAID ミラーがバックアップ用ドライブとまだ再同期化中であることを示しています。

次の例は、RAID ミラーが同期化され、オンラインになっていることを示しています。

# raidc RAID Volume	tl Volume Type	RAID Status	RAID Disk	Disk Status
c0t0d0	IM	OK	c0t0d0 c0t1d0	OK OK

ディスクコントローラは、1度に1つの IM ボリュームを同期化します。最初の IM ボリュームの同期化が完了する前に2番めの IM ボリュームを作成すると、最初のボ リュームの RAID 状態は RESYNCING、2番めのボリュームの RAID 状態は OK と表 示されます。最初のボリュームの同期化が完了すると、その RAID 状態は OK に変わ り、2番めのボリュームの同期化が自動的に開始されて、その RAID 状態は RESYNCING になります。

RAID1(ディスクのミラー化)では、すべてのデータが両方のドライブに複製されま す。ディスクに障害が発生した場合は、そのドライブを正常なドライブと交換してミ ラーを復元します。手順については、60ページの「ミラー化ディスクのホットプラ グ操作を実行する」を参照してください。

raidctl ユーティリティーの詳細は、raidctl(1M)のマニュアルページを参照して ください。

▼ デフォルトの起動デバイスのハードウェアミラー 化ボリュームを作成する

新しいボリュームを作成すると、ディスクコントローラ上でボリュームが初期化され るため、ボリュームを Solaris オペレーティングシステムで使用する前に format(1M) ユーティリティーによって構成およびラベル付けを行う必要があります (55 ページの「Solaris オペレーティングシステムで使用するハードウェア RAID ボ リュームを構成してラベルを付ける」を参照)。この制限があるため、メンバーディ スクのいずれかにファイルシステムがマウントされている場合には、raidct1(1M) はハードウェア RAID ボリュームの作成を拒否します。

このセクションでは、デフォルトの起動デバイスを含むハードウェア RAID ボリュー ムを作成するために必要な手順について説明します。起動デバイスには起動時に必ず ファイルシステムがマウントされているため、代替の起動媒体を使用して、その環境 でボリュームを作成する必要があります。代替媒体の1つに、シングルユーザーモー ドでのネットワークインストールイメージがあります。ネットワークベースのインス トールの構成および使用方法については、『Solaris 10 インストールガイド』を参照 してください。。 1. デフォルトの起動デバイスであるディスクを確認します。

OpenBoot の ok プロンプトで printenv コマンドを入力し、必要に応じて devalias コマンドを入力して、デフォルトの起動デバイスを特定します。次に例を 示します。

```
ok printenv boot-device
boot-device = disk
ok devalias disk
disk /pci@780/pci@0/pci@9/scsi@0/disk@0,0
```

2. boot net -s コマンドを入力します。

ok boot net -s

 システムが起動したら、raidct1(1M) ユーティリティーによって、デフォルトの起 動デバイスを主ディスクに使用してハードウェアミラー化ボリュームを作成します。

詳細は、49ページの「ハードウェアミラー化ボリュームを作成する」を参照してください。次に例を示します。

```
# raidctl -c c0t0d0 c0t1d0
Creating RAID volume c0t0d0 will destroy all data on member disks,
proceed
(yes/no)? yes
Volume c0t0d0 created
#
```

4. サポートされているいずれかの方法を使用して、Solaris オペレーティングシステム によってボリュームのインストールを行います。

ハードウェア RAID ボリューム c0t0d0 が、Solaris インストールプログラムにディ スクとして表示されます。

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

▼ ハードウェアストライプ化ボリュームを作成する

ハードドライブに対応する論理デバイス名および物理デバイス名を確認します。
 詳細は、49 ページの「ディスクスロット番号、論理デバイス名、および物理デバイス名」を参照してください。

現在の RAID 構成を確認するには、次のように入力します。

raidctl
No RAID volumes found.

前述の例は、RAID ボリュームが存在しないことを示しています。

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

2. 次のコマンドを入力します。

raidctl -c -r 0 disk1 disk2 ...

RAID ボリュームは、デフォルトでは対話形式で作成します。次に例を示します。

```
# raidctl -c -r 0 c0t1d0 c0t2d0 c0t3d0
Creating RAID volume c0t1d0 will destroy all data on member disks,
proceed
(yes/no)? yes
Volume 'c0t1d0' created
#
```

RAID ストライプ化ボリュームを作成すると、ほかのメンバードライブ (この場合 c0t2d0 および c0t3d0) は Solaris デバイスツリーに表示されなくなります。

別の方法として、メンバーディスクについて把握しており、ほかのすべてのメンバー ディスク上のデータを失っても問題がないことを確認済みである場合には、-f オプ ションを使用して強制的にボリュームを作成できます。次に例を示します。

```
# raidctl -f -c -r 0 c0t1d0 c0t2d0 c0t3d0
Volume 'c0t1d0' created
#
```
3. 次のコマンドを入力して、RAID ストライプ化ボリュームの状態を確認します。

tl			
Volume	RAID	RAID	Disk
Туре	Status	Disk	Status
IS	ОК	c0t1d0	OK.
		c0t2d0	OK
		c0t3d0	OK
	tl Volume Type IS	tl Volume RAID Type Status IS OK	tl Volume RAID RAID Type Status Disk IS OK cOtldO cOt2dO cOt3dO

この例は、RAID ストライプ化ボリュームがオンラインで機能していることを示して います。

RAID 0 (ディスクのストライプ化) では、ドライブ間でデータは複製されません。 データは、RAID ボリュームのすべてのメンバーディスクにラウンドロビン方式で書 き込まれます。ディスクを1つでも失うと、そのボリューム上のすべてのデータが失 われます。このため、RAID 0 はデータの完全性および可用性を確保するためには使 用できませんが、いくつかの状況で書き込みパフォーマンスを向上させるために使用 できます。

raidctl ユーティリティーの詳細は、raidctl(1M)のマニュアルページを参照して ください。

▼ Solaris オペレーティングシステムで使用する ハードウェア RAID ボリュームを構成してラベル を付ける

raidctl を使用して RAID ボリュームを作成したら、Solaris オペレーティングシス テムで使用する前に format(1M) を実行してボリュームの構成およびラベル付けを行 います。

1. format ユーティリティーを起動します。

format

format ユーティリティーによって、これから変更するボリュームの現在のラベルが 破損していることを示すメッセージが作成される場合があります。このメッセージは 無視しても問題ありません。

2. 構成した RAID ボリュームを表すディスク名を選択します。

この例では、c0t2d0 がボリュームの論理名です。

# format	
Searching for disks	sdone
AVAILABLE DISK SELE	ECTIONS:
0. c0t0d0 <	SUN72G cyl 14084 alt 2 hd 24 sec 424>
/pci@780)/pci@0/pci@9/scsi@0/sd@0,0
1. c0t1d0 <	SUN72G cyl 14084 alt 2 hd 24 sec 424>
/pci@780)/pci@0/pci@9/scsi@0/sd@1,0
2. c0t2d0 <	SUN72G cyl 14084 alt 2 hd 24 sec 424>
/pci@780)/pci@0/pci@9/scsi@0/sd@2,0
Specify disk (enter	rits number): 2
selecting c0t2d0	
[disk formatted]	
FORMAT MENU:	
disk	- select a disk
type	- select (define) a disk type
partition	- select (define) a partition table
current	- describe the current disk
format	- format and analyze the disk
tdisk	- run the fdisk program
repair	- repair a defective sector
label	- write label to the disk
analyze	- surface analysis
detect	- defect list management
раскир	- search for backup labels
verliy	- read and display labels
Save	- save new disk/partition definitions
Inquiry	- show vehaci, product and revision
Vollialite	- Set o-character volume hame
: <cmd></cmd>	- execute <cmu>, then return</cmu>
quit	

3. format> プロンプトで type コマンドを入力し、次に 0 (ゼロ) を選択してボリュー ムを自動的に構成します。

次に例を示します。

4. partition コマンドを使用して、必要な構成になるようにボリュームのパーティ ション (スライス) を設定します。

詳細は、format(1M)のマニュアルページを参照してください。

5. label コマンドを使用して、ディスクに新しいラベルを書き込みます。

format> label
Ready to label disk, continue? yes

6. disk コマンドを使用して、ディスクの一覧を出力し、新しいラベルが書き込まれて いることを確認します。

c0t2d0 に、LSILOGIC-LogicalVolume であることを示すタイプ情報が設定されています。

7. format ユーティリティーを終了します。

これで、ボリュームを Solaris オペレーティングシステムで使用できるようになります。

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

▼ ハードウェア RAID ボリュームを削除する

- 1. ハードドライブに対応する論理デバイス名および物理デバイス名を確認します。 詳細は、49 ページの「ディスクスロット番号、論理デバイス名、および物理デバイ ス名」を参照してください。
- 2. 次のように入力して、RAID ボリュームの名前を確認します。

# raidc	tl			
RAID	Volume	RAID	RAID	Disk
Volume	Туре	Status	Disk	Status
c0t0d0	IM	OK	c0t0d0 c0t1d0	OK OK

この例では、RAID ボリュームの名前は c0t1d0 です。

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

3. 次のコマンドを入力して、ボリュームを削除します。

```
# raidctl -d mirrored-volume
```

次に例を示します。

```
# raidctl -d c0t0d0
RAID Volume 'c0t0d0' deleted
```

RAID ボリュームが IS ボリュームである場合、RAID ボリュームは次のような対話方 式で削除します。

```
# raidctl -d c0t0d0
Deleting volume c0t0d0 will destroy all data it contains, proceed
(yes/no)? yes
Volume 'c0t0d0' deleted.
#
```

IS ボリュームを削除すると、ボリュームに含まれているデータがすべて失われます。 別の方法として、IS ボリュームまたはそこに含まれているデータが不要であることを 確認済みである場合には、-f オプションを使用して強制的にボリュームを削除でき ます。次に例を示します。

```
# raidctl -f -d c0t0d0
Volume 'c0t0d0' deleted.
#
```

4. 次のコマンドを入力して、RAID アレイが削除されたことを確認します。

raidctl

次に例を示します。

```
# raidctl
No RAID volumes found
```

詳細は、raidct1(1M)のマニュアルページを参照してください。

▼ ミラー化ディスクのホットプラグ操作を実行する

- 1. ハードドライブに対応する論理デバイス名および物理デバイス名を確認します。 詳細は、49 ページの「ディスクスロット番号、論理デバイス名、および物理デバイ ス名」を参照してください。
- 2. 次のコマンドを入力して、障害の発生しているディスクを確認します。

raidct1

「Disk Status」に「FAILED」と表示されている場合は、そのドライブを取り外して 新しいドライブを取り付けることができます。取り付けると、新しいディスクには 「OK」、ボリュームには「RESYNCING」と表示されます。

次に例を示します。

# raidc RAID Volume	tl Volume Type	RAID Status	RAID Disk	Disk Status
		DEGRADED	c0t1d0	OK
c0t1d0	IM		c0t2d0	FAILED

この例では、ディスクのミラーは、ディスク c0t2d0 の障害のために縮退しています。

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

 『SPARC Enterprise T2000 サーバ サービスマニュアル』の手順に従って、ハードド ライブを取り外します。

ドライブに障害が発生しているときは、ドライブをオフラインに切り替えるためにソ フトウェアコマンドを実行する必要はありません。

4. 『SPARC Enterprise T2000 サーバ サービスマニュアル』の手順に従って、新しい ハードドライブを取り付けます。

RAID ユーティリティーにより、データが自動的にディスクに復元されます。

5. 次のコマンドを入力して、RAID の再構築の状態を確認します。

raidctl

次に例を示します。

# raidc	tl			
RAID	Volume	RAID	RAID	Disk
Volume	Туре	Status	Disk	Status
c0t1d0	IM	RESYNCING	c0t1d0	OK
			c0t2d0	OK

この例は、RAID ボリューム c0t1d0 が再同期化中であることを示しています。

同期化が完了してからコマンドを再度実行すると、RAID ミラーが再同期化を終了 し、オンラインに戻っていることが示されます。

# raido	tl			
RAID	Volume	RAID	RAID	Disk
Volume	Туре	Status	Disk	Status
c0t1d0	IM	OK	c0t1d0	OK
			c0t2d0	OK

詳細は、raidct1(1M)のマニュアルページを参照してください。

▼ ミラー化されていないディスクのホットスワップ 操作を実行する

1. ハードドライブに対応する論理デバイス名および物理デバイス名を確認します。

詳細は、49ページの「ディスクスロット番号、論理デバイス名、および物理デバイ ス名」を参照してください。

ハードドライブにアクセスしているアプリケーションまたはプロセスがないことを確認します。

2. 次のコマンドを入力します。

cfgadm -al

次に例を示します。

# cfgadm -al				
Ap_Id	Туре	Receptacle	Occupant	Condition
с0	scsi-bus	connected	configured	unknown
c0::dsk/c0t0d0	disk	connected	configured	unknown
c0::dsk/c0t1d0	disk	connected	configured	unknown
c0::dsk/c0t2d0	disk	connected	configured	unknown
c0::dsk/c0t3d0	disk	connected	configured	unknown
c1	scsi-bus	connected	configured	unknown
cl::dsk/clt0d0	CD-ROM	connected	configured	unknown
usb0/1	unknown	empty	unconfigured	ok
usb0/2	unknown	empty	unconfigured	ok
usb1/1.1	unknown	empty	unconfigured	ok
usb1/1.2	unknown	empty	unconfigured	ok
usb1/1.3	unknown	empty	unconfigured	ok
usb1/1.4	unknown	empty	unconfigured	ok
usb1/2	unknown	empty	unconfigured	ok
#				

注 – 表示される論理デバイス名は、取り付けられている追加ディスクコントローラの数と種類によって異なる場合があります。

-al オプションを指定すると、バスおよび USB デバイスを含むすべての SCSI デバイ スの状態が表示されます。この例では、システムに接続された USB デバイスはあり ません。 ハードドライブのホットスワップ手順の実行には、Solaris OS の cfgadm install_device および cfgadm remove_device コマンドを使用できますが、シ ステムディスクを含むバスに対してこれらのコマンドを実行すると、次の警告メッ セージが表示されます。

この警告は、これらのコマンドが (SAS) SCSI バスの休止を試みるために表示されま すが、SPARC Enterprise T2000 サーバのファームウェアによって休止は回避されま す。この警告メッセージは SPARC Enterprise T2000 サーバでは無視しても問題あり ませんが、次の手順を実行することで、警告メッセージを回避することもできます。

3. デバイスツリーからハードドライブを削除します。

次のコマンドを実行して、ハードドライブをデバイスツリーから削除します。

cfgadm -c unconfigure Ap-Id

次に例を示します。

cfgadm -c unconfigure c0::dsk/c0t3d0

この例では、c0t3d0をデバイスツリーから削除しています。青色の取り外し可能 LED が点灯します。

4. デバイスがデバイスツリーから削除されたことを確認します。

次のコマンドを入力します。

# cfgadm -al				
Ap_Id	Туре	Receptacle	Occupant	Condition
с0	scsi-bus	connected	configured	unknown
c0::dsk/c0t0d0	disk	connected	configured	unknown
c0::dsk/c0t1d0	disk	connected	configured	unknown
c0::dsk/c0t2d0	disk	connected	configured	unknown
c0::dsk/c0t3d0	unavailable	connected	configured	unknown
c1	scsi-bus	connected	unconfigured	unknown
cl::dsk/clt0d0	CD-ROM	connected	configured	unknown
usb0/1	unknown	empty	unconfigured	ok
usb0/2	unknown	empty	unconfigured	ok
usb1/1.1	unknown	empty	unconfigured	ok
usb1/1.2	unknown	empty	unconfigured	ok
usb1/1.3	unknown	empty	unconfigured	ok
usb1/1.4	unknown	empty	unconfigured	ok
usb1/2	unknown	empty	unconfigured	ok
#				

c0t3d0 には「unavailable」および「unconfigured」と表示されています。対応するハードドライブの取り外し可能 LED が点灯します。

5. 『SPARC Enterprise T2000 サーバ サービスマニュアル』の手順に従って、ハードド ライブを取り外します。

ハードドライブを取り外すと、青色の取り外し可能 LED が消灯します。

- 6. 『SPARC Enterprise T2000 サーバ サービスマニュアル』の手順に従って、新しい ハードドライブを取り付けます。
- 7. 新しいハードドライブを構成します。

次のコマンドを入力します。

cfgadm -c configure Ap-Id

次に例を示します。

cfgadm -c configure c1::dsk/c0t3d0

c1t3d0の新しいディスクがデバイスツリーに追加されると、緑色の動作状態 LED が点滅します。

8. 新しいハードドライブがデバイスツリー上に表示されることを確認します。 次のコマンドを入力します。

# cfgadm -al				
Ap_Id	Туре	Receptacle	Occupant	Condition
с0	scsi-bus	connected	configured	unknown
c0::dsk/c0t0d0	disk	connected	configured	unknown
c0::dsk/c0t1d0	disk	connected	configured	unknown
c0::dsk/c0t2d0	disk	connected	configured	unknown
c0::dsk/c0t3d0	disk	connected	configured	unknown
c1	scsi-bus	connected	configured	unknown
cl::dsk/clt0d0	CD-ROM	connected	configured	unknown
usb0/1	unknown	empty	unconfigured	ok
usb0/2	unknown	empty	unconfigured	ok
usb1/1.1	unknown	empty	unconfigured	ok
usb1/1.2	unknown	empty	unconfigured	ok
usb1/1.3	unknown	empty	unconfigured	ok
usb1/1.4	unknown	empty	unconfigured	ok
usb1/2	unknown	empty	unconfigured	ok
#				

c0t3d0 に「configured」と表示されるようになりました。

付録A

OpenBoot 構成変数

表 A-1 では、システムの非揮発性メモリーに格納される OpenBoot ファームウェア 構成変数について説明します。ここでは、showenv コマンドを実行したときに表示 される順序で OpenBoot 構成変数を示します。

変数	設定できる値	デフォルト値	説明
local-mac-address?	true, false	true	true の場合は、ネットワークドライバは サーバの MAC アドレスではなく、それ 自体の MAC アドレスを使用します。
fcode-debug?	true, false	false	true の場合は、差し込み式デバイスの FCode の名前フィールドを取り込みま す。
scsi-initiator-id	$0 \sim 15$	7	Serial Attached SCSI $\exists \nu \land \neg \neg \neg \sigma$ SCSI ID _o
oem-logo?	true, false	false	true の場合は、カスタム OEM ロゴを使 用し、それ以外の場合はサーバのメー カーのロゴを使用します。
oem-banner?	true, false	false	true の場合は、OEM のカスタムバナー を使用します。
ansi-terminal?	true, false	true	true の場合は、ANSI 端末エミュレー ションを使用可能にします。
screen-#columns	0~n	80	画面上の1行あたりの文字数を設定しま す。
screen-#rows	$0 \sim n$	34	画面上の行数を設定します。
ttya-rts-dtr-off	true, false	false	true の場合、オペレーティングシステム はシリアル管理ポートで rts (request-to- send) および dtr (data-transfer-ready) を 表明しません。

表 A-1 システム構成カードに格納されている OpenBoot 構成変数

変数	設定できる値	デフォルト値	説明
ttya-ignore-cd	true, false	true	true の場合、オペレーティングシステム はシリアル管理ポートでのキャリア検出 を無視します。
ttya-mode	9600、8、n、1、-	9600、8、n、1、-	シリアル管理ポート (ボーレート、ビット 数、パリティー、ストップビット数、ハ ンドシェーク)。シリアル管理ポートは、 デフォルト値でのみ動作します。
output-device	virtual- console, screen	virtual- console	電源投入時の出力デバイス。
input-device	virtual- console, keyboard	virtual- console	電源投入時の入力デバイス。
auto-boot-on-error?	true, false	false	true の場合は、システムエラーが発生し たあとに自動的に起動します。
load-base	$0 \sim n$	16384	アドレス。
auto-boot?	true, false	true	true の場合は、電源投入またはリセット 後に自動的に起動します。
boot-command	variable_name	boot	boot コマンド後の動作。
use-nvramrc?	true, false	false	true の場合は、サーバの起動中に NVRAMRC でコマンドを実行します。
nvramrc	variable_name	none	use-nvramrc? が true の場合に実行さ れるコマンドスクリプト。
security-mode	none, command, full	none	ファームウェアのセキュリティーレベ ル。
security-password	variable_name	none	security-mode が none (表示されない) 以外の場合のファームウェアのセキュリ ティーパスワード。これは直接設定しな いでください。
security-#badlogins	variable_name	none	誤ったセキュリティーパスワードの試行 回数。

表 A-1 システム構成カードに格納されている OpenBoot 構成変数 (続き)

変数	設定できる値	デフォルト値	説明
diag-switch?	true, false	false	true の場合: • OpenBoot の冗長性が最大に設定されま す false の場合: • OpenBoot の冗長性が最小に設定されま す
error-reset-recovery	boot, sync, none	boot	エラーによって生成されたシステムリ セットの次に実行されるコマンド。
network-boot- arguments	[protocol ,] [key=value,]	none	ネットワーク起動のために PROM によっ て使用される引数。デフォルトは、空の 文字列です。network-boot- arguments は、使用される起動プロトコ ル (RARP/DHCP) および処理で使用され るシステムナレッジの範囲を指定する場 合に使用できます。詳細は、eeprom (1M) のマニュアルページまたは Solaris リファ レンスマニュアルを参照してください。

表 A-1 システム構成カードに格納されている OpenBoot 構成変数 (続き)

索引

記号

/etc/remoteファイル,13 変更,14

Α

Advanced Lights Out Manager (ALOM) CMT sc> プロンプト、「sc> プロンプト」を参照 エスケープシーケンス (#.), 21 コマンド、「sc>プロンプト」を参照 複数の接続,20 ログイン,28 ALOM CMT コマンド break, 23 console, 23 console -f, 21 disablecomponent, 40 enablecomponent, 41 poweroff, 24 poweron, 24 reset, 24 setsc, 9,10 shownetwork, 10 ALOM CMT の複数のセッション, 20 ALOM CMT, 「Advanced Lights Out Manager (ALOM) CMT」を参照 auto-boot (OpenBoot 構成変数), 21,35

В

bootmode reset_nvram(sc>コマンド), 33 break (ALOM CMT コマンド), 23 Break キー (英数字端末), 25

С

cfgadm (Solaris コマンド), 62 cfgadm install_device (Solaris コマンド)、使 用に関する注意, 63 cfgadm remove_device (Solaris コマンド)、使 用に関する注意, 63 Cisco AS2511-RJ 端末サーバ、接続, 11 console (ALOM CMT コマンド), 23 console -f (ALOM CMT コマンド), 21

D

disablecomponent (ALOM CMT コマンド), 40 dtterm (Solaris ユーティリティー), 14

Е

enablecomponent (ALOM CMT $\exists \forall \lor \lor$), 41

F

fsck (Solaris コマンド), 24

G

go (OpenBoot コマンド), 24

I

init (Solaris コマンド), 22,25 input-device (OpenBoot 構成変数), 17,26

L

L1-A キーボードシーケンス, 22, 23, 25 LED 動作状態 (ディスクドライブ LED), 64 取り外し可能 (ディスクドライブ LED), 63, 64 LED、ロケータ (システム状態表示 LED), 31

0

説明、表, 67

okプロンプト ALOM CMT break コマンドによる表示, 22,23 Break キーによる表示, 22, 23 L1-A (Stop-A) キーによる表示, 22,23 概要, 21 システムの正常な停止による表示,22 手動システムリセットによる表示, 22, 24 使用の危険性,24 中断、Solaris オペレーティングシステム,24 表示方法, 22, 24 OpenBoot の緊急時の手順 USB キーボード用のコマンド,33 実行,32 OpenBoot 構成変数 auto-boot, 21,35 input-device, 17,26 output-device, 17,26 システムコンソールの設定,26

OpenBoot コマンド go, 24 probe-ide, 23 probe-scsi, 23 probe-scsi-all, 23 reset-all, 17 set-defaults, 34 setenv, 17 showenv, 67 OpenBoot ファームウェア 制御の状況, 21 output-device (OpenBoot 構成変数), 17, 26

Ρ

PCI グラフィックスカード グラフィックスモニターの接続, 16 システムコンソールへのアクセスの構成, 16 フレームバッファー, 16 poweroff (ALOM CMT コマンド), 24 probe-ide (OpenBoot コマンド), 23 probe-scsi (OpenBoot コマンド), 23 probe-scsi-all (OpenBoot コマンド), 23

R

RAID 0 (ストライプ化), 46 RAID 1 (ミラー化), 47 RAID (Redundant Array of Independent Disks), 45 raidctl (Solaris コマンド), 49~61 reset (ALOM CMT コマンド), 24 reset-all (OpenBoot コマンド), 17

S

sc> $\exists \forall \lor \lor \lor$ bootmode reset_nvram, 33 console, 34 reset, 34 setlocator, 32 showlocator, 32 sc>プロンプト 概要, 19, 27 システムコンソール、切り替え,18 システムコンソールのエスケープシーケンス (#.), 21 シリアル管理ポートからのアクセス,21 ネットワーク管理ポートからのアクセス,21 表示方法,21 複数のセッション,20 SER MGT、「シリアル管理ポート」を参照 set-defaults (OpenBoot コマンド), 34 setenv (OpenBoot コマンド), 17 setlocator (sc> $\exists \forall \mathcal{V} \check{\mathsf{F}}$), 32 setsc (ALOM CMT コマンド), 9,10 showenv (OpenBoot コマンド), 67 shownetwork (ALOM CMT コマンド), 10 shutdown (Solaris コマンド), 22,25 Solaris オペレーティングシステムのオンラインマ ニュアル, xiv Solaris コマンド cfgadm, 62 cfgadm install device、使用に関する注意 , 63 cfgadm remove device、使用に関する注意 , 63 fsck, 24 init, 22,25 raidctl, 49,61 shutdown, 22,25 tip, 12,13 uadmin, 22 uname, 14 uname -r, 14 Stop-A (USB キーボードの機能), 33 Stop-D (USB キーボードの機能), 34 Stop-F (USB キーボードの機能), 34 Stop-N (USB キーボードの機能), 33

Т

tip (Solaris コマンド), 13 tip 接続 システムコンソールへのアクセス, 12 端末サーバへのアクセス, 12

U

uadmin (Solaris コマンド), 22 uname (Solaris コマンド), 14 uname -r (Solaris コマンド), 14

え

英数字端末 システムコンソールへのアクセス,15 ボーレートの設定,16 エスケープシーケンス (#.)、システムコントローラ ,21 エラー処理、概要,35

お

オペレーティングシステムソフトウェア、中断 ,24

か

環境情報、表示, 29 関連マニュアル, xii

き

キーボード、接続,17 キーボードシーケンス L1-A,22,23,25

<

グラフィックスモニター PCI グラフィックスカードの接続, 16 POST 出力表示時の使用上の制約, 16 システムコンソールへのアクセス, 16 初期設定時の使用上の制約,16

け ケーブル、キーボードおよびマウス, 17

J

コマンドプロンプト、説明, 19 コンソール構成、接続の代替の説明, 6

ι

システムコンソール OpenBoot 構成変数の設定, 26 sc> プロンプト、切り替え, 18 tip 接続を使用したアクセス, 12 英数字端末接続, 2,15 英数字端末を使用したアクセス,15 グラフィックスモニター接続,3,7 グラフィックスモニターを使用したアクセス , 16 接続、グラフィックスモニターの使用,7 代替構成,6 端末サーバを使用したアクセス, 2,10 定義.1 デフォルトの構成の説明, 2,4,6 デフォルトの接続,4,6 ネットワーク管理ポートを介した Ethernet 接続 , 2 複数の表示セッション,21 ローカルグラフィックスモニターを使用したア クセスの構成,16 システム状態表示 LED ロケータ,32 システム状態表示 LED、ロケータ, 31 システムとの通信 オプション、表,2 概要.1 システムの正常な停止, 22,25 システムのリセットシナリオ,37 実行レベル

ok プロンプト,21 説明, 21 自動システム回復 (ASR) 回復情報の取得,39 概要, 34 コマンド,37 使用可能への切り替え,38 使用不可への切り替え,39 手動システムリセット,24,25 手動によるデバイスの構成解除,40 手動によるデバイスの再構成,41 シリアル管理ポート (SER MGT) 可能なコンソールデバイス接続,5 構成パラメータ,8 最初の起動時のデフォルトの通信ポート,2 使用方法,7 デフォルトのシステムコンソール構成,4,6

そ

装置識別名、一覧,40

た

端末サーバ クロスケーブルのピン配列, 12 システムコンソールへのアクセス, 5,10 パッチパネルを使用した接続, 11

ち

中断、オペレーティングシステムソフトウェア ,24

τ

停止、正常、利点, 22, 25 ディスク構成 RAID 0, 46 RAID 1, 47 ディスクスロット番号、参照情報, 49 ディスクドライブ LED 動作状態, 64 取り外し可能, 63, 64 論理デバイス名、表, 49
ディスクのホットプラグ ミラー化されていないディスク, 61 ミラー化ディスク, 60
ディスクボリューム 概要, 45 削除, 59
デバイスの構成解除、手動, 40
デバイスの再構成、手動, 41
デフォルトのシステムコンソール構成, 4, 6

ح

動作状態 (ディスクドライブ LED), 64 取り外し可能 (ディスクドライブ LED), 63,64

ね

ネットワーク管理ポート (NET MGT) IP アドレスの構成, 9, 10 使用可能への切り替え, 8 ネットワーク管理ポートの動的ホスト構成プロト コル (DHCP) クライアント, 10

は

ハードウェアディスクのストライプ化 概要,46 ハードウェアディスクのストライプ化、概要,46 ハードウェアディスクのストライプ化ボリューム 状態の確認,55 ハードウェアディスクのミラー化 概要,48 ホットプラグ操作,60 ハードウェアディスクのミラー化ボリューム 状態の確認,51 パッチパネル、端末サーバ接続,11 パリティー, 16

ふ 物理デバイス名 (ディスクドライブ), 49

ほ

ホットプラグ操作 ハードウェアディスクのミラー,60 ミラー化されていないディスクドライブ,61

み

ミラー化されていないホットプラグ操作, 61

ŧ

モニター、接続,16

り

リセット シナリオ,37 手動システム,24,25

ろ

 ログイン、Advanced Lights Out Manager (ALOM) CMT, 28
 ロケータ (システム状態表示 LED) sc>プロンプトからの制御, 32
 ロケータ (システム状態表示 LED)、制御, 31
 論理デバイス名 (ディスクドライブ)、参照情報, 49

