Comments… Suggestions… Corrections…

The User Documentation Department would like to know your opinion of this manual. Your feedback helps us optimize our documentation to suit your individual needs.

Fax forms for sending us your comments are included in the back of the manual.

There you will also find the addresses of the relevant User Documentation Department.

Certified documentation according DIN EN ISO 9001:2000

To ensure a consistently high quality standard and user-friendliness, this documentation was created to meet the regulations of a quality management system which complies with the requirements of the standard DIN EN ISO 9001:2000.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © 2002, 2003 Fujitsu Siemens Computers Inc. and Fujitsu LIMITED.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

Solaris and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

All hardware and software names used are trademarks of their respective manufacturers.
<table>
<thead>
<tr>
<th>Preface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Foundation</td>
</tr>
<tr>
<td>CF Registry and Integrity Monitor</td>
</tr>
<tr>
<td>Cluster resource management</td>
</tr>
<tr>
<td>GUI administration</td>
</tr>
<tr>
<td>LEFTCLUSTER state</td>
</tr>
<tr>
<td>CF topology table</td>
</tr>
<tr>
<td>Shutdown Facility</td>
</tr>
<tr>
<td>System console</td>
</tr>
<tr>
<td>CF over IP</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preface</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Contents of this manual</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Related documentation</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1. Suggested documentation</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Conventions</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1. Notation</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1.1. Prompts</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1.2. The keyboard</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1.3. Typefaces</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1.4. Example 1</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1.5. Example 2</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2. Command syntax</td>
<td>6</td>
</tr>
<tr>
<td>1.4. Notation symbols</td>
<td>6</td>
</tr>
<tr>
<td>2. Cluster Foundation</td>
<td>7</td>
</tr>
<tr>
<td>2.1. CF, CIP, and CIM configuration</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1. Differences between CIP and CF over IP</td>
<td>11</td>
</tr>
<tr>
<td>2.1.2. cfset</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3. CF security</td>
<td>16</td>
</tr>
<tr>
<td>2.1.4. An example of creating a cluster</td>
<td>17</td>
</tr>
<tr>
<td>2.2. CIP configuration file</td>
<td>39</td>
</tr>
<tr>
<td>2.3. Cluster Configuration Backup and Restore (CCBR)</td>
<td>41</td>
</tr>
<tr>
<td>3. CF Registry and Integrity Monitor</td>
<td>51</td>
</tr>
<tr>
<td>3.1. CF Registry</td>
<td>51</td>
</tr>
<tr>
<td>3.2. Cluster Integrity Monitor</td>
<td>52</td>
</tr>
<tr>
<td>3.2.1. Configuring CIM</td>
<td>52</td>
</tr>
<tr>
<td>3.2.2. Query of the quorum state</td>
<td>53</td>
</tr>
<tr>
<td>3.2.3. Reconfiguring quorum</td>
<td>54</td>
</tr>
<tr>
<td>4. Cluster resource management</td>
<td>57</td>
</tr>
<tr>
<td>4.1. Overview</td>
<td>57</td>
</tr>
<tr>
<td>4.2. Kernel parameters for Resource Database</td>
<td>58</td>
</tr>
<tr>
<td>4.3. Resource Database configuration</td>
<td>61</td>
</tr>
<tr>
<td>4.4. Registering hardware information</td>
<td>63</td>
</tr>
<tr>
<td>4.4.1. Setup exclusive device list</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2. Exclusive device list for EMC Symmetrix</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2.1. BCV, R2, GateKeeper, CKD</td>
<td>65</td>
</tr>
<tr>
<td>4.4.2.2. VCMDB</td>
<td>65</td>
</tr>
<tr>
<td>4.4.2.3. Simplified setup for exclusive device list - clmkdiskinfo</td>
<td>65</td>
</tr>
<tr>
<td>4.4.3. Automatic resource registration</td>
<td>66</td>
</tr>
</tbody>
</table>
Contents

4.5 Start up synchronization ... 67
4.5.1 Start up synchronization and the new node 69
4.6 Adding a new node .. 70
4.6.1 Backing up the Resource Database 72
4.6.2 Reconfiguring the Resource Database 73
4.6.3 Configuring the Resource Database on the new node 74
4.6.4 Adjusting StartingWaitTime 75
4.6.5 Restoring the Resource Database 75

5 GUI administration .. 77

5.1 Overview ... 77
5.2 Starting Cluster Admin GUI and logging in 78
5.3 Main CF table .. 81
5.4 Node details .. 84
5.5 Displaying the topology table 85
5.6 Starting and stopping CF .. 86
5.6.1 Stopping CF ... 88
5.6.2 Starting CF ... 90
5.7 Marking nodes DOWN .. 92
5.8 Using CF log viewer ... 92
5.8.1 Search based on time filter 95
5.8.2 Search based on keyword 96
5.8.3 Search based on severity levels 97
5.9 Displaying statistics ... 98
5.10 Adding and removing a node from CIM 103
5.11 Unconfigure CF ... 105
5.12 CIM Override ... 106

6 LEFTCLUSTER state .. 109

6.1 Description of the LEFTCLUSTER state 110
6.2 Recovering from LEFTCLUSTER 112
6.2.1 Caused by a panic/hung node 112
6.2.2 Caused by staying in the kernel debugger too long 112
6.2.3 Caused by a cluster partition 113
6.2.4 Caused by reboot ... 115

7 CF topology table ... 117

7.1 Basic layout ... 119
7.2 Selecting devices ... 120
7.3 Examples .. 121

8 Shutdown Facility ... 125

8.1 Overview .. 125
8.2 Available Shutdown Agents 127
8.2.1 RCI ... 128
8.2.2 XSCF ... 129
8.2.3 SCON ... 129
8.2.4 RCCU ... 130
8.2.5 RPS ... 130
8.2.6 NPS ... 131
8.3 SF split-brain handling ... 132
 8.3.1 Administrative LAN ... 132
 8.3.2 Overview of split-brain handling 132
 8.3.3 Runtime processing ... 133
 8.3.4 Split-brain resolution manager selection 135
 8.3.5 Configuration notes ... 136
8.4 Configuring the Shutdown Facility 139
 8.4.1 Invoking the Configuration Wizard 139
 8.4.2 Configuration via CLI .. 163
 8.4.2.1 Shutdown daemon ... 163
 8.4.2.2 Shutdown Agents ... 164
8.5 SF facility administration .. 170
 8.5.1 Starting and stopping SF 170
 8.5.1.1 Starting and stopping SF manually 170
 8.5.1.2 Starting and stopping SF automatically 171
8.6 Logging ... 171
9 System console ... 173
 9.1 Overview .. 173
 9.1.1 Role of the cluster console 173
 9.1.2 Platforms .. 174
 9.2 Topologies ... 175
 9.2.1 Single cluster console 175
 9.2.2 Distributed cluster console 176
 9.2.3 Hot Spare console .. 177
 9.3 Network considerations ... 178
 9.4 Configuring the cluster console 178
 9.4.1 Updating the /etc/hosts file 178
 9.4.2 Configure script ... 179
 9.4.2.1 Status check .. 180
 9.4.2.2 Running the Configure script 181
 9.4.3 Syncing the file systems after a panic 185
 9.4.4 Editing the rmshosts file 186
 9.4.5 Additional steps for distributed cluster console 186
 9.4.6 rmshosts method file 186
 9.5 Updating a configuration on the cluster console 187
 9.6 Configuring the cluster nodes 188
Contents

9.6.1 Configuring the Shutdown Facility ... 188
9.6.2 Redirecting console input/output ... 188
9.6.3 Booting with kadb ... 189
 9.6.3.1 Restrictions ... 189
 9.6.3.2 Setting the alternate keyboard abort sequence 189
9.6.4 mklancon work around ... 189
9.7 Using the cluster console .. 190
 9.7.1 Without XSCON ... 190
 9.7.2 With XSCON .. 190
10 CF over IP ... 191
 10.1 Overview .. 191
 10.2 Configuring CF over IP .. 193
11 Diagnostics and troubleshooting ... 195
 11.1 Beginning the process .. 195
 11.2 Symptoms and solutions .. 199
 11.2.1 Join-related problems .. 200
 11.3 Collecting troubleshooting information 209
 11.3.1 Executing the fjsnap command ... 209
 11.3.2 System dump ... 210
 11.3.3 SCF dump .. 211
12 CF messages and codes ... 213
 12.1 cfconfig messages ... 214
 12.1.1 Usage message ... 214
 12.1.2 Error messages ... 215
 12.2 cipconfig messages ... 222
 12.2.1 Usage message ... 223
 12.2.2 Error messages ... 223
 12.3 cftool messages ... 225
 12.3.1 Usage message ... 225
 12.3.2 Error messages ... 226
 12.4 rcqconfig messages ... 229
 12.4.1 Usage message ... 229
 12.4.2 Error messages ... 230
 12.5 rcquery messages ... 241
 12.6 CF runtime messages .. 242
 12.6.1 Alphabetical list of messages .. 244
 12.7 CF Reason Code table ... 248
 12.8 Error messages for different systems 259
 12.9 Solaris OE ERRNO table ... 260
1 Preface

The Cluster Foundation (CF) provides a comprehensive base of services that user applications and other PRIMECLUSTER services need to administrate and communicate in a cluster. These services include the following:

- Internode communications
- Node state management
- Cluster-wide configuration information
- Management and administration
- Distributed lock management

In addition, the foundation provides the following optional services:

- RCFS is a cluster-wide file share service
- RCVM is a cluster-wide volume management service

This document assumes that the reader is familiar with the contents of the Concepts Guide and that the PRIMECLUSTER software has been installed as described in the Installation Guide.

1.1 Contents of this manual

This manual contains the configuration and administration information for the PRIMECLUSTER components. This manual is organized as follows:

- The Chapter “Cluster Foundation” describes the administration and configuration of the Cluster Foundation.
- The Chapter “CF Registry and Integrity Monitor” discusses the purpose and physical characteristics of the CF synchronized registry, and it discusses the purpose and implementation of CIM.
- The Chapter “Cluster resource management” discusses the database which is a synchronized clusterwide database holding information specific to several PRIMECLUSTER products.
- The Chapter “GUI administration” describes the administration features in the CF portion of the Cluster Admin graphical user interface (GUI).
The Chapter “LEFTCLUSTER state” discusses the LEFTCLUSTER state, describes this state in relation to the other states, and discusses the different ways a LEFTCLUSTER state is caused.

The Chapter “CF topology table” discusses the CF topology table as it relates to the CF portion of the Cluster Admin GUI.

The Chapter “Shutdown Facility” describes the components and advantages of PRIMECLUSTER SF and provides administration information.

The Chapter “System console” discusses the SCON product functionality and configuration. The SCON product is installed on the cluster console.

The Chapter “CF over IP” discusses CF communications based on the use of interconnects.

The Chapter “Diagnostics and troubleshooting” provides help for troubleshooting and problem resolution for PRIMECLUSTER Cluster Foundation.

The Chapter “CF messages and codes” provides a listing of messages and codes.

The Chapter “Manual pages” lists the manual pages for PRIMECLUSTER.

1.2 Related documentation

The documentation listed in this section contains information relevant to PRIMECLUSTER and can be ordered through your sales representative.

In addition to this manual, the following manuals are also available for PRIMECLUSTER:

- Release notices for all products—These documentation files are included as HTML files on the PRIMECLUSTER Framework CD. Release notices provide late-breaking information about installation, configuration, and operations for PRIMECLUSTER. Read this information first.

- Concepts Guide (Solaris, Linux)—Provides conceptual details on the PRIMECLUSTER family of products.

- Installation Guide (Solaris)—Provides instructions for installing and upgrading PRIMECLUSTER products.

- Reliant Monitor Services (RMS) with Wizard Tools (Solaris, Linux) Configuration and Administration Guide—Provides instructions for configuring and administering RMS using PRIMECLUSTER Wizard Tools.
<table>
<thead>
<tr>
<th>Related documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Reliant Monitor Services (RMS) with PCS (Solaris, Linux) Configuration and</td>
</tr>
<tr>
<td>Administration Guide—Provides instructions for configuring and administering RMS</td>
</tr>
<tr>
<td>using PRIMECLUSTER Configuration Services (PCS).</td>
</tr>
<tr>
<td>● Reliant Monitor Services (RMS) (Solaris, Linux) Troubleshooting Guide—Describes</td>
</tr>
<tr>
<td>diagnostic procedures to solve RMS configuration problems, including how to view and</td>
</tr>
<tr>
<td>interpret RMS log files. Provides a list of all RMS error messages with a probable</td>
</tr>
<tr>
<td>cause and suggested action for each condition.</td>
</tr>
<tr>
<td>● Scalable Internet Services (SIS) (Solaris, Linux) Configuration and Administration</td>
</tr>
<tr>
<td>Guide—Provides information on configuring and administering Scalable Internet Services</td>
</tr>
<tr>
<td>(SIS).</td>
</tr>
<tr>
<td>● Global Disk Services (Solaris) Configuration and Administration Guide—Provides</td>
</tr>
<tr>
<td>information on configuring and administering Global Disk Services (GDS).</td>
</tr>
<tr>
<td>● Global File Services (Solaris) Configuration and Administration Guide—Provides</td>
</tr>
<tr>
<td>information on configuring and administering Global File Services (GFS).</td>
</tr>
<tr>
<td>● Global Link Services (Solaris) Configuration and Administration Guide: Redundant</td>
</tr>
<tr>
<td>Line Control Function—Provides information on configuring and administering the</td>
</tr>
<tr>
<td>redundant line control function for Global Link Services (GLS).</td>
</tr>
<tr>
<td>● Global Link Services (Solaris) Configuration and Administration Guide: Redundant</td>
</tr>
<tr>
<td>Line Control Function—Provides information on configuring and administering the</td>
</tr>
<tr>
<td>redundant line control function for Global Link Services (GLS).</td>
</tr>
<tr>
<td>● Web-Based Admin View (Solaris/Linux) Operation Guide—Provides information on using</td>
</tr>
<tr>
<td>the Web-Based Admin View management GUI.</td>
</tr>
<tr>
<td>● SNMP Reference Manual (Solaris, Linux)—Provides reference information on the Simple</td>
</tr>
<tr>
<td>Network Management Protocol (SNMP) product.</td>
</tr>
<tr>
<td>● Data Management Tools (Solaris) Configuration and Administration Guide—Provides</td>
</tr>
<tr>
<td>reference information on the Volume Manager (RCVM) and File Share (RCFS) products.</td>
</tr>
<tr>
<td>● RMS Wizards documentation package—Available on the PRIMECLUSTER CD. These</td>
</tr>
<tr>
<td>documents deal with topics such as the configuration of file systems and IP</td>
</tr>
<tr>
<td>addresses. They also describe the different kinds of wizards.</td>
</tr>
</tbody>
</table>
1.2.1 Suggested documentation

The following manuals contain information relevant to PRIMECLUSTER administration and can be ordered through your sales representative (not available in all areas):

- ANSI C Programmer’s Guide
- LAN Console Installation, Operation and Maintenance
- Terminal TM100/TM10 Operating Manual
- PRIMEPOWER User’s Manual (operating manual)

Your sales representative will need your operating system release and product version to place your order.

1.3 Conventions

In order to standardize the presentation of material, this manual uses a number of notational, typographical, and syntactical conventions.

1.3.1 Notation

This manual uses the following notational conventions.

1.3.1.1 Prompts

Command line examples that require system administrator (or root) privileges to execute are preceded by the system administrator prompt, the hash sign (#). Entries that do not require system administrator rights are preceded by a dollar sign ($).

In some examples, the notation node# indicates a root prompt on the specified node. For example, a command preceded by fuji2# would mean that the command was run as user root on the node named fuji2.
1.3.1.2 The keyboard

Keystrokes that represent nonprintable characters are displayed as key icons such as [Enter] or [F1]. For example, [Enter] means press the key labeled Enter; [Ctrl-b] means hold down the key labeled Ctrl or Control and then press the B key.

1.3.1.3 Typefaces

The following typefaces highlight specific elements in this manual.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Width</td>
<td>Computer output and program listings; commands, file names, manual page names and other literal programming elements in the main body of text.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variables that you must replace with an actual value. Items or buttons in a GUI window.</td>
</tr>
<tr>
<td>Bold</td>
<td>Items in a command line that you must type exactly as shown.</td>
</tr>
</tbody>
</table>

Typeface conventions are shown in the following examples.

1.3.1.4 Example 1

Several entries from an /etc/passwd file are shown below:

```
root:x:0:1:0000-Admin(0000)::/sbin/sh
sysadm:x:0:0:System Admin.:/usr/admin:/usr/sbin/sysadm
setup:x:0:0:System Setup:/usr/admin:/usr/sbin/setup
daemon:x:1:1:0000-Admin(0000)::/
```

1.3.1.5 Example 2

To use the `cat` command to display the contents of a file, enter the following command line:

```
$ cat file
```
1.3.2 Command syntax

The command syntax observes the following conventions.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Brackets</td>
<td>Enclose an optional item.</td>
</tr>
<tr>
<td>{ }</td>
<td>Braces</td>
<td>Enclose two or more items of which only one is used. The items are separated from each other by a vertical bar (</td>
</tr>
<tr>
<td></td>
<td>Vertical bar</td>
<td>When enclosed in braces, it separates items of which only one is used. When not enclosed in braces, it is a literal element indicating that the output of one program is piped to the input of another.</td>
</tr>
<tr>
<td>()</td>
<td>Parentheses</td>
<td>Enclose items that must be grouped together when repeated.</td>
</tr>
<tr>
<td>...</td>
<td>Ellipsis</td>
<td>Signifies an item that may be repeated. If a group of items can be repeated, the group is enclosed in parentheses.</td>
</tr>
</tbody>
</table>

1.4 Notation symbols

Material of particular interest is preceded by the following symbols in this manual:

- **Contains important information about the subject at hand.**
- **Caution** Indicates a situation that can cause harm to data.
Chapter 2: Cluster Foundation

This chapter describes the administration and configuration of the Cluster Foundation (CF).

This chapter discusses the following:

- The Section “CF, CIP, and CIM configuration” describes CF, Cluster Internet Protocol (CIP) and Cluster Integrity Monitor (CIM) configuration that must be done prior to other cluster services.
- The Section “CIP configuration file” describes the format of the CIP configuration file.
- The Section “Cluster Configuration Backup and Restore (CCBR)” details a method to save and restore PRIMECLUSTER configuration information.

2.1 CF, CIP, and CIM configuration

You must configure CF before any other cluster services, such as Reliant Monitor Services (RMS) or Scalable Internet Services (SIS). CF defines which node are in a given cluster. After you configure CF, SIS can be run on the configured nodes. In addition, after you configure CF and CIP, the Shutdown Facility (SF) and RMS can be run on the nodes.

The Shutdown Facility (SF) is responsible for node elimination. This means that even if RMS is not installed or running in the cluster, missing CF heartbeats will cause SF to eliminate nodes.

You can use the Cluster Admin CF Wizard to easily configure CF, CIP, and CIM for all nodes in the cluster, and you can use the Cluster Admin SF Wizard to configure SF.

A CF configuration consists of the following main attributes:

- Cluster name—This can be any name that you choose as long as it is 31 characters or less per name and each character comes from the set of printable ASCII characters, excluding white space, newline, and tab characters. Cluster names are always mapped to upper case.
- Set of interfaces on each node in the cluster used for CF networking—for example, the interface of an IP address on the local node can be an Ethernet device.
CF, CIP, and CIM configuration

- CF node name—By default, in Cluster Admin, the CF node names are the same as the Web-Based Admin View names; however, you can use the CF Wizard to change them.

The dedicated network connections used by CF are known as interconnects. They typically consist of some form of high speed networking such as 100 MB or Gigabit Ethernet links. There are a number of special requirements that these interconnects must meet if they are to be used for CF:

1. The network links used for interconnects must have low latency and low error rates. This is required by the CF protocol. Private switches and hubs will meet this requirement. Public networks, bridges, and switches shared with other devices may not necessarily meet these requirements, and their use is not recommended.

 It is recommended that each CF interface be connected to its own private network with each interconnect on its own switch or hub.

2. The interconnects should not be used on any network that might experience network outages of 5 seconds or more. A network outage of 10 seconds will, by default, cause a route to be marked as DOWN. cfset(1M) can be used to change the 10 second default. See Section "cfset".

 Since CF automatically attempts to bring up downed interconnects, the problem with split clusters only occurs if all interconnects experience a 10-second outage simultaneously. Nevertheless, CF expects highly reliable interconnects.

CF can also be run over IP. Any IP interface on the node can be chosen as an IP device, and CF will treat this device much as it does an Ethernet device. However, all the IP addresses for all the cluster nodes on that interconnect must be on the same IP subnetwork, and their IP broadcast addresses must be the same (refer to the Chapter "CF over IP" for more information).

The IP interfaces used by CF must be completely configured by the System Administrator before they are used by CF. You can run CF over both Ethernet devices and IP devices.

Higher level services, such as RMS, SF, GFS, and so forth, will not notice any difference when CF is run over IP.

You should carefully choose the number of interconnects you want in the cluster before you start the configuration process. If you decide to change the number of interconnects after you have configured CF across the cluster, you will need to bring down CF on each node to do the reconfiguration. Bringing down CF
Cluster Foundation

CF, CIP, and CIM configuration

requires that higher level services, like RMS, SF, SIS and applications, be stopped on that node, so the reconfiguration process is neither trivial nor unobtrusive.

Your configuration should specify at least two interconnects to avoid a single point of failure in the cluster.

Before you begin the CF configuration process, ensure that all of the nodes are connected to the interconnects you have chosen and that all of the nodes can communicate with each other over those interconnects. For proper CF configuration using Cluster Admin, all of the interconnects should be working during the configuration process.

CIP configuration involves defining virtual CIP interfaces and assigning IP addresses to them. Up to eight CIP interfaces can be defined per node. These virtual interfaces act like normal TCP/IP interfaces except that the IP traffic is carried over the CF interconnects. Because CF is typically configured with multiple interconnects, the CIP traffic will continue to flow even if an interconnect fails. This helps eliminate single points of failure as far as physical networking connections are concerned for intracluster TCP/IP traffic.

Except for their IP configuration, the eight possible CIP interfaces per node are all treated identically. There is no special priority for any interface, and each interface uses all of the CF interconnects equally. For this reason, many system administrators may choose to define only one CIP interface per node.

To ensure that you can communicate between nodes using CIP, the IP address on each node for a specific CIP interface should use the same subnet.

CIP traffic is really intended only to be routed within the cluster. The CIP addresses should not be used outside of the cluster. Because of this, you should use addresses from the non-routable reserved IP address range.
CF, CIP, and CIM configuration

Address Allocation for Private Internets (RFC 1918) defines the following address ranges that are set aside for private subnets:

<table>
<thead>
<tr>
<th>Subnets(s)</th>
<th>Class</th>
<th>Subnetmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td>A</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>172.16.0.0 ... 172.31.0.0</td>
<td>B</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>192.168.0.0 ... 192.168.255.0</td>
<td>C</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

For CIP nodenames, it is strongly recommended that you use the following convention for RMS:

cfnameRMS

cfname is the CF name of the node and RMS is a literal suffix. This will be used for one of the CIP interfaces on a node. This naming convention is used in the Cluster Admin GUI to help map between normal nodenames and CIP names. In general, only one CIP interface per node is needed to be configured.

A proper CIP configuration uses /etc/hosts to store CIP names. You should make sure that /etc/nsswitch.conf is properly set up to use files criteria first in looking up its nodes. Refer to the PRIMECLUSTER Installation Guide (Solaris) for more details.

The recommended way to configure CF, CIP and CIM is to use the Cluster Admin GUI. A CF/CIP Wizard in the GUI can be used to configure CF, CIP, and CIM on all nodes in the cluster in just a few screens. Before running the wizard, however, the following steps must have been completed:

1. CF/CIP, Web-Based Admin View, and Cluster Admin should be installed on all nodes in the cluster.
2. If you are running CF over Ethernet, then all of the interconnects in the cluster should be physically attached to their proper hubs or networking equipment and should be working.
3. If you are running CF over IP, then all interfaces used for CF over IP should be properly configured and be up and running. See Chapter “CF over IP” for details.
4. Web-Based Admin View configuration must be done. Refer to the PRIMECLUSTER Installation Guide (Solaris) for details.

In the cf tab in Cluster Admin, make sure that the CF driver is loaded on that node. Press the Load Driver button if necessary to load the driver. Then press the Configure button to start the CF Wizard.
The CF/CIP Wizard is invoked by starting the GUI on a node where CF has not yet been configured. When this is done, the GUI will automatically bring up the CF/CIP Wizard in the cf tab of the GUI. You can start the GUI by entering the following URL with a browser running a proper version of the Java plug-in:

http://management_server:8081/Plugin.cgi

management_server is the primary or secondary management server you configured for this cluster. Refer to the PRIMECLUSTER Installation Guide (Solaris) for details on configuring the primary and secondary management service and on which browsers and Java plug-ins are required for the Cluster Admin GUI.

2.1.1 Differences between CIP and CF over IP

Although the two terms CF over IP and CIP (also known as IP over CF) sound similar, they are two very distinct technologies.

CIP defines a reliable IP interface for applications on top of the cluster foundation (CF). CIP itself distributes the traffic generated by the application over the configured cluster interconnects (see Figure 1).

Figure 1: CIP diagram
CF over IP uses an IP interface, provided by the operating system, as a CF interconnect. The IP interface should not run over the public network. It should only be on a private network, which is also the local network. The IP interface over the private interconnect can be configured by using an IP address designed for the private network. The IP address normally uses the following address:

192.168.0.x

x is an integer between 1 and 254.

During the cluster joining process, CF sends broadcast messages to other nodes; therefore, all the nodes must be on the same local network. If one of the nodes is on a different network or subnet, the broadcast will not be received by that node. Therefore, the node will fail to join the cluster.

The following are possible scenarios for CF over IP:

- Where the cluster spans over two Ethernet segments of the same sub network. Each sub-level Ethernet protocol is not forwarded across the router but does pass IP traffic.

- When you need to reach beyond the physical cable length. Regular Ethernet is limited to the maximum physical length of the cable. Distances that are longer than the maximum cable length cannot be reached.

- If some of the network device cards that only support TCP/IP (for example, some Fiber channel) are not integrated into CF.
Use CF with the Ethernet link-level connection whenever possible because CF over IP implies additional network/protocol information and usually will not perform as well (see Figure 2).

![Figure 2: CF over IP diagram](image)

2.1.2 cfset

The `cfset(1M)` utility is used to set certain tunable parameters in the CF driver. The values are stored in `/etc/default/cluster.config`. The `cfset(1M)` utility can be used to retrieve and display the values from the kernel or the file as follows:

- A new file under `/etc/default` called `cluster.config` is created.
- The values defined in `/etc/default/cluster.config` can be set or changed using the GUI (for `cfcp` and `cfsh` during initial cluster configuration) or by using a text editor.
The file consists of the following tuple entries, *Name* and *Value*:

- **Name**:
 - This is the name of a CF configuration parameter. It must be the first token in a line.
 - Maximum length for *Name* is 31 bytes. The name must be unique.
 - Duplicate names will be detected and reported as an error when the entries are applied by `cfconfig -l` and by the `cfset(1M)` utility (*cfset* `-r` and `-f` option). This will log invalid and duplicate entries to `/var/adm/messages`.
 - `cfset(1M)` will change the *Value* for the *Name* in the kernel if the driver is already loaded and running.

- **Value**:
 - This represents the value to be assigned to the CF parameter. It is a string, enclosed in double quotes or single quotes. Maximum length for *Value* is 4K characters.
 - New lines are not allowed inside the quotes.
 - A new line or white space marks the close of a token.
 - However, if double quotes or single quotes start the beginning of the line, treat the line as a continuation value from the previous value.

Example 1:
```
TEST "abcde"
"1234"
```

The above becomes:
```
TEST "abcde1234"
```

Example 2:
```
TEST "abcde"
```

The above becomes:
```
TEST "abcde"
"abcde" alone will be considered invalid format.
```

- The maximum number of *Name/Value* pair entries is 100.
Cluster Foundation

CF, CIP, and CIM configuration

- The hash sign (#) is used for the comment characters. It must be the first character in the line, and it causes the entries on that line to be ignored.

- Single quotes can be enclosed in double quotes or vice versa.

cfset(1M) has the following options:

- `-r` Reloads all of the file entries into the CF driver.

- `-f` Prints all Name and Value pairs from /etc/default/cluster.config. The file format will be verified, duplicate entries will be detected, and errors will be reported.

- `-o Name` Prints only the specified Name and its corresponding Value entry from the file.

- `-a` Prints from kernel all Name and Value pairs that CF is currently using.

- `-g Name` Prints only the specified Name and its corresponding Value from the kernel.

The settable are as follows:

- `CLUSTER_TIMEOUT` (refer to the example that follows)

- `CFSH` (refer to the following Section “CF security”)

- `CFCP` (refer to the following Section “CF security”)

After any change to cluster.config, run the cfset(1M) command as follows:

```
# cfset -r
```

Example

Use cfset(1M) to tune timeout as follows:

```
CLUSTER_TIMEOUT "30"
```

This changes the default 10-second timeout to 30 seconds. The minimum value is 1 second. There is no maximum. It is strongly recommended that you use the same value on all cluster nodes.

`CLUSTER_TIMEOUT` represents the number of seconds that one cluster node waits while for a heartbeat response from another cluster node. Once `CLUSTER_TIMEOUT` seconds has passed, the non-responding node is declared to be in the `LEFTCLUSTER` state. The default value for `CLUSTER_TIMEOUT` is 10,
which experience indicates is reasonable for most PRIMECLUSTER installations. We allow this value to be tuned for exceptional situations, such as networks which may experience long switching delays.

2.1.3 CF security

CF includes the ability to allow cluster nodes to execute commands on another node (cfsh) and to allow cluster nodes to copy files from one node to another (cfcp). However, this means that your cluster interconnects must be secure since any node that can join the cluster has access to these facilities. Because of this, these facilities are disabled by default.

PRIMECLUSTER 4.1 offers a chance to configure these facilities. As one of the final steps of the CF Configuration Wizard in the Cluster Adm GUI, there are now two new checkboxes. Checking one will allow you to enable remote file copying and checking the other will enable remote command execution.

The PRIMECLUSTER family of products assume that the cluster interconnects are private networks; however, it is possible to use public networks as cluster interconnects because ICF does not interfere with other protocols running on the physical media. The security model for running PRIMECLUSTER depends on physical separation of the cluster interconnect networks from the public network.

For reasons of security, it is strongly recommended not to use public networks for the cluster interconnect.

The use of public networks for the cluster interconnects will allow any node on that public network to join the cluster (assuming that it is installed with the PRIMECLUSTER products). Once joined, an unauthorized user, through the node, would have full access to all cluster services.

In this release, we have included special functionality to be used in environments which do not support .rhosts.

If you do not wish to use .rhosts files, you should set the following parameters in cluster.config to enable remote access as follows:

CFCP "cfcp"
CFSH "cfsh"

To deactivate, remove the settings from the /etc/default/cluster.config file and run cfset -r. cfsh does not support interactive commands like hvreset and, therefore, is not a fully functional alternative to the rsh interface.
2.1.4 An example of creating a cluster

The following example shows what the Web-Based Admin View and Cluster Admin screens would look like when creating a two-node cluster. The nodes involved are named fuji2 and fuji3, and the cluster name is FUJI.

This example assumes that Web-Based Admin View configuration has already been done. fuji2 is assumed to be configured as the primary management server for Web-Based Admin View, and fuji3 is the secondary management server.

The first step is to start Web-Based Admin View by entering the following URL in a java-enabled browser:

http://Management_Server:8081/Plugin.cgi

fuji2 is a management server. Enter the following:

http://fuji2:8081/Plugin.cgi
After a few moments, a login password asking for a user name and password appears (see Figure 3).

![Login pop-up](image)

Since you will be running the Cluster Admin CF Wizard, which does configuration work, you will need a privileged user ID such as root. There are three possible categories of users with sufficient privilege:

- **The user root**—You can enter `root` for the user name and root's password on `fuji2`. The user `root` is always given the maximum privilege in Web-Based Admin View and Cluster Admin.

- **A user in group clroot**—You can enter the user name and password for a user on `fuji2` who is part of the UNIX group `clroot`. This user will have maximum privilege in Cluster Admin, but will be restricted in what Web-Based Admin View functions they can perform. This should be fine for CF configuration tasks.

- **A user in group wvroot**—You can enter the user name and password for a user on `fuji2` who is part of the UNIX group `wvroot`. Users in `wvroot` have maximum Web-Based Admin View privileges and are also granted maximum Cluster Admin privileges.

For further details on Web-Based Admin View and Cluster Admin privilege levels, refer to the PRIMECLUSTER Installation Guide (Solaris).
Cluster Foundation CF, CIP, and CIM configuration

After clicking on the OK button, the top menu appears (see Figure 4). Click on the button labeled Global Cluster Services.

Figure 4: Main Web-Based Admin View window after login
The Cluster Admin login window appears (see Figure 5).

Click on the button labeled Cluster Admin to launch the Cluster Admin GUI. The Choose a node for initial connection window appears (see Figure 6).
Cluster Foundation CF, CIP, and CIM configuration

The Choose a node for initial connection window (see Figure 6) lists the nodes that are known to the Web-Based Admin View management station. If you select a node where CF has not yet been configured, then Cluster Admin will let you run the CF Wizard on that node.

In this example, neither fuji2 nor fuji3 have had CF configured on them, so either would be acceptable as a choice. In Figure 6, fuji2 is selected. Clicking on the OK button causes the main Cluster Admin GUI to appear. Since CF is not configured on fuji2, a window similar to Figure 7 appears.

![Figure 7: CF is unconfigured and unloaded](image)

Click on the Load driver button to load the CF driver.
A window indicating that CF is loaded but not configured appears (see Figure 8).

![Cluster Admin Window](image)

Figure 8: CF loaded but not configured

Click on the *Configure* button to bring up the CF Wizard.
The CF Wizard begins by looking for existing clusters (see Figure 9).

![Figure 9: Scanning for clusters](image)
After the CF Wizard finishes looking for clusters, a window similar to Figure 10 appears.

![Clusters Window](image)

Figure 10: Creating or joining a cluster

This window lets you decide if you want to join an existing cluster or create a new one. To create a new cluster, ensure that the **Create new CF Cluster** button is selected. Then, click on the **Next** button.
The window for creating a new cluster appears (see Figure 11).

![Cluster Foundation configuration window](image)

Figure 11: Selecting cluster nodes and the cluster name

This window allows you to create a new cluster from a set of unconfigured nodes. All nodes must share at least one common interconnect and not be a part of any other CF clusters.

- **Cluster Name**: FUJI
- **Available Nodes**: (None Available)
- **Clustered Nodes**: fuj2, fuj3

This window lets you choose the cluster name and also determine what nodes will be in the cluster. In the example above, we have chosen FUJI for the cluster name.

Below the cluster name are two boxes. The one on the right, under the label **Clustered Nodes**, contains all nodes that you want to become part of this CF cluster. The box on the left, under the label **Available Nodes**, contains all the other nodes known to the Web-Based Admin View management server. You should select nodes in the left box and move them to the right box using the **Add** or **Add All** button. If you want all of the nodes in the left box to be part of the CF cluster, then just click on the **Add All** button.
If you get to this window and you do not see all of the nodes that you want to be part of this cluster, then there is a very good chance that you have not configured Web-Based Admin View properly. When Web-Based Admin View is initially installed on the nodes in a potential cluster, it configures each node as if it were a primary management server independent of every other node. If no additional Web-Based Admin View configuration were done, and you started up Cluster Admin on such a node, then Figure 11 would show only a single node in the right-hand box and no additional nodes on the left-hand side. If you see this, then it is a clear indication that proper Web-Based Admin View configuration has not been done.

Refer to the PRIMECLUSTER Installation Guide (Solaris) for more details on Web-Based Admin View configuration.

After you have chosen a cluster name and selected the nodes to be in the CF cluster, click on the Next button.
The window that allows you to edit the CF node names for each node appears (see Figure 12). By default, the CF node names, which are shown in the right-hand column, are the same as the Web-Based Admin View names which are shown in the left-hand column.

Figure 12: Edit CF node names

Make any changes to the CF node name and click Next.
The CF Wizard then loads CF on all the selected nodes and does CF pings to determine the network topology. While this activity is going on, a window similar to Figure 13 appears.

Figure 13: CF loads and pings

On most systems, loading the CF driver is a relatively quick process. However, on some systems that have certain types of large disk arrays, the first CF load can take up to 20 minutes or more.
Cluster Foundation CF, CIP, and CIM configuration

After the CF Wizard has finished the loads and the pings, the CF topology and connection table appears (see Figure 14).

![CF Wizard](image)

Figure 14: CF topology and connection table

Before using the CF topology and connection table in Figure 14, you should understand the following terms:

- **Full interconnect**—An interconnect where CF communication is possible to all nodes in the cluster.
- **Partial interconnect**—An interconnect where CF communication is possible between at least two nodes, but not to all nodes. If the devices on a partial interconnect are intended for CF communications, then there is a networking or cabling problem somewhere.
- **Unconnected devices**—These devices are potential candidates for CF configuration, but are not able to communicate with any other nodes in the cluster.
CF, CIP, and CIM configuration

The CF Wizard determines all the full interconnects, partial interconnects, and unconnected devices in the cluster using CF pings. If there are one or more full interconnects, then it will display the connection table shown in Figure 14.

The connection table lists all full interconnects. Each column with an Int header represents a single interconnect. Each row represents the devices for the node whose name is given in the left-most column. The name of the CF cluster is given in the upper-left corner of the table.

In Figure 14, for example, Interconnect 1 (Int 1) has /dev/hme0 on fuji2 and fuji3 attached to it. The cluster name is FUJI.

Although the CF Wizard may list Int 1, Int 2, and so on, it should be pointed out that this is simply a convention in the GUI. CF itself does not number interconnects. Instead, it keeps track of point-to-point routes to other nodes.

To configure CF using the connection table, click on the interconnects that have the devices that you wish to use. In Figure 14, Interconnects 2 and 4 have been selected. If you are satisfied with your choices, then you can click on Next to go to the CIP configuration window.

Occasionally, there may be problems setting up the networking for the cluster. Cabling errors may mean that there are no full interconnects. If you click on the button next to Topology, the CF Wizard will display all the full interconnects, partial interconnects, and unconnected devices it has found. If a particular category is not found, it is omitted. For example, in Figure 14, only full interconnects are shown because no partial interconnects or unconnected devices were found on fuji2 or fuji3.

The topology table gives more flexibility in configuration than the connection table. In the connection table, you could only select an interconnect, and all devices on that interconnect would be configured. In the topology table, you can individually select devices.

While you can configure CF using the topology table, you may wish to take a simpler approach. If no full interconnects are found, then display the topology table to see what your networking configuration looks like to CF. Using this information, correct any cabling or networking problems that prevented the full interconnects from being found. Then go back to the CF Wizard window where the cluster name was entered and click on Next to cause the Wizard to reprobe the interfaces. If you are successful, then the connection table will show the full interconnects, and you can select them. Otherwise, you can repeat the process.

The text area at the bottom of the window will list problems or warnings concerning the configuration.
When you are satisfied with your CF interconnect (and device) configuration, click on **Next**. This causes the CF over IP window to appear (see Figure 15).

![CF Wizard](image)

Figure 15: CF over IP window

This is optional. If desired, enter the desired number of IP interconnects and press **[Return]**. The CF Wizard then displays interconnects sorted according to the valid subnetworks, netmasks, and broadcast addresses.

All the IP addresses for all the nodes on a given IP interconnect must be on the same IP subnetwork and should have the same netmask and broadcast address. CF over IP uses the IP broadcast address to find all the CF nodes during join process. So the dedicated network should be used for IP interconnects.
Auto Subnet Grouping should always be checked in this window. If it is checked and you select one IP address for one node, then all of the other nodes in that column have their IP addresses changed to interfaces on the same subnetwork.

Choose the IP interconnects from the combo boxes on this window, and click on Next. The CIP Wizard window appears (see Figure 16).

This window allows you to configure CIP. You can enter a number in the box after Number of CIP subnets to configure to set the number of CIP subnets to configure. The maximum number of CIP subnets is 8.
For each defined subnet, the CIP Wizard configures a CIP interface on each node defined in the CF cluster. The CIP interface will be assigned the following values:

- The IP address will be a unique IP number on the subnet specified in the **Subnet Number** field. The node portions of the address start at 1 and are incremented by 1 for each additional node.

 The CIP Wizard will automatically fill in a default value for the subnet number for each CIP subnetwork requested. The default values are taken from the private IP address range specified by RFC 1918. Note that the values entered in the **Subnet Number** have 0 for their node portion even though the CIP Wizard starts the numbering at 1 when it assigns the actual node IP addresses.

- The IP name of the interface will be of the form $cfnameSuffix$ where $cfname$ is the name of a node from the CF Wizard, and the $Suffix$ is specified in the field **Host Suffix**. If the checkbox **For RMS** is selected, then the host suffix will be set to RMS and will not be editable. If you are using RMS, one CIP network must be configured for RMS.

- The **Subnet Mask** will be the value specified.

In Figure 16, the system administrator has selected 1 CIP network. The **For RMS** checkbox is selected, so the RMS suffix will be used. Default values for the **Subnet Number** and **Subnet Mask** are also selected. The nodes defined in the CF cluster are fuji2 and fuji3. This will result in the following configuration:

- On fuji2, a CIP interface will be configured with the following:
 - **IP nodename**: fuji2RMS
 - **IP address**: 192.168.1.1
 - **Subnet Mask**: 255.255.255.0

- On fuji3, a CIP interface will be configured with the following:
 - **IP nodename**: fuji3RMS
 - **IP address**: 192.168.1.2
 - **Subnet Mask**: 255.255.255.0

The CIP Wizard stores the configuration information in the file `/etc/cip.cf` on each node in the cluster. This is the default CIP configuration file. The Wizard will also update `/etc/hosts` on each node in the cluster to add the new IP nodenames. The cluster console will not be updated.
The CIP Wizard always follows an orderly naming convention when configuring CIP names. If you have done some CIP configuration by hand before running the CIP Wizard, then you should consult the Wizard documentation to see how the Wizard handles irregular names.

When you click on the Next button, CIM configuration window appears (see Figure 17).

![Figure 17: CIM configuration window](image-url)
Cluster Foundation CF, CIP, and CIM configuration

The CIM configuration window in Figure 17 has the following parts:

● The upper portion allows you to enable cfcp and cfsh.

cfcp is a CF-based file copy program. It allows files to be copied among the cluster hosts. *cfsh* is a remote command execution program that similarly works between nodes in the cluster. The use of these programs is optional. In this example these items are not selected. If you enable these services, however, any node that has access to the cluster interconnects can copy files or execute commands on any node with root privileges.

● The lower portion allows you to determine which nodes should be monitored by CIM.

This window also lets you select which nodes should be part of the CF quorum set. The CF quorum set is used by the CIM to tell higher level services such as GDS when it is safe to access shared resources.

Caution

Do not change the default selection of the nodes that are members of the CIM set unless you fully understand the ramifications of this change.

A checkbox next to a node means that node will be monitored by CIM. By default, all nodes are checked. For almost all configurations, you will want to have all nodes monitored by CIM.

This window will also allow you to configure CF Remote Services. You can enable either remote command execution, remove file copying, or both.

Caution

Enabling either of these means that you must trust all nodes on the CF interconnects and the CF interconnects must be secure. Otherwise any system able to connect to the CF interconnects will have access to these services.
Click on the Next button to go to the summary window (see Figure 18).

Figure 18: Summary window

This window summarizes the major changes that the CF, CIP, and CIM Wizards will perform. When you click on the Finish button, the CF Wizard performs the actual configuration on all nodes.
Cluster Foundation CF, CIP, and CIM configuration

A window similar to Figure 19 is displayed while the configuration is being done.

![Configuration processing window](image)

Figure 19: Configuration processing window

This window is updated after each configuration step. When configuration is complete, a pop-up appears announcing this fact (see Figure 20).

![Configuration completion pop-up](image)

Figure 20: Configuration completion pop-up

Click on the OK button, and the pop-up is dismissed. The configuration processing window now has a Finish button (see Figure 21).
You might see the following error message in the window shown in Figure 21:

cf:cfconfig OSDU_stop: failed to unload cf_drv

Unless you are planning to use the dynamic hardware reconfiguration feature of PRIMEPOWER, then you can safely ignore this message.

When the CF Wizard is run on an unconfigured node, it will ask the CF driver to push its modules on every Ethernet device on the system. This allows CF to do CF pings on each interface so that the CF Wizard can discover the network topology.

Occasionally, this unload will fail. To correct this problem, you need to unload and reload the CF driver on the node in question. This can be done easily through the GUI (refer to the Section “Starting and stopping CF”).

Click on the Finish button to dismiss the window in Figure 21. A small pop-up appears asking if you would like to run the SF Wizard. Click on yes, and run the SF Wizard (described in the Section “Invoking the Configuration Wizard”).
After the CF (and optionally the SF) Wizards are done, you will see the main Cluster Admin window which will resemble Figure 22.

Figure 22: Main CF window

2.2 CIP configuration file

The CIP configuration file is stored in /etc/cip.cf on each node in the cluster. Normally, you can use the GUI to create this file during cluster configuration time. However, there may be times when you wish to manually edit this file.

The format of a CIP configuration file entry is as follows:

```
cfname CIP_Interface_Info [ CIP_Interface_Info ... ]
```

The cip.cf configuration file typically contains configuration information for all CIP interfaces on all nodes in the cluster. The first field, cfname, tells what node the configuration information is for. When a node parses the cip.cf file, it can ignore all lines that do not start with its own CF node name.
CIP configuration file

The **CIP_Interface_Info** gives all of the IP information needed to configure a single CIP interface. At the minimum, it must consist of an IP address. The address may be specified as either a number in internet dotted-decimal notation or as a symbolic node name. If it is a symbolic node name, it must be specified in `/etc/hosts`.

The IP address can also have additional options following it. These options are passed to the configuration command `ifconfig`. They are separated from the IP address and each other by colons (`:`). No spaces can be used around the colons.

For example, the CIP configuration done in Section “An example of creating a cluster” would produce the following CIP configuration file:

```
fuji2  fuji2RMS:netmask:255.255.255.0
fuji3  fuji3RMS:netmask:255.255.255.0
```

Although not shown in this example, the CIP syntax does allow multiple CIP interfaces for a node to be defined on a single line. Alternately, additional CIP interfaces for a node could be defined on a subsequent line beginning with that node's CF node name. The `cip.cf` manual page has more details about the `cip.cf` file.

If you make changes to the `cip.cf` file by hand, you should be sure that the file exists on all nodes, and all nodes are specified in the file. Be sure to update all nodes in the cluster with the new file. Changes to the CIP configuration file will not take effect until CIP is stopped and restarted. If you stop CIP, be sure to stop all applications that use it. In particular, RMS needs to be shut down before CIP is stopped.

To stop CIP, use the following command:

```
# /opt/SMAW/SMAWcf/dep/stop.d/K98cip unload
```

To start or restart CIP, use the following command:

```
# /opt/SMAW/SMAWcf/dep/start.d/S01cip load
```
2.3 Cluster Configuration Backup and Restore (CCBR)

Caution

CCBR only saves PRIMECLUSTER configuration information. It does not replace an external, full backup facility.

CCBR provides a simple method to save the current PRIMECLUSTER configuration information of a cluster node. It also provides a method to restore the configuration information whenever a node update has caused severe trouble or failure, and the update (and any side-effects) must be removed. CCBR provides a node-focused backup and restore capability. Multiple cluster nodes must each be handled separately.

CCBR provides the following commands:

- `cfbackup(1M)`—Saves all information into a directory that is converted to a compressed tar archive file.
- `cfrestore(1M)`—Extracts and installs the saved configuration information from one of the `cfbackup(1M)` compressed tar archives.

After `cfrestore(1M)` is executed, you must reactivate the RMS configuration in order to start RMS. Once the reactivation of the RMS configuration is done, RMS will have performed the following tasks:

- Checked the consistency of the RMS configuration
- Established the detector links for RMS to be able to monitor resources
- Ensured proper communication between cluster nodes
- Created the necessary aliases for the shell commands used in the Wizard Tools. This is done automatically during RMS activation.

Please refer to the PRIMECLUSTER Reliant Monitor Services (RMS) Configuration and Administration Guide for details on how to activate RMS Configuration.

To guarantee that the `cfrestore(1M)` command will restore a functional PRIMECLUSTER configuration, it is recommended that there be no hardware or operating system changes since the backup was taken, and that the same versions of the PRIMECLUSTER products are installed.

Because the installation or reinstallation of some PRIMECLUSTER products add kernel drivers, device reconfiguration may occur. This is usually not a problem. However, if Network Interface Cards (NICs) have
been installed, removed, replaced, or moved, the device instance numbers (for example, the number 2 in /dev/hme2) can change. Any changes of this nature can, in turn, cause a restored PRIMECLUSTER configuration to be invalid.

cfbackup(1M) and cfrestore(1M) consist of a framework and plug-ins. The framework and plug-ins function as follows:

1. The framework calls the plug-in for the SMAWcf package.
2. This plug-in creates and updates the saved-files list, the log files, and error log files.
3. All the other plug-ins for installed PRIMECLUSTER products are called in name sequence.
4. Once all plug-ins have been successfully processed, the backup directory is archived by means of tar(1M) and compressed.
5. The backup is logged as complete and the file lock on the log file is released.

The cfbackup(1M) command runs on a PRIMECLUSTER node to save all the cluster configuration information. To avoid any problem, this command should be concurrently executed on every cluster node to save all relevant PRIMECLUSTER configuration information. This command must be executed as root.

If a backup operation is aborted, no tar archive is created. If the backup operation is not successful for one plug-in, the command processing will abort rather than continue with the next plug-in. cfbackup(1M) exits with a status of zero on success and non-zero on failure.

The cfrestore(1M) command runs on a PRIMECLUSTER node to restore all previously saved PRIMECLUSTER configuration information from a compressed tar archive. The node must be in single-user mode with CF not loaded. The node must not be an active member of a cluster. The command must be executed as root. cfrestore(1M) exits with a status of zero on success and non-zero on failure.

It is recommended to reboot once cfrestore(1M) returns successfully. If cfrestore(1M) aborts, the reason for this failure should be examined carefully since the configuration update may be incomplete.

You cannot run cfbackup(1M) and cfrestore(1M) at the same time on the same node.
Some PRIMECLUSTER information is given to a node when it joins the cluster. The information restored is not used. To restore and to use this PRIMECLUSTER information, the entire cluster needs to be **DOWN**, and the first node to create the cluster must be the node with the restored data. When a node joins an existing, running cluster, the restore configuration is gone because it is the first node in the cluster that determines which restore configuration to use.

The following files and directories that are fundamental to the operation of the `cfbackup(1M)` and `cfrestore(1M)` commands:

- The `/opt/SMAW/ccbr/plugins` directory contains executable CCBR plugins. The installed PRIMECLUSTER products supply them.
- The `/opt/SMAW/ccbr/ccbr.conf` file must exist and specifies the value for `CCBRHOME`, the pathname of the directory to be used for saving CCBR archive files. A default `ccbr.conf` file, with `CCBRHOME` set to `/var/spool/SMAW/SMAWccbr` is supplied as part of the `SMAWccbr` package.

The system administrator can change the `CCBRHOME` pathname at anytime. It is recommended that the system administrator verify that there is enough disk space available for the archive file before setting `CCBRHOME`. The system administrator might need to change the `CCBRHOME` pathname to a file system with sufficient disk space.

It is important to remember that re-installing the `SMAWccbr` package will reset the contents of the `/opt/SMAW/ccbr/ccbr.conf` file to the default package settings.

The following is an example of `ccbr.conf`:

```bash
#!/bin/ksh -
#ident "@(#)ccbr.conf  Revision: 12.1  02/05/08 14:45:57"
#
# CCBR CONFIGURATION FILE
#
# set CCBR home directory
#
CCBRHOME=/var/spool/SMAW/SMAWccbr
export CCBRHOME
```

- The `/opt/SMAW/ccbr/ccbr.gen` (generation number) file is used to form the name of the CCBR archive to be saved into (or restored from) the `CCBRHOME` directory. This file contains the next backup sequence number. The generation number is appended to the archive name.
Cluster Configuration Backup and Restore (CCBR)

If this file is ever deleted, `cfbackup(1M)` and/or `cfrestore(1M)` will create a new file containing the value string of 1. Both commands will use either the generation number specified as a command argument, or the file value if no command argument is supplied. The `cfbackup(1M)` command additionally checks that the command argument is not less than the value of the `/opt/SMAW/ccbr/ccbr.gen` file. If the command argument is less than the value of the `/opt/SMAW/ccbr/ccbr.gen` file, the `cfbackup(1M)` command will use the file value instead.

Upon successful execution, the `cfbackup(1M)` command updates the value in this file to the next sequential generation number. The system administrator can update this file at any time.

- If `cfbackup(1M)` backs up successfully, a compressed tar archive file with the following name will be generated in the `CCBRHOME` directory as follows:

 `hostname_ccbrN.tar.Z`

 hostname is the nodename and *N* is the number suffix for the generation number.

 For example, in the cluster node `fuji2`, with the generation number 5, the archive file name is as follows:

 `fuji2_ccbr5.tar.Z`

- Each backup request creates a backup tree directory. The directory is as follows:

 `CCBRHOME/nodename_ccbrN`

 nodename is the node name and *N* is the number suffix for the generation number.

 `CCBROOT` is set to this directory.

 For example, enter the following on the node `fuji2`:

 `fuji2# cfbackup 5`

 Using the default setting for `CCBRHOME`, the following directory will be created:

 `/var/spool/SMAW/SMAWccbr/fuji2_ccbr5`

 This backup directory tree name is passed as an environment variable to each plug-in.
Cluster Configuration Backup and Restore (CCBR)

- The `CCBRRHOME/ccbr.log` log file contains startup, completion messages, and error messages. All the messages are time stamped.
- The `CCBROOT/errlog` log file contains specific error information when a plug-in fails. All the messages are time stamped.
- The `CCBROOT/plugin.blog` or `CCBROOT/plugin.rlog` log files contain startup and completion messages from each backup/restore attempt for each plug-in. These messages are time stamped.

Refer to the Chapter “Manual pages” for more information on `cfbackup(1M)` and `cfrestore(1M)`.
Example 1: Backup

fuji2# cfbackup

This command backs up and validates the configuration files for all CCBR plugins that exist on the system fuji2.

The output of the cfbackup(1M) command looks similar to the following:

```
# cfbackup
01/16/03 17:21:39 cfbackup 11 started
01/16/03 17:21:40 active cluster nodes:
Node  Number State       Os      Cpu
fuji2 1      UP          Solaris Sparc
fuji3 2      UP          Solaris Sparc
01/16/03 17:21:40 installed ccbr plugins:
FJSVclapm.pi  
FJSVcldev.pi  
FJSVwwbs.pi   
SMAWcf.pi     
SMAWdtcp.pi   
_rmswizvalidate
_sample.pi    
rmswizbackup  
rscmgr.pi     
sfbackup      
sfvalidate    
01/16/03 17:21:40 FJSVclapm: validate started
01/16/03 17:21:40 FJSVclapm: validate ended
01/16/03 17:21:40 FJSVcldev: validate started
01/16/03 17:21:40 FJSVcldev: validate ended
01/16/03 17:21:40 FJSVwwbs: validate started
01/16/03 17:21:40 FJSVwwbs: validate ended
01/16/03 17:21:40 SMAWcf: validate started for /var/spool/SMAW/
SMAWccbr/fuji2_ccbr11
01/16/03 17:21:40 SMAWcf: validate ended
01/16/03 17:21:41 SMAWdtcp: validate started
Checking for file  /etc/dtcp.ap
Checking for file  /etc/inittab
01/16/03 17:21:41 SMAWdtcp: validate ended
01/16/03 17:21:41 rscmgr.pi: validate started
01/16/03 17:21:41 rscmgr.pi: validate normal ended
SMAWsf validation begins ..... 
Validation done. No problems found ..... 
Please read the validation report /var/spool/SMAW/SMAWccbr/
fuji2_ccbr11/sf/backupvalidate1og
01/16/03 17:21:41 cfbackup 11 ended successfully.
```

The output shows that cfbackup(1M) ended successfully.
Cluster Foundation

Cluster Configuration Backup and Restore (CCBR)

In the case of an error, the subdirectory `/var/spool/SMAW/SMAWccbr/fuji2_ccbr11` is created. Under this directory, `rmswizbackup.blog` and `errlog` can be found.

An example of the output from the `rmswizbackup.blog` file is as follows:

```
01/16/03 17:21:40 rmswizbackup: validate started
01/16/03 17:21:40 rmswizbackup: validate ended
```

An example of the output from `errlog` is as follows:

```
01/16/03 17:21:40 cfbackup 11 error log started
Environment variable $CCBROOT not set ...
/opt/SMAW/ccbr/plugins/rmswizbackup: 66:
/opt/SMAW/ccbr/plugins/rmswizvalidate: not found
```

Refer to the Chapter “Diagnostics and troubleshooting” for more details on troubleshooting CCBR.

Before doing `cfrestore(1M)`, CF needs to be unloaded. The system needs to be in single-user mode.

The following files are handled differently during `cfrestore(1M)`:

- **root files**—These are the files under the `CCBROOT/root` directory. They are copied from the `CCBROOT/root` file tree to their corresponding places in the system file tree.
- **OS files**—These files are the operating system files that are saved in the archive but not restored. The system administrator might need to merge the new OS files and the restored OS files to get the necessary changes.

Example 2: Restore

```
fuji2# cfrestore 11
```

This command restores and validates the configuration files for `cfbackup 11` onto `fuji2`.

The output of the `cfrestore(1M)` command looks similar to the following:

```
01/16/03 17:35:28 cfrestore 11 started
01/16/03 17:35:28 extract files from tar archive
  x ., 0 bytes, 0 tape blocks
  x ./root, 0 bytes, 0 tape blocks
  x ./root/etc, 0 bytes, 0 tape blocks
  x ./root/etc/opt, 0 bytes, 0 tape blocks
  x ./root/etc/opt/FJSVwvbs, 0 bytes, 0 tape blocks
  x ./root/etc/opt/FJSVwvbs/etc, 0 bytes, 0 tape blocks
```
Cluster Configuration Backup and Restore (CCBR)

Cluster Foundation

x ./root/etc/opt/FJSVwvbs/etc/webview.cnf, 834 bytes, 2 tape blocks
x ./root/etc/opt/FJSVwvbs/etc/wvlocal.cnf, 260 bytes, 1 tape blocks
x ./root/etc/default, 0 bytes, 0 tape blocks
x ./root/etc/default/cluster, 136 bytes, 1 tape blocks
x ./root/etc/default/cluster.config, 144 bytes, 1 tape blocks
x ./root/etc/cip.cf, 279 bytes, 1 tape blocks
x ./root/var, 0 bytes, 0 tape blocks
x ./root/var/adm, 0 bytes, 0 tape blocks
x ./root/var/adm/cfreg.data, 216 bytes, 1 tape blocks
x ./OS, 0 bytes, 0 tape blocks
x ./OS/etc, 0 bytes, 0 tape blocks
x ./OS/etc/hosts, 195 bytes, 1 tape blocks
x ./errlog, 92 bytes, 1 tape blocks
x ./ccbr.cluster.list, 79 bytes, 1 tape blocks
x ./ccbr.plugin.list, 33 bytes, 1 tape blocks
x ./pirc, 2 bytes, 1 tape blocks
x ./FJSVwvbs.blog, 172 bytes, 1 tape blocks
x ./SMAWcf.blog, 242 bytes, 1 tape blocks
x ./FJSVwvbs.id, 36 bytes, 1 tape blocks
x ./saved.files, 160 bytes, 1 tape blocks
x ./SMAWcf.id, 20 bytes, 1 tape blocks
01/16/03 17:35:28 this backup (/var/spool/SMAW/SMAWccbr/fuj12_ccbr11) created on
01/16/03 17:36:02 nodes in the cluster were:
Node Number State Os Cpu
fuj12 1 UP Solaris Sparc
fuj13 2 UP Solaris Sparc
Are you sure you want to continue (y/n) y
01/16/03 17:36:02 FJSVwvbs: validate started
01/16/03 17:36:02 FJSVwvbs: validate ended
01/16/03 17:36:02 SMAWcf: validate started for /var/spool/SMAW/SMAWccbr/fuj12_ccbr11
01/16/03 17:36:02 SMAWcf: validate ended
01/16/03 17:36:02 crestore: The following files will be automatically restored:
/etc/opt/FJSVwvbs/etc/webview.cnf
/etc/opt/FJSVwvbs/etc/wvlocal.cnf
/etc/opt/FJSVwvbs/etc
/etc/opt/FJSVwvbs
/etc/opt
/etc/default/cluster
/etc/default/cluster.config
/etc/default
/etc/cip.cf
/etc
Cluster Foundation

Cluster Configuration Backup and Restore (CCBR)

/var/adm/cfreg.data
/var/adm
/var
/
112 blocks
01/16/03 17:36:02 FJSVwvbs: restore started
01/16/03 17:36:02 FJSVwvbs: restore ended
01/16/03 17:36:03 SMAWcf: restore started for /var/spool/SMAW/
SMAWccbr/fuji2_ccbr11
01/16/03 17:36:03 SMAWcf: restore ended
01/16/03 17:36:03 cfrestore: System Administrator please NOTE:
The following system (OS) files were saved but have not been
restored:
./etc/hosts
01/16/03 17:36:03 cfrestore 11 ended

Example 2 shows that the backup with generation number 11 has been restored
successfully.
3 CF Registry and Integrity Monitor

This chapter discusses the purpose and physical characteristics of the CF registry (CFREG), and it discusses the purpose and implementation of the Cluster Integrity Monitor (CIM).

This chapter discusses the following:
- The Section “CF Registry” discusses the purpose and physical characteristics of the CF synchronized registry.
- The Section “Cluster Integrity Monitor” discusses the purpose and implementation of CIM.

3.1 CF Registry

The CFREG provides a set of CF base product services that allows cluster applications to maintain cluster global data that must be consistent on all of the nodes in the cluster and must live through a clusterwide reboot.

Typical applications include cluster-aware configuration utilities that require the same configuration data to be present and consistent on all of the nodes in a cluster (for example, cluster volume management configuration data).

The data is maintained as named registry entries residing in a data file where each node in the cluster has a copy of the data file. The services will maintain the consistency of the data file throughout the cluster.

A user-level daemon (cfregd), runs on each node in the cluster, and is responsible for keeping the data file on the node where it is running synchronized with the rest of the cluster. The cfregd process will be the only process that ever modifies the data file. Only one synchronization daemon process will be allowed to run at a time on a node. If a daemon is started with an existing daemon running on the node, the started daemon will log messages that state that a daemon is already running and terminate itself. In such a case, all execution arguments for the second daemon will be ignored.
3.2 Cluster Integrity Monitor

The purpose of the CIM is to allow applications to determine when it is safe to perform operations on shared resources. It is safe to perform operations on shared resources when a node is a member of a cluster that is in a consistent state.

A consistent state is means that all the nodes of a cluster that are members of the CIM set are in a known and safe state. The nodes that are members of the CIM set are specified in the CIM configuration. Only these nodes are considered when the CIM determines the state of the cluster. When a node first joins or forms a cluster, the CIM indicates that the cluster is consistent only if it can determine the status of the other nodes that make up the CIM set and that those nodes are in a safe state.

CIM currently supports Node State Management (NSM) method. The Remote Cabinet Interface (RCI) method is supported for PRIMEPOWER nodes.

The CIM reports on a node state that a cluster is consistent (True), or a cluster is not consistent (False) for the node. True and False are defined as follows:

- True—All CIM nodes in the cluster are in a known state.
- False—One or more CIM nodes in the cluster are in an unknown state.

3.2.1 Configuring CIM

You can perform CIM procedures through the following methods:

- Cluster Admin GUI—This is the preferred method of operation. Refer to the Section “Adding and removing a node from CIM” for the GUI procedures.

- CLI—Refer to the Chapter “Manual pages” for complete details on the CLI options and arguments, some of which are described in this section. For more complete details on CLI options and arguments, refer to the manual page. The commands can also be found in the following directory:

 /opt/SMAN/SMAWcf/bin

CLI

The CIM is configured using the command `rcqconfig(1M)` after CF starts. `rcqconfig(1M)` is run to set up or change CIM configuration. This command is run manually if the cluster is not configured through Cluster Admin.
When `rcqconfig(1M)` is invoked, it checks that the node is part of the cluster. When the `rcqconfig(1M)` command is invoked without any option, after the node joins the cluster, it checks if any configuration is present in the `CFReg.database`. If there is none, it returns as error. This is done as part of the GUI configuration process.

`rcqconfig(1M)` configures a quorum set of nodes, among which CF decides the quorum state. `rcqconfig(1M)` is also used to show the current configuration. If `rcqconfig(1M)` is invoked without any configuration changes or with only the `-v` option, `rcqconfig(1M)` will apply any existing configuration to all the nodes in the cluster. It will then start or restart the quorum operation. `rcqconfig(1M)` can be invoked from the command line to configure or to start the quorum.

3.2.2 Query of the quorum state

CIM recalculates the quorum state when it is triggered by some node state change. However, you can force the CIM to recalculate it by running `rcquery(1M)` at any time. Refer to the Chapter “Manual pages” for complete details on the CLI options and arguments.

`rcquery(1M)` functions as follows:

- Queries the state of quorum and gives the result using the return code. It also gives you readable results if the verbose option is given.
- Returns `True` if the states of all the nodes in the quorum set of nodes are known. If the state of any node is unknown, then it returns `false`.
- Exits with a status of zero when a quorum exists, and it exits with a status of 1 when a quorum does not exist. If an error occurs during the operation, then it exits with any other non-zero value other than 1.
Cluster Integrity Monitor

3.2.3 Reconfiguring quorum

Refer to the Section “Adding and removing a node from CIM” for the GUI procedures.

CLI

The configuration can be changed at any time and is effective immediately. When a new node is added to the quorum set of nodes, the node being added must be part of the cluster so as to guarantee that the new node also has the same quorum configuration. Removing a node from the quorum set can be done without restriction.

When the configuration information is given to the command `rcqconfig(1M)` as arguments, it performs the transaction to `CFREG` to update the configuration information. The rest of the configuration procedure is the same. Until CIM is successfully configured and gets the initial state of the quorum, CIM has to respond with the quorum state of `False` to all queries.

Examples

Display the states of all the nodes in the cluster as follows:

```
fuj2# cftool -n
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Number</th>
<th>State</th>
<th>Os</th>
<th>Cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuj2</td>
<td>1</td>
<td>UP</td>
<td>Solaris</td>
<td>Sparc</td>
</tr>
<tr>
<td>fuj3</td>
<td>2</td>
<td>UP</td>
<td>Solaris</td>
<td>Sparc</td>
</tr>
</tbody>
</table>

Display the current quorum configuration as follows:

```
fuj2# rcqconfig -g
```

Nothing is returned, since all nodes have been deleted from the quorum.

Add new nodes in a quorum set of nodes as follows:

```
fuj2# rcqconfig -a fuj12 fuj13
```

Display the current quorum configuration parameters as follows:

```
fuj2# rcqconfig -g
```

```
QUORUM_NODE_LIST= fuj12 fuj13
```

Delete nodes from a quorum set of nodes as follows:

```
fuj2# rcqconfig -d fuj12
```
Display the current quorum configuration parameters after one node is deleted as follows:

```
fuji2# rcqconfig -g
```

```
QUORUM_NODE_LIST= fuji3
```

The results of this query can only be `True` or `False`. `rcqquery(1M)` will return `True` if the states of all the nodes in the quorum set of nodes are up. If any one of the nodes is down, then it will return `False`. In this case, since the cluster is still up and running, the results of `rcqquery(1M)` will be set to `True`.

Add a new node, `fuji10` (which is not in the cluster), in a quorum set of nodes as follows:

```
fuji2# rcqconfig -a fuji2 fuji3 fuji10
```

```
Cannot add node fuji10 that is not up.
```

Since CF only configured the cluster to consist of `fuji2` and `fuji3`, `fuji10` does not exist. The quorum set remains empty.

```
fuji2# rcqconfig -g
```

```
Nothing is returned, since no quorum configuration has been done.
```
4 Cluster resource management

This chapter discusses the Resource Database, which is a synchronized clusterwide database, holding information specific to several PRIMECLUSTER products.

This chapter discusses the following:

- The Section “Overview” introduces cluster resource management.
- The Section “Kernel parameters for Resource Database” discusses the default values of the Solaris OE kernel which have to be modified when the Resource Database is used.
- The Section “Resource Database configuration” details how to set up the Resource Database for the first time on a new cluster.
- The Section “Registering hardware information” explains how to register hardware information in the Resource Database.
- The Section “Start up synchronization” discusses how to implement a start up synchronization procedure for the Resource Database.
- The Section “Adding a new node” describes how to add a new node to the Resource Database.

4.1 Overview

The cluster Resource Database is a dedicated database used by some PRIMECLUSTER products. You must configure the Resource Database if you are using GDS, GFS, or GLS. Fujitsu customers should always configure the Resource Database since it is used by many products from Fujitsu.

If you do not need to configure the Resource Database, then you can skip this chapter.

The Resource Database is intended to be used only by PRIMECLUSTER products. It is not a general purpose database which a customer could use for their own applications.
4.2 Kernel parameters for Resource Database

The default values of the Solaris OE kernel have to be modified when the Resource Database is used. This section lists the kernel parameters that have to be changed. In the case of kernel parameters that have already been set in the file `/etc/system`, the values recommended here should be added. In the case of kernel parameters that have not been defined in the file `/etc/system`, the values recommended here must be added to the default values.

The values in the `/etc/system` file do not take effect until the system is rebooted.

If an additional node is added to the cluster, or if more disks are added after your cluster has been up and running, it is necessary to recalculate using the new number of nodes and/or disks after the expansion, change the values in `/etc/system`, and then reboot each node in the cluster.

Refer to the PRIMECLUSTER Installation Guide (Solaris) for details on meanings and methods of changing kernel parameters.

The values used for product and user applications operated under the cluster system must also be reflected in kernel parameter values.

Table 1 shows the recommended kernel parameters values.

<table>
<thead>
<tr>
<th>Kernel parameter</th>
<th>Amount to add for Resource Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>seminfo_semnni</td>
<td>20</td>
</tr>
<tr>
<td>seminfo_semmns</td>
<td>30</td>
</tr>
<tr>
<td>seminfo_semmnu</td>
<td>30</td>
</tr>
<tr>
<td>shminfo_shmnni</td>
<td>30</td>
</tr>
<tr>
<td>shminfo_shmseg</td>
<td>30</td>
</tr>
<tr>
<td>shminfo_shmmmax</td>
<td>Refer to the section that follows.</td>
</tr>
</tbody>
</table>

Table 1: Kernel parameter values

Determining the value for shminfo_shmmmax

The value of `shminfo_shmmmax` is calculated in the following way:

1. Remote resources:

 \[DISKS \times (NODES+1) \times 2 \]
Cluster resource management Kernel parameters for Resource Database

DISKS is the number of shared disks. For disk array units, use the number of logical units (LUN). For devices other than disk array units, use the number of physical disks.

NODES is the number of nodes connected to the shared disks.

2. Local resources:
 LOCAL_DISKS: Add up the number of local disks of all nodes in the cluster.

3. Total resources:
 Total resources = (remote resources + local resources) x 2776 + 1048576.

4. Selecting the value:
 If shminfo_shmmax has already been altered by another product (meaning, /etc/system already has an entry for shminfo_shmmax), then set the value of shminfo_shmmax to the sum of the current value and the result from Step 3. Should this value be less than 4194394, set shminfo_shmmax to 4194394.

 If shminfo_shmmax has not been altered from the default (meaning, there is no entry for shminfo_shmmax in /etc/system) and the result from Step 3 is greater than 4194394, set shminfo_shmmax to the result of Step 3, otherwise set shminfo_shmmax to 4194394.

In summary, the formula to calculate the total resources is as follows:

Total resources = (DISKS x (NODES+1) x 2 + LOCAL_DISKS) x 2776 + 1048576 + current value.

The algorithm to set shminfo_shmmax is as follows:

if (Total Resources < 4194394) then
 shminfo_shmmax = 4194394
else
 shminfo_shmmax = Total Resources
endif

Example:

Referring to Figure 23, the following example shows how to calculate the total resources.
Kernel parameters for Resource Database Cluster resource management

Referring to Figure 23, calculate the total resources as follows:

1. Remote resources:
 DISKS=6, NODES=4
 remote resources = 6 x (4+1) x 2 = 60

2. Local resources:
 local resources = 2 x 4 = 8

3. Total resources:
 (60+8) x 2776 + 1048576 = 1237344
4. Selecting the value:

\[
\text{current value} = 0
\]

The sum of 1237344 and the \text{current value} is less than 4194394, therefore \text{shminfo_shmmax} has to be set to 4194394. If the sum of 1237344 and the \text{Current Value} is more than 4194394, then set \text{shminfo_shmmax} to the new sum.

4.3 Resource Database configuration

This section discusses how to set up the Resource Database for the first time on a new cluster. The following procedure assumes that the Resource Database has not previously been configured on any of the nodes in the cluster.

If you need to add a new node to the cluster, and the existing nodes are already running the Resource Database, then a slightly different procedure needs to be followed. Refer to the Section “Adding a new node” for details.

Before you begin configuring the Resource Database, you must first make sure that CIP is properly configured on all nodes. The Resource Database uses CIP for communicating between nodes, so it is essential that CIP is working.

The Resource Database also uses the CIP configuration file `/etc/cip.cf` to establish the mapping between the CF node name and the CIP name for a node. If a particular node has multiple CIP interfaces, then only the first one is used. This will correspond to the first CIP entry for a node in `/etc/cip.cf`. It will also correspond to `cip0` on the node itself.

Because the Resource Database uses `/etc/cip.cf` to map between CF and CIP names, it is critical that this file be the same on all nodes. If you used the Cluster Admin CF Wizard to configure CIP, then this will already be the case. If you created some `/etc/cip.cf` files by hand, then you need to make sure that all nodes are specified and they are the same across the cluster.

In general, the CIP configuration is fairly simple. You can use the Cluster Admin CF Wizard to configure a CIP subnet after you have configured CF. If you use the Wizard, then you will not need to do any additional CIP configuration. See the Section “CF, CIP, and CIM configuration” for more details.

After CIP has been configured, you can configure the Resource Database on a new cluster by using the following procedure. This procedure must be done on all the nodes in the cluster.

1. Log in to the node with system administrator authority.
2. Verify that the node can communicate with other nodes in the cluster over CIP. You can use the `ping(1M)` command to test CIP network connectivity. The file `/etc/cip.cf` contains the CIP names that you should use in the `ping(1M)` command.

If you are using RMS and you have only defined a single CIP subnetwork, then the CIP names will be of the following form:

 cfnameRMS

For example, if you have two nodes in your cluster named `fuji2` and `fuji3`, then the CIP names for RMS would be `fuji2RMS` and `fuji3RMS`, respectively. You could then run the following commands:

`fuji2# ping fuji3RMS`

`fuji3# ping fuji2RMS`

This tests the CIP connectivity.

Be careful if you have configured multiple CIP interfaces for some nodes. In this case, only the first CIP interface on a node will be used by the Resource Database. This first interface may not necessarily be the one used by RMS.

3. Execute the `clsetup` command. When used for the first time to set up the Resource Database on a node, it is called without any arguments as follows:

 `#/etc/opt/FJSVcluster/bin/clsetup`

4. Execute the `clgettree` command to verify that the Resource Database was successfully configured on the node, as shown in the following:

 `#/etc/opt/FJSVcluster/bin/clgettree`

The command should complete without producing any error messages, and you should see the Resource Database configuration displayed in a tree format.

For example, on a two-node cluster consisting of `fuji2` and `fuji3`, the `clgettree` command might produce output similar to the following:

```
Cluster 1 cluster
  Domain 2 Domain0
    Shared 7 SHD_Domain0
        Node 3 fuji2 UNKNOWN
        Node 5 fuji3 UNKNOWN
```

If you need to change the CIP configuration to fix the problem, you will also need to run the `clinitreset` command and start the information process over.
The format of `clgettree` is more fully described in its manual page. For the purpose of setting up the cluster, you need to check the following:

- Each node in the cluster should be referenced in a line that begins with the word `Node`.
- The `clgettree` output must be identical on all nodes.

If either of the above conditions are not met, then it is possible that you may have an error in the CIP configuration. Double-check the CIP configuration using the methods described earlier in this section. The actual steps are as follows:

1. Make sure that CIP is properly configured and running.
2. Run `clinitreset` on all nodes in the cluster.
3. Reboot each node.
4. Rerun the `clsetup` command on each node.
5. Use the `clgettree` command to verify the configuration.

Registering hardware information

With RCVM, you do not need to register the shared disk unit in the Resource Database.

This section explains how to register hardware information in the Resource Database.

You can register the following hardware in the Resource Database by executing the `clautoconfig` command:

- Shared disk unit
- Network interface card
- Line switching unit

The command automatically detects the information. Refer to the Chapter “Manual pages” for additional details on this command.
4.4.1 Setup exclusive device list

If you have any disk devices that needs to be excluded from automatic resource registration, describe the devices in the `/etc/opt/FJSVcluster/etc/diskinfo` file (exclusive device list) on all nodes.

List all the disks in this exclusive device list that meet the following conditions:

- Disks that should not be used for cluster services
- Disks that should be registered in the resource database in other cluster system

An example of the `/etc/opt/FJSVcluster/etc/diskinfo` file that is setup is as follows:

```bash
# cat /etc/opt/FJSVcluster/etc/diskinfo
clt0d16
clt0d17
clt0d18
clt0d19
.....
emcpower63
emcpower64
emcpower65
emcpower66
```

Refer to the Section “Exclusive device list for EMC Symmetrix” if you use the EMC Symmetrix series of RAID devices (Symmetrix) in a PRIMEPOWER/PRIMECLUSTER environment.

4.4.2 Exclusive device list for EMC Symmetrix

This section describes how to set up an exclusive device list (disk devices that should be excluded from automatic resource registration) when the EMC Symmetrix series of RAID devices (Symmetrix) is used in a PRIMEPOWER/PRIMECLUSTER environment (refer to the Section “Setup exclusive device list”).

You must exclude the following EMC Symmetrix devices from automatic resource registration:

- Native devices configuring emcpower devices
- BCV (Business Continuance Volume) devices
Cluster resource management

Registering hardware information

- R2 (SRDF target) devices
- GateKeeper devices
- CKD (Count Key Data) devices
- VCMDB (Volume Configuration Management Data Base) devices used by EMC SAN management software (Volume Logix, ESN Manager, SAN Manager)

Add these devices in an exclusive device list after completing the settings for BCV, GateKeeper and EMC PowerPath. Then, you can perform automatic resource registration.

4.4.2.1 BCV, R2, GateKeeper, CKD

You can differentiate which disk is BCV, R2, GateKeeper, or CKD by executing the `syminq` command provided in SYMCLI. Execute the `syminq` command, and describe all the devices (c<CT>d<DN>emcpower<N>), indicated as BCV, R2, GK, or CKD in the excluded device list. Where <C> is the controller number, <T> is the target ID, <D> is the disk number, and <N> is the emcpower device number.

4.4.2.2 VCMDB

VCMDB is not output by executing `syminq`. If you use EMS SAN management software such as Volume Logix, ESN Manager or SAN Manager, check the VCMDB device name with EMC customer support engineers or a system administrator who set up the management software before adding the VCMDB to an exclusive device list.

4.4.2.3 Simplified setup for exclusive device list - clmkdiskinfo

`/etc/opt/FJSVcluster/sys/clmkdiskinfo` is the awk script provided for simplified setup for an exclusive device list. An exclusive device list in which BCV and GK are added is created by using the following command:

```
# syminq | nawk -f /etc/opt/FJSVcluster/sys/clmkdiskinfo > /etc/opt/FJSVcluster/etc/diskinfo
```

You need to use the `syminq` command path that is specified at the time of SYMCLI installation. Normally, it should be `/usr/symcli/bin/syminq`.

If there are any devices that need to be excluded from automatic resource registration, you need to add the devices to an exclusive device list using the vi editor.
Registering hardware information

Cluster resource management

Note:

- PowerPath is required to use EMC Symmetrix.
- Do not describe BCV and R2 devices used for proxy volumes with GDS Snapshot in the exclusive device list. However, describe the native devices configuring BCV and R2 devices. For details of GDS Snapshot, see the PRIMECLUSTER Global Disk Service Configuration and Administration Guide.
- If BCV is not added to an exclusive device list, you need to cancel or split the BCV pair before working on automatic resource registration.
- If the R2 device of the SRDF pair is not added to an exclusive device list, split the SRDF pair before working on automatic resource registration.

4.4.3 Automatic resource registration

This section explains how to register the detected hardware in the Resource Database.

The registered network interface card should be displayed in the plumb-up state as a result of executing the `ifconfig(1M)` command.

Do not modify the volume name registered in VTOC using the `format(1M)` command after automatic resource registration. The volume name is required when the shared disk units are automatically detected.

The following prerequisites should be met:

- The Resource Database setup is done.
- Hardware is connected to each node.
- All nodes are started in the multi-user mode.

Take the following steps to register hardware in the Resource Database. This should be done on an arbitrary node in a cluster system.

1. Log in with system administrator access privileges.
2. Execute the `clautoconfig` command, using the following full path:
   ```sh
   # /etc/opt/FJSVcluster/bin/clautoconfig -r
   ```
3. Confirm registration.
 Execute the `clgettree` command for confirmation as follows:
Cluster resource management

Start up synchronization

/etc/opt/FJSVcluster/bin/clgettree

Cluster 1 cluster0
 Domain 2 domain0
 Shared 7 SHD_domain0
 SHD_DISK 9 shd001 UNKNOWN
 DISK 11 clt1d0 UNKNOWN node0
 DISK 12 c2t2d0 UNKNOWN node1
 SHD_DISK 10 shd002 UNKNOWN
 DISK 13 clt1d1 UNKNOWN node0
 DISK 14 c2t2d1 UNKNOWN node1

Node 3 node0 ON
 Ethernet 20 hme0 UNKNOWN
 DISK 11 clt1d0 UNKNOWN
 DISK 13 clt1d1 UNKNOWN node0

Node 5 node1 ON
 Ethernet 21 hme0 UNKNOWN
 DISK 12 c2t2d0 UNKNOWN
 DISK 14 c2t2d1 UNKNOWN

Reference

When deleting the resource of hardware registered by automatic registration, the following commands are used. Refer to the manual page for details of each command.

- cldeldevice—Deletes the shared disk resource
- cldelrsc—Deletes the network interface card resource
- cldelswursc—Deletes the line switching unit resource

4.5 Start up synchronization

A copy of the Resource Database is stored locally on each node in the cluster. When the cluster is up and running, all of the local copies are kept in sync. However, if a node is taken down for maintenance, then its copy of the Resource Database may be out of date by the time it rejoins the cluster. Normally, this is not a problem. When a node joins a running cluster, then its copy of the Resource Database is automatically downloaded from the running cluster. Any stale data that it may have had is thus overwritten.

There is one potential problem. Suppose that the entire cluster is taken down before the node with the stale data had a chance to rejoin the cluster. Then suppose that all nodes are brought back up again. If the node with the stale data
Start up synchronization

Cluster resource management

comes up long before any of the other nodes, then its copy of the Resource Database will become the master copy used by all nodes when they eventually join the cluster.

To avoid this situation, the Resource Database implements a start up synchronization procedure. If the Resource Database is not fully up and running anywhere in the cluster, then starting the Resource Database on a node will cause that node to enter into a synchronization phase. The node will wait up to StartingWaitTime seconds for other nodes to try to bring up their own copies of the Resource Database. During this period, the nodes will negotiate among themselves to see which one has the latest copy of the Resource Database. The synchronization phase ends when either all nodes have been accounted for or StartingWaitTime seconds have passed. After the synchronization period ends, the latest copy of the Resource Database that was found during the negotiations will be used as the master copy for the entire cluster.

The default value for StartingWaitTime is 60 seconds.

This synchronization method is intended to cover the case where all the nodes in a cluster are down, and then they are all rebooted together. For example, some businesses require high availability during normal business hours, but power their nodes down at night to reduce their electric bill. The nodes are then powered up shortly before the start of the working day. Since the boot time for each node may vary slightly, the synchronization period of up to StartingWaitTime ensures that the latest copy of the Resource Database among all of the booting nodes is used.

Another important scenario in which all nodes may be booted simultaneously involves the temporary loss and then restoration of power to the lab where the nodes are located.

However, for this scheme to work properly, you must verify that all nodes in the cluster have boot times that differ by less than StartingWaitTime seconds. Furthermore, you might need to modify the value of StartingWaitTime to a value that is appropriate for your cluster.

Modify the value of StartingWaitTime as follows:

1. Start up all of the nodes in your cluster simultaneously. You should probably start the nodes from a cold power on. Existing nodes are not required to reboot when a new node is added to the cluster.

2. After the each node has come up, look in /var/adm/messages for message number 2200. This message is output by the Resource Database when it first starts. For example, enter the following command:
Cluster resource management

Start up synchronization

grep 2200 /var/adm/messages
Feb 23 19:00:41 fuji2 dcmon[407]: [ID 888197 daemon.notice]
FJSVcluster: INFO: DCM: 2200: Cluster configuration
management facility initialization started.

Compare the timestamps for the messages on each node and calculate the
difference between the fastest and the slowest nodes. This will tell you how
long the fastest node has to wait for the slowest node.

3. Check the current value of StartingWaitTime by executing the
clsetparam command on any of the nodes. For example, enter the
following command:

/etc/opt/FJSVcluster/bin/clsetparam -p StartingWaitTime

The output for our example shows that StartingWaitTime is set to 60
seconds.

4. If there is a difference in start up times found in Step 2, the Starting-
WaitTime, or if the two values are relatively close together, then you should
increase the StartingWaitTime parameter. You can do this by running the
clsetparam command on any one node in the cluster. For example, enter
the following command:

/etc/opt/FJSVcluster/bin/clsetparam -p StartingWaitTime 300

This sets the StartingWaitTime to 300 seconds.

When you change the StartingWaitTime parameter, it is not necessary to
stop the existing nodes. the new parameter will be effective for all nodes at the
next reboot. Refer to the Chapter “Manual pages” for more details on the
possible values for StartingWaitTime.

4.5.1 Start up synchronization and the new node

After the Resource Database has successfully been brought up in the new
node, then you need to check if the StartingWaitTime used in start up
synchronization is still adequate. If the new node boots much faster or slower
than the other nodes, then you may need to adjust the StartingWaitTime
time.
Adding a new node

4.6 Adding a new node

If you have a cluster where the Resource Database is already configured, and you would like to add a new node to the configuration, then you should follow the procedures in this section. You will need to make a configuration change to the currently running Resource Database and then configure the new node itself. The major steps involved are listed below:

1. Back up the currently running Resource Database. A copy of the backup is used in a later step to initialize the configuration on the new node. It also allows you to restore your configuration to its previous state if a serious error is encountered in the process.

2. Reconfigure CF and CIP to include the new nodes and initialize.

3. Reconfigure the currently running Resource Database so it will recognize the new node.

4. Initialize the Resource Database on the new node.

5. Verify that the StartingWaitTime is sufficient for the new node, and modify this parameter if necessary.
Figure 24 shows these steps as a flow chart.

1. Back up the Resource Database
 - Success
2. Reconfigure CF and CIP
 - Success
3. Reconfigure the Resource Database
 - Success
 - Failure
 - Restore the Resource Database
4. Initialize the new node
 - Success
 - Failure
 - Reinitialize the Resource Database on the new node
5. Verify StartingWaitTime

Figure 24: Adding a new node

The sections that follow describe each step in more detail.
4.6.1 Backing up the Resource Database

Before you add a new node to the Resource Database, you should first back up the current configuration. The backup will be used later to help initialize the new node. It is also a safeguard. If the configuration process is unexpectedly interrupted by a panic or some other serious error, then you may need to restore the Resource Database from the backup.

The configuration process itself should not cause any panics. However, if some non-PRIMECLUSTER software panics or if the SF/SCON forces a panic because of a CF cluster partition, then the Resource Database configuration process could be so severely impacted that a restoration from the backup would be needed.

The restoration process requires all nodes in the cluster to be in single user mode.

Since the Resource Database is synchronized across all of its nodes, the backup can be done on any node in the cluster where the Resource Database is running. The steps for performing the backup are as follows:

1. Log onto any node where the Resource Database is running with system administrator authority.

2. Run the command `clbackuprdb` to back the Resource Database up to a file. The syntax is as follows:

   ```bash
   /etc/opt/FJSVcluster/bin/clbackuprdb -f file
   ```

 For example:

   ```bash
   # /etc/opt/FJSVcluster/bin/clbackuprdb -f /mydir/backup_rdb
   ```

 `clbackuprdb` stores the Resource Database as a compressed tar file. Thus, in the above example, the Resource Database would be stored in `/mydir/backup_rdb.tar.Z`.

 Make sure that you do not place the backup in a directory whose contents are automatically deleted upon reboot (for example, `/tmp`).

 The hardware configuration must not change between the time a backup is done and the time that the restore is done. If the hardware configuration changes, you will need to take another backup. Otherwise, the restored database would not match the actual hardware configuration, and new hardware resources would be ignored by the Resource Database.
4.6.2 Reconfiguring the Resource Database

After you have backed up the currently running Resource Database, you will need to reconfigure the database to recognize the new node. Before you do the reconfiguration, however, you need to perform some initial steps.

After these initial steps, you should reconfigure the Resource Database. This is done by running the `clsetup` command on any of the nodes which is currently running the Resource Database. Since the Resource Database is synchronized across all of its nodes, the reconfiguration takes effect on all nodes. The steps are as follows:

1. Log in to any node where the Resource Database is running. Log in with system administrator authority.
2. If this node is not the same one where you made the backup, then copy the backup to this node. Then run the `clsetup` command with the `-a` and `-g` options to reconfigure the database. The syntax in this case is as follows:

   ```
   /etc/opt/FJSVcluster/bin/clsetup -a cfname -g file
   ```

 `cfname` is the CF name of the new node to be added, and `file` is the name of the backup file without the `.tar.Z` suffix.

 For example, suppose that you want to add a new node whose CF name is `fuji4` to a cluster. If the backup file on an existing node is named `/mydir/rdb.tar.Z`, then the following command would cause the Resource Database to be configured for the new node:

   ```
   # cd /etc/opt/FJSVcluster/bin/
   # ./clsetup -a fuji4 -g /mydir/rdb.tar.Z
   ```

 If `clsetup` is successful, then you should immediately make a new backup of the Resource Database. This backup will include the new node in it. Be sure to save the backup to a place where it will not be lost upon a system reboot.

 If an unexpected failure such as a panic occurs, then you may need to restore the Resource Database from an earlier backup. See the Section “Restoring the Resource Database” for details.

3. To verify if the reconfiguration was successful, run the `clgettree` command. Make sure that the new node is displayed in the output for that command. If it is not present, then recheck the CIP configuration to see if it omitted the new node. If the CIP configuration is in error, then you will need to do the following to recover:
Adding a new node
Cluster resource management

a) Correct the CIP configuration on all nodes. Make sure that CIP is running with the new configuration on all nodes.

b) Restore the Resource Database from backup.

c) Rerun the clsetup command to reconfigure the Resource Database.

4.6.3 Configuring the Resource Database on the new node

After the Resource Database has been reconfigured on the existing nodes in the cluster, you are ready to set up the Resource Database on the new node itself.

The first step is to verify the CIP configuration on the new node. The file /etc/cip.cf should reference the new node. The file should be the same on the new node as it is on existing nodes in the cluster. If you used the Cluster Admin CF Wizard to configure CF and CIP for the new node, then CIP should already be properly configured.

You should also verify that the existing nodes in the cluster can ping the new node using the new node’s CIP name. If the new node has multiple CIP subnets, then recall that the Resource Database only uses the first one that is defined in the CIP configuration file.

After verifying that CIP is correctly configured and working, then you should do the following:

1. Log in to the new node with system administrator authority.

2. Copy the latest Resource Database backup to the new node. This backup was made in Step 2 of the second list in the Section “Reconfiguring the Resource Database”.

3. Run the command clsetup with the -s option. The syntax for this case is as follows:

 /etc/opt/FJSVcluster/bin/clsetup -s file

 file is the name of the backup file.

 If we continue our example of adding fuji4 to the cluster and we assume that the backup file rdb.tar.Z was copied to /mydir, then the command would be as follows:

 # /etc/opt/FJSVcluster/bin/clsetup -s /mydir/rdb.tar.Z
Cluster resource management

Adding a new node

If the new node unexpectedly fails before the clsetup command completes, then you should execute the clinitreset command. After clinitreset completes, you must reboot the node and then retry the clsetup command which was interrupted by the failure.

If the clsetup command completes successfully, then you should run the clgettree command to verify that the configuration has been set-up properly. The output should include the new node. It should also be identical to output from clgettree run on an existing node.

If the clgettree output indicates an error, then recheck the CIP configuration. If you need to change the CIP configuration on the new node, then you will need to do the following on the new node after the CIP change:

a) Run clinitreset.
b) Reboot.
c) Rerun the clsetup command described above.

4.6.4 Adjusting StartingWaitTime

After the Resource Database has successfully been brought up in the new node, then you need to check if the StartingWaitTime used in startup synchronization is still adequate. If the new node boots much faster or slower than the other nodes, then you may need to adjust the StartingWaitTime time. Refer to the Section “Start up synchronization” for further information.

4.6.5 Restoring the Resource Database

The procedure for restoring the Resource Database is as follows:

1. Copy the file containing the Resource Database to all nodes in the cluster.
2. Log in to each node in the cluster and shut it down with the following command:

 # /usr/sbin/shutdown -y -10

3. Reboot each node to single user mode with the following command:

 {0} ok boot -s

 The restore procedure requires that all nodes in the cluster must be in single user mode.
Adding a new node

4. Mount the local file systems on each node with the following command:

 `# mountall -l`

5. Restore the Resource Database on each node with the `clrestorerdb` command. The syntax is:

 `# clrestorerdb -f file`

 file is the backup file with the `.tar.Z` suffix omitted.

 For example, suppose that a restoration was being done on a two-node cluster consisting of nodes *fuji2* and *fuji3*, and that the backup file was copied to `/mydir/backup_rdb.tar.Z` on both nodes. The command to restore the Resource Database on *fuji2* and *fuji3* would be as follows:

 fuji2:
   ```
   cd /etc/opt/FJSVcluster/bin/
   ./clrestorerdb -f /mydir/backup_rdb.tar.Z
   ```

 fuji3:
   ```
   cd /etc/opt/FJSVcluster/bin/
   ./clrestorerdb -f /mydir/backup_rdb.tar.Z
   ```

6. After Steps 1 through 5 have been completed on all nodes, then reboot all of the nodes with the following command:

 `#/usr/sbin/shutdown -y -i6`
5 GUI administration

This chapter covers the administration of features in the Cluster Foundation (CF) portion of Cluster Admin.

This chapter discusses the following:

- The Section “Overview” introduces the Cluster Admin GUI.
- The Section “Starting Cluster Admin GUI and logging in” describes logging in and shows the first windows you will see.
- The Section “Main CF table” describes the features of the main table.
- The Section “Node details” explains how to get detailed information.
- The Section “Displaying the topology table” discusses the topology table, which allows you to display the physical connections in the cluster.
- The Section “Starting and stopping CF” describes how to start and stop CF.
- The Section “Marking nodes DOWN” details how to mark a node DOWN.
- The Section “Using CF log viewer” explains how to use the CF log viewer, including how to view and search syslog messages.
- The Section “Displaying statistics” discusses how to display statistics about CF operations.
- The Section “Adding and removing a node from CIM” describes how to add and remove a node from CIM.
- The Section “Unconfigure CF” explains how to use the GUI to unconfigure CF.
- The Section “CIM Override” discusses how to use the GUI to override CIM, which causes a node to be ignored when determining a quorum.

5.1 Overview

CF administration is done by means of the Cluster Admin GUI. The following sections describe the CF Cluster Admin GUI options.
5.2 Starting Cluster Admin GUI and logging in

The first step is to start Web-based Admin View by entering the following URL in a java-enabled browser:

http://Management_Server:8081/Plugin.cgi

In this example, if fuji2 is a management server, enter the following:

http://fuji2:8081/Plugin.cgi

This brings up the Web-Based Admin View main window (see Figure 25).

![Cluster Admin start-up window](image)

Figure 25: Cluster Admin start-up window

Enter a user name in the **User name** field and the password and click on **OK**.

- In this example we are using `root` and not creating user groups.
GUI administration

Starting Cluster Admin GUI and logging in

Click on the *Global Cluster Services* button and the *Cluster Admin* button appears (see Figure 26).

![Cluster Admin top window](image)

Figure 26: Cluster Admin top window

Click on the *Cluster Admin* button.
Starting Cluster Admin GUI and logging in

The *Choose a node for initial connection* window appears (see Figure 27).

![Initial connection choice window](image)

Figure 27: Initial connection choice window

Select a node and click on *Ok*.
The Cluster Admin main window appears (see Figure 28).

![Figure 28: Cluster Admin main window](image)

By default, the \textit{cf} tab is selected and the CF main window is presented. Use the appropriate privilege level while logging in. There are three privilege levels: root privileges, administrative privileges, and operator privileges. The tab for RMS will appear as \textit{rms\&pcs} when PCS is installed and as \textit{rms} in configurations where PCS is not installed.

With the root privileges, you can perform all actions including configuration, administration and viewing tasks. With administrative privileges, you can view as well as execute commands but cannot make configuration changes. With the operator privileges, you can only perform viewing tasks.

5.3 Main CF table

When the GUI is first started, or after the successful completion of the configuration wizard, the main CF table will be displayed in the main panel. A tree showing the cluster nodes will be displayed in the left panel. An example of this display is shown in Figure 28.
The tree displays the local state of each node, but does not give information about how that node considers other nodes. If two or more nodes disagree about the state of a node, one or more colored exclamation marks appear next to the node. Each exclamation mark represents the node state of which another node considers that node to be.

The column on the left of the table lists the CF states of each node of the cluster as seen by the other nodes in the cluster. For instance, the cell in the second row and first column is the state of fuji3 as seen by the node fuji2.

There is an option at the bottom of the table to toggle the display of the state names. This is on by default. If this option is turned off, and there is a large number of nodes in the cluster, the table will display the node names vertically to allow a larger number of nodes to be seen.

There are two types of CF states. Local states are the states a node can consider itself in. Remote states are the states a node can consider another node to be in. Table 2 lists the local states.

<table>
<thead>
<tr>
<th>CF state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNLOADED</td>
<td>The node does not have a CF driver loaded.</td>
</tr>
<tr>
<td>LOADED</td>
<td>The node has a CF driver loaded, but is not running.</td>
</tr>
<tr>
<td>COMINGUP</td>
<td>The node is in the process of starting and should be UP soon.</td>
</tr>
<tr>
<td>UP</td>
<td>The node is up and running normally.</td>
</tr>
<tr>
<td>INVALID</td>
<td>The node has an invalid configuration and must be reconfigured.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The GUI has no information from this node. This can be temporary, but if it persists, it probably means the GUI cannot contact that node.</td>
</tr>
<tr>
<td>UNCONFIGURED</td>
<td>The node is unconfigured.</td>
</tr>
</tbody>
</table>

Table 2: Local states
GUI administration

Main CF table

Table 3 lists the remote states.

<table>
<thead>
<tr>
<th>CF state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>The node is up and part of this cluster.</td>
</tr>
<tr>
<td>DOWN</td>
<td>The node is down and not in the cluster.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The reporting node has no opinion on the reported node.</td>
</tr>
<tr>
<td>LEFTCLUSTER</td>
<td>The node has left the cluster unexpectedly, probably from a crash. To ensure cluster integrity, it will not be allowed to rejoin until marked DOWN.</td>
</tr>
</tbody>
</table>

Table 3: Remote states
5.4 Node details

To get detailed information on a cluster node, left-click on the node in the left tree. This replaces the main table with a display of detailed information. (To bring the main table back, left-click on the cluster name in the tree.) The panel displayed is similar to the display in Figure 29.

![Figure 29: CF node information](image)

Shown are the node's name, its CF state(s), operating system, platform, and the interfaces configured for use by CF. The states listed will be all of the states the node is considered to be in. For instance, if the node considers itself UNLOADED and other nodes consider it DOWN, DOWN/UNLOADED will be displayed.

The bottom part of the display is a table of all of the routes being used by CF on this node. It is possible for a node to have routes go down if a network interface or interconnect fails, while the node itself is still accessible.
5.5 Displaying the topology table

To examine and diagnose physical connectivity in the cluster, select `Tools -> Topology`. This menu option will produce a display of the physical connections in the cluster. This produces a table with the nodes shown along the left side and the interconnects of the cluster shown along the top. Each cell of the table lists the interfaces on that node connected to the interconnect. There is also a checkbox next to each interface showing if it is being used by CF. This table makes it easy to locate cabling errors or configuration problems at a glance.
Starting and stopping CF

There are two ways that you can start or stop CF from the GUI. The first is to simply right-click on a particular node in the tree in the left-hand panel. A state sensitive pop-up menu for that node will appear. If CF on the selected node is in a state where it can be started (or stopped), then the menu choice Start CF (or Stop CF) will be offered. Figure 31 shows the content-sensitive menu pop-up when you select Start CF.
GUI administration

Starting and stopping CF

You can also go to the Tools pull-down menu and select either Start CF or Stop CF (not shown). A pop-up listing all the nodes where CF may be started or stopped will appear. You can then select the desired node to carry out the appropriate action.

The CF GUI gets its list of CF nodes from the node used for the initial connection window as shown in Figure 27. If CF is not up and running on the initial connection node, then the CF GUI will not display the list of nodes in the tree in the left panel.

Because of this, when you want to stop CF on multiple nodes (including the initial node) by means of the GUI, ensure that the initial connection node is the last one on which you stop CF.
5.6.1 Stopping CF

Right-click on a CF node name and select *Stop CF* (see Figure 32).

![Stop CF](image-url)

Figure 32: Stop CF
GUI administration

Starting and stopping CF

A confirmation pop-up appears (see Figure 33). Choose Yes to continue.

![Stop CF Window](image)

Figure 33: Stopping CF

Before stopping CF, all services that run over CF on that node should first be shut down. When you invoke Stop CF from the GUI, it will use the CF dependency scripts to see what services are still running. It will print out a list of these in a pop-up and ask you if you wish to continue. If you do continue, it will then run the dependency scripts to shut down these services. If any service does not shutdown, then the Stop CF operation will fail.

The dependency scripts currently include only PRIMECLUSTER products. If third-party products, for example Oracle OPS, are using PAS or CF services, then the GUI will not know about them. In such cases, the third-party product should be shut down before you attempt to stop CF.

To stop CF on a node, the node’s CF state must be UP, COMING UP, or INVALID.
Starting and stopping CF

5.6.2 Starting CF

If CF is stopped on the initial connection node, the Cluster Admin main window appears with the CF options of Load driver or Unconfigure (see Figure 34). The CF state must be UNLOADED or LOADED to start CF on a node.

Figure 34: CF configured but not loaded

Click on the Load driver button to start the CF driver with the existing configuration.
GUI administration

Starting and stopping CF

The Start CF services popup appears (see Figure 35). By default the popup includes all CF services that have been installed on that node.

Figure 35: Start CF services pop-up

Once the CF driver has been loaded, click on the selection check box for each service that you want to start.

Click on the \textit{Ok} button and a status popup appears with the results of each service start operation (see Figure 36).

Figure 36: Start CF services status window
5.7 Marking nodes DOWN

If a node is shut down normally, it is considered \texttt{DOWN} by the remaining nodes. If it leaves the cluster unexpectedly, it will be considered \texttt{LEFTCLUSTER}. To ensure the integrity of the cluster, a node considered \texttt{LEFTCLUSTER} will not be allowed to rejoin the cluster until it has been marked \texttt{DOWN}. The menu option \texttt{Tools->Mark Node Down} allows nodes to be marked as \texttt{DOWN}.

To do this, select \texttt{Tools->Mark Node Down}. This displays a dialog of all of the nodes that consider another node to be \texttt{LEFTCLUSTER}. Clicking on one of them displays a list of all the nodes that node considered \texttt{LEFTCLUSTER}. Select one and then click \texttt{OK}. This clears the \texttt{LEFTCLUSTER} status on that node.

Refer to the Chapter “LEFTCLUSTER state” for more information on the \texttt{LEFTCLUSTER} state.

5.8 Using CF log viewer

The CF log messages for a given node may be displayed by right-clicking on the node in the tree and selecting \texttt{View Syslog Messages}.

Alternately, you may go to the \texttt{Tools} menu and select \texttt{View Syslog Messages}. This brings up a pop-up where you can select the node whose \texttt{syslog} messages you would like to view.

\textbf{Tip:} The CF log viewer shows only the CF messages that are found in the \texttt{syslog}. Non-CF messages in \texttt{syslog} are not shown.
Figure 37 shows an example of the CF log viewer.

The `syslog` messages appears in the right-hand panel. If you click on the `Detach` button on the bottom, then the `syslog` window appears as a separate window.
Using CF log viewer

GUI administration

Figure 38 shows the detached CF log viewer window.

The CF log viewer has search filters based on date/time/keyword and severity levels.
5.8.1 Search based on time filter

To perform a search based on a start and end time, click the check box for Enable, specify the start and end times for the search range, and click on the Filter button (see Figure 39).

![Search based on date/time](image)

Figure 39: Search based on date/time
5.8.2 Search based on keyword

To perform a search based on a keyword, enter a keyword and click on the *Filter* button (see Figure 40).

Figure 40: Search based on keyword
5.8.3 Search based on severity levels

To perform a search based severity levels, click on the Severity pull-down menu. You can choose from the severity levels shown in Table 4 and click on the Filter button. Figure 41 shows the log for a search based on severity level.

<table>
<thead>
<tr>
<th>Severity</th>
<th>Severity description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>Systems cannot be used</td>
</tr>
<tr>
<td>Alert</td>
<td>Immediate action is necessary</td>
</tr>
<tr>
<td>Critical</td>
<td>Critical condition</td>
</tr>
<tr>
<td>Error</td>
<td>Error condition</td>
</tr>
</tbody>
</table>

Table 4: CF log viewer severity levels
5.9 Displaying statistics

CF can display various statistics about its operation. There are three types of statistics available:

- ICF
- MAC
- Node to Node

To view the statistics for a particular node, right-click on that node in the tree and select the desired type of statistic.

Alternately, you can go to the Statistics menu and select the desired statistic. This will bring up a pop-up where you can select the node whose statistics you would like to view. The list of nodes presented in this pop-up will be all nodes whose states are UP as viewed from the login node.

<table>
<thead>
<tr>
<th>Severity level</th>
<th>Severity description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>Warning condition</td>
</tr>
<tr>
<td>Notice</td>
<td>Normal but important condition</td>
</tr>
<tr>
<td>Info</td>
<td>For information</td>
</tr>
<tr>
<td>Debug</td>
<td>Debug message</td>
</tr>
</tbody>
</table>

Table 4: CF log viewer severity levels
GUI administration

Displaying statistics

Figure 42 shows the display of ICF Statistics.

Figure 42: ICF statistics
Figure 43 shows the display of MAC Statistics,
GUI administration

Displaying statistics

To display node to node statistics, choose *Node to Node Statistics* and click on the desired node (see Figure 44).

![Figure 44: Selecting a node for node to node statistics](image-url)
Displaying statistics

The window for Node to Node Statistics appears (see Figure 45).

![Node to Node Statistics Window]

Figure 45: Node to Node statistics

The statistics counters for a node can be cleared by right-clicking on a node and selecting *Clear Statistics* from the command pop-up. The *Statistics* menu also offers the same option.
GUI administration

5.10 Adding and removing a node from CIM

To add a node to CIM, click on the **Tools** pull-down menu. Select **Cluster Integrity** and **Add to CIM** from the expandable pull-down menu (see Figure 46).

![Figure 46: CIM options](image-url)
Adding and removing a node from CIM

GUI administration

The *Add to CIM* pop-up display appears. Choose the desired CF node and click on *Ok* (see Figure 47).

![Add to CIM](image)

Figure 47: Add to CIM

To remove a node from CIM by means of the *Tools* pull-down menu, select *Cluster Integrity* and *Remove from CIM* from the expandable pull-down menu. Choose the CF node to be removed from the pop-up and click on *Ok*. A node can be removed at any time.

Refer to the Section “Cluster Integrity Monitor” for more details on CIM.
5.11 **Unconfigure CF**

To unconfigure a CF node, first stop CF on that node. Then, from the *Tools* pull-down menu, click on *Unconfigure CF*.

The *Unconfigure CF* pop-up display appears. Select the check box for the CF node to unconfigure, and click on *Ok* (see Figure 48).

![Unconfigure CF](image)

Figure 48: Unconfigure CF

The unconfigured node will no longer be part of the cluster. However, other cluster nodes will still show that node as *DOWN* until they are rebooted.
5.12 CIM Override

The CIM Override option causes a node to be ignored when determining a quorum. A node cannot be overridden if its CF state is **UP**. To select a node for CIM Override, right-click on a node and choose **CIM Override** (see Figure 49).

![Figure 49: CIM Override](image-url)
A confirmation pop-up appears (see Figure 50).

Click **Yes** to confirm.

Setting CIM override is a temporary action. It may be necessary to remove it manually again. This can be done by right-clicking on a node and selecting **Remove CIM Override** from the menu (see Figure 50).

CIM override is automatically removed when a node rejoins the cluster.
6 LEFTCLUSTER state

This chapter defines and describes the LEFTCLUSTER state.

This chapter discusses the following:

- The Section “Description of the LEFTCLUSTER state” describes the LEFTCLUSTER state in relation to the other states.
- The Section “Recovering from LEFTCLUSTER” discusses the different ways a LEFTCLUSTER state is caused and how to clear it.

Occasionally, while CF is running, you may encounter the LEFTCLUSTER state, as shown by running the cftool -n command. A message will be printed to the console of the remaining nodes in the cluster. This can occur under the following circumstances:

- Broken interconnects—All cluster interconnects going to another node (or nodes) in the cluster are broken.
- Panicked nodes—A node panics.
- Node in kernel debugger—A node is left in the kernel debugger for too long and heartbeats are missed.
- Entering the firmware monitor OBP—Will cause missed heartbeats and will result in the LEFTCLUSTER state.
- Reboot—Shutting down a node with the reboot command.

Nodes running CF should normally be shut down with the shutdown command or with the init command. These commands will run the rc scripts that will allow CF to be cleanly shut down on that node. If you run the reboot command, the rc scripts are not run, and the node will go down while CF is running. This will cause the node to be declared to be in the LEFTCLUSTER state by the other nodes.

If SF is fully configured and running on all cluster nodes, it will try to resolve the LEFTCLUSTER state automatically. If SF is not configured and running, or the SF fails to clear the state, the state has to be cleared manually. This section explains the LEFTCLUSTER state and how to clear this state manually.
6.1 Description of the LEFTCLUSTER state

Each node in a CF cluster keeps track of the state of the other nodes in the cluster. For example, the other node's state may be UP, DOWN, or LEFTCLUSTER. LEFTCLUSTER is an intermediate state between UP and DOWN, which means that the node cannot determine the state of another node in the cluster because of a break in communication.

For example, consider the three-node cluster shown in Figure 52.

![Figure 52: Three-node cluster with working connections](image)

Each node maintains a table of what states it believes all the nodes in the cluster are in.

Now suppose that there is a cluster partition in which the connections to Node C are lost. The result is shown in Figure 53.

![Figure 53: Three-node cluster where connection is lost](image)
LEFTCLUSTER state

Because of the break in network communications, Nodes A and B cannot be sure of Node C's true state. They therefore update their state tables to say that Node C is in the LEFTCLUSTER state. Likewise, Node C cannot be sure of the true states of Nodes A and B, so it marks those nodes as being in the LEFTCLUSTER in its state table.

LEFTCLUSTER is a state that a particular node believes other nodes are in. It is never a state that a node believes that it is in. For example, in Figure 53, each node believes that it is UP.

The purpose of the LEFTCLUSTER state is to warn applications which use CF that contact with another node has been lost and that the state of such a node is uncertain. This is very important for RMS.

For example, suppose that an application on Node C was configured under RMS to fail over to Node B if Node C failed. Suppose further that Nodes C and B had a shared disk to which this application wrote.

RMS needs to make sure that the application is, at any given time, running on either Node C or B but not both, since running it on both would corrupt the data on the shared disk.

Now suppose for the sake of argument that there was no LEFTCLUSTER state, but as soon as network communication was lost, each node marked the node it could not communicate with as DOWN. RMS on Node B would notice that Node C was DOWN. It would then start an instance of the application on Node C as part of its cluster partition processing. Unfortunately, Node C isn't really DOWN. Only communication with it has been lost. The application is still running on Node C. The applications, which assume that they have exclusive access to the shared disk, would then corrupt data as their updates interfered with each other.

The LEFTCLUSTER state avoids the above scenario. It allows RMS and other application using CF to distinguish between lost communications (implying an unknown state of nodes beyond the communications break) and a node that is genuinely down.

When SF notices that a node is in the LEFTCLUSTER state, it uses a non-CF communications facility to contact the previously configured Shutdown Agent and requests that the node which is in the LEFTCLUSTER state be shut down. With PRIMECLUSTER, a weight calculation determines which node or nodes should survive and which ones should be shut down. SF has the capability to arbitrate among the shutdown requests and shut down a selected set of nodes in the cluster, such that the subcluster with the largest weight is left running and the remaining subclusters are shutdown.
Recovering from LEFTCLUSTER

In the example given, Node C would be shut down, leaving Nodes A and B running. After the SF software shuts down Node C, SF on Nodes A and B clear the LEFTCLUSTER state such that Nodes A and B see Node C as DOWN. Refer to the Chapter “Shutdown Facility” for details on configuring SF and shutdown agents.

Note that a node cannot join an existing cluster when the nodes in that cluster believe that the node is in the LEFTCLUSTER state. The LEFTCLUSTER state must be cleared before the joining can be done.

6.2 Recovering from LEFTCLUSTER

If SF is not running on all nodes, or if SF is unable to shut down the node which left the cluster, and the LEFTCLUSTER condition occurs, then the system administrator must manually clear the LEFTCLUSTER state. The procedure for doing this depends on how the LEFTCLUSTER condition occurred.

6.2.1 Caused by a panic/hung node

The LEFTCLUSTER state may occur because a particular node panicked or hung. In this case, the procedure to clear LEFTCLUSTER is as follows:

1. Make sure the node is really down. If the node panicked and came back up, proceed to Step 2. If the node is in the debugger, exit the debugger. The node will reboot if it panicked, otherwise shut down the node, called the offending node in the following discussion.

2. While the offending node is down, use Cluster Admin to log on to one of the surviving nodes in the cluster. Invoke the CF GUI and select Mark Node Down from the Tools pull-down menu, then mark the offending node as DOWN. This may also be done from the command line by using the following command:

 # cftool -k

3. Bring the offending node back up. It will rejoin the cluster as part of the reboot process.

6.2.2 Caused by staying in the kernel debugger too long

In Figure 54, Node C was placed in the kernel debugger too long so it appears as a hung node. Nodes A and B decided that Node C’s state was LEFTCLUSTER.
To recover from this situation, you would need to do the following:

1. Shut down the node.
2. While Node C is down, start up the Cluster Admin on Node A or B. Use **Mark Node Down** from the **Tools** pull-down menu in the CF portion of the GUI to mark Node C **DOWN**.
3. Bring Node C back up. It will rejoin the cluster as part of its reboot process.

6.2.3 Caused by a cluster partition

A cluster partition refers to a communications failure in which all CF communications between sets of nodes in the cluster are lost. In this case, the cluster itself is effectively partitioned into sub-clusters.

To manually recover from a cluster partition, you must do the following:

1. Decide which of the sub-clusters you want to survive. Typically, you will chose the sub-cluster that has the largest number of nodes in it or the one where the most important hardware is connected or the most important application is running.
2. Shut down all of the nodes in the sub-cluster which you don’t want to survive.
3. While the nodes are down, use the Cluster Admin GUI to log on to one of the surviving nodes and run the CF portion of the GUI. Select **Mark Node Down** from the **Tools** menu to mark all of the shut down nodes as **DOWN**.
4. Fix the network break so that connectivity is restored between all nodes in the cluster.
5. Bring the nodes back up. They will rejoin the cluster as part of their reboot process.

Recovering from LEFTCLUSTER

For example, consider Figure 55.

In Figure 55, a four-node cluster has suffered a cluster partition. Both of its CF interconnects (Interconnect 1 and Interconnect 2) have been severed. The cluster is now split into two sub-clusters. Nodes A and B are in one sub-cluster while Nodes C and D are in the other.

To recover from this situation, in instances where SF fails to resolve the problem, you would need to do the following:

1. Decide which sub-cluster you want to survive. In this example, let us arbitrarily decide that Nodes A and B will survive.

2. Shut down all of the nodes in the other sub-cluster, here Nodes C and D.

3. While Nodes C and D are down, run the Cluster Admin GUI on either Node A or Node B. Start the CF portion of the GUI and go to Mark Node Down from the Tools pull-down menu. Mark Nodes C and D as DOWN.

4. Fix the interconnect break on Interconnect 1 and Interconnect 2 so that both sub-clusters will be able to communicate with each other again.

5. Bring Nodes C and D back up.
LEFTCLUSTER state

Recovering from LEFTCLUSTER

6.2.4 Caused by reboot

The LEFTCLUSTER state may occur because a particular node (called the offending node) has been rebooted. In this case the procedure to clear LEFTCLUSTER is as follows:

1. Make sure the offending node is rebooted in multi-user mode.

2. Use Cluster Admin to log on to one of the surviving nodes in the cluster. Invoke the CF GUI by selecting Mark Node Down from the Tools pull-down menu. Mark the offending node as DOWN.

3. The offending node will rejoin the cluster automatically.
7 CF topology table

This chapter discusses the CF topology table as it relates to the CF portion of the Cluster Admin GUI.

This chapter discusses the following:

- The Section “Basic layout” discusses the physical layout of the topology table.
- The Section “Selecting devices” discusses how the GUI actually draws the topology table.
- The Section “Examples” shows various network configurations and what their topology tables would look like.

The CF topology table is part of the CF portion of the Cluster Admin GUI. The topology table may be invoked from the Tools->Topology menu item in the GUI (refer to the Section “Displaying the topology table” in the Chapter “GUI administration”). It is also available during CF configuration in the CF Wizard in the GUI.

The topology table is designed to show the network configuration from perspective of CF. It shows what devices are on the same interconnects and can communicate with each other.

The topology table only considers Ethernet devices. It does not include any IP interconnects that might be used for CF, even if CF over IP is configured.

Displayed devices

The topology table is generated by doing CF pings on all nodes in the cluster and then analyzing the results. On pre-4.0 systems, when the CF driver was loaded, it pushed its modules on all possible Ethernet devices on the system regardless of whether or not they were configured. This allowed CF pings to be done on all Ethernet devices on all nodes in the cluster. Thus, all Ethernet devices would show up in the topology table.

With PRIMECLUSTER 4.0, however, the behavior changed. Starting in 4.0, the CF product offered two different ways to load the driver. A cfconfig -l caused the driver to be loaded in the same way as it was on pre-4.0 systems. The CF modules would be pushed on all Ethernet devices on the system. However, the new option cfconfig -L caused CF to push CF modules only on the Ethernet devices which were configured for use with CF.
The \(-L\) option offers several advantages. On systems with large disk arrays, it meant that CF driver load time was often dramatically reduced. On PRIMEPOWER systems with dynamic hardware reconfiguration, Ethernet controllers that are not used by CF could be moved more easily between partitions. Because of these advantages, the \(rc\) scripts that load CF use the \(-L\) option.

However, the \(-L\) option restricts the devices which are capable of sending or receiving CF pings to only configured devices. CF has no knowledge of other Ethernet devices on the system. Thus, when the topology table displays devices for a node where CF has been loaded with the \(-L\) option, it only displays devices that have been configured for CF.

It is possible that a running cluster might have a mixture of nodes where some were loaded with \(-l\) and others were loaded with \(-L\). In this case, the topology table would show all Ethernet devices for nodes loaded with \(-l\), but only CF configured devices for nodes loaded with \(-L\). The topology table indicates which nodes have been loaded with the \(-L\) option by adding an asterisk (*) after the node's name.

When a cluster is totally unconfigured, the CF Wizard will load the CF driver on each node using the \(-l\) option. This allows all devices on all nodes to be seen. After the configuration is complete, the CF Wizard will unload the CF driver on the newly configured nodes and reload it with \(-L\). This means that if the topology table is subsequently invoked on a running cluster, only configured devices will typically be seen.

If you are using the CF Wizard to add a new CF node into an existing cluster where CF is already loaded, then the Wizard will load the CF driver on the new node with \(-l\) so all of its devices can be seen. However, it is likely that the already configured nodes will have had their CF drivers loaded with \(-L\), so only configured devices will show up on these nodes.

The rest of this chapter discusses the format of the topology table. The examples implicitly assume that all devices can be seen on each node. Again, this would be the case when first configuring a CF cluster.
The basic layout of the topology table is shown in Table 5.

<table>
<thead>
<tr>
<th>mycluster</th>
<th>Full interconnects</th>
<th>Partial interconnects</th>
<th>Unconnected devices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int 1</td>
<td>Int 2</td>
<td>Int 3</td>
</tr>
<tr>
<td>Node A</td>
<td>hme0</td>
<td>hme2</td>
<td>hme3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node B</td>
<td>hme0</td>
<td>hme2</td>
<td>missing</td>
</tr>
<tr>
<td>Node C</td>
<td>hme1</td>
<td>hme2</td>
<td>hme3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Basic layout for the CF topology table

The upper-left-hand corner of the topology table gives the CF cluster name. Below it, the names of all of the nodes in the cluster are listed.

The CF devices are organized into three major categories:

- **Full interconnects**—Have working CF communications to each of the nodes in the cluster.
- **Partial interconnects**—Have working CF communications to at least two nodes in the cluster, but not to all of the nodes.
- **Unconnected devices**—Have no working CF communications to any node in the cluster.

If a particular category is not present, it will be omitted from the topology table. For example, if the cluster in Table 5 had no partial interconnects, then the table headings would list only full interconnects and unconnected devices (as well as the left-most column giving the clusternme and node names).

Within the full interconnects and partial interconnects category, the devices are further sorted into separate interconnects. Each column under an Int number heading represents all the devices on an interconnect. (The column header Int is an abbreviation for Interconnect.) For example, in Table 5, there are two full interconnects listed under the column headings of Int 1 and Int 2.

Each row for a node represents possible CF devices for that node.

Thus, in Table 5, Interconnect 1 is a full interconnect. It is attached to hme0 and hme2 on Node A. On Node B, it is attached to hme0, and on Node C, it is attached to hme1.
Selecting devices

Since CF runs over Ethernet devices, the hme\textsubscript{n} devices in Table 5 represent the Ethernet devices found on the various systems. The actual names of these devices will vary depending on the type of Ethernet controllers on the system. For nodes whose CF driver was loaded with \texttt{-L}, only configured devices will be shown.

It should be noted that the numbering used for the interconnects is purely a convention used only in the topology table to make the display easier to read. The underlying CF product does not number its interconnects. CF itself only knows about CF devices and point-to-point routes.

If a node does not have a device on a particular partial interconnect, then the word \texttt{missing} will be printed in that node’s cell in the partial interconnects column. For example, in Table 5, Node B does not have a device for the partial interconnect labeled Int 3.

7.2 Selecting devices

The basic layout of the topology table is shown in Table 5. However, when the GUI actually draws the topology table, it puts check boxes next to all of the interconnects and CF devices as shown in Table 6.

<table>
<thead>
<tr>
<th>mycluster</th>
<th>Full interconnects</th>
<th>Partial interconnects</th>
<th>Unconnected devices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Int 1 □ Int 2</td>
<td>□ Int 3 □ Int 4</td>
<td></td>
</tr>
<tr>
<td>Node A</td>
<td>hme0</td>
<td>hme2</td>
<td>hme1</td>
</tr>
<tr>
<td>Node B</td>
<td>hme0</td>
<td>hme2</td>
<td>□ missing</td>
</tr>
<tr>
<td>Node C</td>
<td>hme1</td>
<td>hme2</td>
<td>□ hme3</td>
</tr>
</tbody>
</table>

Table 6: Topology table with check boxes shown

The check boxes show which of the devices were selected for use in the CF configuration. (In the actual topology table, check marks appear instead of x’s.)

When the topology table is used outside of the CF Wizard, these check boxes are read-only. They show what devices were previously selected for the configuration. In addition, the unchecked boxes (representing devices which were not configured for CF) will not be seen for nodes where \texttt{-L} was used to load CF.
When the topology table is used within the CF Wizard, then the check boxes may be used to select which devices will be included in the CF configuration. Clicking on the check box in an Int number heading will automatically select all devices attached to that interconnect. However, if a node has multiple devices connected to a single interconnect, then only one of the devices will be selected.

For example, in Table 6, Node A has both hme0 and hme2 attached to Interconnect 1. A valid CF configuration allows a given node to have only one CF device configured per interconnect. Thus, in the CF Wizard, the topology table will only allow hme0 or hme2 to be selected for Node A. In the above example, if hme2 were selected for Node A, then hme0 would automatically be unchecked.

If the CF Wizard is used to add a new node to an existing cluster, then the devices already configured in the running cluster will be displayed as read-only in the topology table. These existing devices may not be changed without unconfiguring CF on their respective nodes.

7.3 Examples

The following examples show various network configurations and what their topology tables would look like when the topology table is displayed in the CF Wizard on a totally unconfigured cluster. For simplicity, the check boxes are omitted.

Example 1

In this example, there is a three-node cluster with three full interconnects (see Figure 56).

![Figure 56: A three-node cluster with three full interconnects](image-url)
Examples

The resulting topology table for Figure 56 is shown in Table 7.

<table>
<thead>
<tr>
<th>mycluster</th>
<th>Full interconnects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int 1</td>
</tr>
<tr>
<td>Node A</td>
<td>hme0</td>
</tr>
<tr>
<td>Node B</td>
<td>hme0</td>
</tr>
<tr>
<td>Node C</td>
<td>hme0</td>
</tr>
</tbody>
</table>

Table 7: Topology table for 3 full interconnects

Since there are no partial interconnects or unconnected devices, those columns are omitted from the topology table.

Example 2

In this example, Node A's Ethernet connection for hme1 has been broken (see Figure 57).

![Broken Ethernet connection for hme1 on Node A](image-url)
The resulting topology table for Figure 57 is shown in Table 8.

<table>
<thead>
<tr>
<th>mycluster</th>
<th>Full interconnects</th>
<th>Partial interconnects</th>
<th>Unconnected devices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int 1</td>
<td>Int 2</td>
<td>Int 3</td>
</tr>
<tr>
<td>Node A</td>
<td>hme0</td>
<td>hme2</td>
<td>missing</td>
</tr>
<tr>
<td>Node B</td>
<td>hme0</td>
<td>hme2</td>
<td>hme1</td>
</tr>
<tr>
<td>Node C</td>
<td>hme0</td>
<td>hme2</td>
<td>hme1</td>
</tr>
</tbody>
</table>

Table 8: Topology table with broken Ethernet connection

In Table 8, hme1 for Node A now shows up as an unconnected device. Since one of the interconnects is missing a device for Node A, the Partial Interconnect column now shows up. Note that the relationship between interconnect numbering and the devices has changed between Table 7 and Table 8. In Table 7, for example, all hme1 devices were on Int 2. In Table 8, the hme1 devices for Nodes B and C are now on the partial interconnect Int 3. This change in numbering illustrates the fact that the numbers have no real significance beyond the topology table.

Example 3

This example shows a cluster with severe networking or cabling problems in which no full interconnects are found.
Examples

The resulting topology table for Figure 58 is shown in Table 9.

<table>
<thead>
<tr>
<th>mycluster</th>
<th>Partial interconnects</th>
<th>Unconnected devices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int 1</td>
<td>Int 2</td>
</tr>
<tr>
<td>Node A</td>
<td>hme0</td>
<td>missing</td>
</tr>
<tr>
<td>Node B</td>
<td>missing</td>
<td>hme1</td>
</tr>
<tr>
<td>Node C</td>
<td>hme0</td>
<td>hme1</td>
</tr>
</tbody>
</table>

Table 9: Topology table with no full interconnects

In Table 9, the full interconnects column is omitted since there are none. Note that if this configuration were present in the CF Wizard, the wizard would not allow you to do configuration. The wizard requires that at least one full interconnect must be present.
8 Shutdown Facility

This chapter describes the components and advantages of PRIMECLUSTER Shutdown Facility (SF) and provides administration information.

Certain product options are region-specific. For information on the availability of a specific Shutdown Agent (SA), contact your local customer-support service representative.

This chapter discusses the following:

- The Section “Overview” describes the components of SF.
- The Section “Available Shutdown Agents” describes the available agents for use by the SF.
- The Section “SF split-brain handling” describes the methods for resolving split cluster situations.
- The Section “Configuring the Shutdown Facility” describes the configuration of SF and its agents.
- The Section “SF facility administration” provides information on administering SF.
- The Section “Logging” describes the log files used by SF and its agents.

8.1 Overview

The SF provides the interface for managing the shutdown of cluster nodes when error conditions occur. The SF also advises other PRIMECLUSTER products of the successful completion of node shutdown so that recovery operations can begin.

The SF is made up of the following major components:

- The Shutdown Daemon (SD)
- One or more Shutdown Agents (SA)
- Monitoring Agent (MA)
- sdtool(1M) command
Overview

Shutdown Facility

Shutdown Daemon

The SD is started at system boot time and is responsible for the following:

- Monitoring the state of all cluster nodes
- Monitoring the state of all registered SAs
- Reacting to indications of cluster node failure and verifying or managing node elimination
- Resolving split-brain conditions
- Advising other PRIMECLUSTER products of node elimination completion

The SD uses SAs to perform most of its work with regard to cluster node monitoring and elimination. In addition to SA's, the SD interfaces with the Cluster Foundation layer's ENS system to receive node failure indications and to advertise node elimination completion.

Shutdown Agents

The SA's role is to attempt to shut down a remote cluster node in a manner in which the shutdown can be guaranteed. Some of the SAs are shipped with the SF product, but may differ based on the architecture of the cluster node on which SF is installed. SF allows any PRIMECLUSTER service layer product to shut down a node whether RMS is running or not.

An SA is responsible for shutting down, and verifying the shutdown of a cluster node. Each SA uses a specific method for performing the node shutdown such as:

- `SA_scon` uses the cluster console running the SCON software.
- `SA_pprcip` and `SA_pprcir` use the RCI interface available on PRIMEPOWER nodes.
- `SA_rccu` uses the RCCU or XSCF units on PRIMEPOWER nodes to perform console break panics.
- `SA_wtinps` uses an NPS unit.
- `SA_rps` uses an RPS unit.
- `SA_xscfp` and `SA_xscfr` use XSCF to panic or reset a PRIMEPOWER 250 or 450 machine respectively.

The Section “Available Shutdown Agents” discuss SAs in more detail.
If more than one SA is used, the first SA in the configuration is used as the primary SA. SD always uses the primary SA. The other secondary SAs are used as fall back SAs only if the primary SA fails for some reason.

Monitoring Agent

The monitoring agent provides the following functions:

- Monitors the remote node—Monitors the state of the remote node that uses the hardware features. It also notifies the SD of a failure in the event of an unexpected system panic and shutoff.

- Eliminates the remote node—Provides a function to forcibly shut down the node as Shutdown Agent.

sdtool command

The `sdtool(1M)` utility is the command line interface for interacting with the SD. With it the administrator can:

- Start and stop the SD (although this is typically done with an RC script run at boot time)

- View the current state of the SA's

- Force the SD to reconfigure itself based on new contents of its configuration file

- Dump the contents of the current SF configuration

- Enable/disable SD debugging output

- Eliminate a cluster node

Although the `sdtool(1M)` utility provides a cluster node elimination capability, the preferred method for controlled shutdown of a cluster node is the `/usr/sbin/shutdown` command.

8.2 Available Shutdown Agents

This section describes the following set of supported SAs:

- RCI—Remote Cabinet Interface
- XSCF—eXtended System Control Facility
- NPS—Network Power Switch
Available Shutdown Agents

● SCON—Single Console
● RCCU—Remote Console Control Unit
● RPS—Remote Power Switch

Table 10 lists the available SAs.

<table>
<thead>
<tr>
<th>SA</th>
<th>Name</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCON</td>
<td>SA_scon</td>
<td>PRIMEPOWER</td>
</tr>
<tr>
<td>RCI</td>
<td>SA_pprcip, SA_pprcir</td>
<td>PRIMEPOWER</td>
</tr>
<tr>
<td>RCCU</td>
<td>SA_rccu</td>
<td>PRIMEPOWER</td>
</tr>
<tr>
<td>NPS</td>
<td>SA_wtinps</td>
<td>Any</td>
</tr>
<tr>
<td>RPS</td>
<td>SA_rps</td>
<td>Any</td>
</tr>
<tr>
<td>XSCF</td>
<td>SA_xscfp, SA_xscf, SA_rccu</td>
<td>PRIMEPOWER with XSCF</td>
</tr>
</tbody>
</table>

Table 10: Available Shutdown Agents

8.2.1 RCI

The RCI SA provides a shutdown method only for the PRIMEPOWER clusters on all PRIMEPOWER platforms.

There are two kinds of RCI SAs:
● SA_pprcip—Provides a shutdown mechanism by panicking the node through RCI.
● SA_pprcir—Provides a shutdown mechanism by resetting the node through RCI.

Setup and configuration

Hardware setup of the RCI is performed only by qualified support personnel. Contact them for more information. In addition, you can refer to the manual shipped with the unit and to any relevant PRIMECLUSTER Release Notices for more details on configuration.

Log files

/var/opt/SMAWsf/log/SA_pprcip.log
/var/opt/SMAWsf/log/SA_pprcir.log
8.2.2 XSCF

XSCF (eXtended System Control Facility) is a console monitoring agent that is supported only on PRIMEPOWER machines where XSCF is mounted. Refer to the XSCF (eXtended System Control Facility) User's Guide for complete details on XSCF.

The different types of XSCF SAs provide shutdown mechanisms as follows:

- **SA_xscfp**—panics the node through RCI
- **SA_xscfr**—resets the node through RCI
- **SA_rccu**—sends a control break signal over the node's console

Setup and configuration

If you use XSCF as a console, you need to confirm the following:

- The standard console is the SCF-LAN port.
- Only the Read console port is enabled in XSCF telnet ports.
- The XSCF shell port (hereafter referred to as control port) is enabled in the XSCF telnet ports.
- The group ID of a user account to log on to the control port is root.

Refer to the XSCF (eXtended System Control Facility) User's Guide for complete details on how to configure XSCF.

Log files

/var/opt/SMAWsf/log/SA_xscfp.log
/var/opt/SMAWsf/log/SA_xscfr.log
/var/opt/SMAWsf/log/SA_rccu.log

8.2.3 SCON

The Single Console (SCON) SA, **SA_scon**, provides an alternative SA for PRIMECLUSTER. SCON performs necessary node elimination tasks, coordinated with console usage.
Available Shutdown Agents

Setup and configuration

To use the SA_scon SA, a system console (external to the cluster nodes) should be fully configured with the SCON product. Refer to the Chapter "System console" for details on the setup and configuration of SCON.

SA_scon is one of the SAs called by the Shutdown Facility when performing node elimination. The SA_scon process running on the cluster node communicates with the SCON running on the cluster console to request that a cluster node be eliminated. To communicate with the cluster console, the SA_scon SA must be properly configured.

Log file
/var/opt/SMAWs/1og/SA_scon.log

8.2.4 RCCU

The Remote Console Control Unit (RCCU) SA, SA_rccu, provides a SA using the RCCU.

Setup and configuration

The RCCU unit must be configured according to the directions in the manual shipped with the unit. The RCCU unit should be assigned an IP address and name, so that the cluster nodes can connect to it over the network. All the RCCU ports that will be connected to the cluster nodes console lines should be configured according to the instructions given in the manual.

Node elimination by the RCCU monitoring agent is done by sending a control break signal over the node's console line.

Log file
/var/opt/SMAWs/1og/SA_rccu.log

8.2.5 RPS

The Remote Power Switch (RPS) SA, SA_rps, provides a node shutdown function using the RPS unit.
Shutdown Facility

Available Shutdown Agents

Setup and configuration

The RPS must be configured according to the directions in the RPS manuals. The optional software SMAWrsb must be installed and working for power off and power on commands. The nodes must be connected to plugs with the plug-IDs given in the appropriate host entry.

Log file

/var/opt/SMAWsf/log/SA_rps.log

8.2.6 NPS

The Network Power Switch (NPS) SA is SA_wtinps. This SA provides a node shutdown function using the Western Telematic Inc. Network Power Switch (WTI NPS) unit to power-cycle selected nodes in the cluster.

Setup and configuration

The WTI NPS unit must be configured according to the directions in the manual shipped with the unit. At the very least, an IP address must be assigned to the unit and a password must be enabled. Make sure that the cluster node’s power plugs are plugged into the NPS box and that the command confirmation setting on the NPS box is set to on.

It is advisable to have the NPS box on a robust LAN connected directly to the cluster nodes.

The boot delay of every configured plug in the NPS box should be set to 10 seconds.

If you want to set the boot delay to any other value, make sure that the “timeout value” for the corresponding SA_wtinps agent should be set such that it is greater than this boot delay value by at least 10 seconds. To set this value, use the detailed configuration mode for SF.

If more than a single plug is assigned to a single node (which means that more than one plug will be operated per/on, /off, /boot command), the “boot delay” of these plugs must be assigned to a value larger than 10 seconds, otherwise timeouts may occur. The timeout value of the corresponding SA_wtinps should be set as follows:

timeout = boot_delay + (* 2 * no of plugs) + 10
8.3 SF split-brain handling

The PRIMECLUSTER product provides the ability to gracefully resolve split-brain situations as described in this section.

8.3.1 Administrative LAN

Split-brain processing makes use of Administrative LAN. For details on setting up such a LAN, see the PRIMECLUSTER Installation Guide (Solaris). The use of Admin LAN is optional, however the use of an Administrative LAN is recommended for faster and more accurate split-brain handling.

8.3.2 Overview of split-brain handling

A split-brain condition is one in which one or more cluster nodes have stopped receiving heartbeats from one or more other cluster nodes, yet those nodes have been determined to still be running. Each of these distinct sets of cluster nodes is called a sub-cluster, and when a split-brain condition occurs the Shutdown Facility has a choice to make as to which sub-cluster should remain running.

Only one of the sub-clusters in a split-brain condition can survive. The SF determines which sub-cluster is most important and allows only that sub-cluster to remain. SF determines the importance of each subcluster by calculating the total node weight and application weight of each subcluster. The subcluster with the greatest total weight survives.

Node weights are defined in the SF configuration file rcsd.cfg. Typically, you use Cluster Admin's SF Wizard to set the node weights.

Application weights are defined in RMS. Each RMS userApplication object can have a ShutdownPriority defined for it. The value of the ShutdownPriority is that application's weight. RMS calculates the total application weight for a particular node by adding up the weights of all applications that are Online on that node. If an application is switched from one node to another, its weight will be transferred to the new node.
SF combines the values for the RMS \texttt{ShutdownPriority} attributes and the SF weight assignments to determine how to handle a split-brain condition.

\textbf{RMS \texttt{ShutdownPriority} attribute}

RMS supports the ability to set application importance in the form of a \texttt{ShutdownPriority} value for each \texttt{userApplication} object defined within the RMS configuration. These values are combined for all \texttt{userApplication} objects that are \texttt{Online} on a given cluster node to represent the total application weight of that node. When a \texttt{userApplication} object is switched from one node to another, the value of that \texttt{userApplication} object's \texttt{ShutdownPriority} is transferred to the new node.

The higher the value of the \texttt{ShutdownPriority} attribute, the more important the application.

\textbf{Shutdown Facility weight assignment}

The Shutdown Facility supports the ability to define node importance in the form of a weight setting in the configuration file. This value represents a node weight for the cluster node.

The higher the node weight value, the more important the node.

Although SF takes into consideration both SF node weights and RMS application weights while performing split-brain handling, it is recommended to use only one of the weights for simplicity and ease of use. When both weights are used, split-brain handling results are much more complex.

It is recommended that you follow the guidelines in the Section “Configuration notes” for help you with the configuration.

\textbf{8.3.3 Runtime processing}

Split-brain handling may be performed by one of the following elements of the Shutdown Facility:

- The cluster console running the SCON software
- The Shutdown Facility internal algorithm
Both methods use the node weight calculation to determine which sub-cluster is of greater importance. The node weight is the added value of the node weight defined in the Shutdown Facility and the total application weight calculated within RMS.

SCON algorithm

When the SCON is selected as the split-brain resolution manager, SF passes the node weight to the SA_scon SA which in turn passes a shutdown request to the SCON.

All cluster nodes send shutdown requests to the SCON containing the name of the node requesting the shutdown, its node weight, and the name of the node to shutdown. These shutdown requests are passed to the SCON over an administrative network (which may or may not be the same network identified as admIP within the SF configuration file). The SCON collects these requests and determines which sub-cluster is the heaviest and proceeds to shut down all other nodes not in the heaviest sub-cluster.

The SCON evaluation algorithm gathers all incoming shutdown requests during a configurable time interval and checks them for symmetry. This is to distinguish how to resolve the algorithm between the following situations:

1. For every shutdown request from node A to node B, there is also another request from node B to shutdown node A. In this case, no machine has really died. In this case, SF is up and running on all machines, but communication inside the cluster is damaged (split-brain condition).

2. There are unsymmetrical shutdown requests; therefore, it is unclear if there are real breakdowns or if there are communication losses inside the cluster and to the SCON.

In the first case, where no machine has really died, an algorithm determines the best-remaining subcluster by finding all cliques in a graph and then takes either the largest cluster or the cluster with the highest priority. (A clique in a graph is a completely connected subgraph, which means that every node in the subcluster can see every other node in the subcluster.)

If there are unsymmetrical requests, SCON shuts down the machine that has the highest number of requests for its shutdown—and then the one with the highest number of remaining requests and so on—and thus ends up with high probability of a best-remaining subcluster.
Shutdown Facility

SF split-brain handling

SF internal algorithm

When the SF is selected as the split-brain resolution manager, the SF uses the node weight internally.

The SF on each cluster node identifies which cluster nodes are outside its sub-cluster and adds each one of them to an internal shutdown list. This shutdown list, along with the local nodes node weight, is advertised to the SF instances running on all other cluster nodes (both in the local sub-cluster and outside the local sub-cluster) via the admIP network defined in the SF configuration file. After the SFs on each cluster node receive the advertisements, they each calculate the heaviest sub-cluster. The heaviest sub-cluster shuts down all lower weight sub-clusters.

In addition to handling well-coordinated shutdown activities defined by the contents of the advertisements, the SF internal algorithm will also resolve split-brain if the advertisements fail to be received. If the advertisements are not received then the split-brain will still be resolved, but it may take a bit more time as some amount of delay will have to be incurred.

The split-brain resolution done by the SF in situations where advertisements have failed depends on a variable delay based on the inverse of the percentage of the available cluster weight the local sub-cluster contains. The more weight it contains the less it delays. After the delay expires (assuming the sub-cluster has not been shut down by a higher-weight sub-cluster) the SF in the sub-cluster begins shutting down all other nodes in all other sub-clusters.

If a sub-cluster contains greater than 50 percent of the available cluster weight, then the SF in that sub-cluster will immediately start shutting down all other nodes in all other sub-clusters.

8.3.4 Split-brain resolution manager selection

The selection of the method to use for split-brain resolution (SCON or SF) depends on site specific conditions. This is done automatically at startup.

SCON is selected as the split-brain resolution manager if SCON is the only SA for your cluster.

For all other situations, SF is selected as the split-brain resolution manager.

If SF is selected as the split-brain resolution manager, SCON should be configured not to do split-brain processing. This can be done by changing the rmshosts.method file. Refer to the Section "rmshosts method file" for more information.
SF split-brain handling

This selection cannot be changed manually after startup.

8.3.5 Configuration notes

When configuring the Shutdown Facility, RMS, and defining the various weights, the administrator should consider what the eventual goal of a split-brain situation should be.

Typical scenarios that are implemented are as follows:

- **Largest Sub-cluster Survival (LSS)**
- **Specific Hardware Survival (SHS)**
- **Specific Application Survival (SAS)**

The weights applied to both cluster nodes and to defined applications allow considerable flexibility in defining what parts of a cluster configuration should survive a split-brain condition. Using the settings outlined below, administrators can advise the Shutdown Facility about what should be preserved during split-brain resolution.

Largest Sub-cluster Survival

In this scenario, the administrator does not care which physical nodes survive the split, just that the maximum number of nodes survive. If RMS is used to control applications, it will move the applications to the surviving cluster nodes after split-brain resolution has succeeded.

This scenario is achieved as follows:

- By means of Cluster Admin, set the SF node weight values to 1.1 is the default value for this attribute, so new cluster installations may simply ignore it.

- By means of the RMS Wizard Tools, set the RMS attribute ShutdownPriority of all userApplications to 0.0 is the default value for this attribute, so if you are creating new applications you may simply ignore this setting.

As can be seen from the default values of both the SF weight and the RMS ShutdownPriority, if no specific action is taken by the administrator to define a split-brain resolution outcome, LSS is selected by default.
Specific Hardware Survival

In this scenario, the administrator has determined that one or more nodes contain hardware that is critical to the successful functioning of the cluster as a whole.

This scenario is achieved as follows:

- By means of Cluster Admin, set the SF node weight of the cluster nodes containing the critical hardware to values more than double the combined value of cluster nodes not containing the critical hardware.

- By means of the RMS Wizard Tools, set the RMS attribute `ShutdownPriority` of all `userApplications` to 0.0 is the default value for this attribute so if you are creating new applications you may simply ignore this setting.

As an example, in a four-node cluster in which two of the nodes contain critical hardware, set the SF weight of those critical nodes to 10 and set the SF weight of the non-critical nodes to 1. With these settings, the combined weights of both non-critical nodes will never exceed even a single critical node.

Specific Application Survival

In this scenario, the administrator has determined that application survival on the node where the application is currently `Online` is more important than node survival. This can only be implemented if RMS is used to control the application(s) under discussion. This can get complex if more than one application is deemed to be critical and those applications are running on different cluster nodes. In some split-brain situations, all applications will not survive and will need to be switched over by RMS after the split-brain has been resolved.

This scenario is achieved as follows:

- By means of Cluster Admin, set the SF node weight values to 1. 1 is the default value for this attribute, so new cluster installations may simply ignore it.

- By means of the RMS Wizard Tools, set the RMS attribute `ShutdownPriority` of the critical applications to more than double the combined values of all non-critical applications, plus any SF node weight.

As an example, in a four-node cluster there are three applications. Set the SF weight of all nodes to 1, and set the `ShutdownPriority` of the three applications to 50, 10, 10. This would define that the application with a `ShutdownPriority` of 50 would survive no matter what, and further that the sub-cluster containing the node on which this application was running would...
survive the split no matter what. To clarify this example, if the cluster nodes were A, B, C and D all with a weight of 1, and App1, App2 and App3 had ShutdownPriority of 50, 10 and 10 respectively, even in the worst-case split that node D with App1 was split from nodes A, B and C which had applications App2 and App3 the weights of the sub-clusters would be D with 51 and A,B,C with 23. The heaviest sub-cluster (D) would win.
8.4 Configuring the Shutdown Facility

This section describes how to use Cluster Admin and the CLI to configure the Shutdown Facility (SF).

8.4.1 Invoking the Configuration Wizard

Use the Tools pull-down menu to select Shutdown Facility, and then choose Configuration Wizard to invoke the SF Configuration Wizard (see Figure 59).

Figure 59: Starting the SF Configuration Wizard
Select the mode for configuration (see Figure 60). You can either choose the Easy configuration mode or the Detailed configuration mode. Easy configuration mode provides the most commonly used configurations. Detailed configuration provides complete flexibility in configuration. It is recommended that you use the Easy configuration mode.

Choose the Easy configuration selection as shown in Figure 60 and click Next.
The window for selecting Shutdown Agents appears (see Figure 61).

Figure 61: Easy mode of SF SCON configuration
Configuring the Shutdown Facility

You can either select SCON as the primary SA and one or more backup agents, or you can configure a no SCON configuration with one or more backup agents (see Figure 62).

If you choose SCON Configuration, the SCON name field has to be filled with the name of the system console.

Choose the appropriate selection as shown in Figure 61 or Figure 62 and click Next. If you choose XSCF Panic, XSCF Reset, NPS, or RPS as backup agents, you will be taken to the individual SA’s configuration windows, which are Figure 71, Figure 72, Figure 73, and Figure 74 respectively.
Shutdown Facility Configuring the Shutdown Facility

If you chose Console Break, then the window to choose between XSCF and RCCU appears (see Figure 63). Selecting either of these options takes you to either Figure 71 or Figure 72, depending on your selection.

Figure 63: Console Break options

After you are done configuring individual SAs (if any), you are taken to the window for finishing the configuration (see Figure 76).
Configuring the Shutdown Facility

If you choose *Detailed configuration* in Figure 60 and click *Next*, a figure such as Figure 64 appears. Choose *Create* and click *Next*.

![Shutdown Facility Configuration Wizard](image)

Figure 64: Creating the SF configuration
Select a configuration with the same set of SAs for all the nodes or different SAs for the individual nodes as shown in Figure 65. Click Next.

Figure 65: Choosing a common configuration for all nodes
Configuring the Shutdown Facility

If you choose *Same configuration on all Cluster Nodes* and click *Next*, a window such as Figure 67 appears. If you choose *Individual configuration for Cluster Nodes*, then a window such as Figure 66 appears. In this case, you can configure SF individually at a later time for each of the nodes or groups of nodes.

Currently, it is recommended that you have the same configuration on all cluster nodes.

![Shutdown Facility Configuration Wizard](image)

Choose the cluster node that you want to configure and click *Next*. Note that the left panel in the window displays the cluster nodes and will progressively show the SAs configured for each node.
Shutdown Facility

Configuring the Shutdown Facility

If you choose Same configuration on all Cluster Nodes in Figure 65 and clicked Next, a window such as Figure 67 appears.

Figure 67: Choose Shutdown Agent to be added

Choose an SA from the given list and click on the Next button. From here you will be taken to the individual SA’s configuration window, depending on your selection.

For RCI Panic and RCI Reset SAs, no further configuration is required.
If you select *SCON* from the list and click on the *Next* button, the window to configure the SCON SA appears (see Figure 68).

![Figure 68: Details for SCON Shutdown Agent](image-url)
You can click Distributed SCON to configure distributed SCON (see Figure 69).

Figure 69: Configuring the SCON Shutdown Agent

Distributed SCON is currently limited to two consoles.
Configuring the Shutdown Facility

If you choose RCCU and uncheck the *Use defaults* check box, the window for configuring RCCU appears as shown (see Figure 70). Enter the details for each cluster node, namely RCCU-Name, User-Name, Password1, Confirm, Password2(admin), and Confirm. Then click the *Next* button.

Figure 70: Configuring RCCU
If *Use Defaults* is checked, the default values are used (see Figure 71).

![Figure 71: RCCU default values](image)
Configuring the Shutdown Facility

If you choose XSCF Break, XSCF Panic, or XSCF Reset, the window for configuring the XSCF Console Break agent appears (see Figure 72). Enter the details for each cluster node, namely XSCF-name, User-Name, Password, and Confirm. Then click the Next button.

Figure 72: Configuring XSCF
Figure 73 is the window in which to enter the **NPS Shutdown Agent** details. Enter **NPS Name**, **Password**, **Confirm**, and choose the **Action**. For **Action**, you can choose the value **cycle** or **leave-off**. Then click **Next**.

The action is, by default, **cycle**, which means that the node is power cycled after shutdown.
If you choose RPS, the window shown in Figure 74 appears. Enter the details for each of the cluster nodes; namely, the IP address of the RPS unit, User, Password, and Action. Then click the Next button.

Figure 74: Configuring the RPS Shutdown Agent
You can continue to **Add**, **Delete**, or **Edit** the SAs as shown in Figure 75.

Figure 75: Adding, deleting, editing Shutdown Agents
If you have finished, select *Finish Configuration* and click on *Next* (see Figure 76).
Configuring the Shutdown Facility

Next use the *UP* or *DOWN* buttons to arrange the order of the SAs (see Figure 77). The SA on the top of the list is the primary SA and will be invoked first if SF needs to eliminate a node. Click on *DEFAULT* to use the recommended order for the SAs. Click on *Next*.

![Shutdown Facility Configuration Wizard](image)

Figure 77: Changing the Shutdown Agent order
Configuring the Shutdown Facility

The following window lets you enter the timeout values for the configured SAs for each node (see Figure 78). Enter timeout values for all nodes and for each SA or click on the *Use Defaults* button. Select *Next* to go to the next window.

![Figure 78: Specifying timeout values](image_url)
Configuring the Shutdown Facility

The window for entering node weights and administrative IP addresses appears (see Figure 79). Node weights should be an integer value greater than 0. You can select the Admin IP from the list of choices or enter your own. Enter node weights and Admin IP addresses for all CF nodes.

![Configuration Wizard](image)

Figure 79: Entering node weights and administrative IP addresses

For our cluster we will give each node an equal node weight of 1 (refer to the Section “SF split-brain handling” for more details on node weights).

Set the Admin IP fields to the CF node’s interface on the Administrative LAN. By convention, these IP interfaces are named nodeADM, although this is not mandatory. If you don’t have an Administrative LAN, then enter the address to the public LAN. Click on Next.

The list of configuration files, created or edited, by the Wizard are shown in Figure 80. Click Next to save the configuration files or click Back to change the configuration.
Configuring the Shutdown Facility

Figure 80: Confirming configuration file changes
Shutdown Facility

Choose Yes in the confirmation popup to save the configuration (see Figure 81).

![Figure 81: Saving SF configuration](image)

The window displaying the configuration status of the shutdown agents appears (see Figure 82). You can also use the Tools pull-down menu, and choose Show Status in the Shutdown Facility selection.

SF has a test mechanism built into it. SF periodically has each shutdown agent verify that it can shut down cluster nodes. The shutdown agent does this by going through all the steps to shut down a node, except the very last one which would actually cause the node to go down. It then reports if the test was successful. This test is run for each node that a particular agent is configured to potentially shut down.
Configuring the Shutdown Facility

The table in Figure 82 shows, among other things, the results of these tests. The columns Cluster Host, Agent, SA State, Shut State, Test State, and Init State when taken together in a single row, represent a test result.

If the word InitFailed appears in the InitState column, then the agent found a problem when initializing that particular shutdown agent.

If the words TestFailed appear in red in the Test State column, then it means that the agent found a problem when testing to see if it could shut down the node listed in the Cluster Host column. This indicates some sort of problem with the software, hardware, or networking resources used by that agent.

If the word Unknown appears in the Shut State, Test State, or the Init State columns, it means that SF has not attempted to shut down, test, or initialize those SAs. For the Test State and the Init State columns, the Unknown state is usually a temporary state that disappears when the actual state is known.

![Shutdown Facility Configuration Wizard](image)

Figure 82: Status of Shutdown Agents
If you see TestFailed or InitFailed, look at the SA log file or in /var/adm/messages. The log files show debugging information on why the SA’s test or initialization failed. Once the problem is corrected, and SF is restarted, the status should change to InitWorked or TestWorked.

Click on the Finish button to exit the SF Wizard. A confirmation popup appears and asks if you really want to exit the Wizard (see Figure 83). If you click on Yes, then the SF Wizard disappears, and you see the base Cluster Admin window.

If you click on the Back button in the SF Wizard instead of the Finish button, then you can go back and re-edit the SF configuration.

Figure 83: Exiting SF configuration wizard

8.4.2 Configuration via CLI

This section describes the setup and configuration via Command Line Interface (CLI).

Note that the format of the configuration file is presented for information purposes only. The preferred method of configuring the shutdown facility and all SAs is to use the Cluster Admin GUI (refer to the Section “Configuring the Shutdown Facility”).

8.4.2.1 Shutdown daemon

To configure the Shutdown Daemon (SD), you will need to modify the file /etc/opt/SMAW/SMAWsf/rcsd.cfg on every node in the cluster.

A file, rcsd.cfg.template, is provided under the /etc/opt/SMAW/SMAWsf directory, which is a sample configuration file for the Shutdown Daemon using fictitious nodes and agents.

It is important that the rcsd.cfg file is identical on all cluster nodes; care should be taken in administration to ensure that this is true.
An example configuration for SD (which is created by editing the sample rcsd.cfg.template) follows:

```bash
#This file is generated by Shutdown Facility Configuration Wizard
#Generation Time : Sat Feb 22 10:32:06 PST 2003
fuji3,weight=1,admIP=fuji3ADM:agent=SA_scon,timeout=120:agent=SA_pprcip,timeout=20:agent=SA_pprcir,timeout=20
fuji2,weight=1,admIP=fuji2ADM:agent=SA_scon,timeout=120:agent=SA_pprcip,timeout=20:agent=SA_pprcir,timeout=20
```

The configuration file must be created in the /etc/opt/SMAW/SMAWsf directory and must use rcsd.cfg as the file name.

The format of the configuration file is as follows:

- `cluster-nodeN [weight=w1],admIP=admIP1]:agent=SA1, timeout=t1[agent=SA2, timeout=T2]...
- `cluster-nodeN [weight=w2],admIP=admIP2]:agent=SA1, timeout=t1[agent=SA2, timeout=T2]...

- `cluster-nodeN` is the `cfname` of a node within the cluster.
- `agent` and `timeout` are reserved words.
- `SA N` is the command name of a SA.
- `t N` is the maximum time in seconds that are allowed for the associated SA to run before assuming failure.
- `w N` is the node weight.
- `admIP N` is the admin interface on the Administrative LAN on this cluster node.

The order of the SAs in the configuration file should be such that the first SA in the list is the preferred SA. If this preferred SA is issued a shutdown request and if its response indicates a failure to shut down, the secondary SA is issued the shutdown request. This request/response is repeated until either an SA responds with a successful shutdown, or all SAs have been tried. If no SA is able to successfully shut down a cluster node, then operator intervention is required and the node is left in the `LEFTCLUSTER` state.

The location of the log file will be `/var/opt/SMAWsf/log/rcsd.log`.

8.4.2.2 Shutdown Agents

This section contains information on how to configure the SAs with CLI.
SCON

The configuration of the SA_scon SA involves creating a configuration file (SA_scon.cfg) in the correct format. The file is located as follows:

/etc/opt/SMAW/SMAWsf/SA_scon.cfg

There exists a template file for use as an example (SA_scon.cfg.template) which resides in the /etc/opt/SMAW/SMAWsf directory.

The format of the SA_scon.cfg file is as follows:

```
single-console-names    Scon1 [Scon2] [...]  
[reply-ports-base       number]  
cluster-host            cname   node-type
```

- **single-console-names**, **reply-ports-base** and **cluster-host** are reserved words and must be in lower-case letters.
- **Scon1** is the IP name of the cluster console, **Scon2**, and ... are the names of additional cluster consoles for use in a distributed or Hot Spare (standby) cluster console configuration.
- **number** is a port number used by SMAWRscon to reply to shutdown requests. The default value for this is 2137 and is used such that if you have four cluster nodes then the ports used on the all cluster nodes are 2137, 2138, 2139 and 2140. Note that setting **reply-ports-base** is optional.
- **cname** is the CF name of a cluster node and **node-type** is the output of `uname -m` for that named cluster node. There must be one cluster-node line for each node in the cluster.
- **node-type** for the named cluster node is the output from the following command:

  ```
  # uname -m
  ```

For node elimination with PRIMEPOWER 100, 200, 400, 650, and 850 machines, a line must be inserted into `/etc/syslog.conf`. Refer to the Section “Classic entry and midrange machines” for more details.
The `SA_scon.cfg` file is as follows:

```
single-console-names fujiSCON1 fujiSCON2
cluster-host fuji1 sun4us
cluster-host fuji2 sun4us
cluster-host fuji3 sun4us
cluster-host fuji4 sun4us
```

SCON log file

`/var/opt/SMAWsfs/log/SA_scon.log`

RCCU and XSCF

> Always configure the console monitoring agent after configuring CF and CIP, and before configuring the Shutdown Facility.

Configure the console monitoring agent according to the following steps if you are not using the default values:

1. Register console information by executing the `clrccusetup -a` command on each node. For information how to use this command, refer to the `clrccusetup(1M)` manual page.
 - When RCCU is used, enter the following command:
     ```
     # /etc/opt/FJSVcluster/bin/clrccusetup -a rccu IP-address
     user-name
     
     IP-address is the RCCU’s IP address or the RCCU host name that is defined in `/etc/inet/hosts`. *user-name* is a user name to log on to the RCCU control port.
     
     1. Enter user's password
     2. Re-enter user's password to confirm
     3. Enter super user's password
     4. Re-enter super user's password to confirm
     
     For user's password, enter a password to log on to the RCCU control port. For super user's password, enter a password to log on to the RCCU control port using super-user access privileges.
     
   - When XSCF is used, enter the following command:
     ```
 # /etc/opt/FJSVcluster/bin/clrccusetup -a xscf IP-address
 user-name
     ```
**Shutdown Facility**

**Configuring the Shutdown Facility**

*IP-address* is the XSCF's IP address or the XSCF host name that is defined in /etc/inet/hosts. *user-name* is a user name to log on to the XSCF control port.

1. Enter Password
2. Re-enter Password to confirm

For Password, enter a password to log on to the XSCF control port.

2. Check if the console information is correctly registered by executing the `clrccusetup -l` command on each node. If there are any incorrect settings, return to Step 1 and start over.

For example, enter the following command:

```
#/etc/opt/FJSVcluster/bin/clrccusetup -l
```

Output similar to the following appears:

```
device-name cluster-host-name IP-address host-name user-name
xscf fuji2 xscf2 - scf
xscf fuji3 xscf3 - scf
```

**RCCU and XSCF log files**

/var/opt/SMAWsf/log/SA_rccu.log
/var/opt/SMAWsf/log/SA_xscfp.log
/var/opt/SMAWsf/log/SA_xscfr.log

**NPS**

To configure NPS, you will need to create the following file:

/etc/opt/SMAW/SMAWsf/SA_wtinps.cfg

A sample configuration file can be found in the following directory:

/etc/opt/SMAW/SMAWsf/SA_wtinps.cfg.template

The configuration file `SA_wtinps.cfg` contains lines that are in one of two formats. A line defining an attribute and value pair or a line defining a plug setup:

- **Lines defining attribute value pairs**

  Attributes are similar to global variables, as they are values that are not modifiable for each NPS unit, or each cluster node. Each line contains two fields:
Configuring the Shutdown Facility

Attribute-name Attribute-value

The currently supported attribute/value pairs are as follows:

- **Initial-connect-attempts** positive integer

This sets the number of connect retries until the first connection to an NPS unit is made. The default value for the numbers of connect retries is 12.

- Lines defining a plug set up

Each line contains four fields:

  - **Plug-ID** IP-name Password Action

The four fields are:

  - **Plug-ID**: The Plug-ID of the WTI NPS unit, which should correspond to a cluster node. The CF_name of the cluster node must be used here.
  - **IP-name**: The IP name of the WTI NPS unit.
  - **Password**: The password to access the WTI NPS unit.
  - **Action**: The action may either be cycle or leave-off.

  The Plug-ID defined in the SA_wtinps.cfg file must be defined on the WTI NPS unit.

  The permissions of the SA_wtinps.cfg file are read/write by root only. This is to protect the password to the WTI NPS unit.

NPS log file

/var/opt/SMAWsf/log/SA_wtinps.log

NPS is not supported in all regions. Please check with your sales representative to see if the NPS is supported in your area.

An example of configuring the NPS SA is as follows:

```bash
Configuration for Shutdown Agent for the WTI NPS
Each line of the file has the format:

#Attribute-name Attribute-value
or
#Plug-ID IP-name-of-WTI-box password {cycle|leave-off}

Sample:
initial-connect-attempts 12
fuji2wtinps1.mycompany.comwtipwdcycle
```
Shutdown Facility

Configuring the Shutdown Facility

# fuji3wtinps1.mycompany.comwtipwdleave-off
# fuji4wtinps2.mycompany.comnewpwdcycle
# fuji5wtinps2.mycompany.comnewpwdleave-off
#
# Note:
# The Plug-ID's that are specified here must be
# configured on the named WTI NPS unit.
#
# Note:
# The permissions on the file should be read/write
# only for root. This is to protect the password
# of the WTI NPS unit.
#
# fuji2 nps6 mypassword cycle
# fuji3 nps6 mypassword cycle

RPS

To configure RPS, you will need to create the following file:

/etc/opt/SMAW/SMAWsf/SA_rps.cfg

A sample configuration file can be found at the following location:

/etc/opt/SMAW/SMAWsf/SA_rps.cfg.template

The configuration file SA_rps.cfg contains lines with four fields (and some subfields) on each line. Each line defines a node in the cluster than can be powered-off (leaving it off) or powered-off and then on again. The fields are:

- **cfname**: The name of the node in the CF cluster. With redundant power supply, there may be more than one RPS necessary to power off one node. In this case, more than one entry with the same name will be needed.

- **Access-Information**: The access information is of the following format:

  ip-address-of-unit[:port:user:password]

  The fields for port, user, and password can be missing, but not the corresponding colon. If a field (other than port) is missing, it must have a default value configured in the rsb software. The software SMAWrsb must be of version 1.2A0000 or later. The correct value for port is auto detected. It should always be omitted.

- **Index**: The index must be the index of the plug, which corresponds to the given Cluster-Node (the name of the node in the CF cluster).
SF facility administration

- **Action**: The action may either be **cycle** or **leave-off**. If it is **cycle**, it will be powered on again after power off. If it is **leave-off**, a manual action is required to turn the system back on.

  - The permissions of the **SA_rps.cfg** file are **read/write** by **root** only.

  **RPS log file**

/\var/opt/SMAWs\f/log/SA_rps.log

An example of configuring the RPS SA is as follows:

fuji2 172.0.111.221::root:rpspwd 1 cycle
fuji3 172.0.111.222::root:rpspwd 2 cycle
fuji4 172.0.111.223::root:rpspwd 3 leave-off
fuji5 172.0.111.224::root:rpspwd 4 leave-off

### 8.5 SF facility administration

This section provides information on administering SF. SF can be administered with the CLI or Cluster Admin. It is recommended to use Cluster Admin.

#### 8.5.1 Starting and stopping SF

This section describes the following administrative procedures for starting and stopping SF:

- Manually via the CLI
- Automatically via the rc script interface

##### 8.5.1.1 Starting and stopping SF manually

SF may be manually started or stopped by using the `sdtool(1M)` command. The `sdtool(1M)` command has the following options:

\[ sdtool [-bcCsSrel] [-k CF-node-name] [-d off|on] \]

Refer to the Chapter “Manual pages” for more information on CLI commands.
8.5.1.2 Starting and stopping SF automatically

SF can be started automatically using the S64rcfs RC-script available under the /etc/rc2.d directory. The rc start/stop script for SF is installed as /etc/init.d/RC_sf.

8.6 Logging

Whenever there is a recurring problem where the cause cannot be easily detected, turn on the debugger with the following command:

```
sdtool -d on
```

This will dump the debugging information into the /var/opt/SMAWsf/log/rscd.log, which will provide additional information to find the cause of the problem. You can also use the sdtool -d off command to turn off debugging.

Note that the rcsd log file does not contain logging information from any SA. Refer to the SA specific log files for logging information from a specific SA.
9 System console

This chapter discusses the SCON product functionality and configuration. The SCON product is installed on the cluster console.

This chapter discusses the following:

- The Section “Overview” discusses the role of the cluster console and the hardware platforms.
- The Section “Topologies” discusses the two distinct topologies imparting different configuration activities for the SCON product.
- The Section “Network considerations” notes the network configuration of both a single cluster console and distributed cluster console configuration.
- The Section “Configuring the cluster console” discusses the steps necessary for the configuration on the cluster console.
- The Section “Updating a configuration on the cluster console” discusses updating the cluster console configuration after the addition or the removal of the cluster nodes.
- The Section “Configuring the cluster nodes” discusses the recommended method of configuring the SA_scon, the Shutdown Agent, and the Shutdown Facility.
- The Section “Using the cluster console” explains how to access the consoles of individual cluster nodes.

9.1 Overview

This section discusses the SCON product functionality and configuration. The SCON product is installed on the cluster console.

9.1.1 Role of the cluster console

In PRIMECLUSTER, a cluster console is used to replace the consoles for standalone systems. This cluster console is used to provide a single point of control for all cluster nodes. In addition to providing administrative access, a cluster console runs the SMAWRscon software which performs needed node elimination tasks when required.
Overview

In most installations of PRIMECLUSTER a single cluster console can be used, but in some instances multiple cluster consoles must be configured in order to provide adequate administrative access to cluster nodes. The instances where multiple cluster consoles are needed are:

- When the cluster uses two or more PRIMEPOWER 800, 900, 1000, 1500, 2000, or 2500 cabinets which do not share a common system management console.
- When cluster nodes are separated by a large distance (more than what the cluster administrator deems to be reasonable) such that it would be unreasonable for them to share a common cluster console. This may be the case when the cluster nodes are placed far apart in order to provide a disaster recovery capability.
- When the Hot Spare system management console is used (the system management console functionality is to be switched from one system management console to another one).

When two or more cluster consoles are used in a cluster it is called a distributed cluster console configuration. The pre-installation and installation steps for both the single cluster console and distributed cluster console are identical while the configuration step differs between the two.

9.1.2 Platforms

The cluster console is a generic term describing one of several hardware platforms on which the SCON product can run. The selection of a cluster console platform is in turn dependant on the platform of the cluster nodes:

- PRIMEPOWER 100, 200, 400, 600, 650, and 850 clusters nodes:
  
  A cluster console is optional. If a cluster console is desired, use one of the following:
  
  - RCA unit and a PRIMESTATION
  - RCCU unit and a PRIMESTATION

  Certain product options are region specific. For information on the availability of RCA or RCCU, contact your local customer-support representative.

- PRIMEPOWER 800, 900, 1000, 1500, 2000, 2500 clusters nodes
A cluster console is optional. If a cluster console is desired, it must be the System Management Console already present for the node.

9.2 Topologies

The cluster console can be configured in two distinct topologies imparting different configuration activities for the SCON product. This section discusses the two topologies.

In both topologies, the console lines of the cluster nodes are accessible from the cluster console(s) via a serial-line-to-network converter unit. This unit may be one of several types supported in PRIMEPOWER clusters such as the RCA (Remote Console Access) or RCCU (Remote Console Control Unit). The SCON product does not differentiate between the units and as such their setup is not addressed in this manual. For information regarding specifics of these units, refer to your customer support center.

9.2.1 Single cluster console

A single cluster console configuration is one in which the console lines for all cluster nodes are accessible from one central cluster console as depicted in Figure 84.

The conversion unit (CU) in Figure 84 represents a generic conversion unit, which is responsible for converting serial-line to network access and represents either the RCA or RCCU units.
This single cluster console runs the SMAWRscon software which is responsible for performing the node elimination tasks for all nodes in the cluster. When configuring the single cluster console, all cluster nodes will be known to it and at runtime all cluster nodes will forward shutdown requests to it. SCON is responsible for node elimination tasks when the SA_scon Shutdown Agent is used.

### 9.2.2 Distributed cluster console

In the current release, distributed console support is limited to two cluster consoles.

A distributed cluster console configuration is one in which there is more than one cluster console and each cluster console has access to a selected subset of the console lines for the cluster nodes. Note that the console line for each cluster node may only be accessed by one cluster console. A distributed cluster console configuration is depicted in Figure 85.

The conversion unit (CU) in Figure 85 represents a generic conversion unit, which is responsible for converting serial-line to network access and represents either the RCA or RCCU units.
In our example, fujiSCON1 controls access to fuji1 and fuji2 and fujiSCON2 controls access to fuji3 and fuji4. When configuring the SCON product on fujiSCON1 only fuji1 and fuji2 will be known by it, similarly on fujiSCON2 the SCON product will only know of fuji3 and fuji4.

At runtime, all shutdown requests are sent to all cluster consoles and the cluster console responsible for the node being shut down performs the work and responds to the request.

9.2.3 Hot Spare console

The SCON product supports Hot Spare technology. Install and configure the SMAWRscon package on both cluster consoles in the same manner as a single cluster console and setup the SA_scon on the cluster nodes in the same manner as distributed SCON.

For example, fujiSCON1 controls access to fuji1, fuji2, fuji3, and fuji4. fujiSCON2 functions as a spare and is in standby mode. At runtime, all shutdown requests are sent to fujiSCON1 and fujiSCON2. Because fujiSCON2 is in standby mode, it will drop the request without any action.
9.3 Network considerations

There are several things to note in regards to the network configuration of both a single cluster console and distributed cluster console configuration:

- The cluster console(s) are not on the cluster interconnect.
- All CUs, cluster consoles, and cluster nodes are on an administrative network.
- The administrative network is physically separate from the public network(s).

9.4 Configuring the cluster console

The configuration on the cluster console consists of several steps:

- Updating the /etc/hosts file
- Running the Configure script
- Optionally editing the rmshosts file

   After editing, or overwriting, the rmshosts file all processes associated with the SCON product must be restarted. This can be done by either rebooting the cluster console or by using the ps command to find all related processes and issuing them a SIGKILL as follows:

   ```
 # kill -KILL `ps -elf | grep scon| grep -v grep | awk -e '{print $4}'`
   ```

9.4.1 Updating the /etc/hosts file

The cluster console must know the IP address associated with the CF name of each cluster node. In most cases the CF name of the cluster node is the same as the `uname -n` of the cluster node, but in other cases the cluster administrator has chosen a separate CF name for each cluster node that does not match the `uname -n`.

For each cluster node, using the editor of your choice, add an entry to the /etc/hosts file for each CF name so that the cluster console can communicate with the cluster node. The CF name must be used because the Shutdown Facility on each cluster node and the cluster console communicate using only CF names.
System console

Configuring the cluster console

Note that when working with a distributed cluster console configuration, all cluster consoles must have an entry for each cluster node, regardless of which cluster console administers which sub-set of cluster nodes.

As an example, referring to our sample FUJI cluster (refer to the PRIMECLUSTER Installation Guide (Solaris), “Cluster site planning worksheet”), the CF name of the cluster nodes are fuji2 and fuji3 which happen to match the public IP names of their nodes. Since the cluster console (fujiSCON) is on the administration network and on the public network then fujiSCON can directly contact the cluster nodes by using the CF names because they happen to match the public IP names of the nodes. So in our sample cluster, no extra /etc/hosts work will need to be done.

This setup may not always be the case because the administrator may have chosen that the cluster console will not be accessible on the public network, or the CF names do not match the public IP names. In either of these cases then aliases would have to be set up in the /etc/hosts file so that the cluster console can contact the cluster nodes using the CF name of the cluster node. Assume that the sample FUJI cluster chose CF names of fuji2cf and fuji3cf (instead of fuji2 and fuji3), then entries in the /etc/hosts file would have to be made that look like:

```
172.25.200.4 fuji2ADM fuji2cf
172.25.200.5 fuji3ADM fuji3cf
```

9.4.2 Configure script

The configuration of the SCON product is slightly different depending on the platform of the cluster nodes.

If the cluster consists of a PRIMEPOWER 800, 900, 1000, 1500, 2000, or 2500 node, the script will derive the partition information from the partition tables on the management console. It will place the correct entries into the /etc/uucp/Systems and /etc/uucp/Devices files and install symbolic link under /dev.

If the cluster consists of PRIMEPOWER 100, 200, 400, 600, 650, or 850 nodes, then the entries in the /etc/uucp/Systems and /etc/uucp/Devices files are already present. They were created when performing the setup of the cluster console.
Configuring the cluster console

9.4.2.1 Status check

PRIMEPOWER enterprise models now have a new status check utility. This software can detect a state change from Panic to Initialize. This change occurs when the panic dump has been written. Writing a dump can take a long time under certain conditions. The earliest point to start failover is when the syncing of the file systems has been finished or been given up. This event occurs between the Panic and the Initialize phase. The Configure -f option optimizes this behavior as described in the following examples.

Example 1

A kill request comes in after a failure caused by a system panic. The query of the system state returns Panic. No second panic is produced, to prevent the destruction of the dump.

If -f is not set, SUCCESS is reported after the delay (in seconds) of the -T option, which is 1 by default. Together with the time elapsed until system failure is detected, this should be sufficient to reach the end of syncing activities with normal discs. With shared file systems, which take a long time for syncing, the possibilities are as follows:

- Increase the value of -T <sec>
- Set the -f option to search the console output for file syncing activity

If the -f option is set, the end of syncing actions is searched in the latest console output that has gone out and in the console output that arrives. If found, SUCCESS is reported immediately. After 9 attempts, SCON performs a status check to detect a status change to Initialize phase, which would cause SCON to report SUCCESS.

In rare situations, the default value of 9 attempts for the status check must be increased. This is done using the -i option for the scon entry in the /etc/inittab file. The value to which the -i option must be increased must be tested and verified for each configuration. After each change in the /etc/inittab file, the appropriate process must be terminated to be automatically restarted with the new settings.

Example 2

A kill request comes in when the system state is System running. SCON will panic the partition and, if the -f option is set, search only in the incoming console output. In addition, all activities are the same as in the previous
example. That is, the time for syncing large file systems might not be enough with the default of 1 second for the \(-T\) option and without setting the \(-f\) option.

If time for failover is not an issue, but you need the dump urgently for analysis, you should use the \(-f\) option and a large timeout configured for \texttt{SA\_scon} in SF on the nodes. The timeout should be long enough to include the time for writing the dump in case the end of syncing cannot be detected. You should also use the \(-f\) option if time is critical and a secondary kill is available.

If time is not an issue and a secondary kill is not available, you should not use the \(-f\) option, and you should increase the \(-T\) option to a value that guarantees the end of syncing action (for example 20 seconds). This avoids the situation where a hardware failure could leave a dead console without syncing messages and without a state change to Initialize phase.

9.4.2.2 Running the Configure script

Enter the following to run the \texttt{Configure} script:

```
/opt/SMAW/SMAWRscon/bin/Configure
```

Note that running the \texttt{Configure} script when working with a distributed cluster console will only show the sub-set of cluster nodes that are administered by the local cluster console. The sub-set of cluster nodes administered by other cluster consoles will not appear in the output of the \texttt{Configure} script. This is true regardless of the platform type of the cluster nodes.

The \texttt{Configure} script contains interactive questions regarding the cluster console configuration, which typically accept the default response of a carriage return.
Configuring the cluster console

Output similar to Figure 86 appears. This output may contain additional blank lines, which are not shown here.

*****************************************************************************
Starting with Scon 4.1 you can choose from two different failover behaviours. For optimized fast failover, option -f will be added to /etc/inittab entries. With option -f, the output -syncing file systems- on the console is searched. This is no problem for machines with standard console devices, but implies searching in log files, which might get stale, on partitioned machines.

When this search fails, a concurrent change of partition status to -Initialize phase- (dump finished) will lead to success. If both fail, takeover fails.

Alternatively, option [-T 15] can be used. This will simply wait 15 sec after partition kill to allow for syncing actions.

Option [-T 15] does not make much sense for machines with standard console. However

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C a u t i o n
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
If your systems are configured to disable Syncing of file systems, option -f MUST not be set. Check for an entry -set in_sync=1- in /etc/system on your cluster(s).
*****************************************************************************

Do you want option -f inserted for all machines? (default: y) [y,n]
input:

Figure 66: SCON configuration script initial output

➤ Press the [Enter] or [Return] key.

Output similar to Figure 87 appears.

*****************************************************************************
LAN console entry modification.
Selection of entries in /etc/uucp/Systems for PCL.
The selected entries will be marked with tags starting with SconPCL.
*****************************************************************************

There are already entries tagged SconPCL in /etc/uucp/Systems. Keep this selection unchanged ? (default: y) [y,n]
input:

Figure 87: SCON configuration script continued output

➤ Enter y or n as appropriate and press the [Enter] or [Return] key.
Output similar to Figure 88 appears.

Systems that are marked with tag SconPCL in /etc/uucp/Systems are part of the PCL cluster selection. They must be consistently marked in /etc/uucp/Devices. Do you want me to keep already selected entries, so that only additional selections are possible? (default: y) [y,n] (If your answer is no, ALL selections will be reset.)

Input:

Figure 88: SCON configuration script continued output

Press the [Enter] or [Return] key. Output similar to Figure 89 appears.

Additional selection starting ...

The following systems are not in any PCL cluster:
Please enter line numbers for systems that will be part of a PCL cluster ...

Remaining systems not in any PCL cluster:
1       amstel  Any     Scons3  19200

Include which system into the PCL selection? (default: -1 means quit) [1-n] (please enter line number) (Ranges are like in ed: 1,3 means 1,2,3)
input:

Figure 89: SCON configuration script continued output

Press the [Enter] or [Return] key.
Output similar to Figure 90 appears.

Remaining systems not in any PCL cluster:
  amstel  Any  Scons3  19200
Systems, that will additionally be marked to be PCL cluster systems: None.

SCON
Welcome to the main part of the configuration script
for the SCON for RMS.
For using the SCON with RMS, you must have the processes
scon.<hostname> running, I will put the entries for these processes in the inittab file,
so that they will be started automatically in init state 2.

There is a uucp configuration for Scon on this system, trying to verify... Found
the systems:
fuji2  Any  SconPCLs1  19200
fuji3  Any  SconPCLs2  19200
Found the matching device lines:
SconPCLs1  /dev/smon/1  -  19200  direct
SconPCLs2  /dev/smon/2  -  19200  direct

actual configuration
  Number of systems:  2
  system:  fuji2  connected to:  /dev/smon/1
  system:  fuji3  connected to:  /dev/smon/2
  name of cluster console:  fujiscon (not used)
  installation directory for scon:  /opt/SMAW/SMAWRscon

Are the parameters listed above correct? (default: y) [y,n]
Input:

Figure 90: SCON configuration script continued output

Press the [Enter] or [Return] key. Output similar to Figure 91 appears.

There are old term daemon processes corresponding to these entries: sascond
scon.fuji2  scon.fuji3 They should be terminated (and re-started automatically) if
this is the installation of a different software version.
Corresponding console windows will exit.
Do you want them to be shutdown? (default: y) [y,n]
Input:

Figure 91: SCON configuration script continued output

Press the [Enter] or [Return] key.
Output similar to Figure 92 appears.

Now I will create the links and prepare the inittab entries for termd daemons.

fuj12: Testing system availability and setting of in_sync ...
ERROR: system fuj12 has set in_sync! Quit? (default: y) [y,n]
Input:

Figure 92: SCON configuration script continued output

▶ Enter y or n as appropriate and press the [Enter] or [Return] key. For our example, we selected n. Output similar to Figure 93 appears.

Ok, ignoring this problem. But if you are not sure, to know what you are doing, please consult PCL service people.

fuj13: Testing system availability and setting of in_sync ... Now I will setup permissions on lock directory... adding entries for commd, sascond and scmsgd to the inittab file adding entry -- ha:2:respawn:/usr/scon/bin/sascond > /dev/msglog
2>&1 adding entry -- hv:2:respawn:/usr/scon/bin/scmsgd > /dev/msglog 2>&1 adding entry -- hs:2:respawn:/usr/scon/bin/scommd > /dev/msglog 2>&1 adding entry -- hc:2:respawn:/usr/scon/bin/scommd > /dev/msglog 2>&1 adding entries for termd daemons: t0:23:respawn:/opt/SMAW/SMAWRscon/bin/scon.fuji2 -C -L 2 -f -i 8 -k -x > /dev/msglog 2>&1 t1:23:respawn:/opt/SMAW/SMAWRscon/bin/scon.fuji3 -C -L 2 -f -i 8 -k -x > /dev/msglog 2>&1 killing old daemons (sascond, scmsgd, commds, commdc, scon...) Done

Figure 93: SCON configuration script final output

9.4.3 Syncing the file systems after a panic

After installing the packages contained in the CF product, the sync of the file systems is suppressed if a panic occurs. If SCON is used as the Shutdown Agent, the sync of the file systems must be allowed because the SCON SA is able to detect the end of file system sync and reports only then the successful node elimination.

Turn the sync of the file systems back on as follows:

```bash
/opt/FJSVcldev/system/c1setsync
```

Suppress the sync of the file systems as follows:

```bash
/opt/FJSVcldev/system/clunsetsync
```
Configuring the cluster console

9.4.4 Editing the rmshosts file

The `/opt/SMAW/SMAWRscon/etc/rmshosts` file contains the list of cluster nodes that are configured on the local cluster console. The order in which the nodes appear in the file are treated as a priority list in the event of a split-cluster (when SCON is the decision maker and the weight at elimination time is the same for all nodes).

If you want to change the priority of cluster nodes, you can reorder them. When reordering the node names, ensure that all node names are spelled correctly and that all nodes in the cluster are included in the file. The priority is taken from here only when the default weights for the cluster nodes are used.

9.4.5 Additional steps for distributed cluster console

The `SCON` product arbitrates between sub-sets of cluster nodes in a distributed cluster console configuration. In order for this to occur correctly, the list of cluster nodes in the `rmshosts` file on all cluster consoles must be a complete list of all cluster nodes and all cluster nodes must appear in the same order.

Update the `rmshosts` file by adding a line with the CF name of all cluster nodes that are not listed in the following file:

```
/opt/SMAW/SMAWRscon/etc/rmshosts
```

9.4.6 rmshosts method file

The entries in this file determine whether the SCON does split-cluster processing before eliminating a node. By default a `no` entry of the form `cfname uucp no` causes split-cluster processing before eliminating a node, and a `yes` entry does not allow split-cluster processing to be done.

This file needs to be edited only if you are using other Shutdown Agents along with SCON or SCON is not the first Shutdown Agent specified in the SF configuration file.
System console

Updating a configuration on the cluster console

Change the entries of the following form:

cfname uucp no
to

cfname uucp yes

Make sure that the number and names of cluster nodes are consistent across rmshosts and the rmshosts.method file. In the case of distributed console, they should be consistent across all console nodes.

9.4.7 Classic entry and midrange machines

For successful node elimination on PRIMEPOWER 100, 200, 400, 650, and 850 machines, SCON needs to write status messages on the cluster node's console output. These messages are read back by SCON to verify node elimination.

To enable the writing of status messages on the cluster node's console output, a line must be inserted into /etc/syslog.conf file. The line is as follows, with at least one tab separating two entries in the line:

user.notice /dev/console

If the above configuration is not done in /etc/syslog.conf, the status messages will be suppressed on console output and SCON will not work correctly.

9.5 Updating a configuration on the cluster console

Once a cluster is configured with a cluster console, if cluster nodes are added or removed the cluster console configuration must be updated to reflect the new cluster. Modifying the cluster console configuration will be different, depending on the platform of the cluster nodes:

● PRIMEPOWER 100, 200, 400, 600, 650, and 850 clusters:
  – Perform the needed setup of the cluster console hardware as defined. See instructions specific to the cluster console hardware at your site.
  – Re-run the Configure script.
● PRIMEPOWER 800, 900, 1000, 1500, 2000, 2500 clusters:
Configuring the cluster nodes

- Remove all entries for that refer to partitions from the /etc/uucp/Systems and /etc/uucp/Devices files. For configurations that use CF names different from unames, remove the comments inserted earlier by the Configure script.
- Re-run the Configure script.

9.6 Configuring the cluster nodes

The recommended method of configuring the SA_scon and the Shutdown Facility is to use the Cluster Admin GUI. Information on manual configuration is presented here for those who choose to do so.

This section contains other information in addition to SA_scon Shutdown Agent, and the Shutdown Facility configuration. Please be sure to review all sections and apply those that are relevant to your cluster.

9.6.1 Configuring the Shutdown Facility

In order for the Shutdown Facility to begin using the SA_scon Shutdown Agent and the Shutdown Facility must be configured properly. Please refer to the Section “Configuring the Shutdown Facility” for more information.

Note that this section describes work that only needs to be done on cluster nodes that are PRIMEPOWER 100, 200, 400, 600, 650, or 850 nodes. This configuration work must not be done on the 800, 900, 1000, 1500, 2000, and 2500 models.

In addition to the configuration of the SA_scon Shutdown Agent and Shutdown Facility there may be additional configuration work needed on the cluster nodes in order to make them work with the SCON product.

9.6.2 Redirecting console input/output

Most likely the console input and output have already been redirected as part of the hardware setup of the cluster console. This information is provided as a backup.

Use the `eeprom` command to modify the input-device, output-device, and ttya-mode settings on the nodes boot prom as follows:
9.6.3 Booting with kadb

Ensure that the cluster nodes boot using kadb by using the eeprom command to set the boot file to kadb. The command is as follows:

```
eeprom boot-file=kadb
```

9.6.3.1 Restrictions

PRIMEPOWER nodes only reboot automatically after a panic if the setting of the eeprom variable boot-file is not kadb. The SCON kill on PRIMEPOWER 200, 400, 600, 650, 850 nodes requires the kadb setting. An automatic reboot after panic (for both RCI and XSCF) is not possible on those nodes if the elimination via panic is supposed to be a fall-back elimination method after a failing SCON elimination.

9.6.3.2 Setting the alternate keyboard abort sequence

Edit the /etc/default/kbd file and ensure that the line defining the keyboard abort sequence is uncommented and set to the alternate abort sequence. The line should look exactly like the following:

```
KEYBOARD_ABORT=alternate
```

For the KEYBOARD_ABORT settings to work, you must reboot the machine where the change was done.

9.6.4 mklancon work around

In a PRIMECLUSTER configuration with SCON that uses console lines which are set up by mklancon, the CF names should conform to the restrictions imposed by the LAN console as in the following:

"console_name: tag_name_of_LAN_console_device"

As documented in LAN console manual, non-alphanumeric characters like the hyphen (-) are not allowed.
If the CF names do not conform to the mklancon requirements, a work around is possible to circumvent the restriction. Use a similar name to the needed name, but without the offending characters, in the mklancon command. After this step, replace the name in the /etc/uucp/Systems file with the desired CF name. The changed name will not be used in the output of commands like pmadm -l, but it will be used in the Configure script to set up the proper environment for PRIMECLUSTER Scon node elimination.

9.7 Using the cluster console

This section explains how to access the consoles of individual cluster nodes.

Note that this function is only available on clusters of PRIMEPOWER 100, 200, 400, 600, 650, and 850 nodes. The console access for 800, 900, 1000, 1500, 2000, and 2500 nodes are handled through the system management software.

9.7.1 Without XSCON

The SCON Configure script automatically starts the SMAWRscon software running on the cluster console. Since this software is already running, all the administrator needs to do in order to get a console window for each cluster node is to use the xco utility to start a console window as follows:

```
/opt/SMAW/SMAWRscon/bin/xco cfname
```

`cfname` is the CF name of a cluster node.

9.7.2 With XSCON

The console window can be accessed using the SMAWxscon software by setting the XSCON_CU environment variable in the administrators environment. It must be set to: /opt/SMAW/SMAWRscon/bin/scon.scr. As an example in korn shell:

```
export XSCON_CU=/opt/SMAW/SMAWRscon/bin/scon.scr
```

The xsco utility will use the SCON command to open windows in this environment.
10 CF over IP

This chapter describes CF over IP and how it is configured. This chapter discusses the following:
- The Section “Overview” introduces CF over IP and describes its use.
- The Section “Configuring CF over IP” details how to configure CF over IP.

10.1 Overview

All IP configuration must be done prior to using CF over IP. The devices must be initialized with a unique IP address and a broadcast mask. IP must be configured to use these devices. If the configuration is not done, cfconfig(1M) will fail to load CF, and CF will not start.

The devices used for CF over IP must not be controlled by an RMS userApplication that could unconfigure a device due to Offline processing.

CF communications are based on the use of interconnects. An interconnect is a communications medium which can carry CF’s link-level traffic between the CF nodes. A properly configured interconnect will have connections to all of the nodes in the cluster through some type of device. This is illustrated in Figure 94.

Figure 94: Conceptual view of CF interconnects

When CF is used over Ethernet, Ethernet devices are used as the interfaces to the interconnects. The interconnects themselves are typically Ethernet hubs or switches. An example of this is shown in Figure 95.
When CF is run over IP, IP interfaces are the devices used to connect to the interconnect. The interconnect is an IP subnetwork. Multiple IP subnetworks may be used for the sake of redundancy. Figure 96 shows a CF over IP configuration.

It is also possible to use mixed configurations in which CF is run over both Ethernet devices and IP subnetworks.
When using CF over IP, you should make sure that each node in the cluster has an IP interface on each subnetwork used as an interconnect. You should also make sure that all the interfaces for a particular subnetwork use the same IP broadcast address and the same netmask on all cluster nodes. This is particularly important since CF depends on an IP broadcast on each subnet to do its initial cluster join processing.

The current version does not allow CF to reach nodes that are on different subnets.

Caution

When selecting a subnetwork to use for CF, you should use a private subnetwork that only cluster nodes can access. CF security is based on access to its interconnects. Any node that can access an interconnect can join the cluster and acquire root privileges on any cluster node. When CF over IP is used, this means that any node on the subnetworks used by CF must be trusted. You should not use the public interface to a cluster node for CF over IP traffic unless you trust every node on your public network.

10.2 Configuring CF over IP

To configure CF over IP, you should do the following:

- Designate which subnetworks you want to use for CF over IP. Up to four subnetworks can be used.

- Make sure that each node that is to be in the cluster has IP interfaces properly configured for each subnetwork. Make sure the IP broadcast and netmasks are correct and consistent on all nodes for the subnetworks.

- Make sure that all of these IP interfaces are up and running.

- Run the CF Wizard in Cluster Admin.

The CF Wizard has a window which allows CF over IP to be configured. The Wizard will probe all the nodes that will be in the cluster, find out what IP interfaces are available on each, and then offer them as choices in the CF over IP window. It will also try to group the choices for each node by subnetworks. See Section “CF, CIP, and CIM configuration” for details.
Configuring CF over IP

CF uses special IP devices to keep track of CF over IP configuration. There are four of these devices named as follows:

/dev/ip0
/dev/ip1
/dev/ip2
/dev/ip3

These devices do not actually correspond to any device files under /dev in the Solaris OE. Instead, they are just place holders for CF over IP configuration information within the CF product. Any of these devices can have an IP address and broadcast address assigned by the cfconfig(1M) command (or by Cluster Admin which invokes the cfconfig(1M) command in the Wizard).

If you run cfconfig(1M) by hand, you may specify any of these devices to indicate you want to run CF over IP. The IP device should be followed by an IP address and broadcast address of an interface on the local node. The addresses must be in internet dotted-decimal notation. For example, to configure CF on Node A in Figure 96, the cfconfig(1M) command would be as follows:

```
cfconfig -S A clustername /dev/ip0 172.25.200.4 172.25.200.255 /dev/ip1 172.25.219.83
```

It really does not matter which IP device you use. The above command could equally have used /dev/ip2 and /dev/ip3.

The cfconfig(1M) command does not do any checks to make sure that the IP addresses are valid.

The IP devices chosen in the configuration will appear in other commands such as cftool -d and cftool -r.

IP interfaces will not show up in CF pings using cftool -p unless they are configured for use with CF and the CF driver is loaded.

cftool -d shows a relative speed number for each device, which is used to establish priority for the message send. If the configured device is IP, the relative speed 100 is used. This is the desired priority for the logical IP device. If a Gigabit Ethernet hardware device is also configured, it will have priority.
11 Diagnostics and troubleshooting

This chapter provides help for troubleshooting and problem resolution for PRIMECLUSTER Cluster Foundation. This chapter will help identify the causes of problems and possible solutions. If a problem is in another component of the PRIMECLUSTER suite, the reader will be referred to the appropriate manual. This chapter assumes that the installation and verification of the cluster have been completed as described in the PRIMECLUSTER Installation Guide (Solaris).

This chapter discusses the following:

- The Section “Beginning the process” discusses collecting information used in the troubleshooting process.
- The Section “Symptoms and solutions” is a list of common symptoms and the solutions to the problems.
- The Section “Collecting troubleshooting information” gives steps and procedures for collecting troubleshooting information.

11.1 Beginning the process

Start the troubleshooting process by gathering information to help identify the causes of problems. You can use the CF log viewer facility from the Cluster Admin GUI, look for messages on the console, or look for messages in the /var/adm/messages file. You can use the cftool(1M) command for checking states, configuration information. To use the CF log viewer click on the Tools pull-down menu and select View Syslog messages. The log messages are displayed. You can search the logs using a date/time filter or scan for messages based on severity levels. To search based on date/time, use the date/time filter and press the Filter button. To search based on severity levels, click on the Severity button and select the desired severity level. You can use keyword also to search the log. To detach the CF log viewer window, click on the Detach button to detach it again.

Collect information as follows:

- Look for messages on the console that contain the identifier CF.
- Look for messages in /var/adm/messages. You might have to look in multiple files (/var/adm/messages.N).
Beginning the process

Diagnostics and troubleshooting

- Use cftool.
  - cftool -l: Check local node state
  - cftool -d: Check device configuration
  - cftool -n: Check cluster node states
  - cftool -r: Check the route status

Error log messages from CF are always placed in the /var/adm/messages file; some messages may be replicated on the console. Other device drivers and system software may only print errors on the console. To have a complete understanding of the errors on a system, both console and error log messages should be examined. The Section “Alphabetical list of messages” contains messages that can be found in the /var/adm/messages file. This list of messages gives a description of the cause of the error. This information is a good starting point for further diagnosis.

All of the parts of the system put error messages in this file or on the console and it is important to look at all of the messages, not just those from the PRIMECLUSTER suite. The following is an example of a CF error message from the /var/adm/messages file:

```
Nov 9 08:51:45 fuji2 unix: LOG3.0973788705 1080024 1008 4 0 1.0 cf:ens CF: Icf Error: (service err_type route_src route_dst). (0 0 0 0 0 0 0 0 2 0 0 5 0 0 5)
```

The first 80 bytes are the log3 prefix as in the following:

```
Nov 9 08:51:45 fuji2 unix: LOG3.0973788705 1080024 1008 4 0 1.0 cf:ens
```

This part of the message is a standard prefix on each CF message in the log file that gives the date and time, the node name, and log3 specific information. Only the date, time, and node name are important in this context. The remainder is the error message from CF as in the following:

```
CF: Icf Error: (service err_type route_src route_dst). (0 0 0 0 0 0 0 2 0 0 5 0 0 5)
```

This message is from the cf:ens service (that is, the Cluster Foundation, Event Notification Service) and the error is CF: Icf Error. This error is described in the Section “Alphabetical list of messages” as signifying a missing heartbeat and/or a route down. This gives us direction to look into the cluster interconnect further. A larger piece of the /var/adm/messages file shows as follows:

```
fuji2# tail /var/adm/messages
```
Diagnostics and troubleshooting

Beginning the process

Nov 9 08:51:45 fuji2 unix: SUNW,pci-gem0: Link Down - cable problem?
Nov 9 08:51:45 fuji2 unix: SUNW,pci-gem0: Link Down - cable problem?
Nov 9 08:51:45 fuji2 unix: LOG3.0973788705 1080024 1008 4 0 1.0
   cf:ens  CF: Icf Error: (service err_type route_src route_dst). (0 0 0 0 0 0 0 0 5)
Nov 9 08:51:46 fuji2 unix: SUNW,pci-gem0: Link Down - cable problem?
Nov 9 08:51:48 fuji2 last message repeated 1 time
Nov 9 08:51:48 fuji2 unix: LOG3.0973788708 1080024 1008 4 0 1.0
   cf:ens  CF: Icf Error: (service err_type route_src route_dst). (0 0 0 0 0 0 0 0 4)
Nov 9 08:51:50 fuji2 unix: SUNW,pci-gem0: Link Down - cable problem?
Nov 9 08:51:52 fuji2 last message repeated 1 time
Nov 9 08:51:53 fuji2 unix: LOG3.0973788713 1080024 1008 4 0 1.0
   cf:ens  CF: Icf Error: (service err_type route_src route_dst). (0 0 0 0 0 0 0 0 4)
Nov 9 08:51:53 fuji2 unix: LOG3.0973788713 1080024 1015 5 0 1.0
   cf:ens  CF: Node fuji2 Left Cluster POKE. (0 0 2)
Nov 9 08:51:53 fuji2 unix: Current Nodee Status = 0

Here we see that there are error messages from the Ethernet controller indicating that the link is down, possibly because of a cable problem. This is the clue we need to solve this problem; the Ethernet used for the interconnect has failed for some reason. The investigation in this case should shift to the cables and hubs to insure that they are all powered up and securely connected.

Several options for the command cftool are listed above as sources for information. Some examples are as follows:

fuji2# cftool -l
   Node Number State Os Cpu
   fuji2 2 UP Solaris Sparc

This shows that the local node has joined a cluster as node number 2 and is currently UP. This is the normal state when the cluster is operational. Another possible response is as follows:

fuji2# cftool -l
   Node Number State Os
   fuji2 -- COMINGUP --

This indicates that the CF driver is loaded and that the node is attempting to join a cluster. If the node stays in this state for more than a few minutes, then something is wrong and we need to examine the /var/adm/messages file. In this case, we see the following:

fuji2# tail /var/adm/messages
May 30 17:36:39 fuji2 unix: pseudo-device: fcp0
May 30 17:36:39 fuji2 unix: fcp0 is /pseudo/fcp0
May 30 17:36:53 fuji2 unix: LOG3.0991269413 1080024 1007 5 0 1.0
   cf:eventlog  CF: (TRACE): JoinServer:
Beginning the process

Diagnostics and troubleshooting

Startup.
May 30 17:36:53 fuji2 unix: LOG3.0991269413 1080024 1009 5
0 1.0 cf:eventlog CF: Giving UP Mastering
(Cluster already Running).
May 30 17:36:53 fuji2 unix: LOG3.0991269413 1080024 1006 4
0 1.0 cf:eventlog CF: fuji4: busy: local node not DOWN: retrying.

We see that this node is in the LEFTCLUSTER state on another node (fuji4). To resolve this condition, see Chapter “GUI administration” for a description of the LEFTCLUSTER state and the instructions for resolving the state.

The next option to cftool shows the device states as follows:

```
fuji2# cftool -d
```

```
Number Device Type Speed Mtu State Configured Address
1 /dev/hme0 4 100 1432 UP YES 00.80.17.28.21.a6
2 /dev/hme3 4 100 1432 UP YES 08.00.20.ae.33.ef
3 /dev/hme4 4 100 1432 UP YES 08.00.20.b7.75.8f
4 /dev/ge0 4 1000 1432 UP YES 08.00.20.b2.1b.a2
5 /dev/ge1 4 1000 1432 UP YES 08.00.20.b2.1b.b5
```

Here we can see the interconnects configured for the cluster (the lines with YES in the Configured column). This information shows the names of the devices and the device numbers for use in further troubleshooting steps.

The cftool -n command displays the states of all the nodes in the cluster. The node must be a member of a cluster and UP in the cftool -l output before this command will succeed as shown in the following:

```
fuji2# cftool -n
```

```
Node Number State Os Cpu
fuji2 1 UP Solaris Sparc
fuji3 2 UP Solaris Sparc
```

This indicates that the cluster consists of two nodes fuji2 and fuji3, both of which are UP. If the node has not joined a cluster, the command will wait until the join succeeds.

The cftool -r lists the routes and the current status of the routes as shown in the following example:

```
fuji2# cftool -r
```

```
Node Number Srcdev Dstdev Type State Destaddr
fuji2 1 4 4 4 UP 08.00.20.b2.1b.cc
fuji2 1 5 5 4 UP 08.00.20.b2.1b.94
```

Diagnostics and troubleshooting

Symptoms and solutions

<table>
<thead>
<tr>
<th>Node</th>
<th>Number</th>
<th>Srcdev</th>
<th>Dstdev</th>
<th>Type</th>
<th>State</th>
<th>Destaddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuji3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>UP</td>
<td>08.00.20.b2.1b.a2</td>
</tr>
<tr>
<td>fuji3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>UP</td>
<td>08.00.20.b2.1b.b5</td>
<td></td>
</tr>
</tbody>
</table>

This shows that all of the routes are UP. If a route shows a DOWN state, then the step above where we examined the error log should have found an error message associated with the device. At least the CF error noting the route is down should occur in the error log. If there is not an associated error from the device driver, then the diagnosis steps are covered below.

The last route to a node is never marked DOWN, it stays in the UP state so that the software can continue to try to access the node. If a node has left the cluster or gone down, there will still be an entry for the node in the route table and one of the routes will still show as UP. Only the cftool -n output shows the state of the nodes as shown in the following:

```
fuji2# cftool -r
Node Number Srcdev Dstdev Type State Destaddr
fuji2 2 3 2 4 UP 08.00.20.bd.5e.a1
fuji3 1 3 4 UP 08.00.20.bd.60.e4
```

```
fuji2# cftool -n
Node Number State Os Cpu
fuji2 2 UP Solaris Sparc
fuji3 1 LEFTCLUSTER Solaris Sparc
```

11.2 Symptoms and solutions

The previous section discussed the collection of data. This section discusses symptoms and gives guidance for troubleshooting and resolving the problems. The problems dealt with in this section are divided into two categories: problems with joining a cluster and problems with routes, either partial or complete loss of routes. The solutions given here are either to correct configuration problems or to correct interconnect problems. Problems outside of these categories or solutions to problems outside of this range of solutions are beyond the scope of this manual and are either covered in another product's manual or require technical support from your customer service representative. Samples from the error log (/var/adm/messages) have the log3 header stripped from them in this section.
11.2.1 Join-related problems

Join problems occur when a node is attempting to become a part of a cluster. The problems covered here are for a node that has previously successfully joined a cluster. If this is the first time that a node is joining a cluster, the PRIMECLUSTER Installation Guide (Solaris) section on verification covers the issues of initial startup. If this node has previously been a part of the cluster and is now failing to rejoin the cluster, here are some initial steps in identifying the problem.

First, look in the error log and at the console messages for any clue to the problem. Have the Ethernet drivers reported any errors? Any other unusual errors? If there are errors in other parts of the system, the first step is to correct those errors. Once the other errors are corrected, or if there were no errors in other parts of the system, proceed as follows.

Is the CF device driver loaded? The device driver puts a message in the log file when it loads and the cftool -l command will indicate the state of the driver. The logfile message looks as follows:

```
CF: (TRACE): JoinServer: Startup.
cftool -l
```

This indicates the driver is loaded and the node is trying to join a cluster. If the errorlog message above does not appear in the logfile or the cftool -l command fails, then the device driver is not loading. If there is no indication in the /var/adm/messages file or on the console why the CF device driver is not loading, it could be that the CF kernel binaries or commands are corrupted, and you might need uninstall and reinstall CF. Before any further steps can be taken, the device driver must be loaded.

After the CF device driver is loaded, it attempts to join a cluster as indicated by the message "CF: (TRACE): JoinServer: Startup.". The join server will attempt to contact another node on the configured interconnects. If one or more other nodes have already started a cluster, this node will attempt to join that cluster. The following message in the error log indicates that this has occurred:

```
CF: Giving UP Mastering (Cluster already Running).
```
Diagnose and troubleshooting

If this message does not appear in the error log, then the node did not see any other node communicating on the configured interconnects and it will start a cluster of its own. The following two messages will indicate that a node has formed its own cluster:

CF: Local Node fuji2 Created Cluster FUJI. (#0000 1)
CF: Node fuji2 Joined Cluster FUJI. (#0000 1)

At this point, we have verified that the CF device driver is loading and the node is attempting to join a cluster. In the following list, problems are described with corrective actions. Find the problem description that most closely matches the symptoms of the node being investigated and follow the steps outlined there.

Note that the log3 prefix is stripped from all of the error message text displayed below. Messages in the error log will appear as follows:

Mar 10 09:47:55 fuji2 unix: LOG3.0952710475 1080024 1014 4 0 1.0 cf:ens
CF: Local node is missing a route from node: fuji3

However they are shown here as follows:

CF: Local node is missing a route from node: fuji3

Join problems

Problem:

The node does not join an existing cluster, it forms a cluster of its own.

Diagnosis:

The error log shows the following messages:

CF: (TRACE): JoinServer: Startup.
CF: Local Node fuji4 Created Cluster FUJI. (#0000 1)
CF: Node fuji2 Joined Cluster FUJI. (#0000 1)
Symptoms and solutions

This indicates that the CF devices are all operating normally and suggests that the problem is occurring some place in the interconnect. The first step is to determine if the node can see the other nodes in the cluster over the interconnect. Use cftool to send an echo request to all the nodes of the cluster:

```
fuji2# cftool -e
```

```
Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6
```

This shows that node fuji3 sees node fuji2 using interconnect device 3 (Localdev) on fuji3 and device 2 (Srcdev) on fuji2. If the cftool -e shows only the node itself then look under the Interconnect Problems heading for the problem “The node only sees itself on the configured interconnects.” If some or all of the expected cluster nodes appear in the list, attempt to rejoin the cluster by unloading the CF driver and then reloading the driver as follows:

```
fuji2# cfconfig -u
```

```
fuji2# cfconfig -l
```

There is no output from either of these commands, only error messages in the error log.

If this attempt to join the cluster succeeds, then look under the Problem: “The node intermittently fails to join the cluster.” If the node did not join the cluster then proceed with the problem below “The node does not join the cluster and some or all nodes respond to cftool -e.”

Problem:

The node does not join the cluster and some or all nodes respond to cftool -e.

Diagnosis:

At this point, we know that the CF device is loading properly and that this node can communicate to at least one other node in the cluster. We should suspect at this point that the interconnect is missing messages. One way to test this hypothesis is to repeatedly send echo requests and see if the result changes over time as in the following example:

```
fuji2# cftool -e
```
Diagnostics and troubleshooting

Symptoms and solutions

Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.ae.33.ef FUJI fuji1 3 6
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6

fuji2# cftool -e

Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.ae.33.ef FUJI fuji1 3 6
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6
3 3 08.00.20.bd.60.e4 FUJI fuji4 1 6

fuji2# cftool -e

Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.ae.33.ef FUJI fuji1 3 6
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6

fuji2# cftool -e

Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.ae.33.ef FUJI fuji1 3 6
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6
3 3 08.00.20.bd.60.e4 FUJI fuji4 1 6

fuji2# cftool -e

Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.ae.33.ef FUJI fuji1 3 6
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6
3 3 08.00.20.bd.60.e4 FUJI fuji4 1 6

fuji2# cftool -e

Localdev Srcdev Address Cluster Node Number Joinstate
3 2 08.00.20.ae.33.ef FUJI fuji1 3 6
3 2 08.00.20.bd.5e.a1 FUJI fuji2 2 6
3 3 08.00.20.bd.60.ff FUJI fuji3 1 6
3 3 08.00.20.bd.60.e4 FUJI fuji4 1 6
Notice that the node fuji4 does not show up in each of the echo requests. This indicates that the connection to the node fuji4 is having errors. Because only this node is exhibiting the symptoms, we focus on that node. First, we need to examine the node to see if the Ethernet utilities on that node show any errors. If we log on to fuji4 and look at the network devices, we see the following:

```
Number Device Type Speed Mtu State Configured Address
1 /dev/hme0 4 100 1432 UP NO 00.80.17.28.2c.fb
2 /dev/hme1 4 100 1432 UP NO 00.80.17.28.2d.b8
3 /dev/hme2 4 100 1432 UP YES 08.00.20.bd.60.e4
```

The `netstat(1M)` utility in Solaris OE reports information about the network interfaces. The first attempt will show the following:

```
fuji4# netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 65 0 65 0 0 0
hme0 1500 fuji4 fuji4 764055 8 9175 0 0 0
hme1 1500 fuji4-priva fuji4-priva 2279991 0 2156309 0 7318 0
```

Notice that the `hme2` interface is not shown in this report. This is because Solaris OE does not report on interconnects that are not configured for TCP/IP. To temporarily make Solaris OE report on the `hme2` interface, enter the `ifconfig plumb` command as follows:

```
fuji4# ifconfig hme2 plumb
```

Repeat the command as follows:

```
fuji4# netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 65 0 65 0 0 0
hme0 1500 fuji4 fuji4 765105 8 9380 0 0 0
hme1 1500 fuji4-priva fuji4-priva 2282613 0 2158931 0 7319 0
hme2 1500 default 0.0.0.0 752 100 417 0 0 0
```

Here we can see that the `hme2` interface has 100 input errors (`Ierrs`) from 752 input packet (`Ipkts`). This means that one in seven packets had an error; this rate is too high for PRIMECLUSTER to use successfully. This also explains why `fuji4` sometimes responded to the echo request from `fuji2` and sometimes did not.

It is always safe to plumb the interconnect. This will not interfere with the operation of PRIMECLUSTER.

To resolve these errors further, we can look at the undocumented `-k` option to the Solaris OE `netstat` command as follows:
Diagnostics and troubleshooting

Symptoms and solutions

fuji4# netstat -k hme2

hme2:
ipackets 245295 ierrors 2183 opackets 250486 oerrors 0 collisions 0 defer 0 framing 830 crc 1353 sgs 0 code_violations 38 len_errors 0 ifspeed 100 buff 0 oflo 0 uflo 0 missed 0 tx_late_collisions 0 retry_error 0 first_collisions 0 nocarrier 0 init 15 nocard 0 allocbfail 0 runt 0 jabber 0 babble 0 tmd_error 0 tx_late_error 0 slv_error 0 slv_error_ack 0 tx_error_ack 0 tx_tag_error 0 rx_tag_error 0 eop_error 0 no_tmds 0 no_tcbuf 0 no_trans 0 rx_late_collisions 0 rbytes 22563388 obytes 22729418 multircv 0 multixmt 0 brdcrv 472 brdcsmt 36 norcvbuf 0 noxmtbuf 0 phy_failures 0

Most of this information is only useful to specialists for problem resolution. The two statistics that are of interest here are the framing and crc errors. These two error types add up to exactly the number reported in ierrors. Further resolution of this problem consists of trying each of the following steps:

- Ensure the Ethernet cable is securely inserted at each end.
- Try repeated cftool -e and look at the netstat -i. If the results of the cftool are always the same and the input errors are gone or greatly reduced, the problem is solved.
- Replace the Ethernet cable.
- Try a different port in the Ethernet hub or switch or replace the hub or switch, or temporarily use a cross-connect cable.
- Replace the Ethernet adapter in the node.

If none of these steps resolves the problem, then your support personnel will have to further diagnose the problem.

Problem:
The following console message appears on node fuji2 while node fuji3 is trying to join the cluster with node fuji2:

Mar 10 09:47:55 fuji2 unix:  LOG3.0952710475 1080024   1014 4 0 1.0 cf:ens CF: Local node is missing a route from node: fuji3
Mar 10 09:47:55 fuji2 unix:  LOG3.0952710475 1080024   1014 4 0 1.0 cf:ens CF: missing route on local device: /dev/hme3
Mar 10 09:47:55 fuji2 unix:  LOG3.0952710475 1080024   1014 4 0 1.0 cf:ens CF: Node fuji3 Joined Cluster FUJI. (0 1 0)
Symptoms and solutions

Diagnosis:

Look in /var/adm/messages on node fuji2.
Same message as on console.
No console messages on node fuji3.
Look in /var/adm/messages on node fuji3:

```
fuji2# cftool -d
```

```
Number Device Type Speed Mtu State Configured Address
1 /dev/hme0 4 100 1432 UP NO 08.00.06.0f.9f.c5
2 /dev/hme1 4 100 1432 UP YES 00.a0.c9.f0.15.c3
3 /dev/hme2 4 100 1432 UP YES 00.a0.c9.f0.14.fe
4 /dev/hme3 4 100 1432 UP NO 00.a0.c9.f0.14.fd
```

```
fuji3# cftool -d
```

```
Number Device Type Speed Mtu State Configured Address
1 /dev/hme0 4 100 1432 UP NO 08.00.06.0f.9f.c5
2 /dev/hme1 4 100 1432 UP YES 00.a0.c9.f0.15.c3
3 /dev/hme2 4 100 1432 UP YES 00.a0.c9.f0.14.fe
4 /dev/hme3 4 100 1432 UP YES 00.a0.c9.f0.14.fd
```

/dev/hme3 is not configured on node fuji2
Mar 10 11:00:28 fuji2 unix:WARNING:hme3:no MII link detected
Mar 10 11:00:31 fuji2 unix:LOG3.0952714831 1080024 1008 4 0
1.0cf:ens
CF:Ifc Error:(service err_type route_src route_dst).f 0 0 0 0 0 0 0 0 0
3 0 0)
Mar 10 11:00:53 fuji2 unix:NOTICE:hme3:100 Mbps full-duplex link
up
Mar 10 11:01:11 fuji2 unix:LOG3.0952714871 1080024 1007 5 0
1.0cf:ens
CF (TRACE):Ifc:Route UP:node src dest.(0 2 0 0 0 3 0 0 0 3 0 0 0)
The hme3 device or interconnect temporarily failed.

```
fuji2# cftool -n
```

```
Node Number State Os Cpu
fuji2 1 LEFTCLUSTER Solaris Sparc
fuji3 2 UP Solaris Sparc
```

Problem:

/dev/hme3 is not configured on node fuji2.
Diagnostics and troubleshooting

Symptoms and solutions

Mar 10 11:00:28 fuji2 unix: WARNING: hme3: no MII link detected
Mar 10 11:00:53 fuji2 unix: NOTICE: hme3: 100 Mbps full-duplex link up

Diagnosis:

Look in /var/adm/messages on node fuji2:

Mar 10 11:00:28 fuji2 unix: WARNING: hme3: no MII link detected
Mar 10 11:00:31 fuji2 unix: LOG3.0952714831 1080024 1008 4 0 1.0cf:ens CF: Icf Error: (service err_type route_src route_dst). (0 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0)
Mar 10 11:00:53 fuji2 unix: NOTICE: hme3: 100 Mbps full-duplex link up
Mar 10 11:01:11 fuji2 unix: LOG3.0952714871 1080024 1007 5 0 1.0cf:ens CF (TRACE): Icf: Route UP: node src dest. (0 2 0 0 3 0 0 0 3 0 0 0)

Problem:

The hme3 device or interconnect temporarily failed. It could be the NIC on either of the cluster nodes or a cable or hub problem.

Node in LEFTCLUSTER state

IF SF is not configured, and node fuji2 panicked and has rebooted. The following console message appears on node fuji2:


Diagnosis:

Look in /var/adm/messages on node fuji2:

Mar 10 11:23:41 fuji2 unix: LOG3.0952716221 1080024 1012 4 0 1.0 cf:ens CF: Join postponed, server fuji3 is busy.

... last message repeats.

No new messages on console or in /var/adm/messages on fuji2:

fuji2: cftool -n
Symptoms and solutions

Diagnostics and troubleshooting

<table>
<thead>
<tr>
<th>Node</th>
<th>Number</th>
<th>State</th>
<th>Os</th>
<th>Cpu</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuji2</td>
<td>1</td>
<td>LEFTCLUSTER Solaris Sparc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fuji3</td>
<td>2</td>
<td>UP</td>
<td>Solaris Sparc</td>
<td></td>
</tr>
</tbody>
</table>

Identified problem:

Node fuji2 has left the cluster and has not been declared DOWN.

Fix:

To fix this problem, enter the following command:

```
cftool -k
```

This option will declare a node down. Declaring an operational node down can result in catastrophic consequences, including loss of data in the worst case. If you do not wish to declare a node down, quit this program now.

Enter node number: 1
Enter name for node #1: fuji2
cftool(down): declaring node #1 (fuji2) down
cftool(down): node fuji2 is down

The following console messages then appear on node fuji2:

Mar 10 11:34:21 fuji2 unix: LOG3.0952716861 1080024 1005 5 0 1.0
    cf:ens          CF: MYCLUSTER: fuji2 is Down. (0 1 0)
Mar 10 11:34:29 fuji2 unix: LOG3.0952716869 1080024 1004 5 0 1.0
    cf:ens          CF: Node fuji2 Joined Cluster MYCLUSTER. (0 1 0)

The following console message appears on node fuji2:

Mar 10 11:32:37 fuji2 unix: LOG3.0952716757 1080024 1004 5 0 1.0
    cf:ens          CF: Node fuji2 Joined Cluster MYCLUSTER. (0 1 0)
11.3 Collecting troubleshooting information

If a failure occurs in the PRIMECLUSTER system, collect the following information required for investigations from all cluster nodes. Then, contact your local customer support.

1. Obtain the following PRIMECLUSTER investigation information:
   - Use `fjsnap` to collect information required for error investigations.
   - Retrieve the system dump.
   - Collect the Java Console on the clients.
     Refer to the Java console documentation in the Web-Based Admin View Operation Guide.
   - Collect screen shots on the clients.
     Refer to the screen hard copy documentation in the Web-Based Admin View Operation Guide.

2. In case of application failures, collect such investigation material.

3. If the problem is reproducible, then include a description on how it can be reproduced.

   **i** It is essential that you collect the debugging information described in this section. Without this information, it may not be possible for customer support to debug and fix your problem.

   **i** Be sure to gather debugging information from all nodes in the cluster. It is very important to get this information (especially the `fjsnap` data) as soon as possible after the problem occurs. If too much time passes, then essential debugging information may be lost.

   **i** If a node is panicked, execute `sync` in OBP mode and take a system dump.

11.3.1 Executing the fjsnap command

The `fjsnap` command is a Solaris OE system information tool provided with the Enhanced Support Facility `FJSVsnap` package. In the event of a failure in the PRIMECLUSTER system, the necessary error information can be collected to pinpoint the cause.
Collecting troubleshooting information  Diagnostics and troubleshooting

Execute the `fjsnap` command as follows:

1. Log in as root.

2. Execute one of the following `fjsnap` commands:

   ```
 # /opt/FJSVsnap/bin/fjsnap -h output
 # /opt/FJSVsnap/bin/fjsnap -a output
   ```

   - `-a` collects all detailed information, the data is very large. When `-h` is specified, only cluster control information is collected.
   - In `output`, specify the special file name or output file name (for example, `/dev/rmt/0`) of the output medium to which the error information collected with the `fjsnap` command is written.

   For details about the `fjsnap` command, see the README file included in the FJSVsnap package.

When to run `fjsnap`:

- If an error message appears during normal operation, execute `fjsnap` immediately to collect investigation material.

- If the necessary investigation material cannot be collected because of a hang, shut down the system, and start the system in single mode. Execute the `fjsnap` command to collect information.

- If the system has rebooted automatically to multi-user mode, then execute the `fjsnap` command to collect information.

11.3.2 System dump

If the system dump is collected while the node is in panicked, retrieve the system dump as investigation material. The system dump is saved as a file during the node's startup process. The default destination directory is `/var/crash/node_name`. 
11.3.3 SCF dump

You need to collect the System Control Facility (SCF) dump if one of the following messages is output:

7003 An error was detected in RCI.
(node: nodename address: address status: status)

7004 The RCI monitoring agent has been stopped due to an RCI address error.
(node: nodename address: address)

A message from the SCF driver

The SCF dump is output to the following locations:

- /var/opt/FJSVhwr/scf.dump
  
  The RAS monitoring daemon, which is notified of a failure from SCF, stores SCF dump in the /var/opt/FJSVhwr/scf.dump file. You can collect SCF dump messages by executing the following commands:

  # cd /var/opt
  # tar cf /tmp/scf.dump.tar ./FJSVhwr

- /var/opt/FJSVcsl/log/ on models with SMC (System Management Console) connected

  You can collect SCF dump using the `getscfdump` command on models with SMC connected. For details about this command, refer to the System Console Software User’s Guide.

Refer to the Enhanced Support Facility User’s Guide for details on SCF driver messages.
Collecting troubleshooting information
12 CF messages and codes

This chapter is a printed version of information that can be found on the PRIMECLUSTER CD.

This chapter discusses the following:

- The Section “cfconfig messages” discusses the cfconfig(1M) command and it's error messages.
- The Section “cipconfig messages” describes the cipconfig(1M) command and it's messages.
- The Section “cftool messages” details the cftool(1M) command and it's messages.
- The Section “rcqconfig messages” discusses the rcqconfig(1M) command and it's messages.
- The Section “rcquery messages” describes the rcquery(1M) command and it's messages.
- The Section “CF runtime messages” discusses CF runtime messages.
- The Section “CF Reason Code table” lists CF reason codes.
- The Section “Error messages for different systems” provides a pointer for accessing error messages for different systems.
- The Section “Solaris OE ERRNO table” lists error messages for Solaris OE and Linux by number.
- The Section “Resource Database messages” explains the Resource Database messages.
- The Section “Shutdown Facility” lists messages, causes, and actions.
- The Section “Monitoring Agent messages” details the MA messages.
- The Section “CCBR messages” provides information on CCBR messages.

The following lexicographic conventions are used in this chapter:

- Messages that will be generated on stdout or stderr are shown on the first line(s).
- Explanatory text is given after the message.
- Messages that will be generated in the system-log file and may optionally appear on the console are listed after the explanation.
12.1 cfconfig messages

The cfconfig(1M) command will generate an error message on stderr if an error occurs. Additional messages giving more detailed information about this error may be generated by the support routines in the libcfl library. However, these additional messages will only be written to the system log file, and will not appear on stdout or stderr.

Refer to the cfconfig(1M) manual page for an explanation of the command options and the associated functionality. The cfconfig(1M) manual page also describes the format of all non-error related command output.

12.1.1 Usage message

A usage message will be generated if:

- Multiple cfconfig(1M) options are specified (all options are mutually exclusive).
- An invalid cfconfig(1M) option is specified.
- No cfconfig(1M) option is specified.
- The -h option is specified.

Usage:

cfconfig [-d|-G|-g|-h|-L|-l|-S nodename clusternname device [device [...]]|-s clustername device [device [...]]|-u]
-d delete configuration
-g get configuration
-G get configuration including address information
-h help
-1 fast load (use configured devicelist)
-l load
-S set configuration (including nodename)
-s set configuration
-u unload
A device can either be a network device or an IP device like 
\texttt{/dev/ip[0-3]} followed by the IP-Address and Broadcast Address number.

### 12.1.2 Error messages

**cfconfig –l**

```bash
cfconfig: cannot load: #0423: generic: permission denied
```

The CF startup routine has failed. This error message usually indicates that an unprivileged user has attempted to start CF. You must have administrative privileges to start, stop, and configure CF. An additional error message, for this case, will also be generated in the system-log file:

```bash
OSDU_start: failed to open /dev/cf (EACCES)
```

```bash
cfconfig: cannot load: #041f: generic: no such file or directory
cfconfig: check that configuration has been specified
```

The CF startup routine has failed. This error message usually indicates that the CF configuration file \texttt{/etc/default/cluster} cannot be found. Additional error messages, for this case, may also be generated in the system-log file:

```bash
OSDU_getconfig: failed to open config file (errno)
OSDU_getconfig: failed to stat config file (errno)
```

```bash
cfconfig: cannot load: #0405: generic: no such device/resource
```

```bash
cfconfig: check if configuration entries match node's device list
```

The CF startup routine has failed. This error message usually indicates that the CF configuration file does not match the physical hardware (network interfaces) installed in/on the node.

```bash
cfconfig: cannot load: #04xx: generic: reason_text
```

The CF startup routine has failed. One cause of an error message of this pattern is that the CF cluster configuration file has been damaged or is missing. If you think this is the case, delete and then re-specify your cluster configuration information, and try the command again. If the same error persists, see below.

Additional error messages, for this case, will also be generated in the system-log file:

```bash
OSDU_getconfig: corrupted config file
OSDU_getconfig: failed to open config file (errno)
```
cfconfig messages

OSDU_getconfig: failed to stat config file (errno)
OSDU_getconfig: read failed (errno)

Another cause of an error message of this pattern is that the CF driver and/or other kernel components may have somehow been damaged. Remove and then re-install the CF package. If this does not resolve the problem, contact your customer support representative. Additional error messages, for this case, will also be generated in the system-log file:

OSDU_getconfig: malloc failed
OSDU_getstatus: mconn status ioctl failed (errno)
OSDU_nodename: malloc failed
OSDU_nodename: uname failed (errno)
OSDU_start: failed to get configuration
OSDU_start: failed to get nodename
OSDU_start: failed to kick off join
OSDU_start: failed to open /dev/cf (errno)
OSDU_start: failed to open /dev/mconn (errno)
OSDU_start: failed to select devices
OSDU_start: failed to set clustername
OSDU_start: failed to set nodename
OSDU_start: icf_devices_init failed
OSDU_start: icf_devices_setup failed
OSDU_start: IOC_SOSD_DEVSELECTED ioctl failed
OSDU_start: netinit failed

If the device driver for any of the network interfaces to be used by CF responds in an unexpected way to DLPI messages, additional message output (in the system-log) may occur, with no associated command error message. These messages may be considered as warnings, unless a desired network interface cannot be configured as a cluster interconnect. These messages are:

dl_attach: DL_ACCESS error
dl_attach: DL_ATTACH_REQ putmsg failed (errno)
dl_attach: DL_BADPPA error
dl_attach: DL_OUTSTATE error
dl_attach: DL_SYSERR error
dl_attach: getmsg for DL_ATTACH response failed (errno)
dl_attach: unknown error

dlAttach: unknown error hexvalue

dl_bind: DL_ACCESS error
dl_bind: DL_BADADDR error
dl_bind: DL_BIND_REQ putmsg failed (errno)
dl_bind: DL_BOUND error
dl_bind: DL_INITFAILED error
dl_bind: DL_NOADDR error
dl_bind: DL_NOAUTO error
dl_bind: DL_NOTESTAUTO error
CF messages and codes

d1_bind: DL_NOTINIT error
d1_bind: DL_NOXIDAUTO error
d1_bind: DL_OUTSTATE error
d1_bind: DL_SYSERR error
d1_bind: DL_UNSUPPORTED error
d1_bind: getmsg for DL_BIND response failed (errno)
d1_bind: unknown error

dl_bind: unknown error

dl_info: DL_INFO_REQ putmsg failed (errno)
dl_info: getmsg for DL_INFO_ACK failed (errno)

It is also possible that while CF is examining the kernel device tree, looking for eligible network interfaces, that a device or streams responds in an unexpected way. This may trigger additional message output in the system-log, with no associated command error message. These messages may be considered as warnings, unless a desired network interface cannot be configured as a cluster interconnect. These messages are:

gnet_dev: cannot determine driver name of nodename device
gnet_dev: cannot determine instance number of nodename device
gnet_dev: device table overflow - ignoring /dev/drivernameN
gnet_dev: dl_attach failed: /dev/drivernameN
gnet_dev: dl_bind failed: /dev/drivernameN
gnet_dev: dl_info failed: /dev/drivernameN
gnet_dev: failed to open device: /dev/drivername (errno)
gnet_dev: not an ethernet device: /dev/drivername
gnet_dev: not DL_STYLE2 device: /dev/drivername

icf_devices_init: cannot determine instance number of drivername device
icf_devices_init: device table overflow - ignoring /dev/scin
icf_devices_init: dl_init failed
icf_devices_init: dl_prom_init failed
icf_devices_init: dl_bind failed: /dev/scin
icf_devices_init: failed to open device: /dev/scin (errno)
icf_devices_init: no devices found
icf_devices_select: devname device not found
icf_devices_select: fstat of mclx device failed: /devices/pseudo/scin (errno)
icf_devices_select: mcl_select_dev failed: /devices/pseudo/scin (errno)
icf_devices_setup: open of mclx device failed: /devices/pseudo/scin (errno)
icf_devices_setup: failed to create mclx dev: /devices/pseudo/scin (errno)
icf_devices_setup: failed to open /dev/kstat (errno)
cfconfig messages

icf_devices_setup: failed to open mc1x device: /devices/pseudo/icfn - devname (errno)
icf_devices_setup: failed to stat mc1x device: /dev/mc1x (errno)
icf_devices_setup: failed to stat mc1x device: /devices/pseudo/icfn - devname (errno)
icf_devices_setup: I_LIST failed: devname (errno)
icf_devices_setup: I_LIST 0 failed: devname (errno)
icf_devices_setup: I_PLINK failed: /devices/pseudo/icfn - devname (errno)
icf_devices_setup: I_POP failed: devname (errno)
icf_devices_setup: I_PUSH failed: devname (errno)
icf_devices_setup: mcl_set_device_id failed: /devices/pseudo/icfn - devname (errno)
icf_devices_setup: mclx_get_device_info failed: /devices/pseudo/icfn - devname (errno)
icf_devices_setup: mclx device already linked: /devices/pseudo/icfn - devname (errno)
icf_devices_setup: mclx not a device
mc1_select_device: MCI_IOC_SEL_DEV ioctl failed (errno)
mcl_set_device_id: MCI_IOC_SET_ID ioctl failed (errno)
mclx_get_device_info: MCIX_IOC_GET_INFO ioctl failed (errno)

cfconfig –u

cfconfig: cannot unload: #0406: generic: resource is busy
cfconfig: check if dependent service-layer module(s) active

The CF shutdown routine has failed. This error message is generated if a PRIMECLUSTER Layered Service still has a CF resource active/allocated. RMS, SIS, OPS, CIP, and so forth, need to be stopped before CF can be unloaded. Please refer to the layered-products software README file on how to stop these software. An additional error message, for this case, will also be generated in the system-log file:

OSDU_stop: failed to unload cf_drv

In the special case where the cfconfig(1M) command was called by a shutdown script that is rebooting the system, the following additional error message is generated in the system-log file:

OSDU_stop: runlevel now n: sent EVENT_NODE_LEAVING_CLUSTER (#xxxx)
cfconfig: cannot unload: #0423: generic: permission denied
The CF shutdown routine has failed. This error message usually indicates that an unprivileged user has attempted to stop CF. You must have administrative privileges to start, stop, and configure CF. An additional error message, for this case, will also be generated in the system-log file:

```
OSDU_stop: failed to open /dev/cf (EACCES)
```

cfconfig: cannot unload: #04:xx: generic: reason_text

The cause of an error message of this pattern is that the CF driver and/or other kernel components may have somehow been damaged. Remove and then re-install the CF package. If this does not resolve the problem, contact your customer support representative. Additional error messages, for this case, will also be generated in the system-log file:

```
mclx_get_device_info: MClX_IOC_GET_INFO ioctl failed (errno)
OSDU_stop: disable unload failed
OSDU_stop: enable unload failed
OSDU_stop: failed to open /dev/cf (errno)
OSDU_stop: failed to open mclx device: /devices/pseudo/icfn
OSDU_stop: failed to unlink mclx device: /devices/pseudo/icfn (errno)
OSDU_stop: failed to unload cf_drv
OSDU_stop: failed to unload mcl module
OSDU_stop: failed to unload mclx driver
OSDU_stop: mclx_get_device_info failed: /devices/pseudo/icfn
```

cfconfig -s
cfconfig -S

cfconfig: specified nodename: bad length: #407: generic: invalid parameter

This usually indicates that nodename is too long. The maximum length is 31 characters.

cfconfig: invalid nodename: #407: generic: invalid parameter

This indicates that nodename contains one or more non-printable characters.

cfconfig: node already configured: #0406: generic: resource is busy

This error message usually indicates that there is an existing CF configuration. To change the configuration of a node, you must first delete (cfconfig -d) any pre-existing configuration. Also, you must have administrative privileges to start, stop, and configure CF. A rare cause of this error would be that the CF driver
and/or other kernel components have somehow been damaged. If you believe this is the case, remove and then re-install the CF package. If this does not resolve the problem, contact your customer support representative. Additional error messages may also be generated in the system-log file:

```
OSDU_getconfig: corrupted config file
OSDU_getconfig: failed to open config file (errno)
OSDU_getconfig: failed to stat config file (errno)
OSDU_getconfig: malloc failed
OSDU_getconfig: read failed (errno)
cfconfig: too many devices specified: #0407: generic: invalid parameter
```

Too many devices have been specified on the command line. The current limit is set to 255.

cfconfig: clusternam cannot be a device: #0407: generic: invalid parameter

This error message indicates that “clusternam,” is a CF-eligible device. This usually means that the clusternam has accidentally been omitted.

cfconfig: invalid clusternam: #0407: generic: invalid parameter

This error message indicates that clusternam is a CF-eligible device.

cfconfig: duplicate device names specified: #0407: generic: invalid parameter

This error message indicates that duplicate device names have been specified on the command line. This is usually a typographical error, and it is not permitted to submit a device name more than once.

cfconfig: device [device [...]]: #0405: generic: no such device/resource

This error message indicates that the specified device names are not CF-eligible devices. Only those devices displayed by cftool -d are CF-eligible devices.

cfconfig: cannot open mconn: #04xx: generic: reason_text

This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

cfconfig: cannot set configuration:
#04xx: generic: reason_text
CF messages and codes  cfconfig messages

This message can occur if concurrent `cfconfig -s` or `cfconfig -S` commands are being run. Otherwise, it should not occur unless the CF driver and/or other kernel components have somehow been damaged. If this is the case, remove and then re-install the CF package. If the problem persists, contact your customer support representative. Additional error messages may also be generated in the system-log file:

- `OSDU_setconfig: config file exists`
- `OSDU_setconfig: failed to create config file (errno)`
- `OSDU_setconfig: write failed (errno)`
- `cfconfig: cannot get new configuration: #04xx: generic: reason_text`

This message indicates that the saved configuration cannot be read back. This may occur if concurrent `cfconfig -s` or `cfconfig -S` commands are being run, or if disk hardware errors are reported. Otherwise, it should not occur unless the CF driver and/or other kernel components have somehow been damaged. If this is the case, remove and then re-install the CF package. If the problem persists, contact your customer support representative. Additional error messages may also be generated in the system-log file:

- `OSDU_getconfig: corrupted config file`
- `OSDU_getconfig: failed to open config file (errno)`
- `OSDU_getconfig: failed to stat config file (errno)`
- `OSDU_getconfig: malloc failed`
- `OSDU_getconfig: read failed (errno)`
- `cfconfig: cannot load: #04xx: generic: reason_text`

This error message indicates that the device discovery portion of the CF startup routine has failed. (See error messages associated with `cfconfig -l` above).

**cfconfig –g**

- `cfconfig: cannot get configuration: #04xx: generic: reason_text`

This message indicates that the CF configuration cannot be read. This may occur if concurrent `cfconfig(1M)` commands are being run, or if disk hardware errors are reported. Otherwise, it should not occur unless the CF driver and/or other kernel components have somehow been damaged. If this is the case, remove and then re-install the CF package. If the problem persists, contact your customer support representative. Additional error messages may also be generated in the system-log file:

- `OSDU_getconfig: corrupted config file`
- `OSDU_getconfig: failed to open config file (errno)`
- `OSDU_getconfig: failed to stat config file (errno)`
- `OSDU_getconfig: malloc failed`
cipconfig messages

OSDU_getconfig: read failed (errno)

cfconfig –d

cfconfig: cannot get joinstate: #0407: generic: invalid parameter
This error message usually indicates that the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If this does not resolve the problem, contact your customer support representative.

cfconfig: cannot delete configuration: #0406: generic: resource is busy
This error message is generated if CF is still active (i.e., if CF resource(s) are active/allocated). The configuration node may not be deleted while it is an active cluster member.

cfconfig: cannot delete configuration: #04xx: generic: reason_text
You must have administrative privileges to start, stop, and configure CF. A rare cause of this error would be that the CF driver and/or other kernel components have somehow been damaged. If you believe this is the case, remove and then re-install the CF package. If this does not resolve the problem, contact your customer support representative. An additional error message will also be generated in the system-log file:
OSDU_delconfig: failed to delete config file (errno)

12.2 cipconfig messages

The cipconfig(1M) command will generate an error message on stderr if an error occurs. Additional error messages giving more detailed information about the error may be generated by the support routines of the libcf library. However, these additional messages will only be written to the system-log file, and will not appear on stdout or stderr.

Refer to the cipconfig(1M) manual page for an explanation of the command options and associated functionality. The cipconfig(1M) manual page also describes the format of all non-error related command output.
12.2.1 Usage message

A usage message will be generated if:

- Multiple `cipconfig(1M)` options are specified (all options are mutually exclusive).
- An invalid `cipconfig(1M)` option is specified.
- No `cipconfig(1M)` option is specified.
- The `-h` option is specified.

Usage: `cipconfig [-l|-u|-h]`

- `-l` start/load
- `-u` stop/unload
- `-h` help

12.2.2 Error messages

cipconfig -l

cipconfig: could not start CIP – detected a problem with CF.
cipconfig: cannot open mconn: #04xx: generic: `reason_text`

These messages should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

cipconfig: cannot setup cip: #04xx: generic: `reason_text`

The cip startup routine(s) have failed. There may be problems with the configuration file. Additional error messages will be generated in the system-log file:

- `OSDU_cip_start: cip kickoff failed` (errno)
- `OSDU_cip_start: dlAttach failed` (devpath)
- `OSDU_cip_start: dlBind failed` (devpath)
- `OSDU_cip_start: dlInfo failed` (devpath)
- `OSDU_cip_start: failed to open device: /dev/cip` (errno)
- `OSDU_cip_start: failed to open device: devpath` (errno)
- `OSDU_cip_start: I_PLINK failed` (devpath)
- `OSDU_cip_start: POPing module failed` (errno)
- `OSDU_cip_start: ppaN is not valid` (devpath)
- `OSDU_cip_start: setup controller/speed failed` (devpath) (errno)
cipconfig messages

If the device driver for any of the network interfaces used by CIP responds in an unexpected way to DLPI messages, additional message output may occur:

```plaintext
dl_info: DL_INFO_REQ putmsg failed (errno)
dl_info: getmsg for DL_INFO_ACK failed (errno)
dl_attach: DL_ACCESS error
dl_attach: DL_ATTACH_REQ putmsg failed (errno)
dl_attach: DL_BADPPA error
dl_attach: DL_OUTSTATE error
dl_attach: DL_SYSERR error
dl_attach: getmsg for DL_ATTACH response failed (errno)
dl_attach: unknown error
```

```plaintext
dl_attach: unknown error hexvalue
```

```plaintext
dl_bind: DL_ACCESS error
dl_bind: DL_BADADDR error
dl_bind: DL_BIND_REQ putmsg failed (errno)
dl_bind: DL_BOUND error
dl_bind: DL_INITFAILED error
dl_bind: DL_NOADDR error
dl_bind: DL_NOAUTO error
dl_bind: DL_NOTESTAUTO error
dl_bind: DL_NOTINIT error
dl_bind: DL_NOXIDAUTO error
dl_bind: DL_OUTSTATE error
dl_bind: DL_SYSERR error
dl_bind: DL_UNSUPPORTED error
dl_bind: getmsg for DL_BIND response failed (errno)
dl_bind: unknown error
```

```plaintext
dl_bind: unknown error hexvalue
```

If these messages appear and they do not seem to be associated with problems in your CIP configuration file, contact your customer support representative.

cipconfig –u

cipconfig: cannot unload cip: #04xx: generic: reason_text

The CIP shutdown routine has failed. Usually this mean that another PRIMECLUSTER Layered Service has a CIP interface open (active). It must be stopped first. Additional error messages may be generated in the system-log file:

```plaintext
OSDU_cip_stop: failed to unload cip driver
OSDU_cip_stop: failed to open device: /dev/cip (errno)
```
CF messages and codes

cftool messages

12.3 cftool messages

The cftool(1M) command will generate an error message on stderr if an error condition is detected. Additional messages, giving more detailed information about this error, may be generated by the support routines of the libcf library. Note that these additional error messages will only be written to the system-log file, and will not appear on stdout or stderr.

Refer to the cftool(1M) manual page for an explanation of the command options and the associated functionality. The cftool(1M) manual page also describes the format of all non-error related command output.

12.3.1 Usage message

A usage message will be generated if:

- Conflicting cftool(1M) options are specified (some options are mutually exclusive).
- An invalid cftool(1M) option is specified.
- No cftool(1M) option is specified.
- The -h option is specified.

usage: cftool [-c][-l][-n][-r][-d][-v][-p][-e][-i nodename][-A cluster][-T timeout][-F][-C count][-I nodename][-E xx.xx.xx.xx.xx.xx][-P][-m][-u][-k][-q][-h]

-c                     clustername
-l                     local nodeinfo
-n                     nodeinfo
-r                     routes
-d                     devinfo
-v                     version
-p                     ping
-e                     echo
-i                     icf stats for nodename
-m                     mac stats
-u                     clear all stats
-k                     set node status to down
-q                     quiet mode
-h                     help
-F                     flush ping queue. Be careful, please
### cftool messages

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-T</td>
<td>timeout millisecond ping timeout</td>
</tr>
<tr>
<td>-I</td>
<td>raw ping test by node name</td>
</tr>
<tr>
<td>-P</td>
<td>raw ping</td>
</tr>
<tr>
<td>-A</td>
<td>cluster ping all interfaces in one cluster</td>
</tr>
<tr>
<td>-E</td>
<td>ping by 48-bit physical address</td>
</tr>
<tr>
<td>-C</td>
<td>stop after sending count raw ping messages</td>
</tr>
</tbody>
</table>

A device can either be a network device or an IP device like `/dev/ip[0-3]` followed by IP address and broadcast address.

#### 12.3.2 Error messages

**cftool: CF not yet initialized**

**cftool –c**

```plaintext
cftool: failed to get cluster name: #xxxx: service: reason_text
```

This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

**cftool –d**

```plaintext
cftool: cannot open mconn: #04xx: generic: reason_text
```

This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

**cftool –e**

```plaintext
cftool: cannot open mconn: #04xx: generic: reason_text
```

This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

**cftool –i nodename**

```plaintext
cftool: nodename: No such node
cftool: cannot get node details: #xxxx: service: reason_text
```
CF messages and codes
cftool messages

Either of these messages indicates that the specified nodename is not an active
cluster node at this time.

cftool: cannot open mconn: #04xx: generic: reason_text

This message should not occur unless the CF driver and/or other kernel compo-
nents have somehow been damaged. Remove and then re-install the CF
package. If the problem persists, contact your customer support representative.

cftool –k

cftool(down): illegal node number

This message indicates that the specified node number is non-numeric or is out
of allowable range (1–64).

cftool(down): not executing on active cluster node

This message is generated if the command is executed either on a node that is
not an active cluster node or on the specified LEFTCLUSTER node itself.

cftool(down): cannot declare node down: #0426: generic: invalid node name
cftool(down): cannot declare node down: #0427: generic: invalid node number

cftool(down): cannot declare node down: #0428: generic: node is not in LEFTCLUSTER state

One of these messages will be generated if the supplied information does not
match an existing cluster node in LEFTCLUSTER state.

cftool(down): cannot declare node down: #xxxx: service: reason_text

Other variations of this message should not occur unless the CF driver and/or
other kernel components have somehow been damaged. Remove and then re-
install the CF package. If the problem persists, contact your customer support
representative.

cftool –I

cftool: cannot get nodename: #04xx: generic: reason_text
cftool: cannot get the state of the local node: #04xx: generic: reason_text
cftool messages

These messages should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

`cftool -m`

cftool: cannot open mconn: #04xx: generic: `reason_text`
cftool: cannot get icf mac statistics: #04xx: generic: `reason_text`

These messages should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

`cftool -n`

cftool: cannot get node id: #xxxx: service: `reason_text`
cftool: cannot get node details: #xxxx: service: `reason_text`

This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

`cftool -p`

cftool: cannot open mconn: #04xx: generic: `reason_text`

This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

`cftool -r`

cftool: cannot get node details: #xxxx: service: `reason_text`

These messages should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

`cftool -u`

cftool: cannot open mconn: #04xx: generic: `reason_text`
cftool: clear icf statistics: #04xx: generic: `reason_text`

These messages should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.
CF messages and codes

rcqconfig messages

cftool –v

cftool: cannot open mconn: #04xx: generic: reason_text

cftool: unexpected error retrieving version: #04xx: generic: reason_text

These messages should not occur unless the CF driver and/or other kernel components are damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

12.4 rcqconfig messages

The rcqconfig(1M) command will generate an error message on standard error if an error condition is detected. Additional messages, giving more detailed information about this error, may be generated by the support routines of the libcf library. Please note that these additional error messages will only be written to the system-log file during cfconfig -l, and will not appear on standard out or standard error.

Refer to the rcqconfig(1M) manual page for an explanation of the command options and the associated functionality.

12.4.1 Usage message

A usage message will be generated if:

- Conflicting rcqconfig(1M) options are specified (some options are mutually exclusive).
- An invalid rcqconfig(1M) option is specified.
- The ‘-h’ option is specified.

usage: rcqconfig [-g | -h ] or
rcqconfig -s or
rcqconfig [-v] [ -c ]
[ -a Add-node-1 ... Add-node-n ]
[ -x Ignore-node-1 ... Ignore-node-n ]
[ -d Delete-node-1 ... Delete-node-n ]
[ -m quorum-method-1 ... quorum-method-n ]
12.4.2 Error messages

rcqconfig -a node-1 node-2 ... node-n
-g and -a cannot exist together.

This error message usually indicates that get configuration option (-g) cannot be specified with this option (-a). Refer to the manual pages for the correct syntax definition.

Nodename is not valid nodename.

This error message usually indicates that the length of the node is less than 1 or greater than 31 bytes. Refer to the manual pages for the correct syntax definition.

rcqconfig : failed to start

The following errors will also be reported in standard error if rcqconfig(1M) fails to start.

rcqconfig failed to configure qsm since quorum node set is empty.

Quorum state machine (qsm) is the kernel module that collects the states of the cluster nodes specified in the quorum node set. This error message usually indicates that the quorum configuration does not exist. Refer to the manual pages for rcqconfig(1M) for the correct syntax to configure the quorum nodes.

cfreg_start_transaction: `#2813: cfreg daemon not present`

The rcqconfig(1M) routine has failed. This error message usually indicates that the synchronization daemon is not running on the node. The cause of error messages of this pattern may be that the cfreg daemon has died and the previous error messages in the system log or console will indicate why the daemon died. Restart the daemon using cfregd -r. If it fails again, the error messages associated with it will indicate the problem. The data in the registry is most likely corrupted. If the problem persists, contact your customer service support representative.

cfreg_start_transaction: `#2815: registry is busy`

The rcqconfig(1M) routine has failed. This error message usually indicates that the daemon is not in synchronized state or if the transaction has been started by another application. This messages should not occur. The cause of error messages of this pattern is that the registries are not in consistent state. If the problem persists, unload the cluster by using cfconfig -u and reload the
cluster by using cfconfig -l. If the problem still persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_start_transaction: `#2810: an active transaction exists`

The rcqconfig(1M) routine has failed. This error message usually indicates that the application has already started a transaction. If the cluster is stable, the cause of error messages of this pattern is that different changes may be done concurrently from multiple nodes. Therefore, it might take longer time to commit. Retry the command again. If the problem persists, the cluster might not be in a stable state. The error messages in the log will indicate the problem. If this is the case, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

Too many nodename are defined for quorum. Max node = 64

This error message usually indicates that if the number of node specified are more than 64 for which the quorum is to be configured. The following errors will also be reported in standard error if there are too many nodename defined:

cfreg_get: `#2809: specified transaction invalid'

The rcqconfig(1M) routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This messages should not occur. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_get: `#2819: data or key buffer too small'

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified size of the data buffer is too small to hold the entire data for the entry. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

Cannot add node node that is not up.
rcqconfig messages

This error message usually indicates that the user is trying to add a node whose state is not up in the NSM node space. Try to bring up the down node or remove the node from the list which quorum is to be configured.

Cannot proceed. Quorum node set is empty.

This error message usually indicates that if no node is specified to this option or there is no configured node prior to this call. The following errors will also be reported in standard error if quorum node set is empty:

The following errors will also be reported in standard error if rcqconfig(1M) fails to start:

cfreg_put: `#2809: specified transaction invalid`

The rcqconfig(1M) routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This messages should not occur. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_put: `#2820: registry entry data too large`

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified size data is larger than 28K. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

rcqconfig -s
stopping quorum space methods `#0408: unsuccessful`

The rcqconfig(1M) routine has failed. This error message usually indicates that there is no method specified.

rcqconfig -x ignore_node-1 … ignore_node-n
-g and -x cannot exist together.

This error message usually indicates that get configuration option (-g) cannot be specified with this option (-x). Refer to the manual pages for the correct syntax definition.

Nodename is not valid nodename.
This error message usually indicates that the length of the node is less than 1 or greater than 31 bytes.

rcqconfig : failed to start

The following errors will also be reported in standard error if rcqconfig(1M) fails to start:

`cfreg_start_transaction: '#2813: cfreg daemon not present'

The rcqconfig(1M) routine has failed. This error message usually indicates that the synchronization daemon is not running on the node. The cause of error messages of this pattern may be that the cfreg daemon has died and the previous error messages in the system log or console will indicate why the daemon died. Restart the daemon using cfregd -r. If it fails again, the error messages associated with it will indicate the problem. The data in the registry is most likely corrupted. If the problem persists, contact your customer service support representative.

`cfreg_start_transaction: '#2815: registry is busy'

The rcqconfig(1M) routine has failed. This error message usually indicates that the daemon is not in synchronized state or if the transaction has been started by another application. This messages should not occur. If the problem persists, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem still persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

`cfreg_start_transaction: '#2810: an active transaction exists'

The rcqconfig(1M) routine has failed. This error message usually indicates that the application has already started a transaction. If the cluster is stable, the cause of error messages of this pattern is that different changes may be done concurrently from multiple nodes. Therefore, it might take longer time to commit. Retry the command again. If the problem persists, the cluster might not be in a stable state. The error messages in the log will indicate the problem. If this is the case, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

Too many ignore node names are defined for quorum. Max node = 64

This error message usually indicates that if the number of ignore nodes specified are more than 64. The following errors will also be reported in standard error if the ignore node names exceed 64.
rcqconfig messages

**cfreg_get: `#2809: specified transaction invalid`**

The rcqconfig(1M) routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This messages should not occur. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

**cfreg_get: `#2804: entry with specified key does not exist`**

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified entry does not exist. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

**cfreg_get: `#2819: data or key buffer too small`**

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified size of the data buffer is too small to hold the entire data for the entry. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

Can not add node node that is not up.

This error message usually indicates that the user is trying to add a node whose state is not up in the NSM node space. Try to bring up the down node or remove the node from the list which quorum is to be configured.

Can not proceed. Quorum node set is empty.

This error message usually indicates that if no node is specified to this option or there is no configured node prior to this call. The following errors will also be reported in standard error if Quorum node set is empty:

**cfreg_put: `#2809: specified transaction invalid`**

The rcqconfig(1M) routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This messages should not occur. Try to unload the
CF messages and codes  

rcqconfig messages

cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_put: `#2820: registry entry data too large`

The rcqconfig(1M) routine has failed. This error message usually indicates that the event information (data being passed to the kernel) to be used for other sub-systems) is larger than 32K. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_put: `#2807: data file format is corrupted`

The rcqconfig(1M) routine has failed. This error message usually indicates that the registry data file format has been corrupted. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cms_post_event: `#0c01: event information is too large`

The rcqconfig(1M) routine has failed. This error message usually indicates that the event information (data being passed to the kernel) to be used for other sub-systems) is larger than 32K. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cms_post_event: `#0c01: event information is too large`

This error message usually indicates that get configuration option (-g) cannot be specified with this option (-x). Refer to the manual pages for the correct syntax definition.

Methodname is not valid method name.

This error message usually indicates that the length of the node is less than 1 or greater than 31 bytes. Refer to the manual pages for the correct syntax definition.
rcqconfig messages

rcqconfig: failed to start

The following errors will also be reported in standard error if rcqconfig(1M) fails to start:

cfreg_start_transaction: `#2813: cfreg daemon not present`

The rcqconfig(1M) routine has failed. This error message usually indicates that the synchronization daemon is not running on the node. The cause of error messages of this pattern may be that the cfreg daemon has died and the previous error messages in the system log or console will indicate why the daemon died. Restart the daemon using cfregd -r. If it fails again, the error messages associated with it will indicate the problem. The data in the registry is most likely corrupted. If the problem persists, contact your customer service support representative.

cfreg_start_transaction: `#2815: registry is busy`

The rcqconfig(1M) routine has failed. This error message usually indicates that the daemon is not in synchronized state or if the transaction has been started by another application. This message should not occur. The cause of error messages of this pattern is that the registries are not in consistent state. If the problem persists, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem still persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_start_transaction: `#2810: an active transaction exists`

The rcqconfig(1M) routine has failed. This error message usually indicates that the application has already started a transaction. If the cluster is stable, the cause of error messages of this pattern is that different changes may be done concurrently from multiple nodes. Therefore, it might take longer time to commit. Retry the command again. If the problem persists, the cluster might not be in a stable state. If this is the case, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

Too many method names are defined for quorum. Max method = 8

This error message usually indicates that if the number of methods specified are more than 8. The following errors will also be reported in standard error if Quorum method names exceed the limit:

cfreg_get: `#2809: specified transaction invalid`
The `rcqconfig` routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This message should not occur. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

`cfreg_get: `#2804: entry with specified key does not exist`'

The `rcqconfig` routine has failed. This error message usually indicates that the specified entry does not exist. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

`cfreg_get: `#2819: data or key buffer too small`'

The `rcqconfig` routine has failed. This error message usually indicates that the specified size of the data buffer is too small to hold the entire data for the entry. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

`cfreg_put: `#2809: specified transaction invalid`'

The `rcqconfig` routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This messages should not occur. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

`cfreg_put: `#2820: registry entry data too large`'

The `rcqconfig` routine has failed. This error message usually indicates that the event information (data being passed to the kernel) to be used for other sub-systems) is larger than 32K. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the
rcqconfig messages

CF messages and codes

cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If
the problem persists, remove and then re-install the CF package. If this does not
resolve the problem, contact your customer service support representative.

cfreg_put: `#2807: data file format is corrupted`
The rcqconfig(1M) routine has failed. This error message usually indicates
that the registry data file format has been corrupted. The cause of error
messages of this pattern is that the memory image may have somehow been
damaged. Try to unload the cluster by using cfconfig -u and reload the
cluster by using cfconfig -l. If the problem persists, remove and then re-in-
install the CF package. If this does not resolve the problem, contact your
customer service support representative.

cms_post_event: `#0c01: event information is too large`
The rcqconfig(1M) routine has failed. This error message usually indicates
that the event information (data being passed to the kernel) to be used for other
sub-systems) is larger than 32K. The cause of error messages of this pattern is
that the memory image may have somehow been damaged. Try to unload the
cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If
the problem persists, remove and then re-install the CF package. If this does not
resolve the problem, contact your customer service support representative.

rcqconfig -d node-1 node-2 …. node-n
   -d and -d cannot exist together.
This error message usually indicates that get configuration option (-g) cannot
be specified with this option (-d). Refer to the manual pages for the correct
syntax definition.

Nodename is not valid nodename.
This error message usually indicates that the length of the node is less than 1
or greater than 31 bytes. Refer to the manual pages for the correct syntax
definition.

rcqconfig : failed to start
The following errors will also be reported in standard error if rcqconfig(1M)
fails to start:

cfreg_start_transaction: `#2813: cfreg daemon not present`
The rcqconfig(1M) routine has failed. This error message usually indicates
that the synchronization daemon is not running on the node. The cause of error
messages of this pattern may be that the cfreg daemon has died and the
previous error messages in the system log or console will indicate why the
CF messages and codes

daemon died. Restart the daemon using cfregd -r. If it fails again, the error messages associated with it will indicate the problem. The data in the registry is most likely corrupted. If the problem persists, contact your customer service support representative.

cfreg_start_transaction: #2815: registry is busy

The rcqconfig(1M) routine has failed. This error message usually indicates that the daemon is not in synchronized state or if the transaction has been started by another application. This messages should not occur. The cause of error messages of this pattern is that the registries are not in consistent state. If the problem persists, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem still persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_start_transaction: #2810: an active transaction exists

The rcqconfig(1M) routine has failed. This error message usually indicates that the application has already started a transaction. If the cluster is stable, the cause of error messages of this pattern is that different changes may be done concurrently from multiple nodes. Therefore, it might take longer time to commit. Retry the command again. If the problem persists, the cluster might not be in a stable state. If this is the case, unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

Too many nodename are defined for quorum. Max node = 64

This error message usually indicates that if the number of node specified are more than 64 for which the quorum is to be configured. The following errors will also be reported in standard error if nodename defined exceed the maximum limit:

cfreg_get: #2809: specified transaction invalid

The rcqconfig(1M) routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This message should not occur. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

rcqconfig messages

cfreg_get: #2804: entry with specified key does not exist
rcqconfig messages

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified entry does not exist. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_get: `#2819: data or key buffer too small`

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified size of the data buffer is too small to hold the entire data for the entry. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_put: `#2809: specified transaction invalid`

The rcqconfig(1M) routine has failed. This error message usually indicates that the information supplied to get the specified data from the registry is not valid (e.g. transaction aborted due to time period expiring or synchronization daemon termination, etc.). This message should not occur. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_put: `#2820: registry entry data too large`

The rcqconfig(1M) routine has failed. This error message usually indicates that the specified size data is larger than 28K. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cfreg_put: `#2807: data file format is corrupted`

The rcqconfig(1M) routine has failed. This error message usually indicates that the registry data file format has been corrupted. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the
cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

cms_post_event: `#0c01: event information is too large`

The rcqconfig(1M) routine has failed. This error message usually indicates that the event information (data being passed to the kernel) to be used for other sub-systems) is larger than 32K. The cause of error messages of this pattern is that the memory image may have somehow been damaged. Try to unload the cluster by using cfconfig -u and reload the cluster by using cfconfig -l. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

### 12.5 rcqquery messages

The rcqquery(1M) command will generate an error message on stderr if an error condition is detected. Additional messages, giving more detailed information about this error, may be generated by the support routines of the libcf library. Please note that these additional error messages will only be written to the system-log file, and will not appear on stdout or stderr.

Refer to the rcqquery(1M) manual page for an explanation of the command options and the associated functionality.

#### 12.5.1 Usage message

A usage message will be generated if:

- An invalid rcqquery(1M) option is specified.
- The -h option is specified.

**Usage:**
```
rcqquery [-v] [-l] [-h]
-v verbose
-l loop
-h help
```

#### 12.5.2 Error messages

rcqquery -v -l
failed to register user event
CF runtime messages

```
0c0b: user level ENS event memory limit overflow
```

The `rcquery(1M)` routine has failed. It usually indicates that either the total amount of memory allocated or the amount of memory allocated for use on a per-open basis exceed the limit. Try to unload the cluster by using `cfconfig -u` and reload the cluster by using `cfconfig -l`. If the problem persists, remove and then re-install the CF package. If this does not resolve the problem, contact your customer service support representative.

12.6 CF runtime messages

All CF runtime messages include an 80-byte ASCII log prefix, which includes a timestamp, component number, error type, severity, version, product name, and structure id. This header is not included in the message descriptions that follow.

All of the following messages are sent to the system-log file, and 'node up' and 'node down' messages are also sent to the console.

There are some common tokens (shown in bold italic font) substituted into the error and warning messages that follow. If necessary, any not covered by this global explanation will be explained in the text associated with the specific message text.

- **clusternam**e — The name of the cluster to which the node belongs (or is joining). It is specified in the cluster configuration (see `cfconfig -s`).

- **err_type** — Identifies the type of ICF error reported. There are three types of errors:
  1. Debug (none in released product)
  2. Heartbeat missing
  3. Service error (usually, “route down”)

- **nodename** — The name by which a node is known within a cluster (usually derived from `uname -n`).

- **nodenum** — A unique number assigned to each and every node within a cluster.

- **route_dst** — The ICF route number (at the remote node) associated with a specific route.
CF messages and codes

- **route_src** — The ICF route number (on the local node) associated with a route. An ICF route is the logical connection established between two nodes over a cluster interconnect.

- **servername** — The nodename of the node acting as a join server for the local (client) node that is attempting to join the cluster.

- **service** — Denotes the ICF registered service number. There are currently over 30 registered ICF services.
This first set of messages are “special” in that they deal with the CF driver basic initialization and de-initialization:

CF: cf_attach Error: invalid command. (#0425 bad_cmd)
CF: cf_attach Error: invalid instance. (#0425 cf_instance instance)
CF: cf_attach Error: phase 1 init failure. (#reason_code)
CF: cf_attach Error: phase 2 init failure. (#reason_code)
CF: cf_attach Error: unable to create cf minor.
CF: cf_detach Error: invalid instance. (#0425 cf_instance instance)

These messages are associated with a CF initialization failure. They should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

12.6.1 Alphabetical list of messages

CF: carp_broadcast_version: Failed to announce version
cip_version
This message will occur if CIP fails to initialize successfully, indicating some sort of mismatch between CIP and CF. This message should not occur unless the CF driver and/or other kernel components have somehow been damaged. Remove and then re-install the CF package. If the problem persists, contact your customer support representative.

CF: carp_event: bad nodeid (#0000 nodenum)
This message is generated by CIP when a bad nodenumber is received.

CF: cip: Failed to register ens EVENT_CIP
This message is generated when CIP initialization cannot register for the event EVENT_CIP.

CF: cip: Failed to register ens EVENT_NODE_LEFTCLUSTER
This message is generated when CIP initialization cannot register for the event EVENT_NODE_LEFTCLUSTER.

CF: cip: Failed to register icf channel ICF_SVC_CIP_CTL
This message is generated when CIP initialization cannot register with ICF for the service ICF_SVC_CIP_CTL.

CF: cip: message SYNC_CIP_VERSION is too short
This message is generated when CIP receives a garbled message.
CF messages and codes

CF: ens_nicf_input Error: unknown msg type received. (#0000 msgtype)
   This message is generated by ENS when a garbled message is received from ICF. The message is dropped.

CF: Giving UP Mastering (Cluster already Running).
   This message is generated when a node detects a join server and joins an existing cluster, rather than forming a new one. No action is necessary.

CF: Giving UP Mastering (some other Node has Higher ID).
   This message is generated when a node volunteers to be a join server, but detects an eligible join server with a higher id. No action is necessary.

CF: Icf Error: (service err_type route_src route_dst). (#0000 service err-type route_src route_dst)
   This message is generated when ICF detects an error. It is most common to see this message in missing heartbeat and route down situations.

CF: Join client nodename timed out. (#0000 nodenum)
   This message is generated on a node acting as a join server, when the client node does not respond in time.

CF: Join Error: Invalid configuration: multiple devs on same LAN.
   This message is generated when a node is attempting to join or form a cluster. Multiple network interconnects cannot be attached to the same LAN segment.

CF: Join Error: Invalid configuration: asymmetric cluster.
   This message is generated when a node is joining a cluster that has an active node that does not support asymmetric clustering, and has configured an incompatible (asymmetric) set of cluster interconnects.

CF: Join postponed: received packets out of sequence from servername.
   This message is generated when a node is attempting to join a cluster, but is having difficulty communicating with the node acting as the join server. Both nodes will attempt to restart the join process.

CF: Join postponed, server servername is busy.
   This message is generated when a node is attempting to join a cluster, but the join server is busy with another client node. (Only one join may be active in/on the cluster at a time.) Another reason for this message to
be generated is that the client node is currently in LEFTCLUSTER state. A node cannot re-join a cluster, unless its state is DOWN. (See the cftool -k manual page.)

CF: Join timed out, server servername did not send node number: retrying.
CF: Join timed out, server servername did not send nsm map: retrying.
CF: Join timed out, server servername did not send welcome message.

These messages are generated when a node is attempting to join a cluster, but is having difficulty communicating with the node acting as the join server. The join client node will attempt to continue the join process.

CF: Local node is missing a route from node: nodename

These messages are generated when an asymmetric join has occurred in a cluster, and the local node is missing a route to the new node. The nodename and devicename of the associated cluster interconnect are displayed, in case this is not the desired result.

CF: Local Node nodename Created Cluster clustername. (#0000 nodenum)

This message is generated when a node forms a new cluster.

CF: Local Node nodename Left Cluster clustername.

This message is generated when a node leaves a cluster.

CF: No join servers found.

This message is generated when a node cannot detect any nodes willing to act as join servers.

CF: Node nodename Joined Cluster clustername. (#0000 nodenum)

This message is generated when a node joins an existing cluster.

CF: Node nodename Left Cluster clustername. (#0000 nodenum)

This message is generated when a node leaves a cluster.

CF: Received out of sequence packets from join client: nodename

This message is generated when a node, acting as a join server, is having difficulty communicating with the client node. Both nodes will attempt to restart the join process.

CF: Starting Services.

This message is generated by CF as it is starting.
CF messages and codes

CF: Stopping Services.
This message is generated by CF as it is stopping.

CF: User level event memory overflow: Event dropped (#0000 eventid)
This message is generated when an ENS user event is received, but there is no memory for the event to be queued.

CF: clustername: nodename is Down. (#0000 nodenum)
This message is generated when a node has left the cluster in an orderly manner (i.e., cfconfig -u).

CF: nodename Error: local node has no route to node: join aborted.
This message is generated when a node is attempting to join a cluster, but detects that there is no route to one or more nodes that are already members of the cluster.

CF: nodename Error: no echo response from node: join aborted.
This message is generated when a node is attempting to join a cluster, but is having difficulty communicating with all the nodes in the cluster.

CF: servername: busy: cluster join in progress: retrying
CF: servername: busy: local node not DOWN: retrying
CF: servername: busy mastering: retrying
CF: servername: busy serving another client: retrying
CF: servername: local node's status is UP: retrying
CF: servername: new node number not available: join aborted
These messages are generated when a node is attempting to join a cluster, but the join server is busy with another client node. (Only one join may be active in/on the cluster at a time.) Another reason for this message to be generated is that the client node is currently in LEFTCLUSTER state. A node cannot re-join a cluster, unless its state is DOWN. (See the cftool -k manual page.)

CF (TRACE): cip: Announcing version cip_version
This message is generated when a CIP initialization is complete.

CF (TRACE): EnsEV: Shutdown
This message is generated when the ENS event-daemon shuts down.

CF (TRACE): EnsND: Shutdown
This message is generated when the ENS node_down-daemon shuts down.
CF Reason Code table

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0401</td>
<td>REASON_SUCCESS</td>
<td>Operation was successful</td>
<td></td>
</tr>
<tr>
<td>0401</td>
<td>REASON_NOERR</td>
<td>generic</td>
<td>Request not completed</td>
</tr>
<tr>
<td>0402</td>
<td>REASON_ALERTED</td>
<td>generic</td>
<td>Interrupted call</td>
</tr>
<tr>
<td>0403</td>
<td>REASON_TIMEOUT</td>
<td>generic</td>
<td>Timedout call</td>
</tr>
<tr>
<td>0404</td>
<td>REASON_NO_MEMORY</td>
<td>generic</td>
<td>Out of memory</td>
</tr>
<tr>
<td>0405</td>
<td>REASON_NO_SUCH_DEVICE</td>
<td>generic</td>
<td>No such device/resource</td>
</tr>
<tr>
<td>0406</td>
<td>REASON_DEVICE_BUSY</td>
<td>generic</td>
<td>Resource is busy</td>
</tr>
<tr>
<td>0407</td>
<td>REASON_INVALID_PARAMETER</td>
<td>generic</td>
<td>Invalid parameter</td>
</tr>
<tr>
<td>0408</td>
<td>REASON_UNSUCCESSFUL</td>
<td>generic</td>
<td>Unsuccessful</td>
</tr>
<tr>
<td>0409</td>
<td>REASON_ADDRESS_ALREADY_EXISTS</td>
<td>generic</td>
<td>Address already exists</td>
</tr>
<tr>
<td>040a</td>
<td>REASON_BAD_ADDRESS</td>
<td>generic</td>
<td>Bad memory address</td>
</tr>
<tr>
<td>040b</td>
<td>REASON_INSUFFICIENT_RESOURCES</td>
<td>generic</td>
<td>Insufficient resources</td>
</tr>
<tr>
<td>040c</td>
<td>REASON_BUFFER_OVERFLOW</td>
<td>generic</td>
<td>Buffer overflow</td>
</tr>
</tbody>
</table>

This message is generated when an ICF route is (re-)activated.

This message is generated when the join server mechanism is deactivated.

This message is generated when the join daemon is started.

This message is generated when an active join daemon shuts down.

This message is generated when CF initialization is complete.
### CF messages and codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>040d</td>
<td>REASON_INVALID_OWNER</td>
<td>generic</td>
<td>Invalid owner</td>
</tr>
<tr>
<td>040e</td>
<td>REASON_INVALID_HANDLE</td>
<td>generic</td>
<td>Invalid handle</td>
</tr>
<tr>
<td>040f</td>
<td>REASON_DUPNAME</td>
<td>generic</td>
<td>Duplicate name</td>
</tr>
<tr>
<td>0410</td>
<td>REASON_USAGE</td>
<td>generic</td>
<td>Usage</td>
</tr>
<tr>
<td>0411</td>
<td>REASON_NODATA</td>
<td>generic</td>
<td>No data</td>
</tr>
<tr>
<td>0412</td>
<td>REASON_NOT_INITIALIZED</td>
<td>generic</td>
<td>Driver not initialized</td>
</tr>
<tr>
<td>0413</td>
<td>REASON_UNLOADING</td>
<td>generic</td>
<td>Driver unloading</td>
</tr>
<tr>
<td>0414</td>
<td>REASON_REASSEMBLY_DOWN</td>
<td>generic</td>
<td>Sender died while sending data</td>
</tr>
<tr>
<td>0415</td>
<td>REASON_WENT_DOWN</td>
<td>generic</td>
<td>Destination node went down</td>
</tr>
<tr>
<td>0416</td>
<td>REASON_TRANSMIT_TIMEOUT</td>
<td>generic</td>
<td>Data transmission timeout</td>
</tr>
<tr>
<td>0417</td>
<td>REASON_BAD_PORT</td>
<td>generic</td>
<td>Bad destination port</td>
</tr>
<tr>
<td>0418</td>
<td>REASON_BAD_DEST</td>
<td>generic</td>
<td>Bad destination</td>
</tr>
<tr>
<td>0419</td>
<td>REASON_YANK</td>
<td>generic</td>
<td>Message transmission flushed</td>
</tr>
<tr>
<td>041a</td>
<td>REASON_SVC_BUSY</td>
<td>generic</td>
<td>SVC has pending transmissions</td>
</tr>
<tr>
<td>041b</td>
<td>REASON_SVC_UNREGISTER</td>
<td>generic</td>
<td>SVC has been unregistered</td>
</tr>
<tr>
<td>041c</td>
<td>REASON_INVALID_VERSION</td>
<td>generic</td>
<td>Invalid version</td>
</tr>
<tr>
<td>041d</td>
<td>REASON_NOT_SUPPORTED</td>
<td>generic</td>
<td>Function not supported</td>
</tr>
<tr>
<td>041e</td>
<td>REASON_EPERM</td>
<td>generic</td>
<td>Not super-user</td>
</tr>
<tr>
<td>041f</td>
<td>REASON_ENOENT</td>
<td>generic</td>
<td>No such file or directory</td>
</tr>
<tr>
<td>0420</td>
<td>REASON_EINTR</td>
<td>generic</td>
<td>Interrupted system call</td>
</tr>
<tr>
<td>0421</td>
<td>REASON_EIO</td>
<td>generic</td>
<td>I/O error</td>
</tr>
<tr>
<td>0422</td>
<td>REASON_ENXIO</td>
<td>generic</td>
<td>No such device or address (I/O req)</td>
</tr>
<tr>
<td>0423</td>
<td>REASON_EACCES</td>
<td>generic</td>
<td>Permission denied</td>
</tr>
<tr>
<td>Code</td>
<td>Reason</td>
<td>Service</td>
<td>Text</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>0424</td>
<td>REASON_EEXIST</td>
<td>generic</td>
<td>File exists</td>
</tr>
<tr>
<td>0425</td>
<td>REASON_DDI_FAILURE</td>
<td>generic</td>
<td>Error in DDI/DKI routine</td>
</tr>
<tr>
<td>0426</td>
<td>REASON_INVALID_NODENAME</td>
<td>generic</td>
<td>Invalid node name</td>
</tr>
<tr>
<td>0427</td>
<td>REASON_INVALID_NODENUMBER</td>
<td>generic</td>
<td>Invalid node number</td>
</tr>
<tr>
<td>0428</td>
<td>REASON_NODE_NOT_LEFTC</td>
<td>generic</td>
<td>Node is not in LEFTCLUSTER</td>
</tr>
<tr>
<td>0429</td>
<td>REASON_CORRUPT_CONFIG</td>
<td>generic</td>
<td>Corrupt/invalid cluster config</td>
</tr>
<tr>
<td>042a</td>
<td>REASON_FLUSH</td>
<td>generic</td>
<td>Messages transmission flushed</td>
</tr>
<tr>
<td>042b</td>
<td>REASON_MAX_ENTRY</td>
<td>generic</td>
<td>Maximum entries reached</td>
</tr>
<tr>
<td>042c</td>
<td>REASON_NO_CONFIGURATION</td>
<td>generic</td>
<td>No configuration exists</td>
</tr>
</tbody>
</table>

/* mrpc reasons */
<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0801</td>
<td>REASON_MRPC_CLT_SVCUNAVAIL</td>
<td>mrpc</td>
<td>Service not registered on Client</td>
</tr>
<tr>
<td>0802</td>
<td>REASON_MRPC_SRV_SVCUNAVAIL</td>
<td>mrpc</td>
<td>Service not registered on Server</td>
</tr>
<tr>
<td>0803</td>
<td>REASON_MRPC_CLT_PROCUNAVAIL</td>
<td>mrpc</td>
<td>Service Procedure not avail on Clt</td>
</tr>
<tr>
<td>0804</td>
<td>REASON_MRPC_SRV_PROCUNAVAIL</td>
<td>mrpc</td>
<td>Service Procedure not avail on Srv</td>
</tr>
<tr>
<td>0805</td>
<td>REASON_MRPC_INARGTOOLONG</td>
<td>mrpc</td>
<td>Input argument size too big</td>
</tr>
<tr>
<td>0806</td>
<td>REASON_MRPC_OUTARGTOOLONG</td>
<td>mrpc</td>
<td>Output argument size too big</td>
</tr>
<tr>
<td>0807</td>
<td>REASON_MRPC_RETARGOVERFLOW</td>
<td>mrpc</td>
<td>Return argument size overflow</td>
</tr>
<tr>
<td>0808</td>
<td>REASON_MRPC_VERSMISMATCH</td>
<td>mrpc</td>
<td>Version mismatch</td>
</tr>
<tr>
<td>0809</td>
<td>REASON_MRPC_ICF_FAILURE</td>
<td>mrpc</td>
<td>ICF send failed</td>
</tr>
<tr>
<td>080a</td>
<td>REASON_MRPC_INTR</td>
<td>mrpc</td>
<td>Interrupted RPC</td>
</tr>
</tbody>
</table>
### CF messages and codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>080b</td>
<td>REASON_MRPC_RECURSIVE</td>
<td>mrpc</td>
<td>Illegal recursive call</td>
</tr>
<tr>
<td>080c</td>
<td>REASON_MRPC_SVC_EXIST</td>
<td>mrpc</td>
<td>Service already registered</td>
</tr>
</tbody>
</table>

/* ens reasons */

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0c01</td>
<td>REASON_ENS_INFOTOOBIG</td>
<td>ens</td>
<td>Event information is too large</td>
</tr>
<tr>
<td>0c02</td>
<td>REASON_ENS_TOOSOON</td>
<td>ens</td>
<td>Attempt to post event before ens_init</td>
</tr>
<tr>
<td>0c03</td>
<td>REASON_ENS_NODEST</td>
<td>ens</td>
<td>Remote or local not specified in howto</td>
</tr>
<tr>
<td>0c04</td>
<td>REASON_ENS_DAEMONNOTIFY</td>
<td>ens</td>
<td>Invalid event posting by event daemon</td>
</tr>
<tr>
<td>0c05</td>
<td>REASON_ENS_NOICF</td>
<td>ens</td>
<td>Attempt to post remote before ICF config</td>
</tr>
<tr>
<td>0c06</td>
<td>REASON_ENS_OLDACKVERS</td>
<td>ens</td>
<td>Old version kernel has acked event</td>
</tr>
<tr>
<td>0c07</td>
<td>REASON_ENS_IMPLICITACK</td>
<td>ens</td>
<td>Event handler did not obtain ack handle</td>
</tr>
<tr>
<td>0c08</td>
<td>REASON_ENS_ACKNOTREQ</td>
<td>ens</td>
<td>Event acknowledgment not required</td>
</tr>
<tr>
<td>0c09</td>
<td>REASON_ENS_NOTEVHANDLER</td>
<td>ens</td>
<td>Obtainer of ack handle not event handler</td>
</tr>
<tr>
<td>0c0a</td>
<td>REASON_ENS_NOACKHANDLE</td>
<td>ens</td>
<td>Cannot locate event ack handle</td>
</tr>
<tr>
<td>0c0b</td>
<td>REASON_ENS_MEMLIMIT</td>
<td>ens</td>
<td>User level ENS event memory limit overflow</td>
</tr>
<tr>
<td>0c0c</td>
<td>REASON_ENS_DUPREG</td>
<td>ens</td>
<td>Duplicate event registration</td>
</tr>
<tr>
<td>0c0d</td>
<td>REASON_ENS_REGNOTFOUND</td>
<td>ens</td>
<td>Event registration not found</td>
</tr>
<tr>
<td>0c0e</td>
<td>REASON_ENS_INFOTOOSMALL</td>
<td>ens</td>
<td>Event information size too small</td>
</tr>
<tr>
<td>Code</td>
<td>Reason</td>
<td>Service</td>
<td>Text</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>0c0f</td>
<td>REASON_ENS_BADFAILNODE</td>
<td>ens</td>
<td>Node cannot post LEFTCLUSTER or NODE DOWN for itself</td>
</tr>
<tr>
<td>1001</td>
<td>REASON_NSM_BADVERSION</td>
<td>nsm</td>
<td>Data structure version mismatch</td>
</tr>
<tr>
<td>1002</td>
<td>REASON_NSM_NONODES</td>
<td>nsm</td>
<td>No nodes have been specified</td>
</tr>
<tr>
<td>1003</td>
<td>REASON_NSM_TOOMANYNODES</td>
<td>nsm</td>
<td>Too many nodes have been specified</td>
</tr>
<tr>
<td>1004</td>
<td>REASON_NSM_BADNODEID</td>
<td>nsm</td>
<td>Node ID out of node name space range</td>
</tr>
<tr>
<td>1005</td>
<td>REASON_NSM_BADNETALEN</td>
<td>nsm</td>
<td>Invalid network address length</td>
</tr>
<tr>
<td>1006</td>
<td>REASON_NSM_ICFCREATE</td>
<td>nsm</td>
<td>Failure trying to create ICF node</td>
</tr>
<tr>
<td>1007</td>
<td>REASON_NSM_ICFDELETE</td>
<td>nsm</td>
<td>Failure trying to delete ICF node</td>
</tr>
<tr>
<td>1008</td>
<td>REASON_NSM_BADSTARTNODE</td>
<td>nsm</td>
<td>Invalid starting node specified</td>
</tr>
<tr>
<td>1009</td>
<td>REASON_NSM_BADINFOLEN</td>
<td>nsm</td>
<td>Invalid event information length</td>
</tr>
<tr>
<td>100a</td>
<td>REASON_NSM_BADCNODEID</td>
<td>nsm</td>
<td>Control node out of name space range</td>
</tr>
<tr>
<td>100b</td>
<td>REASON_NSM_BADCNSTATUS</td>
<td>nsm</td>
<td>Control node status invalid</td>
</tr>
<tr>
<td>100c</td>
<td>REASON_NSM_BADANODEID</td>
<td>nsm</td>
<td>Invalid node ID for node being added</td>
</tr>
<tr>
<td>100d</td>
<td>REASON_NSM_ADDNODEUP</td>
<td>nsm</td>
<td>Node being added is already operational</td>
</tr>
<tr>
<td>100e</td>
<td>REASON_NSM_NONODE</td>
<td>nsm</td>
<td>Node does not exist in the node name space</td>
</tr>
</tbody>
</table>
### CF messages and codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>100f</td>
<td>REASON_NSM_NODEFAILURE</td>
<td>nsm</td>
<td>A node has been declared dead</td>
</tr>
<tr>
<td>1010</td>
<td>REASON_NSM_NODETIMEOUT</td>
<td>nsm</td>
<td>Heartbeat timeout has expired for a node</td>
</tr>
<tr>
<td>1011</td>
<td>REASON_NSM_BADOUTSIZE</td>
<td>nsm</td>
<td>Invalid value for MRPC outsize</td>
</tr>
<tr>
<td>1012</td>
<td>REASON_NSM_BADINSIZE</td>
<td>nsm</td>
<td>Invalid value for MRPC insize</td>
</tr>
<tr>
<td>1013</td>
<td>REASON_NSM_BADNDNOTIFY</td>
<td>nsm</td>
<td>Failure to post NODE DOWN event</td>
</tr>
<tr>
<td>1014</td>
<td>REASON_NSM_VERSIONERR</td>
<td>nsm</td>
<td>nsetinfo versioning error</td>
</tr>
</tbody>
</table>

/* mrpc */

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1401</td>
<td>REASON_ICF_MRPC_SZSM</td>
<td>icfrpc</td>
<td>Output argument size too small</td>
</tr>
<tr>
<td>1402</td>
<td>REASON_ICF_MRPC_BADNDNUM</td>
<td>icfrpc</td>
<td>Node does not exist</td>
</tr>
<tr>
<td>1403</td>
<td>REASON_ICF_MRPC_BADADDR</td>
<td>icfrpc</td>
<td>mesh address does not exist</td>
</tr>
</tbody>
</table>

/* user events */

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>REASON_UEV_ALREADYOPEN</td>
<td>uev</td>
<td>Process already has event device open</td>
</tr>
<tr>
<td>1802</td>
<td>REASON_UEV_TOOMANYEVENTS</td>
<td>uev</td>
<td>Too many user events initialized</td>
</tr>
<tr>
<td>1803</td>
<td>REASON_UEV_BADHANDLE</td>
<td>uev</td>
<td>Invalid user event handle specified</td>
</tr>
<tr>
<td>1804</td>
<td>REASON_UEV_NOTOPEN</td>
<td>uev</td>
<td>Process does not have event device open</td>
</tr>
<tr>
<td>1805</td>
<td>REASON_UEV_REGISTERED</td>
<td>uev</td>
<td>Duplicate user event registration</td>
</tr>
</tbody>
</table>

/* node group */
<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c01</td>
<td>REASON_NG_DEF_SYNTAX</td>
<td>ng</td>
<td>Bad definition syntax</td>
</tr>
<tr>
<td>1c02</td>
<td>REASON_NG_DUPNAME</td>
<td>ng</td>
<td>Name exists already</td>
</tr>
<tr>
<td>1c03</td>
<td>REASON_NG_EXIST</td>
<td>ng</td>
<td>Group does not exist</td>
</tr>
<tr>
<td>1c04</td>
<td>REASON_NG_NO_EXIST</td>
<td>ng</td>
<td>Node does not exist</td>
</tr>
<tr>
<td>1c05</td>
<td>REASON_NG_NAMELEN</td>
<td>ng</td>
<td>Too long a node name</td>
</tr>
<tr>
<td>1c06</td>
<td>REASON_NG_STATE</td>
<td>ng</td>
<td>Unknown parser state</td>
</tr>
<tr>
<td>1c07</td>
<td>REASON_NG_NODEINFO</td>
<td>ng</td>
<td>Failed to get up-node info</td>
</tr>
<tr>
<td>1c08</td>
<td>REASON_NG_ITER_STALE</td>
<td>ng</td>
<td>Iterator is stale</td>
</tr>
<tr>
<td>1c09</td>
<td>REASON_NG_ITER_NOSPACE</td>
<td>ng</td>
<td>Iterator pool exhausted</td>
</tr>
<tr>
<td>1c0a</td>
<td>REASON_NG_ITER_NOENT</td>
<td>ng</td>
<td>The end of iteration</td>
</tr>
<tr>
<td>1c0b</td>
<td>REASON_NG_MEMBER</td>
<td>ng</td>
<td>Node is not a group member</td>
</tr>
<tr>
<td>1c0c</td>
<td>REASON_NG_NOENT</td>
<td>ng</td>
<td>No node is up</td>
</tr>
<tr>
<td>1c0d</td>
<td>REASON_NG_UNPACK</td>
<td>ng</td>
<td>Failed to unpack definition</td>
</tr>
<tr>
<td>1c0e</td>
<td>REASON_NG_DUPDEF</td>
<td>ng</td>
<td>Identical group definition</td>
</tr>
</tbody>
</table>

/^ distributed mount services */

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>REASON_DMS_INVALIDCNG</td>
<td>dms</td>
<td>Invalid client node group</td>
</tr>
<tr>
<td>2002</td>
<td>REASON_DMS_MNTINUSE</td>
<td>dms</td>
<td>Mount in use</td>
</tr>
<tr>
<td>2003</td>
<td>REASON_DMS_DEVINUSE</td>
<td>dms</td>
<td>Device in use</td>
</tr>
<tr>
<td>2004</td>
<td>REASON_DMS_FSCKFFAILED</td>
<td>dms</td>
<td>Failover fsck failed</td>
</tr>
<tr>
<td>2005</td>
<td>REASON_DMS_MNTFAILED</td>
<td>dms</td>
<td>Failover mount failed</td>
</tr>
<tr>
<td>2006</td>
<td>REASON_DMS_MNTBUSY</td>
<td>dms</td>
<td>Mount is busy</td>
</tr>
<tr>
<td>2007</td>
<td>REASON_DMS_NOMNTP</td>
<td>dms</td>
<td>No mount point specified</td>
</tr>
<tr>
<td>2008</td>
<td>REASON_DMS_NODBENT</td>
<td>dms</td>
<td>Specified mount point not found</td>
</tr>
<tr>
<td>Code</td>
<td>Reason</td>
<td>Service</td>
<td>Text</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>---------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>2009</td>
<td>REASON_DMS_BADSTATE</td>
<td>dms</td>
<td>Server is up or failover in progress</td>
</tr>
<tr>
<td>200a</td>
<td>REASON_DMS_SUBMOUNT</td>
<td>dms</td>
<td>Specified mount point is CFS submount</td>
</tr>
<tr>
<td>200b</td>
<td>REASON_MAX_REASON_VAL</td>
<td>dms</td>
<td>Last reason</td>
</tr>
<tr>
<td></td>
<td>/* join */</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2401</td>
<td>REASON_JOIN_FAILED</td>
<td>join</td>
<td>Node has failed to join cluster</td>
</tr>
<tr>
<td>2402</td>
<td>REASON_JOIN_DISABLED</td>
<td>join</td>
<td>Cluster join not started</td>
</tr>
<tr>
<td>2403</td>
<td>REASON_JOIN_SHUTDOWN</td>
<td>join</td>
<td>Join daemon shut down</td>
</tr>
<tr>
<td></td>
<td>/* cfreg */</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2801</td>
<td>REASON_CFREG_STOPREQUESTED</td>
<td>cfreg</td>
<td>cfreg daemon stop requested</td>
</tr>
<tr>
<td>2802</td>
<td>REASON_CFREG_DUPDAEMON</td>
<td>cfreg</td>
<td>cfreg daemon already running</td>
</tr>
<tr>
<td>2803</td>
<td>REASON_CFREG_BADCONFIG</td>
<td>cfreg</td>
<td>Internal cfreg configuration error</td>
</tr>
<tr>
<td>2804</td>
<td>REASON_CFREG_NOENTRY</td>
<td>cfreg</td>
<td>Entry with specified key does not exist</td>
</tr>
<tr>
<td>2805</td>
<td>REASON_CFREG_COMMITED</td>
<td>cfreg</td>
<td>Specified transaction committed</td>
</tr>
<tr>
<td>2806</td>
<td>REASON_CFREG_NOTOPEN</td>
<td>cfreg</td>
<td>Data file not open</td>
</tr>
<tr>
<td>2807</td>
<td>REASON_CFREG_CORRUPTFILE</td>
<td>cfreg</td>
<td>Data file format is corrupt</td>
</tr>
<tr>
<td>2808</td>
<td>REASON_CFREG_NSIERR</td>
<td>cfreg</td>
<td>Internal packaging error</td>
</tr>
<tr>
<td>2809</td>
<td>REASON_CFREG_INVALIDTRANS</td>
<td>cfreg</td>
<td>Specified transaction invalid</td>
</tr>
<tr>
<td>280a</td>
<td>REASON_CFREG_ACTIVETRANS</td>
<td>cfreg</td>
<td>An active transaction exists</td>
</tr>
<tr>
<td>Code</td>
<td>Reason</td>
<td>Service</td>
<td>Text</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>---------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>280b</td>
<td>REASON_CFREG_NOREQUESTS</td>
<td>creg</td>
<td>No daemon requests available</td>
</tr>
<tr>
<td>280c</td>
<td>REASON_CFREG_REQOVERFLOW</td>
<td>creg</td>
<td>Daemon request buffer overflow</td>
</tr>
<tr>
<td>280d</td>
<td>REASON_CFREG_NODAEMON</td>
<td>creg</td>
<td>creg daemon not present</td>
</tr>
<tr>
<td>280e</td>
<td>REASON_CFREG_BADREQUEST</td>
<td>creg</td>
<td>Unknown daemon request</td>
</tr>
<tr>
<td>280f</td>
<td>REASON_CFREG_REGBUSY</td>
<td>creg</td>
<td>Register is busy</td>
</tr>
<tr>
<td>2810</td>
<td>REASON_CFREG_REGOWNED</td>
<td>creg</td>
<td>Registry is owned</td>
</tr>
<tr>
<td>2811</td>
<td>REASON_CFREG_INVALIDUPDATE</td>
<td>creg</td>
<td>Invalid update</td>
</tr>
<tr>
<td>2812</td>
<td>REASON_CFREG_INVALIDKEY</td>
<td>creg</td>
<td>Invalid registry key</td>
</tr>
<tr>
<td>2813</td>
<td>REASON_CFREG_OVERFLOW</td>
<td>creg</td>
<td>Data or key buffer too small</td>
</tr>
<tr>
<td>2814</td>
<td>REASON_CFREG_TOOBIG</td>
<td>creg</td>
<td>Registry entry data too large</td>
</tr>
</tbody>
</table>

/* cflog Message Catalogs */
2c01 REASON_CFLOG_NOCAT clog cflog could not open message catalog

/* qsm Message Catalogs */
3001 REASON_QSM_DUPMETHODNAME qsm Duplicate quorum method name
3002 REASON_QSM_TRYAGAIN qsm Need to try again later
3003 REASON_QSM_BUSY qsm Method has been registered already
3004 REASON_QSM_IDLE qsm Method has not been registered
3005 REASON_QSM_STOP qsm qsm stop requested

/* sens */
## CF Reason Code Table

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3401</td>
<td>REASON_SENS_BADSEQ</td>
<td>sens</td>
<td>Invalid sequence number</td>
</tr>
<tr>
<td>3402</td>
<td>REASON_SENS_TOOSOON</td>
<td>sens</td>
<td>SENS not initialized</td>
</tr>
<tr>
<td>3403</td>
<td>REASON_SENS_DUPACK</td>
<td>sens</td>
<td>Duplicate registration for completion ack</td>
</tr>
<tr>
<td>3404</td>
<td>REASON_SENS_NOREG</td>
<td>sens</td>
<td>Registration does not exist</td>
</tr>
<tr>
<td>3405</td>
<td>REASON_SENS_BADMAP</td>
<td>sens</td>
<td>Node missing from node map</td>
</tr>
<tr>
<td>3406</td>
<td>REASON_SENS_NOUREG</td>
<td>sens</td>
<td>User event registration does not exist</td>
</tr>
<tr>
<td>3407</td>
<td>REASON_SENS_NOUEVENT</td>
<td>sens</td>
<td>Event not received</td>
</tr>
</tbody>
</table>

/* CFRS */

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3801</td>
<td>REASON_CFRS_BADFCPSRCCONF</td>
<td>cfrs</td>
<td>cfcp not configured on source node</td>
</tr>
<tr>
<td>3802</td>
<td>REASON_CFRS_BADFCPDSTCONF</td>
<td>cfrs</td>
<td>cfcp not configured on destination node</td>
</tr>
<tr>
<td>3803</td>
<td>REASON_CFRS_BADEXECSRCCONF</td>
<td>cfrs</td>
<td>cfsh not configured on source node</td>
</tr>
<tr>
<td>3804</td>
<td>REASON_CFRS_BADEXECDSTCONF</td>
<td>cfrs</td>
<td>cfsh not configured on execution node</td>
</tr>
<tr>
<td>3805</td>
<td>REASON_CFRS_BADDSTPATH</td>
<td>cfrs</td>
<td>Invalid destination file path</td>
</tr>
<tr>
<td>3806</td>
<td>REASON_CFRS_DSTPATHTOOLONG</td>
<td>cfrs</td>
<td>Destination file path too long</td>
</tr>
<tr>
<td>3807</td>
<td>REASON_CFRS_SRACCESSERR</td>
<td>cfrs</td>
<td>Cannot access source file</td>
</tr>
<tr>
<td>3808</td>
<td>REASON_CFRS_SRNOTREG</td>
<td>cfrs</td>
<td>Source file is not regular file</td>
</tr>
<tr>
<td>3809</td>
<td>REASON_CFRS_SRREADERR</td>
<td>cfrs</td>
<td>Source file read error</td>
</tr>
<tr>
<td>380a</td>
<td>REASON_CFRS_NOCMD</td>
<td>cfrs</td>
<td>No command string specified</td>
</tr>
<tr>
<td>Code</td>
<td>Reason</td>
<td>Service</td>
<td>Text</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>380b</td>
<td>REASON_CFRS_CMDTOOLONG</td>
<td>cfrs</td>
<td>Command string too long</td>
</tr>
<tr>
<td>380c</td>
<td>REASON_CFRS_OUTPUTWRITER</td>
<td>cfrs</td>
<td>Command output write error</td>
</tr>
<tr>
<td>380d</td>
<td>REASON_CFRS_NSIERROR</td>
<td>cfrs</td>
<td>Internal CFRS NSI error</td>
</tr>
<tr>
<td>380e</td>
<td>REASON_CFRS_DSTABORTEXEC</td>
<td>cfrs</td>
<td>Execution aborted on execution node</td>
</tr>
<tr>
<td>380f</td>
<td>REASON_CFRS_INVALIDIOCTL</td>
<td>cfrs</td>
<td>Invalid ioctl call</td>
</tr>
<tr>
<td>3810</td>
<td>REASON_CFRS_BADDSTNODE</td>
<td>cfrs</td>
<td>Destination node not in cluster</td>
</tr>
<tr>
<td>3811</td>
<td>REASON_CFRS_BADROPHANDLE</td>
<td>cfrs</td>
<td>Bad remote operation handle</td>
</tr>
<tr>
<td>3812</td>
<td>REASON_CFRS_SRCEXECABORTED</td>
<td>cfrs</td>
<td>Remote exec aborted on source node</td>
</tr>
<tr>
<td>3813</td>
<td>REASON_CFRS_RESPOUTTOOSMALL</td>
<td>cfrs</td>
<td>Response output buffer too small</td>
</tr>
<tr>
<td>3814</td>
<td>REASON_CFRS_MRPCOUTSIZE</td>
<td>cfrs</td>
<td>Unexpected MRPC outsize error</td>
</tr>
<tr>
<td>3815</td>
<td>REASON_CFRS_DSNODELEFT</td>
<td>cfrs</td>
<td>Destination node has left the cluster</td>
</tr>
<tr>
<td>3816</td>
<td>REASON_CFRS_DSTDAEMONDOWN</td>
<td>cfrs</td>
<td>cfrgd on destination node down</td>
</tr>
<tr>
<td>3817</td>
<td>REASON_CFRS_DSTSTATERR</td>
<td>cfrs</td>
<td>Failure to stat dst file</td>
</tr>
<tr>
<td>3818</td>
<td>REASON_CFRS_DSTNOTREG</td>
<td>cfrs</td>
<td>Existing dstpath not regular file</td>
</tr>
<tr>
<td>3819</td>
<td>REASON_CFRS_DSTTMPOPENERR</td>
<td>cfrs</td>
<td>Cannot open tmp file on dst node</td>
</tr>
<tr>
<td>381a</td>
<td>REASON_CFRS_DSTMPCHOWNERR</td>
<td>cfrs</td>
<td>Cannot chown tmp file on dst node</td>
</tr>
<tr>
<td>381b</td>
<td>REASON_CFRS_DSTTMPCHMODERR</td>
<td>cfrs</td>
<td>Cannot chmod tmp file on dst node</td>
</tr>
</tbody>
</table>
CF messages and codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>381c</td>
<td>REASON_CFRS_DSTTMPWRITEERR</td>
<td>cfrs</td>
<td>tmp file write error on dst node</td>
</tr>
<tr>
<td>381d</td>
<td>REASON_CFRS_DSTTMPCLOSEERR</td>
<td>cfrs</td>
<td>tmp file close error on dst node</td>
</tr>
<tr>
<td>381e</td>
<td>REASON_CFRS_DSTRENAMEERR</td>
<td>cfrs</td>
<td>Failed to rename existing dstpath</td>
</tr>
<tr>
<td>381f</td>
<td>REASON_CFRS_TMPRENAMEERR</td>
<td>cfrs</td>
<td>Failed to tmp file to dstpath</td>
</tr>
<tr>
<td>3820</td>
<td>REASON_CFRS_DUPIFC</td>
<td>cfrs</td>
<td>Duplicate remote operation handle error</td>
</tr>
<tr>
<td>3821</td>
<td>REASON_CFRS_STALESUBFCREQ</td>
<td>cfrs</td>
<td>Stale remote operation handle error</td>
</tr>
<tr>
<td>3822</td>
<td>REASON_CFRS_BADSPAWN</td>
<td>cfrs</td>
<td>Failure to spawn exec cmd on dstnode</td>
</tr>
</tbody>
</table>

/* CFSF */

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason</th>
<th>Service</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>REASON_CFSF_PENDING</td>
<td>cfsf</td>
<td>Invalid node down request with pending ICF failure</td>
</tr>
<tr>
<td>4002</td>
<td>REASON_MAX_REASON_VAL</td>
<td></td>
<td>Last reason</td>
</tr>
</tbody>
</table>

12.8 Error messages for different systems

Refer to the file /usr/include/sys/errno.h for the meaning of an ERRNO for a particular system.
## 12.9 Solaris OE ERRNO table

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1  | EPERM | **Operation not permitted / not super-user**  
Typically this error indicates an attempt to modify a file in some way forbidden except to its owner or the super-user. It is also returned for attempts by ordinary users to do things allowed only to the super-user. |
| 2  | ENOENT | **No such file or directory**  
A file name is specified and the file should exist but doesn't, or one of the directories in a path name does not exist. |
| 3  | ESRCH | **No such process, LWP, or thread**  
No process can be found in the system that corresponds to the specified PID, LWPID_t, or thread_t. |
| 4  | EINTR | **Interrupted system call**  
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred during a system service function. If execution is resumed after processing the signal, it will appear as if the interrupted function call returned this error condition. In a multi-threaded application, EINTR may be returned whenever another thread or LWP calls fork.(2) |
| 5  | EIO | **I/O error**  
Some physical I/O error has occurred. This error may in some cases occur on a call following the one to which it actually applies. |
| 6  | ENXIO | **No such device or address**  
I/O on a special file refers to a sub-device which does not exist, or exists beyond the limit of the device. It may also occur when, for example, a tape drive is not on-line or no disk pack is loaded on a drive. |
<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>E2BIG</td>
<td><strong>Arg list too long</strong>&lt;br&gt;An argument list longer than ARG_MAX bytes is presented to a member of the exec family of functions (see exec(2)). The argument list limit is the sum of the size of the argument list plus the size of the environment's exported shell variables.</td>
</tr>
<tr>
<td>8</td>
<td>ENOEXEC</td>
<td><strong>Exec format error</strong>&lt;br&gt;A request is made to execute a file which, although it has the appropriate permissions, does not start with a valid format (see a.out(4)).</td>
</tr>
<tr>
<td>9</td>
<td>EBADF</td>
<td><strong>Bad file number</strong>&lt;br&gt;Either a file descriptor refers to no open file, or a read(2) (respectively, write(2)) request is made to a file that is open only for writing (respectively, reading).</td>
</tr>
<tr>
<td>10</td>
<td>ECHILD</td>
<td><strong>No child processes</strong>&lt;br&gt;A wait(2) function was executed by a process that had no existing or unwaited-for child processes.</td>
</tr>
<tr>
<td>11</td>
<td>EAGAIN</td>
<td><strong>Try again / no more processes or no more LWPs</strong>&lt;br&gt;For example, the fork(2) function failed because the system's process table is full or the user is not allowed to create any more processes, or a call failed because of insufficient memory or swap space.</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>12</td>
<td>ENOMEM</td>
<td><strong>Out of memory / not enough space</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>During execution of <code>brk()</code> or <code>sbrk()</code> (see <code>brk(2)</code>), or one of the exec family of functions, a program asks for more space than the system is able to supply. This is not a temporary condition; the maximum size is a system parameter. On some architectures, the error may also occur if the arrangement of text, data, and stack segments requires too many segmentation registers, or if there is not enough swap space during the <code>fork(2)</code> function. If this error occurs on a resource associated with Remote File Sharing (RFS), it indicates a memory depletion which may be temporary, dependent on system activity at the time the call was invoked.</td>
</tr>
<tr>
<td>13</td>
<td>EACCES</td>
<td><strong>Permission denied</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An attempt was made to access a file in a way forbidden by the protection system.</td>
</tr>
<tr>
<td>14</td>
<td>EFAULT</td>
<td><strong>Bad address</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The system encountered a hardware fault in attempting to use an argument of a routine. For example, errno potentially may be set to <code>EFAULT</code> any time a routine that takes a pointer argument is passed an invalid address, if the system can detect the condition. Because systems will differ in their ability to reliably detect a bad address, on some implementations passing a bad address to a routine will result in undefined behavior.</td>
</tr>
<tr>
<td>15</td>
<td>ENOTBLK</td>
<td><strong>Block device required</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A non-block device or file was mentioned where a block device was required (for example, in a call to the <code>mount(2)</code> function).</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>16</td>
<td>EBUSY</td>
<td><strong>Device or resource busy</strong>&lt;br&gt;An attempt was made to mount a device that was already mounted or an attempt was made to unmount a device on which there is an active file (open file, current directory, mounted-on file, active text segment). It will also occur if an attempt is made to enable accounting when it is already enabled. The device or resource is currently unavailable. <strong>EBUSY</strong> is also used by mutexes, semaphores, condition variables, and read-write locks, to indicate that a lock is held, and by the processor control function <strong>P_ONLINE</strong>.</td>
</tr>
<tr>
<td>17</td>
<td>EXIST</td>
<td><strong>File exists</strong>&lt;br&gt;An existing file was mentioned in an inappropriate context (for example, call to the <strong>link(2)</strong> function).</td>
</tr>
<tr>
<td>18</td>
<td>EXDEV</td>
<td><strong>Cross-device link</strong>&lt;br&gt;A hard link to a file on another device was attempted.</td>
</tr>
<tr>
<td>19</td>
<td>ENODEV</td>
<td><strong>No such device</strong>&lt;br&gt;An attempt was made to apply an inappropriate operation to a device (for example, read a write-only device).</td>
</tr>
<tr>
<td>20</td>
<td>ENOTDIR</td>
<td><strong>Not a directory</strong>&lt;br&gt;A non-directory was specified where a directory is required (for example, in a path prefix or as an argument to the <strong>chdir(2)</strong> function).</td>
</tr>
<tr>
<td>21</td>
<td>EISDIR</td>
<td><strong>Is a directory</strong>&lt;br&gt;An attempt was made to write on a directory.</td>
</tr>
<tr>
<td>22</td>
<td>EINVAL</td>
<td><strong>Invalid argument</strong>&lt;br&gt;An invalid argument was specified (for example, unmounting a non-mounted device), mentioning an undefined signal in a call to the <strong>signal(3C)</strong> or <strong>kill(2)</strong> function.</td>
</tr>
<tr>
<td>23</td>
<td>ENFILE</td>
<td><strong>File table overflow</strong>&lt;br&gt;The system file table is full (that is, <strong>SYS_OPEN</strong> files are open, and temporarily no more files can be opened).</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>24</td>
<td>EMFILE</td>
<td><strong>Too many open files</strong>&lt;br&gt;No process may have more than OPEN_MAX file descriptors open at a time.</td>
</tr>
<tr>
<td>25</td>
<td>ENOTTY</td>
<td><strong>Not a TTY - inappropriate ioctl for device</strong>&lt;br&gt;A call was made to the ioctl(2) function specifying a file that is not a special character device.</td>
</tr>
<tr>
<td>26</td>
<td>ETXTBSY</td>
<td><strong>Text file busy (obsolete)</strong>&lt;br&gt;An attempt was made to execute a pure-procedure program that is currently open for writing. Also an attempt to open for writing or to remove a pure-procedure program that is being executed.</td>
</tr>
<tr>
<td>27</td>
<td>EFBIG</td>
<td><strong>File too large</strong>&lt;br&gt;The size of the file exceeded the limit specified by resource RLIMITFSIZE; the file size exceeds the maximum supported by the file system; or the file size exceeds the offset maximum of the file descriptor.</td>
</tr>
<tr>
<td>28</td>
<td>ENOSPC</td>
<td><strong>No space left on device</strong>&lt;br&gt;While writing an ordinary file or creating a directory entry, there is no free space left on the device. In the fcntl(2) function, the setting or removing of record locks on a file cannot be accomplished because there are no more record entries left on the system.</td>
</tr>
<tr>
<td>29</td>
<td>ESPIPE</td>
<td><strong>Illegal seek</strong>&lt;br&gt;A call to the lseek(2) function was issued to a pipe.</td>
</tr>
<tr>
<td>30</td>
<td>EROFS</td>
<td><strong>Read-only file system</strong>&lt;br&gt;An attempt to modify a file or directory was made on a device mounted read-only.</td>
</tr>
<tr>
<td>31</td>
<td>EMLINK</td>
<td><strong>Too many links</strong>&lt;br&gt;An attempt to make more than the maximum number of links, LINK_MAX, to a file.</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>32</td>
<td>EPIPE</td>
<td>Broken pipe. A write on a pipe for which there is no process to read the data. This condition normally generates a signal; the error is returned if the signal is ignored.</td>
</tr>
<tr>
<td>33</td>
<td>EDOM</td>
<td>Math argument out of domain of function. The argument of a function in the math package (3M) is out of the domain of the function.</td>
</tr>
<tr>
<td>34</td>
<td>ERANGE</td>
<td>Math result not representable. The value of a function in the math package (3M) is not representable within node precision.</td>
</tr>
<tr>
<td>35</td>
<td>ENOMSG</td>
<td>No message of desired type. An attempt was made to receive a message of a type that does not exist on the specified message queue (see msgrcv(2)).</td>
</tr>
<tr>
<td>36</td>
<td>EIDRM</td>
<td>Identifier removed. This error is returned to processes that resume execution due to the removal of an identifier from the file system's name space (see msgctl(2), semctl(2), and shmctl(2)).</td>
</tr>
<tr>
<td>37</td>
<td>ECHRNG</td>
<td>Channel number out of range.</td>
</tr>
<tr>
<td>38</td>
<td>EL2NSYNC</td>
<td>Level 2 not synchronized.</td>
</tr>
<tr>
<td>39</td>
<td>EL3HLT</td>
<td>Level 3 halted.</td>
</tr>
<tr>
<td>40</td>
<td>EL3RST</td>
<td>Level 3 reset.</td>
</tr>
<tr>
<td>41</td>
<td>ELNRNG</td>
<td>Link number out of range.</td>
</tr>
<tr>
<td>42</td>
<td>EUNATCH</td>
<td>Protocol driver not attached.</td>
</tr>
<tr>
<td>43</td>
<td>ENOSCI</td>
<td>No CSI structure available.</td>
</tr>
<tr>
<td>44</td>
<td>EL2HLT</td>
<td>Level 2 halted.</td>
</tr>
<tr>
<td>45</td>
<td>EDEADLK</td>
<td>Resource deadlock condition. A deadlock situation was detected and avoided. This error pertains to file and record locking, and also applies to mutexes, semaphores, condition variables, and read-write locks.</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>46</td>
<td>ENOLCK</td>
<td><strong>No record locks available</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>There are no more locks available. The system lock table is full (see <code>fcntl(2)</code>).</td>
</tr>
<tr>
<td>47</td>
<td>ECANCELED</td>
<td><strong>Operation canceled</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The associated asynchronous operation was canceled before completion.</td>
</tr>
<tr>
<td>48</td>
<td>ENOTSUP</td>
<td><strong>Not supported</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This version of the system does not support this feature. Future versions of the system may provide support.</td>
</tr>
<tr>
<td>49</td>
<td>EDQUOT</td>
<td><strong>Disc quota exceeded</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A <code>write(2)</code> to an ordinary file, the creation of a directory or symbolic link, or the creation of a directory entry failed because the user's quota of disk blocks was exhausted, or the allocation of an inode for a newly created file failed because the user's quota of inodes was exhausted.</td>
</tr>
<tr>
<td>50</td>
<td>EBADE</td>
<td><strong>Invalid exchange</strong></td>
</tr>
<tr>
<td>51</td>
<td>EBADR</td>
<td><strong>Invalid request descriptor</strong></td>
</tr>
<tr>
<td>52</td>
<td>EXFULL</td>
<td><strong>Exchange full</strong></td>
</tr>
<tr>
<td>53</td>
<td>ENOANO</td>
<td><strong>No anode</strong></td>
</tr>
<tr>
<td>54</td>
<td>EBADROQC</td>
<td><strong>Invalid request code</strong></td>
</tr>
<tr>
<td>55</td>
<td>EBADSLOT</td>
<td><strong>Invalid slot</strong></td>
</tr>
<tr>
<td>56</td>
<td>EDEADLOCK</td>
<td><strong>File locking deadlock error</strong></td>
</tr>
<tr>
<td>57</td>
<td>EBFONT</td>
<td><strong>Bad font file format</strong></td>
</tr>
<tr>
<td>58</td>
<td>EOWNERDEAD</td>
<td><strong>Process died with the lock</strong></td>
</tr>
<tr>
<td>59</td>
<td>ENOTRECOVERABLE</td>
<td><strong>Lock is not recoverable</strong></td>
</tr>
<tr>
<td>60</td>
<td>ENOSTR</td>
<td><strong>Device not a stream</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A <code>putmsg(2)</code> or <code>getmsg(2)</code> call was attempted on a file descriptor that is not a STREAMS device.</td>
</tr>
<tr>
<td>61</td>
<td>ENODATA</td>
<td><strong>No data available</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No data (for no-delay I/O).</td>
</tr>
</tbody>
</table>
### CF messages and codes

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>ETIME</td>
<td><strong>Timer expired</strong>&lt;br&gt;The timer set for a STREAMS <code>ioctl(2)</code> call has expired. The cause of this error is device-specific and could indicate either a hardware or software failure, or perhaps a timeout value that is too short for the specific operation. The status of the <code>ioctl()</code> operation is indeterminate. This is also returned in the case of <code>_lwp_cond_timedwait(2)</code> or <code>cond_timedwait(2)</code>.</td>
</tr>
<tr>
<td>63</td>
<td>ENOSR</td>
<td><strong>Out of stream resources</strong>&lt;br&gt;During a STREAMS <code>open(2)</code> call, either no STREAMS queues or no STREAMS head data structures were available. This is a temporary condition; one may recover from it if other processes release resources.</td>
</tr>
<tr>
<td>64</td>
<td>ENONET</td>
<td><strong>Node is not on the network</strong>&lt;br&gt;This error is Remote File Sharing (RFS) specific. It occurs when users try to advertise, unadvertise, mount, or unmount remote resources while the node has not done the proper startup to connect to the network.</td>
</tr>
<tr>
<td>65</td>
<td>ENOPKG</td>
<td><strong>Package not installed</strong>&lt;br&gt;This error occurs when users attempt to use a call from a package which has not been installed.</td>
</tr>
<tr>
<td>66</td>
<td>EREMOTE</td>
<td><strong>Object is remote</strong>&lt;br&gt;This error is RFS-specific. It occurs when users try to advertise a resource which is not on the local node, or try to mount/unmount a device (or pathname) that is on a remote node.</td>
</tr>
<tr>
<td>67</td>
<td>ENOLINK</td>
<td><strong>Link has been severed</strong>&lt;br&gt;This error is RFS-specific. It occurs when the link (virtual circuit) connecting to a remote node is gone.</td>
</tr>
</tbody>
</table>
### Solaris OE ERRNO table

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>EADV</td>
<td><strong>Advertise error</strong>&lt;br&gt;This error is RFS-specific. It occurs when users try to advertise a resource which has been advertised already, or try to stop RFS while there are resources still advertised, or try to force unmount a resource when it is still advertised.</td>
</tr>
<tr>
<td>69</td>
<td>ESRMNT</td>
<td><strong>Srmount error</strong>&lt;br&gt;This error is RFS-specific. It occurs when an attempt is made to stop RFS while resources are still mounted by remote nodes, or when a resource is readvertised with a client list that does not include a remote node that currently has the resource mounted.</td>
</tr>
<tr>
<td>70</td>
<td>ECOMM</td>
<td><strong>Communication error on send</strong>&lt;br&gt;This error is RFS-specific. It occurs when the current process is waiting for a message from a remote node, and the virtual circuit fails.</td>
</tr>
<tr>
<td>71</td>
<td>EPROTO</td>
<td><strong>Protocol error</strong>&lt;br&gt;Some protocol error occurred. This error is device-specific, but is generally not related to a hardware failure.</td>
</tr>
<tr>
<td>72</td>
<td>ELOCKUNMAPPED</td>
<td><strong>Locked lock was unmapped</strong></td>
</tr>
<tr>
<td>74</td>
<td>EMULTIHOP</td>
<td><strong>Multihop attempted</strong>&lt;br&gt;This error is RFS-specific. It occurs when users try to access remote resources which are not directly accessible.</td>
</tr>
<tr>
<td>76</td>
<td>EDOTDOT</td>
<td><strong>RFS specific error</strong>&lt;br&gt;This error is RFS-specific. A way for the server to tell the client that a process has transferred back from mount point.</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>77</td>
<td>EBADMSG</td>
<td>Not a data message /* trying to read unreadable message */ During a read(2), getmsg(2), or ioctl(2) I_RECVFD call to a STREAMS device, something has come to the head of the queue that can not be processed. That something depends on the call: read(): control information or passed file descriptor. getmsg(): passed file descriptor. ioctl(): control or data information.</td>
</tr>
<tr>
<td>78</td>
<td>ENAMETOOLONG</td>
<td>File name too long The length of the path argument exceeds PATH_MAX, or the length of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect; see limits(4).</td>
</tr>
<tr>
<td>79</td>
<td>EOVERFLOW</td>
<td>Value too large for defined data type</td>
</tr>
<tr>
<td>80</td>
<td>ENOTUNIQ</td>
<td>Name not unique on network Given log name not unique.</td>
</tr>
<tr>
<td>81</td>
<td>EBADFD</td>
<td>File descriptor in bad state Either a file descriptor refers to no open file or a read request was made to a file that is open only for writing.</td>
</tr>
<tr>
<td>83</td>
<td>ELIBACC</td>
<td>Cannot access a needed shared library Trying to exec an a.out that requires a static shared library and the static shared library does not exist or the user does not have permission to use it.</td>
</tr>
<tr>
<td>84</td>
<td>ELIBBAD</td>
<td>Accessing a corrupted shared library Trying to exec an a.out that requires a static shared library (to be linked in) and exec could not load the static shared library. The static shared library is probably corrupted.</td>
</tr>
<tr>
<td>85</td>
<td>ELIBSCN</td>
<td>.lib section in a.out corrupted Trying to exec an a.out that requires a static shared library (to be linked in) and there was erroneous data in the .lib section of the a.out. The .lib section tells exec what static shared libraries are needed. The a.out is probably corrupted.</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>86</td>
<td>ELIBMAX</td>
<td><strong>Attempting to link in too many shared libraries</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trying to exec an a.out that requires more static shared libraries than is allowed on the current configuration of the system. See NFS Administration Guide.</td>
</tr>
<tr>
<td>87</td>
<td>ELIBEXEC</td>
<td><strong>Cannot exec a shared library directly</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attempting to exec a shared library directly.</td>
</tr>
<tr>
<td>88</td>
<td>EILSEQ</td>
<td><strong>Illegal byte sequence</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Illegal byte sequence when trying to handle multiple characters as a single character.</td>
</tr>
<tr>
<td>89</td>
<td>ENOSYS</td>
<td><strong>Function not implemented / operation not applicable</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unsupported file system operation.</td>
</tr>
<tr>
<td>90</td>
<td>ELOOP</td>
<td><strong>Symbolic link loop</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of symbolic links encountered during path name traversal exceeds MAXSYMLINKS.</td>
</tr>
<tr>
<td>91</td>
<td>ERESTART</td>
<td><strong>Restartable system call</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrupted system call should be restarted.</td>
</tr>
<tr>
<td>92</td>
<td>ESTRPIPE</td>
<td><strong>Streams pipe error (not externally visible)</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If pipe/FIFO, don't sleep in stream head.</td>
</tr>
<tr>
<td>93</td>
<td>ENOTEMPTY</td>
<td><strong>Directory not empty</strong></td>
</tr>
<tr>
<td>94</td>
<td>EUSERS</td>
<td><strong>Too many users</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too many users (for UFS).</td>
</tr>
<tr>
<td>95</td>
<td>ENOTSOCK</td>
<td><strong>Socket operation on non-socket</strong></td>
</tr>
<tr>
<td>96</td>
<td>EDESTADDRREQ</td>
<td><strong>Destination address required</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A required address was omitted from an operation on a transport endpoint. Destination address required.</td>
</tr>
<tr>
<td>97</td>
<td>EMSGSIZE</td>
<td><strong>Message too long</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A message sent on a transport provider was larger than the internal message buffer or some other network limit.</td>
</tr>
<tr>
<td>98</td>
<td>EPROTOTYPE</td>
<td><strong>Protocol wrong type for socket</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A protocol was specified that does not support the semantics of the socket type requested.</td>
</tr>
</tbody>
</table>
### CF messages and codes

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>ENOPROTOOPT</td>
<td>Protocol not available&lt;br&gt;A bad option or level was specified when getting or setting options for a protocol.</td>
</tr>
<tr>
<td>120</td>
<td>EPROTONOSUPPORT</td>
<td>Protocol not supported&lt;br&gt;The protocol has not been configured into the system or no implementation for it exists.</td>
</tr>
<tr>
<td>121</td>
<td>ESOCKTNOSUPPORT</td>
<td>Socket type not supported&lt;br&gt;The support for the socket type has not been configured into the system or no implementation for it exists.</td>
</tr>
<tr>
<td>122</td>
<td>EOPNOTSUPP</td>
<td>Operation not supported on transport endpoint&lt;br&gt;For example, trying to accept a connection on a datagram transport endpoint.</td>
</tr>
<tr>
<td>123</td>
<td>EPFNOSUPPORT</td>
<td>Protocol family not supported&lt;br&gt;The protocol family has not been configured into the system or no implementation for it exists. Used for the Internet protocols.</td>
</tr>
<tr>
<td>124</td>
<td>EAFNOSUPPORT</td>
<td>Address family not supported by protocol&lt;br&gt;An address incompatible with the requested protocol was used.</td>
</tr>
<tr>
<td>125</td>
<td>EADDRINUSE</td>
<td>Address already in use&lt;br&gt;User attempted to use an address already in use, and the protocol does not allow this.</td>
</tr>
<tr>
<td>126</td>
<td>EADDRNOTAVAIL</td>
<td>Cannot assign requested address&lt;br&gt;Results from an attempt to create a transport end-point with an address not on the current node.</td>
</tr>
<tr>
<td>127</td>
<td>ENETDOWN</td>
<td>Network is down&lt;br&gt;Operation encountered a dead network.</td>
</tr>
<tr>
<td>128</td>
<td>ENETUNREACH</td>
<td>Network is unreachable&lt;br&gt;Operation was attempted to an unreachable network.</td>
</tr>
</tbody>
</table>

---

**Solaris OE ERRNO table**

No Name Description
### Solaris OE ERRNO table

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>ENETRESET</td>
<td>Network dropped connection because of reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The node you were connected to crashed and rebooted.</td>
</tr>
<tr>
<td>130</td>
<td>ECONNABORTED</td>
<td>Software caused connection abort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A connection abort was caused internal to your node.</td>
</tr>
<tr>
<td>131</td>
<td>ECONNRESET</td>
<td>Connection reset by peer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A connection was forcibly closed by a peer. This normally results from a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loss of the connection on the remote node due to a timeout or a reboot</td>
</tr>
<tr>
<td>132</td>
<td>ENOBUFFS</td>
<td>No buffer space available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An operation on a transport endpoint or pipe was not performed because the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>system lacked sufficient buffer space or because a queue was full.</td>
</tr>
<tr>
<td>133</td>
<td>EISCONN</td>
<td>Transport endpoint is already connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A connect request was made on an already connected transport endpoint; or,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a <code>sendto(3N)</code> or <code>sendmsg(3N)</code> request on a connected transport endpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specified a destination when already connected.</td>
</tr>
<tr>
<td>134</td>
<td>ENOTCONN</td>
<td>Transport endpoint is not connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A request to send or receive data was disallowed because the transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>endpoint is not connected and (when sending a datagram) no address was</td>
</tr>
<tr>
<td></td>
<td></td>
<td>supplied.</td>
</tr>
<tr>
<td>135</td>
<td>EUCLEAN</td>
<td>Structure needs cleaning</td>
</tr>
<tr>
<td>137</td>
<td>ENOTNAM</td>
<td>Not a XENIX named type file</td>
</tr>
<tr>
<td>138</td>
<td>ENAVAIL</td>
<td>No XENIX semaphores available</td>
</tr>
<tr>
<td>139</td>
<td>EISNAM</td>
<td>Is a named type file</td>
</tr>
<tr>
<td>140</td>
<td>EREMOTEIO</td>
<td>Remote I/O error</td>
</tr>
<tr>
<td>141</td>
<td>EINIT</td>
<td>Define EINIT 141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/* Reserved for future use */</td>
</tr>
<tr>
<td>142</td>
<td>EREMDEV</td>
<td>Define EREMDEV 142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/* Error 142 */</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>143</td>
<td>ESHUTDOWN</td>
<td>Cannot send after transport endpoint shutdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A request to send data was disallowed because the transport endpoint has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>already been shut down.</td>
</tr>
<tr>
<td>144</td>
<td>ETOOMANYREFS</td>
<td>Too many references: cannot splice.</td>
</tr>
<tr>
<td>145</td>
<td>ETIMEDOUT</td>
<td>Connection timed out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A connect(3N) or send(3N) request failed because the connected party did</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not properly respond after a period of time; or a write(2) or fsync(3C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>request failed because a file is on an NFS file system mounted with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>soft option.</td>
</tr>
<tr>
<td>146</td>
<td>ECONNREFUSED</td>
<td>Connection refused</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No connection could be made because the target node actively refused it. This</td>
</tr>
<tr>
<td></td>
<td></td>
<td>usually results from trying to connect to a service that is inactive on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the remote node.</td>
</tr>
<tr>
<td>147</td>
<td>EHOSTDOWN</td>
<td>Node is down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A transport provider operation failed because the destination node was</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down.</td>
</tr>
<tr>
<td>148</td>
<td>EHOSTUNREACH</td>
<td>No route to node</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A transport provider operation was attempted to an unreachable node.</td>
</tr>
<tr>
<td>149</td>
<td>EALREADY</td>
<td>Operation already in progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An operation was attempted on a non-blocking object that already had an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation in progress.</td>
</tr>
<tr>
<td>150</td>
<td>EINPROGRESS</td>
<td>Operation now in progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An operation that takes a long time to complete (such as a connect()) was</td>
</tr>
<tr>
<td></td>
<td></td>
<td>attempted on a non-blocking object.</td>
</tr>
<tr>
<td>151</td>
<td>ESTALE</td>
<td>Stale NFS file handle</td>
</tr>
<tr>
<td>-</td>
<td>EWOULDBLOCK</td>
<td>Operation would block</td>
</tr>
<tr>
<td>-</td>
<td>ENOMEDIUM</td>
<td>No medium found</td>
</tr>
<tr>
<td>-</td>
<td>EMEDIUMTYPE</td>
<td>Wrong medium type</td>
</tr>
</tbody>
</table>
12.10 Resource Database messages

This section explains the Resource Database message. The message format is described below.

Italic indicates that the output content varies depending on the message.

FJSVcluster: severity:program:message-number:message

**severity**

Indicates the message severity level.

On the message severity level, there are four types: Stop (HALT), Information (INFORMATION), Warning (WARNING), Error (ERROR). For details, refer to the table below.

**program**

Indicates the name of the Resource Database program that output this message.

**message-number**

Indicates the message number.

**message**

Indicates the message text.

<table>
<thead>
<tr>
<th>Number</th>
<th>Message severity level</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000-0999</td>
<td>Stop (HALT)</td>
<td>Message indicating an abnormal termination of the function in the Resource Database is output.</td>
</tr>
<tr>
<td>2000-3999</td>
<td>Information (INFORMATION)</td>
<td>Message providing notification of information on the Resource Database operation status is output.</td>
</tr>
<tr>
<td>4000-5999</td>
<td>Warning (WARNING)</td>
<td>Message providing notification of a minor error not leading to abnormal termination of the function in the Resource Database is output.</td>
</tr>
<tr>
<td>6000-7999</td>
<td>Error (ERROR)</td>
<td>Message providing notification of a major error leading to abnormal termination of the function in the Resource Database is output.</td>
</tr>
</tbody>
</table>

Table 11: Resource Database severity levels
12.10.1 HALT messages

0100  Cluster configuration management facility terminated abnormally.

**Corrective action**
Correct the cause of abnormal termination, then restart the error-detected node.

**Supplement**
The cause of abnormal termination is indicated in the previous error message.

0101  Initialization of cluster configuration management facility terminated abnormally.

**Corrective action**
Correct the cause of abnormal termination, then restart the error-detected node.

**Supplement**
The cause of abnormal termination is indicated in the previous error message.

0102  A failure occurred in the server. It will be terminated.

**Corrective action**
Follow the corrective action of the error message that was displayed right before this 0102 message.

12.10.2 INFORMATION messages

2100  The resource database has already been set.

/detail:code1-code2

2200  Cluster configuration management facility initialization started.

2201  Cluster configuration management facility initialization completed.

2202  Cluster configuration management facility exit processing started.
Resource Database messages

<table>
<thead>
<tr>
<th>CF messages and codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2203</td>
<td>Cluster configuration management facility exit processing completed.</td>
</tr>
<tr>
<td>2204</td>
<td>Cluster event control facility started.</td>
</tr>
<tr>
<td>2205</td>
<td>Cluster event control facility stopped.</td>
</tr>
<tr>
<td>3200</td>
<td>Cluster resource management facility initialization started.</td>
</tr>
<tr>
<td>3201</td>
<td>Cluster resource management facility initialization completed.</td>
</tr>
<tr>
<td>3202</td>
<td>Cluster resource management facility exit processing completed.</td>
</tr>
<tr>
<td>3203</td>
<td>Resource activation processing started.</td>
</tr>
<tr>
<td>3204</td>
<td>Resource activation processing completed.</td>
</tr>
<tr>
<td>3205</td>
<td>Resource deactivation processing started.</td>
</tr>
<tr>
<td>3206</td>
<td>Resource deactivation processing completed.</td>
</tr>
</tbody>
</table>

12.10.3 WARNING messages

4250 The line switching unit cannot be found because FJSVclswu is not installed.

**Supplement**

Devices other than the line switching unit register an automatic resource.

5200 There is a possibility that the resource controller does not start. (ident:ident command:command, ....)

**Supplement**

Notification of the completion of startup has not yet been posted from the resource controller. *indent* indicates a resource controller identifier while command indicates the startup script of the resource controller.
12.10.4 ERROR messages

????  Message not found!!
Corrective action
The text of the message corresponding to the message number is not available. Copy this message and contact your local customer support.

6000  An internal error occurred. (function: function
detail: code1-code2-code3-code4)
Corrective action
An internal error occurred in the program.
Record this message and collect information for an investigation.
Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).
function, code1, code2, code3, code4 indicates information required for error investigation.

6001  Insufficient memory. (detail: code1-code2)
Corrective action
Memory resources are insufficient to operate the Resource Database.
code1, code2 indicates information required for error investigation.
Record this message. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). Review the estimating of memory resources.
If this error cannot be corrected by this operator response, contact your local customer support.
Resource Database messages

6002 Insufficient disk or system resources. (detail:code1-code2)
Corrective action
This failure might be attributed to the followings:
- The disk space is insufficient
- There are incorrect settings in the kernel parameter
Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).
Check that there is enough free disk space required for PRIMECLUSTER operation. If the disk space is insufficient, you need to reserve some free area and reboot the node. For the required disk space, refer to the PRIMECLUSTER Installation Guide.
If you still have this problem after going through the above instruction, confirm that the kernel parameter is correctly set. Modify the settings if necessary and reboot the node. Nevertheless, the above instructions are not helpful, contact your customer service representative. code1 and code2 indicate information required for troubleshooting.

6003 Error in option specification. (option:option)
Corrective action
Specify a correct option, and execute the command again.
option indicates an option.

6004 No system administrator authority.
Corrective action
Re-execute the processing with the system administrator authority.

6005 Insufficient shared memory. (detail:code1-code2)
Corrective action
Shared memory resources are insufficient for the Resource Database to operate.
Record this message. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).
Refer to the Section “Kernel parameters for Resource Database” to review the estimate of shared memory resources (kernel parameters), Reboot the nodes that have any kernel parameters that have been changed.
If this error cannot be corrected by this operator response, contact your local customer support.
code1, code2 indicates information required for error investigation.
CF messages and codes

6006 The required option *option* must be specified.
Corrective action
Specify the correct option, then re-execute the processing.

6007 One of the required options *option* must be specified.
Corrective action
Specify a correct option, and execute the command again.

6008 If option *option1* is specified, option *option2* is required.
Corrective action
If the option indicated by *option1* is specified, the option indicated by *option2* is required. Specify the correct option, then re-execute the processing.

6009 If option *option1* is specified, option *option2* cannot be specified.
Corrective action
If the option indicated by *option1* is specified, the option indicated by *option2* cannot be specified. Specify the correct option, then re-execute the processing.

6010 If any one of the options *option1* is specified, option *option2* cannot be specified.
Corrective action
If either option indicated by *option1* is specified, the option indicated by *option2* cannot be specified. Specify the correct option, then re-execute the processing.

6021 The *option* option(s) must be specified in the following order: *order*
Corrective action
Specify option *options* sequentially in the order of *order*. Then, re-execute.
*option* indicates those options that are specified in the wrong order, while *order* indicates the correct order of specification.
Resource Database messages

6025 The value of option option must be specified from value1 to value2.

Corrective action
Specify the value of the option in option within the range between value1 and value2, and then re-execute.

option indicates the specified option while value1, value2 indicate values.

6200 Cluster configuration management facility: configuration database mismatch. (name: name node: node)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). Collect the investigation information in all nodes, then reactivate the faulty node.

name indicates a database name in which a mismatch occurred, while node indicates a node in which an error occurred.

6201 Cluster configuration management facility: internal error. (node: node code: code)

Corrective action
There might be an error in the system if the kernel parameter /etc/system (4) is not properly set up when the cluster was installed. Check if the setup is correct (refer to Section “Kernel parameters for Resource Database”). If incorrect, reset the value of /etc/system(4), and then restart the system.

If there's still any problem regardless of the fact that the value of /etc/system (4) is larger than the required by Resource Database, and the same value is shown when checked by a sysdef(1M) command, take down the message, collect information for investigation, and then contact your local customer support (refer to the Section “Collecting troubleshooting information”). Collect the investigation information in all nodes, then reactivate the faulty node.

node indicates a node in which an error occurred while code indicates the code for the detailed processing performed for the error.
CF messages and codes

6202  Cluster event control facility: internal error.  
      (detail: code1-code2)
      **Corrective action**
      Record this message and collect information for an investigation.  
      Then, contact your local customer support. Collect information  
      required for troubleshooting (refer to the Section “Collecting trouble-  
      shooting information”).
      *code1, code2* indicates information required for error investigation.

6203  Cluster configuration management facility: communication path disconnected.
      **Corrective action**
      Check the state of other nodes and path of a private LAN.

6204  Cluster configuration management facility has not been started.
      **Corrective action**
      Record this message and collect information for an investigation.  
      Then, contact your local customer support. Collect information  
      required for troubleshooting (refer to the Section “Collecting trouble-  
      shooting information”).

6206  Cluster configuration management facility: error in definitions used by **target** command.
      **Corrective action**
      Record this message and collect information for an investigation.  
      Then, contact your local customer support. Collect information  
      required for troubleshooting (refer to the Section “Collecting trouble-  
      shooting information”).
      *target* indicates a command name.

6207  Cluster domain contains one or more inactive nodes.
      **Corrective action**
      Activate the node in the stopped state.

6208  Access denied (**target**).
      **Corrective action**
      Record this message and collect information for an investigation.  
      Then, contact your local customer support. Collect information  
      required for troubleshooting (refer to the Section “Collecting trouble-  
      shooting information”).
      *target* indicates a command name.
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Message</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6209</td>
<td>The specified file or cluster configuration database does not exist (\text{target}).</td>
<td>Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). (\text{target}) indicates a file name or a cluster configuration database name.</td>
</tr>
<tr>
<td>6210</td>
<td>The specified cluster configuration database is being used (\text{table}).</td>
<td>Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). (\text{table}) indicates a cluster configuration database name.</td>
</tr>
<tr>
<td>6211</td>
<td>A table with the same name exists (\text{table}).</td>
<td>Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). (\text{table}) indicates a cluster configuration database name.</td>
</tr>
<tr>
<td>6212</td>
<td>The specified configuration change procedure is already registered (\text{proc}).</td>
<td>Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). (\text{proc}) indicates a configuration change procedure name.</td>
</tr>
<tr>
<td>6213</td>
<td>The cluster configuration database contains duplicate information.</td>
<td>Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).</td>
</tr>
</tbody>
</table>
CF messages and codes

6214  Cluster configuration management facility: configuration database update terminated abnormally (target).

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). Collect the investigation information in all nodes, then reactivate all nodes.

*target* indicates a cluster configuration database name.

6215  Cannot exceed the maximum number of nodes.

Corrective action
Since a hot extension is required for an additional node that exceeds the maximum number of configuration nodes that is allowed with Resource Database, review the cluster system configuration so that the number of nodes becomes equal to or less than the maximum number of composing nodes.

6216  Cluster configuration management facility: configuration database mismatch occurred because another node ran out of memory. (name: *name* node: *node*)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). After collecting data for all nodes, stop the node and start it again.

*name* indicates a database in which a mismatch occurred and *node* indicates a node for which a memory shortfall occurred.
Cluster configuration management facility: configuration database mismatch occurred because another node ran out of disk or system resources. (name: name node: node)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). Reexamine the estimate for the disk resources and system resources (kernel parameter) (refer to the Section “Kernel parameters for Resource Database”). When the kernel parameter is changed for a given node, restart that node. If this error cannot be corrected by this operator response, contact your local customer support. After collecting data for all nodes, stop and then restart the nodes. name indicates a database in which a mismatch occurred and node indicates the node in which insufficient disk resources or system resources occurred.

An error occurred during distribution of file to the stopped node. (name: name node: node errno: errno)

Corrective action
File cannot be distributed to the stopped node from the erroneous node. Be sure to start the stopped node before the active node stops. It is not necessary to re-execute the command. name indicates the file name that was distributed when an failure occurred, node indicates the node in which a failure occurred, and errno indicates the error number when a failure occurred.

The cluster configuration management facility cannot recognize the activating node. (detail: code1-code2)

Corrective action
Confirm that there is no failures in Cluster Foundation (CF) or cluster interconnect. If a failure occurs in CF, take the corrective action of the CF message. If a failure occurs in cluster interconnect, check that NIC is connected to the network. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). code1 and code2 indicate information required for troubleshooting.
CF messages and codes

6220 The communication failed between nodes or processes in the cluster configuration management facility.
(detail: code1-code2)

Corrective action
Confirm that there is no failures in cluster interconnect. If a failure occurs in cluster interconnect, check that NIC is connected to the network.

If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code1 and code2 Indicate information required for troubleshooting.

6221 Invalid kernel parameter used by cluster configuration database. (detail: code1-code2)

Corrective action
The kernel parameter used for the Resource Database is not correctly set up. Modify the settings, referring to Section “Kernel parameters for Resource Database”, and reboot the node.

If you still have this problem after going through the above instruction, contact your local customer support.

code1 and code2 indicate information required for troubleshooting.
Resource Database messages

6222 network service used by the cluster configuration management facility is not available. (detail: code1-code2)

Corrective action
Confirm the /etc/inet/services file is linked to the /etc/services file. If not, you need to create a symbolic link to the /etc/services file. When setup process is done, confirm the following network services are set up in the /etc/inet/services file. If any of the followings should fail to be set up, you need to add the missing.

dcmcom 9331/tcp# FJSVclmdb package
dcmsync 9379/tcp# FJSVclmdb package
dcmchk 9378/tcp# FJSVclmdb package
dcmftp 9377/tcp# FJSVclmdb package
dcmcss 9375/tcp# FJSVclmdb package
dcmemv 9376/tcp# FJSVclmdb package

If this process is successfully done, confirm that the services of the /etc/nsswitch.conf file are defined as services: files nisplus. If not, you need to define them and reboot the node.

services: files nisplus

If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code1 and code2 indicate information required for troubleshooting.

6223 A failure occurred in the specified command. (command: command, detail: code1-code2)

Corrective action
Confirm that you can run the program specified as an option of the clexec(1M) command. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code1 and code2 indicate information required for troubleshooting.
6226 The kernel parameter setup is not sufficient to operate the cluster control facility. (detail:\texttt{code})

\textbf{Corrective action}

The kernel parameter used for the Resource Database is not correctly setup. Modify the settings, referring to the Section “Kernel parameters for Resource Database”, and reboot the node. Then, execute the \texttt{clinitreset(1M)} command, reboot the node, and initialize the Resource Database again. Confirm that you can run the program specified as an option of the \texttt{cleexec(1M)} command. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

\texttt{code} indicates a parameter type and its current value.

6250 Cannot run this command because \texttt{FJSVclswu} is not installed.

\textbf{Corrective action}

Install the \texttt{FJSVclswu} package before executing the command. Refer to the PRIMECLUSTER \textit{Installation Guide} for further details.

6300 Failed in setting the resource data base (insufficient user authority).

\textbf{Corrective action}

No CIP is set up in the Cluster Foundation. Reset CIP, and execute again after rebooting all nodes. Refer to the Section “CF, CIP, and CIM configuration” for the setup method. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

\texttt{code1} and \texttt{code2} represents information for investigation.

6301 The resource data base has already been set (insufficient user authority).

\textbf{Corrective action}

The setup for Resource Database is not necessary. If you need to reset the setup, execute the \texttt{clinitreset(1M)} command on all nodes, initialize the Resource Database, and then reboot all nodes. For details, refer to the manual of the \texttt{clinitreset(1M)} command. \texttt{code1} and \texttt{code2} represents information for investigation.
Resource Database messages  CF messages and codes

6302 Failed to create a backup of the resource database information. (detail: code1-code2)
Corrective action
The disk space might be insufficient. You need to reserve 1 MB or more of free disk space, and back up the Resource Database information again.
If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).
code1 and code2 indicate information required for troubleshooting.

6303 Failed restoration of the resource database information. (detail: code1-code2)
Corrective action
The disk space might be insufficient. You need to reserve 1 MB or more of free disk space, and restore the Resource Database information again.
If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).
code1 and code2 indicate information required for troubleshooting.

6600 Cannot manipulate the specified resource. (insufficient user authority)
Corrective action
Re-execute the specified resource with registered user authority.

6601 Cannot delete the specified resource. (resource: resource rid:rid)
Corrective action
Specify the resource correctly, and then re-execute it.
resource indicates the resource name of the specified resource. rid indicates the resource ID of the specified resource.

6602 The specified resource does not exist. (detail: code1-code2)
Corrective action
Specify the correct resource, then re-execute the processing.
code1, code2 indicates information required for error investigation.
<table>
<thead>
<tr>
<th>Message ID</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6603</td>
<td>The specified file does not exist.</td>
<td>Corrective action: Specify the correct file, then re-execute the processing.</td>
</tr>
<tr>
<td>6604</td>
<td>The specified resource class does not exist.</td>
<td>Corrective action: Specify the correct resource class, and then re-execute the processing. A specifiable resource class is a file name itself that is under <code>/etc/ opt/FJSVcluster/classes</code>. Confirm that there is no error in the character strings that have been specified as the resource class.</td>
</tr>
<tr>
<td>6606</td>
<td>Operation cannot be performed on the specified resource because the corresponding cluster service is not in the stopped state. (detail: <code>code1-code2</code>)</td>
<td>Corrective action: Stop the cluster service, then re-execute the processing. <code>code1, code2</code> indicates information required for error investigation.</td>
</tr>
<tr>
<td>6607</td>
<td>The specified node cannot be found.</td>
<td>Corrective action: Specify the node correctly. Then, execute again.</td>
</tr>
<tr>
<td>6608</td>
<td>Operation disabled because the resource information of the specified resource is being updated. (detail: <code>code1-code2</code>)</td>
<td>Corrective action: Re-execute the processing. <code>code1, code2</code> indicates information required for error investigation.</td>
</tr>
<tr>
<td>6611</td>
<td>The specified resource has already been registered. (detail: <code>code1-code2</code>)</td>
<td>Corrective action: If this message appears when the resource is registered, it indicates that the specified resource has been already registered. There is no need to register it again. If this message appears when changing a display name, specify a display name that is not available because the specified display name has already been registered. <code>code1, code2</code> indicates information required for error investigation.</td>
</tr>
</tbody>
</table>
Resource Database messages

6614 Cluster configuration management facility: internal error. (detail: code1-code2)

Corrective action
Record this message, and contact your local customer support.
Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code1, code2 indicates information required for error investigation.

6615 The cluster configuration management facility is not running. (detail: code1-code2)

Corrective action
Reactivate the Resource Database by restarting the node. If the message is redisplayed, record this message and collect related information for investigation. Then, contact your local customer support.
Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code1, code2 indicates information required for error investigation.

6616 Cluster configuration management facility: error in the communication routine. (detail: code1-code2)

Corrective action
Record this message, and contact your local customer support.
Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code1, code2 indicates information required for error investigation.

6653 Operation cannot be performed on the specified resource.

Corrective action
userApplication in which the specified resource is registered is not in the Deact state. You need to bring this UserApplication Deact.

6661 Cluster control is not running. (detail: code)

Corrective action
Confirm that the Resource Database is running by executing the clgettree(1) command. If not, reboot the node.
If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

code indicates information required for troubleshooting.
CF messages and codes

6665  The directory was specified incorrectly.
Corrective action
Specify the correct directory.

6668  Cannot run this command in single-user mode.
Corrective action
Boot the node in multi-user mode.

6675  Cannot run this command because product_name has already been set up.
Corrective action
Cancel the setting of the Resource Database product_name. Refer to appropriate manual for product_name.

6680  The specified directory does not exist.
Corrective action
Specify the existent directory.

6900  Automatic resource registration processing terminated abnormally. (detail: reason)
Corrective action
There might be incorrect settings in the shared disk definition file that was specified by the -f option of the clautoconfig(1M) command. Check the following. For details about the shared disk definition file, refer to the “Register shared disk units” of “PRIMECLUSTER Global Disk Services Configuration and Administration Guide.”

- The resource key name, the device name, and the node identifier name are specified in each line.
- The resource key name begins with shd.
- The device name begins with /dev/.
- The node that has the specified node identifier name exists. You can check by executing the clgettree(1) command.

Modify the shared disk definition file if necessary, and then execute the clautoconfig(1M) command.

If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

reason indicates the command that was abnormally terminated or the returned value.
Resource Database messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| 6901 | Automatic resource registration processing is aborted due to one or more of the stopping nodes in the cluster domain. | **Corrective action**
Start all nodes and perform automatic resource registration. |
| 6902 | Automatic resource registration processing is aborted due to cluster domain configuration manager not running. | **Corrective action**
Cancel the automatic resource registration processing since the configuration of Resource Database is not working. Take down this message and collect the information needed for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). Failures may be recovered by restarting all nodes after collecting investigation information. |
| 6903 | Failed to create logical path. (*node dev1 dev2*) | **Corrective action**
Contact your local customer support to confirm that a logical path can be created in the share disk unit. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

*node* indicates an identification name of the node where the logical path failed to be created. *dev1* indicates the logical path (mplb2048), and *dev2* indicates a tangible path (clt0d0 and c2t0d0) corresponding to the logical path. |
| 6904 | Fail to register resource. (detail: *reason*) | **Corrective action**
Failed to register resource during the automatic registration processing. This might happen when the disk resource and system resource are not properly set up. Check the system setting of kernel parameter, disk size, etc. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

*reason* indicates the reason why a direction was invalidated. |
6905  Automatic resource registration processing is aborted due to mismatch instance number of logical device between nodes.

Corrective action
This message appears when the logical path of the multi-path disk is created before registering the automatic resource. If this message appears during registering the automatic resource after adding on disks and nodes, the registration command might fail to access the logical path of the multi-path disk and check the instance number. This happens in the following conditions:

- The same logical path name is created on multiple nodes
- This path cannot be accessed from all nodes

The PRIMECLUSTER automatic resource registration has a feature to provide a same environment to all applications. If the instance number (indicates 2048 of mplb2048) of the logical path in the same disk is different between nodes, this message appears, and the automatic resource registration process is aborted. You need to check the logical path of all nodes. Recreate the logical path if necessary. The instance number should be the same. Then, register the automatic resource again.

If the cause is the failure of accessing the logical path of the multi-path disk, there might be a failure in the disk, or the disk is disconnected to the node.

Take the corrective action and register the automatic resource again. If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).
<table>
<thead>
<tr>
<th>Message ID</th>
<th>Description</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| 6906       | Automatic resource registration processing is aborted due to mismatch setting of disk device path between nodes. | Corrective action  
This failure might be due to one of the following incorrect settings:  
  ● Among the nodes connected to the same shared disk, the package of the multi-path disk control is not installed on all nodes.  
  ● The detection mode of the shared disk is different between nodes.  
  ● The number of paths to the shared disk is different between nodes.  
  Take the corrective action and register the automatic resource again.  
If you still have this problem after going through the above instruction, contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). |
| 6907       | Automatic resource registration processing is aborted due to mismatch construction of disk device between nodes. | Corrective action  
When the same shared disk was mistakenly connected to other cluster system, the volume label might have been overridden. Check the disk configuration. If there’s no problem with the configuration, collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). |
| 6910       | It must be restart the specified node to execute automatic resource registration. (node: <node_name>...) | Corrective action  
The nodes constituting the cluster system must be restarted. Restart the nodes constituting the cluster system. After that, perform the necessary resource registration again.  

*node_name* indicates a node identifier for which a restart is necessary.  
If multiple nodes are displayed with *node_name*, these node identifiers are delimited with commas. If *node_name* is All, restart all the nodes constituting the cluster system.
CF messages and codes

6911  It must be matched device number information in all
types of the cluster system executing automatic
resource registration. (dev: dev_name...)

Corrective action
Take down this message, and contact your local customer support.
The support engineer will take care of matching transaction for the
information on the disk device.

dev_name represents information for investigation.

7500  Cluster resource management facility: internal error.
(function: function detail: code1-code2)

Corrective action
Record this message, and contact your local customer support.
Collect information required for troubleshooting (refer to the Section
“Collecting troubleshooting information”).

Corrective action
Record this message, and contact your local customer support.
Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”).

function, code1, code2 indicates information required for error investiga-
tion.

7501  Cluster resource management facility: insufficient
memory. (function: function detail: code1)

Corrective action
Check the memory resource allocation estimate. For the memory
required by Resource Database, refer to the PRIMECLUSTER Instal-
lation Guide. If this error cannot be corrected by this operator
response, record this message, and contact your local customer
support. Collect information required for troubleshooting (refer to the
Section “Collecting troubleshooting information”).

function, code1 indicates information required for error investiga-
tion.

7502  Cluster resource management facility: insufficient
disk or system resources. (function: function detail: code1)

Corrective action
Referring to Section “Kernel parameters for Resource Database”,
review the estimate of the disk resource and system resource (kernel
parameter). If the kernel parameters have been changed, reboot the
node for which the kernel parameters have been changed. If this error
cannot be corrected by this operator response, record this message,
and contact your local customer support. Collect information required
for troubleshooting (refer to the Section “Collecting troubleshooting
information”).

function, code1 indicates information required for error investiga-
tion.
Resource Database messages

7503 The event cannot be notified because of an abnormal communication. (type:type rid:rid detail:code1)

Corrective action
Record this message, and contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). After this event is generated, restart all the nodes within a cluster domain.

*type, rid* indicates event information and *code1* indicates information for investigation.

7504 The event notification is stopped because of an abnormal communication. (type:type rid:rid detail:code1)

Corrective action
Record this message, and contact your local customer support. Collect information required for troubleshooting (refer to the Section “Collecting troubleshooting information”). After this event is generated, restart all the nodes within a cluster domain.

*type, rid* indicates event information and *code1* indicates information for investigation.

7505 The node (node) is stopped because event cannot be notified by abnormal communication. (type:type rid:rid detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. Start the stopped node in a single user mode to collect investigation information (refer to the Section “Collecting troubleshooting information”).

*node* indicates the node identifier of the node to be stopped, *type, rid* the event information, and *code1* the information for investigation.

7506 The node (node) is forcibly stopped because event cannot be notified by abnormal communication. (type:type rid:rid detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. Start the forcibly stopped node in a single user mode to collect the investigation information (refer to the Section “Collecting troubleshooting information”).

*node* indicates the node identifier of the node to be stopped, *type, rid* the event information, and *code1* the information for investigation.
7507 Resource activation processing cannot be executed because of an abnormal communication. (resource:resource rid:rid detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. For details about collecting investigation information (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource) belongs. resource indicates the resource name for which activation processing was disabled, rid the resource ID, and code1 the information for investigation.

7508 Resource (resource1 resource ID:rid1, ...) activation processing is stopped because of an abnormal communication. (resource:resource2 rid:rid2 detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support. For details about collecting investigation information (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource2) belongs. resource2 indicates the resource name for which activation processing was not performed, rid2 the resource ID, resource1 the resource name for which activation processing is not performed, rid1 the resource ID, and code1 the information for investigation.

7509 Resource deactivation processing cannot be executed because of an abnormal communication. (resource:resource rid:rid detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource) belongs. resource indicates the resource name for which deactivation processing was not performed, rid the resource ID, and code1 the information for investigation.
Resource Database messages

7510 Resource (resource1 resource ID:rid1, ...) deactivation processing is aborted because of an abnormal communication. (resource:resource2 rid:rid2 detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource2) belongs.

resource2 indicates the resource name for which deactivation processing was not performed, rid2 the resource ID, resource1 the resource name for which deactivation processing is not performed, rid1 the resource ID, and code1 the information for investigation.

7511 An error occurred by the event processing of the resource controller. (type:type rid:rid pclass:pclass prid:prid detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node in which the message was displayed.

type, rid indicates the event information, pclass, prid indicates resource controller information, and code1 the information for investigation.

7512 The event notification is stopped because an error occurred in the resource controller. (type:type rid:rid pclass:pclass prid:prid detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node in which the message was displayed.

type, rid indicates the event information, pclass, prid indicates resource controller information, and code1 the information for investigation.
7513 The node (node) is stopped because an error occurred in the resource controller. (type: type rid: rid pclass: pclass prid: prid detail: code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). Start up the stopped node in a single user mode to collect investigation information. 

node indicates the node identifier of the node to be stopped, type, rid the event information, pclass, prid the resource controller information, and code1 the information for investigation.

7514 The node (node) is forcibly stopped because an error occurred in the resource controller. (type: type rid: rid pclass: pclass prid: prid detail: code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). Start up the forcibly stopped node in a single user mode to collect investigation information.

node indicates the node identifier of the node to be forcibly stopped, type, rid the event information, pclass, prid the resource controller information, and code1 the information for investigation.

7515 An error occurred by the resource activation processing (resource: resource rid: rid detail: code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource) belongs. An error occurs in the resource activation processing and activation of the resource (resource) cannot be performed.

resource indicates the resource name in which an error occurred in the activation processing, rid the resource ID, and code1 the information for investigation.
Resource Database messages

7516 An error occurred by the resource deactivation processing. (resource: resource rid: rid detail: code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource) belongs. An error occurs in the resource deactivation processing and deactivation of the resource (resource) cannot be performed.

resource indicates the resource name in which an error occurred in the activation processing, rid the resource ID, and code1 the information for investigation.

7517 Resource (resource1 resource ID: rid1, ...) activation processing is stopped because an error occurred by the resource activation processing. (resource: resource2 rid: rid2 detail: code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource2) belongs.

resource2 indicates the resource name in which an error occurred in the activation processing, rid2 the resource ID, resource1 the resource name in which activation processing is not performed, rid1 the resource ID, and code1 the information for investigation.
CF messages and codes

7518 Resource (resource1 resource ID:rid1, ...) deactivation processing is aborted because an error occurred by the resource deactivation processing. (resource:resource2 rid:rid2 detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). After this phenomena occurs, restart the node to which the resource (resource2) belongs. resource2 indicates the resource name in which deactivation processing was disabled, rid2 the resource ID, resource1 the resource name in which deactivation processing is not performed, rid1 the resource ID, and code1 the information for investigation.

7519 Cluster resource management facility: error in exit processing. (node:node function:function detail:code1)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”). node indicates the node in which an error occurred and function, code1 the information for investigation.

7520 The specified resource (resource ID:rid) does not exist or be not able to set the dependence relation.

Corrective action
Specify the correct resource, then re-execute the processing. rid indicates a resource ID of the specified resource.

7521 The specified resource (class:rlclass resource:rname) does not exist or be not able to set the dependence relation.

Corrective action
Specify the correct resource, then re-execute the processing. rname indicates the specified resource name and rlclass the class name.

7522 It is necessary to specify the resource which belongs to the same node.

Corrective action
The resource belonging to other node is specified. Specify a resource that belongs to the same node and re-execute it.
Resource Database messages  CF messages and codes

7535  An error occurred by the resource activation processing. The resource controller does not exist.
(resource resource ID:rid)

Corrective action
As the resource controller is not available in the resource processing, resource (resource) activation was not performed.
Record this message and collect information for an investigation.
Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”).
resource indicates the resource name for which activation processing was disabled, and rid a resource ID.

7536  An error occurred by the resource deactivation processing. The resource controller does not exist.
(resource resource ID:rid)

Corrective action
As the resource controller is not available in the resource deactivation processing, resource (resource) deactivation was not performed.
Record this message and collect information for an investigation.
Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”).
resource indicates the resource name for which deactivation processing could not be performed, and rid the resource ID.

7537  Command cannot be executed during resource activation processing.

Corrective action
After activation processing of the resource completes, re-execute it.
Resource activation processing completion can be confirmed with 3204 message that is displayed on the console of the node to which the resource belongs.

7538  Command cannot be executed during resource deactivation processing.

Corrective action
After deactivation processing of the resource completes, re-execute it.
Resource deactivation processing completion can be confirmed with 3206 message that is displayed on the console of the node to which the resource belongs.
CF messages and codes

7539 Resource activation processing timed out. (code: code
detail: detail)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”).

7540 Resource deactivation processing timed out. (code: code
detail: detail)

Corrective action
Record this message and collect information for an investigation. Then, contact your local customer support (refer to the Section “Collecting troubleshooting information”).

7541 Setting related to dependence failed.

Corrective action
After confirming the specified resource, re-execute it.

7542 Resource activation processing cannot be executed because node (node) is stopping.

Corrective action
As the node node to which the resource to be activated belongs is stopped, the resource activation processing cannot be performed. After starting up the node to which resource to be activated belongs, re-execute it again.

node indicates the node identifier of the node where the connection is broken.
12.11 Shutdown Facility

7543 Resource deactivation processing cannot be executed because node (node) is stopping.
**Corrective action**
As the node node to which the resource to be deactivated belongs is stopped, the resource deactivation processing cannot be performed. After starting up the node to which resource to be deactivated belongs, re-execute it again.
 node indicates the node identifier of the node where the connection is broken.

7545 Resource activation processing failed.
**Corrective action**
Refer to the measures in the error message displayed between activation processing start message (3203) and completion message (3204), which are displayed when this command is executed.

7546 Resource deactivation processing failed.
**Corrective action**
Refer to the measures in the error message displayed between deactivation processing start message (3205) and completion message (3206), which are displayed when this command is executed.

12.11 Shutdown Facility

(SMAWsf, 10, 2) : %s of %s failed, errno %d
**Cause:** Internal problem.
**Action:** Check if there are related error messages following.
If yes, take action from there.
Otherwise, call support.

(SMAWsf, 10, 3) : Unknown command from sd_tool, command %d
**Cause:** Using illegal sdtool command line.
**Action:** Choose the correct argument when sdtool is invoked.
<table>
<thead>
<tr>
<th>CF messages and codes</th>
<th>Shutdown Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SMAWsf, 10, 4) : Failed to open CLI response pipe for PID %d, errno %d</td>
<td>Cause: rcsd daemon could not open the pipe to response to sdtool.</td>
</tr>
<tr>
<td></td>
<td>Action: Call support.</td>
</tr>
<tr>
<td>(SMAWsf, 10, 6) : Failed to create a signal handler for SIGCHLD</td>
<td>Cause: Internal problem.</td>
</tr>
<tr>
<td></td>
<td>Action: Call support.</td>
</tr>
<tr>
<td>(SMAWsf, 10, 7) : The shutdown agent %s has exceeded its configured timeout, pid %d terminated</td>
<td>Cause: The shutdown agent does not return in 'timeout' seconds, which is configured in rcsd.cfg.</td>
</tr>
<tr>
<td></td>
<td>Action: If increasing timeout does not help, most likely shutdown agent does not work. check the shutdown agent log and call support.</td>
</tr>
<tr>
<td>(SMAWsf, 10, 8) : A shutdown request has come in during a test cycle, test of %s pid %d terminated</td>
<td>Cause: sdtool -k was invoked while rcsd was running a shutdown agent testing.</td>
</tr>
<tr>
<td></td>
<td>Action: No harm. Just ignore it.</td>
</tr>
<tr>
<td>(SMAWsf, 10, 9) : A request to reconfigure came in during a shutdown cycle, this request was ignored</td>
<td>Cause: When rcsd is eliminating a node, reconfiguration (sdtool -r) is not allowed.</td>
</tr>
<tr>
<td></td>
<td>Action: Try again after the node elimination is done.</td>
</tr>
<tr>
<td>(SMAWsf, 10, 10) : Could not correctly read the rcsd.cfg file.</td>
<td>Cause: either rcsd.cfg file does not exist or the syntax in rcsd.log is not correct.</td>
</tr>
<tr>
<td></td>
<td>Action: Create rcsd.cfg file or fix the syntax.</td>
</tr>
<tr>
<td>(SMAWsf, 10, 11) : %s in file %s around line %d</td>
<td>Cause: The syntax is not correct in rcsd.log</td>
</tr>
<tr>
<td></td>
<td>Action: fix the syntax.</td>
</tr>
</tbody>
</table>
### Shutdown Facility CF messages and codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| (SMAWsf, 10, 12) | A request to exit rcSD came in during a shutdown cycle, this request was ignored.  
**Cause:** When rcSD is eliminating a node, bringing the rcSD daemon (sdtool -e) is not allowed.  
**Action:** Try again after the killing node elimination is done. |
| (SMAWsf, 10, 15) | SA %s to %s host %s failed  
**Cause:** The shutdown agent failed to do initialization | testing | shutdown | un-initialization  
the node  
**Action:** Check the shutdown agent log and call support. |
| (SMAWsf, 10, 17) | Failed to open lock file  
**Cause:** internal problem  
**Action:** Call support. |
| (SMAWsf, 10, 19) | Failed to unlink/create/open CLI Pipe  
**Cause:** internal problem  
**Action:** Call support. |
| (SMAWsf, 10, 20) | Illegal catalog open parameter  
**Cause:** internal problem.  
**Action:** Call support. |
| (SMAWsf, 10, 30) | Pthread failed: %s : errcode %d %s  
**Cause:** Internal problem. POSIX thread failed.  
**Action:** Call support. |
| (SMAWsf, 10, 31) | Pthread failed: %s : errcode %d %s  
**Cause:** Internal problem. rcSD was restarted.  
**Action:** Call support. |
| (SMAWsf, 10, 34) | Host %S MA exec: %s failed, errno %d  
**Cause:** Failed to execute monitor agent's API.  
**Action:** Call support. |
CF messages and codes

(SMAWsf, 10, 36) : Failed to cancel %s, thread f %s %s of host %s
  Cause: POSIX thread was not cancellable.
  Action: Call support.

(SMAWsf, 10, 38) : Host %s, MA %s, MAH/get/state() failed
  Cause: failed to call monitor agent's API
  MAHostGetState().
  Action: Call support.

(SMAWsf, 10, 101) : Malloc failed during %s
  Cause: Not enough memory.
  Action: Increase virtual memory size (ulimit -v) or increase system memory. Call support if the problem still exists.

(SMAWsf, 30, 2) : Usage: sdtool {-d[on | off] | -s | -S | -r | -b | -c | -e | -k node-name | -w weight-factor | -n node-factor}
  Cause: Illegal argument/command line usage.
  Action: Use the correct argument

(SMAWsf, 30, 3) : unlink failed on RCSD response pipe %s, errno %d
  Cause: Can not remove the old pipe file.
  Action: Call support.

(SMAWsf, 30, 4) : mkfifo failed on RCSD response pipe %s, errno %d
  Cause: Could not create the pipe for rcsd.
  Action: Call support.

(SMAWsf, 30, 5) : open failed on RCSD response pipe %s, errno %d
  Cause: Could not open the pipe for rcsd.
  Action: Call support.

(SMAWsf, 30, 6) : open failed on rcsdin pipe %s, errno %d
  Cause: Could not open communication pipe from sdtool to rcsd.
  Action: Call support.
Shutdown Facility CF messages and codes

(SMAWsf, 30, 7) : write failed on rcstdin pipe %s, errno %d
   Cause: Could not pass command from sdtool to rcsd.
   Action: Call support.

(SMAWsf, 30, 8) : select failed, errno %d
   Cause: sdtool could not get information from rcsd.
   Action: Call support.

(SMAWsf, 30, 9) : read failed, errno %d
   Cause: sdtool failed to read data from rcsd daemon.
   Action: Call support.

(SMAWsf, 30, 10) : RCSD returned an error for this command, error is %d
   Cause: rcsd failed to execute the command from sdtool.
   Action: Check if there are related error messages following.
   If yes, take action from there.
   Otherwise, call support.

(SMAWsf, 30, 12) : A shutdown is in progress for the machine %s, try again later
   Cause: rcsd daemon is currently eliminating the machine. The current request is not ignored.
   Action: Try again later.

(SMAWsf, 30, 13) : The RCSD is not running
   Cause: The command failed because rcsd daemon is not running.
   Action: Start up rcsd daemon (sdtool -b) then try the command again.

(SMAWsf, 30, 14) : RCSD is exiting. Command is not allowed
   Cause: rcsd daemon is in the stage of shutting down. The command is not allowed.
   Action: Try the command after rcsd daemon is started up.
CF messages and codes

(SMAWsf, 30, 15) : Failed to get %s product information
  Cause: Most likely the product is not installed properly.
  Action: Reinstall the product.

(SMAWsf, 30, 16) : Illegal catlog open parameter
  Cause: Failed to open log file.
  Action: Call support.

(SMAWsf, 30, 17) : Could not execlp (RCSD). Errno = %d
  Cause: Most likely the rcsd binary does not exist.
  Action: Reinstall the package.

(SMAWsf, 50, 3) : The SF-CF initialization failed, status %d
  Cause: Most likely, CF is not configured and/or is not loaded.
  Action: Configure and load CF.

(SMAWsf, 50, 4) : The SF-CF event processing failed, status %d
  Cause: Internal problem.
  Action: Call support.

(SMAWsf, 50, 6) : The SF-CF has failed to locate host %s
  Cause: The nodename in the rcsd.cfg is not a known CF name.
  Action: Use the CF name (cftool -n) in rcsd.cfg.

(SMAWsf, 50, 9) : The SF-CF failed to declare %s down, status %d
  Cause: Internal problem.
  Action: Call support.

(SMAWsf, 50, 11) : Failed to open CFSF device, reason (%d)%s
  Cause: Could not open CFSF device
  Action: Call support.

(SMAWsf, 50, 12) : h_cfsf_get_leftcluster() failed. reason (%d) %s
  Cause: Failed to call cfsf_get_leftcluster.
  Action: Call support.
Monitoring Agent messages

<table>
<thead>
<tr>
<th>Message Code</th>
<th>Message Description</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SMAWsf, 50, 13)</td>
<td>Node id %d ICF communication failure detected</td>
<td>CF layer has detected lost heartbeat</td>
<td>action: rcSD will take action.</td>
</tr>
<tr>
<td>(SMAWsf, 50, 14)</td>
<td>Host %s ICF communications failure detected</td>
<td>rcSD was notified the node has lost heartbeat</td>
<td>action: rcSD take action to eliminate the node.</td>
</tr>
<tr>
<td>(SMAWsf, 50, 20)</td>
<td>Failed to cancel thread of the %s-monitor</td>
<td>Failed to cancel thread</td>
<td>Call support.</td>
</tr>
<tr>
<td>(SMAWsf, 50, 21)</td>
<td>Failed to do %s, reason (%d)%s</td>
<td>Failed to call some internal functions.</td>
<td>Call support.</td>
</tr>
<tr>
<td>(SMAWsf, 50, 22)</td>
<td>Failed to get nodeid for host %s. reason (%d)%s</td>
<td>Not able to get the cluster node id for the node.</td>
<td>Call support.</td>
</tr>
</tbody>
</table>

12.12 Monitoring Agent messages

This section lists the messages output from the Monitoring Agents. The message format is as follows.

Italics indicate that the output varies, depending on the message.

FJSVcluster: severity: program: message-number: message
CF messages and codes

Severity

Message severity level.

The levels of severity are as follows:
Information (INFORMATION), Warning (WARNING),
Error (ERROR). For details, refer to the table below.

Program

Name of the program that output this message. The
monitoring agent is output as DEV.

Message-number

Message number.

details

Detailed classification code.

<table>
<thead>
<tr>
<th>Number</th>
<th>Severity</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-3999</td>
<td>Information</td>
<td>Message providing information about the monitoring agent state.</td>
</tr>
<tr>
<td>4000-5999</td>
<td>Warning</td>
<td>Message warning about an insignificant error that does not cause the abnormal termination of the monitoring agent.</td>
</tr>
<tr>
<td>????, 6000-7999</td>
<td>Error</td>
<td>Message indicating that a significant error has occurred that caused the abnormal termination of the monitoring agent.</td>
</tr>
</tbody>
</table>

12.12.1 INFORMATION message

3040 The console monitoring agent has been started. (node: nodename)
3041 The console monitoring agent has been stopped. (node: nodename)
3042 The RCI monitoring agent has been started.
3043 The RCI monitoring agent has been stopped.
3044 The console monitoring agent took over monitoring Node targetnode.
3045 The console monitoring agent cancelled to monitor Node targetnode
### Monitoring Agent messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3046</td>
<td>The specified option is not registered because it is not required for device. (option: option)</td>
</tr>
</tbody>
</table>

### 12.12.2 WARNING message

<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5001</td>
<td>The RCI address has been changed. (node: nodename address: address)</td>
</tr>
</tbody>
</table>

Corrective action:
The RCI address is changed while the RCI monitoring agent is running. `nodename` indicates a name of the node where the RCI address is changed. `address` indicates the changed RCI address. Check if the RCI address is correctly set up on the node.

### 12.12.3 ERROR message

When the error messages described in this section are output, investigate the `/var/adm/messages` file and check if another error message is output before this message. If this occurs, follow the corrective action of the other error message.

<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>An internal error occurred. (function: function detail: code1-code2-code3-code4)</td>
</tr>
</tbody>
</table>

Corrective action:
Collect required information to contact field support. Refer to the Chapter “Diagnostics and troubleshooting” for collecting information.

<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6003</td>
<td>Error in option specification. (option: option)</td>
</tr>
</tbody>
</table>

Corrective action:
Specify the correct option and execute the command again. `option` indicates an option.

<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6004</td>
<td>No system administrator authority.</td>
</tr>
</tbody>
</table>

Corrective action:
Execute using system administrator access privileges.
CF messages and codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6007 | One of the required options (option) must be specified.  
Corrective action:  
Specify the correct option and execute the command again.  
*option* indicates an option.  
| 7003 | An error was detected in RCI.  
(node: *nodename*  
address: *address*  
status: *status*)  
Corrective action:  
There is an RCI transmission failure between *nodename* indicated in the message and a node where the message was output. RCI might not be properly connected, or there might be a system failure. Check if the RCI cable is connected. If the RCI cable is disconnected, execute the following command on the node where the error message was output:  

```
/etc/opt/FJSVcluster/bin/clrcimonctl restart
```

Restart the RCI monitoring agent, and execute the following command to restart the Shutdown Facility (SF):  

```
/opt/SMAW/bin/sdtool -r
```

If the RCI cable is connected, there might be a hardware failure such as the RCI cable or System Control Facility (SCF). Collect required information and SCF dump to contact field support.  
Refer to the Section "Collecting troubleshooting information" for collecting information.  
When the hardware failure is recovered, execute the following command to restart the RCI monitoring agent:  

```
/etc/opt/FJSVcluster/bin/clrcimonctl restart
```

Execute the following command to restart SF:  

```
/opt/SMAW/bin/sdtool -r
```

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7004 | The RCI monitoring agent has been stopped due to an RCI address error.  
(node: *nodename*  
address: *address*) |
Monitoring Agent messages

Corrective action:
The RCI address of other node is changed while the RCI monitoring agent is running. Collect required information and SCF dump to contact field support.

Refer to the Section “Collecting troubleshooting information” for collecting information and on SCF dump.

The field support engineer confirms if the RCI address of nodename indicated in the message is correctly set up. To check the previous RCI address, execute the following command on an arbitrary node:

```
#/opt/FJSVadm/sbin/setrci stat
```

If the RCI address is incorrect, set up the address again referring to the instruction for field support engineers.

Execute the following command to restart the RCI monitoring agent:

```
#/etc/opt/FJSVcluster/bin/clrcimonctl restart
```

Execute the following command to restart the Shutdown Facility (SF) where the error message was output:

```
#/opt/SMAW/bin/sdtool -r
```

Corrective action:
The console monitoring agent has been started. If you do not need to restart the console monitoring agent, you do not have to take any action. If you need to restart the console monitoring agent, execute the following command on the node where this error message appeared:

```
#/etc/opt/FJSVcluster/bin/clrccumonctl restart
```

Then, restart the Shutdown Facility on that node as follows:

```
#/opt/SMAW/bin/sdtool -r
```

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

```
7018 The console monitoring agent has been started.
```

Corrective action:
The console monitoring agent has been started. If you do not need to restart the console monitoring agent, you do not have to take any action. If you need to restart the console monitoring agent, execute the following command on the node where this error message appeared:

```
#/etc/opt/FJSVcluster/bin/clrccumonctl restart
```

Then, restart the Shutdown Facility on that node as follows:

```
#/opt/SMAW/bin/sdtool -r
```

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

```
7019 The RCI monitoring agent has already been started.
```

```
7018 The console monitoring agent has been started.
```

7019       The RCI monitoring agent has already been started.
CF messages and codes

Corrective action:
The RCI monitoring agent has been started. If you do not need to restart the RCI monitoring agent, you do not have to take any action. If you need to restart the RCI monitoring agent, execute the following command on the node where this error message appeared:

```
#/etc/opt/FJSVcluster/bin/clrcimonctl restart
```

Then, restart the Shutdown Facility on that node as follows:

```
#/opt/SMAW/bin/sdtool -r
```

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

7026 HCP is not supported. (version:version)

Corrective action
The HCP version is not supported. To use XSCF, you need to update HCP to the appropriate version. For information on how to update HCP, refer to the XSCF (eXtended System Control Facility) User’s Guide.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

7027 The XSCF is not supported.

Corrective action
XSCF is not supported. XSCF might not be built in a main unit or ESF (Enhanced Support Facility) might not be installed. Referring to the instruction manual of a main unit, check if XSCF is built in. Or referring to the ESF Installation Guide, check if ESF is installed. Install ESF if necessary.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

7030 CF is not running.
Monitoring Agent messages  CF messages and codes

Corrective action
CF is not running. If CF has not been configured, you need to configure it (refer to Section “CF, CIP, and CIM configuration”). If CF has been configured, reboot the node and start CF.

7031 Cannot find the HCP version.

Corrective action
The HCP version is not known. ESF (Enhanced Support Facility) might have been incorrectly installed. Or referring to the ESF Installation Guide, check if ESF is installed.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

7033 Cannot find the specified CF node name. (nodename: \textit{nodename})

Corrective action
The specified CF node name is not found. You need to check the following and execute the command again:

1. The specified CF node name is correct. Check if the specified CF node name is correct using the \texttt{cftool(1M)} command.

2. The CF of the specified node is running. Check if CF is running using the \texttt{cftool(1M)} command. If not, reboot the node, and start CF.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”).

7034 The console information is not set. (nodename: \textit{nodename})
Corrective action
The specified CF node name is not registered. Check the console information using the `clrcctsetup-l` command. Register the console information, if necessary, using the Shutdown Agent Wizard or `clrcctsetup`. For the Shutdown Agent Wizard, refer to the PRIMECLUSTER Installation and Administration Guide. For the `clrcctsetup` command, refer to the `clrcctsetup(1M)` manual page.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section “Collecting troubleshooting information”)

```
7040 The console was disconnected.
 (node: nodename portno: portnumber detail: code)
```

Corrective action:
The console was disconnected. Check the following:

- The RCCU is powered.
- The normal lamp of the HUB connected to the RCCU is on.
- The LAN cable connectors are connected to the RCCU and HUB.
- The LAN cable connectors are connected to the XSCF’s SCF-LAN port and HUB.
- The XSCF shell port is not connected from other software products but PRIMECLUSTER. Check this by connecting to the XSCF shell via serial port (tty-a). Refer to the XSCF (eXtended System Control Facility) User’s Guide for information on how to connect and confirm.

If any of above fails, execute the following command on the node where the error message was output, and restart the Shutdown Facility:

```
/opt/SMAS/bin/sdtool -r
```

If you still have a problem with connection, there might be a network failure or a failure of hardware such as RCCU, HUB and related cables. Contact field support.

If the above corrective action does not work, collect required information to contact field support. Refer to the Section “Collecting troubleshooting information” for collecting information.

```
7042 Connection to the console is refused.
 (node: nodename portno: portnumber detail: code)
```
Corrective action:

Connection to the console cannot be established during the console monitoring agent startup. Check the following:

- The IP address or host name of RCCU or XSCF is correct. Use the `clrccusetup(1M)` command to check. If the IP address or host name is incorrect, configure the console monitoring agent again.
- The RCCU is powered.
- The normal lamp of the HUB connected to the RCCU is on.
- The LAN cable connectors are connected to the RCCU and HUB.
- The LAN cable connectors are connected to the XSCF’s SCF-LAN port and HUB.
- The XSCF shell port is not connected from other software products but PRIMECLUSTER. Check this by connecting to the XSCF shell via serial port (tty-a). Refer to the XSCF (eXtended System Control Facility) User’s Guide for information on how to connect and confirm.

If any of above fails, execute the following command on the node where the error message was output, and restart the Shutdown Facility:

```
#/opt/SMAW/bin/sdtool -r
```

If you still have a problem with connection, there might be a network failure or a failure of hardware such as RCCU, HUB and related cables. Contact field support.

If the above corrective action does not work, collect required information to contact field support. Refer to the Section “Collecting troubleshooting information” for collecting information.

7200 The configuration file of the console monitoring agent does not exist. (file:filename)

Corrective action:
### CF messages and codes

<table>
<thead>
<tr>
<th>CF Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7201</td>
<td>The configuration file of the RCI monitoring agent does not exist. (file: filename)</td>
</tr>
<tr>
<td>7202</td>
<td>The configuration file of the console monitoring agent has an incorrect format. (file: filename)</td>
</tr>
<tr>
<td>7203</td>
<td>The username or password to login to the control port of the console is incorrect.</td>
</tr>
</tbody>
</table>

### Monitoring Agent messages

1. Download the configuration file displayed in miscellaneous information using ftp from other nodes.
2. Store this file in the original directory.
3. Set up the same access permission mode of this file as other nodes.
4. Restart the system.

If all the nodes do not have this configuration file, collect required information to contact field support. Refer to the Section “Collecting troubleshooting information” for collecting information.

Corrective action:

1. Download the configuration file displayed in miscellaneous information using ftp from other nodes.
2. Store this file in the original directory.
3. Set up the same access permission mode of this file as other nodes.
4. Restart the system.

If all the nodes do not have this configuration file, collect required information to contact field support. Refer to the Section “Collecting troubleshooting information” for collecting information.

Corrective action:

There’s an incorrect format of the configuration file in the console monitoring agent.

If the configuration file name displayed in miscellaneous information is SA_rccu.cfg, reconfigure the Shutdown Facility by invoking the configuration wizard. Then, confirm if the RCCU name is correct.

If the above corrective action does not work, or the configuration file name is other than SA_rccu.cfg, collect required information to contact field support. Refer to the Section “Collecting troubleshooting information” for collecting information.
CCBR messages

Corrective action
You are not allowed to log on to the control port of the console (RCCU or XSCF). The username or password that is registered in a cluster system is different than the one that is configured for the console. Configure the console monitoring agent and Shutdown Facility again.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section "Collecting troubleshooting information").

Corrective action
The console's IP address is unknown. You need to check if a host name of RCCU or XSCF is correct using the clrcersetup(1M) command. If it is correct, reconfigure the console monitoring agent.

If this corrective action does not work, write down the error message, collect required information for troubleshooting and contact field support (refer to the Section "Collecting troubleshooting information").

12.13 CCBR messages

The CCBR Framework commands, cfbackup(1M) and cfrestore(1M), will generate error messages on stderr and warning messages in an error log file if one or more error conditions are detected. All Framework messages have a date and time prefix, optionally followed by the text WARNING: and the command name, and then followed by the error text. Layered-product plugin modules can also generate warning messages, error messages, or both.

12.13.1 cfbackup warning/error messages

12.13.1.1 To stderr:

- date time cfbackup: invalid option specified

One or more invalid arguments were used with the cfbackup command. The command syntax is as follows:
CF messages and codes

<table>
<thead>
<tr>
<th>cfbackup [-test] [-f] [n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>where</td>
</tr>
<tr>
<td>-test</td>
</tr>
<tr>
<td>can be used by plug-in developers. It will cause the $CCBROOT tree to remain after a successful run (it is usually deleted). Also, the backup/restore generation number will not be incremented.</td>
</tr>
<tr>
<td>-f</td>
</tr>
<tr>
<td>specifies FORCE, which will always cause a compressed archive file to be created, even when 'fatal' errors have been detected.</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>specifies the backup/restore generation to use.</td>
</tr>
</tbody>
</table>

- **date time** cfbackup: cmd must be run as root
  The cfbackup command must be executed by root (uid=0).

- **date time** cfbackup: ccbr files & directories must be accessible
  The cfbackup command must be able to access /opt/SMAW/ccbr, /opt/SMAW/ccbr/plugins, and /opt/SMAW/ccbr/ccbr.conf.

### 12.13.1.2 To log file

- **date time** WARNING: cfbackup: specified generation n too small — using p
  The generation number specified on the cfbackup command is less than the value in /opt/SMAW/ccbr/ccbr.gen. The larger value will be used.

- **date time** cfbackup [FORCE] n [(TEST)] log started
  This message indicates that cfbackup is beginning processing.

- **date time** nodename not an active cluster node
  This informational message indicates that the node is not an active PRIMECLUSTER node.

- **date time** no runnable plug-ins! cmd aborted.
  The cfbackup command cannot find executable scripts in the /opt/SMAW/ccbr/plugins directory.

- **date time** cfbackup n ended unsuccesssfully
  This message indicates that the cfbackup command is ending with an error code of 2 or 3.
CCBR messages

- **date time** validation failed in pluginname
  This error message indicates that the validation routine in one or more plugin modules has returned an error code of 2 or 3 to the `cfbackup` command.

- **date time** backup failed in pluginname
  This error message indicates that the backup routine in one or more plugin modules has returned an error code of 2 or 3 to the `cfbackup` command.

- **date time** archive file creation failed
  This error message indicates that the `cfbackup` command cannot successfully create a tar archive file from the backup tree.

- **date time** archive file compression failed
  This error message indicates that the `cfbackup` command cannot create a compressed archive file (with compress).

- **date time** cfbackup n ended
  This message indicates that the `cfbackup` command has completed all processing. The highest return code value detected while processing will be used as the return/error code value.

12.13.2 cfrestore warning/error messages

12.13.2.1 To stderr

- **date time** cfrestore: invalid option specified
  One or more invalid arguments were used with the `cfrestore` command. The command syntax is as follows:

  ```bash
cfrestore [-test] [-f] [p] [-y] [n]
```

  where `-test` can be used by plug-in developers. It will cause the $CCBROOT tree to remain after a successful run (it is usually deleted). Also, the cpio step will restore all saved files to `/tmp/ccbr` instead of `/` --- this will give plug-in developers a chance to check results, before “doing it” for real...
**CF messages and codes**

**CCBR messages**


- `-f` specifies FORCE, which will always cause an archive file to be restored, even when 'fatal' errors have been detected.
- `-p` specifies PASS, which allows cfrestore to use a cfrestore file-tree that has already been 'extracted' from a compressed archive.
- `-y` specifies an automatic YES answer, whenever the cfrestore command requests a confirmation response.
- `-M` force restore even if we are in multi-user mode
- `-n` specifies the backup/restore generation to use.

**date time** cfrestore: cmd must be run as root

The cfrestore command must be executed by root (uid=0).

**date time** cfrestore: cmd must be run in single-user mode

The cfrestore command must be executed while at runlevel 1 or S (single-user mode).

**date time** cfrestore: ccbr files & directories must be accessible

The cfrestore command must be able to access /opt/SMAW/ccbr, /opt/SMAW/ccbr/plugins, and /opt/SMAW/ccbr/ccbr.conf.

### 12.13.2.2 To log file

**date time** cfrestore [FORCE] [TREE] [YES] n [(TEST)] log started

This message indicates that cfrestore is beginning processing.

**date time** ERROR: nodename IS an active cluster node

This cfrestore error message indicates that the node is an active PRIMECLUSTER node, and that restoring cluster configuration information at this time may lead to severe errors, and is not recommended.

**date time** cfrestore n ended unsuccessfully

This message indicates that the cfrestore command is ending with an error code of 2 or 3.
CCBR messages

- **date time** no runnable plug-ins! cmd aborted.
  The `cfrestore` command cannot find executable scripts in the `/opt/SMAW/ccbr/plugins` directory.

- **date time** unable to find selected archive file: `archivefile`
  This message indicates that the `cfrestore` command cannot locate the archive file at `$CCBROOT.tar.Z` (Solaris OE). The `CCBROOT` value is set using `nodename` and `generation number`.

- **date time** archive file uncompression failed
  This error message indicates that the `cfrestore` command cannot expand the compressed archive file (with `uncompress`).

- **date time** archive file extraction failed
  This error message indicates that the `cfrestore` command cannot successfully recreate a backup tree from the tar archive file.

- **date time** archive file recompression failed
  This error message indicates that the `cfrestore` command cannot recreate the compressed archive file (with `compress`).

- **date time** warning: backup created with FORCE option
  This warning message indicates that `cfbackup` created this archive file with the FORCE option specified (usually used to force past an error condition). It is highly recommended that the error logfile in the backup archive be examined to make sure a restore of this data will be valid.

- **date time** plugin present at backup is missing for restore: `pluginname`
  This error message indicates that the named plugin module is missing from the `/opt/SMAW/ccbr/plugins` directory. This usually indicates that a PRIMECLUSTER package has been uninstalled and not reinstalled, or that a newer or older package does not have the same named plugin(s).

- **date time** negative reply terminates processing
  This error message indicates that the reply to the question (asked by `cfrestore`), 'Are you sure you want to continue (y/n) ?', was not answered with YES. Processing terminates unless the FORCE option has been specified.

- **date time** plugin validation failed
This error message indicates that the validation routine of the identified plugin module has returned an error code of 2 or 3 to the \texttt{cfrestore} command. Validation will continue so that all plugin modules have a chance to identify problems.

- \textit{date time} \texttt{cpio copy for cfrestore failed}

This error message indicates that the automatic \texttt{cpio} restore of all file trees rooted in the "root" subdirectory of the backup tree failed in execution. The \texttt{cpio} command is executed in verbose mode, so that there will be some history of which files were restored. This error usually indicates a partial restore has occurred. This can be a significant problem, and may require manual intervention to repair/restore the modified files.

- \textit{date time} \texttt{NOTE: no root subdirectory for cpio copy step}

This warning message indicates that \texttt{cfrestore} did not find any files to automatically restore from the backup tree. This is usually an error, probably indicating a damaged backup archive.

- \textit{date time} \texttt{plugin restore failed}

This error message indicates that the restore routine of the identified plugin module has returned an error code of 2 or 3 to the \texttt{cfrestore} command. Only a small number of plugins will need to provide an active restore routine. Restore will continue so that all plugins have a chance to identify problems. Any problems at this time, after the automatic \texttt{cpio} restore, will need to be examined individually and fixed manually.

- \textit{date time} \texttt{cfrestore n ended}

This message indicates that the \texttt{cfrestore} command has completed all processing. The highest return code value detected while processing will be used as the return/error code value.
<table>
<thead>
<tr>
<th>CCBR messages</th>
<th>CF messages and codes</th>
</tr>
</thead>
</table>

326 U42124-J-Z100-4-76
13 Manual pages

This chapter lists the online manual pages for CCBR, CF, CFS, CIP, CPAT, Monitoring Agent, PAS, RCVM, Resource Database, RMS, RMS Wizards, SCON, SF, SIS, and Web-Based Admin View.

To display a manual page, type the following command:

$ \texttt{man \textit{man\_page\_name}}

13.1 CCBR

System administration

\texttt{cfbackup}  
save the cluster configuration information for a PRIMECLUSTER node

\texttt{cfrestore}  
restore saved cluster configuration formation on a PRIMECLUSTER node

13.2 CF

System administration

\texttt{cfconfig}  
configure or unconfigure a node for a PRIMECLUSTER cluster

\texttt{cfset}  
apply or modify /etc/default/cluster.config entries into the CF module

\texttt{cftool}  
print node communications status for a node or the cluster

\texttt{rcqconfig}  
configure or start quorum

\texttt{rcquery}  
get quorum state of the cluster

\texttt{hvrclev}  
change default RMS start run level
13.3  CFS

fsck_rcfs
    file system consistency check and interactive repair

mount_rcfs
    mount RCFS file systems

rcfs_fumount
    force unmount RCFS mounted file system

rcfs_list
    list status of RCFS mounted file systems

rcfs_switch
    manual switchover or failover of a RCFS file system

ngadmin
    node group administration utility

cfsmntd
    cfs mount daemon for RCFS

13.4  CIP

System administration

cipconfig
    start or stop CIP 2.0

ciptool
    retrieve CIP information about local and remote nodes in the cluster

File format

cip.cf
    CIP configuration file format
13.5 CPAT

System administration
cluster_uninstall
remove PRIMECLUSTER software from a system

13.6 Monitoring Agent

System administration
clrcimonctl
start, stop or restart of the RCI monitoring agent daemon, and display of
daemon presence

clrccumonctl
start, stop or restart of the console monitoring agent daemon, and
display of daemon presence

clrcccsetup
registers, changes, deletes, or displays console information

13.7 PAS

System administration
mipcstat
MIPC statistics

clmstat
CLM statistics

13.8 RCVM

Not available in all markets.
System administration

dkconfig
  virtual disk configuration utility
dkmigrate
  virtual disk migration utility
vdisk
  virtual disk driver
dkmirror
  mirror disk administrative utility

File format

dktab
  virtual disk configuration file

13.9 Resource Database

To display a Resource Database manual page, add /etc/opt/FJSVcluster/man to the environment variable MANPATH.

System administration

clautoconfig
  execute of the automatic resource registration
clbackuprdb
  save the resource database
clexec
  execute the remote command
cldeldevice
  delete resource registered by automatic resource registration
clinitreset
  reset the resource database
clrestorerdb
  restore the resource database
clsetparam
  display and change the resource database operational environment
Manual pages

clsetup
  set up the resource database
clstartrsc
  resource activation
clstoprsc
  resource deactivation
clsyncfile
  distribute a file between cluster nodes

User command

clgettree
  display the tree information of the resource database

13.10 RMS

System administration

hvassert
  assert (test for) an RMS resource state
hvcm
  start the RMS configuration monitor
hvconfig
  display or save the RMS configuration file
hvdisp
  display RMS resource information
hvdist
  distribute RMS configuration files
hvdump
  collect debugging information about RMS
hvgdmake
  compile an RMS custom detector
hvlogclean
  clean RMS log files
RMS Wizards

hvrclev
  change default RMS start run level
hvshut
  shut down RMS
hvswitch
  switch control of an RMS user application resource to another node
hvthrottle
  prevent multiple RMS scripts from running simultaneously
hvutil
  manipulate availability of an RMS resource

File formats
hvenv.local
  RMS local environment configuration file

13.11 RMS Wizards

RMS Wizards and RMS Application Wizards
  RMS Wizards are documented as html pages in the SMAWRhvdo package
  on the CD-ROM. After installing this package, the documentation is
  available in the following directory:
    /usr/opt/reliant/htdocs.solaris/wizards.en

13.12 SCON

scon
  start the cluster console software

13.13 SF

System administration
rcsd
  Shutdown Daemon of the Shutdown Facility
sdtool
  interface tool for the Shutdown Daemon

File formats

rcsd.cfg
  configuration file for the Shutdown Daemon

SA_pprci.cfg
  configuration file for RCI Shutdown Agent (PRIMEPOWER only)

SA_rccu.cfg
  configuration file for RCCU Shutdown Agent

SA_rps.cfg
  configuration file for a Remote Power Switch Shutdown Agent

SA_scon.cfg
  configuration file for SCON Shutdown Agent

SA_sspint.cfg
  configuration file for Sun E10000 Shutdown Agent

SA_sunF.cfg
  configuration file for sunF system controller Shutdown Agent

SA_wtinps.cfg
  configuration file for WTI NPS Shutdown Agent

13.14 SIS

System administration

dtcpadmin
  start the SIS administration utility

dtcpd
  start the SIS daemon for configuring VIPs

dtcpstat
  status information about SIS
13.15 Web-Based Admin View

System administration

fjsvwvb s
   stop Web-Based Admin View
fjsvwvcnf
   start, stop, or restart the web server for Web-Based Admin View
wvCntl
   start, stop, or get debugging information for Web-Based Admin View
wvGetparam
   display Web-Based Admin View's environment variable
wvSetparam
   set Web-Based Admin View environment variable
wvstat
   display the operating status of Web-Based Admin View
Glossary

AC
See Access Client.

Access Client
GFS kernel module on each node that communicates with the Meta Data Server and provides simultaneous access to a shared file system.

Administrative LAN
In PRIMECLUSTER configurations, an administrative LAN is a private local area network (LAN) on which machines such as the System Console and Cluster Console reside. Because normal users do not have access to the administrative LAN, it provides an extra level of security. The use of an administrative LAN is optional.

See also public LAN.

API
See Application Program Interface.

application (RMS)
A resource categorized as a userApplication used to group resources into a logical collection.

Application Program Interface
A shared boundary between a service provider and the application that uses that service.

application template (RMS)
A predefined group of object definition value choices used by RMS Application Wizards to create object definitions for a specific type of application.

Application Wizards
See RMS Application Wizards.

attribute (RMS)
The part of an object definition that specifies how the base monitor acts and reacts for a particular object type during normal operations.
Glossary

**automatic switchover (RMS)**
The procedure by which RMS automatically switches control of a userApplication over to another node after specified conditions are detected.

See also directed switchover (RMS), failover (RMS, SIS), switchover (RMS), symmetrical switchover (RMS).

**availability**
Availability describes the need of most enterprises to operate applications via the Internet 24 hours a day, 7 days a week. The relationship of the actual to the planned usage time determines the availability of a system.

**base cluster foundation (CF)**
This PRIMECLUSTER module resides on top of the basic OS and provides internal interfaces for the CF (Cluster Foundation) functions that the PRIMECLUSTER services use in the layer above.

See also Cluster Foundation.

**base monitor (RMS)**
The RMS module that maintains the availability of resources. The base monitor is supported by daemons and detectors. Each node being monitored has its own copy of the base monitor.

**Cache Fusion**
The improved interprocess communication interface in Oracle 9i that allows logical disk blocks (buffers) to be cached in the local memory of each node. Thus, instead of having to flush a block to disk when an update is required, the block can be copied to another node by passing a message on the interconnect, thereby removing the physical I/O overhead.

**CCBR**
See Cluster Configuration Backup and Restore.

**Cluster Configuration Backup and Restore**
CCBR provides a simple method to save the current PRIMECLUSTER configuration information of a cluster node. It also provides a method to restore the configuration information.
**Glossary**

**CF**  
See *Cluster Foundation*.

**child** *(RMS)*  
A resource defined in the configuration file that has at least one parent.  
A child can have multiple parents, and can either have children itself (making it also a parent) or no children (making it a leaf object).  
See also *resource (RMS), object (RMS), parent (RMS)*.

**cluster**  
A set of computers that work together as a single computing source.  
Specifically, a cluster performs a distributed form of parallel computing.  
See also *RMS configuration*.

**Cluster Foundation**  
The set of PRIMECLUSTER modules that provides basic clustering communication services.  
See also *base cluster foundation (CF)*.

**cluster interconnect (CF)**  
The set of private network connections used exclusively for PRIMECLUSTER communications.

**Cluster Join Services (CF)**  
This PRIMECLUSTER module handles the forming of a new cluster and the addition of nodes.

**concatenated virtual disk**  
Concatenated virtual disks consist of two or more pieces on one or more disk drives. They correspond to the sum of their parts. Unlike simple virtual disks where the disk is subdivided into small pieces, the individual disks or partitions are combined to form a single large logical disk.  
(Applies to transitioning users of existing Fujitsu Siemens products only.)  
See also *mirror virtual disk, simple virtual disk, striped virtual disk, virtual disk*.

**configuration file (RMS)**  
The RMS configuration file that defines the monitored resources and establishes the interdependencies between them. The default name of this file is *config.us*.
Glossary

console
See single console.

custom detector (RMS)
See detector (RMS).

custom type (RMS)
See generic type (RMS).

daemon
A continuous process that performs a specific function repeatedly.

database node (SIS)
Nodes that maintain the configuration, dynamic data, and statistics in a SIS configuration.
See also gateway node (SIS), service node (SIS), Scalable Internet Services (SIS).

detector (RMS)
A process that monitors the state of a specific object type and reports a change in the resource state to the base monitor.

directed switchover (RMS)
The RMS procedure by which an administrator switches control of a userApplication over to another node.
See also automatic switchover (RMS), failover (RMS, SIS), switchover (RMS), symmetrical switchover (RMS).

DOWN (CF)
A node state that indicates that the node is unavailable (marked as down). A LEFTCLUSTER node must be marked as DOWN before it can rejoin a cluster.
See also UP (CF), LEFTCLUSTER (CF), node state (CF).

ENS (CF)
See Event Notification Services (CF).

environment variables (RMS)
Variables or parameters that are defined globally.
**error detection** (RMS)
The process of detecting an error. For RMS, this includes initiating a log entry, sending a message to a log file, or making an appropriate recovery response.

**Event Notification Services** (CF)
This PRIMECLUSTER module provides an atomic-broadcast facility for events.

**failover** (RMS, SIS)
With SIS, this process switches a failed node to a backup node. With RMS, this process is known as switchover.

See also automatic switchover (RMS), directed switchover (RMS), switchover (RMS), symmetrical switchover (RMS).

**gateway node** (SIS)
Gateway nodes have an external network interface. All incoming packets are received by this node and forwarded to the selected service node, depending on the scheduling algorithm for the service.

See also service node (SIS), database node (SIS), Scalable Internet Services (SIS).

**GDS**
See Global Disk Services.

**GFS**
See Global File Services.

**GLS**
See Global Link Services.

**Global Disk Services**
This optional product provides volume management that improves the availability and manageability of information stored on the disk unit of the Storage Area Network (SAN).

**Global File Services**
This optional product provides direct, simultaneous accessing of the file system on the shared storage unit from two or more nodes within a cluster.
Glossary

Global Link Services
This PRIMECLUSTER optional module provides network high availability solutions by multiplying a network route.

generic type (RMS)
An object type which has generic properties. A generic type is used to customize RMS for monitoring resources that cannot be assigned to one of the supplied object types.

See also object type (RMS).

graph (RMS)
See system graph (RMS).

graphical user interface
A computer interface with windows, icons, toolbars, and pull-down menus that is designed to be simpler to use than the command-line interface.

GUI
See graphical user interface.

high availability
This concept applies to the use of redundant resources to avoid single points of failure.

interconnect (CF)
See cluster interconnect (CF).

Internet Protocol address
A numeric address that can be assigned to computers or applications.

See also IP aliasing.

Internode Communications facility
This module is the network transport layer for all PRIMECLUSTER internode communications. It interfaces by means of OS-dependent code to the network I/O subsystem and guarantees delivery of messages queued for transmission to the destination node in the same sequential order unless the destination node fails.

IP address
See Internet Protocol address.
IP aliasing
This enables several IP addresses (aliases) to be allocated to one physical network interface. With IP aliasing, the user can continue communicating with the same IP address, even though the application is now running on another node.

See also Internet Protocol address.

JOIN (CF)
See Cluster Join Services (CF).

keyword
A word that has special meaning in a programming language. For example, in the configuration file, the keyword object identifies the kind of definition that follows.

leaf object (RMS)
A bottom object in a system graph. In the configuration file, this object definition is at the beginning of the file. A leaf object does not have children.

LEFTCLUSTER (CF)
A node state that indicates that the node cannot communicate with other nodes in the cluster. That is, the node has left the cluster. The reason for the intermediate LEFTCLUSTER state is to avoid the network partition problem.

See also UP (CF), DOWN (CF), network partition (CF), node state (CF).

link (RMS)
Designates a child or parent relationship between specific resources.

local area network
See public LAN.

local node
The node from which a command or process is initiated.

See also remote node, node.

log file
The file that contains a record of significant system events or messages. The base monitor, wizards, and detectors can have their own log files.
Glossary

MDS
See Meta Data Server.

message
A set of data transmitted from one software process to another process, device, or file.

message queue
A designated memory area which acts as a holding place for messages.

Meta Data Server
GFS daemon that centrally manages the control information of a file system (meta-data).

mirrored disks
A set of disks that contain the same data. If one disk fails, the remaining disks of the set are still available, preventing an interruption in data availability. (Applies to transitioning users of existing Fujitsu Siemens products only.)
See also mirrored pieces.

mirrored pieces
Physical pieces that together comprise a mirrored virtual disk. These pieces include mirrored disks and data disks. (Applies to transitioning users of existing Fujitsu Siemens products only.)
See also mirrored disks.

mirror virtual disk
Mirror virtual disks consist of two or more physical devices, and all output operations are performed simultaneously on all of the devices. (Applies to transitioning users of existing Fujitsu Siemens products only.)
See also concatenated virtual disk, simple virtual disk, striped virtual disk, virtual disk.

mount point
The point in the directory tree where a file system is attached.

multihosting
Multiple controllers simultaneously accessing a set of disk drives. (Applies to transitioning users of existing Fujitsu Siemens products only.)
native operating system  
The part of an operating system that is always active and translates system calls into activities.

network partition (CF)  
This condition exists when two or more nodes in a cluster cannot communicate over the interconnect; however, with applications still running, the nodes can continue to read and write to a shared device, compromising data integrity.

node  
A host which is a member of a cluster. A computer node is the same as a computer.

node state (CF)  
Every node in a cluster maintains a local state for every other node in that cluster. The node state of every node in the cluster must be either UP, DOWN, or LEFTCLUSTER.

See also UP (CF), DOWN (CF), LEFTCLUSTER (CF).

object (RMS)  
In the configuration file or a system graph, this is a representation of a physical or virtual resource.

See also leaf object (RMS), object definition (RMS), object type (RMS).

object definition (RMS)  
An entry in the configuration file that identifies a resource to be monitored by RMS. Attributes included in the definition specify properties of the corresponding resource. The keyword associated with an object definition is object.

See also attribute (RMS), object type (RMS).

object type (RMS)  
A category of similar resources monitored as a group, such as disk drives. Each object type has specific properties, or attributes, which limit or define what monitoring or action can occur. When a resource is associated with a particular object type, attributes associated with that object type are applied to the resource.

See also generic type (RMS).
Glossary

**online maintenance**
The capability of adding, removing, replacing, or recovering devices without shutting or powering off the node.

**operating system dependent (CF)**
This module provides an interface between the native operating system and the abstract, OS-independent interface that all PRIMECLUSTER modules depend upon.

**OPS**
See *Oracle Parallel Server*.

**Oracle Parallel Server**
Oracle Parallel Server allows access to all data in a database to users and applications in a clustered or MPP (massively parallel processing) platform.

**OSD (CF)**
See *operating system dependent (CF)*.

**parent (RMS)**
An object in the configuration file or system graph that has at least one child.

See also *child (RMS), configuration file (RMS), system graph (RMS)*.

**primary node (RMS)**
The default node on which a user application comes online when RMS is started. This is always the nodename of the first child listed in the *userApplication object definition*.

**private network addresses**
Private network addresses are a reserved range of IP addresses specified by the Internet Assigned Numbers Authority. They may be used internally by any organization but, because different organizations can use the same addresses, they should never be made visible to the public internet.

**private resource (RMS)**
A resource accessible only by a single node and not accessible to other RMS nodes.

See also *resource (RMS), shared resource*. 
queue
See message queue.

PRIMECLUSTER services (CF)
Service modules that provide services and internal interfaces for clustered applications.

redundancy
This is the capability of one object to assume the resource load of any other object in a cluster, and the capability of RAID hardware and/or RAID software to replicate data stored on secondary storage devices.

public LAN
The local area network (LAN) by which normal users access a machine.
See also Administrative LAN.

Reliant Monitor Services (RMS)
The package that maintains high availability of user-specified resources by providing monitoring and switchover capabilities.

remote node
A node that is accessed through a telecommunications line or LAN.
See also local node.

remote node
See remote node.

reporting message (RMS)
A message that a detector uses to report the state of a particular resource to the base monitor.

resource (RMS)
A hardware or software element (private or shared) that provides a function, such as a mirrored disk, mirrored disk pieces, or a database server. A local resource is monitored only by the local node.
See also private resource (RMS), shared resource.

resource definition (RMS)
See object definition (RMS).
Glossary

**resource label** *(RMS)*
The name of the resource as displayed in a system graph.

**resource state** *(RMS)*
Current state of a resource.

**RMS**
See *Reliant Monitor Services (RMS)*.

**RMS Application Wizards**
RMS Application Wizards add new menu items to the RMS Wizard Tools for a specific application.

See also *RMS Wizard Tools, Reliant Monitor Services (RMS)*.

**RMS commands**
Commands that enable RMS resources to be administered from the command line.

**RMS configuration**
A configuration made up of two or more nodes connected to shared resources. Each node has its own copy of operating system and RMS software, as well as its own applications.

**RMS Wizard Tools**
A software package composed of various configuration and administration tools used to create and manage applications in an RMS configuration.

See also *RMS Application Wizards, Reliant Monitor Services (RMS)*.

**SAN**
See *Storage Area Network*.

**Scalable Internet Services (SIS)**
Scalable Internet Services is a TCP connection load balancer, and dynamically balances network access loads across cluster nodes while maintaining normal client/server sessions for each connection.
scalability
The ability of a computing system to dynamically handle any increase in work load. Scalability is especially important for Internet-based applications where growth caused by Internet usage presents a scalable challenge.

SCON
See single console.

script (RMS)
A shell program executed by the base monitor in response to a state transition in a resource. The script may cause the state of a resource to change.

service node (SIS)
Service nodes provide one or more TCP services (such as FTP, Telnet, and HTTP) and receive client requests forwarded by the gateway nodes.
See also database node (SIS), gateway node (SIS), Scalable Internet Services (SIS).

SF
See Shutdown Facility.

shared resource
A resource, such as a disk drive, that is accessible to more than one node.
See also private resource (RMS), resource (RMS).

Shutdown Facility
The Shutdown Facility provides the interface for managing the shutdown of cluster nodes when error conditions occur. The SF also cares for advising other PRIMECLUSTER products of the successful completion of node shutdown so that recovery operations can begin.

simple virtual disk
Simple virtual disks define either an area within a physical disk partition or an entire partition. (Applies to transitioning users of existing Fujitsu Siemens products only.)
See also concatenated virtual disk, striped virtual disk, virtual disk.
Glossary

single console
The workstation that acts as the single point of administration for nodes being monitored by RMS. The single console software, SCON, is run from the single console.

SIS
See Scalable Internet Services (SIS).

state
See resource state (RMS).

Storage Area Network
The high-speed network that connects multiple, external storage units and storage units with multiple computers. The connections are generally fiber channels.

striped virtual disk
Striped virtual disks consist of two or more pieces. These can be physical partitions or further virtual disks (typically a mirror disk). Sequential I/O operations on the virtual disk can be converted to I/O operations on two or more physical disks. This corresponds to RAID Level 0 (RAID0). (Applies to transitioning users of existing Fujitsu Siemens products only.)

See also concatenated virtual disk, mirror virtual disk, simple virtual disk, virtual disk.

switchover (RMS)
The process by which RMS switches control of a userApplication over from one monitored node to another.

See also automatic switchover (RMS), directed switchover (RMS), failover (RMS, SIS), symmetrical switchover (RMS).

symmetrical switchover (RMS)
This means that every RMS node is able to take on resources from any other RMS node.

See also automatic switchover (RMS), directed switchover (RMS), failover (RMS, SIS), switchover (RMS).
Glossary

system graph (RMS)
A visual representation (a map) of monitored resources used to develop or interpret the configuration file.

See also configuration file (RMS).

template
See application template (RMS).

type
See object type (RMS).

UP (CF)
A node state that indicates that the node can communicate with other nodes in the cluster.

See also DOWN (CF), LEFTCLUSTER (CF), node state (CF).

virtual disk
With virtual disks, a pseudo device driver is inserted between the highest level of the Solaris logical Input/Output (I/O) system and the physical device driver. This pseudo device driver then maps all logical I/O requests on physical disks. (Applies to transitioning users of existing Fujitsu Siemens products only.)

See also concatenated virtual disk, mirror virtual disk, simple virtual disk, striped virtual disk.

Web-Based Admin View
This is a common base to utilize the Graphic User Interface of PRIMECLUSTER. This interface is in Java.

wizard (RMS)
An interactive software tool that creates a specific type of application using pretested object definitions. An enabler is a type of wizard.
Abbreviations

AC
Access Client

API
application program interface

bm
base monitor

CCBR
Cluster Configuration Backup/Restore

CF
Cluster Foundation or Cluster Framework

CIM
Cluster Integrity Monitor

CIP
Cluster Interconnect Protocol

CLI
command-line interface

CRM
Cluster Resource Management

DLPI
Data Link Provider Interface

ENS
Event Notification Services

GDS
Global Disk Services

GFS
Global File Services
## Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLS</td>
<td>Global Link Services</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HA</td>
<td>high availability</td>
</tr>
<tr>
<td>ICF</td>
<td>Internode Communication Facility</td>
</tr>
<tr>
<td>I/O</td>
<td>input/output</td>
</tr>
<tr>
<td>JOIN</td>
<td>cluster join services module</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>MDS</td>
<td>Meta Data Server</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>NIC</td>
<td>network interface card</td>
</tr>
<tr>
<td>NSM</td>
<td>Node State Monitor</td>
</tr>
<tr>
<td>OE</td>
<td>operating environment</td>
</tr>
<tr>
<td>OPS</td>
<td>Oracle Parallel Server</td>
</tr>
<tr>
<td>OSD</td>
<td>operating system dependant</td>
</tr>
</tbody>
</table>
Abbreviations

PAS  Parallel Application Services
RCCU  Remote Console Control Unit
RCI  Remote Cabinet Interface
RMS  Reliant Monitor Services
RTP  Reliant Telco Product
SA  Shutdown Agent
SAN  Storage Area Network
SCON  single console software
SD  Shutdown Daemon
SF  Shutdown Facility
SIS  Scalable Internet Services
VIP  Virtual Interface Provider
Abbreviations
Figures

Figure 1: CIP diagram ............... 11
Figure 2: CF over IP diagram .............. 13
Figure 3: Login pop-up .................. 18
Figure 4: Main Web-Based Admin View window after login ............. 19
Figure 5: Global Cluster Services window in Web-Based Admin View .................. 20
Figure 6: Initial connection pop-up .................. 20
Figure 7: CF is unconfigured and unloaded .................. 21
Figure 8: CF loaded but not configured .................. 22
Figure 9: Scanning for clusters .................. 23
Figure 10: Creating or joining a cluster .................. 24
Figure 11: Selecting cluster nodes and the cluster name .................. 25
Figure 12: Edit CF node names .................. 27
Figure 13: CF loads and pings .................. 28
Figure 14: CF topology and connection table .................. 29
Figure 15: CF over IP window .................. 31
Figure 16: CIP Wizard window .................. 32
Figure 17: CIM configuration window .................. 34
Figure 18: Summary window .................. 36
Figure 19: Configuration processing window .................. 37
Figure 20: Configuration completion pop-up .................. 37
Figure 21: Configuration window after completion .................. 38
Figure 22: Main CF window .................. 39
Figure 23: Cluster resource diagram .................. 60
Figure 24: Adding a new node .................. 71
### Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Cluster Admin start-up window</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>Cluster Admin top window</td>
<td>79</td>
</tr>
<tr>
<td>27</td>
<td>Initial connection choice window</td>
<td>80</td>
</tr>
<tr>
<td>28</td>
<td>Cluster Admin main window</td>
<td>81</td>
</tr>
<tr>
<td>29</td>
<td>CF node information</td>
<td>84</td>
</tr>
<tr>
<td>30</td>
<td>CF topology table</td>
<td>86</td>
</tr>
<tr>
<td>31</td>
<td>Starting CF</td>
<td>87</td>
</tr>
<tr>
<td>32</td>
<td>Stop CF</td>
<td>88</td>
</tr>
<tr>
<td>33</td>
<td>Stopping CF</td>
<td>89</td>
</tr>
<tr>
<td>34</td>
<td>CF configured but not loaded</td>
<td>90</td>
</tr>
<tr>
<td>35</td>
<td>Start CF services pop-up</td>
<td>91</td>
</tr>
<tr>
<td>36</td>
<td>Start CF services status window</td>
<td>91</td>
</tr>
<tr>
<td>37</td>
<td>CF log viewer</td>
<td>93</td>
</tr>
<tr>
<td>38</td>
<td>Detached CF log viewer</td>
<td>94</td>
</tr>
<tr>
<td>39</td>
<td>Search based on date/time</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>Search based on keyword</td>
<td>96</td>
</tr>
<tr>
<td>41</td>
<td>Search based on severity</td>
<td>97</td>
</tr>
<tr>
<td>42</td>
<td>ICF statistics</td>
<td>99</td>
</tr>
<tr>
<td>43</td>
<td>MAC statistics</td>
<td>100</td>
</tr>
<tr>
<td>44</td>
<td>Selecting a node for node to node statistics</td>
<td>101</td>
</tr>
<tr>
<td>45</td>
<td>Node to Node statistics</td>
<td>102</td>
</tr>
<tr>
<td>46</td>
<td>CIM options</td>
<td>103</td>
</tr>
<tr>
<td>47</td>
<td>Add to CIM</td>
<td>104</td>
</tr>
<tr>
<td>48</td>
<td>Unconfigure CF</td>
<td>105</td>
</tr>
<tr>
<td>49</td>
<td>CIM Override</td>
<td>106</td>
</tr>
<tr>
<td>50</td>
<td>CIM Override confirmation</td>
<td>107</td>
</tr>
</tbody>
</table>
Figures

Figure 51: Remove CIM Override ........................................ 107
Figure 52: Three-node cluster with working connections .......... 110
Figure 53: Three-node cluster where connection is lost .......... 110
Figure 54: Node C placed in the kernel debugger too long ...... 113
Figure 55: Four-node cluster with cluster partition ............... 114
Figure 56: A three-node cluster with three full interconnects .... 121
Figure 57: Broken Ethernet connection for hme1 on Node A ...... 122
Figure 58: Cluster with no full interconnects ...................... 123
Figure 59: Starting the SF Configuration Wizard ................. 139
Figure 60: Selecting the SF configuration mode .................. 140
Figure 61: Easy mode of SF SCON configuration .................. 141
Figure 62: Easy mode of SF No SCON configuration ............... 142
Figure 63: Console Break options ...................................... 143
Figure 64: Creating the SF configuration ............................ 144
Figure 65: Choosing a common configuration for all nodes ....... 145
Figure 66: Selecting nodes to configure Shutdown Agents ....... 146
Figure 67: Choose Shutdown Agent to be added .................... 147
Figure 68: Details for SCON Shutdown Agent ....................... 148
Figure 69: Configuring the SCON Shutdown Agent ................. 149
Figure 70: Configuring RCCU ........................................... 150
Figure 71: RCCU default values ........................................ 151
Figure 72: Configuring XSCF ............................................ 152
Figure 73: Configuring the NPS Shutdown Agent .................... 153
Figure 74: Configuring the RPS Shutdown Agent .................... 154
Figure 75: Adding, deleting, editing Shutdown Agents ............. 155
Figure 76: Finishing configuration ...................................... 156
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Changing the Shutdown Agent order</td>
<td>157</td>
</tr>
<tr>
<td>78</td>
<td>Specifying timeout values</td>
<td>158</td>
</tr>
<tr>
<td>79</td>
<td>Entering node weights and administrative IP addresses</td>
<td>159</td>
</tr>
<tr>
<td>80</td>
<td>Confirming configuration file changes</td>
<td>160</td>
</tr>
<tr>
<td>81</td>
<td>Saving SF configuration</td>
<td>161</td>
</tr>
<tr>
<td>82</td>
<td>Status of Shutdown Agents</td>
<td>162</td>
</tr>
<tr>
<td>83</td>
<td>Exiting SF configuration wizard</td>
<td>163</td>
</tr>
<tr>
<td>84</td>
<td>Single cluster console</td>
<td>176</td>
</tr>
<tr>
<td>85</td>
<td>Distributed cluster console</td>
<td>177</td>
</tr>
<tr>
<td>86</td>
<td>SCON configuration script initial output</td>
<td>182</td>
</tr>
<tr>
<td>87</td>
<td>SCON configuration script continued output</td>
<td>182</td>
</tr>
<tr>
<td>88</td>
<td>SCON configuration script continued output</td>
<td>183</td>
</tr>
<tr>
<td>89</td>
<td>SCON configuration script continued output</td>
<td>183</td>
</tr>
<tr>
<td>90</td>
<td>SCON configuration script continued output</td>
<td>184</td>
</tr>
<tr>
<td>91</td>
<td>SCON configuration script continued output</td>
<td>184</td>
</tr>
<tr>
<td>92</td>
<td>SCON configuration script continued output</td>
<td>185</td>
</tr>
<tr>
<td>93</td>
<td>SCON configuration script final output</td>
<td>185</td>
</tr>
<tr>
<td>94</td>
<td>Conceptual view of CF interconnects</td>
<td>191</td>
</tr>
<tr>
<td>95</td>
<td>CF with Ethernet interconnects</td>
<td>192</td>
</tr>
<tr>
<td>96</td>
<td>CF with IP interconnects</td>
<td>192</td>
</tr>
</tbody>
</table>


Tables

Table 1: Kernel parameter values ................................................. 58
Table 2: Local states ................................................................. 82
Table 3: Remote states ............................................................... 83
Table 4: CF log viewer severity levels ......................................... 97
Table 5: Basic layout for the CF topology table ............................... 119
Table 6: Topology table with check boxes shown ............................ 120
Table 7: Topology table for 3 full interconnects ............................. 122
Table 8: Topology table with broken Ethernet connection ................. 123
Table 9: Topology table with no full interconnects .......................... 124
Table 10: Available Shutdown Agents .......................................... 128
Table 11: Resource Database severity levels ................................. 274
Index

.rhosts 16
/etc/cip.cf 61
/etc/hosts
   CF names 179
   CIP configuration 10
   CIP symbolic name 40
   CIP Wizard 33
   configuring cluster console 178
   updating 178
/etc/rmshosts 186
/etc/system 58
/etc/uucp/Devices 179
/etc/uucp/Systems 179
/mydir/rdb.tar.Z 72
/tmp 72
/usr/sbin/shutdown 75, 76

A
adding
   new node 61
   nodes 25
   to CIM 104
administrative access 174
alternate abort sequence 189
automatic resource registration 66

B
backing up
   configuration 41
   Resource Database 72
booting with kadb 189
broadcast messages 12
broken interconnects 109

C
CCBR
   See Cluster Configuration Backup and Restore
CCBR commands
   cfbackup 327
cfrestore 327
CCBRHOME directory 44
CF
   See also Cluster Foundation
CF commands
   cfconfig 327
cfset 327
cftool 327
  hvrclsv 327
rcqconfig 327
rcquery 327
CF driver 21
CF over IP 11, 31, 191
   broadcast mask 191
CF Wizard 193
cftool -d 194
   configure 193
   devices 194
   mixed configurations 192
   scenarios 12
   unique IP address 191
CF Registry
   cfregd 51
   user-level daemon 51
CF Remote Services 35
CF Wizard
   bringing up 22
   CF driver 118
   CF over IP 31, 193
   displaying interconnects 31
   edit node names 27
   error message 38
   new cluster 24
   new node on existing cluster 118
   scanning for clusters 23
   summary window 36
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF/CIP Wizard, starting</td>
<td>11</td>
</tr>
<tr>
<td>cfbackup</td>
<td>41, 327</td>
</tr>
<tr>
<td>cfconfig</td>
<td>221, 327</td>
</tr>
<tr>
<td>cfconfig -L</td>
<td>117</td>
</tr>
<tr>
<td>cfconfig -l</td>
<td>117</td>
</tr>
<tr>
<td>cfconfig messages</td>
<td>214</td>
</tr>
<tr>
<td>CF/CIP Wizard, configuration file</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, numbering</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, screen</td>
<td>32</td>
</tr>
<tr>
<td>CF/CIP Wizard, starting</td>
<td>11</td>
</tr>
<tr>
<td>CF/CIP Wizard, cip.cf</td>
<td>39, 40, 328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig messages</td>
<td>222</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool -d</td>
<td>194</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool</td>
<td>226, 327</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool -n</td>
<td>109</td>
</tr>
<tr>
<td>CF/CIP Wizard, configuration file</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, cip.cf</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool messages</td>
<td>225</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -d</td>
<td>194</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool messages</td>
<td>225</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -n</td>
<td>109</td>
</tr>
<tr>
<td>CF/CIP Wizard, configuration file</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, numbering</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, screen</td>
<td>32</td>
</tr>
<tr>
<td>CF/CIP Wizard, starting</td>
<td>11</td>
</tr>
<tr>
<td>CF/CIP Wizard, cip.cf</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -d</td>
<td>194</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool messages</td>
<td>225</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -n</td>
<td>109</td>
</tr>
<tr>
<td>CF/CIP Wizard, configuration file</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, numbering</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, screen</td>
<td>32</td>
</tr>
<tr>
<td>CF/CIP Wizard, starting</td>
<td>11</td>
</tr>
<tr>
<td>CF/CIP Wizard, cip.cf</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -d</td>
<td>194</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool messages</td>
<td>225</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -n</td>
<td>109</td>
</tr>
<tr>
<td>CF/CIP Wizard, configuration file</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, numbering</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, screen</td>
<td>32</td>
</tr>
<tr>
<td>CF/CIP Wizard, starting</td>
<td>11</td>
</tr>
<tr>
<td>CF/CIP Wizard, cip.cf</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -d</td>
<td>194</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool messages</td>
<td>225</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -n</td>
<td>109</td>
</tr>
<tr>
<td>CF/CIP Wizard, configuration file</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, numbering</td>
<td>33</td>
</tr>
<tr>
<td>CF/CIP Wizard, screen</td>
<td>32</td>
</tr>
<tr>
<td>CF/CIP Wizard, starting</td>
<td>11</td>
</tr>
<tr>
<td>CF/CIP Wizard, cip.cf</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cipconfig</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, ciptool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool</td>
<td>328</td>
</tr>
<tr>
<td>CF/CIP Wizard, cftool tool -d</td>
<td>194</td>
</tr>
</tbody>
</table>
Index

main window 39
Shutdown Facility 139
starting 20, 78
starting CF 86
stopping CF 86
Cluster Configuration Backup and
Restore 41
cbr.conf 43
CCBRHOME directory 44
cfbackup 41
cfrestore 41
configuration file 43, 46, 47
OS files 47
root files 47
cluster console, single
See SCON
cluster consoles 173
configuration 178
distinct 175
distributed 174, 176, 177
IP name 165
multiple 174
redirecting input/output 188
role of 173
updating configuration 187
using 190
xco utility 190
XSCON_CU variable 190
Cluster Foundation
administration 77
configuration 7
connection table 29
dependency scripts 89
device driver 200
devices 119
driver load time 118
interface 7
IP interfaces 8
loading driver 21
log viewer 92
main table 81
name 165
names 178, 179
node information 84
node name 8, 61
quorum set 35
Reason Code table 248
remote services 35
runtime messages 242
security 16
topology table 29, 86, 117
unconfigure 105
Cluster Integrity Monitor 52
adding a node 103
CF quorum set 35
cfcp 35
cfsh 35
configuration window 35
node state 52
Node State Management 52
options 103
override 106
override confirmation 107
quorum state 53
rcqconfig 53
Cluster Internet Protocol
/etc/cip.cf 61
/etc/hosts 10, 40
CF Wizard 61
cfname 39
configuration 9
configuration error 73
configuration file 39
configuration reset 75
configuration verification 74
defining 9
file format 39
interfaces 9, 62
IP information 40
name 61, 62
ping command 62
properly configured 61
stopping 40
subnetwork 62
syntax 40
CLUSTER_TIMEOUT 15
cluster_uninstall 329
collecting information 209
Index

COMING UP state 89
Command Line Interface
  configuring RCCU 166
  configuring SA 164
  configuring SCON 165
  configuring with 163
  SD 163
commands
  CCBR 327
  CF 327
  CFS 328
  CIP 328
  Monitoring Agent (MA) 329
  PAS 329
  RCVM 329
  Resource Database 330
configuration
  changing 54
  hardware 72
  restore 70
  updating on cluster console 187
  verify 75
Configuration Wizard, invoking 139
Configure script
  cluster console 178
configuring
  CF 10
  CF driver 22
  CF over IP 193
  CIM 52
  CIP 9, 10, 32, 39
  CIP with CF Wizard 61
  cluster console 178
  NPS 131
  NPS shutdown agent 153
  RCI 128
  resource database 61
  SA_scon 188
  SCON 130
  SF 188
  with CLI 163
connection table 30
contents, manual 1
conversion unit 175, 176
corrupt data 111
CPAT command, cluster_uninstall 329
creating
  cluster, example 17
  new cluster 24
D
data, corrupt 111
debugging 171
default values, Solaris kernel 58
defining virtual CIP interfaces 9
devices
  displayed 117
  Ethernet 120
  unconnected 29
diagnostics 195
display statistics 98
displayed devices 117
distributed cluster consoles 174, 176, 177
dkconfig 330
dkmigrate 330
dkmirror 330
dktab 330
documentation
  additional 2
DOWN state 92, 110, 111
E
editing
  /etc/hosts file 178
  CF node names 27
  cip.cf file 39
  cluster.config file 13
  kbd file 189
  rcsd.cfg.template 164
  rmshosts file 186
  rmshosts method file 186
  SCON 178
ERRNO table 260
ERROR messages
  MA 312
  Resource Database 277
# Index

<table>
<thead>
<tr>
<th>Error Messages</th>
<th>INFO Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>different systems</td>
<td>MA</td>
</tr>
<tr>
<td>rcqconfig</td>
<td>Resource Database</td>
</tr>
<tr>
<td>rcquery</td>
<td>init command</td>
</tr>
<tr>
<td>errors, CIP configuration</td>
<td>Initial Connection Choice window</td>
</tr>
<tr>
<td>Ethernet</td>
<td>interconnects</td>
</tr>
<tr>
<td>CF over IP</td>
<td>CF</td>
</tr>
<tr>
<td>devices</td>
<td>CF over IP</td>
</tr>
<tr>
<td>Gigabit</td>
<td>Ethernet</td>
</tr>
<tr>
<td>full interconnect</td>
<td>full</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>full</td>
</tr>
<tr>
<td>GUI</td>
<td>full</td>
</tr>
<tr>
<td>ifconfig</td>
<td>interfaces</td>
</tr>
<tr>
<td>ICF statistics</td>
<td>CIP</td>
</tr>
<tr>
<td>invalid state</td>
<td>Cluster Internet Protocol</td>
</tr>
<tr>
<td>IP address</td>
<td>Internet Protocol address</td>
</tr>
<tr>
<td>IP interfaces</td>
<td>IP address</td>
</tr>
<tr>
<td>IP name, CIP interface</td>
<td>IP address</td>
</tr>
<tr>
<td>IP over CF</td>
<td>IP interface</td>
</tr>
<tr>
<td>IP subnetwork</td>
<td>RCCU</td>
</tr>
</tbody>
</table>

| Fjsnap command | INVALID state |
| fsvwvs command | IP address |
| fsvwvcnf command | IP address |
| fsck_rcs CFS command | IP address |
| full interconnect | IP address |
| full interconnect | invalid state |

| Ethernet | invalid state |
| CF over IP | IP address |
| devices | IP address |
| Gigabit | IP address |
| Ethernet | IP address |
| full interconnect | IP address |

| incompatible device | HALT messages |
| incompatible device | hassert |
| incompatible device | hvcm |
| incompatible device | hvconfig |
| incompatible device | hvdisp |
| incompatible device | hvdist |
| incompatible device | hvdump |
| incompatible device | hvenv.local |
| incompatible device | hvlogclean |
| incompatible device | hvrclen |
| incompatible device | hvshut |
| incompatible device | hvswitch |
| incompatible device | hvthrottle |
| incompatible device | hvutil |

| ICF statistics | JOIN problems |
| ifconfig | JOIN problems |

| Join Problems | JOIN problems |
| joining a running cluster | JOIN problems |

| Kadb | JOIN problems |
| booting with | JOIN problems |
| restrictions | JOIN problems |
| kbd | JOIN problems |
| kernel parameters | JOIN problems |
| keyword, search based on | JOIN problems |
Index

L
Largest Sub-cluster Survival  136
LEFTCLUSTER  338, 341, 343
LEFTCLUSTER state  109, 112, 114
    cluster partition  113
    description  110
    displaying  109
    in kernel debugger too long  112
    lost communications  111
    panic/hung node  112
    purpose  111
    recovering from  112
    shutdown agent  111
    troubleshooting  207
LOADED state  90
loading
    CF driver  21, 117
    CF driver differences  117
    CF driver with CF Wizard  28
    CF duration  28
local file systems, mount  76
local states  82
login
    password  18
    window  20
low latency  8

M
MA
    See Monitoring Agents
MA commands
    clrccumonctl  329
    clrcimonctl  329
MAC statistics  100
main CF table  81
manual contents  1
manual pages
    display  327
    listing  327
marking down nodes  92
messages
    alphabetical  244
    CF  242
    cfconfig  214
cftool  225
cipconfig  222
error  226
HALT  275
MA  310
rcqconfig  229
rcquery  241
SF  304
mpcstat  329
mirror virtual disks  342
Monitoring Agent messages  310
Monitoring Agents  125
mount_rcfs  328
mountall  76
Multi-path automatic generation  64
multiple cluster consoles  174

N
names
    /etc/hosts file  178
    CCBR  43
    CCBRHOME directory  44
    CF  84
    CF cluster  119
    CF node  40
cfname  10, 73, 169, 190
    CIP  74
    cluster  7, 25, 84
    configuration file  7
    connections table  30
    IP  33, 168
    node  169
    plug-ins  42
    rmshosts file  186
    symbolic node  40
    tuple entries  14
    user  18
    Web-Based Admin View  8
    with asterisk  118
    network considerations  178
Index

network outages  8
Network Power Switch  127
  configuration  131
  configuring SA  153
  setup  131
ngadmin  328
Node State Management  52
Node to Node statistics  102
  adding  25
  adding a new  70
details  84
  in kernel debugger  109
  joining a running cluster  67
  marking down  92
  panicked  109
  shut down  92
NPS
  See Network Power Switch

OS files  47

OS files  47

P
panicked nodes  109
partial interconnects  29, 119
PAS commands
cimtest  329
mipcstat  329
passwords  18
plumb-up state  66
privileged user ID  18
pseudo device driver  349
public IP names  179
public networks, security  16

Q
quorum
  CF  35
  CIM override  106
  reconfiguring  54
  state  53

R
RAID  348
rc scripts  118
RC_sf  171
rc2.d directory  171
RCA
  See Remote Console Access
RCCU
  See Remote Console Control Unit
rcfs_fumount  328
rcfs_list  328
rcfs_switch  328
RCI
  See Remote Cabinet Interface  52
rcqconfig  52, 53
rcqconfig messages  229
rcquery messages  241
RC-script  171
rcsd  332
rcsd log  171
rcsd.cfg  164, 333
RCVM commands
dkconfig  330
dkmigrate  330
dkmirror  330
dktab  330
vdisk  330
Reason Code table  248
reboot command  109
rebooting
  after cfrestore command  42
  clusterwide  51
  reboot command  109
  shut down CF  109
reconfiguring Resource Database  73
redirecting console input/output  188
registering hardware  63
Remote Cabinet Interface  52, 127
  configuration  128
  hardware setup  128
  log file  128
  SA  128
  setup  128
  shutdown mechanism  128
Index

Remote Console Access 175  
Remote Console Control Unit 128  
configuring with CLI 166  
  IP address 130  
  log file 130  
  SA_rccu 130  
  setup 130  
  topologies 175  
Remote Power Switch 128  
  SA_rps 130  
  setup 131  
remote states 82  
reserved words, SCON 165  
Resource Database 61  
  adding new node 70  
  backing up 72  
  clgettree 63  
  clsetup 73  
  configure on new node 74  
  initializing 70  
  kernel parameters 58  
  new node 69  
  plumb-up state 66  
  reconfiguring 70, 73  
  registering hardware 63, 66  
  restoring 75, 76  
  start up synchronization 67  
  StartingWaitTime 68  
Resource Database commands  
  clautoconfig 330  
  clbackuprdb 330  
  cldeldevice 330  
  clexec 330  
  clgettree 331  
  clinitreset 330  
  clrestoredb 330  
  clssetparam 330  
  clsetup 331  
  clstartrsc 331  
  clstoprsc 331  
  clsyncfile 331  
restoring Resource Database 75, 76  
RFC 1918 10  
RMS commands  
  hvassert 331  
  hvcm 331  
  hvconfig 331  
  hvdisp 331  
  hvdist 331  
  hvdump 331  
  hvenv.local 332  
  hvgdmake 331  
  hvlogclean 331  
  hvrclev 332  
  hvswitch 332  
  hvthrottle 332  
  hvutil 332  
  RMS Wizard Tools 136  
  rmshosts file 178, 186  
  root 18  
  root files 47  
  RPS  
    See Remote Power Switch  
S  
  See Shutdown Agents  
  SA  
    See Shutdown Agents  
  SA specific log files 171  
  SA_rccu.cfg 333  
  SA_rps.cfg 333  
  SA_scon 130  
  SA_scon Shutdown Agent 188  
  SA_scon.cfg 165, 333  
  SA_scon.cfg template 165  
  SA_sspint.cfg 333  
  SA_sunF.cfg 333  
  SA_wtinps.cfg 333  
  SCON 128, 174  
    algorithm 134  
    arbitration 186  
    configuration 130  
    port number 165  
    reserved words 165  
    SA_scon 130  
    set up 130  
    Shutdown Facility 133  
    topologies 176  
    scon 332
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>scon.scr 190</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>See Shutdown Daemon</td>
</tr>
<tr>
<td>sdtool 333</td>
</tr>
<tr>
<td>sdtool command 125, 170</td>
</tr>
<tr>
<td>search</td>
</tr>
<tr>
<td>keyword 96</td>
</tr>
<tr>
<td>severity levels 97</td>
</tr>
<tr>
<td>time filter 95</td>
</tr>
<tr>
<td>security</td>
</tr>
<tr>
<td>CF 16</td>
</tr>
<tr>
<td>public network 16</td>
</tr>
<tr>
<td>selecting devices 120</td>
</tr>
<tr>
<td>seminfo_semnni 58</td>
</tr>
<tr>
<td>seminfo_semmsns 58</td>
</tr>
<tr>
<td>seminfo_semnnnu 58</td>
</tr>
<tr>
<td>serial-line-to-network converter 175</td>
</tr>
<tr>
<td>setting up</td>
</tr>
<tr>
<td>RCCU 130</td>
</tr>
<tr>
<td>RCI 128</td>
</tr>
<tr>
<td>RPS 131</td>
</tr>
<tr>
<td>SCON 130</td>
</tr>
<tr>
<td>SF</td>
</tr>
<tr>
<td>See Shutdown Facility</td>
</tr>
<tr>
<td>SF Wizard 7</td>
</tr>
<tr>
<td>opening 139</td>
</tr>
<tr>
<td>starting 38</td>
</tr>
<tr>
<td>shminfo_shmseg 58</td>
</tr>
<tr>
<td>shutdown 76</td>
</tr>
<tr>
<td>Shutdown Agents 125, 130</td>
</tr>
<tr>
<td>configuring with CLI 164</td>
</tr>
<tr>
<td>SA_scon 188</td>
</tr>
<tr>
<td>with LEFTCLUSTER 111</td>
</tr>
<tr>
<td>shutdown command 109</td>
</tr>
<tr>
<td>Shutdown Daemon 125</td>
</tr>
<tr>
<td>configuration file 164</td>
</tr>
<tr>
<td>configuration file format 164</td>
</tr>
<tr>
<td>configuring with CLI 163</td>
</tr>
<tr>
<td>rcsd.cfd 164</td>
</tr>
<tr>
<td>Shutdown Facility 7, 125</td>
</tr>
<tr>
<td>configuring 188</td>
</tr>
<tr>
<td>internal algorithm 133</td>
</tr>
<tr>
<td>messages 304</td>
</tr>
<tr>
<td>node weight 136</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>GUI 20</td>
</tr>
<tr>
<td>SF Wizard 38, 139</td>
</tr>
<tr>
<td>Web-Based Admin View 17</td>
</tr>
<tr>
<td>StartingWaitTime 68, 70</td>
</tr>
<tr>
<td>default value 68</td>
</tr>
<tr>
<td>value 68</td>
</tr>
<tr>
<td>start-up window 78</td>
</tr>
<tr>
<td>states</td>
</tr>
<tr>
<td>COMING UP 89</td>
</tr>
<tr>
<td>DOWN 110, 111</td>
</tr>
<tr>
<td>INVALID 89</td>
</tr>
<tr>
<td>LEFTCLUSTER 109, 112, 114</td>
</tr>
<tr>
<td>LOADED 90</td>
</tr>
<tr>
<td>table of 110</td>
</tr>
<tr>
<td>UP 110</td>
</tr>
<tr>
<td>statistics, display CF 98</td>
</tr>
<tr>
<td>stopping</td>
</tr>
<tr>
<td>CF 86, 87</td>
</tr>
<tr>
<td>CF, third-party products 89</td>
</tr>
<tr>
<td>CIP 40</td>
</tr>
<tr>
<td>SD 127</td>
</tr>
<tr>
<td>SF automatically 171</td>
</tr>
<tr>
<td>SF manually 170</td>
</tr>
<tr>
<td>valid CF states 89</td>
</tr>
<tr>
<td>subnet mask, CIP interface 33</td>
</tr>
<tr>
<td>synchronization phase 68</td>
</tr>
<tr>
<td>synchronization, start up 67</td>
</tr>
<tr>
<td>syslog window 93</td>
</tr>
<tr>
<td>system dump 209, 210</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>table of states 110</td>
</tr>
<tr>
<td>third-party product, shut down 89</td>
</tr>
<tr>
<td>time filter, search 95</td>
</tr>
<tr>
<td>timeout, tune 15</td>
</tr>
<tr>
<td>timestamp 69</td>
</tr>
<tr>
<td>top window 79</td>
</tr>
<tr>
<td>topology table 117</td>
</tr>
<tr>
<td>basic layout 119</td>
</tr>
<tr>
<td>CF 29, 86</td>
</tr>
<tr>
<td>CF cluster name 119</td>
</tr>
<tr>
<td>CF driver 118</td>
</tr>
<tr>
<td>displayed devices 117</td>
</tr>
<tr>
<td>displaying 85</td>
</tr>
<tr>
<td>examples 121</td>
</tr>
<tr>
<td>flexibility 30</td>
</tr>
<tr>
<td>interconnects 119</td>
</tr>
<tr>
<td>selecting devices 120</td>
</tr>
<tr>
<td>troubleshooting 195</td>
</tr>
<tr>
<td>beginning 195</td>
</tr>
<tr>
<td>collecting information 209</td>
</tr>
<tr>
<td>diagnostics 195</td>
</tr>
<tr>
<td>join-related problems 200</td>
</tr>
<tr>
<td>symptoms and solutions 199</td>
</tr>
<tr>
<td>tunable parameters 13</td>
</tr>
<tr>
<td>tune timeout 15</td>
</tr>
<tr>
<td>tuple entries</td>
</tr>
<tr>
<td>name 14</td>
</tr>
<tr>
<td>value 14</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>unconfigure CF 105</td>
</tr>
<tr>
<td>unconnected devices 29, 119</td>
</tr>
<tr>
<td>UNLOADED state 90</td>
</tr>
<tr>
<td>UP state 110</td>
</tr>
<tr>
<td>updating CFReg 54</td>
</tr>
<tr>
<td>usage messages</td>
</tr>
<tr>
<td>cfconfig 214</td>
</tr>
<tr>
<td>cftool 225</td>
</tr>
<tr>
<td>cipconfig 223</td>
</tr>
<tr>
<td>rcqconfig 229</td>
</tr>
<tr>
<td>rcquery 241</td>
</tr>
<tr>
<td>user ID 18</td>
</tr>
<tr>
<td>user name 18</td>
</tr>
<tr>
<td>using the cluster console 190</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>vdisk 330</td>
</tr>
<tr>
<td>virtual disks</td>
</tr>
<tr>
<td>mirror 342</td>
</tr>
<tr>
<td>simple 347</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>WARNING messages</td>
</tr>
<tr>
<td>MA 312</td>
</tr>
<tr>
<td>Resource Database 276</td>
</tr>
</tbody>
</table>
### Index

<table>
<thead>
<tr>
<th>Web-Based Admin View</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>node list</td>
<td>xco utility 190</td>
</tr>
<tr>
<td>starting</td>
<td>xsco utility 190</td>
</tr>
<tr>
<td>wvCntl 334</td>
<td>XSCON_CU variable 190</td>
</tr>
<tr>
<td>wvGetparam 334</td>
<td></td>
</tr>
<tr>
<td>wvroot 18</td>
<td></td>
</tr>
<tr>
<td>wvSetparam 334</td>
<td></td>
</tr>
<tr>
<td>wvstat 334</td>
<td></td>
</tr>
</tbody>
</table>
Comments on PRIMECLUSTER™
Cluster Foundation (CF)
Comments on PRIMECLUSTER™
Cluster Foundation (CF)

Submitted by

Fax: (+49) 700 / 372 00001
email: manuals@fujitsu-siemens.com
http://manuals.mchp.siemens.de