

Interstage Application Server

V7.0
J2EE User’s Guide

J2EE User’s Guide

ii

Trademarks
Trademarks of other companies are used in this user guide only to identify particular products or
systems:

Product Trademark/Registered Trademark

Microsoft, Visual Basic, Visual C++, Windows,
Windows NT, Internet Information Server, and
Internet Explorer

Registered trademarks of Microsoft Corporation in
the U.S.A. and other countries

Sun, Solaris OE, Java, and other trademarks
containing Java

Trademarks of Sun Microsystems, Inc., in the U.S.A.
and other countries

UNIX Registered trademark in the U.S.A. and other
countries, licensed exclusively through X/Open
Company Ltd

Netscape, Netscape FastTrack Server,
Netscape Enterprise Server, and Netscape
Navigator

Registered trademarks of Netscape Communications
Corporation in the U.S.A. and other countries

CORBA, Object Management Group, OMG,
OMG IDL, IIOP, Object Request Broker, and
ORB

Trademarks or registered trademarks of Object
Management Group, Inc., in the U.S.A. and other
countries

Interstage and ObjectDirector Registered trademarks of Fujitsu Limited

This document contains technology relating to strategic products controlled by export
control laws of the producing and/ or exporting countries. This document or a portion
thereof should not be exported (or re-exported) without authorization from the
appropriate government authorities in accordance with such laws.

Fujitsu Limited

First Edition (March 2005)
The contents of this manual may be revised without prior notice.

All Rights Reserved, Copyright © FUJITSU Limited 2005

iii

Preface

Purpose of this Document
This manual is the Interstage Application Server J2EE User's Guide.

This manual explains the general outlines of J2EE, environment construction for J2EE components, and
operations of J2EE applications that are needed to develop and operate applications using J2EE
components of Interstage.

This manual is intended for the following readers:

• Person who develops applications using J2EE components

• Person who operates applications using J2EE components

The functions offered change with the platform or Interstage Application Server product.

The following table provides a list of differences in function.

O
pe

ra
tin

g
Sy

st
em

Pr
od

uc
t

Ja
va

Tr

an
sa

ct
io

n
Se

rv
ic

e
(J

TS
)

Ja
va

 M
es

sa
ge

Se

rv
ic

e
(J

M
S)

J2
EE

C

on
ne

ct
or

A

rc
hi

te
ct

ur
e

(C
on

ne
ct

or
)

En
te

rp
ris

e
Ja

va
B

ea
ns

(E

JB
)

In
fo

Pr
ov

id
er

Pr

o
(IP

P)

In
te

rs
ta

ge

H
TT

P
Se

rv
er

H
TT

P
Tu

nn
el

in
g

C
lu

st
er

Se

rv
ic

e

Plus - - O O O O - -

SE - - O O O O O O

EE O O O O O O O O

NT

Web-J - - - - O O - O

Plus - - O O O O - -

SE - - O O O O O O

Solaris
OE

EE O O O O O O O O

J2EE User’s Guide - Preface

iv

O
pe

ra
tin

g
Sy

st
em

Pr
od

uc
t

Ja
va

Tr

an
sa

ct
io

n
Se

rv
ic

e
(J

TS
)

Ja
va

 M
es

sa
ge

Se

rv
ic

e
(J

M
S)

J2
EE

C

on
ne

ct
or

A

rc
hi

te
ct

ur
e

(C
on

ne
ct

or
)

En
te

rp
ris

e
Ja

va
B

ea
ns

(E

JB
)

In
fo

Pr
ov

id
er

Pr

o
(IP

P)

In
te

rs
ta

ge

H
TT

P
Se

rv
er

H
TT

P
Tu

nn
el

in
g

C
lu

st
er

Se

rv
ic

e

 Web-J - - - - O O - O

Plus - - O O - O - -

SE - - O O - O O -

EE O O O O - O O -

Linux

Web-J - - - - - O - -

*1) This is realized by the remote linkage with InfoDirectory of NT or Solaris.OE

Who Should Read this Document?
It is assumed that readers of this document have some knowledge of the following:

• Basic knowledge about Windows NT® or Windows® 2000

• Basic knowledge about Java

• Basic knowledge about J2EE

• Basic knowledge about the Internet

• Basic knowledge about the relational database

• Basic knowledge about CORBA

• Basic knowledge about the transaction model (client/server model)

• Basic knowledge about UNIX

• Basic knowledge about Linux

For information related to this manual, refer to the following document.

Designing Enterprise Applications with the Java™ 2 Platform, Enterprise Edition - J2EE™ Blueprints

(You can download this document also from the homepage of Sun Microsystems)

J2EE User’s Guide - Preface

v

Organization of this Document
This manual is organized as shown below:

Part I J2EE Common Edition

• Chapter 1 Design of J2EE Application

This chapter describes the sequence of development of J2EE applications.

• Chapter 2 Operating J2EE Applications

This chapter explains how to install and operate J2EE applications.

• Chapter 3 JNDI

This chapter explains the general outlines of JNDI.

• Chapter 4 The J2EE Application Security Function

This chapter explains the general outlines of the security function and setting method

Part II Servlet/JSP Edition

• Chapter 5 Functions of the Servlet Service

This chapter describes the functions of the Servlet Service.

• Chapter 6 Web Application Development

This chapter explains how to develop Web applications.

• Chapter 7 How to Call Web Applications

This chapter describes how to call Web applications.

Part III EJB Edition

• Chapter 8 Basic Functions of the EJB ServiceThis chapter explains the basic functions required to
use the EJB Service

• Chapter 9 EJB Application Development

This chapter explains how to develop and test EJB applications and client applications.

• Chapter 10 How to create Entity Beans

This chapter explains how to Entity Beans

• Chapter 11 How to call EJB Applications

This chapter explains how to call EJB applications

• Chapter 12 DB Access Environment Definition

This chapter explains addition/change/deletion of the data source definition by the DB access
environment definition

• Chapter 13 How to Customize Using by EJB Service Operation Command

This chapter explains how to customize the EJB application

J2EE User’s Guide - Preface

vi

• Chapter 14 Using the Interstage JDBC Driver

This chapter explains Interstage JDBC Driver used when connecting with SQL Server from EJB
application.

Part IV JTS/JTA Edition

• Chapter 15 Using Java Transaction API (JTA)

This chapter explains using the functions provided in the database service in applications.

Part V JMS Edition

• Chapter 16 Environment Settings for Interstage JMS

This chapter explains the environment settings entered prior to using the Interstage JMS.

• Chapter 17 Developing a JMS Application

This chapter explains developing a JMS application.

Part VI Connector Edition

• Chapter 18 Basic Functions of the Interstage Connector

The fundamental function of Connector is explained.

Part VII Tool Edition

• Chapter 19 J2EE Resource Access Definition

This chapter describes the creation and editing of resource access definitions using J2EE
Resource Access Definition.

Part VIII Appendixes

• Appendix A FJVM

This appendix explains the difference between FJVM and the original VM.

• Appendix B JDK1.3.1 and JDK1.4.2

This appendix explains document information on JDK.

vii

Table of Contents

Chapter 1 Design of J2EE Application
Environment Where J2EE Applications are Operated (IJServer)...1-3

What is IJServer...1-3
IJServer Types ...1-3
IJServer File Configuration ..1-4

Current Directory of IJServer..1-5
Class Used by IJServer ..1-7
Class List used by IJServer ..1-8

Startup/Shutdown Execution Class..1-12
How to Create an Execution Class...1-13
How to Register an Execution Class ..1-13

Class Loader...1-15
Layer of a Class Loader...1-15

Loading a Class ..1-16
Structure of a Class Loader ...1-16
Separation of Class Loaders ...1-18

Setting Method..1-18
Separation Pattern of Class Loaders..1-19

Changing the Search Order of Class Loaders ..1-21
Setting Method..1-22
Priority Exception..1-22

Class Settings used by IJServer..1-23
XML Parser ...1-23
Classes Common to Multiple IJServers ...1-23
Common Classes in IJServer ...1-23
Environment Variable: CLASSPATH...1-24
Application Classes ..1-24

Settings of XML Parser ..1-27
Setting an XML Parser to be used for each IJServer ...1-27
Specifying an XML Parser to be used for each Application..1-28

Problem Investigation with the Trace Function..1-29
Output Format...1-30

J2EE User’s Guide: Table of Contents

viii

Output Items ...1-30
Log Output Example ...1-30
Setting Method..1-31
Example of Use...1-31

Notes to be taken when Class Loaders are used..1-32
Notes to be taken when the JDBC Driver is used ..1-32
Notes about using the Connector ...1-32
Notes about Using JNI with J2EE Applications ..1-33

Transaction Control...1-34
Transaction Control Method...1-34

Default Transaction...1-34
Distributed Transaction ...1-34

Transaction Linkage Enabled Resources..1-35

Chapter 2 Operating J2EE Applications
Preparing J2EE Applications...2-2

Developing J2EE Applications ...2-2
Setting the Deployment Descriptor ..2-2
Packaging Class Files..2-2

Deploying and Setting J2EE Applications...2-3
Deploying J2EE Applications ...2-3
HotDeploy Function of J2EE..2-3

Design Method..2-4
Operation Method ...2-4
Status of Deployed Modules ...2-8
Modules that are Activated or Inactivated at Deployment, Redeployment, Undeployment, or
Reactivating ..2-9
Shared Directory...2-10

Preparation for Servlet Service Operation ..2-15
Setting up Web Server Environment ...2-15

Interstage HTTP Server Environment Settings ..2-15
Microsoft® Internet Information Services Environment Settings..2-16
Installing Microsoft® Internet Information Services and Interstage....................................2-16
Preventing Interstage HTTP Server Automatic Startup ..2-16
Microsoft® Internet Information Services Environment Settings..2-17
Interstage Environment Settings...2-18
Sun Java System Web Server Environment Settings ..2-18
Installing Sun Java System WebServer and Interstage ...2-19
Preventing Interstage HTTP Server Automatic Startup ..2-19
Sun Java System Web Server Environment Settings ..2-20

J2EE User’s Guide - Table of Contents

ix

Interstage Environment Settings ..2-22
Procedure for Operation by Separating IJServer and Web Server ...2-22

Spreading Requests when using Sessions in Servlet and JSP ...2-24
Example of Preparation for Operation ..2-24

Coexistence with Version 5.1 or earlier Servlet Service..2-31
Request Distribution Control by Web Server Connector ..2-32

Distributing Procedure and Viewing the Status using the Commands2-32
Pattern 1: Distribution control for each machine ...2-33
Pattern 2: Distribution Control for each IJServer WorkUnit(1) ..2-33
Pattern 3: Distribution Control for each IJServer WorkUnit(2) ..2-34
Pattern 4: Suppress for a connection to the IJServer WorkUnit..2-34

Monitoring Web Server Connector Faults ...2-35
Advance Preparation ..2-36
Settings Items ...2-37
Examples of Preparation before Operation ..2-37
Viewing the Operation Status ...2-41

Procedure for Using JTS ..2-44
Flow to Operation Start ..2-44

1. Setting Resource Manager Environment ..2-44
2. Setting the Transaction Service Environment ...2-46
3. Storing Resource Definition Information..2-46
4. Starting the Database ..2-47
5. Starting the Transaction Service..2-47
6. Starting the Application ..2-47

Flow to Operation End ...2-47
Procedure for Using JMS..2-48

Flow to Operation Start ..2-48
Flow to Operation End ...2-49
Monitoring the Operational Status of an Event Channel ...2-49

Procedure for Using JavaMail...2-53
Mail Sending Application..2-53

1. Lookup Processing of JavaMail Resources ...2-53
2. Creating a message ...2-54
3. Making a Connection with the SMTP Server..2-55
4. Sending the Message...2-55

Mail Receiving Application ...2-55
1. Lookup Processing of JavaMail Resources ...2-55
2. Making a Connection with the Mail Server ...2-56
3. Opening the Receive Directory...2-56

J2EE User’s Guide: Table of Contents

x

4. Extracting Messages ..2-57
Customizing and Checking the Operating Environment...2-58

Customizing the Operating Environment...2-58
Setting the Value of Scale-value...2-58
Setting for using the Fujitsu XML Processor...2-58
Tuning the CORBA Service Environment Definition...2-59

Checking the Operating Environment..2-60
Setting the Environment Variable ...2-60
Environment Setup of Java...2-60
Setting for using IJServer ...2-61
Settings for Use of the EJB Service Run Command ..2-64

Debugging Application ..2-67
Debugging using Snap...2-68

Information Output to Snap...2-68
Snap Environment Setup..2-71
Method Information of EJB Application Invoked by a Client...2-71
EJB Application Method Information...2-75
javax.transaction.UserTransaction API Information..2-79
Database Manipulation Statement Information...2-82
EJB Container Transaction Control Information ...2-85
J2EE Application User Debug Information ...2-88
Log Output Method for Support ..2-92
Snap File Output Example..2-94

Using Application Debugging Information... 2-104
Debugging Information .. 2-104
Output of Exception Information to the Standard Error Output.. 2-104

Using the Debugger .. 2-104
Automatic Thread Dump Collection .. 2-105
Debugging using Java Method Trace ... 2-105

Chapter 3 JNDI
JNDI Service Provider Environment Setup...3-3
Environment Setup for Referencing EJB ..3-12

Environment setup in client environment...3-13
Environment Setup when JDBC (Database) is Referenced ...3-16

Environment set up when Symfoware is used...3-16
Environment set up when Oracle is used ..3-21
Environment set up when SQL Server is used ..3-24

Environment Setup when JMS is Referenced ..3-27

J2EE User’s Guide - Table of Contents

xi

Environment Setup when JavaMail is Referenced ...3-28
Environment Setup when URL is Referenced ..3-29
Environment Setup when connector is Referenced ...3-30
Description in deployment descriptor file ..3-33
Referencing Objects ...3-39
Name Conversion Function ..3-43

Name conversion file ...3-44
interstage.xml file ...3-47

Transaction Function using the UserTransaction Interface ..3-51
J2EE Application Client deployment descriptor file Detailed Set Up ..3-54

Chapter 4 The J2EE Application Security Function
The Security Function ...4-2

User Authentication..4-2
About User Authentication ..4-2
Directory Service ..4-3
Applications which Authenticate Users...4-3

Access Constraints ..4-4
Method Permissions ..4-4
Security Methods ...4-5
Resource-connectable User Control Function ..4-5
Run-as Security Function ..4-6

Embedding the Security Function...4-9
Directory Service Setting ...4-9

Setting Up the Security Management Environment Definition Files.....................................4-9
User and Security Role Settings...4-11
Directory Service work procedure ..4-12

Setting the Security Function into the J2EE Application Client ...4-14
Setting up the User Authentication ...4-14
Setting up the Resource-connectable User Control Function..4-16

Setting the Security Function into a Web Application..4-16
Setting up the User Authentication ...4-16
Setting up the Access Constraint..4-16
Setting up the Resource-connectable User Control Function..4-18

Setting the Security Function into the EJB Application..4-18
Setting up the Method Permission..4-18
Setting up the Resource-connectable User Control Function..4-18

Collecting the Authentication Log of the Security Function ..4-19

J2EE User’s Guide: Table of Contents

xii

Action when a Security Function Error Occurs ...4-22

Chapter 5 Functions of the Servlet Service
Input Code Automatic Conversion Function ...5-2
Custom Tag Pooling Function ...5-3

Chapter 6 Web Application Development
Notes on the Development of Web Applications...6-2

Notes when Using Cookies..6-2
Cross-site-scripting Fragility Problem..6-2
Errors and Exceptions..6-2
Specifying an error page for the HTTP error status code ..6-2

Web Application Environment Definition File (Deployment Descriptor)..6-5
Coding Format of the Web Application Environment Definition File (Deployment Descriptor) .6-5

Notes on Coding ...6-7
Web Application Environment Definition File Tags ..6-8

Definition Details ...6-8
Web Application Environment Definition File Tag Definitions ..6-9

Start and End of Web Application Environment Definition Files ...6-10
The Name of a Servlet Context ..6-10
Servlet Context Initialization Parameters..6-10
Filter Class ..6-11
Filter class Application Target ...6-13
Listener Class ...6-16
Servlet Attributes...6-18
Servlet Mapping..6-21
Session Parameter ...6-23
Mime Types...6-24
Welcome Files ..6-29
Resources during Error Occurrence...6-30
JSP Tag Libraries..6-31
External Resource Environment Reference ...6-33
Defining References to External Resources ..6-35
Access Limit..6-36
User Authentication...6-38
Security Role...6-42
Application Environment Entry..6-42
EJB Object Reference ..6-44
EJB object reference of Local interface..6-45

J2EE User’s Guide - Table of Contents

xiii

Chapter 7 How to Call Web Applications
Calling Servlets ...7-2

Call that Requires Mapping ...7-2
Call That Does Not Require Mapping..7-4

Calling JSPs..7-6
Calling HTML, Image and Other Files ..7-7

Chapter 8 Basic Functions of the EJB Service
Session Bean Time Monitoring ...8-2

Managing Entity Bean Instances ...8-2
Setting the Number of Instances ..8-2
Instance Management Mode ..8-2
Instance creation Mode ..8-3

Entity Bean Optimization ...8-4
EJB QL...8-4
What is a Message-driven Bean?..8-5

JMS Destination and JMS ConnectionFactory definitions ...8-5
Durable Subscription Function ..8-5

Register and Delete Durable Subscriber Definition..8-5
Message Backup Function in Abnormal Circumstances ...8-6

How to Restore the Serialized Message ..8-7
Performance Option..8-9

Mass Update of Multiple Records..8-9
Caching of SQL Statements...8-9
Local invocation ...8-10
Setting Transaction Types and Attributes ..8-10
Time Monitoring Functions Supported by EJB Service ...8-10
Timeout setting of each function..8-12

Maximum Time Monitoring Function for Application Processing ..8-14
Waiting Time Monitoring Function for Server Return..8-15
Idle-time monitoring function of STATEFUL Session Bean ..8-16
Setting Values for Individual Time Monitoring Functions ..8-17
Timer deletion of EJB object ...8-18
Notes in EJB Service ..8-19

Chapter 9 EJB Application Development
Application Development Flow ...9-2
Developing an EJB Application...9-3

J2EE User’s Guide: Table of Contents

xiv

Deployment of an EJB Application..9-4
Debugging an EJB Application..9-5
Using the Development Environment of Other Companies..9-6

Work Procedure ...9-6
Developing CMP Entity Beans...9-6

Storage Place of Sample Applications ..9-7

Chapter 10 How to create Entity
CMP Definitions ..10-2
Notes on Instance Management Modes ...10-3
Correspondence between Data Types Defined in a CMP, and DBMS SQL Data Types..............10-4

Standard Data Types ...10-4
Available Standard Data Types...10-4
CMF Data Types for which Null Values Can be Used ..10-5
Recommended Data Types ..10-5

Other Classes ..10-8
Classes that Can be Defined..10-8

Using the Development Environment of Other Companies..10-9
Work Procedure ...10-9
Developing CMP Entity Beans...10-9

Storage Place of Sample Applications ... 10-10

Chapter 11 How to call EJB Applications
Calling procedure..11-2

Specifying search processing ..11-2
Example of searching for one instance..11-3
Example of searching for multiple instances (collection interface)..11-3
Relationship between Enterprise Bean Instance, EJB Object, and EJB Home11-4

EJB object and Enterprise Bean instance generation timing ...11-4
Method called to generate or delete an Enterprise Bean instance11-5

Using Java Applets ..11-6
Using Portable ORB ...11-6

Development procedure (pre-installed version Java library) ...11-6
Descriptions of HTML Files...11-6
Applet Programming ...11-6
Packaging an Applet as a jar File ...11-8
Using the jar Command ..11-9

Client Setup (Pre-installed Java Clients) ...11-9
Setting Permission for Java Libraries ...11-9

J2EE User’s Guide - Table of Contents

xv

Development procedure (Portable-ORB) .. 11-11
Specification in the HTML file ... 11-11
Files to be downloaded... 11-11
Applet jar files ... 11-11
jar files for Portable-ORB..11-12
jar files for EJB Service client ...11-13
Applet Programming...11-16
Packaging an Applet as a jar File ...11-17
Bundling Client Distribution Data in a jar File ...11-17
Command Usage Examples...11-17
Storing jar Files in the Web Server ...11-18
Setting up the Portable-ORB Environment in the Web Server...11-18

Setting client environment (Portable-ORB) ...11-19
Specify the ORB (Object Request Broker) ..11-19
Portable-ORB Operation Environment File Settings ...11-19

Specifying PORB_HOME ...11-21
Editing the JBK Plug-in Setup File...11-24
Digital Signature in Applets..11-24

Digital Signature of JDK/JRE1.3 or later (when using keytool/jarsigner/policytool)11-25
policytool Command Setting (Supplements) ...11-28
Notes..11-28

Chapter 12 DB Access Environment Definition
Specifying the DB Access Environment Definitions..12-2

Notes..12-2

Chapter 13 Customize by EJB Service Operation Command
Customize Flow ..13-2

Export and Import of Enterprise Bean Definition Information ..13-3
Export and Import of DB Definition Information ...13-4
Contents of Enterprise Bean Definition File...13-5
DB Definition File Contents..13-17
Enterprise Bean Definition File Example ...13-19
DB Definition File Example ..13-21

Chapter 14 Using the Interstage JDBC Driver
Overview of Interstage JDBC Driver...14-2

Environment Setup Required for Connection to SQL Server ..14-2
Methods of Connection to an SQL Server ..14-4

Using the Enterprise Bean Environment ...14-4
Using the Interstage JDBC Driver Directly ..14-4

J2EE User’s Guide: Table of Contents

xvi

Datasource Connection Processing ...14-5
URL Connection Processing...14-6

Chapter 15 Using Java Transaction API (JTA)
JTA ..15-2

JTA Interfaces ..15-2
User Transaction Interface...15-3

Environment Setup for the User Transaction Interface ..15-3
Acquiring the User Transaction Interface ...15-4

Generating a JTA Application..15-5
Application Configuration..15-5
Performing Initialization Process and Acquiring the UserTransaction object15-5
From Transaction Start to Transaction Stop ...15-6
JTA Application Example ..15-7
Precautions ...15-8

Chapter 16 Environment Settings for Interstage JMS
Environment Settings for the Event Channel Operation Machine ..16-2

Environment Setting before Operation ..16-3
Starting Interstage...16-3
Creating and Starting a Unit..16-3
Creating a Static Event Channel...16-4
Changing the Event Channel Operating Environment ...16-5

Environment Deletion after Operation ...16-7
Deleting the Static Event Channel ..16-7
Stopping and Deleting a Unit ..16-8
Stopping Interstage...16-8

Environment Settings for the JMS Application Operation Machine ..16-9
Environment Setting before Operation ... 16-13

Setting JNDI Environment Definitions ... 16-13
Registering ConnectionFactory Definition ... 16-13
Registering Destination Definition ... 16-14
Environment Setup during Web Application Operation ... 16-15

Environment Deletion after Operation .. 16-16
Deleting ConnectionFactory Definition .. 16-16
Deleting Destination Definition... 16-17
Deleting Durable Subscriber.. 16-17

Chapter 17 Developing a JMS Application
Designing an Application...17-2

J2EE User’s Guide - Table of Contents

xvii

Creating a JMS Application...17-3
Publish/Subscribe Messaging Model...17-3

Creating a Publisher ...17-3
Creating a Subscriber...17-4

Point-To-Point Messaging Model ...17-5
Creating a Sender...17-6
Creating a Receiver ..17-7

Message Listener ..17-8
Creating a Subscriber using Message Listener ...17-8
Creating a Receiver using Message Listener...17-9

Durable Subscription Function ..17-11
Creating a Subscriber using the Durable Subscription Function17-11
Note on using the Durable Subscription Function..17-12

Message Priority and Lifetime ...17-13
Message Persistent Function ..17-13
Local Transaction...17-13

Creating a Publisher using a Local Transaction...17-13
Creating a Subscriber using a Local Transaction...17-14
Creating a Sender using a Local Transaction ..17-16
Creating a Receiver using a Local Transaction..17-17

Global Transaction...17-18
Creating a Publisher using a Global Transaction ...17-18
Creating a Subscriber using a Global Transaction...17-19
Creating a Sender using a Global Transaction...17-20
Creating a Receiver using a Global Transaction..17-22
Note on Starting an Application ..17-23

Linkage with a CORBA Application..17-23
Communication from a JMS Application to a CORBA Application17-23
Communication from a CORBA Application to a JMS Application17-24

Message Selector Function ...17-24
Message Selector Conditional Expression...17-25

Queue Browser Function ...17-29
Notes on Using TopicRequestor/QueueRequestor ...17-30

Interface ..17-32
API List of the Package javax.jms (Part 1) ..17-32
API List of the Package javax.jms (Part 2) ..17-34
API List of the Package javax.jms (Part 3) ..17-36
API List of the Package javax.jms (Part 4) ..17-38
API List of the Package javax.jms (Part 5) ..17-39
API List of the Package javax.jms (Part 6) ..17-41

J2EE User’s Guide: Table of Contents

xviii

API List of the Package javax.jms (Part 7) ... 17-43
API List of the Package javax.jms (Part 8) ... 17-44

Chapter 18 Basic Functions of the Interstage Connector
Connection Management..18-2

Timeout for the Pooled Connection ...18-2
Transaction Management ...18-3

Supported Transaction Support Level ...18-3
Note when Transaction Function is Used...18-3

Security Management ...18-4

Chapter 19 J2EE Resource Access Definition
Activating the J2EE resource access definition ..19-2

J2EE resource access definition activation command ..19-2
Initial window for J2EE resource access definition..19-3

Appendix A FJVM

Appendix B JDK1.3.1 and JDK1.4.2

Index

Part I

J2EE Common Edition

1-1

Chapter 1

Design of J2EE Application

Scope of J2EE Specifications to be Supported
The J2EE platform is a standard environment for executing a J2EE application.

The J2EE platform provided by Interstage consists of the following elements.

• J2EE deployment specification

A standard for defining the common packaging method for the applications to be deployed on the
J2EE-compatible platform

• Java technology standard for the J2EE platform

A set of standards that all J2EE platforms must support

• IETF standard for the J2EE platform

A set of standards that all J2EE platform products must support and that is defined by IETF (Internet
Engineering Task Force)

• CORBA standard for J2EE platform

A set of CORBA standards that the J2EE platform conforms to in order to maintain middle layer
interoperability

The J2EE platform provided by Interstage defines various functions required to implement company-scale
multi-layer services. It conforms to verified open standards to maximize its employment scalability and
transportability.

Functions to be Provided as J2EE Components
A J2EE component indicates an application-level software unit that conforms to the J2EE architecture. It
provides Interstage with components that conform to the J2EE version 1.3 rules and assumes that the
operation environment is JDK1.3 or later. Note that the Interstage functions provided in the J2EE version
1.2 rules are included in the J2EE version 1.3 rules and guaranteed in the J2EE 1.3 plus JDK1.3
environment.

Interstage provides the following services.

• Servlet service (JServlet)

The Servlet service is a component that controls Web application execution on the Web server.

• EJB service (Interstage EJB)

The EJB service is a component for executing server applications that conform to the EJB2.0 rules.

Chapter 1: Design of J2EE Application

1-2

• JNDI

JNDI does not define resource information to be used in each application, but rather provides a JNDI
service provider function that can be used in all applications that operate in the Interstage
environment.

• JDBC

JDBC provides the database-independent API used by Java applications to access databases.
Interstage provides functions to work with a JDBC driver provided by each database. For details,
refer to 'Environment Setup when JDBC (Database) is Referenced' in Chapter 3.

• Java Transaction Service (JTS)

JTS is a component that provides a service that eliminates the need for being conscious of specific
implementation when an application accesses the transaction.

• Java Message Service (JMS)

JMS is a component that provides asynchronous communication that is implemented on the basis of
the JMS rules and is reliable in the distributed environment.

• J2EE Connector Architecture (connector)

The connector is a component for connecting to an ERP system and main frame located in the EIS
layer and a corporate information system such as a database.

• JavaMail

JavaMail is a component that provides APIs making it possible by the use of Java to implement mail
sending and receiving functions independent of environments and protocols and to create
applications. Version 1.2 of JavaMail is included in this package. SMTP, IMAP, and POP3 are also
included as providers.

Environment Where J2EE Applications are Operated (IJServer)

1-3

Environment Where J2EE Applications are Operated
(IJServer)

Interstage Application Server uses a concept called Interstage JavaTM Server (from now on, referred to
as IJServer) to enhance operability this has a J2EE application operation environment.

What is IJServer
IJServer is a logical concept that includes EJB and Servlet containers and J2EE application execution
environments. It is located at the upper part of these containers.

IJServer operates on the application operation function called 'WorkUnit', an Interstage Application Server
feature. By operating as the IJServer WorkUnit, IJServer can use sophisticated application
operations/monitoring functions provided by the WorkUnit. IJServer is created using the Interstage
Management Console.

Refer to the 'Interstage Operator's Guide' for details of the WorkUnit function and Interstage Management
Console.

IJServer Types
IJServer is classified into four types that can be selected according to the purpose.

Normally, the default type, 'Contains Web Applications and EJB Applications (run in single Java VM)', is
used.

The IJServer types are shown below.

• Contains Web Applications and EJB Applications (run in single Java VM)

Web and EJB applications can be run on a single JavaVM. This way, EJB can be invoked quickly
from Servlet/JSP, and the memory resources can be saved since applications operate on the same
JavaVM.

It is also possible to operate only Web applications.

• Contains Web Applications and EJB Applications (run in separate Java VMs)

Web applications and EJB applications can be operated on separate JavaVMs. Although memory
resources are used up by operating the applications on separate JavaVMs, a process concurrency
can be set for each JavaVM, and a process failure risk can be distributed.

• Contains Web Applications only

The JavaVM can be used with Web applications only.

• Contains EJB Applications only

The JavaVM can be used with EJB applications only.

Chapter 1: Design of J2EE Application

1-4

The outline for each type is shown below.

Notes

• When Web and EJB applications are operated on the same JavaVM, EJB applications cannot be
invoked from another IJServer application (or EJB client application).

• When Web and EJB applications are operated on the same JavaVM, it is not possible to deploy the
EJB applications only.

• When only the EJB applications are deployed on the IJServer where both Web and EJB applications
are operated on separate JavaVMs, only the EJB JavaVM is started.

• When only the Web applications are deployed on the IJServer where both Web and EJB applications
are operated on separate JavaVMs, only the Web JavaVM is started.

• When EJB applications are to be deployed on the IJServer where only Web applications are operated,
the EJB application deployment processing is skipped. When Web applications are to be deployed
on the IJServer where only EJB applications are operated, the Web application deployment
processing is skipped. Therefore, if an EAR file contains both Web and EJB applications, the
environment can be configured by deploying one EAR file on the IJServer where only Web
applications are operated and another one on the IJServer where only EJB applications are operated.
This enables the user to operate both Web and EJB applications on separate JavaVMs.

IJServer File Configuration
IJServers created and applications deployed by the Interstage Management Console are managed as
follows.

J2EE common directory\ijserver\

(The default J2EE common directory is C:\Interstage\J2EE\var\deployment.)

/opt/FJSVj2ee/var/deployment/ijserver/

Upper directory <- -> lower directory

apps (*1) Module name

current (*2) IJServer name PID

distribute (*3) Module name

log (*4) Process serial number

classes Shared (*5)

lib

work (*6)

IJServer name

ext (*7)

Environment Where J2EE Applications are Operated (IJServer)

1-5

*1) Files of the deployed application are extracted in the directory with the name of the module. If an
EAR file is deployed, the WAR/ejb-jar/RAR file in it is also extracted. In addition, if the EAR file to be
deployed contains the Shared directory, jar files and class files in this directory are files that are
commonly used by applications in EAR. Store jar files in the Shared/lib directory, and store class files
in the Shared/classes directory. Also, the Shared directory is a load target even if it is created after
the deployment.

*2) JavaVM process current directory. The latest is the one with the IJServer name. Up to five
generations are backed up with the names IJServer name.old1, IJServer name.old2,…,IJServer
name.old5 when the work unit is activated. The PID directories under the IJServer name are current
directories for JavaVM process containers of the corresponding PIDs. Note that the current directory
location can be changed by selecting [WorkUnit] > [IJServer Name] > [Environment Settings] and
then selecting 'Set WorkUnit' on the Interstage Management Console.

*3) A directory with the module name is created, and in this directory, the client distribution data of EJB
and the CORBA/SOAP server gateway file are stored. When an EAR file is deployed, a directory with
the name of the ejb-jar file is created in the directory with the same name as the module name, and
the file is stored in this directory.

*4) JavaVM process log directory. This includes the same number of process serial number directories
as for the process concurrency of the IJServer. A log file is output to this directory. Note that the log
directory location can be changed by selecting [WorkUnit] > [IJServer Name] > [Environment
Settings] and then selecting 'Set WorkUnit' on the Interstage Management Console. It can also be
referenced by clicking [WorkUnit] > 'WorkUnit Name', and then by clicking the [Log Reference] tab.

*5) jar files and class files commonly used by applications in IJServer are stored. Store jar files in the
Shared/lib directory, and class files in the Shared/classes directory.

Class files and jar files in the Shared directory are not targets of HotDeploy or the class auto reload.
When class files and jar files in the Shared directory are overwritten and deleted, they are not enabled
until IJServer is rebooted.

jar files in the Shared/lib directory cannot be overwritten and deleted when IJServer is operated.

*6) Stores container temporary files (JSP compiler results).

*7) Store a JDBC driver in lib of Shared instead of an ext directory.

Current Directory of IJServer
By default, the current directory of IJServer is the following directory:

J2EE common directory\ijserver\[IJServer-name]\current\[IJServer-name *]\[Process-ID]

(The default J2EE common directory is C:\Interstage\J2EE\var\deployment.)

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer-name]/current/[IJServer-name *]/[Process-ID]

Backup copies of [IJServer-name *] are created at the start of the WorkUnit and they are named
IJServer-name.old1, IJServer-name.old2, , IJServer-name.old5. The name of the latest directory is
IJServer-name.

Chapter 1: Design of J2EE Application

1-6

Each underlined part above can be changed by selecting [WorkUnit] > [IJServer Name] > [Environment
Settings] tab, then using 'WorkUnit configuration' of the Interstage Management Console.

Also, if 'Unique current directory in IJServer' is checked at the specification, the specified directory itself
becomes the current directory, and the current directory actually used can be made unique in IJServer.

The following table indicates the relation between the current directory and the settings of 'WorkUnit
configuration' that are made by selecting [WorkUnit] > [IJServer Name] > [Environment Settings] tab from
the Interstage Management Console:

Option of
'current
directory'

Directory Name 'Unique
current
directory in
IJServer'

Current Directory

Default
directory
structure

(Specification is impossible.)

C:\Interstage\J2EE\var\deploym
ent\ijserver

(When J2EE common directory
is the default directory)

/opt/FJSVj2ee/var/deployment/ij
server

(Invalid)
C:\Interstage\J2EE\var\deployment\ijser
ver\[IJServer-name]\current\[IJServer-na
me *]\[Process-ID]

/opt/FJSVj2ee/var/deployment/ijserver/[I
JServer-name]/current/[IJServer-name
*]/[Process-ID]

When
checked

C:\tmp\current

/tmp/current

Specificatio
n by user

Specification example:

C:\tmp\current

/tmp/current When not

checked
C:\tmp\current\[IJServer-name]\current\[I
JServer-name *]\[Process-ID]

/tmp/current/[IJServer-name]/current/[IJ
Server-name *]/[Process-ID]

Note

If 'Unique current directory in IJServer' is checked, pay attention to the following points:

• The current directory is not generation-managed.

• If the specified directory does not exist, it is created anew.

• The specified directory is not deleted even when IJServer is deleted or the current directory is
updated.

Environment Where J2EE Applications are Operated (IJServer)

1-7

• In the cases shown below, there is a possibility that core files are overwritten, and information for
investigation may not be obtained when a problem occurs. Therefore, it is recommended that
'Unique current directory in IJServer' not be checked.
− For the concurrency number of processes of the WorkUnit, two or more is specified.
− The WorkUnit is restarted.

Class Used by IJServer
IJServer automatically loads the classes described in Class List used by IJServer. The priorities that the
class is loaded to depend on the setup of the class, separation of class loaders, and the search order of
class loaders. Refer to Class Loader for details.

If there is a class that the user wants to use prior to the class required to operate the container, copy the jar
file to the ext directory. In this case, note the following.

• If there are multiple jar files in the ext directory, those files are set in the class path in an undefined
order.

• To load the jar files in the ext directory, reboot the IJServer.

• If a jar file in the ext directory and the container have the same class, the container also operates
using that class. Because this may cause the container to malfunction, verify the operation fully
before using this function.

Also, it can be used for the IJServer class by including a class in the J2EE application, giving priority. In
this case, since IJServer does not use the class in the J2EE application even if a class of a same name
exists, you are recommended to include a class in the J2EE application. Refer to Class Settings used by
IJServer for details.

When the IJServer is started up, the class path information at startup is output to the starting information
(info.log) and the container log (container.log). By viewing the starting information and the container log,
the class path settings can be checked. The starting information and the container log can be referenced
by clicking [WorkUnit] > 'WorkUnit Name', and then by clicking the [Log Reference] tab.

starting information : IJServer name\log\[Process serial number]\info.log

container log : IJServer name\log\[Process serial number]\container.log

starting information : IJServer name/log/[Process serial number]/info.log

container log : IJServer name/log/[Process serial number]/container.log

Chapter 1: Design of J2EE Application

1-8

Class List used by IJServer

No. Class File Class
Loader

1 Class path
required to
operate
containers (class
path when
Interstage is
installed in
'C\Interstage' is
indicated.)

C:\Interstage\J2EE\lib\ijserverboot.jar
C:\Interstage\J2EE\lib\jsse.jar
C:\Interstage\J2EE\lib\jcert.jar
C:\Interstage\J2EE\lib\jnet.jar
C:\Interstage\J2EE\lib\isj2ee7.jar
C:\Interstage\odwin\etc\class\ODjava2.jar(*1)(*8)
C:\Interstage\odwin\etc\class\ODjava4.jar(*2)(*8)
C:\Interstage\ots\lib\fjtscorba13.jar(*1)
C:\Interstage\ots\lib\fjtscorba14.jar(*2)

System
class
loader

2 The XML parser
specified by
'xml_parser' in
environment setup
of WorkUnit

C:\Interstage\J2EE\lib\crimson.jar(*3)
C:\Interstage\J2EE\lib\jaxp.jar(*3)
System drive:\Program Files\Common
Files\FujitsuXML\xmlpro.jar(*4)
The jar file in the directory specified by 'other directories'(*5)

System
class
loader

3 Class path
required to
operate
containers (class
path when
Interstage is
installed in
'C\Interstage' is
indicated.)

C:\Interstage\J2EE\lib\isj2eert.jar
C:\Interstage\J2EE\lib\isjaxp.jar
C:\Interstage\lib\isadmin_scs.jar
C:\Interstage\jms\lib\fjmsprovider.jar
C:\Interstage\eswin\lib\esnotifyjava2.jar(*1)
C:\Interstage\eswin\lib\esnotifyjava4.jar(*2)
C:\Interstage\ots\lib\fjtsserverimpl13.jar(*1)
C:\Interstage\ots\lib\fjtsserverimpl14.jar(*2)
C:\Interstage\ejbcl\lib\fjcontainer72.jar(*1)(*6)
C:\Interstage\ejb\lib\fjcontainer72.jar(*1)(*7)
C:\Interstage\ejbcl\lib\fjcontainer74.jar(*2)(*6)
C:\Interstage\ejb\lib\fjcontainer74.jar(*2)(*7)
C:\Interstage\F3FMsoap\lib\issoap.jar(*1)
C:\Interstage\F3FMsoap\lib\issoap4.jar(*2)
%JAVA_HOME%\lib\fmoni.jar(*9)
%JAVA_HOME%\jre\lib\fmoni.jar(*9)
C:\Interstage\F3FMsoap\lib\issoapsec.jar
C:\Interstage\F3FMuddic\lib\fjuddi4.jar
C:\Interstage\F3FMuddic\lib\isplugin.jar
C:\Interstage\J2EE\lib\fjjca1_0.jar
C:\Interstage\J2EE\lib\providerutil.jar
C:\Interstage\J2EE\lib\fscontext.jar
%JAVA_HOME%\lib\tools.jar(*9)
C:\Interstage\J2EE\lib\ijserverw.jar
C:\Interstage\ejb\lib\fjcdomdef2.jar
C:\Interstage\lib\isjmxserver.jar

Interstage
class
loader

*1 Set when JDK1.3/JRE1.3 system is used.

*2 Set when JDK1.4/JRE1.4 system is used.

*3 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Crimson'.

Environment Where J2EE Applications are Operated (IJServer)

1-9

*4 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Fujitsu XML Processor'.

*5 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Others'.

*6 For Web-J Edition

*7 For other than Web-J Edition

*8 Because the preinstalled Java library of the CORBA service is automatically set, this is not loaded
even if the library for Portable-ORB is set to the class path for WorkUnit setup. When the CORBA
service environment definition needs to be changed, change the preinstalled type setting.

*9 %Java_HOME% is the JRE/JDK install directory defined in the \Interstage\J2EE\etc\java_config.txt
file.

No. Class File Class
Loader

1 Class path
required to
operate
containers

/opt/FJSVj2ee/lib/ijserverboot.jar
/opt/FJSVj2ee/lib/jsse.jar
/opt/FJSVj2ee/lib/jcert.jar
/opt/FJSVj2ee/lib/jnet.jar
/opt/FJSVj2ee/lib/isj2ee7.jar
/opt/FSUNod/etc/class/ODjava2.jar(*1)(*8)
/opt/FSUNod/etc/class/ODjava4.jar(*2)(*8)
/opt/FSUNots/lib/fjtscorba13.jar(*1)
/opt/FSUNots/lib/fjtscorba14.jar(*2)

System
class
loader

2 The XML parser
specified by
'xml_parser' in
environment setup
of WorkUnit

/opt/FJSVj2ee/lib/crimson.jar(*3)
/opt/FJSVj2ee/lib/jaxp.jar(*3)
/opt/FJSVxmlpc/lib/xmlpro.jar(*4)
The jar file in the directory specified by 'other directories'(*5)

System
class
loader

Chapter 1: Design of J2EE Application

1-10

No. Class File Class
Loader

3 Class path
required to
operate
containers

/opt/FJSVj2ee/lib/isj2eert.jar
/opt/FJSVj2ee/lib/isjaxp.jar
/opt/FJSVisscs/lib/isadmin_scs.jar
/opt/FJSVjms/lib/fjmsprovider.jar
/opt/FJSVes/lib/esnotifyjava2.jar(*1)
/opt/FJSVes/lib/esnotifyjava4.jar(*2)
/opt/FSUNots/lib/fjtsserverimpl13.jar(*1)
/opt/FSUNots/lib/fjtsserverimpl14.jar(*2)
/opt/FJSVejbcl/lib/fjcontainer72.jar(*1)(*6)
/opt/FJSVejbcl/lib/fjcontainer74.jar(*2)(*6)
/opt/FJSVejb/lib/fjcontainer72.jar(*1)(*7)
/opt/FJSVejb/lib/fjcontainer74.jar(*2)(*7)
/opt/FJSVsoap/lib/issoap.jar(*1)
/opt/FJSVsoap/lib/issoap4.jar(*2)
$JAVA_HOME/lib/fmoni.jar(*9)
$JAVA_HOME/jre/lib/fmoni.jar(*9)
/opt/FJSVsoap/lib/issoapsec.jar
/opt/FJSVuddic/libfjuddi4.jar
/opt/FJSVuddic/lib/isplugin.jar
/opt/FJSVj2ee/lib/fjjca1_0.jar
/opt/FJSVj2ee/lib/providerutil.jar
/opt/FJSVj2ee/lib/fscontext.jar
$JAVA_HOME/lib/tools.jar(*9)
/opt/FJSVj2ee/lib/ijserverw.jar
/opt/FJSVejb/lib/fjcdomdef2.jar
/opt/FJSVisjmx/lib/isjmxserver.jar

Interstage
class
loader

*1 Set when JDK1.3/JRE1.3 system is used.

*2 Set when JDK1.4/JRE1.4 system is used.

*3 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Crimson'.

*4 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Fujitsu XML Processor'.

*5 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Others'.

*6 For Web-J Edition

*7 For other than Web-J Edition

*8 Because the preinstalled Java library of the CORBA service is automatically set, this is not loaded
even if the library for Portable-ORB is set to the class path for WorkUnit setup. When the CORBA
service environment definition needs to be changed, change the preinstalled type setting.

*9 %Java_HOME% is the JRE/JDK install directory defined in the /opt/FJSVj2ee/etc/java_config.txt file.

Environment Where J2EE Applications are Operated (IJServer)

1-11

No. Class File Class
Loader

1 Class path
required to
operate
containers

/opt/FJSVj2ee/lib/ijserverboot.jar
/opt/FJSVj2ee/lib/jsse.jar
/opt/FJSVj2ee/lib/jcert.jar
/opt/FJSVj2ee/lib/jnet.jar
/opt/FJSVj2ee/lib/isj2ee7.jar
/opt/FJSVod/etc/class/ODjava2.jar(*1)(*8)
/opt/FJSVod/etc/class/ODjava4.jar(*2)(*8)
/opt/FJSVots/lib/fjtscorba13.jar(*1)
/opt/FJSVots/lib/fjtscorba14.jar(*2)

System
class
loader

2 The XML parser
specified by
'xml_parser' in
environment setup
of WorkUnit

/opt/FJSVj2ee/lib/crimson.jar(*3)
/opt/FJSVj2ee/lib/jaxp.jar(*3)
/opt/FJSVxmlpc/lib/xmlpro.jar(*4)
The jar file in the directory specified by 'other directories'(*5)

System
class
loader

3 Class path
required to
operate
containers

/opt/FJSVj2ee/lib/isj2eert.jar
/opt/FJSVj2ee/lib/isjaxp.jar
/opt/FJSVisscs/lib/isadmin_scs.jar
/opt/FJSVjms/lib/fjmsprovider.jar
/opt/FJSVes/lib/esnotifyjava2.jar(*1)
/opt/FJSVes/lib/esnotifyjava4.jar(*2)
/opt/FJSVots/lib/fjtsserverimpl13.jar(*1)
/opt/FJSVots/lib/fjtsserverimpl14.jar(*2)
/opt/FJSVejbcl/lib/fjcontainer72.jar(*6)(*1)
/opt/FJSVejbcl/lib/fjcontainer74.jar(*6)(*2)
/opt/FJSVejb/lib/fjcontainer72.jar(*7)(*1)
/opt/FJSVejb/lib/fjcontainer74.jar(*7)(*2)
/opt/FJSVsoap/lib/issoap.jar(*1)
/opt/FJSVsoap/lib/issoap4.jar(*2)
$JAVA_HOME/lib/fmoni.jar(*9)
$JAVA_HOME/jre/lib/fmoni.jar(*9)
/opt/FJSVsoap/lib/issoapsec.jar
/opt/FJSVuddic/libfjuddi4.jar
/opt/FJSVuddic/lib/isplugin.jar
/opt/FJSVj2ee/lib/fjjca1_0.jar
/opt/FJSVj2ee/lib/providerutil.jar
/opt/FJSVj2ee/lib/fscontext.jar
$JAVA_HOME/lib/tools.jar(*9)
/opt/FJSVj2ee/lib/ijserverw.jar
/opt/FJSVejb/lib/fjcdomdef2.jar
/opt/FJSVisjmx/lib/isjmxserver.jar

Interstage
class
loader

*1 Set when JDK1.3/JRE1.3 system is used.

*2 Set when JDK1.4/JRE1.4 system is used.

*3 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Crimson'.

*4 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Fujitsu XML Processor'.

Chapter 1: Design of J2EE Application

1-12

*5 Set when 'xml_parser' in environment setup of WorkUnit is specified with 'Others'.

*6 For Web-J Edition

*7 For other than Web-J Edition

*8 Because the preinstalled Java library of the CORBA service is automatically set, this is not loaded
even if the library for Portable-ORB is set to the class path for WorkUnit setup. When the CORBA
service environment definition needs to be changed, change the preinstalled type setting.

*9 $Java_HOME is the JRE/JDK install directory defined in the /opt/FJSVj2ee/etc/java_config.txt file.

Startup/Shutdown Execution Class
When an IJServer is started up and shut down, an optional Java application can be invoked.

The Java application to be invoked when the IJServer is started up is called a startup time execution class.
The Java application to be invoked when the IJServer is shut down is called a shutdown time execution
class.

In the execution class, implement the initialization and exit processing to be executed only once for each
IJServer and JavaVM process. Then, these processes can be used in the following processing.

• Database initialization and exit processes

• Object lookup process by JNDI

• Invocation of EJB application method

The triggers for an execution class to be invoked are as follows:

• The startup time execution class is invoked before a request to the application is received after the
IJServer is started up. This class is invoked before EJB activation if at all.

• The shutdown time execution class is invoked immediately after the request to the application is
received when the IJServer is shut down. When the IJServer is forcibly shut down, the shutdown time
execution class is not invoked.

• More than one execution class can be specified and the invocation order can be determined.

• The user can invoke an execution class in all processes (JavaVM) or invoke it only once for each
IJServer.

Invocation Method Example of Use Example

In all processes Processing that must be done in each
process

Object lookup processing by JNDI

Once only Processing that does not need to be
executed for each process and that can
be shared between processes

Database initialization and exit
processing

Environment Where J2EE Applications are Operated (IJServer)

1-13

How to Create an Execution Class
A special class or interface does not need to be prepared to create an execution class.

Create a Java application that meets the following two conditions.

• Executable from the command line with the main method implemented

• Declared as a public class

An example of a simple execution class is indicated below.

 package test;
 public class UserStartup{
 public static void main(String args[]){
 if(args.length == 1){
 System.out.println(args[0]);
 }
 //Define user implementation here.
 }
 }

How to Register an Execution Class
To register an execution class, make the following two settings on the Interstage Management Console.

1. Execution class setting

Store execution class setting information.

2. Class path setting

Set an execution class in the WorkUnit class path.

Notes

• When the IJServer type is for 'Contains Web Applications and EJB Applications (run in separate Java
VMs)', there are two class paths, one for the Servlet container and the other for the EJB container.
Set the execution class in the class path for the container to be invoked.

• When the IJServer type is for 'Contains Web Applications and EJB Applications (run in separate Java
VMs)', select the container that starts the execution class from one of the following three to respond to
container-dependent processing.

− Web container

− EJB container

− Web and EJB containers

• When an exception that occurred in the startup time execution class is thrown to the IJServer
WorkUnit, whether to continue the IJServer startup or not can be specified.

Chapter 1: Design of J2EE Application

1-14

• When processing is performed from the execution class to an EJB application on another JavaVM,
the IJServer where the EJB application is deployed must be started up before the execution class is
started.

When the IJServer type is for 'Contains Web Applications and EJB Applications (run in separate Java
VMs)', the Web container is started before the EJB container. Therefore, a process for an EJB
application on the same IJServer cannot be performed from the execution class that is set in the Web
container.

An example where the processing cannot be executed and its workaround are listed below.

Example of Impossible Processing User Response

EJB application lookup processing on the same
IJServer from the execution class set in the Web
container when the IJServer type is 'Contains
Web Applications and EJB Applications (run in
separate Java VMs)'

Select one of the following:

- Specify the EJB container as the container that
starts the execution class.

- Deploy and run the EJB application
beforehand on a different IJServer from the
one where the execution class is set.

• When 'Separation of class loaders' is 'Separate between EARs' or 'Separate all', EJB application
cannot be called from a startup time execution class or a shutdown time execution class.

Class Loader

1-15

Class Loader
Class loaders of Java provide a function to search for a class file and load classes on the memory.

When developing J2EE application, understand what class loader will load the classes before the
development.

Layer of a Class Loader
Java class loaders have a hierarchical structure consisting of parent class loaders and child class loaders.
The relation between a parent loader and child loader resembles that of a super class and subclass of an
object.

A class that is loaded by a child class loader can refer to a class that is loaded by the parent class loader,
but a class that is loaded by a parent class loader cannot refer to a class loaded by a child class loader.

If Java Native Interface (JNI) is used, further care needs to be taken. When JNI is used, a class loader
loads a native module. For Java class loaders, the same native module can be used only from the same
class loader.

For (1) and (2), the same native module is supposed to be used, but it can be used only from the side
where the native module is first loaded.

Chapter 1: Design of J2EE Application

1-16

If class B works first, 'java.lang.UnsatisfiedLinkError' is thrown to class A.

The above also applies to Interstage.

Loading a Class
Generally, a class loader uses a devolution model to load a class. A class loader has a relevant parent
class loader. When a class loader is called to load a class, it devolves the loading of this class on its parent
class loader before the class loader itself tries to load the class.

The operations of the Interstage class loader and this transfer model are slightly different to boost the
independence of classes used by Interstage and classes used by applications. The following section
explains the search order of the Interstage class loader.

Structure of a Class Loader
This section explains the hierarchical structure of a class loader of IJServer.

Class loaders used in IJServer have a hierarchical structure consisting of parent class loaders and child
class loaders.

This hierarchical structure of class loaders increases the degree of independence between the system
and application and between application programs.

Layers of class loaders can be customized. Refer to Separation of Class Loaders for the customization
method.

Each class loader loads the resources in the table below. According to the Interstage default settings, a
class loader sequentially loads classes from the top of the table. The loading order of classes can be
customized. Refer to Changing the Search Order of Class Loaders for the customization method.

When 'Separation of class loaders' is 'Separate between EARs' or 'Separate all'
Class Loader Resources to be Loaded Setting Method

System class loader XML parser classes XML parser class environment settings
for the WorkUnit

Connector classes

Note) When a connector is deployed
for IJServer

RAR file

EJB application classes ejb-jar file

Classes used by EJB applications that
are not EJB application classes

Manifest classpath in a ejb-jar file

Application class
loader

Classes that are commonly used in
applications

Stored in the Shared directory of an
EAR file

Web application classes WAR file Webapp class loader

Classes used by the Web application
that are not Web application classes

Manifest classpath in a WAR file

Class Loader

1-17

Class Loader Resources to be Loaded Setting Method

Interstage classes Nothing (it cannot set up)

Classpath of the WorkUnit Common classes in IJServer

Stored in the Shared directory of
IJServer

Interstage class loader

Classes common to multiple IJServers Classpath of J2EE property

When 'Separation of class loaders' is 'Do not separate'

Class Loader Resources to be Loaded Setting Method

XML parser classes XML parser class environment settings
for the WorkUnit

Interstage classes Nothing (it cannot set up)

Classpath of the WorkUnit Common classes in IJServer

Stored in the Shared directory of
IJServer

Classpath of J2EE property Classes common to multiple IJServers

Environment variable: CLASSPATH

Connector classes RAR file

EJB application classes ejb-jar file

Classes used by EJB applications that
are not EJB application classes

Manifest classpath in a ejb-jar file

System class loader

Classes that are commonly used in
applications

Stored in the Shared directory of an
EAR file

Web application classes WAR file Webapp class loader

Classes used by the Web application
that are not Web application classes

Manifest classpath in a WAR file

Refer to 'Class Used by IJServer' for the details of the resources which IJServer loads automatically.

Chapter 1: Design of J2EE Application

1-18

Separation of Class Loaders
According to the default settings of Interstage, class loaders are separated between EARs.

The separation of class loaders influences the referencing relation between applications and activation
change of applications.

This section explains the function to customize the separation of class loaders.

Setting Method
The separation method of class loaders can be set up by one of the following methods from the Interstage
Management Console:

• [WorkUnit] > [Create] > [Class Loader Environment Settings] > [Class Loader Separation]

• [WorkUnit] > [WorkUnit Name] > [Environment Settings] > [Class Loader Environment Settings] >
[Class Loader Separation]

The supposed setting patterns are as shown in the following table:

Setting Value Setting Pattern

Separate between
EARs (the default value)

Used when ejb-jar is deployed separately without making an EAR.

Separate all Used when deployment is done with making an EAR.

Do not separate Used when an application is referred to between EARs, or when an EJB
application or connector is loaded by the system class loader.

V6 compatible mode, which provides the same structure of class loaders as
those of V6

This is used when HotDeploy is not used and an application developed with
Interstage V6 is migrated (or for an application that does not operate under the
condition of 'Separate between EARs' or does not operate under the condition
of 'Separate all').

Notes

• Because Web application programs do not refer to classes between each other, regardless of the
setting value of 'Separate between EARs,' 'Separate all,' or 'Do not separate,' class loaders between
Web application programs are separated in all cases.

• When the IJServer type is specified as 'Operate a Web application and EJB application within the
same Java VM,' an EJB application that has been deployed in another IJServer cannot be called by a
Web application or EJB application.

Class Loader

1-19

Separation Pattern of Class Loaders

Separate Between EARs

When 'Separate between EARs' is selected, as to EAR deployment, class loaders are separated between
EARs as shown in the figure below.

As to ejb-jar, or WAR deployment, class loaders are not separated in units of deployment.

In this case, the activation change of a J2EE application is possible in the units for the parts in dotted lines.

Separate All

When 'Separate all' is selected, class loaders are separated in the deployment units as shown in the figure
below.

Chapter 1: Design of J2EE Application

1-20

In this case, the activation change of a J2EE application is possible in the units framed by the dotted lines.
However, cross-reference between an EJB application of ejb-jar5 and ejb-jar6, and reference from a Web
application of WAR3 or WAR4 to an EJB application are impossible. So, different application can use
classes that have the same package names and same class names.

Do Not Separate

When 'Do not separate' is selected, all the classes except Web application classes are loaded with the
'system class loader' as shown in the figure below.

In this case, the activation change of a J2EE application is performed only for the Web application that
deploys WAR files (the parts framed by the dotted lines in the figure below).

As for the reference between applications, EJB applications can refer to the class of each other. In
addition, from Web applications, the classes of all the EJB applications can be referred to.

Class Loader

1-21

Changing the Search Order of Class Loaders
In the default Interstage settings, classes are searched in order of Application class loader first, followed
by Webapp class loader.

By making the search order of the class loader 'Parent after', classes can be searched in order of Webapp
class loader first, followed by Application class loader. The advantage of making the search order of the
class loader 'Parent after' is that, for example, if there are classes in the application with the same class
name, making the search order of the class loader 'Parent after' means that the class loader overrides the
loaded class with the parent class loader so that it is possible to have independent versions of classes.

If 'Do not Separate' is set for the class loader, there are only two types of class loader, the Webapp class
loader and the system class loader. Since the system class loader is always searched for first, it is not
necessary to set up the search order of the class loader.

Chapter 1: Design of J2EE Application

1-22

Setting Method
The search order of class loaders can be set up by one of the following methods from the Interstage
Management Console:

• [WorkUnit] > [Create] > [Common Definition] > [Searching order of Class Loaders]

• [WorkUnit] > [WorkUnit Name] > [Environment Settings] > [Common Definition] > [Searching order of
Class Loaders]

The search order of class loaders changes according to the setting value as shown in the following table:

Setting Value Search Order

Parent is first (default setting) System class loader

Application class loader

Webapp class loader

Interstage class loader

Parent is later System class loader

Webapp class loader

Application class loader

Interstage class loader

Priority Exception
As for the priority of classes, there are the following two exceptions:

• JDK classes

Because JDK classes are always loaded first, they cannot be replaced by a user.

• Classes whose names begin with particular package names

The loading of classes whose names begin with any of the package names below is always devolved
on their parent class loader.

If classes whose names begin with any of the package names below is included in a parent class
loader, a child class loader cannot replace classes.

Package Name Type

javax Java extensions

org.xml.sax SAX 1 & 2

org.w3c.dom DOM 1 & 2

com.fujitsu.interstage Interstage class

com.fujitsu.ObjectDirector Interstage class (ObjectDirector)

Class Loader

1-23

Class Settings used by IJServer
This section explains the setting method of classes used by IJServer and applications.

XML Parser
Refer to 'Settings of XML Parser'.

Classes Common to Multiple IJServers
Classes used commonly to multiple IJServers are specified in the classpath of J2EE property.

For classes common to multiple IJServers, libraries including the JDBC driver, which are used by users in
their applications, can be freely specified.

The classpath of J2EE property can be set up with the following method from the Interstage Management
Console:

• [Environment Settings] > [J2EE properties] > [Classpath]

Note

When specifying a directory name with the extension '.jar' or '.zip' to be a class path, add a path separator
to the end of the class path.

Common Classes in IJServer
The setup methods of the classes that are commonly used in IJServer are explained below.

There are two setup methods of the classes commonly used in IJServer; one is to set up the classpath of
the WorkUnit, and the other is to store information in the Shared directory of IJServer.

Method of Setting up the Classpath of the WorkUnit

Specify the absolute path to the directory containing the jar file or class file in the classpath of the
WorkUnit.

The classpath of the WorkUnit can be set up by one of the following methods from the Interstage
Management Console:

• [WorkUnit] > [Create] > [WorkUnit Configuration] > [Classpath]

• [WorkUnit] > [WorkUnit Name] > [Environment Settings] > [WorkUnit Configuration] > [Classpath]

Note

When specifying a directory name with the extension '.jar' or '.zip' to be a class path, add a path separator
to the end of the class path.

Chapter 1: Design of J2EE Application

1-24

Method of Storing Files in the Shared Directory in the IJServer Directory

Use one of the following methods for the setup:

• Store the jar files in the Shared/lib directory of IJServer.

• Store the classes file in the Shared/classes directory of IJServer.

If classes with the same package names and same class names are both in the Shared/lib directory and in
the Shared/classes directory, the classes in the Shared/classes directory are loaded.

Since class or jar files in this directory are not reactivated or auto-reloaded, if they are overwritten this
operation does not take effect until IJServer is restarted.

Note

In order to save resources to a Shared directory, users must have the appropriate level of authority. An
administrator may need to change a general user's authority.

Environment Variable: CLASSPATH
When 'Do not separate' is set for the separation of class loaders, the class set in environment variable:
CLASSPATH (or the system environment variable when automatic start is used) is loaded by the 'system
class loader'.

When 'Separate between EARs' or 'Separate all' is set for the separation of class loaders, the class set in
environment variable: CLASSPATH is not loaded.

Application Classes
Application classes can be set by deploying EAR file, ejb-jar file, WAR file, and RAR file with the following
Interstage Management Console function:

• [WorkUnit] > [WorkUnit Name] > [Deployment] > [Environment Settings] > [Deployment File(s)]

The EAR File Configuration

An EAR file is configured with the following file configuration:

Class Loader

1-25

EJB Application Classes

EJB application classes can be set up with one of the following methods:

• Store an ejb-jar file in an EAR file, and deploy it in IJServer.

• Deploy an ejb-jar file in IJServer.

Web Application classes

Web application classes can be set up with one of the following methods:

• Store a WAR file in an EAR file, and deploy it in IJServer.

• Deploy a WAR file in IJServer.

Connector Classes

Connector classes can be set up with one of the following methods:

• Store a RAR file in an EAR file, and deploy it in IJServer.

• Deploy a RAR file in IJServer.

• Deploy a RAR file in the connector service.

The deployment destination of the connector deployed in the connector service must be specified in the
classpath of the WorkUnit.

Chapter 1: Design of J2EE Application

1-26

Common Class in an Application

Methods to deploy libraries common to EJB applications and Web applications such as the utility class are
explained.

There are the following two methods for using a common class in an application:

• Method by setting up the manifest classpath

• Method by using the Shared directory in an EAR file

Both methods allow commonly used classes such as the utility class to be used from an EJB application
and Web application without having them be included in an ejb-jar file or WAR file.

For the above two methods, the ranges where classes can be referred to are different as follows:

Method Range where Classes can be Referred to

Method by setting up the
manifest classpath

Reference is possible only within an EJB application (ejb-jar) and Web
application (WAR) to which the manifest classpath is set.

Method by using the Shared
directory in an EAR file

Reference is possible from all the classes within an application.

Method of Setting up the Manifest Classpath
Store classes and manifest files that are common within an application in an EAR file as shown below.

1. Store the utility class at the top of the EAR file or in any directory of the EAR file.

2. Describe the following entry in META-INF/MANIFEST.MF in an ejb-jar file or WAR file that uses the
utility class:

Manifest-Version: 1.0
Class-Path: The jar file containing the utility classes or the directory
containing the class files is specified using the relative path within the
 EAR file.

For example, when utility1.jar, utility2.jar, or com.fujitsu.Utility.class is used from web1.war, include in
web1.war a manifest file that is defined as follows:

[EAR file configuration]

− web1.war

− utility1.jar

− util/utility2.jar

− util/com/fujitsu/Utility.class

[Manifest file contained in WAR]

Manifest-Version: 1.0
Class-Path: utility1.jar util/utility2.jar util

Class Loader

1-27

Note

If you are creating a manifest file, note the following points:

• A space is required after ':' in the header.

• A description in a line must contain a maximum of 72 bytes in UTF-8 encoding form. If 72 bytes are
exceeded, enter a space at the start of the following line, and continue the description after that.

Method of using the Shared Directory in an EAR File
The setup can be made by storing common classes in an application in the Shared directory in the EAR
file, and deploying the EAR file in IJServer.

Store a jar file in the Shared/lib directory, and store a class file in the Shared/classes directory.

The Shared directory in an EAR file is the function unique to Interstage, and it is disabled for other
application servers.

In addition, the Shared directory is valid only for EAR files, and it is disabled for ejb-jar, RAR, and WAR
files.

If classes with the same package names and same class names are both in the Shared/lib directory and in
the Shared/classes directory, the classes in the Shared/classes directory are loaded.

The class or jar file in this directory is the target of reactivate and class auto reload.

Settings of XML Parser
This section explains the setup methods of the XML parsers that are used in IJServer.

The following XML parsers can be used for Interstage:

• Crimson (Sun's XML parsers)

• Fujitsu XML processor

• Others

Setting an XML Parser to be used for each IJServer
An XML parser to be used can be set up by one of the following methods from the Interstage Management
Console:

• [WorkUnit] > [Create] > [XML Parser Environment Settings] > [XML Parser Used]

• [WorkUnit] > [WorkUnit Name] > [Environment Settings] > [XML Parser Environment Definition] >
[XML Parser Used]

Setting values are as follows:

• Crimson (default)

• Fujitsu XML processor

Note) It is necessary to install Fujitsu XML processor beforehand. If Fujitsu XML processor is not
installed, an error occurs.

Chapter 1: Design of J2EE Application

1-28

• Others

In this case, specify the full path to the directory in which the jar file of the XML parser is stored.
Store both an interface such as org.w3c.dom,org.xml.sax, javax.xml.parsers and a implemented
class of XML parser into the specified directory. IJServer cannot be started in one of cases.

Note) A user that starts the WorkUnit must have the read permission to the directory to be specified.

Note

According to the type of the specified XML parser, the XML parser is set up for the start parameter of
IJServer as shown below.

XML Parser Type JDK1.3 JDK1.4

Crimson None

The XML parser included in JDK is used.

Fujitsu XML
processor

Set to '-classpath' at the start of IJServer.

Others

Set to '-classpath' at the start of IJServer.

Set to the JavaVM option:
'-Djava.endorsed.dir' at the start of
IJServer.

Note

An XML parser class cannot be set to below. It is ignored when it sets up.

• J2EE property

• Classpath of the WorkUnit

• Shared directory of IJServer

Specifying an XML Parser to be used for each Application
As with other classes, the XML parser used by each application can be specified with the following
settings:

• Include an XML parser in the EAR file.

• Include an XML parser in the ejb-jar file.

• Include an XML parser in the WAR file.

Notes

• The XML parser to be used and the XML parser that has been specified in the XML parser
environment settings of IJServer must have interface levels that meet the conditions set out in the
points below. If the interface levels are different, the XML parser may not be able to be used. If an
XML parser cannot be used, check whether the level of the XML parser' interface used by the
application for the XML parser selected by the WorkUnit environment definition is correct. If the level
of an interface is not correct, make it the same.

Class Loader

1-29

− JAXP(javax.xml.parsers package)

− SAX(org.xml.sax package)

− DOM(org.w3c.dom package)

• If the same XML parser as one that has been specified in the XML parser environment settings of
IJServer is specified, the specification is ignored, and the XML parser specified in the XML parser
environment settings of IJServer is used.

• When an XML parser type is specified as shown below, it is necessary to specify the XML parser that
has been specified in the XML parser environment settings of IJServer.

If a different XML parser from the one in the XML parser environment settings of IJServer is specified,
the start of IJServer fails.
− Specification with the system property

DOM : javax.xml.parsers.DocumentBuilderFactory

SAX : javax.xml.parsers.SAXParserFactory

Specification by jaxp.properties of the following

When JDK 1.4 is used : C:\Interstage\JDK14\jre\lib\jaxp.properties
When JRE 1.4 is used : C:\Interstage\JRE14\lib\jaxp.properties
When JDK 1.3 is used : C:\Interstage\JDK13\jre\lib\jaxp.properties
When JRE 1.3 is used : C:\Interstage\JRE13\lib\jaxp.properties

When JDK 1.4 is used : /opt/FJSVawjbk/jdk14/jre/lib/jaxp.properties
When JRE 1.4 is used : /opt/FJSVawjbk/jre14/lib/jaxp.properties
When JDK 1.3 is used : /opt/FJSVawjbk/jdk13/jre/lib/jaxp.properties
When JRE 1.3 is used : /opt/FJSVawjbk/jre13/lib/jaxp.properties

Problem Investigation with the Trace Function
When a J2EE application is developed, it is necessary to consider what class loader will load each class.

If an incorrect class loader is used to load a class, the J2EE application may not operate correctly. In order
that the investigation of such problems can be facilitated, the trace function is provided.

When a class is loaded, the trace function outputs the information of the class loader that loads the class.
The output is recorded in the 'container log'. From the 'container log,' the following can be learned:

• The order in which classes are loaded

• The class loader that loads the class

Chapter 1: Design of J2EE Application

1-30

Output Format
The following are the formats of trace information:

• When the class loader is the 'Webapp class loader' or 'Application class loader'

[Time stamp] [Loaded class-name from repository by class-loader-type]

• When the class loader is the 'System class loader' or 'Interstage class loader'

[Time stamp] [Loaded class-name by class-loader-type]

Output Items

Item Description

Time stamp Date and hour of the loading of the class

Class name Class name of the loaded class (including the package name)

Repository Storage directory name or jar file name of the loaded class

Name of the class loader that loaded the class

Class Loader Displayed Name

System class loader System

Interstage class loader Interstage

Catalina class loader
Note) Used in the Interstage system

Catalina

Application class loader Application

Class loader type

Webapp class loader Webapp

Notes

• The class trace used by classes that are loaded in the system class loader is not output. For details
of the classes that are loaded in the system class loader, refer to Structure of a Class Loader

To output the class, specify '-verbose:class' in the WorkUnit JavaVM option and then collect the
JavaVM trace information.

• The trace of a class loaded in the system class loader is output in the system class loader when the
request to load the class is executed. At this time, there is a possibility that the system class loader
may collect an already loaded class from the cache and use it.

Log Output Example

 [24/02/2004 16:17:22:093 +0900] [Loaded com.xxx.ClassA by Interstage]
 [24/02/2004 16:17:22:101 +0900] [Loaded com.xxx.ClassB from
 c:\Interstage\J2EE\lib\xxx.jar by Webapp]

Class Loader

1-31

Setting Method
The trace function can be set up by one of the following methods from the Interstage Management
Console:

• [WorkUnit] > [Create] > [Common Definition] > [Output Class Loader Trace Information]

• [WorkUnit] > [WorkUnit Name] > [Environment Settings] > [Common Definition] > [Output Class
Loader Trace Information]

Setting values are as follows:

• Do not output (default setting)

• Output

Note

The trace function is intended to be used for the debugging during development. It is recommended that
this function not be used in the operating environment.

Example of Use
This section describes examples of using the class loader trace function.

[Momentum]

Collect the class loader trace information if the problem described below occurs. The class loader trace
function is helpful for resolving this kind of problem.

• The EJB application call from Servlet failed. The container log analysis result detects that
ClassCastException has occurred in ClassA.

Analysis Procedure

Execute the analysis according to the following procedure.

1. Click [WorkUnit] > 'WorkUnit Name'. Click the [Environment Settings] tab, and then click [Common
Definition] > [Output Class Loader Trace Information]. Select the [Output] checkbox.

2. Execute a reproduction test.

3. Search for the trace information that is output in the container log using ClassA. This detects the
following 2 lines.

[Loaded ClassA
C:\Interstage\J2EE\var\deployment\ijserver\kaz001\apps\j2eesample.ear\
CartBean.jar by Application]
[Loaded ClassA
C:\Interstage\J2EE\var\deployment\ijserver\kaz001\apps\j2eesample.ear\
j2eesample.war\WEB-INF\classes by Webapp]

From the above data, it is judged that ClassA is stored in 2 locations, the EJB application and the Web
application.

Chapter 1: Design of J2EE Application

1-32

Investigation

Since the EJB application call from Servlet failed because of the class batting, investigate whether the
following support exists.

1. Is it possible to change the application configuration so that the same class does not exist in both the
EJB application and Web applications?

2. Is the problem avoidable by making the search order for the class loader 'Parent first'?

3. Is the problem avoidable by making the class loader type 'Do not Separate'?

Notes to be taken when Class Loaders are used
This section explains the notes to be taken when class loaders are used.

Notes to be taken when the JDBC Driver is used
The JDBC driver needs to be loaded by the 'Interstage class loader'. Therefore, define the JDBC driver in
the following locations:

• Classpath of J2EE property

• Classpath of the WorkUnit

• Shared directory of IJServer

If a definition contains an error, an error and exception (Exception) occur and the JDBC driver cannot be
used.

Notes about using the Connector
When the connector is used, the RAR file may contain a shared library.

In that case, set the deployment directory of the RAR file to the WorkUnit environment setting.

From the Interstage Management Console, set the deployment directory of the RAR file to the following
item of [WorkUnit] > [WorkUnit name] > [Environment Settings] tab.

Path

Library Path

Class Loader

1-33

Notes about Using JNI with J2EE Applications
The same Native module cannot be loaded in different class loaders. If a class that uses JNI is contained
in the application (EAR, ejb-jar, WAR, RAR) and the same Native module is loaded in a different class
loader, java.lang.UnsatisfiedLinkError is thrown.

If java.lang.UnsatisfiedLinkError is thrown, take the following action.

• Set the class that uses JNI (the class that implements the 'native' method) in the WorkUnit class path
without including it in the application, or save it in the IJServer 'Shared' directory.

• If the class that uses JNI is an EJB application class, it is possible to avoid the error by selecting 'Do
not Use' for the class loader separation.

Additionally, if a class that uses JNI is contained in the application (EAR, ejb-jar, WAR, RAR), that
application cannot use HotDeploy/class auto reload.

If an attempt to use HotDeploy/class auto reload is made, it may cause java.lang.UnsatisfiedLinkError to
be thrown, and HotDeploy/class auto reload to fail. If this happens, restart IJServer.

To use HotDeploy/class auto reload in an application that uses JNI, take the following action.

• Set the class that uses JNI (the class that implements the 'native' method) in the WorkUnit class path
without including it in the application, or save it in the IJServer 'Shared' directory.

IJServer must be restarted if the class that uses JNI is switched.

Chapter 1: Design of J2EE Application

1-34

Transaction Control
This section explains the IJServer's J2EE application transaction control.

Transaction Control Method
To perform transaction control in the Web application, acquire UserTransaction from JNDI.

To perform transaction control in the EJB application, the user can specify a Bean (Bean Managed
Transaction) as the transaction type with UserTransaction or specify a Container (Container Managed
Transaction) as the transaction type so that the container controls the transaction.

Refer to 'Transaction Function using the UserTransaction Interface' in Chapter 3 for details of using
UserTransaction.

As the transaction, both default and distributed transactions can be selected.

Default Transaction
A J2EE application on the same JavaVM can access the database with transaction linkage using the
default transaction.

After the transaction is started, the transaction can be shared if the same data source is accessed via the
same user/password, which enables the transaction linkage.

When a J2EE application starts the transaction and accesses another on the same JavaVM, it can be
operated in the same transaction.

When an EJB application is transaction-linked, specify 'Container' as the transaction type and then specify
a transaction linkage enabled transaction type (such as 'Required').

Distributed Transaction
When the following transaction linkages are made, use the distributed transaction.

• Transaction linkage by access to a different resource

• Transaction linkage between different IJServers

• Transaction start/end control from J2EE application client

Notes

• Because the distributed transaction can be used only with an EJB application, specify one of the
following two as the IJServer operation type.

− Process where only EJB applications are operated

− Operating both Web and EJB applications (on separate JavaVMs)

Specify the distributed transaction when the IJServer is defined.

Refer to Part IV, JTS/JTA Edition, for details on the distributed transaction.

• The distributed transaction cannot be used between the EJB applications linked with different server
machines.

Transaction Control

1-35

• When transaction attributers, NotSupported, Supports, and Never, are specified in one of the Entity
Bean methods by using the distributed transaction function, an error occurs when the objective EJB
application is started, and the startup fails.

• IJServers cannot concurrently be started.

• Up to 32 resource managers can be used.

EJB Application Transaction

In the EJB application transaction function, JDBC connections are cached in the transaction. Therefore,
distributed applications can be controlled with one transaction.

Caching JDBC Connections in Transaction

In the ordinary JDBC application, the transaction is managed for each connection acquired in the
getConnection method of the data source.

In the case of the EJB application, the connection acquired in the getConnection method is cached in the
transaction by the container. When the getConnection method is re-executed for the same data source in
the same transaction, the container returns the cached connection. Therefore, the processing of
applications distributed can be controlled with one transaction.

Note

Connections acquired from different data sources are processed with different transactions. Even if each
data source is for the same database, it is processed with each transaction. Therefore, if the application is
constructed, the processing may stop.

Transaction Linkage Enabled Resources
The resources that can be controlled with the default and distributed transactions are as follows.

• Default transaction

The following resource can be transaction-controlled.

− JDBC data source

For a JMS connection factory where a Message-driven Bean receives a message, specify 'Container'
as the Message-driven Bean's transaction type and 'Required' as the transaction type to let the
container control the transaction.

• Distributed transaction

The following resources can be transaction-controlled.

− JDBC data source

− JMS connection factory

− Connector connection factory

When the distributed transaction is used, distributed-transaction linkage enabled resources must
have been defined.

Chapter 1: Design of J2EE Application

1-36

2-1

Chapter 2

Operating J2EE Applications

The Interstage Management Console provided in Interstage V6 or later allows the user to start/stop
Interstage and IJServer (operation) or set up the environment.

This chapter explains the operations listed below that are required for J2EE application operation.

• Preparing J2EE Applications

• Deploying and Setting J2EE Applications

• Preparation for Servlet Service Operation

• Request Distribution Control by Web Server Connector

• Procedure for Using JTS

• Procedure for Using JMS

• Procedure for Using JavaMail

• Customizing and Checking the Operating Environment

• Application debug

Refer to the sections in the corresponding chapters for details of usage of the following functions:

• Refer to Chapter 3, JNDI for details of the resource definition/reference function using JNDI.

• Refer to Chapter 4, The J2EE Application Security Function for details of the security function.

Point

To prevent incompatibility problems attributable to different Java VM versions, it is recommended to use
the same version of JDK/JRE for development, deployment, and operation.

Chapter 2: Operating J2EE Applications

2-2

Preparing J2EE Applications
This section explains how to prepare J2EE applications.

Developing J2EE Applications
J2EE applications need to be developed.

Apworks can be used to develop J2EE applications. Refer to the 'Apworks Apdesigner Programmer's
Guide' or 'Component Designer User’s Guide' (not provided by Plus Developer) for details.

Refer to the following for details on development:

• 'Referencing Objects' in Chapter 3, for referencing resources and EJB

• Chapter 6, Web Application Development, for Web application

• Chapter 9, EJB Application Development, for EJB application

Refer to Chapter 10, How to Create Entity, and Chapter 11, How to Call EJB Applications, for details
on development in each runtime environment.

Setting the Deployment Descriptor
To prepare J2EE application clients or Web application, the deployment descriptor must be set. Set
information on the J2EE applications and the resource names to be referenced by the J2EE applications
in the deployment descriptor. Refer to the following for details:

• 'J2EE Application Client deployment descriptor file Detailed Set Up' in Chapter 3, for J2EE
application clients.

• 'Web Application Environment Definition File (Deployment Descriptor)' in Chapter 6, for Web
applications.

• For EJB applications, use the Apdesigner EJB deployment descriptor editor of Apworks or the
deployment descriptor file editor (*1) of Component Designer. Refer to the 'Apworks Apdesigner
Programmer's Guide' or 'Component Designer User's Guide' for more information (*1).

*1 Component Designer is not provided for Plus Developer.

Packaging Class Files
Class files created as programs are packaged.

• Store the J2EE application client in a JAR file for packaging.

• Store the Web application client in a WAR file for packaging.

• Store the EJB application client in a JAR file for packaging.

The above packages created for individual application types can further be packaged as an Enterprise
Archive (EAR) file. Doing so enables all applications used for operation to be distributed as a single
package.

Deploying and Setting J2EE Applications

2-3

Deploying and Setting J2EE Applications
This section explains the following topics:

• Deploying J2EE Applications

• HotDeploy Function of J2EE

Deploying J2EE Applications
Deploy J2EE applications in the runtime environment.

• Use the Interstage Management Console or ijsdeployment command for Web applications and EJB
applications. If needed, create IJServer and deploy packaged applications.

Refer to 'J2EE Operation Command' in the Reference Manual (Command Edition) for details of the
ijsdeployment command.

• For J2EE application clients, copy the CLIENT-JAR file to the client runtime environment and use the
jar command to decompress the deployment descriptor file in the CLIENT-JAR file into an arbitrary
directory.

If J2EE application clients are included in the EAR file, use the deployment function of the Interstage
Management Console to expand them and then take out the CLIENT-JAR file from the
decompressed files.

Refer to 'IJServer file configuration' in Chapter 1 for details of the J2EE application client expansion
destination.

Notes

• EJB application deployment runs Javac and therefore fails in a JRE environment. Install a JDK
environment for this purpose.

HotDeploy Function of J2EE
If the J2EE HotDeploy function is used, modules can be deployed, redeployed, and undeployed without
stopping IJServer. Web and EJB applications can also be added to IJServer in operation and these
applications can also be updated or deleted.

Because the function enables requests to be issued to modules being deployed or not being undeployed,
applications can be developed more efficiently and IJServer can be operated continuously.

The HotDeploy function is explained in the following order:

• Design Method

• Operation Method

• Status of Deployed Modules

• Modules that are Activated or Inactivated at Deployment, Redeployment, Undeployment, or
Reactivating

• Shared Directory

Chapter 2: Operating J2EE Applications

2-4

Design Method
The 'HotDeploy function' and 'class auto-reload function' are offered to improve development efficiency
and maintenance during operation. Although using just the HotDeploy function will improve efficiency,
using the class auto-reload function as well will improve development efficiency even more. Refer to
'Class Auto-reload Function' for details of the class auto-reload function.

Operation Method
To use the HotDeploy function, in the Interstage Management Console, click [WorkUnit]. Click the [Create
New] tab, click [Detailed Settings] and make settings in [Shared Definition]. Alternatively, after creating the
WorkUnit, in the Interstage Management Console, click [WorkUnit] > 'WorkUnit Name'. Click the
[Environment Settings] tab, and make the change in [Shared Definition].

The HotDeploy function can be used to deploy new modules and redeploy existing modules efficiently.
For this reason, the IJServer start status may differ depending on whether or not the HotDeploy function is
used.

The relationship between deployed modules and the IJServer start status is explained below.

• IJServer start status if there are no deployed modules

IJServer will fail to start if there are no deployed modules, regardless of whether or not 'Use' or 'Do not
Use' is selected for the HotDeploy function.

• IJServer start status if there are deployed modules

If the IJServer type is 'Web and EJB applications are operated in different JavaVMs', the behavior is
as shown below.

All other IJServer types are as shown in the figure below, where the HotDeploy function is not used.

− Deploying Web and EJB applications

All Java VMs (Servlet container and EJB container) start regardless of whether or not 'Use' or 'Do
not Use' is selected for the HotDeploy function.

− Deploying Web applications only

Java VMs on which applications have been deployed start. If the HotDeploy function is used, all
Java VMs (EJB container) start regardless of whether or not an EJB application has been
deployed in an EJB container.

Deploying and Setting J2EE Applications

2-5

Java VMs on which applications have been deployed start. If the HotDeploy function is used, all
Java VMs (Servlet container) start regardless of whether or not a Web application has been
deployed in a Servlet container.

• Start status when there are deployed modules but activation fails

For EJB applications, the start status is as shown below. Web applications for which activation was
successful start regardless of whether or not 'Use' or 'Do not Use' is selected for the HotDeploy
function.

− The HotDeploy function is used

No EJB applications start.

− The HotDeploy function is not used

EJB applications for which activation was successful start.

The table below shows the differences between using and not using the HotDeploy function.

Chapter 2: Operating J2EE Applications

2-6

[Separating between EARs/Separating all]

− If there are no deployment modules, IJServer does not start.

− If there are deployment modules, IJServer starts in the way shown in the table.

 The HotDeploy Function is
not used

The HotDeploy Function is
used

Deployed Module Status/
Type

No Modules
can be
Activated

All Modules
can be
Activated

No Modules
can be
Activated

All Modules
can be
Activated

war Starts

ejb-jar Does not
start

Starts

war only Does not start

ejb-jar only Does not
start

Starts

ear

war and
ejb-jar

Starts if all
ejb-jar
modules
can be
activated

Starts

Starts

Note

If the HotDeploy function is not used, IJServer does not start if the EJB application activation fails.

Use the Interstage Management Console for deployment, redeployment, undeployment and reactivating.

1. Deployment (deployment of new modules)

Modules are deployed to the operating environment and the modules deployed are activated.

In the Interstage Management Console, click [WorkUnit] > 'WorkUnit Name' > [Deploy]. Click the
[Browse] button, and select the target module for deployment.

2. Redeployment (redeployment of already deployed modules)

Modules currently deployed are deactivated (*1), and the modules are redeployed and activated.

In the Interstage Management Console, click [WorkUnit] > 'WorkUnit Name' > [Deploy]. Click the
[Browse] button, and select the target module for redeployment.

3. Undeployment

Modules currently deployed are deactivated and then undeployed.

In the Interstage Management Console, click [WorkUnit] > 'WorkUnit Name'. Click the [Application
Status/Undeploy] tab, and then click [Checkbox] to undeploy the selected deployed modules.

Deploying and Setting J2EE Applications

2-7

4. Reactivating (*2)

Select [WorkUnit] > [IJServer name] > [Application Status/Undeploy] from the Interstage
Management Console, and select a deployed module and click the Reactivate button. The module is
deactivated to execute the re-reading of the definition file and destroy class files that have already
been read.

If reactivate is executed, the following settings are reflected.

[For a Web application]

− Module environment settings window settings

− Module name conversion settings window settings

[For a Web application]

− Module environment settings window settings

− Module name conversion settings window settings

− Application environment definition window settings for applications

*1) The following operations are executed to deactivate a module already deployed:

1) Stopping acceptance of additional requests

2) Waiting until processing of the requests already accepted before start of deactivation processing
is finished.

3) Deactivation of the module

For deactivation of a deployed module, acceptance of additional requests is stopped and deactivation
processing is made to wait until processing for the current requests is finished. If request processing
is not finished within one minute, an error occurs with the deployed module left in 'deactivation in
progress'. In this case, wait until request processing is finished (the status is set to 'inactive'), and
then reexecute deployment, or reboot IJServer.

A module that has been put in 'inactive' state can be activated by reactivating it. A module that has
been put in error state can be recovered for operation by removing the error cause and reactivating it.

Refer to 'Status of deployed modules' for the status of deployed modules. Refer to' 4. Reactivating'
for the reactivation procedure.

*2) Use the reactivate function to:

− Activate the deployed module after removing the error cause for a module in the error state.

− Change the tuning parameters or operation modes of a specific module without stopping
IJServer.

− Clear the cache of a specific module without stopping IJServer.

For instance, clear the cache of the Entity Bean instance in instance management mode
'ReadOnly.' (When a module is deactivated, the application is initialized and therefore the
information retained by the application and container is cleared.)

Chapter 2: Operating J2EE Applications

2-8

Status of Deployed Modules
The status of each module can be checked with the Interstage Management Console. The Interstage
Management Console displays status information as shown below.

Status Explanation Action

Active The deployed module can accept a request. -

Inactive The deployed module can accept no request. Refer to the container log,
establish the cause of the
deactivated status and
reactivate.

Active (part) The deployed module can accept a request but is
inactive for some IJServer processes.

Refer to the container log,
establish the cause of the
deactivated status and
reactivate.

Active
(inconsistent)

The deployed module can accept a request but
the activated module is inconsistent among
processes.

(Because some IJServer processes are rebooted
during deployment, certain processes have
loaded modules before execution of
redeployment.)

This status is also generated when modules in
'active (part)' and 'active (inconsistent)' coexist.

-

Activating The deployed module is going to start to accept
requests.

-

Deactivating The deployed module is going to stop accepting
requests.

If there is no change in
the status, it may be that
processing was
interrupted because of
insufficient memory. Stop
IJServer and then restart
it.

Abnormal Because some IJServer processes were
rebooted during deployment, undeployment or
reactivating, the following abnormal conditions
are present:

- Processes being activated and processes
being deactivated coexist.

Stop IJServer and then
restart it.

Deploying and Setting J2EE Applications

2-9

Modules that are Activated or Inactivated at Deployment, Redeployment, Undeployment,
or Reactivating

When deploy, redeploy, undeploy, or reactivate is executed, deployed modules are deactivated or
activated. In this case however, all the modules that reference the class of the deployment module are
also deactivated or activated.

The reference relationships between deployment modules depend on the class loader separation method
(separate between EARs, separate all, don't separate).

The table below summarizes deployment modules that are activated and deactivated depending on the
class loader separation method. Refer to 'Separation of class loaders' in Chapter 1 for details of class
loader separation.

Deployed Module Class Loader
Setting

EAR WAR ejb-jar RAR

Separate
between
EARs

Target EAR only Target WAR only Every deployed
ejb-jar, WAR or
RAR

Every deployed
ejb-jar, WAR or
RAR

Separate all Target EAR only Target WAR only Target ejb-jar only Target RAR only

Don't
separate

 - (*) - (*) - (*) - (*)

*: The HotDeploy function cannot be used.

Deactivation and activation according to the class loader separating system is explained below.

Deactivate/activate each module according to the range shown in the figure below. If the module
activation fails, activation continues for all modules except the one that failed.

• Separating between EARs

If the system used is separating between EARs, and an ejb-jar or RAR is deployed so that an ejb-jar
or RAR class can be referenced from another ejb-jar, RAR, or WAR, all deployed ejb-jars, RARs, and
WARs are deactivated/activated. If EAR or WAR is deployed, deployed modules are
deactivated/activated individually.

Chapter 2: Operating J2EE Applications

2-10

• Separating all

If the system used is separating all, modules are deactivated/activated individually.

Shared Directory
The Shared directory types are shown below. The reactivating behavior for each is different.

• Shared directory under the IJServer directory

This is a directory in which classes are set for shared use in IJServer. Since class or jar files in this
directory are not reactivated, if they are overwritten this operation does not take effect until IJServer is
restarted.

• Shared directory contained in EAR

This is a directory in which classes are set for shared use between applications in EAR. Class or jar
files in this directory are targets of reactivation.

Notes about the HotDeploy function

• Changes made in the Interstage Management Console system, resources or definitions specified in
IJServer are not effective.

• The Servlet session and STATEFUL Session Bean instance are destroyed. For this reason, re-create
the files.

• When reactivating or redeploying an application containing a class that uses JNI, loading of a native
module may fail, causing java.lang.UnsatisfiedLinkError to be thrown. In this case, it is necessary to
restart IJServer. For details of executing HotDeploy for applications that use JNI, refer to 'Notes
about using JNI with J2EE applications' in 'Notes about using class loaders'.

Class Auto-reload Function
The class auto-reload function is used to switch deployed application classes without stopping IJServer.

However, class auto-reload does not work when new if jar files are added. For this reason, jar files that are
added are not reactivated until the module is reactivated or IJServer is restarted.

To make the settings for using the class auto-reload function, in the Interstage Management Console click
[WorkUnit] > [Deploy]. Select 'Use' for the class auto-reload function.

If the class auto-reload function is used, a corrected application file is loaded automatically just by
overwriting it. Development efficiency is improved because there is no need to redeploy the application or
stop/start IJServer.

It is recommended that the class auto-reload function is executed for the development of applications.

Deploying and Setting J2EE Applications

2-11

When the auto-reload setting is changed while IJServer is active, the class that is changed is loaded
according to one of the following operations:

• Re-start of IJServer

• Reactivation of module

Note

Requests to modules other than the one being auto-reloaded can be processed.

Design
The class auto-reload function can improve the efficiency of application development that requires class
files of a deployed module be frequently modified and verified for operation. However, the function
deteriorates processing performance because the container keeps monitoring class files for modification.
For this reason, use the class auto-reload function only for application development.

In addition, the auto-reload function cannot replace the following classes. To replace these classes, use
the HotDeploy function. Refer to 'HotDeploy Function of J2EE' for details of the HotDeploy function.

[Classes that the class auto-reload function cannot replace]

EJB interfaces (Remote, Home, Local, and LocalHome)

Operation
Because the class auto-reload function periodically monitors class files, the monitoring intervals must be
defined from the Interstage Management Console. From the Interstage Management Console, select
[WorkUnit] > [IJServer name] > [Environment Settings] and make settings for the deployed modules

To actually replace a class file, copy it directly to the deployment directory. Classes contained in the
directories shown below are targets of the class auto-reload function. Refer to 'IJServer file configuration'
in Chapter 1 for details of the copy destination (deployment directory).

If WAR files are deployed

The extension for files under [J2EEshareddirectory]\ijserver\[IJServer name]\apps\[Webmodule
name]\WEB-INF\lib is '.jar'

[J2EE common directory]\ijserver\[IJServer name]\apps\[EJBmodule name]\lib is '.class'

If ejb-jar files are deployed

[J2EE common directory]\ijserver\[IJServer name]\apps\[EJBmodule name]\lib is '.class'

If EAR files are deployed

[J2EE common directory]\ijserver\[IJServer name]\apps\[EAR module name]\[WAR file
name]\WEB-INF\lib is '.jar'

[J2EE common directory]\ijserver\[IJServer name]\apps\[EAR module name]\[ejb-jar file name]lib is
'.class'

[J2EE common directory]\ijserver\[IJServer name]\apps\[EAR module name]\[RAR file name]lib is '.jar'

[J2EE common directory]\ijserver\[IJServer name]\apps\[EAR module name]\Shared\lib\lib is '.jar'

[J2EE common directory]\ijserver\[IJServer name]\apps\[EAR module name] \Shared\classes\lib is '.class'

Chapter 2: Operating J2EE Applications

2-12

If WAR files are deployed

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[Web module name]/WEB-INF/lib is '.jar'

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[Web module name]/WEB-INF/classes lib is
'.class'

If ejb-jar files are deployed

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EJB module name]/ lib is'.class'

If EAR files are deployed

opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EAR module name]/[WAR file
name]/WEB-INF/lib is'.jar'

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EAR module name]/[WAR file
name]/WEB-INF/lib is '.class'

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EAR module name]/[ejb-jar file name]/lib is
'.class'

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EAR module name]/[RAR file name]/lib is
'.jar'

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EAR module name]/Shared/lib is '.jar'

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[EAR module name]/Shared/classes/lib is
'.class'

When a class file is replaced, the classes of the modules that can reference the class are all auto-reloaded.
The modules that can reference class files depend on the class loader settings. The classes of the
modules that are auto-reloaded are shown below:

[Classes that are class auto-reload]

Classes to be Replaced Class Loader
Setting

Class of
WAR
Deployed
Individual
ly

Class of
WAR
included
in EAR

Class of
WAR
included
in EAR

Class of
ejb-jar
included
in EAR

Class of
Shared
Directory
included
in EAR

Class of
RAR
Deployed
Individual
ly

Class of
RAR
included
in EAR

Separate
between
EARs

Only
class of
replaced
WAR

Only
class of
replaced
WAR

All
classes
of ejb-jar,
RAR, and
WAR
deployed
individual
ly

All
classes
of
modules
included
in EAR

All
classes
of
modules
included
in EAR

- (1) All
classes
of
modules
included
in EAR

Separate all Only
class of
replaced
WAR

Only
class of
replaced
WAR

Only
class of
replaced
ejb-jar

All
classes
of
modules
included
in EAR

All
classes
of
modules
included
in EAR

- (1) All
classes
of
modules
included
in EAR

Deploying and Setting J2EE Applications

2-13

Classes to be Replaced Class Loader
Setting

Class of
WAR
Deployed
Individual
ly

Class of
WAR
included
in EAR

Class of
WAR
included
in EAR

Class of
ejb-jar
included
in EAR

Class of
Shared
Directory
included
in EAR

Class of
RAR
Deployed
Individual
ly

Class of
RAR
included
in EAR

Don't
separate

Only
class of
replaced
WAR

- (1) - (1) - (1) - (1) - (1) - (1)

1) Because the class loader is not separated, all deployed modules can be referenced to each other,
except for those between WARs. For this reason, the class auto-reload function does not work.

2) Lone RARs that are deployed are not targets of auto-reload. For this reason, class auto-reload does
not work.

Shared Directory
The Shared directory types are shown below. The auto-reload behavior for each is different.

• Shared directory under the IJServer directory

This is a directory in which classes are set for shared use in IJServer. Since class or jar files in this
directory are not auto-reloaded, if they are overwritten this operation does not take effect until
IJServer is restarted.

• Shared directory contained in EAR

This is a directory in which classes are set for shared use between applications in EAR. Class or jar
files in this directory are auto-reload targets.

Notes about the auto-reload function

• In order to change the resources in the deployment directory of the application directly, users must
have the appropriate level of authority. An administrator may need to change a general user's
authority.

• The EJB interfaces (Remote, Home, Local, and LocalHome) and the resource adapter interface
cannot be changed. If an interface is changed, one of the following errors may occur. If so, use the
HotDeploy function for redeployment.

− NoClassDefFoundException

− NoClassDefFoundError

− NoSuchMethodError

− In CMP2.0 Entity Bean, the [CMP2.x-XXXX] message may be output.

• A module is not auto-reloaded when it is inactive.

• The class auto-reload function deteriorates processing performance because the container keeps
monitoring class files for modification. For this reason, use the class auto-reload function only for
application development.

• When the date and time of the update of the JSP file is newer than the class file generated by the last
compile, JSP is auto-reloaded.

Chapter 2: Operating J2EE Applications

2-14

• The class auto-reload function only switches classes. For this reason, the result of changing a
definition such as deployment descriptor in the Interstage Management Console system, resources
or definitions specified in IJServer is invalid.

• The interstage.xml stored in the application deployment directory is used for running IJServer. For
this reason, it must not be deleted. Additionally, if interstage.xml is edited using a text editor, only edit
the <web> and <ejb> tags. If interstage.xml is deleted, or any tags other than the <web> and <ejb>
tags are edited, it will affect the ability of IJServer to run normally. In this case, the corresponding
IJServer must be deleted.

For details of the application deployment directory, refer to 'IJServer file configuration'.

For details of how to edit interstage.xml, refer to 'interstage.xml file'.

• If class auto-reload is used, whether or not application deactivation/activation works depends on the
class file and jar file switch, as shown in the table below.

 A class File is
added

A jar File is
added

A class File
that has
already been
loaded is
overwritten

A class file
that has not
been loaded is
overwritten

A jar file is
overwritten

Application
Deactivation/
Activation

Does not work Does not work Works Does not work Works

When deactivation/activation is running for an application, the Servlet session and the STATEFUL
Session Bean instance are destroyed. For this reason, they must be re-created.

• When class auto-reload is performed for an application containing a class that uses JNI, loading of a
native module may fail, causing java.lang.UnsatisfiedLinkError to be thrown. In this case, it is
necessary to restart IJServer. For details of executing class auto-reload for applications that use JNI,
refer to 'Notes about using JNI with J2EE applications' in 'Notes about using class loaders'.

• When a file is copied, set the original access permissions also to the copied file. If invalid access
permissions are set, application execution, deployment, or undeployment may fail.

Customizing Web and EJB Applications
Use the Interstage Management Console to customize Web and EJB applications.

From the Interstage Management Console, select [System] > [WorkUnit] > [IJServer name], and then click
the application to be customized.

Setting Clients
To allow J2EE application clients and applets to reference EJB, the EJB client environment must be set up.
Refer to 'Environment Setup for Referencing EJB' in Chapter 3 for details.

HTTP Tunneling
When using J2EE HTTP tunneling, refer to 'HTTP Tunneling of J2EE' in the Security System Guide.

Preparation for Servlet Service Operation

2-15

Preparation for Servlet Service Operation
This section explains how to prepare for Servlet service operation.

Setting up Web Server Environment
The following Web server supports a connection with the Servlet service:

• Interstage HTTP Server

• Microsoft® Internet Information Services

• Sun Java System Web Server

Interstage HTTP Server Environment Settings
The Web server connector implements communication from the Web server to the Servlet service.

The Web server connector operates as a DSO (dynamic shared objects) module using Apache API on the
Web server, and therefore interlocks with the start and stop of the Web server.

If IJServer and Web server are operated on separate machines, the Web server connector environment
must be set up. Refer to 'Procedure for Operation by Separating IJServer and Web Server' for the
procedure for operation by separating IJServer and Web server.

Point

The definition information of the Web server connector shown below is set at the end of the environment
definition file (httpd.conf) of the Interstage HTTP Server. If the environment definition file (httpd.conf) of
the Interstage HTTP Server is to be edited without using the Interstage Management Console, do not
delete the definition information or do not move it from the end of the file.

LoadModule jk2_module "C:/Interstage/F3FMjs4/gateway/mod_jk2.dll"

LoadModule jk2_module "/opt/FJSVjs4/gateway/mod_jk2.so"

Chapter 2: Operating J2EE Applications

2-16

Microsoft® Internet Information Services Environment Settings

The Microsoft® Internet Information Services Web server connector runs on the Web server using an
embedded ISAPI API as an ISAPI filter and an ISAPI extension. For this reason, start and stop of the Web
server are linked.

To separate and operate IJServer and the Web server on different machines, appropriate environment
settings must be made in the Web server connector. For details, refer to 'Procedure for Operation by
Separating IJServer and Web Server'.

Point

In the Web server connector of Microsoft® Internet Information Services, it is possible to reference the
settings of the Web server connector of Interstage HTTP Server to run the connector in the same way. For
this reason, even if the Web server connector of Microsoft® Internet Information Services is used, in the
same way as for using Interstage HTTP Server, it is necessary to make the Interstage HTTP Server and
Web server connector settings using the Interstage Management Console.

Note

Interstage HTTP Server and Microsoft ® Internet Information Services cannot use a Web server connector
simultaneously, although it is possible for them to exist together by setting up a different port number in
each Web server.

Link Interstage and Microsoft® Internet Information Services according to the following procedure:

1. Installing Microsoft® Internet Information Services and Interstage

2. Preventing Interstage HTTP Server Automatic Startup

3. Microsoft® Internet Information Services Environment Settings

4. Interstage Environment Settings

Installing Microsoft® Internet Information Services and Interstage
Install Microsoft® Internet Information Services and Interstage in the server machine.

Point

Interstage HTTP Server must be installed before Microsoft® Internet Information Services can be used.

If Interstage HTTP Server is not installed, it cannot be linked with Microsoft® Internet Information Services.

Preventing Interstage HTTP Server Automatic Startup
This is executed to prevent automatic startup of Interstage HTTP Server.

1. Stop Interstage HTTP Server

In the Interstage Management Console, click [Services] > [Web Server]. Click the [Status] tab, and
then click the [Stop] button. This stops Interstage HTTP Server.

2. Prevent linkage of Interstage and Interstage HTTP Server

In the Interstage Management Console, click [System]. Click the [Environment Settings] tab, and then
click [Link with Interstage] > [Web Server]. Set this to [Do not Link].

Preparation for Servlet Service Operation

2-17

3. Log in with Administrator authority. Click [Control Panel], and then [Services], or click [Control Panel]
– [Administrative Tools] - [Services]. After startup, select 'FJapache', and then click the [General] tab.
Change [Startup Type] to [Manual].

Microsoft® Internet Information Services Environment Settings
To run the Web server connector of Microsoft® Internet Information Services as an ISAPI filter and an
ISAPI extension, update the settings as shown below. The update uses the Internet service manager of
Microsoft® Internet Information Services.

• Register the Web server connector so that it runs as an ISAPI filter and an ISAPI extension.

To set an access restriction in a Web application, define the security environment.

For details of the registering procedure, refer to the manual for Microsoft® Internet Information Services.

Note

The Microsoft® Internet Information Services environment settings are not the target of backup/restore or
export/import.

Stopping Microsoft® Internet Information Services

If Microsoft® Internet Information Services has started up, stop it. To stop Microsoft® Internet Information
Services, log in as a user with Administrator authority. Click [Control Panel], and then [Services], or click
[Control Panel] – [Administrative Tools] - [Services]. After startup, select 'World Wide Web Publishing
Service', and then select [Operate]. Next, select [Stop] from the list.

Registering in an ISAPI Filter

Set the Web server connector in 'ISAPI filter' of the Web site.

Set the following Web server connector file name in the filter file name.

C:\Interstage\F3FMjs4\gateway\isapi\isapi_redirector2.dll

Registering in an ISAPI Extension

Create a 'virtual directory' in the Web site.

The values that are set are shown below.

Local path C:\Interstage\F3FMjs4\gateway\isapi

Name (alias) F3FMjs4

Allow permission to execute access authority to the virtual directory.

Access Restriction Settings

To set an access restriction in a Web application, set the access restriction for the Web server connector.

Make the settings in 'directory security' of 'virtual directory'.

Chapter 2: Operating J2EE Applications

2-18

Starting up Microsoft® Internet Information Services

To start up Microsoft® Internet Information Services, log in with Administrator authority. Click [Control
Panel], and then [Services], or click [Control Panel] - [Administrative Tools] - [Services]. After startup,
select 'World Wide Web Publishing Service', and then select [Operate]. Next, select [Start] from the list.

Note

To use Microsoft® Internet Information Services 6.0, run it on an IIS5.0 process separation mode.

Interstage Environment Settings
The operations for making Interstage environment settings (such as creating a WorkUnit, or deploying a
Web application) using the Interstage Management Console and using Interstage HTTP Server are the
same.

However, the following differences exist between the operations in Interstage HTTP Server and
Microsoft® Internet Information Services.

• If Microsoft® Internet Information Services is used, the Web server connector cannot be used for
multiple Web sites on the same machine. Also, the Web server virtual host cannot be used as the
Interstage HTTP Server in the Interstage Management Console.

• The Web server settings are made using the Internet service manager that is offered by Microsoft®
Internet Information Services.

Note

To use SSL communication between the Web server connector and the Servlet container, the user who
executes Microsoft® Internet Information Service must have been granted permission to access the
Interstage certificate environment, and must own Administrators authority. To use the SSL function as a
user with general authority, select the Interstage certificate environment folder in Explorer, and add access
authority for the user or group using the [Properties] menu, [Security] tab window. Set [Full Control] for the
user or group that is added.

For details about access authority Interstage certificate environment, refer to the Security System Guide.
The relevant section is 'Interstage certificate environment access authority settings' in 'Setting up and
using the Interstage certificate environment'.

Sun Java System Web Server Environment Settings

The Web server connector of Sun Java System WebServer is run on the Web server using NSAPI API as
a plug-in. For this reason, start and stop of the Web server are linked.

To separate and operate IJServer and the Web server on different machines, appropriate environment
settings must be made in the Web server connector. For details, refer to 'Procedure for Operation by
Separating IJServer and Web Server'.

Point

In the Web server connector of Sun Java System WebServer, it is possible to reference the settings of the
Web server connector of Interstage HTTP Server to run the connector in the same way. For this reason,
even if the Web server connector of Sun Java System WebServer is used, in the same way as for using
Interstage HTTP Server, it is necessary to make the Interstage HTTP Server and Web server connector
settings using the Interstage Management Console.

Preparation for Servlet Service Operation

2-19

Note

Interstage HTTP Server and Sun Java System WebServer cannot use a Web server connector
simultaneously, although it is possible for them to exist together by setting up a different port number in
each Web server.

Link Interstage and Sun Java System WebServer according to the following procedure:

1. Installing Sun Java System WebServer and Interstage

2. Preventing Interstage HTTP Server Automatic Startup

3. Sun Java System Web Server Environment Settings

4. Interstage Environment Settings

Installing Sun Java System WebServer and Interstage
Install Sun Java System WebServer and Interstage in the server machine.

Point

Interstage HTTP Server must be installed before Sun Java System WebServer can be used.

If Interstage HTTP Server is not installed, it cannot be linked with Sun Java System WebServer.

Note

When installing Sun Java System Web Server, specify 'nobody' for the user and group that are used to
execute the default instance. Do not specify 'webservd'.

If you are using a user and group other than 'nobody', make sure that they are the same as the 'User' and
'Group' defined in the Interstage HTTP Server environment definition file. For details of the Interstage
HTTP Server environment definition file, refer to 'Environment Definition File' in the Interstage Application
Server Web Server Operator’s Guide (Interstage HTTP Server Edition).

Preventing Interstage HTTP Server Automatic Startup
This is executed to prevent automatic startup of Interstage HTTP Server.

1. Stop Interstage HTTP Server

In the Interstage Management Console, click [Services] > [Web Server]. Click the [Status] tab, and
then click the [Stop] button. This stops Interstage HTTP Server.

2. Prevent linkage of Interstage and Interstage HTTP Server

In the Interstage Management Console, click [System]. Click the [Environment Settings] tab, and then
click [Link with Interstage] > [Web Server]. Set this to [Do not Link].

3. Prevent execution of the start shell and stop shell

Evacuate the symbolic link file for the Interstage HTTP Server start and stop shells. The start shell is
called when the server machine starts up, but the stop shell call is prevented when the server
machine stops.

The target files are as shown below.

− /etc/rcS.d/K17FJapache

− /etc/rc0.d/K17FJapache

− /etc/rc1.d/K17FJapache

Chapter 2: Operating J2EE Applications

2-20

− /etc/rc2.d/K17FJapache

− /etc/rc3.d/S51FJapache

Example

mv /etc/rcS.d/K17FJapache /etc/rcS.d/_K17FJapache
mv /etc/rc0.d/K17FJapache /etc/rc0.d/_K17FJapache
mv /etc/rc1.d/K17FJapache /etc/rc1.d/_K17FJapache
mv /etc/rc2.d/K17FJapache /etc/rc2.d/_K17FJapache
mv /etc/rc3.d/S51FJapache /etc/rc3.d/_S51FJapache

Sun Java System Web Server Environment Settings
To run the Web server connector as a Sun Java System Web Server plug-in module, edit the Sun Java
System Web Server magnus.conf, obj.conf and mime.types as shown below.

Use a text editor to edit them.

Storage Directory

magnus.conf, obj.conf and mime.types are stored in the following directory:

server-root/server-id/config/

server-root indicates the Sun Java System Web Server installation directory, and server-id indicates the
ServerID of each server. For example, if the Sun Java System Web Server installation directory is
'/opt/SUNWwbsvr', and the ServerID is 'https-taro', magnus.conf and obj.conf are stored in the following
directory:

/opt/SUNWwbsvr/https-taro/config

magnus.conf settings

In the StackSize directive, set a value of at least 262144 (256K).

Stack Size 262144

In the ChildRestartCallback directive, set 'on', 'yes', or 'true'.

ChildRestartCallback on

Set the maximum number of processes that can be executed at the same time (MaxProcs), and the
maximum number of threads that can be processed at the same time in each process (RqThrottle) in Sun
Java System Web Server.

The number of requests that Sun Java System Web Server can process at the same time is calculated
according to a formula that multiplies MaxProcs and RqThrottle. For this reason, MaxProcs and
RqThrottle must be set so that they satisfy the following conditions:

MaxProcs * RqThrottle <= number of Servlet containers that can be processed
at the same time

Preparation for Servlet Service Operation

2-21

For example, if the number of Servlet containers that can be processed at the same time is set as 64, set
the value of MaxProcs × RqThrottle as 64 or less.

Also, it is recommended that the value for MaxProcs is '1' if the machine that is used has a single
processor (CPU). For details, refer to the Sun Java System Web Server manual.

MaxProcs 1
RqThrottle 64

Add the 2 directives to the last line.

Init fn="load-modules" funcs="ijs_nsapi_init,ijs_nsapi_handler"
shlib="/opt/FJSVjs4/gateway/nsapi/ijs_nsapi_redirector.so"
Init fn="ijs_nsapi_init" conf="/opt/FJSVihs/conf/workers2.properties"

obj.conf settings

Add 1 directive to the line after the '<Object name=default>' tab.

<Object name=default>
Service fn="ijs_nsapi_handler"
...
</Object>

Disabling the Sun Java System Web Server Default Servlet and JSP

In Sun Java System Web Server, the servlet and JSP that are offered by Sun Java System Web Server
are set so that they can be run by default. These must be disabled before processing can occur using the
Web server connector.

Sun Java System Web Server 6.0

In mime.types, either delete the line below, or make it a comment.

type=magnus-internal/jsp exts=jsp

Sun Java System Web Server 6.1

In magnus.conf, either delete the line below, or make it a comment.

Init fn="load-modules"
shlib="/opt/SUNWwbsvr/bin/https/lib/libj2eeplugin.so"
shlib_flags="(global|now)"

Chapter 2: Operating J2EE Applications

2-22

In obj.conf, either delete the line below, or make it a comment.

NameTrans fn="ntrans-j2ee" name="j2ee"
Error fn="error-j2ee"

Interstage Environment Settings
The operations for making Interstage environment settings (such as creating a WorkUnit, or deploying a
Web application) using the Interstage Management Console and using Interstage HTTP Server are the
same.

However, the following differences exist between the operations in Interstage HTTP Server and Sun Java
System Web Server.

• If Sun Java System Web Server is used, the Web server virtual host cannot be used.

• The Web server settings are made using the Administration Server that is offered by Sun Java
System Web Server.

Note

To use SSL communication between the Web server connector and the Servlet container, the user who
executes Sun Java System Web Server must have been granted permission to access the Interstage
certificate environment.

For details about access authority Interstage certificate environment, refer to the Security System Guide.
The relevant section is 'Interstage certificate environment access authority settings' in 'Setting up and
using the Interstage certificate environment'.

Procedure for Operation by Separating IJServer and Web Server
IJServer and Web server can be operated on separate machines. This function enables system
construction as follows:

• Security improvement

If it is not desired to operate IJServer in the demilitarized zone (DMZ), operate the Web server on the
DMZ machine and operate IJServer on a machine in the intranet inside the firewall.

• Load distribution

When the CPU load of the machine is too much, construct a system in which IJServer and Web
server are operated on separate machines to distribute the load.

Using Traffic Director enables load distribution while monitoring the operating conditions and CPU
load of the machine on which IJServer operates. When using Traffic Director, secure the necessary
number of permanent connections (Web acceleration function) during setting the Traffic Director
distribution ports. Match the number of permanent connections with the number of concurrent
Servlet container processing tasks. Refer to the Interstage Traffic Director's Manual for details of the
Traffic Director.

Preparation for Servlet Service Operation

2-23

Connect IJServer and Web server under http or https.

The following explains the procedure for operating IJServer and Web server on separate machines,
including the differences from that procedure for operating them on the same server machine.

Point

• Use the same version level of Interstage in IJServer and the Web server.

• To operate IJServer and Web server on separate machines, first make the following settings. Without
these settings, the Web server connector cannot be operated.
Using the Interstage Management Console on each of the IJServer and Web server machines, select

[System] > [Environment Settings] tab and make settings so that Web server and IJServer
machines are separated.

• To limit the Web server IP addresses for connecting to the Servlet container, and set more than one IP
address in the Web server, click [WorkUnit] > 'WorkUnit Name' > [Environment Definition] tab >
[Advanced Settings] of the Interstage Management Console. Next, click [Web Server
Connector(Connector) Settings] > [Web Server IP Address], and specify all the IP addresses that are
to be set in the Web server.

If the following settings are made in the IJServer machine and the Web server machine, IJServer and the
Web server can be separated and operated.

1. Creating IJServer

Create IJServer using the Interstage Management Console on the IJServer machine.

2. Setting connection destination IJServer

Using the Interstage Management Console on the Web server machine, create Web server
connector connection destination information based on the information specified at 'Creating
IJServer.'

3. Deploying Web applications

Using the Interstage Management Console on the IJServer machine, deploy Web applications to the
IJServer created at 'Creating IJServer.'

4. Setting the connection destination Web application

Using the Interstage Management Console on the Web server machine, set the name of the Web
application deployed by 'Deploying Web applications' in the information of the connection destination
IJServer created at 'Setting connection destination IJServer.'

If the following operations are executed in an IJServer machine, the above operations that are executed in
the Web server machine must also be reflected in the IJServer machine.

• When changing the following items in [Web server connector (connector) setting] or [Servlet
container setting] in the IJServer environment setup

− [Web server connector (connector) settings]

Using SSL between the connector and the Servlet container

SSL definition between the connector and the Servlet container

Chapter 2: Operating J2EE Applications

2-24

− [Servlet Container Settings]

Servlet container IP address

Port number

Timeout

The number of simultaneous processings

In the Interstage Management Console of the Web server machine, specify [Web Server] > [Web
Server Connector]. Next, in the right frame click the name of the WorkUnit for which the change was
executed in the IJServer machine. This reflects the value for the change that was executed in the
IJServer machine.

• When deleting IJServer

In the Interstage Management Console of the Web server machine, click [Web Server] > [Web Server
Connector]. Click the [List] tab], and select the name of the WorkUnit to be deleted.

• When undeploying a Web application

In the Interstage Management Console of the Web server machine, specify [Web Server] > [Web
Server Connector]. Next, in the right frame click the name of the WorkUnit that was undeployed in the
IJServer machine, and then delete the undeployed Web application.

Spreading Requests when using Sessions in Servlet and JSP
When using sessions in Servlet and JSP, requests from the client are spread to the Servlet container in
which the session is created according to the spread control of the Web server connector.

The Web server connector identifies the Servlet container in which the session is created using the Servlet
container identifier, and spreads the request to that Servlet container.

If the Servlet container is standalone, meaning that the Web server and WorkUnit are not run on the same
machine, the following definitions can be made using the standalone Interstage Management Console:

• [Services]> [Web Server] > [Web Server Connector] > [Create New]

• [Services]> [Web Server] > [Web Server Connector] > 'WorkUnit Name' > [Environment Settings]

In multiservers and standalone servers in which the Web server and WorkUnit are run on the same
machine, the Servlet container identifier is automatically assigned a number and is managed internally.
For this reason, there is no need to concern yourself with Servlet container identifiers.

Example of Preparation for Operation
An example of the operation procedure for each of the following machine configurations is explained
below.

• One IJServer Machine and one Web Server Machine (Two-server Machine Configuration)

• One IJServer Machine and two Web Server Machines (Three-server machine Configuration)

• Two IJServer Machines and one Web Server Machine (Three-server Machine Configuration)

• Two IJServer Machines, Two Web Server Machines, and one Load Balancing Machine (Five-server
Machine Configuration)

Preparation for Servlet Service Operation

2-25

If three or more IJServer machines are configured, create a WorkUnit on each IJServer machine and set
connection destination information on the Web server machine. For this operation, refer to steps 1, 2, and
3 at 'Two IJServer machines and one Web server machine (three-server machine configuration)' [For
newly creating IJServer].

If three or more Web server machines are configured, set connection destination information on the Web
server machine. For this operation, refer to steps 2 and 3 at 'One IJServer machine and two Web server
machine (three-server machine configuration)' [For newly creating IJServer].

One IJServer Machine and one Web Server Machine (Two-server Machine Configuration)

[Requirements]

Server machine A (IP Address: 172.16.30.1) Web server must be running

Server machine B (IP Address: 172.16.30.2) IJServer must be running

1. Setup of server machine B for IJServer.

From the Interstage Management Console on server machine B, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.2

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

2. Setup of server machine A for the Web server.

From the Interstage Management Console on server machine A, select [Services] > [Web Server] >
[Web Server Connector] > [Create New] tab and create connection destination information with the
following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.2:9000

Timeout 480

The number of concurrent processing tasks 64

3. Web application is deployed in server machine B for IJServer.

From the Interstage Management Console on server machine B, select [WorkUnit] > [WorkUnit name
(example: MyIJServer)] > [Deploy] tab and deploy the Web application.

Chapter 2: Operating J2EE Applications

2-26

4. A Web application name is added to server machine A for the Web server.

From the Interstage Management Console on server machine A, select [Services] > [Web Server] >
[Web Server Connector]. In the right frame, click the name of the WorkUnit that was deployed in 3
above to add the name of the deployed Web application.

One IJServer Machine and two Web Server Machines (Three-server machine Configuration)

[Requirements]

Server machine A (IP Address: 172.16.30.1) Web server must be running

Server machine B (IP Address: 172.16.30.2) Web server must be running

Server machine C (IP Address: 172.16.30.3) IJServer must be running

1. Setup of server machine C for IJServer.

From the Interstage Management Console on server machine B, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1
172.16.30.2

IP address for Servlet container 172.16.30.3

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

2. Setup of server machine A for the Web server.

From the Interstage Management Console on server machine A, select [Services] > [Web Server] >
[Web Server Connector] > [Create New] tab and create connection destination information with the
following settings.

The number of concurrent processing tasks must be set so that the total number for the two Web
server machines (server machines A and B) matches the number of concurrent processing tasks of
the IJServer machine (server machine C).

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.2:9000

Timeout 480

The number of concurrent processing tasks 32

3. Setup of server machine B for the Web server.

Do the same operation as in 2 using the Interstage Management Console on server machine B.

Preparation for Servlet Service Operation

2-27

4. Web application is deployed in server machine C for IJServer.

From the Interstage Management Console on server machine C, select [WorkUnit] > [WorkUnit name
(example: MyIJServer)] > [Deploy] tab and deploy the Web application.

5. A Web application name is added to server machine A for the Web server.

From the Interstage Management Console on server machine A, select [Services] > [Web Server] >
[Web Server Connector]. In the right frame, click the name of the WorkUnit that was deployed in 4
above to add the name of the deployed Web application.

6. A Web application name is added to server machine B for the Web server.

Do the same operation as in 5 using the Interstage Management Console on server machine B.

Two IJServer Machines and one Web Server Machine (Three-server Machine Configuration)

[Requirements]

Server machine A (IP Address: 172.16.30.1) Web server must be running

Server machine B (IP Address: 172.16.30.2) IJServer must be running

Server machine C (IP Address: 172.16.30.3) IJServer must be running

1. Setup of server machine B for IJServer.

From the Interstage Management Console on server machine B, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.2

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

2. Setup of server machine C for IJServer.

Do the same operation as in 2 using the Interstage Management Console on server machine C.
However, specify 172.16.30.3 for IP address.

[For deploying the same Web application to server machines B and C]

Set the same WorkUnit name as that of server machine B. The environment setup of the WorkUnit
must also be the same.

Chapter 2: Operating J2EE Applications

2-28

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.3

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

[For deploying different Web applications to server machines B and C]

Set a WorkUnit name different from that of server machine B.

Item Name Setting Value Example

WorkUnit name MyIJServer_2

IP address for the Web server 172.16.30.1

IP address 172.16.30.3

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

3. Setup of server machine A for the Web server.

From the Interstage Management Console on server machine A, select [Services] > [Web Server] >
[Web Server Connector] > [Create New] tab and create connection destination information with the
following settings.

[For deploying the same Web application to server machines B and C]

Set the connection destination information of the WorkUnit name set on server machines B and C.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.2:9000
172.16.30.3:9000

Timeout 480

The number of concurrent processing tasks 64

[For deploying different Web applications to server machines B and C]

Create connection destination information separately for server machines B and C. Set the same
WorkUnit name as that of the connection destination server machine.

Preparation for Servlet Service Operation

2-29

<Connection destination information separately for server machines B>

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.2:9000

Timeout 480

The number of concurrent processing tasks 64

<Connection destination information separately for server machines C>

Item Name Setting Value Example

WorkUnit name MyIJServer_2

IP address for Servlet container : Port number 172.16.30.3:9000

Timeout 480

The number of concurrent processing tasks 64

4. Web application is deployed in server machine B for IJServer.

From the Interstage Management Console on server machine B, select [WorkUnit] > [WorkUnit name
(example: MyIJServer)] > [Deploy] tab and deploy the Web application.

5. Web application is deployed in server machine C for IJServer.

Do the same operation as in 4 using the Interstage Management Console on server machine C.

6. A Web application name is added to server machine A for the Web server.

From the Interstage Management Console on server machine A, select [Services] > [Web Server] >
[Web Server Connector]. In the right frame, click the name of the WorkUnit that was deployed in 4
above to add the name of the deployed Web application.

Two IJServer Machines, Two Web Server Machines, and one Load Balancing Machine (Five-server Machine
Configuration)

[Requirements]

Server machine A (IP Address: 172.16.30.1) Load balancing is running

Server machine B (IP Address: 172.16.30.2) Web server is running

Server machine C (IP Address: 172.16.30.3) Web server is running

Server machine D (IP Address: 172.16.30.4) IJServer is running

Server machine E (IP Address: 172.16.30.5) IJServer is running

Chapter 2: Operating J2EE Applications

2-30

1. Setup of server machine D for IJServer.

From the Interstage Management Console on server machine D, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.2
172.16.30.3

IP address for Servlet container 172.16.30.4

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

2. Setup of server machine E for IJServer.

Do the same operation as in 1 using the Interstage Management Console on server machine E.
However, specify 172.16.30.5 for IP address.

3. Setup of server machine B for the Web server.

From the Interstage Management Console on server machine B, select [Web Server] > [Web Server
Connector] > [Create New] tab and create connection destination information with the following
settings.

Make the settings so that the total number of simultaneous processing events for each Web server
machine (server machines B and C) and each IJServer server machine (server machines D and E) is
the same.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.4:9000
172.16.30.5:9000

Timeout 480

The number of concurrent processing tasks 64

4. Setup of server machine C for the Web server.

Do the same operation as in 3 using the Interstage Management Console on server machine C.

Define IP address : Port number for the Servlet container using the same order as for the value set in
server machine B. If the order is different, it might mean that the session is not inherited normally.

5. Setup of server machine A for load balancing device.

Set the load balancing device for the Web server machine A.

Refer to the load balancing device manual for details of the load balancing device settings method.

Preparation for Servlet Service Operation

2-31

6. Web application is deployed in server machine D for IJServer.

From the Interstage Management Console on server machine D, select [WorkUnit] > [WorkUnit name
(example: MyIJServer)] > [Deploy] tab and deploy the Web application.

7. Web application is deployed in server machine E for IJServer.

Do the same operation as in 6 using the Interstage Management Console on server machine E.

8. A Web application name is added to server machine B for the Web server.

From the Interstage Management Console on server machine B, select [Services] > [Web Server] >
[Web Server Connector]. In the right frame, click the name of the WorkUnit that was deployed in 6
above to add the name of the deployed Web application.

9. A Web application name is added to server machine C for the Web server.

Do the same operation as in 8 using the Interstage Management Console on server machine C.

Coexistence with Version 5.1 or earlier Servlet Service
Version 5.1 or earlier Servlet services can run concurrently on a single server machine.

If Web applications having the same application identifier are deployed to both a Servlet services and
version 5.1 or earlier Servlet services, the Web application on the Servlet service defined later in the
environment definition file (httpd.conf) of Interstage HTTP Server runs.

Chapter 2: Operating J2EE Applications

2-32

Request Distribution Control by Web Server
Connector

This section explains the control for the distributing of requests in the Web server connector. This control
consists of control by commands and control by fault monitoring.

Distributing Procedure and Viewing the Status using the
Commands

The Web server connector implements request distribution control over each IJServer WorkUnit.

The user can use the following commands to change or display the current request distribution control
mode (whether to enable or disable the distribution function of the Web server connector) over IJServer
WorkUnits.

For instance, when periodic maintenance of a Web application is performed or if a network failure or
machine hardware error occurs, the relevant IJServer WorkUnit (or the relevant machine) can be excluded
from the request distribution targets. It can be restored to the distribution targets after completion of
maintenance or failure recovery. This function enables stable and continuous system operation.

• Distribution operation command (ijsdispatchcont)

This command can be used to include an IJServer WorkUnit in the request distribution targets or
exclude it from the targets by specifying the IP address or the IP address and port number.

The setting made by the distribution operation command is retained even after the Web server is
rebooted or it terminates abnormally. To change the distribution mode, enter another distribution
operation command.

• Distribution mode display command (ijsprintdispatchcont)

This command displays the distribution mode of each IJServer WorkUnit (IP-address: port-number
WorkUnit-name).

Check in advance the IP address or 'IP address: port number' of the IJServer WorkUnit to be specified in
the distribution operation command. Use the distribution mode display command for this purpose. The
distribution operation command requires only the IP address or 'IP address: port number' displayed by the
distribution mode display command.

Refer to the Reference Manual (Command Edition) for details of each command.

Note

Requests are distributed from the Web server connector to each IJServer WorkUnit according to the
following method. However, if session management is used in a Web application, the following requests
are distributed to the IJServer WorkUnit in which the session was created.

Requests are distributed to the IJServer WorkUnit with the lowest number of requests that are
currently being processed.

Request Distribution Control by Web Server Connector

2-33

Requests are distributed in round-robin method.

Examples of operational patterns are shown below. Various operational patterns are available depending
on the server machine configuration and command parameter specification method.

• Pattern 1: Distribution control for each machine

• Pattern 2: Distribution Control for each IJServer WorkUnit(1)

• Pattern 3: Distribution Control for each IJServer WorkUnit(2)

• Pattern 4: Suppress for a connection to the IJServer WorkUnit

Pattern 1: Distribution control for each machine
For maintenance of a machine or if a machine hardware error occurs, distribution to a specific machine
can be controlled as follows:

A machine (machine 1) with IP address 123.123.123.110 and a machine (machine 2) with IP address
123.123.123.111 each consists of two IJServer WorkUnits (IJServerA and IJServerB).

Web application ap101 is deployed to IJServerA and Web application ap102 is deployed to IJServerB.

Because machine 1 is to be stopped, IP address 123.123.123.110 needs to be excluded from the
distribution targets.

ijsdispatchcont OFF 123.123.123.110

ap101 and ap102, which were distributed to machines 1 and 2 for load distribution, now run on machine 2
alone.

When machine 1 is restored, use the following command to include it again in the distribution targets.

ijsdispatchcont ON 123.123.123.110

Pattern 2: Distribution Control for each IJServer WorkUnit(1)
For maintenance of a Web application, distribution to a specific IJServer WorkUnit can be controlled as
follows:

As with pattern 1, a machine (machine 1) with IP address 123.123.123.110 and a machine (machine 2)
with IP address 123.123.123.111 each consists of two IJServer WorkUnits (IJServerA and IJServerB).

Web application ap101 is deployed to IJServerA and Web application ap102 is deployed to IJServerB.

Because IJServerA on machine 1 is to be stopped, it needs to be excluded from the distribution targets.

ijsdispatchcont OFF 123.123.123.110:9000

ap101, which was distributed to machines 1 and 2 for load distribution, now runs on machine 2 alone.
ap102 remains distributed to machines 1 and 2.

Chapter 2: Operating J2EE Applications

2-34

When IJServerA on machine 1 is restored, use the following command to include it again in the distribution
targets.

ijsdispatchcont ON 123.123.123.110:9000

Pattern 3: Distribution Control for each IJServer WorkUnit(2)
For maintenance of a Web application while the number of concurrent processes of an IJServer WorkUnit
is two or more, distribution to the IJServer WorkUnit can be controlled as follows:

A machine (machine 1) with IP address 123.123.123.110 and a machine (machine 2) with IP address
123.123.123.111 each consists of two IJServer WorkUnits (IJServerA and IJServerB).

Suppose the number of concurrent processes of IJServerA is 2 and two Servlet containers (container α
and container β) are active.

Web application ap101 is deployed to IJServerA and Web application ap102 is deployed to IJServerB.

Because IJServerA on machine 1 is to be stopped, it needs to be excluded from the distribution targets.

Execute as many distribution operation commands as there are Servlet containers.

ijsdispatchcont OFF 123.123.123.110:9000
ijsdispatchcont OFF 123.123.123.110:9001

ap101, which was distributed to containers α and β of machines 1 and 2, now runs on containers α and β
of machine 2 alone. ap102 remains distributed to IJServerB on machine 1 and IJServerB on machine 2.

When IJServerA on machine 1 is restored, use the following command to include it again in the distribution
targets.

ijsdispatchcont ON 123.123.123.110:9000
ijsdispatchcont ON 123.123.123.110:9001

Pattern 4: Suppress for a connection to the IJServer WorkUnit
For maintenance of a Web application while one machine is used for the IJServer WorkUnit, a connection
to the IJServer WorkUnit can be suppressed as follows:

A machine (machine 1) with IP address 123.123.123.110 consists of two IJServer WorkUnits (IJServerA
and IJServerB).

Web application ap101 is deployed to IJServerA and Web application ap102 is deployed to IJServerB.

Because IJServerA on machine 1 is to be stopped, it needs to be excluded from the distribution targets.

ijsdispatchcont OFF 123.123.123.110:9000

ap101, which had only IJServer as the distribution target, can no longer work for processing. ap102 can
still work with IJServerB.

Request Distribution Control by Web Server Connector

2-35

* If a Web application such as ap101 has no distribution target, HTTP status code 503 (Service
Temporarily Unavailable) is returned to the Web browser when a request is issued.

When IJServerA on machine 1 is restored, use the following command to include it again in the distribution
targets.

ijsdispatchcont ON 123.123.123.110:9000

Monitoring Web Server Connector Faults
Note

This function can be used with the following products.

• Interstage Application Server Enterprise Edition

• Interstage Application Server Standard Edition

• Interstage Application Server Plus

When a balancing operation is executed for IJServer and the Web server that have been separated on
different server machines, you can monitor the operation status of the IJServer machine and the Servlet
container to stop an IJServer machine or a faulty Servlet container from being distributed automatically, or
to make it possible for an IJServer machine or a Servlet container that has recovered from a fault to be
distributed automatically.

When the Web server connector fault monitoring function is used to stop an IJServer machine or a Servlet
container from being distributed, the Web server connector stops the distributing of requests.

The method of fault monitoring function are as follows:

• ping monitoring

This issues a ping (ICMP ECHO) to the IP address of the IJServer machine, and monitors the
operation status while checking for the presence of responses (ICMP ECHO REPLY).

Chapter 2: Operating J2EE Applications

2-36

For example, as shown in the figure above, the fault monitoring function issues regular (such as every
60 seconds) pings to the IP addresses of machine 1 and machine 2 and monitors whether there is a
response. If the ping response stops because of a fault in the hardware of machine 1, machine 1 is
stopped from being distributed automatically, the Web server connector stops the distributing of
requests to machine 1.

If a ping response is returned after the machine that failed is repaired, machine 1 is again distributed
automatically, and the Web server connector starts the distributing of requests to machine 1 again.

• Port monitoring

The Servlet container monitors the Servlet container operation status for the TCP port that receives
the request, depending on the availability of the TCP connection using connect of socket.

For example, as shown in the figure above, the monitoring function issues regular (such as every 60
seconds) connects to the TCP port that waits for requests from the Servlet container that is opened
on machine 1 and machine 2, and monitors whether it is possible to connect. By stopping IJServer A
of machine 1, the Servlet container closes the TCP port that is waiting for the request, and TCP
connection is no longer possible by connect. Machine 1 is stopped from being distributed
automatically, and the Web server connector stops the distributing of requests to the IJServer A
Servlet container of machine 1.

If IJServer A is restarted, and TCP connection is made possible again, machine 1 is again distributed
automatically, and the Web server connector starts the distributing of requests to the IJServer A
Servlet container of machine 1 again.

Advance Preparation
Make the following settings to use the fault monitoring function.

• Operating procedure for separating IJServer and the Web server

The fault monitoring function can only be used for operation in a configuration in which IJServer and
the Web server have been separated. Using a separate Interstage Management Console for IJServer
machine and for the Web server machine, click the [System] > [Environment Settings] tabs and
specify the Web server and IJServer machines to be separated.

Request Distribution Control by Web Server Connector

2-37

Settings Items
To make the settings for the fault monitoring function, click the [Services] > [Web Server] > [Web Server
Connector] > [Fault Monitoring Settings] tabs.

The settings items are as follows:

Item name Meaning

Monitoring
Method

Select one of the following monitoring methods:

- No Monitoring

The fault monitoring function is not used.

- Ping

The operation status of the IJServer machine is observed using ping.

- Port

The operation status of the IJServer machine is observed using ping, operation
status of the Servlet container is observed using connect.

Monitoring
Interval

Set the interval for monitoring operation status using ping monitoring or port
monitoring.

Response Wait
Time

Set the wait time for a response after ping or connect has been issued to the
IJServer machine.

If there is no response, reissue the number of pings or connects that is set as the
retry count for a fault, If there are no responses, it can be assumed that there has
been a fault.

Retry Count Set the retry count for when the wait time for a response after ping or connect has
been issued to the IJServer machine is exceeded.

Startup Wait Time Set the startup wait time for the fault monitoring function if it does not start up with
the Web server connector.

If the fault monitoring function does not start up before this time is exceeded, the
Web server connector starts up without the fault monitoring function.

If the Web server connector is running without using the fault monitoring function,
the Web server connector might distribute requests from the client to a faulty
IJServer machine or Servlet container.

Examples of Preparation before Operation
This section contains examples of how to execute the following types of operation.

• Monitoring the operation status of two IJServer machines in a balancing configuration

• Monitoring the operation status of an IJServer machine and a Servlet container in a balancing
configuration

Chapter 2: Operating J2EE Applications

2-38

Monitoring the Operation status of two IJServer machines in a balancing configuration

[Requirements]

Server machine A (IP Address: 172.16.30.1) Web server must be running

Server machine B (IP Address: 172.16.30.2) IJServer must be running

Server machine C (IP Address: 172.16.30.3) IJServer must be running

[Setting procedure]

1. Using the Interstage Management Console on server machine B, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.2

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

2. Using the Interstage Management Console on server machine C, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.3

Port number 9000

Timeout 480

The number of concurrent processing tasks 64

Request Distribution Control by Web Server Connector

2-39

3. Using the Interstage Management Console for server machine A, click the [Services] > [Web Server]
> [Web Server Connector] > [Create New] tabs, and create connection information for the following
settings:

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.2:9000
172.16.30.3:9000

Timeout 480

The number of concurrent processing tasks 64

4. Using the Interstage Management Console for server machine A, click the [Services] > [Web Server]
> [Web Server Connector] > [Fault Monitoring Settings] tabs, and make the following settings for the
fault monitoring function:

Item Name Setting Value Example

Monitoring Method ping monitoring

Monitoring Interval 60

Response Wait Time 10

Retry Count 3

5. Using the Interstage Management Console for server machine A, click the [Services] > [Web Server]
tabs, and reboot the Web server.

Monitoring the Operation Status of an IJServer Machine and a Servlet Container in a Balancing
configuration

Requirements

Server machine A (IP Address: 172.16.30.1) Web server must be running

Server machine B (IP Address: 172.16.30.2) IJServer must be running

Server machine C (IP Address: 172.16.30.3) IJServer must be running

Chapter 2: Operating J2EE Applications

2-40

Setting Procedure

1. Using the Interstage Management Console on server machine B, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.2

Port number 9000
9001

Timeout 480

The number of concurrent processing tasks 64

2. Using the Interstage Management Console on server machine C, select [WorkUnit] > [Create New]
tab and create a WorkUnit with the following settings.

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for the Web server 172.16.30.1

IP address for Servlet container 172.16.30.3

Port number 9000
9001

Timeout 480

The number of concurrent processing tasks 64

3. Using the Interstage Management Console for server machine A, click the [Services] > [Web Server]
> [Web Server Connector] > [Create New] tabs, and create connection information for the following
settings:

Item Name Setting Value Example

WorkUnit name MyIJServer

IP address for Servlet container : Port number 172.16.30.2:9000
172.16.30.2:9001
172.16.30.3:9000
172.16.30.3:9001

Timeout 480

The number of concurrent processing tasks 64

Request Distribution Control by Web Server Connector

2-41

4. Using the Interstage Management Console for server machine A, click the [Services] > [Web Server]
> [Web Server Connector] > [Fault Monitoring Settings] tabs, and make the following settings for the
fault monitoring function: If port monitoring is selected, all the servers in 'Servlet container IP
address : Port number' of step 3 above are monitored.

Item Name Setting Value Example

Monitoring Method port monitoring

Monitoring Interval 60

Response Wait Time 10

Retry Count 3

5. Using the Interstage Management Console for server machine A, click the [Services] > [Web Server]
tabs, and reboot the Web server.

Viewing the Operation Status
The following command can be used to display the operation status of the distribution destination IJServer
in the Web server machine. Refer to Reference Manual (Command Edition) for details of the command.

svmondspstat

Viewing the Status of all IJServers

Execute the svmondspstat command to view the operation status of all balancing IJServers. There is no
need to specify an option.

Example

Conditions:

• Distributing is made to 2 IJServers, the IJServer names of which are MyIJServer1 and MyIJserver2

• The IP address and port number of the distributing destination Servlet container are as follows:
172.16.30.2:9000
172.16.30.2:9001
172.16.30.3:9000
172.16.30.3:9001

• The fault monitoring method is port monitoring

• Only 172.16.30.2:9001in MyIJServer2 is faulty

Chapter 2: Operating J2EE Applications

2-42

If the conditions are as shown above, the following contents are displayed.

Status IP Address : Port Number : WorkUnit Name
--
ACTIVE 172.16.30.2:9000:MyIJServer1
DOWN 172.16.30.2:9001:MyIJServer2
ACTIVE 172.16.30.3:9000:MyIJServer1
ACTIVE 172.16.30.3:9001:MyIJServer2

Viewing the Status of a Specific IJServer

As shown below, specify the WorkUnit name set in 'WorkUnit name' of the Web server connector and then
execute the command to view the operation status of a specific IJServer.

Example

svmondspstat –i MyIJServer1

Conditions:

• Distributing is made to 2 IJServers, the IJServer names of which are MyIJServer1 and MyIJserver2

• The IP address and port number of the distributing destination Servlet container are as follows:
172.16.30.2:9000
172.16.30.2:9001
172.16.30.3:9000
172.16.30.3:9001

• The fault monitoring method is port monitoring

• All the Servlet containers in MyIJServer1 are under operation

If the conditions are as shown above, the following contents are displayed.

Status IP Address : Port Number : WorkUnit Name
--
ACTIVE 172.16.30.2:9000:MyIJServer1
ACTIVE 172.16.30.3:9000:MyIJServer1

Note

Note the following points when using the fault monitoring function:

• All balancing servers that are set using the Web server connector 'Servlet container IP address : Port
number' item are monitored according to the conditions set for Fault Monitoring Settings. It is not
possible to monitor according to conditions set for a separate IJServer.

• If there is a firewall between the Web server machine and the IJServer machine, settings allowing
passage of the PING from the Web server machine IP address to the balancing IJServer machine IP
address must be made in the firewall.

Request Distribution Control by Web Server Connector

2-43

• If the ping or connect response is delayed or lost because of high-intensity networking equipment
along the route between the Web server machine and the IJServer machine, IJServer might in fact
determine that a fault has occurred even if there is operation status. Set appropriate values for
'Response Wait Time' and 'Retry Count' according to the status of the route between the Web server
and the IJServer machine.

• The fault monitoring function cannot be used when Traffic Director executes balancing between the
Web server machine and the IJServer machine.

• If the fault monitoring function is enabled, or the fault monitoring function settings are changed, the
obtaining of the distributing destination status starts at the point when the Web server is started or
rebooted.

Additionally, if a Web server is not rebooted after the settings are changed, the obtaining of the
distributing destination status starts when the first access from the client occurs, according to the
changed settings.

• Requests might be distributed to the faulty distributing destination immediately after the Web server is
started until the fault monitoring function judges that it is faulty.

The time from the start of the obtaining of the distributing destination status until the judgment that it is
faulty is [Response Wait Time x Fault Retry Count].

• If the Web server is not rebooted after the fault monitoring function is enabled, or after the fault
monitoring function settings are changed, requests might be distributed to the faulty distributing
destination until the fault monitoring function judges that it is faulty, even if the distributing destination
is faulty at the point when the first access from the client occurs.

The time from the start of the obtaining of the distributing destination status until the judgment that it is
faulty is [Response Wait Time x Fault Retry Count].

• If a fault does actually occur in the distributing destination, requests might be distributed to the faulty
distributing destination until the fault monitoring function judges that it is faulty.

The time from the actual occurrence of the fault in the distributing destination until the judgment that it
is faulty is [Fault monitoring interval + Response Wait Time x Fault monitoring Retry Count].

• If a fault does actually occur in the distributing destination, requests might be distributed to the faulty
distributing destination until the fault monitoring function judges that it is faulty.

In this case, the response to the request is delayed for about 1 minute, or the status code and '500
Internal Server Error' error message are notified from the Web browser.

In this case, after failure detection is performed, the request can be distributed following the next
access.

• Requests are not distributed to the distributing destination that is recovered from the point when the
faulty distributing destination is recovered until the fault monitoring function judges that there is a
recovery.

The time from the actual recovery of the distributing destination until the judgment that it has been
recovered is [Fault monitoring interval].

Chapter 2: Operating J2EE Applications

2-44

Procedure for Using JTS
This section explains the procedure for using JTS.

Flow to Operation Start
To use the application using the distributed transaction function (JTS), the Database Linkage Service is
needed. Additionally, the JTS can be used from a Web application, an EJB application or a J2EE
application client.

For information on installation and environment setup of each of these services, see the Installation Guide
and the Interstage Operator's Guide.

For details on the distributed transaction function and JTA interface distributed by JTS, refer to Part IV,
JTS/JTA Edition.

The flow to the operation start of a JTS application, which is assumes an EJB application is operating, is
shown below.

1. Setting Resource Manager Environment

2. Setting the Transaction Service Environment

3. Storing Resource Definition Information

4. Starting the Database

5. Starting the Transaction Service

6. Starting the Application

Note

The Interstage Management Console displays 'transaction service (JTS RMP)' for the JTS resource
management program.

1. Setting Resource Manager Environment
Refer to the resource manager manuals for details of the resource manager environment setup.

Necessary classpaths must be set to use various JTS resource managers. Refer to the manuals of each
resource manager for details of the necessary class libraries.

To set resource manager classpaths, open the system environment setup on the Interstage Management
Console and set the classpaths in [J2EE properties].

• Database JDBC driver

The database JDBC drive must be set when a database is used.

Example: When an Oracle database is used

classes12.zip、nls_charset12.zip

Procedure for Using JTS

2-45

• Resource adapter class library

A resource adapter class library must be set when the connector is used to link with the resource
adapter.

Note

If the Interstage Management Console is not to be used, set environment variable classpath as a system
environment variable.

Restart Interstage to validate the environment variable.

Notes on using Oracle as a resource manager

• Database construction

When Oracle8i is to be used with the distributed transaction function using JTS and EJB, the
database must be configured in such a way that Oracle IJServer is enabled.

When Oracle9i is to be used, the database must be configured in such a way that Oracle Enterprise
Java Engine (Oracle EJE) is enabled.

When Oracle9i is to be used with the distributed transaction function using JTS and EJB, the
database must be configured in such a way that Oracle Enterprise Java Engine (Oracle EJE) is
enabled.

• Database setting

The following settings are required to enable the use of distributed transactions with an Oracle
database.

1. Log on to sqlplus as a SYS user.

(Oracle8i)
sqlplus sys/password@ORACLE_SID
(Oracle9i)
sqlplus "sys/password@ORACLE_SID AS SYSDBA"

2. Execute the following sql.

grant select on DBA_PENDING_TRANSACTIONS to username
* For username, specify the user name that is set in the data source definition.

Chapter 2: Operating J2EE Applications

2-46

2. Setting the Transaction Service Environment
Using the Interstage Management Console, set the transaction service (OTS) environment.

Note

If the detailed setup is modified, the transaction service environment is reconfigured. The JTS resource
definition information stored previously is completely deleted.

To use the target resource again for global transactions, select and apply 'Use for global transactions' in
the resource environment setup.

3. Storing Resource Definition Information
Use the Interstage Management Console to store JTS resource definition information.

• To use a JDBC data source for global transactions, select JDBC data source creation from the
service list, and select and apply 'Use for global transactions.'

• To use the connector for global transactions, select resource adapter deployment from the service list,
and select and apply 'Use for global transactions.'

• To use a resource definition already stored for global transactions, select target resource
environment setup from the service list, and select and apply 'Use for global transactions.'

Note

• The database supported by the JDBC data source is only Oracle.

With Symfoware or SQL Server, 'Use for global transactions' cannot be selected.

• When Oracle is used as a resource manager for distributed transaction processing using JTS, note
the following on data source setting:

If two or more data sources that reference the same database instance on the same host are to be
registered, take the following actions:

1. Define the IP address of the host containing the database in the following file so that it will be a
different host name.

- %SystemRoot%\system32\drivers\etc\hosts

/etc/hosts

Example

123.123.123.110 oracle_db1
123.123.123.110 oracle_db2

2. Write the above host name for the connection host name in the JDBC data source definition. Do
so for each data source.

As a result, different database URLs are set for the same host and instance.

Procedure for Using JTS

2-47

Example of server URL

Datasource1 Server URL:jdbc:oracle:thin:@oracle_db1:1521:ora8i
Datasource1 Server URL:jdbc:oracle:thin:@oracle_db2:1521:ora8i

4. Starting the Database
Start the database.

For details on how to start the database, refer to the database manual.

5. Starting the Transaction Service
Start Interstage using the Interstage Management Console. Start also the transaction service.

If the transaction service environment is set in advance during system environment setup, the transaction
service is automatically started when Interstage is started.

Note

The transaction service (JTS RMP) performs failure recovery processing in accordance with activation of
the linked database and therefore is not automatically started when the server machine is rebooted. For
this reason, one of the following operations must be performed after activation of the database:

• Restart Interstage using the Interstage Management Console.

• Enter the otsstartrsc command to start the JTS resource management program.

6. Starting the Application
Start the WorkUnit using the Interstage Management Console.

Flow to Operation End
The following explains the procedure for terminating operation.

1. Stopping the application

Stop the relevant WorkUnit using the Interstage Management Console.

2. Stopping the transaction service

Stop Interstage using the Interstage Management Console. The transaction service is automatically
stopped.

3. Stopping the database

Stop the database.

Refer to the database manual. for details on how to stop the database.

4. Canceling resource definition information

Using the Interstage Management Console, cancel the resource definition used for global
transactions.

5. Canceling the transaction service environment set up

Using the Interstage Management Console, cancel the transaction service (OTS) environment set
up.

Chapter 2: Operating J2EE Applications

2-48

Procedure for Using JMS
This section explains the procedure for using JMS.

Flow to Operation Start
To use JMS, the following components are needed. Install ObjectDirector EventService and JMS to
perform custom installation. ObjectDirector and J2EE Common are installed as standard features.

For information on custom installation, see Chapter 1, 'Installation' in the Installation Guide.

• ObjectDirector

• ObjectDirector EventService

• J2EE Common

• JMS

The following explains the procedure for starting operation.

1. Environment Settings before Operation of the Event Channel Operation Machine

Set the environment before operation of the event channel operation machine. Refer to 'Environment
Settings for the Event Channel Operation Machine' in Chapter 16 for details.

2. Environment Settings before Operation of the JMS Application Operation Machine

Set the environment before operation of the JMS application operation machine. Refer to
'Environment Settings for the JMS Application Operation Machine' in Chapter 16 for details.

3. Operation Start of the Event Channel Operation Machine

1) Starting Interstage

Activate the Event Service by starting Interstage by using the Interstage Management Console.

2) Starting the Static Event Channel

Start the event channel used for sending/receiving messages by the JMS application by using the
Interstage Management Console.

Note:

If automatic start of the event channel is defined in advance, the event channel is automatically
started when Interstage (event service) starts. The setting of automatic start of the event channel can
be changed using the Interstage Management Console. The default is 'start automatically.'

4. Operation Start of the JMS Application Operation Machine

Start the JMS application by using directly the java commands.

Procedure for Using JMS

2-49

Flow to Operation End
The following explains the procedure for terminating operation.

1. Operation End of the JMS Application Operation Machine

Stop the JMS application.

2. Operation End of the Event Channel Operation Machine

1) Stopping the Static Event Channel

Forcibly stop the event channel used for sending/receiving messages by the JMS application by
using the Interstage Management Console.

2) Stopping Interstage

Stop the Event Service forcibly by stopping Interstage by using the Interstage Management Console.

3. Environment Deletion of the JMS Application Operation Machine

Delete the environment after operation end of the JMS application operation machine. Refer to
'Environment Settings for the JMS Application Operation Machine' in Chapter 18 for details.

4. Environment Deletion of the Event Channel Operation Machine

Delete the environment after operation end of the event channel operation machine. Refer to
'Environment Settings for the Event Channel Operation Machine' in Chapter 18 for details.

Monitoring the Operational Status of an Event Channel
The Interstage Management Console can be used to monitor the operational status of the event channel
used for sending/receiving messages by the JMS application.

Event channel information is outlined in the following table.

 Display Item Description

1 group Group name included in an event channel.

Dynamic generation: Event Factory (when using TemporaryTopic
or TemporaryQueue)

Static generation: Event channel name created by the user

2 ChannelName Event channel name. An ID is used for dynamically generated
channels of the Notification Service. (when using TemporaryTopic or
TemporaryQueue)

3 Type Event channel type

Used for Topic: Publish/Subscribe messaging model

Used for Topic: Queue:Point-To-Point messaging model

Used for Topic: TemporaryTopic:Publish/Subscribe messaging
model

Used for Topic: TemporaryQueue:Point-To-Point messaging
model

Chapter 2: Operating J2EE Applications

2-50

 Display Item Description

4 Destination JNDI name of destination definition associated with an event
channel.

5 unit Unit ID of storage destination used in nonvolatile channel operation
mode.

6 Status Status of the event channels.

Active: The event channel is active.

Activating: The event channel is being activated.

Stopped: The event channel is stopped.

Stopping: The event channel is being stopped or it is being
stopped in blockade end mode.

7 QueueCount Number of messages currently stored in the event channels.

8 ConsumerCount Number of subscribers or receivers that can be connected to the
event channels. (Note)

9 SupplierCount Number of publishers or senders that can be connected to the event
channels.

Note) If an EJB Message-driven Bean is used, the following values are added as the number of
connected consumers.

• Point-To-Point messaging model

Number of connected consumers = 1

Increase the number of connected consumers from the default value to the maximum value
according to the communication status:

− Number of connected consumers (default) = [Process Concurrency] of the IJServer * [Default
start number of instances (number of threads executed simultaneously)] of the Message-driven
Bean

− Number of connected consumers (maximum) = [Process Concurrency] of the IJServer * [Default
start number of instances (number of threads executed simultaneously)] of the Message-driven
Bean * 2

• Publish/Subscribe messaging model

Number of connected consumers = 1

Note

The messages stored in the event channel are deleted on one of the following:

Procedure for Using JMS

2-51

• Topic type event channel in persistent operation mode

− The consumer (subscriber) fetches the messages

− The message survival time is reached.

− The consumer (subscriber) connection information is retrieved.

− The event channel is forcibly stopped.

• Queue type event channel in persistent operation mode

− The consumer (Receiver) fetches the messages

− The message survival time is reached.

− The event channel is forcibly stopped.

• Topic type event channel in non-persistent operation mode

− The consumer (subscriber) fetches the messages

− The message survival time is reached.

− The consumer (subscriber) connection information is retrieved.

• Queue type event channel in non-persistent operation mode

− The consumer (Receiver) fetches the messages

− The message survival time is reached.

* The messages stored in the Queue type event channel used in nonvolatile operation mode cannot
be deleted automatically by forcibly stopping the event channel. To delete these messages, use the
consumer (receiver) to fetch these messages.

When the event channel is closed, the event channel does not stop as far as messages are stored in the
channel. The event channel stops when the stored messages are deleted as the result of distribution to
the consumer or expiration of the survival time.

The Interstage Management Console can be used to reference the status of the message save
destination (unit).

The status information on the save destination (unit) displayed includes the following:

Chapter 2: Operating J2EE Applications

2-52

Unit information is outlined in the following table.

 Display Item Description

1 Unit ID Unit name

2 Unit Mode Type of unit used in persistent channel operation mode

Standard: Standard unit

Extended: Extended unit

3 System utilization (%) Utilization of system file in the storage directory

4 Event data utilization (%) Utilization of invent data file in the storage directory

5 Number of system areas Number of system data storage areas used in persistent channel
operation mode

6 Number of event data
areas

Number of event data storage areas used in persistent channel
operation mode

Procedure for Using JavaMail

2-53

Procedure for Using JavaMail
This section explains the procedure for using JavaMail.

Before Operation
1. Creating an application

Create an application used to send or receive mail. For details refer to the following:

− Mail Sending Application

− Mail Receiving Application

2. Setting the Mail Server Environment

To send and receive mail using the JavaMail application, the SMTP server to send mail and the POP3
server or IMAP server to receive mail must be available.

Set up the environments for the servers to send and receive mail.

For details of the environment settings of the mail server, refer to the mail server manual.

3. Starting up the Mail Server

Start up the SMTP server for sending mail and the POP3 server or IMAP server for receiving mail.

For the method of starting up the server, refer to the mail server manual.

4. Setting the Resource

Set up the JavaMail resource.

For the method of setting up the JavaMail resource, refer to Chapter 3, JNDI.

After Operation
1. Stopping the Mail Server

Stop the mail server. For the method of stopping the server, refer to the mail server manual.

Mail Sending Application
The procedure for Mail sending is shown as follows.

1. Lookup Processing of JavaMail Resources
Create the JavaMail resource lookup processing.

// Mail resource lookup processing
 InitialContext nctx = new InitialContext();
 session = (Session) nctx.lookup("java:comp/env/mail/MailSession");
 }
 catch(NamingException ex) { }

Chapter 2: Operating J2EE Applications

2-54

2. Creating a message
Create a message to be sent.

Set up the following items to the message:

• Sender (From)

• Destination (To)

• Destination (Cc)

• Destination (Bcc)

• Title (Subject)

• Body

// Create a message
 MimeMessage msg = null;
 try {
 // Create a message
 msg = new MimeMessage(session);
 // Sender setting (From)
 msg.setFrom(new InternetAddress(“<from-address>”));
 // Destination setting (To)
 Address[] toAddress = {new InternetAddress(“<to-address>”)};
 msg.setRecipients(Message.RecipientType.TO, toAddress);
 // Destination setting (Cc)
 Address[] ccAddress = {new InternetAddress(“<cc-address>”)};
 msg.setRecipients(Message.RecipientType.CC, ccAddress);
 // Destination setting (Bcc)
 Address[] bccAddress = {new InternetAddress(“<bcc-address>”)};
 msg.setRecipients(Message.RecipientType.BCC, bccAddress);
 // Title setting (Subject)
 String subject = new String("<Subject>");
 msg.setSubject(subject);
 // Body setting
 String msgTxt = new String("<Message Text>");
 msg.setText(msgTxt);
 }
 catch(AddressException ex) { }
 catch(MessagingException ex) { }

Procedure for Using JavaMail

2-55

3. Making a Connection with the SMTP Server
Make a connection with the SMTP server

// Make a connection with the SMTP server
 Transport transport = null;
 try {
 transport = session.getTransport("smtp");
 transport.connect();
 }
 catch(NoSuchProviderException ex) { }
 catch(MessagingException ex) { }

4. Sending the Message

Send the created message.

// Send the message
 try {
 transport.send(msg);
 }
 catch(MessagingException ex) { }

Mail Receiving Application
The procedure for Mail receiving is shown as follows.

1. Lookup Processing of JavaMail Resources
Look up JavaMail resources.

// Look up mail resources
 Session session = null;
 try {
 InitialContext nctx = new InitialContext();
 session = (Session) nctx.lookup("java:comp/env/mail/MailSession");
 }
 catch(NamingException ex) { }

Chapter 2: Operating J2EE Applications

2-56

2. Making a Connection with the Mail Server
To make a connection with a POP3 server:

// make a connection with a POP3 server
 Store store = null;
 try {
 store = session.getStore("POP3"); /*make a connection with a POP3
server */
 store.connect("<hostname>", "<user>", "<password>");
 }
 catch(NoSuchProviderException ex) { }
 catch(MessagingException ex) { }

To make a connection with an IMAP server:

// Make a connection with the IMAP server
 Store store = null;
 try {
 store = session.getStore("imap"); /* Making a connection with the IMAP
server */
 store.connect("<hostname>", "<user>", "<password>");
 }
 catch(NoSuchProviderException ex) { }
 catch(MessagingException ex) { }

3. Opening the Receive Directory
Open the receive directory.

// Open the receive directory
 Folder inbox = null;
 try {
 Folder rootFolder = store.getDefaultFolder();
 inbox = rootFolder.getFolder("INBOX");
 inbox.open(Folder.READ_WRITE);
 }
 catch(MessagingException ex) { }

Procedure for Using JavaMail

2-57

4. Extracting Messages
Extract the following items from each received message:

• Sender (From)

• Destination (To)

• Destination (Cc)

• Destination (Bcc)

• Title (Subject)

• Body

// Extract a message
 try {
 Message msg = inbox.getMessage(1);
 // Extract the sender (From)
 Address[] fromAddress = msg.getFrom();
 // Extract the destination (To)
 Address[] toAddress = msg.getRecipients(Message.RecipientType.TO);
 // Extract the destination (Cc)
 Address[] ccAddress = msg.getRecipients(Message.RecipientType.CC);
 // Extract the destination (Bcc)
 Address[] bccAddress = msg.getRecipients(Message.RecipientType.BCC);
 // Extract the title (Subject)
 String subject = msg.getSubject();
 // Extract the body
 Object content = msg.getContent();
 String text = content.toString();
 }
 catch(MessagingException ex) { }
 catch(IOException ex) { }

Chapter 2: Operating J2EE Applications

2-58

Customizing and Checking the Operating
Environment

Installing the Interstage Application Server automatically installs default IJServer while no J2EE
applications are installed. Default IJServer is installed with name IJServer and can be used not only for
the operating environment for sample applications but also for actual operation.

If you want to run a J2EE application immediately, install a sample J2EE application or deploy your J2EE
application.

This section explains how to customize the operating environment and how to check it in case a J2EE
application fails to run.

Customizing the Operating Environment

Setting the Value of Scale-value
This value need not be customized for normal operation.

According to the number of Interstage clients, set the value of scale-value in the isgendef command.

Setting for using the Fujitsu XML Processor
The container may use the Fujitsu XML processor to analyze deployment descriptor files or name
conversion files, or the Fujitsu XML processor may need to be used when a J2EE application uses
JAXP(Java API for XML Processing). In this case, perform the following customization..

Note that the Fujitsu XML processor may need to be installed as shown below:

The Fujitsu XML processor is not automatically installed when the Interstage Application Server is
installed. Install the Fujitsu XML processor by referring to the Installation Guide.

In custom installation mode, the Fujitsu XML processor may not be installed. If needed, install it by
referring to the Installation Guide.

[For Web application and EJB application]

Refer to 'Settings of xml parser' in Chapter 1, and customize.

[For J2EE application Client]

Set the following environment variable before the setting of the 'isj2ee.jar' path.

Customizing and Checking the Operating Environment

2-59

Environment variable Setting Value

CLASSPATH System drive:\Program Files\Common Files\FujitsuXML\xmlpro.jar

System drive:\Program Files\Common
Files\FujitsuXML\xmltrans.jar

Environment Variable Setting Value

CLASSPATH /opt/FJSVxmlpc/lib/xmlpro.jar

If JDK1.4 is used, the following must be specified for the parameter of the java command to run the Java
application.

• When the DOM interface is used

− Djavax.xml.parsers.DocumentBuilderFactory=com.fujitsu.xml.tree.DocumentBuilderFactoryImp
l

• When the SAX interface is used

− Djavax.xml.parsers.SAXParserFactory=com.fujitsu.xml.parser.SAXParserFactoryImpl

Tuning the CORBA Service Environment Definition
There is no need for customization for normal operation.

The values specified for statements in the CORBA service environment definition on the machine on
which Interstage is installed need to be increased.

Refer to 'CORBA Service Environment Definition' in the Tuning Guide for details of the tuning procedure.

• When a client application is added

Statement Addition Value

Max_IIOP_resp_con Number of processes of the client application
added

• When the EJB application is added

Statement Addition Value

Max_processes Number of processes of the EJB application
added

Max_exec_instance Number of processes of the EJB application
added x 16 (initial value of the number of threads
specified when an EJB application is deployed)

If a client runs on the machine on which Interstage is installed, another value needs to be added to
the CORBA service environment definition. Refer to 'Environment setup for referencing EJB' in
Chapter 3, for details of the value to be added.

Chapter 2: Operating J2EE Applications

2-60

• When IJServer is added

Note

The IJServer referred to here is only the type used when a Web application and an EJB application
run on separate JavaVMs or when only an EJB application runs.

The tuning targets are EJB processes in the above two types of IJServer.

Statement Addition Value

max_processes Number of processes of the EJB application
added

max_exec_instance Number of processes of the EJB application
added x 64 (the maximum values of number of
threads specified when IJServer is created)

Note

When an EJB application is used, the no-communication monitoring function of the CORBA service
cannot be used.

Checking the Operating Environment

Setting the Environment Variable
In environment variable CLASSPATH, set the following value if it has not already been set.

C:\Interstage\J2EE\lib\isj2ee.jar

/opt/FJSVj2ee/lib/isj2ee.jar

Environment Setup of Java
(1) Installing Java

• When the Interstage server package is installed
JDK1.4 is installed in standard installation mode.
In custom installation mode, select JDK or JRE and install it.

(2) Setting the environment variable

To operate J2EE applications under Interstage, the Java environment must be set up. When the following
values are not set as the environment variable PATH, set up a value as an environment variable PATH.

Customizing and Checking the Operating Environment

2-61

When applying in JDK1.4 environment:C:\Interstage\JDK14\jre\bin
When applying in JRE1.4 environment:C:\Interstage\JRE14\bin
When applying in JDK1.3 environment:C:\Interstage\JDK13\jre\bin
When applying in JRE1.3 environment:C:\Interstage\JRE13\bin

When applying in JDK1.4 environment: /opt/FJSVawjbk/jdk14/jre/bin
When applying in JRE1.4 environment: /opt/FJSVawjbk/jre14/bin
When applying in JDK1.3 environment: /opt/FJSVawjbk/jdk13/jre/bin
When applying in JRE1.3 environment: /opt/FJSVawjbk/jre13/bin

Note

Depending on the used shell, 'path' must be used as environment variable instead of 'PATH'. Make the
settings according to the environment.

When the version is contained throughout the directory, please read in detail before set up.

To avoid incompatibility problems due to the difference in JVM versions, Fujitsu recommends using the
same version of JDK/JRE during development, deployment, and operation. In the case of linked operation
of J2EE application clients, Web applications, and EJB applications, Fujitsu also recommends that the
same version of JDK/JRE be used in order to avoid incompatibility problems. When using the EJB service,
it is necessary to make the corresponding setting in the Java environment setting file.

Setting for using IJServer
To use IJServer, a file containing property information required for applications to run is required.

The property information file (orb.properties) is copied to the directory shown below during Interstage
installation.

When Java is installed later or additionally using a Solaris OE or Linux custom installation, the file needs to
be copied to the respective directories.

(Property information file C:\Interstage\EJB\etc\orb.properties)
(When applying in JDK)%{JAVA_HOME}%\jre\lib
(When applying in JRE)%{JAVA_HOME}%\lib

(Property information file:/opt/FJSVejb/etc/orb.properties)
(When JDK)%{JAVA_HOME}%/jre/lib
(When JRE)%{JAVA_HOME}%/lib

Chapter 2: Operating J2EE Applications

2-62

In addition, IJServer must be set in the Java environment setup file.

In the following cases, set Java additionally in the Java environment setup file.

• If a Java environment setup is not made during Interstage installation

• If Java is installed later using a Solaris OE or Linux custom installation

• If ava is installed additionally using a Solaris OE or Linux custom installation

The Java environment setup file is allocated to the following directory:

C:\Interstage\J2EE\etc\java_config.txt

/opt/FJSVj2ee/etc/java_config.txt

The setting format and notes on setting are described below.

Format for Setting

Use the following format for setting:

Java version to be used = Java installation directory

• Java version to be used

Specify the Java version to be used as follows:

When using JDK1.4 : JDK14DIR
When using JRE1.4 : JRE14DIR
When using JDK1.3 : JDK13DIR
When using JRE1.3 : JRE13DIR

• Java installation directory

Specify the absolute path of the Java installation directory.

Example

Example of statement for using JDK1.4 installed in C:\Interstage\jdk14

JDK14DIR = C:\Interstage\jdk14

Customizing and Checking the Operating Environment

2-63

Example of statement for using JDK1.4 installed in /opt/FJSVawjbk/jdk

JDK14DIR = /opt/FJSVawjbk/jdk14

Note

• Do not delete the Java environment setup file or change the contents of the file during operation.

• If JDK is selected during Interstage installation, JRE included in JDK cannot be used as a Java
environment. In this case, specify JDK14DIR or JDK13DIR for 'Java version used' and use JDK as
the Java environment.

• Set information in the Java environment setup file with administrator authority.

• Do not delete the Java environment setup file or change the contents of the file during operation.

• If JDK14DIR or JDK13DIR is specified for 'Java version used' in the Java environment setup file, do
not set JRE under control of JDK1.4 or JDK1.3 for 'Java installation directory.' Instead, set the
directory in which JDK1.4 or JDK1.3 is installed.

• If more than one version of Java is installed, click Interstage Management Console > WorkUnit >
WorkUnit Settings, and then select the version of Java to be used for each IJServer. If the Java
version is not specified, it is determined according to the following order of priority in the Java
environment settings file.

IJServer created in V7.0

Priority: Java version

1 : JDK1.4

2 : JRE1.4

3 : JDK1.3

4 : JRE1.3

IJServer created in V6.0

Priority: Java version

1 : JDK1.3

2 : JRE1.3

3 : JDK1.4

4 : JRE1.4

For example, in a IJServer created in V6.0, if the 'java' version is not specified, and the Java versions
described in the Java environment settings file are JDK1.4 andJDK1.3, the higher settings priority
JDK1.3 is used for running IJServer.

Chapter 2: Operating J2EE Applications

2-64

Settings for Use of the EJB Service Run Command
Before the EJB service run command can be used, the EJB Java environment settings file and
environment variable must be set.

In any of the following cases, add Java to the Java environment settings file.

• There were no Java environment settings when Interstage was installed

• Java was installed after a custom installation in Solaris OE or Linux

• Java is installed as an add-on

The Java environment settings file is created in the following directory.

C:\Interstage\EJB\etc\java_config.txt

/opt/FJSVejb/etc/java_config.txt

Notes about the settings format and settings are explained below.

Format for Setting

Use the following format for setting:

Java version to be used = Java installation directory

• Java version to be used

Specify the Java version to be used as follows:

When using JDK1.4 : JDK14DIR
When using JRE1.4 : JRE14DIR
When using JDK1.3 : JDK13DIR
When using JRE1.3 : JRE13DIR

• Java installation directory

Specify the absolute path of the Java installation directory.

Example

Example of statement for using JDK1.4 installed in C:\Interstage\jdk14

JDK14DIR = C:\Interstage\jdk14

Customizing and Checking the Operating Environment

2-65

Example of statement for using JDK1.4 installed in /opt/FJSVawjbk/jdk

JDK14DIR = /opt/FJSVawjbk/jdk14

Note

• Do not delete the Java environment setup file or change the contents of the file during operation.

• If JDK is selected during Interstage installation, JRE included in JDK cannot be used as a Java
environment. In this case, specify JDK14DIR or JDK13DIR for 'Java version used' and use JDK as
the Java environment.

• Set information in the Java environment setup file with administrator authority.

• Do not delete the Java environment setup file or change the contents of the file during operation.

• If JDK14DIR or JDK13DIR is specified for 'Java version used' in the Java environment setup file, do
not set JRE under control of JDK1.4 or JDK1.3 for 'Java installation directory.' Instead, set the
directory in which JDK1.4 or JDK1.3 is installed.

Chapter 2: Operating J2EE Applications

2-66

Set the following environment variables.

Java version Settings

JDK1.3 /opt/FJSVawjbk/jdk13/jre/lib/sparc
/opt/FJSVawjbk/jdk13/jre/native_threads
/opt/FJSVawjbk/jdk13/jre/lib/sparc/hotspot

JRE1.3 /opt/FJSVawjb/jre13/lib/sparc
/opt/FJSVawjb/jre13/lib/sparc/native_threads
/opt/FJSVawjb/jre13/lib/sparc/hotspot

JDK1.4 /opt/FJSVawjbk/jdk14/jre/lib/sparc
/opt/FJSVawjbk/jdk14/jre/lib/sparc/native_threads
/opt/FJSVawjbk/jdk14/jre/lib/sparc/client

JRE1.4 /opt/FJSVawjb/jre14/lib/sparc
/opt/FJSVawjb/jre14/lib/sparc/native_threads
/opt/FJSVawjb/jre14/lib/sparc/client

If more than one version of Java is described in the Java environment settings file, set the Java version
with the highest priority in LD_LIBRARY_PATH. The Java version priority is shown in the table below.

Priority: Java version

1 : JDK1.3

2 : JRE1.3

3 : JDK1.4

4 : JRE1.4

Depending on the used shell, 'path' must be used as environment variable instead of 'PATH'. Make the
settings according to the environment.

Debugging Application

2-67

Debugging Application
Application debug information is output to the IJServer log file.

IJServer Log
The following types of information are output to the IJServer log file. This log file can be used to determine
application problems. Refer to 'IJServer file configuration' in Chapter 1, for the log output location.

• Container (container.log)

− Standard output or standard error output of application

− Output of log method of ServletContext class

− EJB container log or Servlet container log

− EJB container or Servlet container error message

− EJB snap output

• Container information log (info.log)

− JavaVM process start information (ARGV, ENV)

− JavaVM process start error message

− Thread dump

− Container log output error message

Debug Method
The following methods are available for debugging applications.

• Debugging using Snap

The snap is used to check the logging information.

• Debugging using application debug information

Debug information output to the standard output or standard error output is checked during
application execution.

• Using the Debugger

Using the debugger of APWORKS, application operations can be checked while referencing or
changing variables in the program.

• Automatic thread dump collection

A thread dump is automatically collected when an application has caused a timeout or returns no
response.

• Debugging using Java method trace

The Java method trace function is used to check the arguments and return values of each method.

This section explains each method individually.

Chapter 2: Operating J2EE Applications

2-68

Debugging using Snap
Snap is the log of various types of I-O information as J2EE application debug information during J2EE
application execution. It can be used as debug information when J2EE applications are developed.

• The log of various types of I-O information as J2EE application debug information during J2EE
application execution

• The user debug information of J2EE application

Note

Note that Snap is available only when an IJServer is started with the Interstage Management Console.

Information Output to Snap
Table 2-1 shows the types of information that are output to Snap.

Table 2-1 Information Output to Snap
Type Output Information

Method information of EJB
application invoked by a Client

Output the following types of method information of the EJB
application that is invoked by a Client application:

Method invocation information

Method return information

Method exception information

Only when the EJB application meets all the following
requirements is it possible to output it. The EJB application is
deployed using V6 or later Interstage Management Console.

In addition, only when the following method is invoked, the
information is output.

[Session Bean]

Home interface method

create

remove(handle)

remove(primarykey)

Remote interface method

business method

remove

LocalHome interface method

business method

remove

Local interface method

business method

remove

Debugging Application

2-69

Type Output Information

[Entity Bean]

Home interface method

create

remove(handle)

remove(primarykey)

findByPrimaryKey

find <Enumeration type>

find <Collection type>, find<Object>

ejbHome method

Remote interface method

business method

remove

LocalHome interface method

create

remove(primarykey)

findByPrimaryKey

find <Enumeration type>

Local interface method

business method

remove

Refer to Method Information of EJB Application Invoked by a
Client for details of output information, formats, and examples.

EJB application method
information

The following types of information are output:

Method invocation information

Method return information

Method exception information

For details of output information, formats, and examples, refer to
EJB Application Method Information.

javax.transaction.UserTransaction
API information

The following types of information are output:

Method invocation information

Method return information

Method exception information

For details of output information, formats, and examples, refer to
javax.transaction.UserTransaction API Information.

Chapter 2: Operating J2EE Applications

2-70

Type Output Information

Database manipulation statement
information
(Only when the Entity Bean mode
is CMP)

The following types of database manipulation information stored
in the Container are output:

Database manipulation invocation information

Database manipulation return information

Database manipulation exception information

For details of output information, formats, and examples, refer to
Database Manipulation Statement Information.

EJB Container transaction control
information

If the transaction type is Container and the transaction attribute is
Required or RequiresNew, the following information is output,
which is used for a container to invoke an API of
javax.transaction.TransactionManager:

Transaction start (begin)

Transaction completion (commit/rollback)

Transaction rollback specification (setRollbackOnly)

Transaction suspension or resumption (suspend/resume)

Refer to EJB Container Transaction Control Information.

J2EE application user debug
information

This outputs the debug information that the J2EE application
outputs.

Refer to Using Application Debugging Information.

As shown in Table 2-2, the output information varies depending on the output level specified when the
IJServer starts.

Table 2-2 Output Level and Information
Output level Output Information

1 The sequence of the J2EE application method can be checked.

2 In addition to level 1 information, the method execution parameter and return
information can be checked.

When the Entity Bean mode is CMP, database manipulation information is output
and therefore the data flow and database relationships can also be checked.

10 J2EE application user debug information can be checked.

11 In addition to the level 1 information, J2EE application user debug information can
be checked.

12 In addition to the level 2 information, J2EE application user debug information can
be checked.

Debugging Application

2-71

Snap Environment Setup
To collect snapshots, specify the output level in the WorkUnit setup of IJServer that collects snapshots.

Table 2-3 Snap Environment Setup
Parameter Value

Java VM option (Java Command Option) -DFJSNAP= output-level

Unless the disk is short of free space, all types of Snap information are output without limitation according
to the output level.

Notes

• When the rapid invocation function is used, Snap information output by every J2EE application
deployed in IJServer is stored in the same file.

• If J2EE applications run in thread multiplex mode, all Snap information is output to the same file.
Because Snap is output alternately for each thread, do not run J2EE applications in thread multiplex
mode.

• If mass data is used for the return value and parameters of an EJB application method, a memory
shortage error may occur. When Snap is used, use small amounts of data.

• If a memory shortage occurs during J2EE application execution, no Snap information is output.

• If an environment variable or its value is invalid (such as a spelling error), the IJServer starts but no
Snap is output.

Method Information of EJB Application Invoked by a Client
Method information invoked by a Client is output when each method in the EJB application is invoked,
returned, or causes an exception.

Output Formats

Level 1
The output formats at individual output levels are shown below:

• When a method is invoked

Date Time : Client Call :Bean name Method name

• When a method returns

Date Time : Client Return :Bean name Method name

• When a method returns with an error

Date Time : Client Throw :Bean name Method name Exception class
 name: Exception detail character string

Chapter 2: Operating J2EE Applications

2-72

Level 2
• When a method is invoked

Date Time : Client Call :Bean name Method name
 Param : Parameter information
 TranStatus : Transaction status

• When a method returns

Date Time : Client Return :Bean name Method name
 ReturnValue : Return value information
 ObjectField : Field information
 TranStatus : Transaction status

• When a method returns with an error

Date Time : Client Throw :Bean name Method name Exception
class name: Exception detail character string
 TranStatus : Transaction status

Output Information
Output items and output information are summarized in Table 2-4.

Table 2-4 Output Information of Method Invoked by a Client
Output Level Output Item Output Information

Level 1 Level 2

Date The date the method was invoked or returned is indicated in
'day/month/year' format.

O O

Time The time the method was invoked or returned is indicated in
'hour: minute: second. millisecond' format.

O O

Call
Return
Throw

'Call': Indicates that this information was output when the
method was invoked.

'Return': Indicates that this information was output when the
method returned.

'Throw': Indicates that this information was output because
a method exception occurred.

O O

Bean name The name of the EJB application that invoked the method is
indicated.

O O

Method name The name of an invoked method is indicated. O O

Debugging Application

2-73

Output Level Output Item Output Information

Level 1 Level 2

Exception class
name

The class name of the exception caused by method
invocation is indicated.

If the caused exception includes a detail character string, it
is also indicated.

O O

Parameter
information
(Param)

Parameter information (parameter type and value) used for
method invocation is indicated in the following format:

(Type) parameter

or

(Type) <Object>

If no parameter is used, only the item name is indicated.

For the array class and java.util package Hashtable, all
stored values are output.

When a user object (*1) having a public field is used as a
parameter, '<Object>' is added and the ObjectField item is
output.

X O

Return value
information
(ReturnValue)

Method return value information (return value type and
value) is indicated in the following format:

(Type) return value

or

(Type) <Object>

In case of void, only the item name is indicated.

For the array class and java.util package Hashtable, all
stored values are output.

When a user object (*1) having a public field is used as a
return value, '<Object>' is added and the ObjectField item is
output.

X O

Chapter 2: Operating J2EE Applications

2-74

Output Level Output Item Output Information

Level 1 Level 2

Field information
(ObjectField)

Object public field information is indicated in the following
format:

(Type) field name = field value

or

(Type) field name = <Object>

For the primitive or String type, the type, variable name, and
value are output.

For other types, the type, variable name, and '<Object>' are
output.

X O

O: Item output at the specified output level

X: Item that is not output

*1: String is excluded.

Level 1
Normal end

23/10/2000 09:49:20.159 : Client Call :SampleBean business
23/10/2000 09:49:21.229 : Client Return :SampleBean business

Abnormal end

23/10/2000 09:49:20.159 : Client Call :SampleBean business
23/10/2000 09:49:21.229 : Client Throw :SampleBean business
 java.rmi.RemoteException:SampleBean Internal error

Level 2
Normal end

23/10/2000 09:49:15.454 : Client Call :SampleBean business
Param : (int)1,
(java.lang.String)"Sample In",
(java.util.Hashtable)["one", "two"]
23/10/2000 09:49:15.514 : Client Return :SampleBean business
ReturnValue : (pack.Sample)pack.Sample@abc123<Object>
ObjectField: (int)i = 3,
 (java.lang.String)str = "hello"

Debugging Application

2-75

Abnormal end

23/10/2000 09:49:20.159 : Client Call :SampleBean business
Param : (int)1,
(java.lang.String)"Sample In",
(java.util.Hashtable)["one", "two"]
23/10/2000 09:49:21.229 : Client Throw :SampleBean business
java.rmi.RemoteException:SampleBean Internal error

EJB Application Method Information
Method information of an EJB application is output when each method in the EJB application is invoked,
returned, or causes an exception.

Output Formats
The output formats at individual output levels are shown below:

Level 1
• When a method is invoked

Date Time : Call :Bean name Method name

• When a method returns

Date Time : Return :Bean name Method name

• When a method returns with an error

Date Time : Throw :Bean name Method name Exception class name:
 Exception detail character string

Level 2
• When a method is invoked

Date Time : Call :Bean name Method name
 Param : Parameter information
 TranStatus : Transaction status

• When a method returns

Date Time : Return :Bean name Method name
 ReturnValue : Return value information
 ObjectField : Field information
 TranStatus : Transaction status

Chapter 2: Operating J2EE Applications

2-76

• When a method returns with an error

Date Time : Throw :Bean name Method name Exception class
name: Exception detail character string
 TranStatus : Transaction status

Output Information
Output items and output information are summarized in Table 2-5.

Table 2-5 Output Information of EJB Application Method
Output Level Output Item Output Information

Level 1 Level 2

Date The date the method was invoked or returned is indicated in
'day/month/year' format.

O O

Time The time the method was invoked or returned is indicated in
'hour: minute: second. millisecond' format.

O O

Call
Return
Throw

'Call': Indicates that this information was output when the
method was invoked.

'Return': Indicates that this information was output when the
method returned.

'Throw': Indicates that this information was output because a
method exception occurred.

O O

Bean name The name of the EJB application that invoked the method is
indicated.

O O

Method name The name of an invoked method is indicated. O O

Exception
class name

The class name of the exception caused by method invocation
is indicated.

If the caused exception includes a detail character string, it is
also indicated.

O O

Parameter
information
(Param)

Parameter information (parameter type and value) used for
method invocation is indicated in the following format:

(Type) parameter

or

(Type) <Object>

If no parameter is used, only the item name is indicated.

For the array class and java.util package Hashtable, all stored
values are output.

When a user object (*1) having a public field is used as a
parameter, '<Object>' is added and the ObjectField item is
output.

X O

Debugging Application

2-77

Output Level Output Item Output Information

Level 1 Level 2

Return value
information
(ReturnValue)

Method return value information (return value type and value)
is indicated in the following format:

(Type) return value

or

(Type) <Object>

In case of void, only the item name is indicated.

For the array class and java.util package Hashtable, all stored
values are output.

When a user object (*1) having a public field is used as a return
value, '<Object>' is added and the ObjectField item is output.

X O

Field
information
(ObjectField)

Object public field information is indicated in the following
format:

(Type) field name = field value

or

(Type) field name = <Object>

For the primitive or String type, the type, variable name, and
value are output.

For other types, the type, variable name, and '<Object>' are
output.

X O

Transaction
status
(TranStatus)

The following information is output:

When the output item is Call:

Transaction status before method invocation.

When the output item is Return or Throw:

Transaction status after the end of method execution.

This item is output regardless of the use of a transaction.

X O

O: Item output at the specified output level

X: Item that is not output

*1: String is excluded.

Chapter 2: Operating J2EE Applications

2-78

Output Examples
Examples of information output at individual output levels are shown below:

Level 1
Normal end

23/10/2000 09:49:15.454 : Call :SampleBean business
23/10/2000 09:49:15.514 : Return :SampleBean business

Abnormal end

23/10/2000 09:49:20.159 : Call :SampleBean business
23/10/2000 09:49:21.229 : Throw :SampleBean business java.rmi.EJBException:
 SampleBean Internal error

Level 2
Normal end

23/10/2000 09:49:15.454 : Call :SampleBean business
Param : (int)1,
 (java.lang.String)"Sample In",
 (java.util.Hashtable)["one", "two"]
TranStatus : STATUS_ACTIVE
23/10/2000 09:49:15.514 : Return :SampleBean business
ReturnValue : (pack.Sample)pack.Sample@abc123<Object>
ObjectField : (int)i = 3,
 (java.lang.String)str = "hello"
TranStatus : STATUS_NO_TRANSACTION

Abnormal end

23/10/2000 09:49:20.159 : Call :SampleBean business
Param : (int) 1,
 (java.lang.String)"Sample In"
 (java.util.Hashtable)["one", "two"]
TranStatus : STATUS_ACTIVE
23/10/2000 09:49:21.229 : Throw :SampleBean business java.rmi.EJBException: SampleBean
Internal error
TranStatus : STATUS_MARKED_ROLLBACK

Note

If an EJB application created by INTERSTAGE V3.0 is used as is, some information may not be output or
incorrect information may be output. If this occurs, perform re-deployment with Interstage V6.0 or later. All
information will then be output normally.

Method information and items that are not output and items that are output incorrectly are shown in Tables
2-6 and 2-7.

Debugging Application

2-79

• Method information that is not output

When an Entity Bean business method is invoked, no item is output.

• Items that are not output

Table 2-6 EJB Application Method Information Items not Output
Item Name

Param The item name alone is output with no information.

ObjectField The item name alone is output with no information.

• Items that are output incorrectly

Table 2-7 EJB Application Method Information Item Output Incorrectly
Item Name

ReturnValue This information may not be output with the type specified in the
Home/Remote interface definition. All information is output with the
type used during execution.

javax.transaction.UserTransaction API Information
javax.transaction.UserTransaction API information is output when the javax.transaction.UserTransaction
method is used from an J2EE application.

Output Format
The output formats at individual output levels are shown below.

Level 1
• When a method is invoked

Date Time : Call :javax.transaction.UserTransaction Method
name

• When a method returns

Date Time : Return :javax.transaction.UserTransaction Method
name

• When a method returns with an error

Date Time : Throw :javax.transaction.UserTransaction Method
name Exception class name: Exception detail character string

Chapter 2: Operating J2EE Applications

2-80

Level 2
• When a method is invoked

Date Time : Call : javax.transaction.UserTransaction Method
 name
Param : Parameter information
TranStatus : Transaction status

• When a method returns

Date Time : Return : javax.transaction.UserTransaction Method
name
ReturnValue : Return value information
TranStatus : Transaction status

• When a method returns with an error

Date Time Throw : javax.transaction.UserTransaction Method name
Exception class name Exception detail character string
TranStatus :Transaction status

Output Information
Output items and output information are summarized in Table 2-8.

Table 2-8 Output Information of javax.transaction.UserTransaction API
Output Level Output Item Output Information

Level 1 Level 2

Date The date the method was invoked or returned is indicated in
'day/month/year' format.

O O

Time The time the method was invoked or returned is indicated in
'hour: minute: second. millisecond' format.

O O

Call
Return
Throw

'Call': Indicates that this information was output when the
method was invoked.

'Return': Indicates that this information was output when the
method returned.

'Throw': Indicates that this information was output because a
method exception occurred.

O O

Method name The name of an invoked method is indicated. O O

Exception
class name

The class name of the exception caused by method invocation
is indicated.

If the caused exception includes a detail character string, it is
also indicated.

O O

Debugging Application

2-81

Output Level Output Item Output Information

Level 1 Level 2

Parameter
information
(Param)

Parameter information for a method is indicated in the '(type)
parameter' format.

X O

Return value
information
(ReturnValue)

Method return value information is indicated in the '(type) return
value' format.

X O

Transaction
status
(TranStatus)

The following information is output:

When the output item is Call:

Transaction status before method invocation

When the output item is Return or Throw:

Transaction status after the end of method execution

X O

O: Item output at the specified output level

X: Item that is not output

Output Examples
Examples of information output at individual output levels are shown below.

Level 1
Normal end

18/10/2000 18:02:28.647 : Call :javax.transaction.UserTransaction getStatus
18/10/2000 18:02:28.647 : Return :javax.transaction.UserTransaction getStatus

Abnormal end

18/10/2000 18:02:28.577 : Call :javax.transaction.UserTransaction getStatus
18/10/2000 18:02:28.607 : Throw :javax.transaction.UserTransaction getStatus
 javax.transaction.SystemException: Internal
 error

Level 2
Normal end

18/10/2000 18:02:28.647 : Call :javax.transaction.UserTransaction getStatus
Param :
TranStatus :STATUS_MARKED_ROLLBACK
18/10/2000 18:02:28.647 : Return :javax.transaction.UserTransaction getStatus
ReturnValue :(int)1
TranStatus :STATUS_MARKED_ROLLBACK

Chapter 2: Operating J2EE Applications

2-82

Abnormal end

18/10/2000 18:02:28.577 : Call :javax.transaction.UserTransaction getStatus
Param :
TranStatus :STATUS_MARKED_ROLLBACK
18/10/2000 18:02:28.607 : Throw :javax.transaction.UserTransaction getStatus
javax.transaction.SystemException: Internal error

TranStatus :STATUS_MARKED_ROLLBACK

Database Manipulation Statement Information
Database manipulation statement information is output when the following methods are executed:

• prepareStatement method of java.sql.Connection class.

• executeQuery method of java.sql.PreparedStatement class.

• executeUpdate method of java.sql.PreparedStatement class.

Output Format
Output formats at individual levels are shown below.

Level 1
No information is output.

Level 2
• When a method is invoked:

Date Time : Call : Class name Method name
Param : Parameter information
TranStatus : Transaction status

• When a method returns:

Date Time : Return : Class name Method name
ReturnValue : Return value information
TranStatus : Transaction status

• When a method returns with an error

Date Time : Throw : Class name Method name Exception class
name: Exception detail character string
TranStatus : Transaction status

Debugging Application

2-83

Output Information
Output items and output information are summarized in Table 2-9.

Table 2-9 Output Information of Database Manipulation Statement
Output Level Output Item Output Information

Level 1 Level 2

Date The date the database manipulation statement was invoked
or returned is indicated in 'day/month/year' format.

X O

Time The time the database manipulation statement was invoked
or returned is indicated in 'hour: minute: second. millisecond'
format.

X O

Call
Return
Throw

'Call': Indicates that this information was output when the
database manipulation statement was invoked.

'Return': Indicates that this information was output when the
database manipulation statement returned.

'Throw': Indicates that this information was output because a
database manipulation statement exception occurred.

X O

Class name The class name used in execution of the database
manipulation statement is indicated.

X O

Method name The method name used in execution of the database
manipulation statement is indicated.

X O

Exception class
name

The class name of the exception caused by a database
manipulation statement is indicated.

If the caused exception includes a detail character string, it is
also indicated.

X O

Parameter
information
(Param)

The SQL statement used in execution of a database
manipulation statement is output in the following format:

(Type) parameter

X O

Return value
information
(ReturnValue)

The return value of a database manipulation statement
(return value type and value) is indicated in the following
format:

(Type) field name = field value

X O

Chapter 2: Operating J2EE Applications

2-84

Output Level Output Item Output Information

Level 1 Level 2

Transaction
status
(TranStatus)

The following information is output:

[When the output item is Call]

Transaction status when a database manipulation
statement is invoked

[When the output item is Return]

Transaction status when a database manipulation
statement returns

[When the output item is Throw]

Transaction status when a database manipulation
statement causes an exception

X O

O: Item output at the specified output level

X: Item that is not output

Output Examples
Examples of information output at individual output levels are shown below.

Level 1
No information is output.

Level 2
Normal end

23/10/2000 09:49:15.514 : Call :SampleCMP java.sql.Connection prepareStatement
 Param :(java.lang.String)"INSERT INTO CT2.CATEGORY (C_ID,C_NAME)
 VALUES (?,?)"
 TranStatus :STATUS_ACTIVE
23/10/2000 09:49:15.524 : Return :SampleCMP java.sql.Connection
prepareStatement

ReturnValue :(java.sql.PreparedStatement)java.sql.PreparedStatement@1cb0f4
 TranStatus :STATUS_ACTIVE

Abnormal end

23/10/2000 09:49:15.514 : Call :SampleCMP java.sql.Connection prepareStatement
Param :(java.lang.String)"INSERT INTO CT2.CATEGORY (C_ID,C_NAME) VALUES
(?,?)"
TranStatus :STATUS_ACTIVE
23/10/2000 09:49:15.524 : Throw :SampleCMP java.sql.Connection
prepareStatement java.sql.SQLException: SQLState received from backend server
TranStatus :STATUS_ACTIVE

Debugging Application

2-85

EJB Container Transaction Control Information
If the EJB application transaction type is Container and the transaction attribute is Required or
RequiresNew, a EJB container uses a method of the javax.transaction.TransactionManager interface.

The following information is output as container transaction control information, when a EJB container
invokes an API of javax.transaction.TransactionManager.

• Transaction start (begin)

• Transaction completion (commit/rollback)

• Transaction rollback specification (setRollbackOnly)

• Transaction suspension or resumption (suspend/resume)

Output Format
Output formats at individual levels are shown below:

Level 1
• When transaction control starts

Date Time : Call : javax.transaction.TransactionManager Method
name

• When transaction control ends

Date Time : Return : javax.transaction.TransactionManager Method
name

• When a method returns with an error

Date Time : Throw : javax.transaction.TransactionManager Method
name Exception class name: Exception detail character string

Level 2
• When transaction control starts

Date Time : Call : javax.transaction.TransactionManager Method
name
Param : Parameter information
TranStatus : Transaction status

Chapter 2: Operating J2EE Applications

2-86

• When transaction control ends

Date Time : Return : javax.transaction.TransactionManager Method
 name
ReturnValue : Return value information
TranStatus : Transaction status

• When a method returns with an error

Date Time : Throw : javax.transaction.TransactionManager Method
name Exception class name: Exception detail character string
 TranStatus : Transaction status

Output Information
Output items and output information are summarized in Table 2-10 below:

Table 2-10 Output Information of Container Transaction Control
Output Level Output Item Output Information

Level 1 Level 2

Date The starting date and end date of transaction control are
indicated in the 'day/month/year' format.

O O

Time The time the transaction control was starts or ends is indicated in
the 'hour: minute: second. millisecond' format.

O O

Call
Return
Throw

'Call': Indicates that this information was output when the method
was invoked.

'Return': Indicates that this information was output when the
method returned.

'Throw': Indicates that this information was output because a
method exception occurred.

O O

Method name The name of an invoked method is indicated. O O

Exception
class name

The class name of the exception caused by method invocation is
indicated.

If the caused exception includes a detail character string, it is
also indicated.

O O

Parameter
information
(Param)

Parameter information for a method is indicated in the '(type)
parameter' format.

X O

Return value
information
(ReturnValue)

Method return value information is indicated in the '(type) return
value' format.

X O

Debugging Application

2-87

Output Level Output Item Output Information

Level 1 Level 2

Transaction
status
(TranStatus)

The following information is output:

[When the output item is Call]

Transaction status before method invocation

[When the output item is Return or Throw]

Transaction status after the end of method execution

X O

O: Item output at the specified output level

X: Item that is not output

Output Examples
Examples of information output at individual output levels are shown below:

Level 1
Normal end

18/10/2000 18:02:28.647 : Call : javax.transaction.TransactionManager begin
18/10/2000 18:02:28.647 : Return : javax.transaction.TransactionManager begin

Abnormal end

18/10/2000 18:02:28.577 : Call : : javax.transaction.TransactionManager begin
18/10/2000 18:02:28.607 : Throw : javax.transaction.TransactionManager begin
 javax.transaction.SystemException: Internal error

Level 2
Normal end

18/10/2000 18:02:28.647 : Call : javax.transaction.TransactionManager begin
 Param :
 TranStatus : STATUS_NO_TRANSACTION
18/10/2000 18:02:28.647 : Return : javax.transaction.TransactionManager begin
 ReturnValue :
 TranStatus : STATUS_ACTIVE

Chapter 2: Operating J2EE Applications

2-88

Abnormal end

18/10/2000 18:02:28.647 : Call : javax.transaction.TransactionManager begin
 Param :
 TranStatus : STATUS_NO_TRANSACTION
18/10/2000 18:02:28.647 : Throw : javax.transaction.TransactionManager begin
javax.transaction.SystemException: Internal error
 TranStatus : STATUS_NO_TRANSACTION

J2EE Application User Debug Information
User debug information on the J2EE application is output when the log output method is invoked from the
J2EE application.

For details of writing user debug information on each method to a log file, refer to Log Output Method for
Support. This chapter explains the procedure of writing user debug information to a snap file, the output
form, and the content of the output.

Procedure for Outputting User Debug Information

The procedure of writing user debug information on the J2EE application to a snap file is described in the
J2EE application class. The description procedure is as follows.

1. Add the import line.

2. Get the class to output debug information.

3. Call the method of outputting various logs by using the class mentioned in point 2, and output debug
information for any J2EE application.

Example

package sample.ejb.entity.bmp;

 import java.rmi.*;
 import javax.ejb.*;
 import java.sql.*;
 import javax.sql.*;
 import javax.naming.*;
 import com.fujitsu.interstage.ejb.container.common.*; // Add logging class ----1

 public class EntityBMPUseLogger implements javax.ejb.EntityBean {
 // Get the class (Logger) to output the debug information
 private static Logger logger = Logger.getLogger(“UseLoggerCMP”); // -----------2
 private boolean isDebug = false;

 ...

 public void setEntityContext(javax.ejb.EntityContext ctx)
 throws javax.ejb.EJBException, java.rmi.RemoteException {
 ...

 public EntityBMPUseLoggerPrimaryKey ejbCreate(int No, String Name, int
Stock)
 throws javax.ejb.DuplicateKeyException, javax.ejbCreateException,

Debugging Application

2-89

 javax.ejb.RemoteException {
 if(isDebug) { // Debug Mode ?
 // Output the snap log
 logger.log (Level.FINE,”ejbCreate START”); // ----------------------------3
 }

 ...

Differences in Coding Method by JDK Version

java.util.Logging package is used in JDK1.4. API provided by Interstage is used in JDK1.3 for debugging.
The J2EE application created in JDK1.3 and JDK1.4 differs in the following points:

• The import statement is different

JDK Version Import Statement

JDK1.3 com.fujitsu.interstage.ejb.container.common

JDK1.4 java.util.Logging

• Classpath setting when you compile (for JDK1.3)

Add the following file to the Classpath when you compile the J2EE application

Apworks installation directory\ejb\lib\fjcontainer72.jar

Output Format
The date and time etc is added to the user debug information log automatically.

The structure of the log file depends on the chosen output method. The form is decided according to the
following.

The output form is different according to API used. Refer to Log Output Method for Support for details.

1. Output only message (Specified string)

Date Time : Log Message Log level Message

2. Message (Specified string)+ Parameter (Any Object)

Date Time: Log Message Log level Message
Log Param:Parameter information

3. Message (Specified string)+ Exception (Any Exception)

Date Time: Log Message Log level Message Exception information

Chapter 2: Operating J2EE Applications

2-90

Output Information
Output items and output information are summarized in the table below:

Table 2-11 Output Information of User Debug on EJB Application
Output Item Output Information

Date The date when the debug information is output is shown in the 'day/month/year'
format.

Time The time when the debug information is output is shown in the
'time:minutes:second.millisecond' format.

Log Message Debug information is shown

Log Exception Debug information (Exception information) is shown.

Log Level The level of debug information (level specified for the log output method) is output
by the following character string.

 '[FINEST]', '[FINER]', '[FINE]', '[CONFIG]', '[INFO]', '[WARNING]', [SEVERE]'

Message Debug information (Any character string) that the J2EE application specified is
output.

Parameter
information
(Param)

Parameter information (parameter type and value) used for method invocation is
indicated in the following format:

(Type) parameter

or

(Type) <Object>

If no parameter is used, only the item name is indicated.

For the array class and java.util package Hashtable, all stored values are output.

When a user object (*1) having a public field is used as a parameter, '<Object>' is
added and the ObjectField item is output.

Exception
information

Output exception information (any exception) specified by J2EE application

Additionally, when a detailed character string is included in the generated
exception, the detailed character string is output as well.

Field information
(ObjectField)

Object public field information is indicated in the following format:

(Type) field name = field value

or

(Type) field name = <Object>

For the primitive or String type, the type, variable name, and value are output.

For other types, the type, variable name, and '<Object>' are output.

Debugging Application

2-91

Output Examples
Examples of information output at individual output levels are shown below:

1. Output only message (Specified string)

In case where the method logger.log(Level.INFO,'DBAccess start!!') is used:

23/10/2000 09:49:15.454 : Log Message: [INFO] DBAccess start!!

2. Message (Specified string)+ Parameter (Any Object)

 In case where the method logger.log(Level.INFO,' prepareStatement ',sql) is used:

('sql' is java.lang.String type)

23/10/2000 09:49:15.454 : Log Message: [INFO] prepareStatement
Log Param : (java.lang.String)”SELECT * FROM EMP_EJB1 WHERE (ID=?)”

3. Message (Specified string)+ Exception (Any Exception)

 In case where the method logger.log(Level.SEVERE'Error!!', ex) is used:

('ex' is java.lang.Throwable type)

23/10/2000 09:49:15.454:LogException:[SEVERE] Error!!
java.lang.NullPointerException

Notes

• There is no need to describe any description in the program to output to the snap file, except for
getting the user debug information on the J2EE application. There is a possibility that the
performance deteriorates by the overhead when the log output method is called. However, if the
environment of the snap is not set, or output snap with the output level of the snap is set to 1 or 2
when the IJServer is activated, debug information on the J2EE application is never sent to a snap file.
For this reason, take care when programming.

• Do not use methods of the java.util.logging.LogManager class from the J2EE application. There is a
possibility of abnormal operating when a snap function is used.

Chapter 2: Operating J2EE Applications

2-92

Log Output Method for Support
The following is a list of the log output method for support. For details, refer to Java 2 Platform API
Specification.

Table 2-12 Log Output Method for Support
Support Method Output Debug Information

config(String msg) Log level = '[CONFIG]'

Message = String specified for msg

fine(String msg) Log level = '[FINE]'

Message = String specified for msg

finer(String msg) Log level = '[FINER]'

Message = String specified for msg

finest(String msg) Log level = '[FINEST]'

Message = String specified for msg

info(String msg) Log level = '[INFO]'

Message = String specified for msg

severe(String msg) Log level = '[SEVERE]'

Message = String specified for msg

warning(String msg) Log level = '[WARNING]'

Message = String specified for msg

log(Level level, String msg) Log level = String for the level

Message = String specified for msg

log(Level level, String msg,
Object param1)

Log level = String for the level

Message = String specified for msg

Parameter = String specified for param1

log(Level level, String msg,
Object[] params)

Log level = String for the level

Message = String specified for msg

Parameter = String specified for params

log(Level level, String msg,
Throwable thrown)

Log level = String for the level

Message = String specified for msg

Exception information = information specified for thrown

Debugging Application

2-93

Support Method Output Debug Information

log(LogRecord record) Output the following information that is set in LogRecord

Log level =String that is set in setLevel() method.

Message = String that is set in setMessage() method

Parameter information = String that is set in setParameters()method

Exception information = String that is set in setThrown() method

If the both parameter and exception information are set at the same
time, only exception information is output and parameter information is
not output.

Logp (Level level,String
sourceClass,

String sourceMethod, String
msg) .

Log level = String for the level

Message = String specified for msg

logp(Level level, String
sourceClass,

String sourceMethod,String
msg,Object param1)

Log level = String for the level

Message = String specified for msg

Parameter = String specified for param1

logp(Level level, String
sourceClass,

String sourceMethod, String
msg,

Object[] params)

Log level = String for the level

Message = String specified for msg

Parameter = String specified for params

logp(Level level, String
sourceClass,

String sourceMethod, String
msg,

Throwable thrown)

Log level = '[FINE]'

Message = String specified for msg

Exception information = information specified for thrown

logrb(Level level, String
sourceClass,

String sourceMethod, String
bundleName,

String msg)

Log level = String for the level

Message = String specified for msg

logrb(Level level, String
sourceClass,

String sourceMethod, String
bundleName,

String msg, Object param1)

Log level = String for the level

Message = String specified for msg

Parameter = String specified for param1

Chapter 2: Operating J2EE Applications

2-94

Support Method Output Debug Information

logrb(Level level, String
sourceClass,

String sourceMethod, String
bundleName,

String msg, Object[] params)

Log level = String for the level

Message = String specified for msg

Parameter = String specified for params

logrb(Level level, String
sourceClass,

String sourceMethod, String
bundleName,

String msg, Throwable thrown)

Log level = String for the level

Message = String specified for msg'

Exception information = information specified for thrown

throwing(String sourceClass,
String sourceMethod,

Throwable thrown)

Log level = '[FINER]'

Message = 'THROW'

Exception information = information specified for thrown

Snap File Output Example

10/12/2001 13:58:57.708 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@1049d3
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@4a7a12
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@1444d1
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@32060c
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.708 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@2b323e
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Call :JcccCmpEntityUserExRW setEntityContext

Debugging Application

2-95

 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@6fb4be
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@435a3a
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@58c528
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@77eaf8
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Call :JcccCmpEntityUserExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@635bb7
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityUserExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@1a8a68
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.718 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@74e571
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@38de7
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@5976c2
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext

Chapter 2: Operating J2EE Applications

2-96

 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@3e7de
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@6bcdbb
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@fe2b9
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@6e148b
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.728 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@6d484
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntityRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@6a48be
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Return :JcccCmpEntityRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@4dd758
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@74d93a
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@61a907
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntitySysExRW setEntityContext

Debugging Application

2-97

 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@20225b
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.738 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@2f8b5a
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.758 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.758 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@78bc3b
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.758 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.758 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@ddc4c
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.758 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.768 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@7a1767
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.768 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.768 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@3e41ec
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.768 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.768 : Call :JcccCmpEntitySysExRW setEntityContext
 Param :(javax.ejb.EntityContext)javax.ejb.EntityContext@5a2cef
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:58:57.768 : Return :JcccCmpEntitySysExRW setEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.166 : Call :JcccCmpCBSRW setSessionContext
 Param :(javax.ejb.SessionContext)javax.ejb.SessionContext@516fc1
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.196 : Return :JcccCmpCBSRW setSessionContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.296 : Call :JcccCmpCBSRW ejbCreate
 Param :(int)1
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.306 : Call :JcccCmpCBMRW setSessionContext
 Param :(javax.ejb.SessionContext)javax.ejb.SessionContext@7cd37a
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.306 : Return :JcccCmpCBMRW setSessionContext

Chapter 2: Operating J2EE Applications

2-98

 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.306 : Call :JcccCmpCBMRW ejbCreate
 Param :(int)1
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.306 : Return :JcccCmpCBMRW ejbCreate
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.306 : Return :JcccCmpCBSRW ejbCreate
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.547 : Call :JcccCmpCBSRW empUpdate
 Param :(java.lang.String)"DUMMY",
 (long)0,

(com.fujitsu.jccc.view.EmployeeEV)com.fujitsu.jccc.view.EmployeeEV@7e845a<Ob
ject>,
 (boolean)false,
 (int)1
 ObjectField :(java.lang.String)id = "9016",
 (java.lang.String)name = "Dept1",
 (java.lang.String)dept = "Name1",
 (int)age = 11,
 (int)exRes = 99
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.547 : Call :javax.transaction.UserTransaction begin
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:17.547 : Return :javax.transaction.UserTransaction begin
 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:17.547 : Call :JcccCmpCBMRW afterBegin
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:17.547 : Return :JcccCmpCBMRW afterBegin
 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:17.557 : Call :JcccCmpCBMRW empUpdate
 Param :(java.lang.String)"DUMMY",
 (long)0,

(com.fujitsu.jccc.view.EmployeeEV)com.fujitsu.jccc.view.EmployeeEV@7e845a<Ob
ject>,
 (int)1
 ObjectField :(java.lang.String)id = "9016",
 (java.lang.String)name = "Dept1",
 (java.lang.String)dept = "Name1",
 (int)age = 11,
 (int)exRes = 99
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:17.587 : Call :JcccCmpEntityUserExRW ejbActivate
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:17.587 : Return :JcccCmpEntityUserExRW ejbActivate

Debugging Application

2-99

 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.770 : Call :JcccCmpEntityUserExRW java.sql.Connection
prepareStatement
 Param :(java.lang.String)"SELECT ID,NAME,DEPT,AGE FROM
 SCOTT.EMP_EJB1 WHERE ID = ?"
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.840 : Return :JcccCmpEntityUserExRW java.sql.Connection
prepareStatement

ReturnValue :(java.sql.PreparedStatement)java.sql.PreparedStatement@e4245
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.840 : Call :JcccCmpEntityUserExRW
java.sql.PreparedStatement executeQuery
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.850 : Return :JcccCmpEntityUserExRW
java.sql.PreparedStatement executeQuery

ReturnValue :(oracle.jdbc.driver.OracleResultSetImpl)oracle.jdbc.drive
r.OracleResultSetImpl@20fa83
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.900 : Call :JcccCmpEntityUserExRW ejbLoad
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.900 : Return :JcccCmpEntityUserExRW ejbLoad
 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.920 : Call :JcccCmpEntityUserExRW fsetNAME
 Param :(java.lang.String)"Dept1"
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Throw :JcccCmpEntityUserExRW fsetNAME
com.fujitsu.jccc.cmp.entity.UserException: JcccBmpEtyEx#bussiness : throw
UserException for UserException-Test
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Return :JcccCmpCBMRW empUpdate
 ReturnValue :(int)1
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Call :javax.transaction.UserTransaction getStatus
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Return :javax.transaction.UserTransaction getStatus
 ReturnValue :(int)0
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Call :javax.transaction.UserTransaction commit
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Call :JcccCmpCBMRW beforeCompletion
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Return :JcccCmpCBMRW beforeCompletion
 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Call :JcccCmpEntityUserExRW ejbStore

Chapter 2: Operating J2EE Applications

2-100

 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Return :JcccCmpEntityUserExRW ejbStore
 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Call :JcccCmpEntityUserExRW ejbPassivate
 Param :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.930 : Return :JcccCmpEntityUserExRW ejbPassivate
 ReturnValue :
 TranStatus :STATUS_ACTIVE
10/12/2001 13:59:19.940 : Call :JcccCmpCBMRW afterCompletion
 Param :
 TranStatus :STATUS_COMMITTING
10/12/2001 13:59:19.940 : Return :JcccCmpCBMRW afterCompletion
 ReturnValue :
 TranStatus :STATUS_COMMITTING
10/12/2001 13:59:19.940 : Return :javax.transaction.UserTransaction commit
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:19.940 : Return :JcccCmpCBSRW empUpdate
 ReturnValue :(int)1
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.379 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityUserExRW unsetEntityContext

Debugging Application

2-101

 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityUserExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityUserExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext

Chapter 2: Operating J2EE Applications

2-102

 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.389 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Call :JcccCmpEntityRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Return :JcccCmpEntityRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.399 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext

Debugging Application

2-103

 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Call :JcccCmpEntitySysExRW unsetEntityContext
 Param :
 TranStatus :STATUS_NO_TRANSACTION
10/12/2001 13:59:26.409 : Return :JcccCmpEntitySysExRW unsetEntityContext
 ReturnValue :
 TranStatus :STATUS_NO_TRANSACTION

Chapter 2: Operating J2EE Applications

2-104

Using Application Debugging Information
In this method, processes to output debugging information are defined beforehand and then EJB
applications are debugged according to that information during development.

Debugging Information
Standard output or standard error output is used as debugging information from the application.

Debug information is output to the IJServer log file.

Refer to 'IJServer log' for information on the IJServer log.

Output of Exception Information to the Standard Error Output
By using the printStackTrace() method of the exception class, the location where an error occurred can be
determined to some degree.

Example

 catch(Exception e)
 {
 String emsg = e.getMessage();
 Systemerr.println("SampleBean.ejbCreate:Exception occurred;");
 e.printStackTrace();
 throw new javax.ejb.EJBException(emsg);
 }

Note

• Standard output and standard error output will not take place if there is insufficient disk space on the
destination disk, so ensure there is enough space available. In addition, use Microsoft Windows
Explorer or an alternative file management tool to delete standard output and standard error output
files that are no longer required.

Using the Debugger
This method employs the debugger provided by Apworks.

The debugger allows logical errors in the processing of a developed application to be detected while the
application is being run.

Debugging is normally carried out by setting a breakpoint within the program source code and then
referencing or changing variables while the program is stopped at the breakpoint.

For details on how to use the debugger, refer to the Apworks Apdesigner Programmer's Guide or the
Component Designer User's Guide (note that this manual is not provided for the Plus Developer).

Note

When IJServer is debugged, two or more processes cannot run concurrently. Be sure to set 1 for 'Process
concurrency' of the WorkUnit.

Debugging Application

2-105

Automatic Thread Dump Collection
A thread dump is automatically collected when an application has caused a timeout or returns no response.
The cause of no response of the application or process bottlenecks can be detected by checking the
collected thread dump.

A thread dump is output to the container information log (info.log).

A thread dump is collected twice at 10-second intervals on the occurrence of one of the following events at
which a thread dump is collected. The thread dumps collected indicate there is a problem in an application
running on the thread that showed no change between the two dumps.

No thread dump is collected for 10 minutes after a thread dump is collected.

Event at which a thread dump is collected

• Timeout during startup

There may be a problem in start-time execution class or init processing, or too much time may be
taken for processing. The timeout value can be set at 'WorkUnit start wait time'.

• Application timeout

The application may have a problem or take too much time for processing. The timeout value can be
set at 'Maximum processing time of application'.

• Timeout during termination

A thread dump is automatically collected if 'Process forced stop time' is exceeded while the IJServer
WorkUnit is forcibly terminated.

A thread dump is also collected if 'Process forced stop time' is exceeded during forced termination
after IJServer WorkUnit termination stops responding. In this case, the stop-time execution class that
works for stopping the IJServer WorkUnit may have a problem, the destroy processing may have a
problem, or either processing takes too much time.

The timeout value can be set at 'Process forced stop time'.

Debugging using Java Method Trace
The Java method trace function can be used for debugging.

This function collects method level trace of the J2EE application. This trace provides information useful
for checking how far the application has processed normally or in which processing a termination or
abnormality occurred.

Chapter 2: Operating J2EE Applications

2-106

3-1

Chapter 3

JNDI

This chapter explains how to use JNDI.

Environment set up when JNDI service provider is used
In Interstage, a JNDI service provider to enable access to J2EE objects is implemented. Refer to "JNDI
Service Provider Environment Setup" for details of the environment set up when using the JNDI service
provider implemented by Interstage.

Environment setup to enable various objects to be referenced
When J2EE's various resources and EJB applications are accessed from the J2EE application, a JNDI
interface is used. The objects that can be referenced in JNDI are as follows.

Category Object name Web
application

EJB application J2EE
application
client

Applet

EJB Home
object

O O O O EJB object

EJB Local
Home object

O O X X

JDBC data
source

O O O X

JMS connection
factory

O O O X

JavaMail mail
session

O O O X

URL (Uniform
Resource
Locator)

O O O X

Resource
reference

connector
connection
factory

X O X X

Resource
environment
reference

JMS Destination O O O X

Chapter 3: JNDI

3-2

Category Object name Web
application

EJB application J2EE
application
client

Applet

Environment
entry

O O O X

UserTransaction O O O X

others

ORB O O O O

Writing to "deployment descriptor"
Write the information of objects to be referenced to the deployment descriptor file of each application.
Refer to "Description in deployment descriptor file" for details of writing to the deployment descriptor file.

In the case of Applet, only EJB can be referenced; therefore a deployment descriptor does not need to be
specified. Only by specifying an EJB application name in the lookup argument, EJB Home objects can be
referenced.

Referencing objects
An object contained in the deployment descriptor can be referenced from a J2EE application using the
JNDI interface's lookup method. Refer to "Referencing Objects" for details.

Name conversion function
If an application's description differs from the operation environment's real name, a deployment
descriptor's reference name and the operation environment's real name can be correlated by using the
name conversion function. In this way, if the relationship between the deployment descriptor's reference
name and operation environment's real name is defined by using the name conversion file, an application
independent of the operation environment can be created. Refer to "Name Conversion Function" for
details of the name conversion function.

Setting when Fujitsu XML processor is used
For usual analysis of the deployment descriptor file or name conversion file, use Sun's XML parser. When
Fujitsu XML processor is used for the analysis processing, refer to "Setting for using the Fujitsu XML
processor" in Customizing and Checking the Operating Environment in Chapter 2.

Using UserTransaction
The transaction start and end can be controlled by using a looked up UserTransaction object. Refer to
"Transaction Function using the UserTransaction Interface" for details of using UserTransaction.

JNDI Service Provider Environment Setup

3-3

JNDI Service Provider Environment Setup
This section explains the environment set up when the JNDI service provider provided by Interstage (JNDI
SP) is used.

• Web application

Because the JNDI SP operates by default, an environment setup is not required. However, it is
required when HTTP tunneling is used. Refer to Web application.

• EJB application

Since JNDI SP of Interstage operates by the default, there is no necessity for an environmental setup.

• J2EE application client

For details on the setting required for J2EE application clients, refer to "J2EE application client".

• Applet

Refer to "Applet" for details of the setting required for Applet.

Web application
When the HTTP tunneling is used in the Web application using JNDI, set JNDI environment properties.
Specify these properties as explained below.

• FJjndi.properties file

Deploy the FJjndi.properties file in the following.

 C:\Interstage\J2EE\etc

 /etc/opt/FJSVj2ee/etc

 /etc/opt/FJSVj2ee/etc

• Setting by IJServer JavaVM option

Set the properties in the IJServer JavaVM option. Make this setting on the Interstage Management
Console.

When an environment property is specified more than once, "IJServer JavaVM option settings" are
enabled.

The values that can be set in an environment property are given below. The character strings of the
environment property are case-sensitive.

Environment property Value Setting contents OS applied

HTTPGW Refer to "J2EE application client" environment property "HTTPGW".

Chapter 3: JNDI

3-4

J2EE application client
For a J2EE application client, set a JNDI environment property.

The JNDI environment property is created when new javax.naming.InitialContext() is used to access the
JNDI SP from the application. It is an environment property used in the InitialContext initialization
processing. The environment property is specified in the following files or arguments.

• jndi.properties file

Only the environment property "java.naming.factory.initial" can be specified.

The jndi.properties file must be located in the archive specified by the class path or in lib under the
directory set in a Java system property "java.home".

When JBK is installed, locate the jndi.properties file as explained below.

<JBK installation directory>\jdk\jre\lib

<JBK installation directory>/jdk13/jre/lib

• FJjndi.properties file

Environment properties "java.naming.factory.initial" and "com.fujitsu.interstage.isas.SystemName"
cannot be specified.

Deploy the FJjndi.properties file in the following.

C:\Interstage\J2EE\etc

/etc/opt/FJSVj2ee/etc

When a system name (environment property: com.fujitsu.interstage.isas.SystemName) is
specified in one of the following, deploy the FJjndi.properties file in the following directory:

/var/opt/FJSVisas/system/system name/FJSVj2ee/etc/
− The argument environment in new javax.naming.InitialContext(Hashtable environment)
− Command line argument (-D) when the application is started

/etc/opt/FJSVj2ee/etc

• The argument in javax.naming.InitialContext(Hashtable environment)

• Command line argument (-D) when the application is started

JNDI Service Provider Environment Setup

3-5

When an environment property is specified more than once, they are overwritten in the following order (the
environment property specified by 3 is given the top priority).

1. FJjndi.properties file

2. The argument in javax.naming.InitialContext(Hashtable environment)

3. Command line argument (-D) when the application is started

The environment property "java.naming.factory.initial" is overwritten in the following order (the
environment property specified by 3 is given the top priority).

1. jndi.properties file

2. Command line argument (-D) when the application is started

3. The argument in javax.naming.InitialContext(Hashtable environment)

The values that can be set in an environment property are given in the following table.

The character strings of the environment property and "java.naming.factory.initial" values are
case-sensitive.

The character strings of the environment property and values are case-sensitive.

The "VerificationMethod" and "com.fujitsu.ObjectDirector.CORBA.GlobalTransactionMode" values
are excluded.

Environment
property

Value Setting contents OS applied

java.naming.factory
.initial (*1)

com.fujitsu.interstage.j2ee.j
ndi.InitialContextFactoryFor
Client

The InitialContext factory class name
to access JNDI SP is specified.

All

FJUserID (*2) Optional character string A user name used in Smart
Repository user authentication is
specified. If this value is omitted, the
user authentication is not performed.

All

FJPassword (*2) Optional character string A Password used in Smart Repository
user authentication is specified. If this
value is omitted, the user
authentication is not performed.

All

com.fujitsu.intersta
ge.j2ee.Deploymen
tDescriptorClient
(*3)

Optional character string The J2EE application client
deployment descriptor file name is
specified in full path.

All

EBEproperties Optional character string A name conversion file name is
specified (full path specification is
disabled). If this value is omitted, the
name conversion is not performed.

All

Chapter 3: JNDI

3-6

Environment
property

Value Setting contents OS applied

HTTPGW (1) For Interstage HTTP
Server

[Format for using SSL
communication]

https://host-name/url-name
[Format for not using SSL
communication]

http://host-name/url-name

host-name:
Specifies the Web server
that downloads HTML.

url-name:
Specifies od-httpgw. For
url-name, specify the URL
of the Location directive.

(2) For non-Interstage
HTTP server

[Format for using SSL
communication]

https://host-name/cgi-ID/gat
eway-name
[Format for not using SSL
communication]

http://host-name/cgi-ID/gate
way-name

host-name:
Specifies the Web server
that downloads HTML.

cgi-ID:
When the InfoProvider Pro
is used, specify the cgi
identification name.

When Internet Information
Server is used, specify
"Virtual directory" alias
name.

gateway-name:

The gateway that processes the
HTTP tunneling is specified. If this
value is omitted, the HTTP tunneling
is not used. (*5)

All (*4)

JNDI Service Provider Environment Setup

3-7

Environment
property

Value Setting contents OS applied

Specifies ODhttp.dll (HTTP
gateway).

Specifies libOMhttp.so
(HTTP-IIOP gateway).

VerificationMethod - Well-formed
Verifies only whether the
XML document is
well-formed or not.

- DTD
Verifies whether the
XML document is
well-formed or not.
Verification by DTD is
also performed.
(Default)

Verification method by deployment
descriptor and name conversion files'
parser is specified.

All

com.fujitsu.Object
Director.CORBA.Gl
obalTransactionMo
de

- True
Performed.

- False
Not performed

Specify whether distributed
transaction control is performed or
not.

All (*4)

com.fujitsu.intersta
ge.isas.SystemNa
me

Optional character string When an extended system is created,
the system name to be operated is
specified. If this value is omitted, the
default system is operated.

(*4)

*1 This environment property must be specified in the jndi.properties file, new
javax.naming.InitialContext(Hashtable environment) argument environment, or command line's
argument (-D) when the application is started.

*2 FJUserID and FJPassword must be specified together.

*3 This environment property must be specified in the FJjndi.properties file, new
javax.naming.InitialContext(Hashtable environment) argument environment, or command line's
argument (-D) when the application is started.

*4 Web-J Edition is not supported.

*5 The format of a host name that can be specified as an argument to be passed to
"-ORB_FJ_HTTPGW" is shown below.

(1) For Interstage HTTP Server

http://ipv4address_host-name/url-name
http://ipv4address_host-name:Port_number/url-name
https://ipv4address_host-name/url-name
https://ipv4address_host-name:Port_number/url-name

Chapter 3: JNDI

3-8

(2) For other than Interstage HTTP Server

http://IPv4-address-host-name/cgi-identification-name/gateway-name
http://IPv4-address-host-name:Port_number/cgi-identification-name/gateway
-name
http://[IPv6-address]/cgi-identification-name/gateway-name
http://[IPv6-address]:Port_number/cgi-identification-name/gateway-name
https://IPv4-address-host-name/cgi-identification-name/gateway-name
https://IPv4-address-host-name:Port_number/cgi-identification-name/
gateway-name

When using an address in the IPv6 format, it needs to be enclosed by square brackets ("[" and "]").

In addition, in an IPv6 environment, since the SSL function cannot be used, ‘https’ cannot be
specified.

[Description example of jndi.properties file]

java.naming.factory.initial=com.fujitsu.interstage.j2ee.jndi.InitialConte
xtFactoryForClient

Note

The Java system property "java.home" can be changed by the command line argument indicated when
the application is started. However, be very careful about the change because orb.properties may be
unable to be referenced, causing an operation error.

Example

java -Djava.home=x:\aaaa\bbbb myapplication

Example

java -Djava.home=/aaaa/bbbb myapplication

[Description example of FJjndi.properties file]

deployment descriptor file name:C:\env\application-client.xml
Name Conversion file name :ClientebeProperties.xml

com.fujitsu.interstage.j2ee.DeploymentDescriptorClient=C:\env\application
-client.xml
EBEproperties=ClientebeProperties.xml

JNDI Service Provider Environment Setup

3-9

deployment descriptor file
name:/export/home/j2eeapl/application-client.xml
Name Conversion file name :ClientebeProperties.xml

com.fujitsu.interstage.j2ee.DeploymentDescriptorClient=/export/home/j2eea
pl/application-client.xml
EBEproperties=ClientebeProperties.xml

deployment descriptor file name:/home/j2eeapl/application-client.xml
Name Conversion file name :ClientebeProperties.xml

com.fujitsu.interstage.j2ee.DeploymentDescriptorClient=/home/j2eeapl/appl
ication-client.xml
EBEproperties=ClientebeProperties.xml

Applet
When a client application is developed as a Java Applet using an EJB client, it differs from a Java
application in the following aspect.

• lookup processing to send inquires about the EJB application object location to the Naming Service

A description example of the lookup processing in Java Applet is given below.

 // Acquisition of InitialContext
 Hashtable env = new Hashtable(); 1
 env.put("java.naming.factory.initial",
 "com.fujitsu.interstage.ejb.jndi.FJCNCtxFactoryForClient"); 1
 env.put("java.naming.applet", this); 1
 javax.naming.Context ic = new javax.naming.InitialContext(env); 2
 // lookup
 java.lang.Object Obj = (java.lang.Object)ic.lookup("SampleBean"); 3
 // home's narrow()
 h = (SampleHome)javax.rmi.PortableRemoteObject.narrow(Obj,
SampleHome.class);4

1. Set environment information to make a context. Specify it as explained above.

2. Create a context for lookup. Specify it as explained above.

3. To make a lookup, specify the EJB application name in the argument. If the lookup fails, a
javax.naming.NameNotFoundException exception occurs.
The failure cause is indicated as the detail message of the exception.

4. To narrow down the looked up objects, issue a javax.rmi.PortableRemoteObject.narrow.

Chapter 3: JNDI

3-10

Notes

• Use the constructor to make the InitialContext acquisition (steps 1 to 2 above) only once in the
application.

• When an Applet is used without a Portable-ORB, it is not possible to download the client distribution
data of the EJB application to be used from the Web server and use it.

Copy the client distribution data to the client environment and set the copy destination jar file or folder
in CLASSPATH and use it.

Refer to "Using Java Applets" in Chapter 11 for details of developing Java Applets.

When the Portable-ORB is used, refer to "Environment setup in client environment".

When the Java Applet is executed, it is necessary to set the data in the policy file that the JBK plug-in uses
for each execution machine. The data to be set is as follows.

• EJB service class

• JDK class

A setting example is given below. Refer to the “Apworks J Business Kit Online Manual” for details of the
policy file that the JBK plug-in uses.

• EJB service class

(When Interstage install folder C:\Interstage is specified)
grant codeBase "file:/C:/Interstage/EJBCL/LIB/-" {
permission java.security.AllPermission;
};

JNDI Service Provider Environment Setup

3-11

• JDK class

(When Interstage install folder C:\Interstage is specified)

In the case of JDK1.3
grant codeBase "file:/C:/Interstage/JDK13/jre/lib/-" {
permission java.security.AllPermission;
};
In the case of JRE1.3
grant codeBase "file:/C:/Interstage/JRE13/lib/-" {
permission java.security.AllPermission;
};
In the case of JDK1.4
grant codeBase "file:/C:/Interstage/JDK14/jre/lib/-" {
permission java.security.AllPermission;
};
In the case of JRE1.4
grant codeBase "file:/C:/Interstage/JRE14/lib/-" {
permission java.security.AllPermission;
};

Note

Even when a Java application is executed in the same way as for earlier versions, EJB can be referenced
by setting the following in the system properties. However, specify the JNDI SP as explained in the J2EE
application client.

java.naming.factory.initial=com.fujitsu.interstage.ejb.jndi.FJCNCtxFactor
yForClient

Chapter 3: JNDI

3-12

Environment Setup for Referencing EJB
The EJB Local Home or EJB Home object of the deployed EJB application can be acquired.

The EJB Local Home object reference directly acquires the same IJServer's EJB application object.

The EJB Home object reference is acquired from the Naming Service.

Refer to "Deploying and Setting J2EE Applications" in Chapter 2 for details.

EJB to be deployed on the IJServer (Web + EJB[1VM]) is not added to the Naming Service. Therefore,
EJB can be referenced only from the IJServer.

The following products acquire an object reference from the Naming Service that operates by default on
the local machine if they are used on a server. To change the Naming Service to be referenced, select
[System] > [Environment Settings] tab > [Detailed Setup] > [Detailed Settings] on the Interstage
Management Console.

• Interstage Application Server Enterprise Edition

• Interstage Application Server Standard Edition

• Interstage Application Server Plus

For Interstage Application Server Web-J Edition and clients, the Naming Service to be referenced must be
set. Refer to "inithost/initial_hosts" in Appendix A, “CORBA Service Environment Definition” in the “Tuning
Guide” for details.

When Interstage client functions are installed, an environment setup is required. Refer to "Environment
setup in client environment" for details. Note that the functions are automatically set when the IJServer is
started up; therefore the environment setup is not required.

To acquire an EJB Home object reference in the following cases, the class path must be set to the client
distribution data to be output when the EJB application to be referenced is deployed.

• When the EJB application deployed on another IJServer is looked up from the J2EE application
deployed on the IJServer.

• When the EJB application is looked up from a J2EE application client or Applet

Setting client distribution data
The client distribution data output destination for each IJServer is as follows.

Set the EJB calling application class path.

When the EJB application deployment destination server machine differs from the EJB application calling
machine, copy the client distribution data to the calling machine and set the class path to the copy
destination file.

C:\Interstage\J2EE\var\deployment\ijserver\[IJServer
 name]\distribute\[jar file name]

Environment Setup for Referencing EJB

3-13

/opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/distribute/[jar file
name]

* [jar file name] is given by replacing the deployed ejb-jar file name "." with "_" and adding "_client.jar" to
that name.

When the deployed ejb-jar file name is "Sample.jar," the client distribution jar name is to be
"Sample_jar_client.jar".

Environment setup in client environment
When a J2EE application or Applet is operated, the following environment setup is required. Check the
environment variable settings and set them as required.

Because the settings are automatically made at startup, the environment setup is not required for
IJServer.

• CORBA service setting

• ORB specification

• Setting environment variables

CORBA service setting
After the CORBA service is installed, make the following information setting.

Host name definition
In the inithost file, define the Naming Service activated host name.

In the following file, the Naming Service located host name and port number must be included.

C:\Interstage\ODWIN\etc\inithost

[Definition method]

format:

 host-name port-number

sample:

 hostname 8002

"config" file modification
When the following statement in the config file is operated with the initial value added, add the following
value.

Refer to the “Tuning Guide” for details of the initial value of the setting value.

Statement Value of add

max_processes Number of processes of client application to be added

Chapter 3: JNDI

3-14

ORB specification
As the environment setup to start an application, the ORB (Object Request Broker) to be used must be
specified. Specify the ORB in one of the following methods:

• Specifying ORB when application is active

• Specifying ORB in environment setup file

Specify the ORB by setting the following values in the above method.

Property name value

org.omg.CORBA.ORBClass com.fujitsu.ObjectDirector.CORBA.ORB

org.omg.CORBA.ORBSingletonClass com.fujitsu.ObjectDirector.CORBA.SingletonORB

javax.rmi.CORBA.StubClass com.fujitsu.ObjectDirector.rmi.CORBA.StubDelegate
Impl

javax.rmi.CORBA.UtilClass com.fujitsu.ObjectDirector.rmi.CORBA.UtilDelegateI
mpl

javax.rmi.CORBA.PortableRemoteObje
ctClass

com.fujitsu.ObjectDirector.rmi.CORBA.PortableRem
oteObjectDelegateImpl

Specifying ORB when application is active
When a Java application is executed, specify the ORB to be used as the java command parameter. Write
the required information after the -D option as follows.

java -Dorg.omg.CORBA.ORBClass=com.fujitsu.ObjectDirector.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.fujitsu.ObjectDirector.CORBA.Single
tonORB
-Djavax.rmi.CORBA.StubClass=com.fujitsu.ObjectDirector.rmi.CORBA.StubDele
gateImpl
-Djavax.rmi.CORBA.UtilClass=com.fujitsu.ObjectDirector.rmi.CORBA.UtilDele
gateImpl
-Djavax.rmi.CORBA.PortableRemoteObjectClass=com.fujitsu.ObjectDirector.rm
i.CORBA.PortableRemoteObjectDelegateImpl <application class name>

Specifying ORB in environment setup file
Create the text file containing the ORB to be used (file name: orb.properties) and store it in lib under the
directory set in the Java system property "java.home".

When JBK is installed, the text file is stored in the following.

Interstage Apworks client operation package

<JBK-install-directory>\jre\lib (*1)

*1 For J2EE application client only

Environment Setup for Referencing EJB

3-15

[Description example of orb.properties file]

org.omg.CORBA.ORBClass=com.fujitsu.ObjectDirector.CORBA.ORB
org.omg.CORBA.ORBSingletonClass=com.fujitsu.ObjectDirector.CORBA.Singleto
nORB
javax.rmi.CORBA.StubClass=com.fujitsu.ObjectDirector.rmi.CORBA.StubDelega
teImpl
javax.rmi.CORBA.UtilClass=com.fujitsu.ObjectDirector.rmi.CORBA.UtilDelega
teImpl
javax.rmi.CORBA.PortableRemoteObjectClass=com.fujitsu.ObjectDirector.rmi.
CORBA.PortableRemoteObjectDelegateImpl

Setting environment variables

Environment variable Setting value

CLASSPATH C:\Interstage\J2EE\lib\isj2ee.jar (*1)
C:\Interstage\ODWin\etc\class\ODjava2.jar (*2)
C:\Interstage\ODWin\etc\class\ODjava4.jar (*3)
C:\Interstage\EJB\lib\fjcontainer72.jar

Environment variable Setting value

CLASSPATH /opt/FJSVisj2ee/lib/isj2ee.jar (*1)
/opt/FSUNod/etc/class/ODjava2.jar (*2)
/opt/FSUNod/etc/class/ODjava4.jar (*3)
/opt/FJSVejb/lib/fjcontainer72.jar

LD_LIBRARY_PATH /opt/FSUNod/lib

Environment variable Setting value

CLASSPATH /opt/FJSVisj2ee/lib/isj2ee.jar (*1)
/opt/FJSVod/etc/class/ODjava2.jar (*2)
/opt/FJSVod/etc/class/ODjava4.jar (*3)
/opt/FJSVejb/lib/fjcontainer72.jar

LD_LIBRARY_PATH /opt/FJSVod/lib

*1 Required for J2EE application client only

*2 In the case of JDK/JRE1.3

*3 In the case of JDK/JRE1.4

Chapter 3: JNDI

3-16

Environment Setup when JDBC (Database) is
Referenced

Make the environment set up to use the JDBC data sources.

Setup of the class path
When you use JDBC, set up the class path as follows.

IJServer Setting item

J2EE property class path IJServer

WorkUnit definition class path

J2EE property class path

WorkUnit definition class path

IJServer that does not separate a class loader

CLASSPATH environment variable

• Environment set up when Symfoware is used

Note

The following contains the settings used when Symfoware V4.0L10 or later (Windows) and
Symfoware 3.2 or later (Solaris OE) are used. Refer to the Symfoware Client JDBC driver's online
manual for details of the environment setup to use earlier Symfoware versions.

• Environment set up when Oracle is used

• Environment set up when SQL Server is used

Environment set up when Symfoware is used
The following environment set up is required when Symfoware is used.

• Setting environment variable

• Starting JDBC Naming Service

• Adding JDBC data sources

• Resource access definition

When Symfoware on a non-Interstage server system is accessed, the operation below is also required.

Setting environment variable
Set the following item.

When a WorkUnit is used, set the environment variable in the WorkUnit definition on the Interstage
Management Console. It is effective even if it is set as a system environment variable. The system
environment variable CLASSPATH is only enabled when "Do not separate" is set for separation of
IJServer class loaders.

Environment Setup when JDBC (Database) is Referenced

3-17

Setting item Symfoware version Setting value

V4.0L10 or later,
earlier than V5.0L10

JDBC driver install directory\com\fujitsu\symfoware\jdbc PATH

V5.0L10 or later JDBC driver install directory\fjjdbc\bin

V4.0L10 or later,
earlier than V5.0L10

JDBC driver install directory
JDBC driver install directory\com\fujitsu\symfoware\jdbc2

CLASSPATH

V5.0L10 or later JDBC driver install directory\fjjdbc\lib\fjsymjdbc2.jar

When the client function is being used
Sample: When Symfoware JDBC driver install directory is C:\classes\SymfoJDBC

In the case of Symfoware V4.0L10

set PATH=C:\classes\SymfoJDBC\com\fujitsu\symfoware\jdbc;%PATH%
set CLASSPATH=C:\classes\SymfoJDBC;%CLASSPATH%
set
CLASSPATH=C:\classes\SymfoJDBC\com\fujitsu\symfoware\jdbc2;%CLASSPATH%

In the case of Symfoware V5.0L10

set PATH=C:\classes\SymfoJDBC\fjjdbc\bin;%PATH%
set CLASSPATH=C:\classes\SymfoJDBC\fjjdbc\lib\fjsymjdbc2.jar;%CLASSPATH%

Setting item Symfoware version Setting value

3.2 or later,
earlier than 5.0

Symfoware install directory/lib
ICONV install directory/lib
JDBC driver install directory/com/fujitsu/symfoware/jdbc

LIBRARY
PATH

5.0 or later
Symfoware install directory/lib
ICONV install directory/lib
JDBC driver install directory/fjjdbc/bin

Symfoware install directory/FJSVrdb2b/lib
ICONV install directory/FSUNiconv/lib
FJSVsymjd package install directory/FJSVsymjd/fjjdbc/bin

Chapter 3: JNDI

3-18

Setting item Symfoware version Setting value

3.2 or later,
earlier than 5.0

JDBC driver install directory
JDBC driver install directory/com/fujitsu/symfoware/jdbc2

CLASSPATH

5.0 or later
JDBC driver install directory/fjjdbc/lib/fjsymjdbc2.jar

FJSVsymjd package install
directory/FJSVsymjd/fjjdbc/lib/fjsymjdbc2.jar

When the client function is being used

Sample: When Symfoware JDBC driver install directory is /classes/SymfoJDBC

In the case of Symfoware 3.2 (When using the C shell)

setenv LD_LIBRARY_PATH /opt/FSUNrdb2b/lib:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH /opt/FSUNiconv/lib:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH
/classes/SymfoJDBC/com/fujitsu/symfoware/jdbc:${LD_LIBRARY_PATH}
setenv CLASSPATH /classes/SymfoJDBC:${CLASSPATH}
setenv CLASSPATH
/classes/SymfoJDBC/com/fujitsu/symfoware/jdbc2:${CLASSPATH}

In the case of Symfoware 5.0 (When using the C shell)

setenv LD_LIBRARY_PATH /opt/FSUNrdb2b/lib:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH /opt/FSUNiconv/lib:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH /classes/SymfoJDBC/fjjdbc/bin:${LD_LIBRARY_PATH}
setenv CLASSPATH /classes/SymfoJDBC/fjjdbc/lib/fjsymjdbc2.jar:${CLASSPATH}

Sample: When FJSVsymjd package is installed in /opt

In the case of Symfoware 5.0 (When using the C shell)

setenv LD_LIBRARY_PATH /opt/FJSVrdb2b/lib:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH /etc/opt/FSUNiconv/lib:${LD_LIBRARY_PATH}
setenv LD_LIBRARY_PATH /opt/FJSVsymjd/fjjdbc/bin:${LD_LIBRARY_PATH}
setenv CLASSPATH /opt/FJSVsymjd/fjjdbc/lib/fjsymjdbc2.jar:${CLASSPATH}

Environment Setup when JDBC (Database) is Referenced

3-19

Starting JDBC Naming Service
When the JDBC is used, the Naming Service must be started to add to and view the JDBC data sources as
well as to execute J2EE applications.

Start the Naming Service in the following procedure.

1. Check Java environment

Check whether the Java environment is set up. For details of the Java environment setup, refer to
"Environment Setup of Java" in “Checking the operating environment” in Chapter 2.

2. Check environment variable

Set the environment variable specified in "Setting environment variable".

3. Start Naming Service

Start the Naming Service.

Sample:

java com.fujitsu.symfoware.jdbc2.naming.SYMNameService

Note

When using name conversion, if JDBC naming service has not started, an error will occur and the
following messages will be output. Check the JNDI name (%s).

javax.naming.InvalidNameException physical-name is invalid NAME = %s

For details, refer to "Management when an Exception occurs in Lookup Processing" in Chapter 39 of
"Messages".

Adding JDBC data sources
When the JDBC is used, JDBC data sources must be added.

Add the JDBC data sources in the following procedure.

1. Check Java environment

Check whether the Java environment is set up. For details of setting up the Java environment, refer
to "Environment Setup of Java" in “Checking the operating environment” in Chapter 2.

2. Check environment variable

Set the environment variable specified in "Setting environment variable".

3. Start JDBC data source registration tool

Use the user ID with administrator permission to activate the JDBC data source registration tool.

Sample:

java com.fujitsu.symfoware.jdbc2.tool.FJJdbcTool

Chapter 3: JNDI

3-20

4. Add JDBC data sources

Click the data source list's [Add] button, then set the information required to add data sources, and
click the [OK] button.

Sample:

Data source name DS1

Protocol local

Data resource name DB1

User name j2ee

Password j2ee

Resource access definition
Make the resource access definition on the Interstage Management Console.

When Interstage client functions are installed, use the J2EE resource access definition. Refer to Chapter
19, "J2EE Resource Access Definition" for details.

Symfoware installed server system's environment setup
The connection type used to access Symfoware on a non-Interstage server system is called
"RDB2_TCP".

The following operations are required to connect to Symfoware in RDB_TCP but not to access the same
server system as Interstage.

• RDB2_TCP connection parameter setting

• RDB2_TCP port number setting

RDB2_TCP connection parameter setting
Add the following RDB2_TCP connection parameter to the Symfoware system operation environment file.

MAX_CONNECT_TCP = (n)

n: Maximum number of connection (0 by default)

The system operation environment file is stored in the location specified when Symfoware is installed. If
the storage location is not specified, the system operation environment file is stored in the following
location.

Symfoware install drive:\SFWETC\RDB\ETC\UXPSQLENV

/opt/FSUNrdb2b/etc/fssqlenv

Environment Setup when JDBC (Database) is Referenced

3-21

/opt/FJSVrdb2b/etc/fssqlenv

Note

When the system operation environment file does not contain MAX_CONNECT_TCP or
MAX_CONNECT_TCP is specified by 0, a Symfoware ODBC driver error occurs when a J2EE application
is executed. Refer to "Exceptions Output during J2EE Usage" in the Messages for details of the output
exception information.

Setting RDB2_TCP port number
Set the RDB2_TCP port number in the following file.

In the case of Windows(R) 2000
Windows install directory\WINNT\system32\drivers\etc\services

/etc/services

Sample : When 2,050 is allocated to port number

RDBII 2050/TCP

Environment set up when Oracle is used
The following environment set up is required when Oracle is used.

Note

If Oracle10g or later is used in a Solaris OE 32 bit environment, use a 32 bit compatible library for creating
and executing programs. Additionally, set the library path of the environment variable so that the 32 bit
compatible library is enabled.

• Setting environment variable

• Resource access definition

Note

If Oracle10g or later is used in a 32 bit edition environment, use a 32 bit compatible library for creating and
executing the program. Additionally, when executing the program, set PATH (Windows(R)), or the
LD_LIBRARY_PATH environment variable (Solaris OE, Linux) to enable the 32 bit compatible library.

Chapter 3: JNDI

3-22

Setting environment variable
Set the following item.

When a WorkUnit is used, set the environment variable in the WorkUnit definition on the Interstage
Management Console. It is effective even if it is set as a system environment variable. The system
environment variable CLASSPATH is only enabled when "Do not separate" is set for separation of
IJServer class loaders.

Set the class path in the Oracle JDBC driver jar file.

Setting item Oracle
version

JDK/JR
E

Setting value (*1)

Oracle install directory\jdbc\lib\classes12.jar or
Oracle install directory\jdbc\lib\classes12.zip

1.3

Oracle install directory\jdbc\lib\nls_charset12.jar or
Oracle install directory\jdbc\lib\nls_charset12.zip

Oracle install directory\jdbc\lib\ojdbc14.jar

Oracle9i or
earlier

1.4

Oracle install directory\jdbc\lib\nls_charset12.jar or
Oracle install directory\jdbc\lib\nls_charset12.zip

Oracle install directory\jdbc\lib|classes12.jar or
Oracle install directory\jdbc\lib\classes12.zip

1.3

Oracle install directory\jdbc\lib\orai18n.jar

Oracle install directory\jdbc\lib\ojdbc14.jar

CLASSPATH

Oracle10g or
later

1.4

Oracle install directory\jdbc\lib\orai18n.jar

*1 For Solaris OE or Linux, replace "\" with "/".

Setting when OCI driver is used
When the OCI driver is used, the following setting is required in addition to the above setting.

Setting item Oracle version Setting value (*1)

PATH Common Oracle install directory\bin

Setting item Oracle version Setting value (*1)

Oracle9i or earlier Oracle install directory\\lib

Oracle install directory\lib

LD_LIBRAR
Y_PATH Oracle10g or later

Oracle install directory\lib32 (*2)

ORACLE_H
OME

Common Oracle install directory

*1 For Solaris OE or Linux, replace "\" with "/".

*2 This is the value that is set if a 32 bit compatible library is used in a Solaris OE 64 bit edition.

Environment Setup when JDBC (Database) is Referenced

3-23

Setting File System Service Provider
It is necessary to download the File System Service Provider from Sun Microsystems, Inc.'s website and
set the environment variable, but not when the downloaded version provided by Interstage is used. When
the user wants to use the latest jar file, use the downloaded version.

Setting item Setting value (*1)

The storage directory of the downloaded class\providerutil.jar CLASSPATH

The storage directory of the downloaded class\fscontext.jar

*1 For Solaris OE or Linux, replace "\" with "/".

*2 When using an ext directory, refer to "IJServer file configuration" in Chapter 1.

The class file provided by Interstage is stored in the following.

C:\Interstage\J2EE\lib\providerutil.jar
C:\Interstage\J2EE\lib\fscontext.jar

/opt/FJSVj2ee/lib/providerutil.jar
/opt/FJSVj2ee/lib/fscontext.jar

[Example of setting environment variable in system environment variable in Windows]

1. Select [Control Panel] > [System] > [Details] and click the environment variable button.

Note:

This explanation is for Windows(R) 2000. The operation method depends on the OS to be used. For
Windows(R) 9x and Windows(R) Me, edit autoexec.bat.

2. Add the setting value indicated above to the environment variable.

[Example of setting environment variable in system environment variable by using command]

In this example, providerutil.jar and fscontext.jar are downloaded from the website of Sun Microsystems,
Inc. when the client function is used.

set CLASSPATH=%CLASSPATH%;%ORACLE_HOME%\jdbc\lib\classes12.zip
set CLASSPATH=%CLASSPATH%;%ORACLE_HOME%\jdbc\lib\nls_charset12.zip
set CLASSPATH=C:\classes\providerutil.jar;%CLASSPATH%
set CLASSPATH=C:\classes\fscontext.jar;%CLASSPATH%

Chapter 3: JNDI

3-24

[When using the C shell]
setenv CLASSPATH ${CLASSPATH}:${ORACLE_HOME}/jdbc/lib/classes12.zip
setenv CLASSPATH ${CLASSPATH}:${ORACLE_HOME}/jdbc/lib/nls_charset12.zip
setenv CLASSPATH /classes/providerutil.jar:${CLASSPATH}
setenv CLASSPATH /classes/fscontext.jar:${CLASSPATH}

[Example of setting in J2EE property]

Select [System] > [Environment Settings] > [J2EE property] on the Interstage Management Console.

When Interstage client functions are installed, directly edit the isj2ee.properties file.

C:\Interstage\J2EE\etc\isj2ee.properties

/etc/opt/FJSVj2ee/etc/isj2ee.properties

Note:

When a JDBC object is referenced from EJB and Web applications, set the system environment variable .

Resource access definition
When Interstage client functions are installed, use the J2EE resource access definition Refer to Chapter
19, "J2EE Resource Access Definition" for details.

Environment set up when SQL Server is used
In this section, Microsoft(R) SQL Server(TM) 2000 Driver for Java (TM) Database Connectivity (JDBC) is
referred to as Microsoft(R) JDBC driver.

Also, in this section, the environment setup for connecting with SQL Server using a Microsoft (R) JDBC
driver is explained. When using an Interstage JDBC driver, refer to Methods of Connection to an SQL
Server of Chapter14, Using the Interstage JDBC Driver.

When the SQL Server is used, set the environment in the following procedure.

1. Downloading and installing Microsoft(R) JDBC driver

1) Download

The Microsoft(R) JDBC driver is not included in Microsoft(R) SQL Server(TM) 2000.

Download Microsoft (R) JDBC driver Service Pack2 or later from Microsoft Corporation's website.

Environment Setup when JDBC (Database) is Referenced

3-25

2) Installation

Refer to the installation method described website on Microsoft Corporation’s website for details of
the installation.

2. Data source definition by resource access definition

Use one of the following methods.

− Define the data source on the Interstage Management Console.

− Define the data source by using the fjj2eeadmin command. Refer to "fjj2eeadmin" in the
“Reference Manual (Command Edition)” for details.

When the Microsoft(R) JDBC driver is used to access the SQL Server from a J2EE application with
Interstage client functions installed, use the fjj2eeadmin command.

Setting environment variable
The setup of the environment variable for using IJServer is explained below. Specify CLASSPATH as
explained below.

When a WorkUnit is used, set the environment variable in the WorkUnit definition on the Interstage
Management Console. It is effective even if it is set as a system environment variable. The system
environment variable CLASSPATH is only enabled when "Do not separate" is set for separation of
IJServer class loaders.

Setting item Setting value (*1)

JDBC install directory\lib\msbase.jar

JDBC install directory\lib\mssqlserver.jar

PATH

JDBC install directory\lib\msutil.jar

*1 For Solaris OE or Linux, replace "\" with "/".

Setting File System Service Provider
It is necessary to download the File System Service Provider from Sun Microsystems, Inc.'s website and
set the environment variable, but not when the downloaded version provided by Interstage is used. When
the user wants to use the latest jar file, use the downloaded version.

Setting item Setting value (*1)

The storage directory of the downloaded class\providerutil.jar CLASSPATH

The storage directory of the downloaded class\fscontext.jar

*1 For Solaris OE or Linux, replace "\" with "/".

*2 When using an ext directory, refer to "IJServer file configuration" in Chapter 1.

Chapter 3: JNDI

3-26

[Example of the J2EE settings properties]

Select [System] > [Environment Settings] > [J2EE property] on the Interstage Management Console.

When Interstage client functions are installed, directly edit the isj2ee.properties file.

C:\Interstage\J2EE\etc\isj2ee.properties

/etc/opt/FJSVj2ee/etc/isj2ee.properties

Resource access definition
When Interstage client functions are installed, use the J2EE resource access definition Refer to Chapter
19, "J2EE Resource Access Definition" for details.

Environment Setup when JMS is Referenced

3-27

Environment Setup when JMS is Referenced
When JMS is referenced, perform the following.

• Developing the J2EE Application

• Resource access definition

Refer to "Procedure for Using JMS" in Chapter 2 for details of the operation.

Developing the J2EE Application
Develop the following applications according to intended usage:

For J2EE Application Client
• Message listener application

• Applications that use the Durable Subscription function

• Applications that use the message nonvolatile function

• Applications that use the local transaction function

• Applications that use the global transaction function

For Web Application
• Applications that use the event channels nonvolatile function

• Applications that use the local transaction function

For EJB Application
It is possible to develop only EJB applications for sending messages. However, the following EJB
applications can be developed according to intended usage:

• Applications that use the event channels nonvolatile function

• Applications that use the local transaction function

• Applications that use the global transaction function

Refer to Chapter 17, "Developing a JMS Application" for details.

Resource access definition
Make the resource access definition on the Interstage Management Console.

When Interstage client functions are installed, use the J2EE resource access definition. Refer to Chapter
19, "J2EE Resource Access Definition" for details.

Chapter 3: JNDI

3-28

Environment Setup when JavaMail is Referenced
When JavaMail is referenced, make the resource access definition on the Interstage Management
Console.

When Interstage client functions are installed, use the J2EE resource access definition. Refer to Chapter
19, "J2EE Resource Access Definition" for details.

Environment Setup when URL is Referenced

3-29

Environment Setup when URL is Referenced
When a URL is referenced, be sure to use the name conversion function.

Refer to "Name Conversion Function" for details of the name conversion function.

The following provides a description example of the name conversion file.

 <?xml version="1.0"?>
 <!DOCTYPE fujitsu-ebe-definition SYSTEM 'fujitsu-ebe-definition.dtd'>
 <fujitsu-ebe-definition>
 <ejb>
 <group-name>MyServer</group-name>
 <jndi-name>OperationBean</jndi-name>
 <res-entry>
 <res-ref-name>url/SVURL</res-ref-name>
 <datasource-name>
 http://133.226.64.150/cgi-bin/CAmngtop.cgi
 </datasource-name>
 </res-entry>
 </ejb>
 </fujitsu-ebe-definition>

Chapter 3: JNDI

3-30

Environment Setup when connector is Referenced
When a connector is referenced, deploy a resource adapter, then set the environment.

The following explains the resource adapter deployment and environment setting.

Deploying resource adapter
Use the Interstage Management Console to deploy the resource adapter in the operation environment.

For the deployment, specify an EAR file that contains a resource adapter file (rar file) or resource adapter
file.

The following indicates the resource definition information items to be set for the deployment.

Refer to the resource adapter specification for details of the config-property information.

Setting item name Setting contents

Resource adapter file
name

The specified resource adapter file is displayed. The resource adapter file name
cannot be changed on this window.

Resource name Determine the resource name. The resource name is to be added to JNDI.

User name/password Specify the user name and password used to connect to a resource. These
values can be omitted, but do not specify the password only.

config-property
information

Set this item name when you want to change the config-property information
defined in the deployment descriptor. Only the property value can be changed.

The resource adapter file is extended in the following directory configuration. Refer to the resource
adapter's manual and set CLASSPATH, PATH and LIBRARYPATH if required.

• Deploying in IJServer

Refer to "IJServer file configuration" of "Environment Where J2EE Applications are Operated
(IJServer)".
”jar” of RAR is set in the CLASSPATH automatically.

• To deploy, click [Resource] > [connector] in the Interstage Management Console.

J2EE common directory\deployed\jca\ra\[Resource name]
* The J2EE common directory default value is
C:\Interstage\J2EE\var\deployment.

/opt/FJSVj2ee/var/deployment/deployed/jca/ra/[Resource name]

Environment Setup when connector is Referenced

3-31

When distributed transaction is used
Select [Resource] > [connector] > [Deploy] on the Interstage Management Console and set "Use Global
Transaction" to "Use".

Note

Distributed transaction cannot be used for deployment in IJServer. To deploy, click [Resource] >
[connector] in the Interstage Management Console.

Referencing and changing resource definition
After the deployment ends, the resource adapter's information can be referenced by using the Interstage
Management Console. The user name/password and config-property information property values set
during the deployment can be changed

Environment setup
When the resource adapter is operated, the following environment setup is required after the deployment
execution.

Because the RAR file is expanded during the deployment execution, set the environment variable as
required. Refer to "Deploying resource adapter " for details of the deployed directory storage location.

The following example is to set PATH and CLASSPATH when the resource name is RA01, and the RAR
file contains a library and RA01.jar.

• Select [WorkUnit] > "WorkUnit Name" > [WorkUnit Setting] and set the following in [Path] on the
Interstage Management Console.

C:\Interstage\J2EE\var\deployment\deployed\jca\ra\RA01

/opt/FJSVj2ee/var/deployment/deployed/jca/ra/RA01

• Select [WorkUnit] > "WorkUnit Name" > [WorkUnit Setting] and set the following in [CLASSPATH] on
the Interstage Management Console.

C:\Interstage\J2EE\var\deployment\deployed\jca\ra\RA01\RA01.jar

/opt/FJSVj2ee/var/deployment/deployed/jca/ra/RA01/RA01.jar

Chapter 3: JNDI

3-32

When distributed transaction is used

Set PATH and CLASSPATH in the system environment variable. Note that after the setting, the OS
must be rebooted.

Set PATH and CLASSPATH in the system environment variable. Note that the setting must be made
before Interstage is started up.

Description in deployment descriptor file

3-33

Description in deployment descriptor file
Write reference object information to the deployment descriptor file.

The following explains the tags for object reference.

Refer to the following for details of the deployment descriptor file.

• "J2EE Application Client deployment descriptor file Detailed Set Up" for J2EE application clients

• "Web application environment definition file (deployment descriptor)" in Chapter 6 for Web
applications

• For EJB applications, use Apworks Apdesigner's EJB deployment descriptor editor or component
designer's deployment descriptor file editor (*1).

Refer to the “Apworks J Business Kit Online Manual” or “Component Designer User's Guide” for
details. (*1).

*1 "Component designer" is not provided by Plus Developer.

Write each object's information to the following deployment descriptor tag.

Deployment descriptor tag Specified value

ejb-ref EJB Home object

ejb-local-ref EJB Local Home object

JDBC datasource

JMS connection factory

JavaMail mail session

URL(Uniform Resource Locator)

resource-ref

connector connection factory

resource-env-ref JMS Destination

env-entry Environment entry

UserTransaction Specification not required

ORB

Chapter 3: JNDI

3-34

Tag explanation

Tag Explanation

ejb-ref Defines the information related to EJB reference. It can be specified more
than once.

description Specifies optional information to be indicated to the user. It can be omitted.

ejb-ref-name Specifies Enterprise Bean's reference name with the following prefix
added. (xxxxx: optional character string)

• ejb/xxxxx

ejb-ref-type Specifies Enterprise Bean's application type in one of the following.

• Entity

• Session

home Specifies a home interface name. As the home interface name, specify a
restricted name (a package internal interface name).

remote Specifies a remote interface name. As the remote interface name, specify
a restricted name (a package internal interface name).

ejb-link Specifies a Enterprise Bean name. It can be omitted.

ejb-local-ref Defines information related to a local interface's EJB reference. It can be
specified more than once.

description Specifies optional information to be indicated to the user. It can be omitted.

ejb-ref-name Specifies Enterprise Bean's reference name with the following prefix
added. (xxxxx: optional character string)

• ejb/xxxxx

ejb-ref-type Specifies Enterprise Bean's application type in one of the following.

• Entity

• Session

local-home Specifies a local home interface name. As the local home interface name,
specify a restricted name (a package internal interface name).

local Specifies a local interface name. As the local interface name, specify a
restricted name (a package internal interface name).

ejb-link Specifies a Enterprise Bean name. It can be omitted.

Description in deployment descriptor file

3-35

Tag Explanation

resource-ref Defines information related to a resource reference. It can be specified
more than once.

description Specifies optional information to be indicated to the user. It can be omitted.

res-ref-name Specifies reference name with the following prefix added. (xxxxx: optional
character string)

• In the case of JDBC :jdbc/xxxxx

• In the case of JMS :jms/xxxxx

• In the case of JavaMail :mail/xxxxx

• In the case of URL :url/xxxxx

• In the case of connector :eis/xxxxx

res-type Use a restricted name to specify a type to be received by lookup. Specify
an object class name or interface name in the restricted name.

• In the case of JDBC :javax.sql.DataSource

• In the case of JMS :
javax.jms.TopicConnectionFactory or
 javax.jms.QueueConnectionFactory

• In the case of JavaMail :javax.mail.Session

• In the case of URL :java.net.URL

• In the case of connector :
javax.resource.cci.ConnectionFactory

res-auth Specifies a resource connector in one of the following.

Application: Uses connection information set by application.

Container: Uses connection information set by resource definition.

resource-env-ref Defines information related to a resource environment reference. It can be
specified more than once.

description Specifies optional information to be indicated to the user. It can be omitted.

resource-env-ref-name Specifies reference name with the following prefix added. (xxxxx: optional
character string)

• In the case of JMS :jms/xxxxx

resource-env-ref-type Use a restricted name to specify a type to be received by lookup. Specify
an object class name or interface name in the restricted name.

• In the case of JMS :
javax.jms.Topic or javax.jms.Queue

Chapter 3: JNDI

3-36

Tag Explanation

env-entry Defines the information related to environment entry reference. It can be
specified more than once.

description Specifies optional information to be indicated to the user. It can be omitted.

env-entry-name Specifies environment entry reference name .

env-entry-type Specifies environment entry type in one of the following.

• java.lang.Boolean

• java.lang.Byte

• java.lang.String

• java.lang.Short

• java.lang.Integer

• java.lang.Long

• java.lang.Float

• java.lang.Double

• java.lang.Character

env-entry-value Specifies the environment entry value that the user wants to acquire by
lookup. It can be omitted.

Setting example

[Setting example of EJB Home object “ejb/EJB1”]

 <ejb-ref>
 <description>EJB Information</description>
 <ejb-ref-name>ejb/EJB1</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>sample.ejbHome</home>
 <remote>sample.ejbRemote</remote>
 <ejb-link>SessionBean</ejb-link>
 </ejb-ref>

[Setting example of EJB Local Home object “ejb/SampleBMP”]

 <ejb-local-ref>
 <ejb-ref-name>ejb/SampleBMP</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>SampleBMPHome</local-home>
 <local>SampleBMPLocal</local>
 <ejb-link>SampleBMP</ejb-link>
 </ejb-local-ref>

Description in deployment descriptor file

3-37

[Setting example of JDBC datasource “jdbc/DB1”]

 <resource-ref>
 <description>JDBC Information</description>
 <res-ref-name>jdbc/DB1</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>

[Setting example of JMS connection factory "jms/JMS1" and JMS destination "jms/JMS2"]

 <resource-ref>
 <description>JMS Information</description>
 <res-ref-name>jms/JMS1</res-ref-name>
 <res-type>javax.jms.TopicConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 <resource-env-ref>
 <description>JMS Information2</description>
 <resource-env-ref-name>jms/JMS2</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
 </resource-env-ref>

This setting example is for a J2EE application client deployment descriptor.

For Web and EJB applications, reverse the definition order of the following two tags, <resource-ref> and
<resource-env-ref>.

[Setting example of JavaMail mail session “mail/Mail”]

 <resource-ref>
 <res-ref-name>mail/Mail</res-ref-name>
 <res-type>javax.mail.Session</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>

[Setting example of URL “url/SVURL”]

 <resource-ref>
 <res-ref-name>url/SVURL</res-ref-name>
 <res-type>java.net.URL</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>

Chapter 3: JNDI

3-38

[Setting example of connector connection factory “eis/RA01”]

 <resource-ref>
 <res-ref-name>eis/RA01</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>

[Setting example of environment entry "SValue"]

 <env-entry>
 <description>EnvProp</description>
 <env-entry-name>SValue</env-entry-name>
 <env-entry-type>java.lang.Short</env-entry-type>
 <env-entry-value>1024</env-entry-value>
 </env-entry>

Notes

When the reference object information is not written to the deployment descriptor file, note the following.

• The container automatically retrieves objects of the same name. In this case, if different resources
have objects of the same name, a malfunction may occur.

• The name conversion function cannot be used.

• A sub-context cannot be acquired.

Referencing Objects

3-39

Referencing Objects
Reference the objects in the following procedure.

1. Create a javax.naming.Context class object.

2. Using the lookup method, obtain the class object that suits the object to be referenced.

Specify the following in the lookup method's argument.

− In the case of EJB, “java:comp/env/ejb/EJB application name"

− In the case of JDBC, “java:comp/env/jdbc/JDBC resource access definition name”

− In the case of JMS, “java:comp/env/jms/JMS resource access definition name”

− In the case of JavaMail, “java:comp/env/mail/JavaMail resource access definition name”

− In the case of connector, “java:comp/env/eis/connector resource access definition name”

− In the case of environment entry, “java:comp/env/environment entry name"

− When the object is accessed using the name conversion, "java:comp/env/deployment
descriptor's reference name"

3. When an EJB Home object is referenced, execute the narrow processing.

A description example is given below.

[Example of referencing EJB Home object whose EJB application name is EJB214ETY and Home
class is EJB214ETYHome]

 //EJB Home object lookup processing
 java.lang.Object ejbobj = null;
 EJB214ETYHome home = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 ejbobj = (java.lang.Object)nctx.lookup("java:comp/env/ejb/EJB214ETY");
 home = (EJB214ETYHome)javax.rmi.PortableRemoteObject.narrow(ejbobj,
EJB214ETYHome.class);
 } catch(javax.naming.NamingException ex) { }

Note:

When an Enterprise Bean's reference name is defined, the format called "ejb/Bean name should be used.

Chapter 3: JNDI

3-40

[Example of referencing EJB Local Home object whose EJB application name is EJB214EmpCBM
and Local Home class is EJB214EmpCBMLocalHome]

 //EJB Local Home object lookup processing
 EJB214EmpCBMLocalHome home = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 home =
(EJB214EmpCBMLocalHome)nctx.lookup("java:comp/env/ejb/EJB214EmpCBM");
 } catch(javax.naming.NamingException ex) { }

Note:

When an Enterprise Bean's reference name is defined, the format called "ejb/Bean name should be used.

[Example of referencing JDBC datasource whose JDBC resource access definition name is DB1]

 //JDBC datasource lookup processing
 javax.sql.DataSource dataSource = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 dataSource = (javax.sql.DataSource)nctx.lookup("java:comp/env/jdbc/DB1");
 } catch(javax.naming.NamingException ex) { }

[Example of referencing JMS connection factory whose JMS resource access definition names are
Topic and Queue]

[When JMS connection factory is javax.jms.TopicConnectionFactory]

 //JMS connection factory lookup processing
 javax.jms.TopicConnectionFactory topic = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 topic =
(javax.jms.TopicConnectionFactory)nctx.lookup("java:comp/env/jms/Topic");
 } catch(javax.naming.NamingException ex) { }

[When JMS connection factory is javax.jms.QueueConnectionFactory]

 //JMS connection factory lookup processing
 javax.jms.QueueConnectionFactory queue = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 queue =
(javax.jms.QueueConnectionFactory)nctx.lookup("java:comp/env/jms/Queue");
 } catch(javax.naming.NamingException ex) { }

Referencing Objects

3-41

[Example of referencing JavaMail mail session whose JavaMail resource access definition name is
MailSession]

 //JavaMail mail session lookup processing
 javax.mail.Session session = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 session =
(javax.mail.Session)nctx.lookup("java:comp/env/mail/MailSession");
 } catch(javax.naming.NamingException ex) { }

[Example of referencing URL whose deployment descriptor reference name is url/SVURL]

 //URL lookup processing
 java.net.URL url = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 url = (java.net.URL)nctx.lookup("java:comp/env/url/SVURL");
 } catch(javax.naming.NamingException ex) { }

[Example of referencing connector connection factory whose connector resource access definition
name is RA01]

 //connector connection factory lookup processing
 javax.resource.cci.ConnectionFactory cf = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 cf
=(javax.resource.cci.ConnectionFactory)nctx.lookup("java:comp/env/eis/RA01")
;
 } catch(javax.naming.NamingException ex) { }

[Example of referencing JMS Destination whose JMS resource access definition names are Topic
and Queue]

[When JMS Destination is Topic]

 //JMS Destination(javax.jms.Topic) lookup processing
 javax.jms.Topic topic = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 topic = (javax.jms.Topic)nctx.lookup("java:comp/env/jms/Topic");
 } catch(javax.naming.NamingException ex) { }

Chapter 3: JNDI

3-42

[When JMS Destination is Queue]

 //JMS Destination(javax.jms.Queue) lookup processing
 javax.jms.Queue queue = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 queue = (javax.jms.Queue)nctx.lookup("java:comp/env/jms/Queue");
 } catch(javax.naming.NamingException ex) { }

[Example of referencing environment entry whose environment entry name is SValue]

 //environment entry lookup processing
 java.lang.Short val = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 val = (java.lang.Short)nctx.lookup("java:comp/env/SValue");
 } catch(javax.naming.NamingException ex) { }

Note

The lookup() method can be executed without "java:comp/env/" being specified in the argument; however,
to do so is not recommended when application convertibility is emphasized.

[Example of referencing ORB object]
The ORB object that the container uses in RMI over IIOP communication can also be referenced as
follows.

 org.omg.CORBA.ORB orb = null;
 try {
 javax.naming.Context nctx = new javax.naming.InitialContext();
 orb = (org.omg.CORBA.ORB)nctx.lookup("java:comp/ORB");
 } catch(javax.naming.NamingException ex) { }

Name Conversion Function

3-43

Name Conversion Function
This function maps the JNDI name to be specified in an application and the operation environment real
name. Even if the JNDI name differs from the operation environment real name, using the name
conversion function allows the user to respond without changing the application source JNDI name.

• For Web and EJB applications

To set the name conversion, select [System] > [WorkUnit] > "WorkUnit Name" > "Module Name" >
[Convert Name] tag on the Interstage Management Console for each module.

The interstage.xml file can directly be edited. It is stored in the following position. Refer to
"interstage.xml file" for details of the interstage.xml file.

In addition, when a definition is changed while the WorkUnit is activated, the contents of the definition
become effective by the following operation:

Re-start of the WorkUnit.

On the Interstage Management Console, choose a deployment module from [WorkUnit] > "WorkUnit
Name" > [Application State/Undeploy] tab, and click the Reactivate button.

 J2EE common directory\ijserver\[IJServer name]\apps\[module name]\META-INF\interstage.xml

(The default J2EE common directory location is C:\Interstage\J2EE\var\deployment.)

 /opt/FJSVj2ee/var/deployment/ijserver/[IJServer name]/apps/[module
name]/META-INF/interstage.xml

• For J2EE application client

Locate the name conversion file in the following directory and specify the file name in an environment
property. Refer to "Name conversion file" for details of the name conversion file.

C:\Interstage\J2EE\etc

/etc/opt/FJSVj2ee/etc

When the system name (environment property: com.fujitsu.interstage.isas.SystemName) is specified
in new javax.naming.InitialContext(Hashtable environment)'s argument environment or in application
start time command line's argument (-D), the name conversion file must be stored in the following
position.

 /var/opt/FJSVisas/system/[system name]/FJSVj2ee/etc/

Chapter 3: JNDI

3-44

/etc/opt/FJSVj2ee/etc

Note

When reference object information is not written to the deployment descriptor file, the name conversion
function cannot be used.

Name conversion file

Description Format
The description format of the name conversion file is XML. The description format of the name conversion
file is shown below.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE fujitsu-ebe-definition SYSTEM 'fujitsu-ebe-definition.dtd'>
 <fujitsu-ebe-definition>
 <client>
 <app-name>app-name</app-name>
 <ejb-ref-entry>
 <ejb-ref-name>ejb-ref-name</ejb-ref-name>
 <jndi-name>jndi-name</jndi-name>
 </ejb-ref-entry>
 <res-entry>
 <res-ref-name>res-ref-name</res-ref-name>
 <datasource-name>datasource-name</datasource-name>
 </res-entry>
 <res-env-entry>
 <res-env-ref-name>res-env-ref-name</res-env-ref-name>
 <environment-name>environment-name</environment-name>
 </res-env-entry>
 </client>
 </fujitsu-ebe-definition>

• The first and second lines indicate the XML declaration and DTD (document type definition), which
must be indicated at the beginning of the name conversion file.
<fujitsu-ebe-definition> and </fujitsu-ebe-definition> on the third and last lines are the root tags that
indicate the beginning and end of the XML file. Be sure to specify these tags.

• Indicate each tag in the above order.

• Bold character parts must be specified. <app-name> is required.

• Specify an optional character string in the italic character part. Control characters such as null, tab,
and line feed characters cannot be used. Note that the italic character part is case-sensitive.

Name Conversion Function

3-45

• When characters with special meanings (<, >, and &) are used in the XML file, write them according
to the conversion definition as follows.

Character that you want to use Notation in the name conversion file

 < <

 > >

 & &

• When "'" and """ are described in the character sequence of a value, it is interpreted as a
single quotation mark (') and a double quotation mark (") respectively.

Tag explanation

Tag Explanation

<client> Specified for a J2EE application client. It can be specified more than once.

<app-name> Specifies a name-converted application name.

<ejb-ref-entry> Defines EJB object name conversion. It can be specified more than once.

For one definition of this tag, define the following two tags one by one.

<ejb-ref-name> Specifies a deployment descriptor reference name.

<jndi-name> Specifies a EJB application name (operation environment real name)
corresponding to <ejb-ref-name>.

<res-entry> Defines JDBC data source, JMS
(QueueConnectionFactory,TopicConnectionFactory), JavaMail,
connector, and URL name conversion. It can be specified more than once.

For one definition of this tag, define the following two tags one by one.

<res-ref-name> Specifies a deployment descriptor reference name.

<datasource-name> Specifies a resource access definition name (operation environment real
name) corresponding to <res-ref-name>.

<res-env-entry> Defines JMS Destination(Queue, Topic) name conversion. It can be
specified more than once.

For one definition of this tag, define the following two tags one by one.

<res-env-ref-name> Specifies a deployment descriptor reference name.

<environment-name> Specifies a resource access definition name (operation environment real
name) corresponding to <res-env-ref-name>.

Chapter 3: JNDI

3-46

Description example (for J2EE application client)
A description example of a interstage.xml file applied when a deployment descriptor reference name and
operation environment real name are as follows is given below.

 Deployment descriptor reference
name

Operation environment real name

EJB ejb/EntBean EB1

Resource reference (JDBC) jdbc/DataSource DS1

Resource reference (JMS) jms/TopicCF CF1

Resource environment reference jms/Topic DN1

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE fujitsu-ebe-definition SYSTEM 'fujitsu-ebe-definition.dtd'>
 <fujitsu-ebe-definition>
 <client>
 <app-name>GetBeans</app-name>
 <ejb-ref-entry>
 <ejb-ref-name>ejb/EntBean</ejb-ref-name>
 <jndi-name>EB1</jndi-name>
 </ejb-ref-entry>
 <res-entry>
 <res-ref-name>jdbc/DataSource</res-ref-name>
 <datasource-name>DS1</datasource-name>
 </res-entry>
 <res-entry>
 <res-ref-name>jms/TopicCF</res-ref-name>
 <datasource-name>CF1</datasource-name>
 </res-entry>
 <res-env-entry>
 <res-env-ref-name>jms/Topic</res-env-ref-name>
 <environment-name>DN1</environment-name>
 </res-env-entry>
 </client>
 </fujitsu-ebe-definition>

Name Conversion Function

3-47

interstage.xml file
Description Format

The description format of the interstage.xml file is XML. The description format of the interstage.xml file is
shown below.

 <?xml version="1.0"?>
 <!DOCTYPE fujitsu-ebe-definition SYSTEM 'fujitsu-ebe-definition.dtd'>
 <fujitsu-ebe-definition>
 <web> or <ejb>
 <group-name>group-name</group-name>
 <app-name>app-name</app-name> or <jndi-name>jndi-name</jndi-name>
 <ejb-ref-entry>
 <ejb-ref-name>ejb-ref-name</ejb-ref-name>
 <jndi-name>jndi-name</jndi-name>
 </ejb-ref-entry>
 <res-entry>
 <res-ref-name>res-ref-name</res-ref-name>
 <datasource-name>datasource-name</datasource-name>
 </res-entry>
 <res-env-entry>
 <res-env-ref-name>res-env-ref-name</res-env-ref-name>
 <environment-name>environment-name</environment-name>
 </res-env-entry>
 </web> or </ejb>
 </fujitsu-ebe-definition>

• The first and second lines indicate the XML declaration and DTD (document type definition), which
must be indicated at the beginning of the interstage.xml file.

• <fujitsu-ebe-definition> and </fujitsu-ebe-definition> on the third and last lines are the root tags that
indicate the beginning and end of the XML file. Be sure to specify these tags.

• Indicate each tag in the above order.

• Bold character parts must be specified. In the EJB application, <group-name> and <jndi-name>
tags are required. In the WEB application, <app-name> is required.

• Specify an optional character string in the italic character part. Control characters such as null, tab,
and line feed characters cannot be used. Note that the italic character part is case-sensitive.

• When characters with special meanings (<, >, and &) are used in the XML file, write them according
to the conversion definition as follows.

Character that you want to use Notation in the interstage.xml file

< <

> >

& &

Chapter 3: JNDI

3-48

• When "'" and """ are described in the character sequence of a value, it is interpreted as a
single quotation mark (') and a double quotation mark (") respectively.

• Do not edit except <web> and the <ejb> tag.

Tag explanation

Tag Explanation

<web> Specified for a Web application. It can be specified more than once.

<ejb> Specified for a EJB application. It can be specified more than once.

<app-name> Specifies a name-converted application name in the case of a Web
application.

<group-name> Specifies an IJServer name. When this tag is omitted for an EJB
application, name conversion information is not enabled.

<jndi-name> Specifies a name-converted EJB application name in the case of a EJB
application.

<ejb-ref-entry> Defines EJB object name conversion. It can be specified more than once.

For one definition of this tag, define the following two tags one by one.

<ejb-ref-name> Specifies a deployment descriptor reference name.

<jndi-name> Specifies a EJB application name (operation environment real name)
corresponding to <ejb-ref-name>.

<res-entry> Defines JDBC data source, JMS
(QueueConnectionFactory,TopicConnectionFactory), JavaMail,
connector, and URL name conversion. It can be specified more than once.

For one definition of this tag, define the following two tags one by one.

<res-ref-name> Specifies a deployment descriptor reference name.

<datasource-name> Specifies a resource access definition name (operation environment real
name) corresponding to <res-ref-name>.

<res-env-entry> Defines JMS Destination(Queue, Topic) name conversion. It can be
specified more than once.

For one definition of this tag, define the following two tags one by one.

<res-env-ref-name> Specifies a deployment descriptor reference name.

<environment-name> Specifies a resource access definition name (operation environment real
name) corresponding to <res-env-ref-name>.

Name Conversion Function

3-49

Description example (for Web application)
A description example of a interstage.xml file applied when a deployment descriptor reference name and
operation environment real name are as follows is given below.

 Deployment descriptor reference
name

Operation environment real name

EJB ejb/EntBean EB1

Resource reference (JDBC) jdbc/DataSource DS1

Resource reference (JMS) jms/TopicCF CF1

Resource environment reference jms/Topic DN1

 <?xml version="1.0"?>
 <!DOCTYPE fujitsu-ebe-definition SYSTEM 'fujitsu-ebe-definition.dtd'>
 <fujitsu-ebe-definition>
 <web>
 <app-name>GetBeans</app-name>
 <ejb-ref-entry>
 <ejb-ref-name>ejb/EntBean</ejb-ref-name>
 <jndi-name>EB1</jndi-name>
 </ejb-ref-entry>
 <res-entry>
 <res-ref-name>jdbc/DataSource</res-ref-name>
 <datasource-name>DS1</datasource-name>
 </res-entry>
 <res-entry>
 <res-ref-name>jms/TopicCF</res-ref-name>
 <datasource-name>CF1</datasource-name>
 </res-entry>
 <res-env-entry>
 <res-env-ref-name>jms/Topic</res-env-ref-name>
 <environment-name>DN1</environment-name>
 </res-env-entry>
 </web>
 </fujitsu-ebe-definition>

Description example (for EJB application)
A description example of a interstage.xml file applied when a deployment descriptor reference name and
operation environment real name are as follows is given below.

 Deployment descriptor reference
name

Operation environment real name

EJB ejb/CallBean AccountBean

Resource reference (JMS) jms/TopicCF CatalogCF

Chapter 3: JNDI

3-50

[EJB application example]

 ...
 javax.naming.Context ic = new javax.naming.InitialContext();

 Object obj = (Object)ic.lookup("java:comp/env/ejb/CallBean");
 CallBeanHome beanHome =
 (CallBeanHome)javax.rmi.PortableRemoteObject.narrow(obj,
CallBeanHome.class);
 ...
 javax.jms.TopicConnectionFactory cf =

(javax.jms.TopicConnectionFactory)ic.lookup("java:comp/env/jms/TopicCF");
 ...

[Description example of interstage.xml file]

The following provides a description example of an interstage.xml file applied when name conversion is
performed with IJServer's EJB application names, OperationBean and EmployeeBean. In the following
example, the IJServer name is MyServer.

 <?xml version="1.0"?>
 <!DOCTYPE fujitsu-ebe-definition SYSTEM 'fujitsu-ebe-definition.dtd'>
 <fujitsu-ebe-definition >
 <ejb>
 <group-name>MyServer</group-name>
 <jndi-name>OperationBean</jndi-name>
 <ejb-ref-entry>
 <ejb-ref-name>ejb/CallBean</ejb-ref-name>
 <jndi-name>AccountBean</jndi-name>
 </ejb-ref-entry>
 <res-entry>
 <res-ref-name>jms/TopicCF</res-ref-name>
 <datasource-name>CatalogCF</datasource-name>
 </res-entry>
 </ejb>
 <ejb>
 <group-name>MyServer</group-name>
 <jndi-name>EmployeeBean</jndi-name>
 <ejb-ref-entry>
 <ejb-ref-name>ejb/CallBean</ejb-ref-name>
 <jndi-name>AccountBean</jndi-name>
 </ejb-ref-entry>
 <res-entry>
 <res-ref-name>jms/TopicCF</res-ref-name>
 <datasource-name>CatalogCF</datasource-name>
 </res-entry>
 </ejb>
 </fujitsu-ebe-definition>

Transaction Function using the UserTransaction Interface

3-51

Transaction Function using the UserTransaction
Interface

An application uses the UserTransaction interface to control transaction. The following section explains
how to develop applications. The explanation includes the processing flow of the transaction function that
uses the UserTransaction interface.

Flow of the Transaction Function when the UserTransaction Interface is Used
Figure 3-1 shows the flow of the transaction function processing when the UserTransaction interface is
used.

Obtaining a connection

Handling for a database

Commit or rollback

Obtains user transaction using
SessionContext.

Issues the begin method of the
user transaction interface to
start the transaction.

Issues a commit or rollback
method to end the transaction.

Obtains user transaction

Begin

Releasing to a connection

Obtain a connection from a
database.

Handle it for a database.

A connection is released up.

Figure 3-1 The Flow of Processing when the Transaction Function is Used

Chapter 3: JNDI

3-52

Methods of the UserTransaction Interface
The UserTransaction interface uses the following methods.

Table 3-1 shows the methods that can be used.

Table 3-1 UserTransaction Methods
Method Name Description

begin Creates a new transaction and associates it with the current thread.

commit Completes a transaction associated with the current thread.

getStatus Obtains the status of a transaction associated with the current thread.

rollback Rolls back a transaction associated with the current thread.

setRollbackOnly Changes a transaction associated with the current thread so that the
transaction result is rollback only.

setTransactionTimeout Changes the timeout associated with a transaction. Started by the begin
method in the current thread.

Scope of transaction control
When the default transaction is started in a J2EE application, another J2EE application on the same
JavaVM to be accessed can be operated in the same transaction.

When Web and EJB applications are operated on the same JavaVM, using UserTransaction, the Web
application can transaction-link the EJB application processing accessed from that Web application.

Obtaining and Releasing a Connection
Issue the getConnection() method to a Datasource in order to obtain a connection. A connection obtained
in any other way is not handled as the connection in a transaction.

Issue the close() method to an obtained connection in order to release it.

To use a Datasource, perform lookup on the Datasource.

Transaction Function using the UserTransaction Interface

3-53

Example

 ...
 javax.transaction.UserTransaction userTransaction = null ;
 /* UserTransaction is acquired by using JNDI lookup method. */
 try {
 javax.naming.Context initialContext = new
 javax.naming.InitialContext();
 userTransaction =
 (UserTransaction)initialContext.lookup("java:comp/UserTransaction");
 } catch(NamingException ex) {
 /* Exception processing */
 ...
 }

 /* Transaction processing is started. */
 try {
 userTransaction.begin();
 } catch(javax.transaction.NotSupportedException e) {
 /* Exception processing */
 ...
 } catch(javax.transaction.SystemException e) {
 /* Exception processing */
 ...
 }

 try {
 /* EJB application invocation or JDBC data source access */
 ...
 } catch(Throwable e) {
 /* If an exception occurs, the transaction is rolled back. */
 userTransaction.rollback();
 throw e;
 }

 try {
 /* When the user wants to complete the processing, the transaction is
committed. */
 userTransaction.commit();
 } catch(Throwable e) {
 throw e;
 }
 ...

Chapter 3: JNDI

3-54

J2EE Application Client deployment descriptor file
Detailed Set Up

This section explains the coding format of the deployment descriptor file.

The name of the deployment descriptor is arbitrary and the extension is .xml.

Place the deployment descriptor file in any directory and specify the filename with an environment
property using the full pathname.

Description Format
The description format of the deployment descriptor is XML. The description format of the deployment
descriptor is shown below.

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE application-client PUBLIC
 "-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"
 "http://java.sun.com/dtd/application-client_1_3.dtd">
 <application-client>
 <icon>
 <small-icon>small_icon</small-icon>
 <large-icon>large_icon</large-icon>
 </icon>
 <display-name>display_name</display-name>
 <description>description</description>
 <env-entry>
 <description>description</description>
 <env-entry-name>name</env-entry-name>
 <env-entry-type>type</env-entry-type>
 <env-entry-value>value</env-entry-value>
 </env-entry>
 <ejb-ref>
 <description>description</description>
 <ejb-ref-name>name</ejb-ref-name>
 <ejb-ref-type>type</ejb-ref-type>
 <home>home</home>
 <remote>remote</remote>
 <ejb-link>link</ejb-link>
 </ejb-ref>
 <resource-ref>
 <description>description</description>
 <res-ref-name>name<res-ref-name>
 <res-type>type</res-type>
 <res-auth>auth</res-auth>
 </resource-ref>

J2EE Application Client deployment descriptor file Detailed Set Up

3-55

 <resource-env-ref>
 <description>description</description>
 <resource-env-ref-name>name</resource-env-ref-name>
 <resource-env-ref-type>type</resource-env-ref-type>
 </resource-env-ref>
 </application-client>

• The first and second lines indicate the XML declaration and DTD (document type definition), which
must be indicated at the beginning of the name conversion file.
When the Japanese language is used in value strings , specify appropriate values such as "Shift_JIS"
in the encoding format ("encoding=" part).

• <application-client> and </application-client> on the third and last lines are the root tags that indicate
the beginning and end of the XML file. Be sure to specify these tags.

• Indicate each tag in the above order.

• A tag character string is case-sensitive.

• Specify an optional character string in the italic character part. Control characters such as a null, tab,
and line feed cannot be used. Note that the italic character part is case-sensitive.

Tag explanation
Tag Explanation

icon

small-icon Specify the URI to the small (16 X 16) icon (GIF/JPEG format) representing
the J2EE application on the GUI. Specify the URI using the relative path
from the package route.

large-icon Specify the URI to the large (32 X 32) icon (GIF/JPEG format) representing
the J2EE application on the GUI. Specify the URI using the relative path
from the package route.

display-name Specify the J2EE application client display name. The J2EE application
client display name is displayed, for example, in the GUI.

description Specify detailed information about the J2EE application client. As the
detailed information, specify any information that should be communicated
to the user.

Refer to "Description in deployment descriptor file" for details of the following tags related to object
reference.

• env-entry

• ejb-ref

• resource-ref

• resource-env-ref

Chapter 3: JNDI

3-56

4-1

Chapter 4

The J2EE Application Security Function

This chapter describes the J2EE application security function and covers the following issues related to
J2EE application security.

• The Security Function

This section explains the functions and details of the security function.

• Embedding the Security Function

This section explains how to set up the security function.

• Collecting the Authentication Log of the Security Function

This section explains how to collect the authentication log of the security function and the message
format.

• Action when a Security Function Error Occurs

This section explains the actions to be taken when an error in the security function occurs.

Chapter 4: The J2EE Application Security Function

4-2

The Security Function
The security function prevents invalid access to the J2EE application resources.

Connections for operation
The J2EE application security function assumes the following connections for operation:

• J2EE application client to EJB application

• J2EE application client to EJB application to EJB application

• Web application to EJB application

• Web application to EJB application to EJB application

Types of security function
The security function in the J2EE application client provides the following:

• User authentication

• Access constraints

• Method permissions

• Security methods

• Resource-connectable user control function

• Run-as security function

User Authentication
About User Authentication

User authentication is a process to check for valid users using user IDs and passwords. User
authentication prevents any access from invalid users.

Security roles
Security roles are permissions provided to users. Security roles are used to create groups of users, such
as Administrator, Guest and Manager groups.

Security roles can be set through user authentication.

With security roles, access permissions can be specified for user groups.

For example, “allow access from users to which the Administrator or Manager security role is assigned” is
possible.

Operation of other security functions
User authentication is a process to check for valid users.

The other security functions enable information to be obtained about each user through user
authentication (user name, password, and security role) and allow access by the user within the
permission granted for the user.

The Security Function

4-3

Directory Service
The Interstage Application Server uses Smart Repository (from now on referred to as the Directory
Service) as a user/security role management register.

To use the security functions of J2EE applications, set up Directory Service and register the users.

Note

Interstage Application Server Web-J Edition does not include Smart Repository. This must be ordered and
set up separately.

In this document, Solaris(TM) Operating Environment is from now on abbreviated as Solaris OE.

Applications which Authenticate Users

J2EE application client
The J2EE application client authenticates users when the user IDs and their passwords, which were
specified in the JNDI environment property, have been set up in Directory Service.

Web applications
Web applications authenticate users when the user IDs and their passwords, which were input during the
authentication dialogs, have been set up in Directory Service.

For user authentication, either of the following methods is allowed:

• HTTP Basic authentication

To use authentication dialogs provided by the Web browser.

• Form based login

To use specific pages (based on HTML or JSP) created as authentication dialog pages.

If Tomcat4.1 is changed to the Servlet service, it is recommended to change the user/security role
management register to the Directory Service. Doing so allows the J2EE application to use the security
function.

For Tomcat4.1 compatibility, the same realm tag as that of Tomcat4.1 can be set in the following server.xml
definition file. With this setting, a security function using a management register other than the Directory
Service can be used but the security function is closed within Web applications.

J2EE common directory\ijserver\IJServer WorkUnit name\server.xml

/var/opt/FJSVj2ee/deployment/ijserver/IJServer WorkUnit name/server.xml

Chapter 4: The J2EE Application Security Function

4-4

Access Constraints
Access constraints can be placed on individual Web application resource based on:

• Security role

• Transport method

According to the result of a check on access constraints, the Servlet container returns one of the following
responses to the Web browser via the Web server:

• Access allowed: HTTP status code 200

• Access prohibited/rejected user: HTTP status code 401

• Access prohibited/rejected transport method or security role: HTTP status code 403

Security Role
Access is restricted according to the security role obtained through user authentication.

Transport method
Access is restricted according to the transport method between the client and Web server.

The following transport method options are provided to restrict access:

• NONE: Does not require any assurance of data transport.

• INTEGRAL: Requires assurance of data transport.

• CONFIDENTIAL: Requires prevention of data tapping.

INTEGRAL and CONFIDENTIAL allow access with SSL used. For example "allow access with SSL
enabled" is possible.

Method Permissions
Method permissions restrict access to EJB application methods.

A method permission works as follows:

1. There must be accessible security roles defined in an EJB application method.

2. When a user requests access to the EJB application method, the container obtains the security role
from the user ID.

3. If the obtained security role has been defined in the method, access by the user is permitted.

The Security Function

4-5

Figure 4-1 Method Permission

Method permissions use information about users, therefore the J2EE application client or a Web
application must authenticate the user.

Security Methods
EJB applications can support the following security methods (javax.ejb.EJBContext interface method):

• getCallerPrincipal()

• isCallerInRole(java.lang.String roleName)

With these methods, it becomes possible to obtain information about authentication in EJB application
business methods and permit access.

Resource-connectable User Control Function
The function for management of users with access to resources specifies users who are allowed to access
resources to prevent invalid access to resources.

The function for management of users with access to resources is valid only when JDBC is assigned as
the resource manager.

Define resource accessible users using "resource accessible user specification" (the res-auth tag in the
resource-ref tag) of the deployment descriptor in the corresponding J2EE application.

The following values can be specified:

• Container: Uses access information that has been specified in the resource definition.

• Application: Uses access information that has been set in the application.

About Specification of Container
The connection information that is set in the resource definition includes the user ID and password
specified on the Interstage Management Console.

About Specification of Applications
Access information can be set in an application with either of the following methods:

Chapter 4: The J2EE Application Security Function

4-6

• When a user accesses a resource from an EJB application, and the user has been specified in the
EJB application

User ID and password specified in the EJB application.

• In other cases

User ID and password of the user authenticated by the J2EE application client.

Note

Specification of applications is not supported in Web applications. The application operates as specified in
the container.

Example
The following shows an example of specifying the resource connector in the J2EE application client, and
defines the use of the user ID and password user-authenticated by the J2EE application client to access
the resource called jdbc/DB1.

<resource-ref>
 <description>JDBC Information</description>
 <res-ref-name>jdbc/DB1</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

Run-as Security Function
The run-as security function is a function that can specify the authentication information for the EJB
application.

Authentication information (security role, user ID, and password) used in normal EJB applications is
information authenticated by the client (J2EE application client and Web application). By using the run-as
security function however, authentication information used by the EJB application can be changed.

This function is enabled when an EJB application, in which the security function as shown below is used,
is accessed from Message-driven Bean:

• EJB application to which method permission is set

• EJB application in which "Application" is set to the resource connector management function

Because Message-driven Bean is not normally accessed from the client directly, it does not have
authentication information. Thus, if an attempt is made to access an EJB application as above, an error is
always caused by the security check. In that case, by setting authentication information to
Message-driven Bean using the run-as security function, the access controlled EJB application can be
accessed from the Message-driven Bean.

The Security Function

4-7

Figure 4-2 Run-as Security Function

The following settings are needed to use the run-as security function:

• deployment descriptor setting

• user ID/password setting

• Directory Service setting

Deployment Descriptor Setting
The run-as security function can be specified in the deployment descriptor. The security role name needs
to be specified in the run-as tag of security-identity. By making this setting, the EJB application operates
with the specified security role.

The deployment descriptor can be specified and changed by using Apworks or the Interstage
Management Console.

Coding example

The following shows a coding example of the deployment descriptor of run-as security, where the security
role called "Admin" is specified for the EJB application.

…
 <enterprise-beans>
 <security-identity>
 <run-as>
 <role-name>Admin</role-name>
 </run-as>
 </security-identity>
 </enterprise-beans>
…

User ID and Password Setting
Specify the user ID/password corresponding to the security role name specified in the run-as tag on the
Interstage Management Console. In the following cases, a warning message EJB1078 is output at startup.
If the warning message is output and an EJB application using the method permission function is called,
an authorization error occurs.

Chapter 4: The J2EE Application Security Function

4-8

• If the password is incorrect

• If the security role is not registered in Directory Service

• If the specified user ID is not registered with the specified security role

Directory Service Setting
For details, see the description of Directory Service Setting.

Notes
Consider the following points when using the run-as security function.

Use this function only for EJB applications that are called from outside IJServer.

If the function is used by EJB applications that are called from other EJB applications deployed to IJServer,
the following operations may malfunction.

• Method permissions

• Resource-connectable user control function

Embedding the Security Function

4-9

Embedding the Security Function
This section describes how to install the security functions.

1. Directory Service setting

2. Setting for each application

Directory Service Setting
The setting procedure of Directory Service is explained as follows.

1. Setting Up the Security Management Environment Definition Files

2. User and Security Role Settings

Setting Up the Security Management Environment Definition Files
Define the operation environment of Directory Service in the security management environment definition
files.

The Relationship between the security management environment definition file and Directory Service
Figure 4-3 (on the following page) shows the relationship between the security management environment
definition file and Directory Service.

Chapter 4: The J2EE Application Security Function

4-10

Figure 4-3 Relationship between the Security Management Environment Definition File and
InfoDirectory

The filename of security management environment definition files
Installation of the J2EE package sets the security management environment definition files with the
following filenames:

C:\Interstage\J2EE\etc\security.properties

/etc/opt/FJSVj2ee/etc/security.properties

Set up the security management environment definition file in the server environment and in the client
environment respectively.

In the client environment, a security management environment definition file appropriate for the
environment is installed. Set up the security management environment definition file in each client
environment.

Be sure to set the same values for the items of the security management environment definition file in the
server environment and those of the security management environment definition files in the client
environments.

Embedding the Security Function

4-11

Security Management Environment Definition File Settings
The items to be set in each environment definition file are shown in Table 4-1 below.

Table 4-1 Security Management Environment Definition File Settings
Item Setting Default value

ldap.url Specify the server URL of Directory Service .
Specify it in the format "ldap://host name:port number".

Required

ldap.top Specify the DN name of the top directory that stores the user.
Specify the DN name starting from the top entry DN specified for
Directory Service .
The user created under the top directory can be used in the security
function.

Required

ldap.role Specify the attribute name of the user object used as a security role. Required

Edit the security management environment definition file using a text editor.

Specify each item in the format "Item name=setting" in one line. If an item name that does not exist is
specified, the line is considered to be a comment line.

Example

ldap.url=ldap://ldap_server:389
ldap.top=o=fujitsu,c=jp
ldap.role=title

When any definition item in the security management environment definition file is changed, restart each
container.

User and Security Role Settings
To define users, set up the user IDs, passwords, and security roles for the users to be handled by the
security functions in the directory in which Directory Service was created.

To define the users, use the management tools provided by Directory Service .

Define the users using the following object class:

Chapter 4: The J2EE Application Security Function

4-12

Set the attribute values given in Table 4-2 to the user ID, password, and security role.

Table 4-2 Security Function Attribute Values
Attribute name Attribute value Remarks

uid User ID Set a user ID unique under the top directory (Define the top
directory in the security management environment definition file).
If the user ID is duplicated, the security cannot be applied
correctly.

userPassword Password 2-byte code characters cannot be specified.

securityRole Security role When specifying multiple security roles, separate them by a
comma ','.
2-byte code characters cannot be specified.

Names of attributes for security roles
Define names of attributes to be used for security roles in the security management environment definition
file. Set the security roles to existing Directory Service attributes.

For example, when "ldap.role=title" is defined in the security management environment definition file, the
value specified for the attribute "title" is handled as a security role.

Delay for changes to take effect
Any access to Directory Service is cached.

Therefore, changes or deletions of passwords, security roles, or users in Directory Service may not take
effect before 30 minutes have elapsed, and the cache stores information about access during this time.

To make changes or deletions effective immediately, restart all functions that use the security functions.

Directory Service work procedure
This section explains the work procedure for using the security function of the J2EE application using the
management tools provided by the Interstage Management Console and Directory Service. The Smart
Repository work procedures are shown below.

Smart Repository Service work procedure
Refer to the Smart Repository Operator's Guide for details of the Smart Repository function.

[Operation with Interstage Management Console]

1. Create a repository.

2. Start the repository.

[Operation with Entry Administration Tool]

3. Set the connection repository.

4. Log in to the repository.

5. Register the user.

Embedding the Security Function

4-13

1. Creating a repository
Create a repository using the Interstage Management Console.

1. Start the Interstage Management Console.

2. Select [System] > [Service] > [Repository] > [Create New] tab, and enter the password of the
administrator DN to create a repository. Use the default values for the input items other than the
administrator DN password.

2. Starting the repository
Start the repository from the Interstage Management Console.

Select [System] > [Service] > [Repository] and select the checkbox for the repository created in 1, then
click the Start button.

3. Setting the connection repository
Set the connection repository using the Entry Administration Tool.

From the Windows(R) [Start] menu, select [Programs] - [Interstage] - [Application

Server] - [Smart Repository] - [Entry Administration Tool].

In the X window operating environment, enter the /opt/FJSVirep/gui/bin/irepeditent command to display
the Entry Administration Tool.

1. Select [Connect] - [Set for Connection] from the [Entry Administration Tool] window.

-> The [Connection List] window appears.

2. Click the [New location for connection] button.

-> The connection name input window appears.

3. Enter the connection name and click the OK button. In the [Connection List] window, enter the host
name of the created repository, port, public directory, and administrator DN, and click the Save
button.

-> A confirmation dialog box appears.

4. Click the OK button, and then click the Close button.

4. Logging in to the repository
Log in to the repository with repository administrator authority.

1. Select [Connect] - [Login] from the [Entry Administration Tool] window.

-> The connection name and password input dialog box appears.

2. Select the connection name and enter the administrator DN password, then click the Login button.

5. Registering the user
Register the user as an entry.

Chapter 4: The J2EE Application Security Function

4-14

1. Double-click the top entry displayed under "Directory" in the [Entry Administration Tool] window. The
top entry is the same as the setting of 1dap.url in the security management environment definition file
(security.properties).
-> Organization unit "User" is displayed.
* Organization unit "User" is created as the default tree when a repository is created.
If organization unit "User" is not displayed, check the setting for creating a default tree during
repository creation.

2. Select organization unit "User" as a user registration entry. In this case the setting in the security
management environment definition file (security.properties) is as shown below

 ldap.top=ou=User,ou=interstage,o=fujitsu,dc=com

3. While selecting the user registration entry, right-click and select [Add].

4. Select the Internet user from the [List of object class] panel.

5. Enter the following types of information in the right frame:

cn Unique name that identifies the user (such as an employee number)

sn Family name of the user

givenName Given name of the user

uid Login name used for authentication

employeeNumber Employee number

userPassword Password used for authentication

ou Organization unit to which the user belongs

6. Click the [Add Attribute] button and enter role name information.

Attribute name Attribute value

title Enter the role name corresponding to the user.

* If the schema name that is set in "ldap.role" in the security management environment definition file
(security.properties) is changed from "title," another schema name can also be used as the save
destination.

7. Click the [OK] button.

-> The relevant user is added to the selected entry.

Setting the Security Function into the J2EE Application Client
Setting up the User Authentication

Setting method
To set up user authentication on the J2EE application client, specify the following JNDI environment
property settings:

• FJUserID: Specifies a user ID to be used for user authentication in Directory Service.

• FJPassword: Specifies a password to be used for user authentication in Directory Service.

Embedding the Security Function

4-15

Set up FJUserID and FJPassword using one of the following:

• FJjndi.properties file

• environment argument for new javax.naming.InitialContext (Hashtable environment)

• Arguments(-D) in the command line at startup of the application

If a duplicate environment property is specified, it is overwritten with the following priority ("3" indicates the
highest priority).

(1) FJjndi.properties file

(2) javax.naming.InitialContext (Hashtable environment) argument

(3) Argument in the command line at startup of the application (-D)

Setting example
The examples below show a sample setting of the JNDI environment property.

Setting specified with the FJjndi.properties file

FJUserID=user01
FJPassword=pass01
com.fujitsu.interstage.j2ee.DeploymentDescriptorClient=/export/home/j2eeapl/
application-client.xml

Setting specified with the new InitialContext argument

…
Context ctx = null;
try {
 Hashtable env = new Hashtable (5);
 env.put (“java.naming.factory.initial”,
 "com.fujitsu.interstage.j2ee.jndi.InitialContextFactoryForClient");
 env.put ("FJUserID", "user01");
 env.put ("FJPassword", "pass01");
 env.put (“com.fujitsu.interstage.j2ee.DeploymentDescriptorClient”,
 "/export/home/j2eeapl/application-client.xml");
 ctx = new InitialContext(env);
}
catch (NamingException ne) {
 ne.printStackTrace();
}
…

Setting specified with arguments in the command line at startup of the application

java -Djava.naming.factory.initial=
com.fujitsu.interstage.j2ee.jndi.InitialContextFactoryForClient
-Dcom.fujitsu.interstage.j2ee.DeploymentDescriptorClient=
/export/home/j2eeapl/application-client.xml -DFJUserID=user01
-DFJPassword=pass01 ClientAPP

Chapter 4: The J2EE Application Security Function

4-16

Setting up the Resource-connectable User Control Function
See the Resource-connectable User Control Function.

Setting the Security Function into a Web Application
To use the security function in a Web application, specify the settings as follows.

Setting up the User Authentication
To use the user authentication on a Web application, set up login-config tag of the Web application
environment definition file.

Setting up the Access Constraint
To use the access constraint on a Web application, set up following tags of the Web application
environment definition file:

• security-constraint tag

• security-role tag

• security-role-ref tag

Sample setting
The example below shows a sample setting of the Web application environment definition file.

…
<servlet>

 <security-role-ref>
 <role-name>
 ADM
 </role-name>
 <role-link>
 Administrator →(*1)
 </role-link>
 </security-role-ref>

</servlet>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>
 Shop
 </web-resource-name>
 <url-pattern>
 /Shop/* →(*2)
 </url-pattern>
 <http-method>
 POST →(*3)
 </http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>

Embedding the Security Function

4-17

 Administrator →(*4)
 </role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL →(*5)
 </transport-guarantee>
 </user-data-constraint>
</security-constraint>

<login-config>
 <auth-method>
 BASIC →(*6)
 </auth-method>
 <realm-name>
 name
 </realm-name>
</login-config>

<security-role>
 <role-name>
 Administrator →(*7)
 </role-name>
</security-role>

…

When access to the resource indicated by (*2) is made with the method indicated by (*3), HTTP Basic
authorization is handled as indicated by (*6).

In the sample settings, security is specified only to Administrator as indicated by (*4).

The value indicated by (*4) must be also defined by (*1). In addition, the value indicated by (*1) must be
also defined by (*7).

For the value in (*7), specify the value that is set for the title attribute of the Directory Service used as the
security role.

For form based login, specify the settings as follows:

<login-config>
 <auth-method>
 FORM
 </auth-method>
 <form-login-config>
 <form-login-page>
 /login.jsp
 </form-login-page>
 <form-error-page>
 /error.jsp
 </form-error-page>
 </form-login-config>
</login-config>

Chapter 4: The J2EE Application Security Function

4-18

Setting up the Resource-connectable User Control Function
See the Resource-connectable User Control Function.

Setting the Security Function into the EJB Application
Setting up the Method Permission

To use method permissions, set up in the following deployment descriptors:

• Security role name

• Security Reference

• Method Permission

For setting details, refer to the Apworks Apdesigner Programmer's Guide or ComponentDesigner User's
Guide (Note: Not distributed for Plus Developer).

An Interstage Management Console can also define a method permission.

Setting up the Resource-connectable User Control Function
Refer to the Resource-connectable User Control Function.

Collecting the Authentication Log of the Security Function

4-19

Collecting the Authentication Log of the Security
Function

Using the Trace Function, authentication logs of the security function can be collected. This function
allows you to check for illegal access.

Note

If either of the following conditions apply, the log is not output:

• If either the user ID or password is not specified

• If a blank character is specified as the user ID or password.

Setting method
Specify the following as JavaVM start-time parameter.

• Log filename

-Dcom.fujitsu.interstage.j2ee.security.logfile = Log filename

• Log size

-Dcom.fujitsu.interstage.j2ee.security.logsize = Log size

Specify the J2EE application client with the argument on the application start-time command line.

Specify Web application and EJB applications with the Java Command Options in the IJServer WorkUnit
definition.

Explanation of the specification of the log filename and the log size is given in Table 4-3.

Table 4-3 Log Specification Items
Specification item Log filename

Log filename Specify the filename of the log.

If it is specified with a relative path, it is interpreted as a relative path from
the current directory on which JavaVM is running.

If the log filename is not specified or if a directory name is specified as a log
filename, logs are not collected.

Note

Specify a different log filename for each JavaVM to be started. If the same
file is specified, logs output from two or more JavaVMs may be mixed or
partial loss may occur.

Chapter 4: The J2EE Application Security Function

4-20

Specification item Log filename

Log size Specify the maximum size of log information in MB.

If the specified size is exceeded, a backup file is created with the following
name, and a backup of the log is stored.

(log-file-name).old

The values that can be specified range from 1 to 2147483647. If a value
other than a numeric value is specified or if this item is omitted, the log size
is 1MB.

Message format
A log is output in the following format:

[day/month/year hour:minute:second] authentication trace (authentication method,
authentication result, reason for rejection) uid="user-name" role="role"

The following elements are output to each item.

Table 4-4 Log Output Items
Item Description

[day/month/year
hour:minute:second]

Day and time at which the event has occurred.

authentication trace Identifier that specifies that it is access trace in security authentication.

authentication method Displays the method in which the authentication has succeeded or is
rejected.

ldap: Authentication with Directory Service

cache: Authentication with cache

authentication result Displays the result of authentication. For authentication result, either of the
following is displayed.

true: Authentication succeeded

false: Authentication rejected

Reason for rejection When the authentication is rejected, its reason is displayed. The reasons
are the following three cases.

no data: No data exists in the cache.

different password: The password is different.

over time: The cache valid period has expired.

User name Displays the user who is authenticated.

Role If authentication has succeeded, the role corresponding to the user is
displayed.

If authentication is rejected, this item is not displayed.

Collecting the Authentication Log of the Security Function

4-21

An output example is shown below:

[09/01/2001 12:00:00.000] authentication trace (ldap, true, -) uid="Fujitsu"
role="Administrator"
[09/01/2001 12:01:01.000] authentication trace (ldap, false, no data)
uid="Fujitsu"

Chapter 4: The J2EE Application Security Function

4-22

Action when a Security Function Error Occurs
If an error in the security function has occurred, an error message for each application will be sent to the
following output media respectively.

• J2EE application client

Logs of standard output/standard error output

• Web application, EJB application

Container logs of the IJServer

When dealing with errors, refer to the following information as required:

• For details of security management environment definition files, refer to Setting Up the Security
Management Environment Definition Files.

• For details of Smart Repository errors, refer to Messages Beginning with ‘irep’, or Messages Output
by Smart Repository in the Interstage Messages manual.

• For details of trace function security function, refer to Collecting the Authentication Log of the Security
Function.

For details of error messages, refer to Messages Output by J2EE Application Security Function in the
Interstage Messages manual.

Part II

Servlet/JSP Edition

5-1

Chapter 5

Functions of the Servlet Service

This chapter describes the functions of the Servlet Service.

Chapter 5: Functions of the Servlet Service

5-2

Input Code Automatic Conversion Function
The input code automatic conversion function performs code conversion of a request parameter from a
Web client.

If this function is used, code conversion need not be performed in an application. Therefore, you can
change the code to be handled without modifying a program but by simply changing the environment
definition. Additionally, the code to be handled can be specified for each Web application.

If "JISAutoDetect" (automatic modification) is specified, the character set of short Japanese character
strings may not be recognized correctly and character set modification may not be performed correctly.

Use the Interstage Management Console.

Custom Tag Pooling Function

5-3

Custom Tag Pooling Function
The Servlet container provides the function to pool custom tag objects used by JSP.

This function allows reusing of existing custom tag objects and enhances the process response.

Use the Interstage Management Console to enable or disable the custom tag pooling function for each
IJServer.

Note

The custom tag pooling function calls the following method to reuse a custom tag object:

javax.servlet.jsp.tagext.Tag interface release method

The Java Server Pages (TM) 1.2 specification indicates that the method must be correctly installed.

Even custom tags that are not compliant with this specification can operate normally if "disable the custom
tag pooling function" is selected.

Chapter 5: Functions of the Servlet Service

5-4

6-1

Chapter 6

Web Application Development

Web applications consist of Web resources such as HTML files, image files, servlets and JSP files, and
Web application environment definition files. It is possible to develop functionality as a single Web
application package.

This chapter explains:

Notes on the Development of Web Applications

Web Application Environment Definition File (Deployment Descriptor)

Refer to "Debugging Application" in Chapter 2 for details of debugging.

Chapter 6: Web Application Development

6-2

Notes on the Development of Web Applications
This chapter describes the points to be noted when developing Web applications.

Notes when Using Cookies
In some Web browsers, the event when the port number is specified to 80 (in the case of the SSL
communication, the port number is 443), and the event when the port number is not specified, are
judged to be different servers. As a result, it is possible that the Cookie header is not transmitted. To
prevent this problem, it is recommended to use HTML or construct applications so that the method of
calling from the Web browser is unified to either one of them when application control is going to be
performed using a Cookie.

Cross-site-scripting Fragility Problem
An application that returns the input values directly to the browser or returns the contents of a Java error
or exception may become a security hole (because of the vulnerability of Cross-site-Scripting).

It is recommended not to create such applications.

For information on Cross-site-Scripting, refer to "About the Cross-Site Scripting Problem" in "Common
notes on Interstage" in the Product Notes.

Errors and Exceptions
Fujitsu recommends not using an application that returns to the browser an error or exception that
occurred in the application. This usage may lead to leakage of internal information.

If the servlet or JSP has not processed (caught) an error or an exception that has occurred, and the
error page is not specified in the web application environment definition file or JSP, the error page held
by the servlet container is displayed. In this case, exception and error stack trace data is not output.

Specifying an error page for the HTTP error status code
This section explains the location for specifying the error page for the HTTP error status code and the
error page that is used.

Location for specifying the error page for the HTTP error status code
The locations for specifying the error page for the HTTP error status code are as follows:

Web application environment definition file (deployment descriptor)

Web server environment settings

The location for specifying the error page depends on where the problem occurred. Change or unify the
view contents if necessary.

Notes on the Development of Web Applications

6-3

Web application environment definition file (deployment descriptor)
Specify this in the <error-page> tag. For details of the method to specify this, refer to Web Application
Environment Definition File (Deployment Descriptor).

This error page is enabled for HTTP error status codes that occur in Web applications.

If this error page is used, the HTTP error status code is not changed. For example, if error-page is set
for Exception, the HTTP error status code is 500.

If the response header has already been sent in the Web browser, the information that has already been
sent cannot be recovered. For this reason, the HTTP error status code is “Sent”.

Web server environment settings
In the following cases, the error page specified in the Web server environment settings is used because
the control does not pass to the Servlet service.

There was an error in the Web application identifier contained in the request URL

This was not a proper request to the Web application

Example
The following examples explain the error pages specified for each location using HTTP error status code.

HTTP Error Status Code 404 (Not Found)

HTTP Error Status Code 500 (Internal Server Error)

HTTP Error Status Code 404 (Not Found)
An error page specified in the Web application environment definition file is used

− There are no contents in the Web application

− The application is Servlet API and the HTTP error status code is set as “404”

A Web server error page is used

− There was an error in the Web application identifier contained in the request URL

− There was a request to the Web application, but there are no contents on the Web server

Chapter 6: Web Application Development

6-4

HTTP Error Status Code 500 (Internal Server Error)
An error page specified in the Web application environment definition file is used

− Exception or Error occurred while the servlet or JSP application was being executed

Note) This excludes cases in which an error that occurred in the application was caught, or in
which JSP error page settings have been made explicitly to allow the application to run normally
through error handling.

− The application is Servlet API and the HTTP error status code is set as “500”

A Web server error page is used

This is used in the following cases:

− An abnormality was detected in the Web server connector

Example: Connection to IJServer is not possible

 A Web server connector timeout occurred

Note

Depending on the Web browser type and settings, the error page that comes with the Web browser
might be displayed instead of the intended error page.

Example: Microsoft(R) Internet Explorer 5.x, 6.0

When [Tools] > [Internet Options] > [Advanced Settings] > [View Simple HTTP Error Message] is
enabled (as the default value).

Web Application Environment Definition File (Deployment Descriptor)

6-5

Web Application Environment Definition File
(Deployment Descriptor)

The Web application environment definition file (deployment descriptor) sets the Web application
operating environment.

When multiple Web applications are used, prepare a definition file for each Web application.

Coding Format of the Web Application Environment Definition File
(Deployment Descriptor)

The description format of the deployment descriptor is XML and is shown in the following example:

--

 <?xml version="1.0">
 <!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
 <web-app>
 <display-name>display_name</display-name>
 <context-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </context-param>
 <filter>
 <filter-name>name</filter-name>
 <filter-class>class</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>value</filter-name>
 <servlet-name>name</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>value</filter-name>
 <url-pattern>pattern</url-pattern>
 </filter-mapping>
 <listener>
 <listener-class>class</listener-class>
 </listener>
 <servlet>
 <servlet-name>name</servlet-name>
 <servlet-class>class</servlet-class> or <jsp-file>file-name
 </jsp-file>

Chapter 6: Web Application Development

6-6

 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
 <load-on-startup>priority</load-on-startup>
 <security-role-ref>
 <role-name>name</role-name>
 <role-link>name</role-link>
 </security-role-ref>
 </servlet>
 <servlet-mapping>
 <servlet-name>name</servlet-name>
 <url-pattern>pattern</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>time</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>ext</extension>
 <mime-type>mime</mime-type>
 </mime-mapping>
 <welcome-file-list>
 <welcome-file>filename</welcome-file>
 </welcome-file-list>
 <error-page>
 <error-code>code</error-code> or <exception-type>type
 </exception-type>
 <location>resource</location>
 </error-page>
 <taglib>
 <taglib-uri>uri</taglib-uri>
 <taglib-location>location</taglib-location>
 </taglib>
 <resource-env-ref>
 <resource-env-ref-name>env-ref-name</resource-env-ref-name>
 <resource-env-ref-type>type</resource-env-ref-type>
 </resource-env-ref>
 <resource-ref>
 <res-ref-name>ref-name</res-ref-name>
 <res-type>type</res-type>
 <res-auth>signon</res-auth>
 </resource-ref>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>resource-name</web-resource-name>
 <url-pattern>pattern</url-pattern>
 <http-method>method</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>name</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>guarantee-type</transport-guarantee>
 </user-data-constraint>

Web Application Environment Definition File (Deployment Descriptor)

6-7

 </security-constraint>
 <login-config>
 <auth-method>method</auth-method>
 <realm-name>name</realm-name>
 <form-login-config>
 <form-login-page>login-page</form-login-page>
 <form-error-page>error-page</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <role-name>name</role-name>
 </security-role>
 <env-entry>
 <env-entry-name>entry-name</env-entry-name>
 <env-entry-value>entry-value</env-entry-value>
 <env-entry-type>entry-type</env-entry-type>
 </env-entry>
 <ejb-ref>
 <ejb-ref-name>ref-name</ejb-ref-name>
 <ejb-ref-type>ref-type</ejb-ref-type>
 <home>ejb-home</home>
 <remote>ejb-remote</remote>
 <ejb-link>name</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <description>description</description>
 <ejb-ref-name>name</ejb-ref-name>
 <ejb-ref-type>type</ejb-ref-type>
 <local-home>home</local-home>
 <local>remote</local>
 <ejb-link>link</ejb-link>
 </ejb-local-ref>
 </web-app>
--

Notes on Coding
No definitions other than those described in this manual can be used.

<?xml...> and <!DOCTYPE application-client...> appearing at the beginning provide an XML declaration
and document type definition (DTD), and must be stated at the beginning of the deployment
descriptor file.

If two-byte Japanese characters are to be used in the deployment descriptor, specify UTF-8 for the
character set ("encoding=") in <?xml...>. If a character set other than UTF-8 is specified when two-
byte Japanese characters are used, deployment fails. This restriction also applies to comments.

<web-app> and </web-app> are root tags indicating the beginning and end of an XML file. Always
specify these tags.

Provide individual tags in the order described above.

When it overlaps and the tag which cannot perform multiple specification is specified, the tag specified
at the end becomes effective.

Chapter 6: Web Application Development

6-8

Distinction is made between upper- and lower-case letters (case-sensitive).

Note that, if any definition other than those described in the manual is specified, the Servlet Service may
be started without output of an error message.

The following characters can be used in pathnames:

Alphanumeric characters, ‘+’, ‘-’, ‘_’, ‘.’, ‘ ’, ‘$’, ‘%’, ‘:’, ‘\’, and ‘~’

Pathnames can be up to 255 bytes long.

The following characters can be used in pathnames:

Alphanumeric characters, ‘+’, ‘-’, ‘_’, ‘.’, ‘$’, ‘%’, ‘/’, and ‘~’

Pathnames can be up to 1023 bytes long.

Web Application Environment Definition File Tags
The tags shown in following table can be specified in the Web application environment definition file.

Tags other than web-app can be omitted. Define tags as necessary.

Detailed definitions are possible by setting lower-level tags between the start and end tags of each tag.

Definition Details

Table 6-1 Web Application Environment Definition File Tag Definition Details
Tag Description Tag Requirement Multiple

Specification

web-app Defines the start and end of the Web
application environment definition file.

required Impossible

display Defines the name of a servlet context. Optional Impossible

context-param Defines the initialization parameters set in the
servlet context.

It is possible to set and extract information
that is common to all servlets of a Web
application in the servlet context.

optional possible

filter Define a filter class. Optional Possible

filter-mapping Define a target to which the filter class is
applied.

Optional Possible

listener Define the name of an implementation class
that can be used to apply a measure for an
event which might occur in a Web application.

Optional Possible

Servlet Defines the servlet attributes, such as the
initialization parameters and aliases.

Optional Possible

Web Application Environment Definition File (Deployment Descriptor)

6-9

Tag Description Tag Requirement Multiple
Specification

servlet-mapping Defines servlet mapping associating a URL to
a servlet or JSP.

Optional Possible

session-config Defines session parameters when session
management is used.

Optional Impossible

mime-mapping Defines the mime type extracted by the
servlet API.

Optional Possible

welcome-file-list Defines the welcome file displayed when a
file name is not specified in the URL.

Optional Impossible

error-page Defines resources corresponding to error
codes and Java exception types.

Optional Possible

taglib Defines the tag library when embedding
original tags with JSP.

Optional Possible

resource-env-ref Define the external resource environment
referenced by the web applications.

Optional Possible

resource-ref Defines the external resource that is
referenced by the Web application.

Optional Possible

security-
constraint

Defines access limit to the Web application. Optional Possible

login-config Defines the user authentication method. Optional Impossible

security-role Defines the security role used for access limit Optional Possible

env-entry Defines the environment entry that is
referenced by the Web application.

Optional Possible

ejb-ref Defines the EJB object that is referenced by
the Web application.

Optional Possible

ejb-local-ref Defines the EJB object of the local interface
that is referenced by the Web application.

Optional Possible

Web Application Environment Definition File Tag Definitions
This section describes the content of the Web application environment definition file tag settings.

Note that an explanation of tags other than those under discussion has been omitted in the entry
example below.

The example of a definition is described by the case of Solaris OE.

In the case of a Windows system, please read a path suitably.

Chapter 6: Web Application Development

6-10

Start and End of Web Application Environment Definition Files
The start and end of Web application environment definition files is defined with the web-app tag.

Entry Format

<web-app>
...
</web-app>

Entry Example

<web-app>
 <context-param>
 ...
 </context-param>
</web-app>

The Name of a Servlet Context
The name of a servlet context is defined with the display-name tag.

The specified servlet context name can be obtained by the following method:

javax.servlet.ServletContext.getServletContextName () method

Entry Format

<display-name>name</display-name>

Entry Example

<web-app>
 <display-name>Example Security Constraint</display-name>
</web-app>

Servlet Context Initialization Parameters
The servlet context initialization parameters are defined with the context-param tag.

It is possible to set and extract information that is common to all servlets of a Web application in the
servlet context. The javax.servlet.ServletContext.getInitParameterNames() method and the
javax.servlet.ServletContext.getInitParameter() method are used.

When the same initialization parameter has been defined more than once, only the parameter value
specified last is valid.

Web Application Environment Definition File (Deployment Descriptor)

6-11

Entry Format

<context-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
</context-param>

Tag Details

Table 6-2 Servlet Context Initialization Parameters Tag Details
Tag Description Tag Requirement Multiple

Specification

param-name Defines servlet context initialization parameter
names.

The parameter name must be entered.

If the parameter name is omitted, the value
specified by param-value are set to NULL
characters.

Required Impossible

param-value Defines the value specified in the servlet
context initialization parameter.

If the parameter value is omitted, NULL
characters are set.

Required Impossible

Entry Example

<web-app>
 <context-param>
 <param-name>E-mail</param-name>
 <param-value>taro@fujitsu.co.jp</param-value>
 </context-param>
</web-app>

Web application coding example

 public doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException,IOException {
 String mail = getServletContext().getInitParameter("E-mail");
 }

Filter Class
To use the filter function, define a filter class and a target to which the filter class is to be applied. This
section describes how to define a filter class.

Define a filter class using the filter tag.

Chapter 6: Web Application Development

6-12

The specified filter initial value can be retrieved with the javax.servlet.FilterConfig.getInitParameter()
method.

Entry Format

<filter>
 <filter-name>name</filter-name>
 <filter-class>class</filter-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
</filter>

Tag Details

Table 6-3 Filter Class Tag Details
Tag Description Tag Requirement Multiple

Specification

filter-name Alias of the filter class.

This alias is used to find matches of the servlet
name or URI pattern defined by filter-mapping.

Although it does not become an error when a
name is omitted, the definition of this filter tag
becomes invalid.

When more than one are defined, the tag
specified at the end becomes effective.

Required Impossible

filter-class Specify the fully qualified name of a mapped
filter class.

When more than one are defined, the tag
specified at the end becomes effective.

Required Impossible

init-param Specify a pair consisting of a name and value
as initialization parameters. To use multiple
parameters, specify them separately using the
<init-param> tag.

Optional Possible

param-name Set the name of a filter class initialization
parameter. This tag is always required when
the <init-param> tag is used.

Required Impossible

param-value Set the value of a filter class initialization
parameter. This tag is always required when
the <init-param> tag is used.

Required Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-13

Entry Example
See the coding example shown in Filter class Application Target.

Filter class Application Target
To use the filter function, define a filter object and a target to which the filter object is to be applied. This
section describes how to define a target to which the filter object is to be applied.

Define a filter object application target using the filter-mapping tag.

To a request, the filter-mapping tag indicates the Web container to which the filters are to be applied and
the order in which they must be applied.

Multiple filter-mapping tags can be defined. The order in which filters are applied is determined as
follows:

<filter-mapping> tags with <url-pattern> elements defined take priority.

If there are multiple <filter-mapping> tags with <url-pattern> elements in web.xml, they are handled
in the order in which they are defined.

<filter-mapping> tags with <servlet-name> elements defined take priority.

If there are multiple <filter-mapping> tags with <servlet-name> elements in web.xml, they are
handled in the order in which they are defined.

Entry Format

<filter-mapping>
 <filter-name>value</filter-name>
 <servlet-name>name</servlet-name>
</filter-mapping>
<filter-mapping>
 <filter-name>value</filter-name>
 <url-pattern>pattern</url-pattern>
</filter-mapping>

Tag Details

Table 6-4 Filter Class Application Target Tag Details
Tag Description Tag Requirement Multiple

Specification

filter-name Specify the name of a filter.
This name must match the value of a filter-
name tag in a filter tag.

Required Impossible

Chapter 6: Web Application Development

6-14

Tag Description Tag Requirement Multiple
Specification

url-pattern Specify the URI pattern to be mapped with the
filter.
This tag cannot be used together with the
servlet-name tag.

The URL is entered as follows:

For a specific URL
State the name of the URL to
be called:
Example: /servlet/servlet1

For URLs, each beginning with a
specific prefix (path, identifier):
Append /* to the end of the
prefix.
Example: /prefix/*

For URLs, each having a specific
extension:
Enter using the format “*.xxx” .
Example: *.do
When using "*.xxx" to specify a
file with a specific extension, it
cannot be specified together
with a prefix.
Example: /path/*.do cannot be
specified.
When a file with a specific
extension is specified, all files
of a Web application become
targets.

Required Impossible

servlet-name Specify the name of servlet to be mapped with
the filter.
This tag cannot be used together with the url-
pattern tag.
Enter the name specified in the servlet-name
tag of the servlet tag as the servlet name. If a
servlet name that is not specified is entered or
the servlet name is omitted, an error occurs
and the definition of the filter-mapping tag is
disabled.

Required Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-15

Entry Example
A filter definition for a specific Servlet is shown as follows:

<web-app>
 <filter>
 <filter-name>helloWorld</filter-name> ...alias of a filter
class
 <filter-class>MyHelloWorldFilter</filter-class> ...filter class name
 </filter>
 <filter-mapping>
 <filter-name>helloWorld</filter-name> ...alias of a filter
class
 <servlet-name>MyHelloWorld</servlet-name> ...servlet name
 </filter-mapping>
</web-app>

A filter definition for a specific URL (the URL of the JSP file in the following example) is shown as
follows:

<web-app>
 <filter>
 <filter-name>helloWorld</filter-name> ...alias of a filter
class
 <filter-class>MyHelloWorldFilter</filter-class> ...filter class name
 </filter>
 <filter-mapping>
 <filter-name>helloWorld</filter-name> ...alias of a filter
class
 <url-pattern>>/filter.jsp</url-pattern> ... filter and the URI
pattern to map
 </filter-mapping>
</web-app>

A filter definition for a URI pattern is shown as follows. This example uses a wildcard to specify that all
resources under "/" be subjected to the filter function.

<web-app>
 <filter>
 <filter-name>helloWorld</filter-name> ...alias of a
filter class
 <filter-class>MyHelloWorldFilter</filter-class> ...filter class
name
 </filter>
 <filter-mapping>
 <filter-name>helloWorld</filter-name> ...alias of a
filter class
 <url-pattern>/*</url-pattern> ... filter and the URI pattern to map
 </filter-mapping>
</web-app>

Chapter 6: Web Application Development

6-16

Web application coding example:

 import java.io.*;
 import javax.servlet.*;
 import javax.servlet.http.*;

 public class MyHelloWorldFilter implements Filter {
 String company;
 public void doFilter(ServletRequest req, ServletResponse res,
FilterChain chain)
 throws IOException, ServletException {
 HttpServletResponseWrapper wrapper = new MyResponseWrapper(
 (HttpServletResponse)res);
 chain.doFilter(req, wrapper);
 CharArrayWriter writer = new CharArrayWriter();
 writer.write(wrapper.toString().substring(0,
 wrapper.toString().indexOf("</body>")-1));
 writer.write("<hr>\n");
 writer.write("Copyrights © " + company + "\n");
 writer.write("</body>\n</html>\n");

 PrintWriter out = res.getWriter();
 res.setContentLength(writer.toString().length());
 out.write(writer.toString());
 out.close();
 }
 public void init(FilterConfig config) throws ServletException {
 company = config.getInitParameter("company");
 }

 public void destroy(){}

 class MyResponseWrapper extends HttpServletResponseWrapper {
 private CharArrayWriter output;
 public String toString() {
 return output.toString();
 }
 public MyResponseWrapper(HttpServletResponse response){
 super(response);
 output = new CharArrayWriter();
 }
 public PrintWriter getWriter(){
 return new PrintWriter(output);
 }
 }
 }

Web Application Environment Definition File (Deployment Descriptor)

6-17

Listener Class
The listener class is called when a life cycle event occurs. When a life cycle event occurs in a Web
application, a defined listener class automatically starts up.

Define a listener class using the listener tag.

If <listener> is specified in the tag library description file (TLD), both listeners are enabled.

Entry Format

<listener>
 <listener-class>class</listener-class>
</listener>

Tag Details

Table 6-5 Listener Class Tag Details
Tag Description Tag

Requirement
Multiple
Specification

listener-class Specifies the complete class name for the
following events:

Start and stop of contexts
(javax.servlet.ServletContextListe
ner interface implementation
class)

Addition, replacement, and deletion of
SevletContext attributes
(javax.servlet.ServletContextAttri
buteListener interface
implementation class)

Creation and deletion of sessions
(javax.servlet.http.HttpSessionLis
tener interface implementation
class)

Addition of attributes to sessions,
replacement of attributes, and
deletion of attributes from
sessions
(javax.servlet.http.HttpSessionAtt
ributeListener interface
implementation class)

If a nonexistent class name is specified, the Web
application fails to start.

Required Impossible

Chapter 6: Web Application Development

6-18

Entry Example

<web-app>
 <listener>
 <listener-class>listeners.ContextListener</listener-class>
 </listener>
</web-app>

Servlet Attributes
Servlet and JSP attributes are defined with the servlet tag.

It is possible to set aliases, initialization parameters, and startup as servlet attributes. Initialization
parameter settings are retrieved using the javax.servlet.ServletConfig.getInitParameterNames() and
javax.servlet.ServletConfig.getInitParameter() methods.

When the same startup order (load order) is defined, loading will be performed in the order entered.

Entry Format
When Defining a Servlet

<servlet>
 <servlet-name>name</servlet-name>
 <servlet-class>class</servlet-class>
 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
 <load-on-startup>priority</load-on-startup>
 <security-role-ref>
 <role-name>name</role-name>
 <role-link>name</role-link>
 </security-role-ref>
</servlet>

When Defining a JSP File

<servlet>
 <servlet-name>name</servlet-name>
 <jsp-file>file-name</jsp-file>
 <init-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </init-param>
 <load-on-startup>priority</load-on-startup>
 <security-role-ref>
 <role-name>name</role-name>
 <role-link>name</role-link>
 </security-role-ref>
</servlet>

Web Application Environment Definition File (Deployment Descriptor)

6-19

Tag Details

Table 6-6 Servlet Attributes Tag Details
Tag Description Tag

Requirement
Multiple
Specification

servlet-name Defines the name of the servlet or JSP.

Servlet and JSP names are necessary when the
servlet tag is used to define servlet attributes,
and when the servlet-mapping tag is used to
define servlet mapping.

In the case of a servlet, the specified name can
also be used as an alias.

Only the following characters can be used for
access from the browser:

Alphanumeric characters, '+', '-', '.', '_', '$'

When characters are only used for the servlet-
mapping tag, XML friendly characters can be
used.

Required Impossible

servlet-class Defines the complete servlet class name of
servlet.

Define this tag when defining servlet.

Required

(Only when
defining
servlet)

Impossible

jsp-file The JSP file name is defined as the partial
pathname starting from the root directory of the
Web application. Begin the pathname with a
forward slash (/).

Define this tag when defining the JSP file.

When entering the partial pathname, separate
each directory with a slash (/), not a backslash
(\).

Required

(Only when
defining JSP
file)

Impossible

init-param Define the servlet initialization parameter. Optional Possible

Param-name Defines the initialization parameter name of the
servlet.

It is required when defining an init-param tag.

Required Impossible

Param-value Defines the value specified in the servlet
initialization parameter.

It is required when defining an init-param tag.

Required Impossible

Chapter 6: Web Application Development

6-20

Tag Description Tag
Requirement

Multiple
Specification

load-on-startup Defines the startup when Servlet Container is
started.

Order which loads Servlet and JSP. It defines by
-2147483648 to 2147483647.

Loading proceeds in order from the smallest
number to the largest.

If 0 is specified, the relevant servlet or JSP is
loaded last.
If a negative value is specified, the relevant
servlet or JSP is not loaded when the Servlet
container is activated.

If the parameter value is omitted, the relevant
servlet or JSP is not loaded when the servlet or
JSP is called.

When the following values are specified, the
servlet or JSP is loaded last. This is also what
happens when 0 is specified, as explained
above.
 1) When a value smaller than -2147483648 is
specified, or
 2) When a value larger than 2147483647 is
specified, or
 3) When characters other than numerical
values are specified

Optional

Default value:
Load servlets
or JSPs when
they are called.

Impossible

security-role-ref Defines the reference destination of a security
role used for servlet code.

Optional Possible

role-name Defines the security role name that is used by
the Servlet code.

It is required when defining a security-role-ref
tag.

This parameter can be used as a parameter of
the
javax.servlet.http.HttpServletRequest.isUserInRo
le() method.

Required

(When defining
security-role-
ref tag)

Impossible

role-link Defines the name of the security role name
specified by <security-role>.

It is required when defining a security-role-ref
tag.

Required

(When defining
security-role-
ref tag)

Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-21

Entry Example
When Defining a Servlet

<web-app>
 <servlet>
 <servlet-name>Hello</servlet-name>
 <servlet-class>com.fujitsu.jservlet.xxx.HelloWorldServlet</servlet-
class>
 <init-param>
 <param-name>message</param-name>
 <param-value>I'm a Hello servlet</param-value>
 </init-param>
 <load-on-startup>10</load-on-startup>
 <security-role-ref>
 <role-name>Administrator</role-name>
 <role-link>Manager</role-link>
 </security-role-ref>
 </servlet>
</web-app>

When Defining a JSP File

<web-app>
 <servlet>
 <servlet-name>present</servlet-name>
 <jsp-file>/jsp/present.jsp</jsp-file>
 <init-param>
 <param-name>message</param-name>
 <param-value>I'm a Hello JSP</param-value>
 </init-param>
 <load-on-startup>11</load-on-startup>
 <security-role-ref>
 <role-name>Administrator</role-name>
 <role-link>Manager</role-link>
 </security-role-ref>
 </servlet>
</web-app>

Chapter 6: Web Application Development

6-22

Servlet Mapping
It is possible to associate a servlet with a different servlet or JSP without displaying the file or servlet of
the specified URL.

Servlet mapping of this type is defined with the servlet-mapping tag.

Enter the servlet-mapping tag after the servlet tag defining the servlet or JSP name.

If stated before the servlet tag, the Web application fails to start.

If the same URL is defined for multiple url-pattern tags, the servlet mapping defined last applies.

When the specified URL is valid for multiple servlet mappings, the order of priority is as follows:

When the url-pattern tag is a file or servlet name.

When the url-pattern tag is a prefix (path, identifier). (Longer names have priority.)

When the url-pattern tag is an extension.

Example: If "/index.html" and "*.html" URLs are defined and "/index.html" is accessed, the definition of
file name "/index.html" has priority over extension "*.html".

Entry Format

<servlet-mapping>
 <servlet-name>name</servlet-name>
 <url-pattern>pattern</url-pattern>
</servlet-mapping>

Tag Details

Table 6-7 Servlet Mapping Tag Details
Tag Description Tag Requirement Multiple

Specification

servlet-name Defines the servlet or JSP name to which a
request is to be mapped.

To a name, the name specified with the servlet-
name tag of a servlet tag is described. If a
name other than the specified one is stated, the
Web application fails to start.

Required Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-23

Tag Description Tag Requirement Multiple
Specification

url-pattern Defines the URL mapped to the servlet or JSP
application.

The URL is entered as follows:

For a specific URL
Enter the name used when
calling with a URL
Example: /servlet/servlet1

For URLs, each beginning with a
specific prefix (path, identifier)
Append /* to the end of the
prefix.
Example: /prefix/*

For URLs, each having a specific
extension
Enter using the format “*.xxx” .
Example: *.do
When using "*.xxx" to specify a
file with a specific extension, it
cannot be specified together
with a prefix.
Example: /path/*.do cannot be
specified.
When a file with a specific
extension is specified, all files
of a Web application become
targets.

Required Impossible

Entry Example
A mapping definition for a specific URL is shown as follows:

<web-app>
 <servlet>
 <servlet-name>SendMailServlet</servlet-name>
 <servlet-class>SendMailServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SendMailServlet</servlet-name>
 <url-pattern>/SendMailServlet</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 6: Web Application Development

6-24

A mapping definition for a request where the URL path information has prefix "director" is shown as
follows:

<web-app>
 <servlet>
 <servlet-name>director</servlet-name>
 <servlet-class>xxx.yyy.DirectorServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>director</servlet-name>
 <url-pattern>/director/*</url-pattern>
 </servlet-mapping>
</web-app>

A mapping definition for a request where the URL ends with ".do" is shown as follows:

<web-app>
 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>xxx.yyy.ActionServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
</web-app>

Session Parameter
The session parameter is defined with the session-config tag.

The session timeout period can be set as a session parameter.

The session timeout setting is retrieved with the javax.servlet.http.HttpSession.getMaxInactiveInterval()
method.

Entry Format

<session-config>
 <session-timeout>time</session-timeout>
</session-config>

Web Application Environment Definition File (Deployment Descriptor)

6-25

Tag Details

Table 6-8 Session Parameter Tag Details
Tag Description Tag

Requirement
Multiple
Specification

session-timeout Defines the session timeout period in minutes.

Specify a value from 0 to 35791394 in minutes.
The default is 30 minutes. If 0, or a negative
value is specified, no timeout occurs.

Optional Impossible

Entry Example

<web-app>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
</web-app>

Mime Types
The mime type is defined with the mime-mapping tag. The mime type defines the default value of
Servlet Container.

By defining this tag, it is possible to set the mime type specific to each Web application. The mime type
set with this tag has priority over the default mime type.

If the same mime type is defined more than once, only the mime type specified last is valid. The mime
type setting is retrieved with the javax.servlet.ServletContext.getMimeType() method.

Entry Format

<mime-mapping>
 <extension>ext</extension>
 <mime-type>mime</mime-type>
</mime-mapping>

Tag Details

Table 6-9 Mime Type Tag Details
Tag Description Tag

Requirement
Multiple
Specification

extension Defines the extension of the file defining the
mime type.

Required Impossible

mime-type Defines the mime type. Required Impossible

Chapter 6: Web Application Development

6-26

Entry Example

<web-app>
 <mime-mapping>
 <extension>jpg</extension>
 <mime-type>image/jpeg</mime-type>
 </mime-mapping>
</web-app>

Default Mime Type

Table 6-10 Default Mime Type
Extension Mime Type

abs audio/x-mpeg

ai application/postscript

aif
aifc
aiff

audio/x-aiff

aim application/x-aim

art image/x-jg

asf
asx

video/x-ms-asf

au audio/basic

avi video/x-msvideo

avx video/x-rad-screenplay

bcpio application/x-bcpio

bin application/octet-stream

bmp image/bmp

body text/html

cdf application/x-netcdf

cer application/x-x509-ca-cert

class application/java

cpio application/x-cpio

csh application/x-csh

css text/css

dib image/bmp

doc application/msword

dtd text/plain

Web Application Environment Definition File (Deployment Descriptor)

6-27

Extension Mime Type

dv video/x-dv

dvi application/x-dvi

eps application/postscript

etx text/x-setext

exe application/octet-stream

gif image/gif

gtar application/x-gtar

gz application/x-gzip

hdf application/x-hdf

hqx application/mac-binhex40

htc text/x-component

htm
html

text/html

hqx application/mac-binhex40

ief image/ief

jad text/vnd.sun.j2me.app-descriptor

jar application/java-archive

java text/plain

jnlp application/x-java-jnlp-file

jpe
jpeg
jpg

image/jpeg

js text/javascript

jsf text/plain

jspf text/plain

kar audio/x-midi

latex application/x-latex

m3u audio/x-mpegurl

mac image/x-macpaint

man application/x-troff-man

me application/x-troff-me

mid audio/x-midi

midi audio/x-midi

mif application/x-mif

Chapter 6: Web Application Development

6-28

Extension Mime Type

mov video/quicktime

movie video/x-sgi-movie

mp1
mp2
mp3
mpa

audio/x-mpeg

mpe
mpeg
mpega
mpg

video/mpeg

mpv2 video/mpeg2

ms application/x-wais-source

nc application/x-netcdf

oda application/oda

pbm image/x-portable-bitmap

pct image/pict

pdf application/pdf

pgm image/x-portable-graymap

pic
pict

image/pict

pls audio/x-scpls

png image/png

pnm image/x-portable-anymap

pnt image/x-macpaint

ppm image/x-portable-pixmap

ps application/postscript

psd image/x-photoshop

qt video/quicktime

qti
qtif

image/x-quicktime

ras image/x-cmu-raster

rgb image/x-rgb

rm application/vnd.rn-realmedia

roff application/x-troff

rtf application/rtf

rtx text/richtext

Web Application Environment Definition File (Deployment Descriptor)

6-29

Extension Mime Type

sh application/x-sh

shar application/x-shar

smf audio/x-midi

snd audio/basic

src application/x-wais-source

sv4cpio application/x-sv4cpio

sv4crc application/x-sv4crc

svg image/svg+xml

svgz image/svg+xml

swf application/x-shockwave-flash

t application/x-troff

tar application/x-tar

tcl application/x-tcl

tex application/x-tex

texi
texinfo

application/x-texinfo

tif
tiff

image/tiff

tr application/x-troff

tsv text/tab-separated-values

txt text/plain

ulw audio/basic

ustar application/x-ustar

wav audio/x-wav

wbmp image/vnd.wap.wbmp

wml text/vnd.wap.wml

wmlc application/vnd.wap.wmlc

wmls text/vnd.wap.wmlscript

wmlscriptc application/vnd.wap.wmlscriptc

wrl x-world/x-vrml

xbm image/x-xbitmap

xml text/xml

xpm image/x-xpixmap

Chapter 6: Web Application Development

6-30

Extension Mime Type

xsl text/xml

xwd image/x-xwindowdump

Z
z

application/x-compress

zip application/zip

Welcome Files
It is possible to define the file to be displayed (welcome file) when no file name is entered in the URL.

The welcome file is valid when the Web application name has been specified in the URL or when a
directory name has been specified as a partial pathname starting from the root directory of the Web
application.

If the welcome file is omitted, the default file is used. The following files are used as default files:

index.html

index.htm

index.jsp

If a file corresponding to the welcome file (or the default file) is not found, status code 404 (file not
found) or the list of directories and files under the corresponding directory is displayed. The file that is
displayed depends on the value specified in [Servlet Container Settings] > [List File] on the Interstage
Management Console.

Define the welcome file using the welcome-file-list tag. Multiple welcome files can be specified and they
are enabled in the order they are included.

Entry Format

<welcome-file-list>
 <welcome-file>filename</welcome-file>
</welcome-file-list>

Tag Details

Table 6-11 Welcome File Tag Details
Tag Description Tag

Requirement
Multiple
Specification

welcome-file Defines welcome file. Required Possible

Web Application Environment Definition File (Deployment Descriptor)

6-31

Entry Example

<web-app>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.htm</welcome-file>
 </welcome-file-list>
</web-app>

Resources during Error Occurrence
It is possible to define resources (HTML files, servlets) that deal with HTTP errors and Java exceptions.

Resources for error occurrences are defined with the error-page tag.

When resources for the same HTTP error code or Java exception type has been defined more than
once, only the last resource definition is valid.

Entry Format
For HTTP Error

<error-page>
 <error-code>code</error-code>
 <location>resource</location>
</error-page>

For Java Exception

<error-page>
 <exception-type>type</exception-type>
 <location>resource</location>
</error-page>

Tag Details

Table 6-12 Resources during Error Occurrence Tag Details
Tag Description Tag

Requirement
Multiple
Specification

error-code Defines the HTTP error code.

Define either the error-code tag or the exception-
type tag.

Required Impossible

exception-type Defines the complete class name of the Java
exception type.

Define either the error-code tag or the exception-
type tag.

Required Impossible

Chapter 6: Web Application Development

6-32

Tag Description Tag
Requirement

Multiple
Specification

location Defines resources (HTML documents, servlets,
etc.) that respond to errors.

Specify the partial pathname starting from the
root directory of the Web application. Add / to
the beginning of the pathname.

Omitting the resource results in an error.

When entering directories in the partial
pathname, separate each directory name with a
slash (/), not a backslash (\).

Note) An error page with a built-in web browser
may be displayed if a web browser is set.

Required Impossible

Either an error-code tag or an exception-type tag is defined.

When both are not specified, this error-page tag becomes invalid.

Entry Example
For HTTP Error

<web-app>
 <error-page>
 <error-code>500</error-code>
 <location>/error/http/code500.html</location>
 </error-page>
</web-app>

For Java Exception

<web-app>
 <error-page>
 <exception-type>java.lang.IllegalStateException</exception-type>
 <location>/error/exception/IllegalState.html</location>
 </error-page>
</web-app>

Web Application Environment Definition File (Deployment Descriptor)

6-33

JSP Tag Libraries
JSP tag libraries are defined with the taglib tag.

Entry Format

<taglib>
 <taglib-uri>uri</taglib-uri>
 <taglib-location>location</taglib-location>
</taglib>

Tag Details

Table 6-13 JSP Tag Library Tag Details
Tag Description Tag

Requirement
Multiple
Specification

taglib-uri Defines the URI of the tag library of the JSP
used by the Web application. Specify the URL
to be defined in uri, which is specified by
<taglib> in the JSP file.

Required Impossible

taglib-location Defines the name of the Tag Library
Description file (TLD) of the tag library.

Specify the partial pathname starting from the
root directory of the Web application. Add / to
the beginning of the pathname.
If a nonexistent path is stated, the Web
application fails to start.

When entering directories in the partial
pathname, separate each directory name with a
slash (/), not a backslash (\).

Required Impossible

Entry Example

<web-app>
 <taglib>
 <taglib-uri>http://java.apache.org/tomcat/examples-taglib</taglib-uri>
 <taglib-location>/WEB-INF/jsp/example-taglib.tld</taglib-location>
 </taglib>
</web-app>

Entry Example of JSP File

<html>
<body>
<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib"
prefix="eg" %>
Radio stations that rock:

Chapter 6: Web Application Development

6-34

<eg:foo att1="98.5" att2="92.3" att3="107.7">

<%= member %>

</eg:foo>

 .
 .

Note

When <tag-class> tag in the tag library descriptor file is changed, the JSP file using the tag library
corresponding to the changed tag library descriptor must be recompiled.

The JSP is recompiled when the java source file and class file corresponding to the JSP file do not exist
in the work directory under the IJServer directory.

Therefore, if the java source file and the class file that correspond to the JSP file are deleted, JSP
recompilation is executed.

For example, when the JSP file path from the root directory of the web application is "/jsp/HelloJSP.jsp",
the source file and the class file are created as follows:

Source file name: jsp\HelloJSP_jsp.java

Class file name: jsp\HelloJSP_jsp.class

External Resource Environment Reference
Define the external resource environment referenced by the web application using the resource-env-ref
tag.

Entry Format

<resource-env-ref>
 <resource-env-ref-name>env-ref-name</resource-env-ref-name>
 <resource-env-ref-type>type</resource-env-ref-type>
</resource-env-ref>

Web Application Environment Definition File (Deployment Descriptor)

6-35

Tag Details

Table 6-14 External Resource Environment Reference Tag Details
Tag Description Tag

Requirement
Multiple
Specification

resource-env-
ref-name

Any reference name can be specified so that the
external resource environment can be identified
by the web application.

Define the name relative to the java:comp/env
context.
Example: jms/xxxxx

Required Impossible

resource-env-
ref-type

Define the type of data source of the external
resource environment reference.

Specify the JavaClass type as its type.The
following resources are supported as the data
source type (JavaClass type):

JMS
javax.jms.Topic
javax.jms.Queue

Required Impossible

Entry Example

<web-app>
 <resource-env-ref>
 <resource-env-ref-name>jms/sTopic</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
 </resource-env-ref>
</web-app>

Defining References to External Resources
External resources that are referenced by the Web application are defined with the resource-ref tag.

Entry Format

<resource-ref>
 <res-ref-name>ref-name</res-ref-name>
 <res-type>type</res-type>
 <res-auth>signon</res-auth>
</resource-ref>

Chapter 6: Web Application Development

6-36

Tag Details

Table 6-15 Defining References to External Resource Tag Details
Tag Description Tag

Requirement
Multiple
Specification

res-ref-name The reference name can optionally be specified
to let the Web application identify the external
resource.
Define the name relative to the
java:comp/environment context.
Example:
For JDBC jdbc/xxxxx
For JMS jms/xxxxx
For JavaMail mail/xxxxx
For URL url/xxxxx

Required Impossible

res-type Defines the data source type of the external
resource. Specify the JavaClass type.

The data source type (JavaClass type) supports
the following resources:

- JDBC

javax.sql.DataSource

- JavaMail

javax.mail.session

- JMS

javax.jms.TopicConnectionFactory
javax.jms.QueueConnectionFactory

- URL

java.net.URL

Required Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-37

Tag Description Tag
Requirement

Multiple
Specification

res-auth Defines whether the resource connection
information is specified by the application
component code in the program or Servlet
Container.

See "Resource-connectable User Control
Function" in Chapter 4 for more information.

Define the position where the connection
information for the resource is set up.
Application or Container can be specified.

• Application
The connection information is set by the
application component code (Web
application side).

• Container
The connection information is set by the
Container.
The container uses the connection
information set by resource definitions.

Required Impossible

Entry Example

<web-app>
 <resource-ref>
 <res-ref-name>jdbc/MyDataBase</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

Access Limit
 The Access limit is defined with the security-constraint tag.

Entry Format

<security-constraint>
 <web-resource-collection>
 <web-resource-name>resource-name</web-resource-name>
 <url-pattern>pattern</url-pattern>
 <http-method>method</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>name</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>guarantee-type</transport-guarantee>

Chapter 6: Web Application Development

6-38

 </user-data-constraint>
</security-constraint>

Tag Details

Table 6-16 Access Limit Tag Details
Tag Description Tag

Requirement
Multiple
Specification

web-resource-
collection

Defines the Web resource collection. Required Possible

web-resource-
name

Defines the Web resource collection name.
It is required when defining web-resource-
collection tag.

Required Impossible

url-pattern Defines the URL pattern.

Define it using the target path from root
directory of Web application. Add "/" to the top.

Omitting the url-pattern tag or the URL pattern
will disable the access constraint specified in
the <security-constraint> tag including this tag.

Optional Possible

http-method Defines an HTTP method (e.g., GET and
POST).

Access is limited only to the defined method.

If the method is omitted, access limit is applied
to all methods.

Optional Possible

auth-constraint Defines the security role that allows access to
the Web resource collection.

The users who have the specified role are
allowed to access the resource collection.

When the security role is omitted, all users are
allowed to access the resource collection.

Optional Impossible

role-name Defines the security role name. When the
security role name is specified, user
authentication is performed since user
identification is required.

The role specified here must be defined in
<role-link> of <security-role-ref> of the
<servlet> tag.

When the role-name tag is omitted, all users
are allowed to access the resource.

Please be sure to specify a role-name. When a
role- name is omitted, no user can access.

Optional Possible

Web Application Environment Definition File (Deployment Descriptor)

6-39

Tag Description Tag
Requirement

Multiple
Specification

user-data-
constraint

Defines the data security attribute

Define the method of protecting data that is
communicated between client and container.

Optional Impossible

transport-
guarantee

Defines the transfer method between client and
server.
It is required when defining user-data-
constraint tag

NONE
Indicates that the application does not require
transfer guarantee.

- INTEGRAL

- CONFIDENTIAL

Required Impossible

Entry Example

<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Hello</web-resource-name>
 <url-pattern>/Hello.jsp</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Administrator</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

Chapter 6: Web Application Development

6-40

User Authentication
The user authentication method is defined with the login-config tag.

Entry Format

<login-config>
 <auth-method>method</auth-method>
 <realm-name>name</realm-name>
 <form-login-config>
 <form-login-page>login-page</form-login-page>
 <form-error-page>error-page</form-error-page>
 </form-login-config>
</login-config>

Tag Details

Table 6-17 User Authentication Tag Details
Tag Description Tag

Requirement
Multiple
Specification

auth-method Defines the authentication method.

Specify one of the following:

• BASIC
HTTP BASIC authentication

• FORM
Form-based authentication

If the auth-method tag or the authentication
method is omitted, "BASIC" becomes the
optional value.

Optional Impossible

realm-name Defines the area name used for HTTP Basic
authentication. The area name is displayed on
the screen for user authentication (dialog box).

When the HTTP Basic authentication is not used,
the specification is ignored.

Optional Impossible

form-login-
config

Defines the start and end of the form-based
authentication definitions.

Specify the login page and error page used for
form-based authentication.

When form-based authentication is not used, the
specification is ignored.

Optional Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-41

Tag Description Tag
Requirement

Multiple
Specification

form-login-page Defines the login page used for form-based
authentication.
It is required when the form-login-config tag is
defined.
The specified login page is displayed in the Web
browser at form-based authentication.

Note

The login page must use the following interface
to pass the user name and password to the
Servlet Container:

- Application name: j_security_check

- Parameter name -> user name: j_username

- Parameter name -> password: j_password

Example
:
<FROM ACTION="j_security_check"
METHOD="POST">
UserName: <INPUT TYPE="text"
NAME="j_username">
Password: <INPUT TYPE="password
NAME="j_password">
</FORM>
:

When form-based authentication is specified with
an auth-method tag, be sure to specify this tag.
Be sure to specify a login page. If omitted, login
page is not displayed.

Required Impossible

form-error-page Defines the location of the error page that is
displayed when form-based authentication fails.
The specified error page is displayed on the Web
browser at failure of form-based authentication.

Required

(If the form-
login-config tag
is defined)

Impossible

Chapter 6: Web Application Development

6-42

Entry Example
For HTTP BASIC authentication

<web-app>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Welcome Page</realm-name>
 </login-config>
</web-app>

For Form-based authentication

<web-app>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

Attestation Continuation Processing
The operation for continuing form-based authentication varies, depending on the setting of "Save
session information on client's web browser" specified for the Web application.

Use the Interstage Management Console to specify the setting of the Web application.

If "Save session information on client's web browser" is enabled:

Input processing of a user name/password is required only the first time a client is started.
Attestation is continued even if it ends a client.

The continuation time of attestation is decided by the following.

− The timeout of session

Attestation is continued until session carries out a timeout.

The session-config tag of a Web application environmental definition file(web.xml) or

the setMaxInactiveInterval (int interval) method of a HttpSession class can define the timeout
time of session.

Refer to "Session Parameter" for the details of a session-config tag.

− Until application cancels session

Attestation is continued until it cancels session by the processing in application using the
invalidate() method of a HttpSession class.

Web Application Environment Definition File (Deployment Descriptor)

6-43

Note

Attestation continuation processing in form base attestation is mounted using a Cookie. If the client
does not support cookies or has them disabled, authentication is not continued even if "Save
session information on client's web browser" is enabled.

If "Save session information on client's web browser" is disabled

Whenever input processing of a user name/password starts a client, it is required.

Attestation becomes invalid after ending a client.

Security Role
The security role is defined with the security-role tag.

Entry Format

<security-role>
 <role-name>name</role-name>
</security-role>

Tag Details

Table 6-18 Security Role Tag Details
Tag Description Tag

Requirement
Multiple
Specification

role-name Defines the security role name.

For the role name, specify the security role name
specified in the operation setup for the security
function.

Required Impossible

Entry Example

<web-app>
 <security-role>
 <role-name>Administrator</role-name>
 </security-role>
</web-app>

Application Environment Entry
The application environment entry is defined with the env-entry tag.

Entry Format

<env-entry>
 <env-entry-name>entry-name</env-entry-name>
 <env-entry-value>entry-value</env-entry-value>
 <env-entry-type>entry-type</env-entry-type>
</env-entry>

Chapter 6: Web Application Development

6-44

Tag Details

Table 6-19 Application Environment Entry Tag Details
Tag Description Tag

Requirement
Multiple
Specification

env-entry-name Defines the entry name of the environment entry.
Define the name relative to the java:comp/env
context.

Required Impossible

env-entry-value Defines the entry value of the environment entry.
The entry value is handled as an object specified
in <env-entry-type>.

An error occurs when an entry value differs from
the Java type specified with the env-entry-type
tag.
If the tag is omitted, the following operation is
performed:

env-entry-type Entry Value

java.lang.Boolean Boolean.FALSE

java.lang.Byte Byte object with value
0

java.lang.Character Character object with
value 0

java.lang.String None
*1
javax.naming.NameN
otFoundException is
issued.

java.lang.Short Short object with
value 0

java.lang.Integer Integer object with
value 0

java.lang.Long Long object with
value 0

java.lang.Float Float object with
value 0

java.lang.Double Double object with
value 0

Optional Impossible

Web Application Environment Definition File (Deployment Descriptor)

6-45

Tag Description Tag
Requirement

Multiple
Specification

env-entry-type Defines the Java type of the environment entry
that is handled by the application code.

The following Java types can be specified:

Java.lang.Boolean

java.lang.Byte

java.lang.Character

Java.lang.String

java.lang.Short

Java.lang.Integer

java.lang.Long

java.lang.Float

Java.lang.Double

Java.lang.Float

Required Impossible

Entry Example

<web-app>
 <env-entry>
 <env-entry-name>company</env-entry-name>
 <env-entry-value>Fujitsu</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>
</web-app>

EJB Object Reference
The EJB object reference is defined with the ejb-ref tag.

Entry Format

<ejb-ref>
 <ejb-ref-name>ref-name</ejb-ref-name>
 <ejb-ref-type>ref-type</ejb-ref-type>
 <home>ejb-home</home>
 <remote>ejb-remote</remote>
 <ejb-link>name</ejb-link>
</ejb-ref>

Chapter 6: Web Application Development

6-46

Tag Details

Table 6-20 EJB Object Reference Tag Details
Tag Description Tag

Requirement
Multiple
Specification

ejb-ref-name Defines the reference name of the EJB object.
Define the name relative to the java:comp/env
context.
Example: ejb/xxxxx

Required Impossible

ejb-ref-type Defines the EJB object type.

The following types can be specified:

• Entity
Entity Bean

• Session
Session Bean

Required Impossible

home Defines the full name of the EJB home interface. Required Impossible

remote Defines the full name of the EJB remote
interface.

Required Impossible

ejb-link Defines the EJB name (ejb-name) in J2EE
application PKG to be linked.

Optional Impossible

Entry Example

<web-app>
 <ejb-ref>
 <ejb-ref-name>ejb/EjbTest</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.fujitsu.interstage.ejb.EjbTestHome</home>
 <remote>com.fujitsu.interstage.ejb.EjbTest</remote>
 <ejb-link>EjbTest</ejb-link>
 </ejb-ref>
</web-app>

EJB object reference of Local interface
Use the ejb-local-ref tag to define the EJB object reference of the Local interface.

Entry Format

<ejb-local-ref>
 <ejb-ref-name>ref-name</ejb-ref-name>
 <ejb-ref-type>ref-type</ejb-ref-type>
 <local-home>ejb-local-home</local-home>
 <local>ejb-local</local>
 <ejb-link>name</ejb-link>
</ejb-local-ref>

Web Application Environment Definition File (Deployment Descriptor)

6-47

Tag Details

Table 6-21 EJB Object Reference Tag Details
Tag Description Tag

Requirement
Multiple
Specification

ejb-ref-name Defines the reference name of the EJB object.
Define the name relative to the java:comp/env
context.
Example: ejb/xxxxx

Required Impossible

ejb-ref-type Defines the EJB object type.

The following types can be specified:

• Entity
Entity Bean

• Session
Session Bean

Required Impossible

local-home
home

Defines the full name of the EJB local home
interface.

Required Impossible

local Defines the full name of the EJB local interface. Required Impossible

ejb-link Defines the EJB name (ejb-name) in J2EE
application PKG to be linked.

Optional Impossible

Entry Example

<web-app>
 <ejb-ref>
 <ejb-ref-name>ejb/EjbTest</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.fujitsu.interstage.ejb.EjbTestHome</home>
 <remote>com.fujitsu.interstage.ejb.EjbTest</remote>
 <ejb-link>EjbTest</ejb-link>
 </ejb-ref>
</web-app>

Chapter 6: Web Application Development

6-48

7-1

Chapter 7

How to Call Web Applications

This chapter describes how to call Web applications.

The definition examples are for the Solaris OE.

If you are using a Windows system, change the path to one that is suitable for reading in a Windows
system.

Chapter 7: How to Call Web Applications

7-2

Calling Servlets
Servlets are called by Web browser URLs and by specifying URLs in links in HTML text.

A servlet can be called by specifying the following for each IJServer:

• Call that requires mapping

The servlet cannot operate without mapping.

• Call that does not require mapping

The servlet can operate without mapping.

For security reasons, it is generally recommended to use the calling method that requires mapping.

By default the calling method that does not require mapping is disabled. If it is needed, from the Interstage
Management Console, select [System] > [WorkUnit] > [IJServer name] > [Environment Settings] > [Servlet
Container Settings] and change the setting of [Servlet operates even without mapping].

Call that Requires Mapping
Servlet URL

The Servlet URL corresponds to the URL pattern defined in "Servlet mapping definition" (servlet-mapping
url-pattern tag) in "Web application environment definition file (deployment descriptor)."

Servlet Stored Directory
Servlets are stored in one of the following directories:

• Web application root directory/WEB-INF/classes

• Web application root directory/WEB-INF/lib JAR file.

When a Servlet is Created as a Package
The package name is added to the servlet name and called. Packages can be created by specifying the
package statement in the source code of the servlet.

If the package name is org.xxx.zzzz and the servlet name is HelloWorldServlet, the call name is as follows:

org.xxx.zzzz.HelloWorldServlet

Calling by Specification in a URL

http://Server-host-name:Port-No./Web-application-name/servlet-URL

Note

The port number can be omitted. In this case, 80 is used as the port number.

Calling Servlets

7-3

Calling from within an HTML Document

Click Here

It is also possible to create an input field in HTML text (HTML FORM tag) and transfer information.
Servlets are then called in the following way. METHOD can also be obtained by specifying GET.

<FORM ACTION="/Web-application-name/servlet-URL" METHOD=POST>

To Pass Information to a Servlet
To pass parameters to a servlet, specify them in the following format after the servlet URL.

Servlet URL?Parameter name 1 = Value 1 & Parameter name 2 = Value 2 & ...

Similarly to CGI, PATH_INFO can be used to transfer path information to the servlet. Specify the path
information after the servlet name, beginning with /.

When completing this step, make sure that you add "/*" to the end of the url-pattern tag of the Servlet
mapping definition.

Servlet URL/Path information?Parameter name 1 = Value 1 & Parameter name 2 = Value
2 & ...

Notes

• When only a status code and message are displayed in a Web browser (and not the results of running
a servlet), there may be an error in the environment settings for the Web server, or in the way the
servlet is called.

• If servlets with the same name are located in WEB-INF/classes and a WEB-INF/lib JAR file, the
servlet in WEB-INF/classes will be called.

•
In a Windows(R) system, if the name of a specified servlet contains an incorrect case letter, the Java
exception java.lang.NoClassDefFoundError occurs.

In this case, "500 Internal Server Error" is displayed by the Web browser.

It is recommended to create error pages to notify the user of the incorrect case letters and "404 Not
Found," and define these pages in the "Resources when an error occurs" (error-page tag) of "Web
application environment definition file (deployment descriptor)."

Chapter 7: How to Call Web Applications

7-4

Call That Does Not Require Mapping
Servlet name

Servlets are called by specifying the servlet name. The servlet name refers to the file name excluding the
extension .class. The case (upper or lower) of the characters used in the servlet name is significant.

Servlet stored directory
Servlets are stored in one of the following directories:

• Web application root directory/WEB-INF/classes

• Web application root directory/WEB-INF/lib JAR file

When a servlet is created as a package
The package name is added to the servlet name and called. Packages can be created by specifying the
package statement in the source code of the servlet.

If the package name is org.xxx.zzzz and the servlet name is HelloWorldServlet, the call name is as follows:

org.xxx.zzzz.HelloWorldServlet

Calling by Specification in a URL

http://Server-host-name:Port-No./Web-application-name/servlet/servlet-name

Note

The port number can be omitted. In this case, 80 is used as the port number.

Calling from within an HTML Document

Click Here

It is also possible to create an input field in HTML text (HTML FORM tag) and transfer information.
Servlets are then called in the following way. METHOD can also be obtained by specifying GET.

<FORM ACTION="/Web-application-name/servlet/servlet-name" METHOD=POST>

Calling Servlets

7-5

To Pass Information to a Servlet
To pass parameters to a servlet, specify them in the following format after the servlet name.

Servlet name?Parameter name 1 = Value 1 & Parameter name 2 = Value 2 & ...

Similarly to CGI, PATH_INFO can be used to transfer path information to the servlet. Specify the path
information after the servlet name, beginning with /.

Servlet name/Path information?Parameter name 1 = Value 1 & Parameter name 2 =
Value 2 & ...

Specifying an Alias
The servlet name can be specified as an alias. The alias is defined with the servlet tag in the Web
application environment definition file. Refer to Servlet Attributes in Chapter 6 for an explanation of alias
settings. Below is an example using the servlet name and an example using an alias.

Example using the servlet name

http://hostname/webapl1/servlet/HelloWorldServlet

Example using an alias (“HelloWorldServlet” defined by the alias “Hello”.)

http://hostname/webapl1/servlet/Hello

Notes

• When only a status code and message are displayed in a Web browser (and not the results of running
a servlet), there may be an error in the environment settings for the Web server, or in the way the
servlet is called.

• If servlets with the same name are located in WEB-INF/classes and a WEB-INF/lib JAR file, the
servlet in WEB-INF/classes will be called.

•
In a Windows(R) system, if the name of a specified servlet contains an incorrect case letter, the Java
exception java.lang.NoClassDefFoundError occurs.

In this case, "500 Internal Server Error" is displayed by the Web browser.

It is recommended to create error pages to notify the user of the incorrect case letters and "404 Not
Found," and define these pages in the "Resources when an error occurs" (error-page tag) of "Web
application environment definition file (deployment descriptor)."

Chapter 7: How to Call Web Applications

7-6

Calling JSPs
JSPs are called by Web browser URLs and by specifying URLs in links in HTML text.

The Partial Pathname of the JSP
Servlets are called by specifying the JSP file name. The partial pathname starting from the Web
application root directory is specified in the URL. This is referred to from now on as “the partial pathname
of the JSP”.

Below are examples of full and partial pathnames of a JSP.

Full pathname:

Web application root directory/jsp/Hello/HelloJSP.jsp

Partial pathname:

jsp/Hello/HelloJSP.jsp

The following is an explanation of the methods used to call a JSP.

Calling by Specification in a URL

http://Server-host-name:Port-No./Web-application-name/Partial-pathname-JSP

Note

The port number can be omitted. In this case, 80 is used as the port number.

Sample

http://hostname/webapl1/jsp/Hello/HellpJSP.jsp

Calling from within an HTML Document

Click Here

Note

When only a status code and message are displayed in a Web browser (and not the results of running a
JSP), there may be an error in the environment settings for the Web server, or in the way the JSP is called.

Calling HTML, Image and Other Files

7-7

Calling HTML, Image and Other Files
HTML files, image files, and other files are called by specifying a URL in a Web browser or a link in an
HTML document.

The Partial Pathname of the file
The URL is specified as the partial pathname starting from the root directory of the Web application. This is
referred to from now on as “the partial pathname of the file”.

Below are examples of full and partial pathnames of a file.

Full pathname:

Web application root directory/apl/Hello/index.htm

Partial pathname:

apl/Hello/index.htm

Files are called by the following methods.

Calling by Specification in a URL

http://Server-host-name:Port-No./Web-application-name/Partial-pathname-file

Note

The port number can be omitted. In this case, 80 is used as the port number.

Sample

http://hostname/webapl1/apl/Hello/index.htm

Calling from within an HTML Document

Click Here

Chapter 7: How to Call Web Applications

7-8

Part III

EJB Edition

8-1

Chapter 8

Basic Functions of the EJB Service

This chapter explains the following topics:

• Session Bean Time Monitoring

• Performance Option

• Maximum Time Monitoring Function for Application Processing

• Setting Values for Individual Time Monitoring Functions

• Waiting Time Monitoring Function for Server Return

• Idle-time monitoring function of STATEFUL Session Bean

• Setting Values for Individual Time Monitoring Functions

• Timer deletion of EJB object

• Notes in EJB Service

Chapter 8: Basic Functions of the EJB Service

8-2

Session Bean Time Monitoring
If no business method is executed for an EJB object of the STATEFUL Session Bean after a given period,
the EJB Service lets the container delete the EJB object corresponding to the relevant instance.

This function is called the "STATEFUL Session Bean idle-time monitoring function".

Refer to "STATEFUL Session Bean no-communication monitoring function" for details of the function.

Note

The no-communication monitoring function is not required for the STATELESS Session Bean because it
reuses EJB objects.

Managing Entity Bean Instances

Setting the Number of Instances
In conformance with the EJB specification, the EJB Service performs pool management of the area used
for Entity Bean instances in virtual memory. The user can set the number of instances to be pool-managed.
An instance is created at timing set in instance creation mode and held until it is stopped and maintained
until the application terminates. Performing data manipulations exceeding the set number of instances will
not result in an application operation error, but it will affect processing performance slightly as the
database will be accessed.

Instance Management Mode
To improve processing and memory performance, the EJB Service provides an instance management
mode that can be made to suit the user’s needs.

The types of instance management and their uses are shown in the following table.

Table 8-1 Instance Management Uses
Instance management
mode

Use

ReadWrite (Default) Data access within the same transaction is improved by caching the instances
for each transaction. This mode is effective when performing searches and
database updates online.

ReadOnly High-speed searches are made possible by caching instances that extend over
more than one transaction. This mode is effective in cases such as conducting
an online search of master information that will not be updated.

Sequential Memory performance is improved with respect to processes involving data
being extracted and manipulated sequentially. This mode is effective when
performing batch processing of large quantities of data.

Session Bean Time Monitoring

8-3

Instance creation Mode
The timing of the creation of the specified number of instances can be selected for the Entity Bean.

The Entity Bean instance creation timing is explained below:

Instance creation option Timing

At Start-Up The number of Entity Bean instances created at
startup.

At First Access The number of Entity Bean instances created
as a result of Entity Bean activation is equal to
the number specified for initial activation.

As Required If a necessary Entity Bean instance is not
present in the accessed management pool after
completing Entity Bean activation, the instance
needs to be created. The created instance is
stored in the pool as a result of deactivation
(passivation).

This mode is set as the default value.

Note

The maximum number of instances that can be created is specified in "The instances of Entity Bean".

To set the instance creation option, from the Interstage Management Console, select [WorkUnit] >
[IJServer name] > [EJB application] > [Application environment definition] > [Interstage extended
information].

The table below lists the standards of instance creation mode selection for the Entity Bean.

Table 8-2 Instance creation
Instance creation option When Selected

At Start-Up 1) Select this mode when processing performance is to be improved
immediately after starting Entity Bean operation.

At First Access 1) Select this mode when the Entity Bean activation performance is to be
improved.

As Required 1) Select this mode when the Entity Bean activation performance is to be
improved.

2) Select this mode when the Entity Bean is not often accessed.

Note

The number of instances, instance management mode and instance creation mode can be set for each
Entity Bean.

Chapter 8: Basic Functions of the EJB Service

8-4

Entity Bean Optimization
When creating an Entity Bean of BMP using Apworks, a high-performance Entity Bean can be created by
selecting "Optimize Entity Bean" in the generation wizard of the Enterprise Bean. Optimization of the
Entity Bean can be used if the following conditions are met.

• The transaction attribute of the Entity Bean is either "Mandatory" or "Required".

• A transaction is not completed during multiple searching

• A connection is not cut off during multiple searching

• The Entity Bean is deployed in an EJB container by using a Light EJB container that uses the local
call.

Note that, if the optimization function is used under any condition that does not match the above conditions,
a malfunction may occur in Entity Bean processing.

Note

An application that uses the optimization function cannot use the distributed transaction function. If it uses
the distributed transaction function, the SQLException (ORA-01002:invalid the fetch order) message will
be returned when the following actions are executed.

• For the return value, executing a finder method of Enumeration or Collection

• For the return value Enumeration, executing nextElement method or for the return value Iterator of
Collection, executing next method.

• Executing nextElement or next for the number of the records that are fetched once in Oracle (default
value is 10).

EJB QL
Note

Note the following points when the DBMS that is used is Symfoware.

• The SQRT function and MOD function cannot be used

• The third argument of the LOCATE function cannot be specified

• An input parameter cannot be specified in the LENGTH function

• The input parameter cannot be specified in the NULL comparison expression.

• An input parameter cannot be specified in the first argument of the SUBSTRING function.

Session Bean Time Monitoring

8-5

What is a Message-driven Bean?

JMS Destination and JMS ConnectionFactory definitions
To run a Message-driven Bean, define "Destination name" and "JMS Connection Factory" on
[Message-driven Bean extended information]. To do so, from the Interstage Management Console, select
[WorkUnit] > [IJServer name] > [EJB application] > [Application environment definition] > [Message-driven
Bean extended information].

The default value of each definition is as follows:

Definition name Default value

Topic TopicCF001 JMS Connection
Factory name Queue QueueCF001

Destination name EJB application name

Durable Subscription Function
To use this function, do as follows: From the Interstage Management Console, select [WorkUnit] >
[IJServer name] > [EJB application] > [Application environment definition] > [Message-driven Bean
extended information], and set "NonDurable" or "Durable" on [Subscriber persistence]. Refer to Help for
the Interstage Management Console for details of the setting procedure.

Register and Delete Durable Subscriber Definition
If "Durable" is specified on [Subscriber persistence] that appears by selecting [WorkUnit] > [IJServer
name] > [EJB application] > [Application environment definition] > [Message-driven Bean extended
information] from the Interstage Management Console, specify "Subscriber identifier." IJServer registers
the Durable Subscriber with the name specified for "Subscriber identifier" when the Message-driven Bean
is started for the first time.

When Message-driven Bean is activated again, the maintained message is delivered. When durable
Subscriber becomes unnecessary, it is necessary to delete it by the following commands. Refer to JMS
Operation Commands in the Reference Manual (Command Edition) for details of the command.

Example

Deleting the Durable Subscriber name "dsub" and a client identifier "client1":

jmsrmds -n dsub -i client1

Chapter 8: Basic Functions of the EJB Service

8-6

Message Backup Function in Abnormal Circumstances
When the transaction management type is Container, and the transaction attribute is Required, if a
System exception such as RuntimeException or Error occurs in a Message-driven Bean, the container
does a transaction rollback.

In this case, the message that the rollback is done is delivered to the Message-driven Bean again, and
there is a possibility that it loops.

The message backup function can be used to prevent this.

If a system exception such as RuntimeException and error continuously occurs exceeding the retry count,
the container sends a message to a destination for back up.

In case neither the JMS ConnectionFactory name nor the Destination name is specified or they are wrong
etc, then the message will be serialized. The process is stopped if the serialization fails.

Use the Interstage Management Console to set "Retry count," "JMS Connection Factory name," and
"Destination name" on [Error message save definition].

Refer to Help for the Interstage Management Console for details of the setting procedure.

The filename and storage directory name of the serialized message are shown as follows.

• The filename of serialize file

MSG_[EJB application]_[processID]_[threadID]_[number].ser

• The storage directory name of serialize file

C:/Interstage/EJB/var

/opt/FJSVejb/var

Session Bean Time Monitoring

8-7

The processing image when this function is used is shown as follows.

Container

Destination
Message-driven Bean

void onMessage(msg){

}

msg

Deliver message

rollback

RuntimeException occurred

Abnormal loop occurred !!

Destination for
 abnormal loop tackling

msg

Backup

Transaction
attribute：Required

Figure 8-1 Message Backup Function

How to Restore the Serialized Message
Example

The description example to restore the serialized JMS message is shown.

FileInputStream fis = new FileInputStream("serialize file name ");
try {
 ObjectInputStream ois = new ObjectInputStream(fis);
 Message msg = (Message)ois.readObject(); // The message that this msg is
backuped
} finally {
 fis.close();
}

Chapter 8: Basic Functions of the EJB Service

8-8

Notes

In the following cases, there is a possibility that the target message is not the message for backup in
abnormal circumstances, so do not use it.

• When other reception applications exist by using the Point-to-Point model in Destination of
Message-driven Bean.

• When the following JMS header fields are specified for the JMS message

− JMSPriority

− JMSExpiration

This function does not operate if transaction is rolled back by executing the setRollbackOnly method. So,
if an error occurs and recovery by transaction rollback cannot be expected, use the onMessage method to
return EJBException and use the message save function for an error.

Performance Option

8-9

Performance Option
In the EJB service, an option to improve processing performance is offered.

Each performance option works as follows.

Mass Update of Multiple Records
When the same CMP Entity Bean is updated several times during transaction, the EJB container performs
batched update of multiple records to reduce the frequency of access to the database and thereby
improves processing performance.

Batched update of multiple records is enabled if the following conditions are met:

• The database used and the JDBC driver must support the JDBC2.0 batched update function.

If the database or JDBC driver used does not support the JDBC2.0 batched update function, ordinary
database update processing is performed.

• The batched update function is valid only when a distributed transaction is not used.

If a distributed transaction is used, ordinary database update processing is performed.

Caching of SQL Statements
The EJB container allows the SQL statements issued to databases to be cached within the EJB Service.
By doing so, it reduces processing required for preparation of SQL statements and improves processing
performance.

SQL statements are cached if the following conditions are met:

• A CMP Entity Bean is used.

• The data source used is defined using the conventional DB access environment definition and JDBC
driver version JDBC1.X is selected during DB access environment definition.

If a Symfoware database is used, define MAXSQL.

Define MAXSQL according to the following formula:

Number of SQL statements to be cached = a x 4 + b

a: Total number of CMP Entity Beans deployed to IJServer

b: Total number of the finder methods owned by CMP Entity Beans

Chapter 8: Basic Functions of the EJB Service

8-10

Local invocation
This function can be used when an EJB application deployed in the IJServer is invoked only from EJB
applications in the same EJB container. It is assumed in the IJServer processing that an EJB application
is invoked via a network. So, EJB container processing is relaxed and the operation performance is
improved with this invoke function. If an EJB application with this function specified is invoked from
outside the process, an error occurs with "CORBA OBJ ADAPTER".

This function is valid when IJServer operates only EJB applications or when Web and EJB applications
are operated on separate Java VMs.

Set the local call function as follows: From the Interstage Management Console, select [WorkUnit] >
[IJServer name] > [EJB application] > [Application environment definition] > [Interstage extended
information] and set the function at "Local call." Refer to Help for the Interstage Management Console for
details of the setting procedure.

If an Entity Bean is to be invoked from outside the process when this function is set, cancel the data set to
specify this function. Also, when this function is not specified, delete EJB objects with the timer. For details
about this deletion, see Timer deletion of EJB object.

Setting Transaction Types and Attributes
Set the transaction type and transaction attribute in the deployment descriptor file when an EJB
application is developed.

When Apworks is used for development, the deployment descriptor file needs to be set. For this purpose,
use the EJB deployment descriptor editor of Apdesigner or the deployment descriptor file editor (not
provided by Plus Developer) of the Component Designer.

Refer to the “Apdesigner Programmer's Guide” of Apworks or “Component Designer User's Guide” (not
provided by Plus Developer) for details of the setting procedure.

The transaction management type and attribute can also be set using the Interstage Management
Console. Refer to Help for the Interstage Management Console for details of the setting procedure.

Time Monitoring Functions Supported by EJB Service
The EJB Service supports the following time monitoring functions:

• EJB object idle-time monitoring function of STATEFUL Session Bean

• Timer deletion of EJB object

Performance Option

8-11

The table below shows the differences among functions.

Function Monitoring Explanation

Maximum Time Monitoring
Function for Application
Processing

Monitors the execution time
(server processing time) of
an EJB application method.
If the monitoring time is
exceeded, the user can
specify whether to forcibly
stop the application
processing.

This function can detect a hang
or processing delay that may
occur during EJB application
processing.

Waiting Time Monitoring
Function for Server Return

When a reply is not received
within a given time after the
client sends a request to the
server, a timeout is posted to
the client.

This function can prevent
symptoms such as a hang that
may occur during EJB
application processing.

EJB object idle-time
monitoring function of
STATEFUL Session Bean

If no business method is
executed for an EJB object of
the STATEFUL Session Bean
even after a given period, the
container deletes the EJB
object corresponding to the
relevant instance.

This function deletes an
unnecessary EJB object that has
failed to issue an ejbRemovoe
method and so can optimize the
operating memory.

Timer deletion of EJB object When an Entity Bean is
called from outside a
process, the instance of the
EJB object created by the
create or finder method
remains in memory unless
the remove method is issued.
This function automatically
removes the EJB object after
the lapse of a given period to
the EJB object since the last
access.

Automatically removing the EJB
object, which remains after an
Entity Bean is called from
outside a process, can prevent
unnecessary resources from
occupying memory space.

Chapter 8: Basic Functions of the EJB Service

8-12

Timeout setting of each function
The table below lists the settings of each function for time monitoring.

Function Setting location Default
value

Maximum
value

Minimum
value

Remarks

Maximum Time
Monitoring
Function for
Application
Processing

Use the Interstage
Management Console
to set the maximum
processing time of an
application and
whether to forcibly stop
the application
processing if the
maximum processing
time is exceeded.
Refer to Help for the
Interstage
Management Console
for details of the setting
procedure.

0 86400 0 Setting 0
disables
the time
monitoring
function.
Set a
number in
seconds.

Waiting Time
Monitoring
Function for
Server Return

Set the response time
in
period_receive_timeou
t in the CORBA Service
operating environment
file (config). Refer to
“CORBA service
operating environment
file” in the “Tuning
Guide” for details.

12 (60
seconds
)

20000000 0 Setting 0
disables
the time
monitoring
function.
Set a
number in
seconds.
Multiplying
the
specified
value by 5
produces
the actual
value.

EJB object
idle-time
monitoring
function of
STATEFUL
Session Bean

Make settings on the
STATEFUL Session
Bean application
environment definition
window on the
Interstage
Management Console.
Refer to Help for the
Interstage
Management Console
for details of the setting
procedure.

1800 2147483647 0 Setting 0
disables
the time
monitoring
function.
Set a
number in
seconds.

Performance Option

8-13

Function Setting location Default
value

Maximum
value

Minimum
value

Remarks

Timer deletion
of EJB object

Set the EJB object
timeout value on the
Interstage
Management Console.
Refer to Help for the
Interstage
Management Console
for details of the setting
procedure.

120 2147483647 0 Setting 0
disables
the time
monitoring
function.
Set a
number in
seconds.

Chapter 8: Basic Functions of the EJB Service

8-14

Maximum Time Monitoring Function for Application
Processing

This function is used when the application operates by using the IJServer.

It can detect problems such as when the database has to wait for a long time or when an EJB application
enters an infinite loop.

This section explains the processing to be performed if the maximum processing time of the application is
exceeded during server processing.

This processing differs, depending upon whether a forced stop for the existing application is set or not.

• Where a forced stop is set for an existing process, a rollback is done for the transaction internally after
doing the forced stop on the process where the transaction is in session.

When the maximum processing time is exceeded, the following messages are output to the event log
of the server.

extp: ERROR: EXTP4365: Application processing time exceeded the observation time

The following exception is reported to the client:

java.rmi.RemoteException:CORBA UNKOWN

• Where a forced stop is not set for an existing process, the forced stop of the process where the
application exists is not done.

When the maximum processing time is exceeded, the following messages are output to the event log
of the server.

extp: WARNING: EXTP4366: Application processing time exceeded the observation time

The client is not notified.

The following explains the processing to be performed when the client issues a processing request to the
server after the maximum processing time is exceeded.

The processing differs, depending upon whether a forced stop for the existing application is set or not.

• Where a forced stop is set for a process that the application existed, processing cannot be executed.
It is not output to the event log of the server.

The following exceptions are notified to the client:

java.rmi.RemoteException: CORBA NO_IMPLEMENT

• Where a forced stop is not set for a process that the application existed, processing is executed as
usual.

Waiting Time Monitoring Function for Server Return

8-15

Waiting Time Monitoring Function for Server Return
The CORBA Service has a time-out watch function to observe the operation of applications. One of the
operations observed is the time between the issue of the method of the server by the client and the receipt
of the method by the client. This function can be used In the EJB service.

Refer to CORBA Application Timeout Monitoring.

If the wait time before the server method returns to the client exceeds the specified value, communication
between the server and client is cut off and the following message is output to the event log of the client.

OD: ERROR: od10925:Client timeout.

The following exception is reported to the client:

java.rmi.MarshalException: CORBA COMM_FAILURE

If, a request of processing is made from the client to the server after the wait time before the server method
returns to the client exceeds the specified value, retry starting with the create method. Because there is a
possibility that a Session Bean remains, remove such a Session Bean using the session timeout.

Chapter 8: Basic Functions of the EJB Service

8-16

Idle-time monitoring function of STATEFUL Session
Bean

With the idle-time monitoring function of STATEFUL Session Bean enabled, the container deletes the EJB
object corresponding to the relevant instance if a business method is not executed for the EJB object of
the STATEFUL Session Bean after the lapse of a given time.

This function deletes unnecessary EJB objects for which the ejbRemove method was not issued so that
the memory can be reused. The default is 30 minutes.

If a request is issued from a client for the instance corresponding to the EJB object that has been deleted,
the container returns one of the following exceptions depending on the type of the interface via which
access is made.

Via-interface Exception returned

Remote interface java.rmi.NoSuchObjectException is returned
to the client.

Local interface javax.ejb.NoSuchObjectLocalException is
returned to the client.

Note

• When a timeout occurs, the container calls the ejbRemove method. It automatically removes the EJB
object even when an exception occurs in the ejbRemove method.

• When a timeout occurs while the transaction management type is "Bean," the container calls the
ejbRemove method. If transaction processing is in progress, the container automatically rolls back
the transaction.

Setting Values for Individual Time Monitoring Functions

8-17

Setting Values for Individual Time Monitoring
Functions

When two or more time monitoring functions supported by the EJB service are used concurrently, note the
following requirements for setting the times for individual monitoring functions.

T(s) > T(c) > T(a)

Where:

T(s) indicates the EJB object idle-time monitoring function of STATEFUL Session Bean

T(c) indicates the waiting time until the server method returns to the client

T(a) indicates the maximum processing time of the application

Chapter 8: Basic Functions of the EJB Service

8-18

Timer deletion of EJB object
This section explains the timer deletion function of EJB object.

Use of Rapid Invocation
The instance of EJB object generated by the create/finder method disappears from memory when the
remove method is issued.

The instances of EJB object generated by the create/finder method remain in the memory when specifying
Entity Bean as a Rapid Invoking Bean because Entity Bean usually does not call remove method.

To prevent this situation, there is a function to delete the instances of leftover EJB objects from the final
access to Entity Bean after a fixed time. This function is called, "Timer deletion function of EJB object", and
the timer setting is called, "EJB object time-out value of Entity Bean".

When an Entity Bean is called from inside the process, the EJB object is subjected to Java garbage
collection and deleted automatically at one of the following events.

• When a Bean that calls an Entity Bean is removed.

• When the STATEFUL Session Bean no-communication monitoring function for a Bean (Session
Bean) that calls an Entity Bean detects a timeout.

• When the time-out of EJB object of a Bean (For Entity Bean) that calls an Entity Bean is generated

In this way, the timer deletion function for EJB objects is useful for Entity Beans that are called from outside
a process.

Set the Entity Bean EJB object timeout value by selecting [WorkUnit] > [IJServer name] > [EJB
application] > [Application environment definition] > [Interstage extended information] from the Interstage
Management Console. Refer to Help for the Interstage Management Console for details of the setting
procedure.

Notes

Set the EJB object time-out to a higher value than the transaction time-out value. This is so that EJB object
is not deleted in the transaction.

In the case of calling Entity Bean outside of process, EJB object remains in the memory while the timer is
not deleted and/or a large amount of records of the database needs to be treated because of frequent
accesses via CORBA communication route. Therefore, set Entity Bean for the same JavaVM if it is
possible.

Notes in EJB Service

8-19

Notes in EJB Service
When using EJB applications by deploying them on IJServer, note the following:

• The name of the EJB application to be deployed must not exceed 255 characters..

• The same EJB application cannot be deployed to two or more IJServers (except an IJServer for
which servlet and EJB run on the same JavaVM).

• If operation of a Message-driven Bean cannot be continued because the event service has stopped,
JavaVM stops.
Therefore, other EJB applications deployed to the same IJServer as the Message-driven Bean in
which an error occurred also stop.

• If the EJB applications deployed to the IJServer use the same remote or home interface, an error
occurs when they are started (except when a local call is used or for an IJServer for which Servlet and
EJB run on the same JavaVM).

• When EJB application methods are called from a client, the number of requests from the client may
exceed the specified maximum number of threads that can be processed (the default is 64). If so, the
requests from the client are put in the serial queue in units of IJServer.

• When a distributed transaction is used, two or more IJServer processes cannot be started
concurrently.

Chapter 8: Basic Functions of the EJB Service

8-20

9-1

Chapter 9

EJB Application Development

Chapter 9: EJB Application Development

9-2

 Application Development Flow
This section describes a series of operations from developing applications to debugging applications
using the Interstage Management Console.

After completion of application debugging, start IJServer to run EJB applications.

Using Apworks, which is a component-oriented integrated development support tool by Fujitsu, enables
user-friendly view operation that integrates a series of procedures.

Apworks provides the development support function for various EJB applications and client applications
and so can improve application development productivity.

Developing an EJB Application

9-3

Developing an EJB Application
• When EJB applications are linked between servers, package the EJB application of each server.

• To operate IJServer as multiple processes when Message-driven Beans and other Enterprise Beans
are used, package the following separately:

− Message-driven Beans, and Enterprise Beans that are called only from Message-driven Beans
(operated in only one process)

− All other examples (operated in multiple processes)

Chapter 9: EJB Application Development

9-4

Deployment of an EJB Application
Refer to Help for the Interstage Management Console for details of deployment using the Interstage
Management Console.

Debugging an EJB Application

9-5

Debugging an EJB Application
 Use the IJServer debug function to debug EJB applications.

Refer to "Debugging Applications" for details of the IJServer debug procedure.

Chapter 9: EJB Application Development

9-6

Using the Development Environment of Other
Companies

Even when using the development environments of other companies, there are no marked differences in
the procedures used, from the development stage right through to operation.

Work Procedure
The work procedure from development to operation in an development environment from another
company has no big differences from that in the development environment provided by Fujitsu.

In the development environment of another company, follow the procedure described in Developing an
EJB Application to perform the required steps up to application packaging.

For information on the subsequent work steps, see Deployment of an EJB Application and subsequent
sections.

Developing CMP Entity Beans
To develop CMP Entity Beans, deploy an EJB application and set the CMP definition using the Interstage
Management Console. Refer to Help for the Interstage Management Console for details of the setting
procedure.

Storage Place of Sample Applications

9-7

Storage Place of Sample Applications
EJB application samples are provided in the following products:

• Interstage Application Server Enterprise Edition

• Interstage Application Server Standard Edition

The samples for calling an EJB application using a language other than Java are stored in the following
locations:

C:\Interstage\EJB\sample

/opt/FJSVejb/sample

Chapter 9: EJB Application Development

9-8

10-1

Chapter 10

How to create Entity

Chapter 10: Storage Place of Sample Applications

10-2

CMP Definitions
In addition to the six class files that must be created for a CMP Entity Bean, the two items of information
shown in Table 10-1 must be defined to enable database access.

With the CMP definitions, database manipulation statements no longer need to be specified in an
Enterprise Bean of CMP.

Table 10-1 CMP Definitions

Definition Information Description

CMF Mapping
definition

This defines the correspondence between a persistent field and a database
column of an Entity Bean. This persistent field is called a Container-managed
field (CMF).

Finder definition
(CMP1.1)

This defines the finder method retrieval conditions in the SQL WHERE clause.
The retrieval conditions can be used for the retrieval of a single table, and for
retrieval using the ORDER BY clause.

CMR Mapping
definition (CMP2.0)

When the CMP2.0 type is used, databases can be related between tables as
the relationship between Beans/objects can be defined.

Query Definition
(CMP2.0)

A statement which uses the FROM and SELECT (WHERE) clauses to search
one or more EJB objects that can be defined as an EJB QL statement.

 Definition Method
For CMP1.1

Set a CMP definition as follows: From the Interstage Management Console, select [WorkUnit] >
[IJServer name] > [EJB application] > [Application environment definition], and set data at [CMF
mapping definition] and [finder definition].

CMF mapping definition on the Interstage Management Console is used to associate database columns
with persistence fields. They can be associated even when Apworks is used.

Refer to Help for the Interstage Management Console for details of the setting procedure.

When Apworks is used to develop EJB applications, the Apdesigner EJB deployment descriptor editor of
Apworks or the deployment descriptor file editor (not provided by Plus Developer) of the Component
Designer can also be used for CMP definition.

Refer to the “Apdesigner Programmer’s Guide” of Apworks or “Component Designer User’s Guide” (not
provided by Plus Developer) for details of the setting procedure.

For CMP2.0

Set a CMP definition as follows: From the Interstage Management Console, select [WorkUnit] >
[IJServer name] > [EJB application] > [Application environment definition], and set data at [CMF
mapping definition] and [Query definition].

Make a query definition in advance during creation of an EJB application.

Refer to Help for the Interstage Management Console for details of the setting procedure.

Notes on Instance Management Modes

10-3

Notes on Instance Management Modes
An instance management mode can be selected in an Entity Bean runtime environment, according to
the user's purpose. Note the points in Table 10-2, according to the instance management mode to be
selected.

Table 10-2 Notes on Instance Management Modes

Note
Instance
Management
Mode

Action

If the create and remove methods are
issued by an application that invokes an
Entity Bean, an error occurs. Even if the
value of a persistent field is updated, it
is not reflected in the database.

ReadOnly When update processing is to be
performed, specify a mode other than
ReadOnly.

When "Cannot be operated (false) " is
set to the reentrant attribute of
deployment descriptor, and the method
of the EJB application does the
reentrant call, it operates normally.

ReadOnly When the reentrant call to be invalid,
specify a mode other than ReadOnly.

When the distributed transaction is
used, and Oracle database is used, then
execute retrieving multiple Instances
(Enumeration or Collection type) causes
“ORA-01002: Invalid fetch order” is
returned.

Sequential Specify ReadWrite when update
processing is done, and Readonly when
retrieval processing is done.

When the transaction attribute is
specified as other than Mandatory, then
execute retrieving multiple Instances
(Enumeration or Collection type) may
cause exception.

Sequential Specify the transaction attribute for each
EJB application (each Bean) then execute
it.

Sequential cannot be set for the
instance management mode of the
following EJB applications:

Entity Bean that is deployed to IJServer
and for which "No" is specified for "Local
call" on the Interstage Management
Console

Entity Bean that is deployed to IJServer
and for which "No" is specified for "Local
call" in customization

Sequential To run the Entity Bean with Sequential
specified for the instance management
mode, set "Yes" for "Local call."

To perform operation with "No" specified
for "Local call," change the instance
management mode as follows:

To perform update processing, specify
ReadWrite.

To perform only retrieval processing,
specify ReadOnly.

Chapter 10: Storage Place of Sample Applications

10-4

Correspondence between Data Types Defined in a
CMP, and DBMS SQL Data Types

The following data types defined in a CMP are associated with the SQL data types of DBMS by the
container:

• Data type of CMF

• Data type of parameters of the finder method

The following chapter describes the correspondence between these data types and the SQL data types
of DBMS.

The following data types are supported:

• Standard data types

• Other data types.

Standard Data Types

Available Standard Data Types
The standard data types that can be used are shown in the following:

• boolean

• java.lang.Boolean (note)

• byte

• java.lang.Byte (note)

• byte[]

• char

• java.lang.Character (note)

• double

• java.lang.Double (note)

• float

• java.lang.Float (note)

• int

• java.lang.Integer (note)

• long

• java.lang.Long (note)

• short

• java.lang.Short (note)

Correspondence between Data Types Defined in a CMP, and DBMS SQL Data Types

10-5

• java.lang.String

• java.math.BigDecimal

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

Note

Will be converted into the corresponding primitive data types of Java and set in the database by the
container.

CMF Data Types for which Null Values Can be Used
The data types for which database null values can be used in a CMF are as follows:

• java.lang.Boolean

• java.lang.Byte

• byte[]

• java.lang.Character

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• java.math.BigDecimal

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

Recommended Data Types
The recommended combinations of Java data types and the DBMS SQL data types are shown in the
following Table.

When using combinations other than those shown below, make sure they conform to the conversion
rules for the JDBC driver.

Nevertheless, regarding the data types with (Note) in the “Available Standard Data Types”, however,
obey the conversion rules of JDBC with the primitive data type of Java after conversion by the container.

Interstage EJB supports the data type within the range of JDBC2.0.

Note

When DBMS uses CHAR type columns with Oracle, data incompatibility might occur if the Oracle JDBC
driver deletes the blank (space) after the returned character string or does padding to match the string
length..

Chapter 10: Storage Place of Sample Applications

10-6

This is likely when you map a CHAR type column to a primary key field.

This problem is solved by using VARCHAR2 type instead of CHAR type.

Table 10-3 Recommended Data Types
Data Type of Java SQL Data Type of

DBMS (Symfoware)
SQL Data Type of
DBMS (Oracle)

SQL data type of
DBMS (SQL Server)

boolean/java.lang.Boolean - NUMBER bit

byte/java.lang.Byte(*1) - NUMBER tinyint

char/java.lang.Character - - -

double/java.lang.Double FLOAT

DOUBLE

NUMBER float

float/java.lang.Float REAL NUMBER real

int/java.lang.Integer INT NUMBER int

long/java.lang.Long - NUMBER bigint

short/java.lang.Short(*1) SMALLINT NUMBER smallint

java.lang.String CHAR

NCHAR

VARCHAR

NVARCHAR

CHAR(*3)

VARCHAR2(*3)

LONG(*3)

char

varchara

text

nchar

nvarchar

sql_variant

sysname

uniqueidentifier

ntext

java.math.BigDecimal NUMERIC

DECIMAL

NUMBER decimal

numeric

money

smallmoney

byte[] BLOB (*2) NUMBER

RAW

LONGRAW(*3)(*4)

binary

varbinary

image

timestamp

java.sql.Date DATE DATE -

Correspondence between Data Types Defined in a CMP, and DBMS SQL Data Types

10-7

Data Type of Java SQL Data Type of
DBMS (Symfoware)

SQL Data Type of
DBMS (Oracle)

SQL data type of
DBMS (SQL Server)

java.sql.Time TIME DATE -

java.sql.Timestamp TIMESTAMP DATE datetime (*5)(*6)

smalldatetime(*5)

-: There is no data type to be recommended specifically.

Notes

1. When a CMP2.0 method is executed using the Orcle8i JDBC driver while the CMF Java data type
is byte/java.lang.Byte" or "short/java.lang.Short," an error with the message "Invalid column type"
may occur.

In this case, change the CMF Java data type to "int/java.lang.Integer”or“long/java.lang.Long."

2. Fetch and update operations cannot be performed for a BLOB type column that equals or exceeds
32KB under the following conditions:

− Symfoware with a version/level earlier than V5.0L10 is used.

− Symfoware with version/level V5.0L10 or later is used in linkage with RDA-SV.

3. The data sizes that can be handled for Oracle data types are limited as shown below:

− 4000 bytes

− 4000 bytes

− 4000 bytes

− 2000 bytes

To handle more data than the above limits, use BMP Entity Beans.

4. If Mandatory is specified for the transaction attribute of a CMP Entity Bean while the Oracle
LONGRAW data type is used, the Oracle JDBC driver may output the following message:

"ORA-17027: The stream has already been closed"

Specifying Required for the transaction attribute can solve the above problem but may cause the
processing performance to deteriorate.

Chapter 10: Storage Place of Sample Applications

10-8

5. Please specify data in the form of the following when you update the data of the datetime type and
the smalldatetime type.

− Description form

YYYY-MM-DD hh:mm:ss

YYYY:year,MM:Month,DD:Day,hh:Hour,mm:Minute,ss:Second

The millisecond is unsupported.

Example:

2001-09-22 14:23:40

6. When the following API is used for the datetime type, only the value within the range of the
smalldatetime type becomes effective.

− PreparedStatement.setTimestamp(int parameterIndex, Timestamp x)

Other Classes

Classes that Can be Defined
For CMP1.1, the following classes can be defined:

• Class that directly or indirectly implements the java.io.Serializable interface

• Array of the above class.

If these classes are defined, convert them into byte[] and set them to DBMS. Null can also be specified.
For mapping between byte[] and the SQL data types of DBMS, refer to Standard Data Types.

Note

Data types of the Home interface and Remote interface cannot be used in a CMF.

Using the Development Environment of Other Companies

10-9

Using the Development Environment of Other
Companies

Even when using the development environments of other companies, there are no marked differences in
the procedures used, from the development stage right through to operation.

Work Procedure
The work procedure from development to operation in an development environment from another
company has no big differences from that in the development environment provided by Fujitsu.

In the development environment of another company, follow the procedure described in EJB Application
Development to perform the required steps up to application packaging.

For information on the subsequent work steps, see Deployment of an EJB Application and subsequent
sections.

Developing CMP Entity Beans
To develop CMP Entity Beans, it is necessary to use the Interstage Management Console to set CMP
definitions after the EJB application is installed. A detailed description of this procedure is provided in the
Interstage Management Console Help.

Chapter 10: Storage Place of Sample Applications

10-10

Storage Place of Sample Applications
The EJB sample application is provided in the following products.

• Interstage Application Server Enterprise Edition

• Interstage Application Server Standard Edition

The sample for invoking an EJB application from a language other than Java is stored in the following
directory:

C:\Interstage\EJB\sample

/opt/FJSVejb/sample

11-1

Chapter 11

How to call EJB Applications

This chapter explains how to call EJB applications.

To call an EJB application from a client application, use one of the following client application interfaces:

• Home interface

• Remote interface

• LocalHome interface

• Local interface.

Calling Session Beans

Chapter 11: How to call EJB Applications

11-2

Calling procedure
Create a client application to call a Session Bean as follows:

1. Search for the Home interface

Perform lookup processing to let the Naming Service inquire for the location of the Session Bean
object. Refer to "Referencing Objects” in Chapter 3 for details of lookup processing.

2. Generate a Session Bean instance

Use the create method defined for the Home interface to generate a Session Bean instance.

3. Call the business method

Call the business method defined for the Session Bean Remote interface and perform necessary
processing.

4. Delete the Session Bean instance

Call the remove method defined for the Session Bean Remote interface to delete the Session Bean
instance.

Note

The EJB application that calls the STATEFUL Session Bean may be used for transaction operation. In this
case, be sure to wait for completion of the transaction processing that is initiated at execution of the
business method, and then release (remove method) the STATEFUL Session Bean.

If release processing is performed during transaction processing, the following errors occur:

• javax.ejb.RemoveException is returned to the calling source.

• The following error message is output to the event log or system log:

EJB: Error: EJB1061: Transaction is in progress.

Calling Entity Beans
Using an Entity Bean enables database access without recognizing the database operation languages
such as SQL.

The client application that calls Entity Beans need not distinguish BMP and CMP.

Specifying search processing
This section explains the application that calls an Entity Bean whose instance is to be searched for, and a
processing flow between the container and Enterprise Bean class. The section also provides an example
of specifying the application that calls Entity Beans.

Calling procedure

11-3

Example of searching for one instance
Outline of processing to be specified

1. Perform lookup processing for the Entity Bean to be called to obtain the EJB Home of the Entity Bean.

2. Call the findByPrimaryKey method to obtain the primary key object.

3. Call the business method.

Example of searching for multiple instances (collection interface)
Outline of processing to be specified

1. Perform lookup processing for the Entity Bean to be called to obtain the EJB Home.

2. Call the find <METHOD> method to obtain the primary key object.

3. Call the business method.

Note

If "Mandatory" is set for the transaction attribute in CMP1.1 or BMP mode in which the distributed
transaction function is not used, the following methods cannot be used with the Collection interface
returned from the finder method:

• add(Object o)

• addAll(Collection c)

• clear()

• contains(Object o)

• containsAll(Collection c)

• remove(Object o)

• removeAll(Collection c)

• retainAll(Collection c)

• size()

• toArray()

• toArray(Object[] a)

• The iterator() method is executed twice or more for the same Collection.

The size method cannot be used under the following conditions. If it is used,
java.lang.UnsupportedOperationException is returned.

• Sequential is specified for the instance management mode.

• Mandatory is specified for the transaction attribute.

• Interstage V3 processing mode is specified.

• An EJB application deployed under Interstage V3 or earlier is used.

Chapter 11: How to call EJB Applications

11-4

Relationship between Enterprise Bean Instance, EJB Object, and
EJB Home

This section explains the relationship between the Enterprise Bean instance, EJB object, and EJB home.

The client application first obtains an EJB home object reference from the Naming Service. An EJB home
method (such as a create or finder method) is executed to obtain an EJB object reference. When the
method is executed for the EJB object, the container passes processing to the Enterprise Bean instance
as needed.

EJB object and Enterprise Bean instance generation timing
The timing for generating EJB objects and Enterprise Bean instances and the number of these objects and
instances generated vary depending on the type of Enterprise Bean.

STATELESS Session Bean

Because the STATELESS Session Bean holds no transaction status information and application variables
in Enterprise Bean instances, Enterprise Bean instances are pooled for operation.

When a request is received from the client, the EJB container fetches one instance from the pool and
executes processing on the instance. After completion of processing, the container returns the instance to
the pool and returns the processing results to the client.

At the first access to the process, the number of STATELESS Session Bean instances generated is the
same as the number specified for concurrent connections. In addition, only one EJB object that passes a
client request to an Enterprise Bean instance is generated at activation.

The EJB object and Enterprise Bean instance are deleted when IJServer is stopped.

STATEFUL Session Bean

A STATEFUL Session Bean can hold transaction status information and application variables in an
Enterprise Bean instance. Every time a create method is executed for EJB home, an EJB object and
Enterprise Bean instance are generated. When access is made to the same EJB object, processing is
performed on the same Enterprise Bean instance. After completion of processing, a remove method is
executed for the EJB object to delete the EJB object and instance.

Entity Bean

An Entity Bean EJB object is generated by the container as needed when a method is executed for the
EJB home method.

As many Entity Bean instances as specified for the initial instance count are generated and pooled. The
timing for generating Enterprise Bean instances varies depending on the instance generation mode.
Unlike the positioning of the Enterprise Bean instances of the STATELESS Session Beans, Entity Bean
Enterprise Bean instances are mapped to DBMS records. As many Enterprise Bean instances as there
are DBMS records accessed by one client (one transaction) are fetched from the pool and used. After
completion of the transaction, the Enterprise Bean instances are returned to the pool.

If no Enterprise Bean instance exists in the pool, one Enterprise Bean instance used within the same
transaction is selected. The record data stored in the instance is applied to the DBMS and the instance is
reused as an instance that holds other record data. If no Enterprise Bean instance has been used within
the same transaction, only one Enterprise Bean instance is dynamically generated and used. The
Enterprise Bean instances that have been used are normally returned to the pool after completion of the
transaction. However, the instance that was generated dynamically is abandoned after completion of the
transaction. If Enterprise Bean instances are reused frequently, performance will be affected adversely.

Calling procedure

11-5

Define the number of Enterprise Bean instances to be started initially (initial instance count). Refer to Help
for the Interstage Management Console for details of the procedure.

Message-driven Bean

Because the STATELESS Session Bean holds no transaction status information and application variables
in Enterprise Bean instances, Enterprise Bean instances are pooled for operation.

When a message is distributed from the destination, the EJB container fetches one instance from the pool
and executes processing on the instance. After completion of processing, the container returns the
instance to the pool and finishes processing.

Method called to generate or delete an Enterprise Bean instance
The relevant type of method for an Enterprise Bean instance is executed to generate or delete an
Enterprise Bean instance.

Table 11-1 To generate an Enterprise Bean instance
Bean Type Method Name

STATELESS Session
Bean

setSessionContext

ejbCreate

STATEFUL Session
Bean

setSessionContext

ejbCreate

Entity Bean setEntityContext

Message-driven Bean setMessageDrivenContext

ejbCreate

Table 11-2 To delete an Enterprise Bean instance
Bean Type Method Name

STATELESS Session
Bean

ejbRemove

STATEFUL Session
Bean

ejbRemove

Entity Bean unsetEntityContext

Message-driven Bean ejbRemove

For the STATELESS Session Bean, Entity Bean, and Message-driven Bean, each respective method
shown above is called to delete an instance when the bean is stopped.

In forced stop mode, however, the instance is forcibly stopped without method execution.

Chapter 11: How to call EJB Applications

11-6

Using Java Applets
This section explains the procedure for developing a Java applet that calls EJB applications.

Using Portable ORB
When a client application is developed as a Java applet, the EJB Service permits the use of the
Portable-ORB.

The Portable-ORB has the following features.

• Applicable to the Internet and intranet

Because the Portable-ORB can be downloaded from the Web Server, Thin clients such as network
computers and mobile terminals can be used as Interstage clients.

• Excellent operability and maintenance

The Portable-ORB need not be installed in advance on individual client terminals and therefore can
reduce the operation and maintenance costs of clients.

Note

When the Portable-ORB is used with the EJB Service, use JBK plug-ins. JavaVM and Java plug-ins of
browsers cannot be used. For details of JBK plug-ins, refer to the “Apworks J Business Kit Online
Manual”.

Development procedure (pre-installed version Java library)
This section describes development procedures for the pre-installed Java library.

Descriptions of HTML Files
To run an applet, specify the applet in a HTML file using the <applet> tag.

Note

• Use a JBK plug-in. Browser JavaVMs and Java Plug-ins cannot be used.

• To install Netscape Navigator/Communicator on a machine on which JBK is already installed,
manually store the start DLL in the Netscape plug-in directory. Refer to the “Apworks J Business Kit
Online Manual” for details.

Applet Programming
Developing a client application as a Java applet using an EJB client differs from developing a Java
application in the following point.

Lookup processing for inquiring of the Naming Service for the location of EJB application object.
Make a class declaration with the class name specified in the <applet> tag in the HTML file.

An example of specifying lookup processing for a Java applet is shown below:

Calling procedure

11-7

Example

Using the JBK Plugin

 <HTML>
 <HEAD><!--demo.html-->
 <TITLE>Java sample Applet </TITLE>
 </HEAD>
 <BODY>
 <OBJECT CLASSID="CLSID:BEA62964-C40B-11D1-AACA-00A0C9216A67"
 WIDTH=300 HEIGHT=250>
 <PARAM NAME="TYPE" VALUE="application/x-JBK-Plugin">
 <PARAM NAME="CODE" VALUE="Sample.class">
 <COMMENT>
 <EMBED TYPE="application/x-JBK-Plugin"
 NAME="Sample" CODE="Sample.class" WIDTH=300 HEIGHT=250>
 </EMBED>
 </COMMENT>
 </OBJECT>
 </BODY>
 </HTML>

Using the JBK Plugin(Jar form archive file)

 <HTML>
 <HEAD><!--demo.html-->
 <TITLE>Java sample Applet </TITLE>
 </HEAD>
 <BODY>
 <OBJECT CLASSID="CLSID:BEA62964-C40B-11D1-AACA-00A0C9216A67"
 WIDTH=300 HEIGHT=250>
 <PARAM NAME="TYPE" VALUE="application/x-JBK-Plugin">
 <PARAM NAME="CODE" VALUE="Sample.class">
 <PARAM NAME="ARCHIVE" VALUE="Sample.jar">
 <COMMENT>
 <EMBED TYPE="application/x-JBK-Plugin"
 CODE="Sample.class" ARCHIVE="Sample.jar" WIDTH=300 HEIGHT=250>
 </EMBED>
 </COMMENT>
 </OBJECT>
 </BODY>
 </HTML>

import java.awt.*; //Abstract window tool kit class
public class Sample extends java.applet.Applet //Declaration of applet class
{
…
// InitialContext
Hashtable env = new Hashtable(); (1)
env.put("java.naming.factory.initial",
 "com.fujitsu.Interstage.ejb.jndi.FJCNCtxFactoryForClient"); (1)

Chapter 11: How to call EJB Applications

11-8

env.put("java.naming.applet", this); (1)
javax.naming.Context ic = new javax.naming.InitialContext(env); (2)
// lookup
java.lang.Object Obj = (java.lang.Object)ic.lookup("SampleBean"); (3)
// home narrow()
h = (SampleHome)javax.rmi.PortableRemoteObject.narrow(Obj, SampleHome.class);
(4)

(1) Specify environment information required to create a context. Specify as shown in the above
example.

(2) Create a Context used to perform lookup. Specify as shown in the above example.

(3) Perform lookup. Specify an EJB application name as an argument. If the lookup fails, a
“javax.naming.NameNotFoundException” exception will occur. The cause of the error is displayed in
a detail message of the exception concerned.

Refer to “Messages” for details of the action to be taken when lookup fails.

Perform narrow processing for the object looked up. Issue javax.rmi.PortableRemoteObject.narrow.

Notes

• Perform the operation to obtain InitialContext (above 1 and 2) in the constructor, so that it is
performed only once in an application.

• See "Setting client environment" for the procedure for setting pre-installed version environment
variables.

• Match the Java applet file name with the class name declared in the applet (distinguish uppercase
and lowercase).

Including Java class files in a jar File
Include the following class files in a jar file:

• Applet

Bundling multiple class files in a single jar file can shorten the time taken to download these files from the
Web Server.

Packaging an Applet as a jar File
An applet created with Apworks is automatically packed in a jar file. For details of applet development
using Apworks, refer to the “Apworks Apdesigner Programmer's Guide” or “Component Designer User's
Guide” (note that these manuals are not provided for Plus Developer).

If Apworks is not used, use the jar command to package an applet as a jar file.

Calling procedure

11-9

Using the jar Command
For information on how to use the jar command, refer to the JDK documents.

An example of the jar command is shown below.

Example

jar cvf SampleApplet.jar *.class samplepkg*.class

jar cvf SampleApplet.jar *.class samplepkg/*.class

Specify the name of the jar file to be created and the class files to be put in the jar file. The created jar file
contains the files in subfolders.

Note

When the applet is used without using Portable-ORB, it is not possible to use it by downloading the client
distribution data of the EJB application used from the Web server. To use it, copy the client distribution
data in the client environment and set the directory of the copy destination to CLASSPATH.

Client Setup (Pre-installed Java Clients)

Setting Permission for Java Libraries
This setting is necessary when JDK/JRE 1.2.2 or later is used. When executing a Java applet, set
permission for the Java library.

The method for setting permission for Java libraries using PolicyTool (attached to JDK) is described below.

Use the following procedure:

1) Start PolicyTool.

2) Press the Add Policy Entry button on the [PolicyTool] screen that is displayed after startup.

3) Enter the following on the [Policy Entry] screen:

Chapter 11: How to call EJB Applications

11-10

Item Set Value

CodeBase: <For JDK1.3>
file:<CORBA client installation directory>/etc/class/ODjava2.jar (Note 1)
file:/C:/Interstage/JDK13/jre/lib/-
<For JRE1.3>
file:<CORBA client installation directory>/etc/class/ODjava2.jar (Note 1)
file:/C:/Interstage/JRE13/jre/lib/-
<For JDK1.4>
file:<CORBA client installation directory>/etc/class/ODjava4.jar (Note 1)
file:/C:/Interstage/JDK14/jre/lib/-
<For JRE1.4>
file:<CORBA client installation directory>/etc/class/ODjava4.jar (Note 1)
file:/C:/Interstage/JRE14/jre/lib/-

signed by: (None)

Note 1: Use “/” as a separator.

4) Press the Add Permission button on the [Policy Entry] screen.

5) Enter a value for each field on the [Permissions] screen, as shown in the following table.

To set permission from the [Permissions] screen, enter values for the [Permission:/Target
Name:/Actions:] fields and click the OK button. At this point, control is returned to the [Policy Entry]
screen.

To set another permission, click the Add Permission button again from the [Policy Entry] screen.
Repeat this process and enter the required information.

Click the Done button on the [Policy Entry] screen after all of the values have been entered.

Table 11-3 Permission necessary for usual operation

These permissions ensure security during usual operation.

Setting Permission Permission type

Permission Target Name: Actions:

Run time permission RuntimePermission loadLibrary.DLL name
(Note 2)

Setting not required

Property permission PropertyPermission com.fujitsu.* read

Note 2: The following dynamic link library (DLL) names are specified depending on the function to
install when JDK/JRE is used. The extension need not be specified.

Function to Install JDK/JRE Dynamic Link Library

JDK/JRE1.3.1 ODjava2 CORBA Service Client (Client Function)

JDK/JRE1.4.0 ODjava4

JDK/JRE1.3.1 ODjavas2 CORBA Service (Server Function)

JDK/JRE1.4.0 ODjavas4

Calling procedure

11-11

Table 11-4 Permission necessary to collect internal logs of CORBA service (Note 3)

Setting Permission Permission type

Permission Target Name: Actions:

user.dir read Property permission PropertyPermission

java.class.path read

${user.dir}* read, write File permission FilePermission

%OD_HOME%\etc\
config (Note 4)

read

Note 3: Refer to “config” in the “Tuning Guide” for details of an internal log of the CORBA Service.
Delete the added permission after collecting logs.

Note 4: %OD_HOME% specifies the installation directory of the CORBA Service or the CORBA
Service client. Default is C:\Interstage\ODWIN.

• Select File | Save from the menu bar.

• Close PolicyTool by selecting File | Exit from the menu bar.

Note

At the initial execution of PolicyTool, select [File]->[Save As] from the [PolicyTool] menu bar before
termination of PolicyTool, and specify the name and storage location of the policy file. Refer to Digital
Signature of JDK/JRE1.3 or later (when using keytool/jarsigner/policytool) for details of specifying policy
files.

Development procedure (Portable-ORB)
This section describes development procedures for the pre-installed Java library.

Specification in the HTML file
To execute applets, specify the applets using the <applet> tag in the HTML file.

In addition, use a Portable-ORB file depending on the operating JVM.

For operation during which Portable-ORB is downloaded, specify the <APPLET ARCHIVE> or <PARM>
tag (cabbase) in the HTML file used to execute the Java applet.

Files to be downloaded
The jar files to be downloaded from the Web server when an applet is executed are listed below. Digitally
sign these jar files and store them on the Web server.

Theses files are individually explained below.

Applet jar files
The applet jar files include the following:

• jar file made of an applet running as a client application

• jar file consisting of client distribution data for target EJB application

Chapter 11: How to call EJB Applications

11-12

jar files for Portable-ORB

Table 11-5 The names and locations of jar files for Portable-ORB are listed below
File names Storage location

For JDK1.3

ODporbROI2_plugin.jar

For JDK1.4

ODporbROI4_plugin.jar

C:\Interstage\Porb\lib

Note

The following files can also be used instead of ODporbROI2_plugin.jar:

• ODporb2_plugin.jar

• CosNaming2_plugin.jar

• InterfaceRep2_plugin.jar

• ODroi2_plugin.jar

Table 11-6 The names and locations of jar files for Portable-ORB are listed below
File names Storage location

For JDK1.3

ODporbROI2_plugin.jar

For JDK1.4

ODporbROI4_plugin.jar

/opt/FJSVporb/lib

Note

The following files can also be used instead of ODporbROI2_plugin.jar:

• ODporb2_plugin.jar

• CosNaming2_plugin.jar

• InterfaceRep2_plugin.jar

• ODroi2_plugin.jar

Calling procedure

11-13

jar files for EJB Service client
The name and location of the jar file for EJB Service clients that is downloaded is provided in Table
11-7, 11-8.

Table 11-7 Names and Location of jar File for EJB Service Clients
File names Storage location

For JDK1.3

fjcontainer72.jar

For JDK1.4

fjcontainer74.jar

C:\Interstage\EJB\lib

or

C:\Interstage\EJBCL\lib

Table 11-8 Names and Location of jar File for EJB Service Clients
File names Storage location

For JDK1.3

fjcontainer72.jar

For JDK1.4

fjcontainer74.jar

/opt/FJSVejb/lib

or

C:\Interstage\EJBCL\lib

Note

Please use the JBK plug-in. JavaVM and Java Plug-in of a browser cannot be used.

Example

Examples of HTML file descriptions when using the pre-installed Java Library are provided below.

For JDK1.3

Using the JBK Plugin
Download the Sample.jar file using the ARCHIVE designation of the <PARAM> tag or the <EMBED> tag.

 <HTML>
 <HEAD><!--demo.html-->
 <TITLE>Java sample Applet </TITLE>
 </HEAD>
 <BODY>
 <OBJECT CLASSID="CLSID:BEA62964-C40B-11D1-AACA-00A0C9216A67"
 WIDTH=300 HEIGHT=250>
 <PARAM NAME="TYPE" VALUE="application/x-JBK-Plugin">
 <PARAM NAME="CODE" VALUE="Sample.class">
 <PARAM NAME="ARCHIVE" VALUE="SampleApplet.jar,SampleClient.jar,
 ODporbROI2_plugin.jar,fjcontainer72.jar">
 <PARAM NAME="PORB_HOME" VALUE="PORBDIR">

Chapter 11: How to call EJB Applications

11-14

 <COMMENT>
 <EMBED TYPE="application/x-JBK-Plugin"
 CODE="Sample.class" WIDTH=300 HEIGHT=250

ARCHIVE="Sample.jar" PORB_HOME="PORBDIR">
 </EMBED>
 </COMMENT>
 </OBJECT>
 </BODY>
 </HTML>

When you do not download Portable-ORB(Using the JBK Plugin)

 <HTML>
 <HEAD><!--demo.html-->
 <TITLE>Java sample Applet </TITLE>
 </HEAD>
 <BODY>
 <OBJECT CLASSID="CLSID:BEA62964-C40B-11D1-AACA-00A0C9216A67"
 WIDTH=300 HEIGHT=250>
 <PARAM NAME="TYPE" VALUE="application/x-JBK-Plugin">
 <PARAM NAME="CODE" VALUE="Sample.class">
 <PARAM NAME="ARCHIVE" VALUE="Sample.jar">
 <PARAM NAME="PORB_HOME" VALUE="PORBDIR">
 <COMMENT>
 <EMBED TYPE="application/x-JBK-Plugin"
 CODE="Sample.class" WIDTH=300 HEIGHT=250
 ARCHIVE="Sample.jar" PORB_HOME="PORBDIR">
 </EMBED>
 </COMMENT>
 </OBJECT>
 </BODY>
 </HTML>

For JDK1.4

Using the JBK Plugin
Download the Sample.jar file using the ARCHIVE designation of the <PARAM> tag or the <EMBED> tag.

 <HTML>
 <HEAD><!--demo.html-->
 <TITLE>Java sample Applet </TITLE>
 </HEAD>
 <BODY>
 <OBJECT CLASSID="CLSID:BEA62964-C40B-11D1-AACA-00A0C9216A67"
 WIDTH=300 HEIGHT=250>
 <PARAM NAME="TYPE" VALUE="application/x-JBK-Plugin">
 <PARAM NAME="CODE" VALUE="Sample.class">
 <PARAM NAME="ARCHIVE" VALUE="SampleApplet.jar,SampleClient.jar,
 ODporbROI2_plugin.jar,fjcontainer72.jar">
 <PARAM NAME="PORB_HOME" VALUE="PORBDIR">
 <COMMENT>

Calling procedure

11-15

 <EMBED TYPE="application/x-JBK-Plugin"
 CODE="Sample.class" WIDTH=300 HEIGHT=250

ARCHIVE="Sample.jar" PORB_HOME="PORBDIR">
 </EMBED>
 </COMMENT>
 </OBJECT>
 </BODY>
 </HTML>

When you do not download Portable-ORB(Using the JBK Plugin)

 <HTML>
 <HEAD><!--demo.html-->
 <TITLE>Java sample Applet </TITLE>
 </HEAD>
 <BODY>
 <OBJECT CLASSID="CLSID:BEA62964-C40B-11D1-AACA-00A0C9216A67"
 WIDTH=300 HEIGHT=250>
 <PARAM NAME="TYPE" VALUE="application/x-JBK-Plugin">
 <PARAM NAME="CODE" VALUE="Sample.class">
 <PARAM NAME="ARCHIVE" VALUE="Sample.jar">
 <PARAM NAME="PORB_HOME" VALUE="PORBDIR">
 <COMMENT>
 <EMBED TYPE="application/x-JBK-Plugin"
 CODE="Sample.class" WIDTH=300 HEIGHT=250
 ARCHIVE="Sample.jar" PORB_HOME="PORBDIR">
 </EMBED>
 </COMMENT>
 </OBJECT>
 </BODY>
 </HTML>

Remarks

• In the example of the Portable-ORB download above, it is assumed that the Portable-ORB file is in
the same directory as the HTML file. When they are not in the same directory, assume the path
ARCHIVE/VALUE. When using a UNIX system as a Web server, instead of setting the path, you can
substitute a link file.

• PORB HOME is specified by the <PARAM NAME> tag. Designate it as the subdirectory when
searching for an operating environment file.

Refer to Portable-ORB Operation Environment File Settings for information on specifying the Web
server’s document root directory/PORBDIR/etc path and storage directory.

• When an applet is executed using a JBK plug-in, the tag for JBK plug-ins must be used for coding
instead of the <APPLET> tag. The method of coding varies, depending on the browser used. The
above coding example is for an HTML file that can be used for either Internet Explorer or Netscape
Navigator/Communicator. For details of the coding method, refer to the “Apworks J Business Kit
Online Manual”.

Chapter 11: How to call EJB Applications

11-16

Applet Programming
Developing a client application as a Java applet using an EJB client differs from developing a Java
application in the following point. Make a class declaration with the class name specified in the <applet>
tag in the HTML file.

Lookup processing for inquiring of the Naming Service for the location of EJB application object

An example of specifying lookup processing for a Java applet is shown below:

import java.awt.*; //Abstract window tool kit class
public class Sample extends java.applet.Applet //Declaration of applet class
{
…
// InitialContext
Hashtable env = new Hashtable(); (1)
env.put("java.naming.factory.initial",
 "com.fujitsu.Interstage.ejb.jndi.FJCNCtxFactoryForClient"); (1)
env.put("java.naming.applet", this); (1)
javax.naming.Context ic = new javax.naming.InitialContext(env); (2)
// lookup
java.lang.Object Obj = (java.lang.Object)ic.lookup("SampleBean"); (3)
// home narrow()
h = (SampleHome)javax.rmi.PortableRemoteObject.narrow(Obj, SampleHome.class);
(4)

(1) Specify environment information required to create a context. Specify as shown in the above
example.

(2) Create a Context used to perform lookup. Specify as shown in the above example.

(3) Perform lookup. Specify an EJB application name as an argument. If the lookup fails, a
“javax.naming.NameNotFoundException” exception will occur. The cause of the error is displayed in
a detail message of the exception concerned.

Refer to “Messages” for details of the action to be taken when lookup fails.

(4) Perform narrow processing for the object looked up. Issue javax.rmi.PortableRemoteObject.narrow.

Notes

• Perform the operation to obtain InitialContext (above 1 and 2) in the constructor, so that it is
performed only once in an application.

• Match the Java applet file name with the class name declared in the applet (distinguish uppercase
and lowercase).

Including Java class files in a jar File
When registering Java files on a Web server, create an archive file for the collected class files so you can
download all of the files simultaneously; shortening download time. Create the archive file using the jar
command (included in the Java Development Kit and commonly shortened to JDK). The jar archive
created with the jar command can be used with the JBK or the Java Plug-ins.

To download the archive file (applet) of Java class files that has been created from the Web server and
execute it, sign the archive file. Refer to "Digital Signature in Applets" for information on signing.

Calling procedure

11-17

Remarks

Refer to the JDK documentation for more details about how to use the jar command.

Include the following class files in a jar file:

• Applet

• Client distribution data

Bundling multiple class files in a single jar file can shorten the time taken to download these files from the
Web Server.

Packaging an Applet as a jar File
An applet created with Apworks is automatically packed in a jar file. For details of applet development
using Apworks, refer to the “Apworks Apdesigner Programmer's Guide” or “Component Designer User's
Guide” (note that these manuals are not provided for Plus Developer).

If Apworks is not used, use the jar command to package an applet as a jar file.

Bundling Client Distribution Data in a jar File
Use the jar command to include client distribution data, which is generated during EJB application
deployment, in a jar file.

For information on how to use the jar command, refer to the JDK documents. An example of the jar
command is shown below.

Command Usage Examples
This section provides command usage examples.

jar Command

Specify the name of the jar file to be created and class files to be put in the jar file. The jar file created
includes subdirectory files.

C:\jarSample>jar cvf Sample.jar *.class Samplemod*.class
adding: Samplemod/_SampleintfStub.class (in=1282) (out=704) (deflated 45%)
adding: Samplemod/Sampleintf.class (in=302) (out=215) (deflated 28%)
adding: Samplemod/SampleintfHelper.class (in=2175) (out=994) (deflated 54%)
adding: Samplemod/SampleintfHolder.class (in=907) (out=461) (deflated 49%)

Notes

• When a class file to be included in an archive file is specified, path specification information is also
included in the archive file. Change the current directory to the highest-level directory in which the
class file to be put in the archive file is stored, and create an archive file by specifying path information
according to the class file configuration.

• When "cabbase" is set to <PARAM> tag in HTML, setting the "ARCHIVE" to the <APPLET> tag will
not work.

Chapter 11: How to call EJB Applications

11-18

Storing jar Files in the Web Server
Store HTML files, Java applets, and IDL generation class files in the same directory on the Web server.
Store the following jar files in the Web Server:

• Applet jar file

• Client distribution data jar file

• Portable-ORB jar file

• EJB Service client jar file

• HTML file that calls an applet

The client downloads the above files from the Web Server when the browser references the server.

Figure 11-1 shows a sample structure of the files stored in the Web Server:

[WebServer DocumentRoot] *1
 |
 |------[app] *2
 |
 |-------[etc] *3
 | |-----config
 | |-----initial_servise
 | |-----initial_hosts
 |
 |------- Applet jar file
 |------- Client distribution data jar file
 |------- ODporbRO12_plugin.jar
 |------- fjcontainer32_plugin.jar *5
 |------- HTML file that calls an applet

*4

Figure 11-1 Example of Jar Files Stored in the Web Server

*1) [WebServer DocumentRoot] is a Web Server setting, which can be specified as desired by the user.

*2) [app] is the folder in which the corresponding applications are stored. You can specify any name for
this folder.

*3) [etc] is the folder in which the operating environment setup files used by Portable-ORB are stored.
For more information, refer to Portable-ORB Operation Environment File Settings.

*4) The Portable-ORB jar file

*5) The EJB Service client jar file

Setting up the Portable-ORB Environment in the Web Server
Define the Portable-ORB environment in accordance with the environment setup procedure used when a
Portable-ORB/Java applet is downloaded from the Web Server. For this operation, refer to Portable-ORB
Operation Environment File Settings.

Calling procedure

11-19

Setting client environment (Portable-ORB)
To run a client application (applet) using Portable-ORB, make the following settings in the client
environment:

• Specify the ORB (Object Request Broker)

• Portable-ORB Operation Environment File Settings

• Edit the JBK plug-in setup file

Specify the ORB (Object Request Broker)
The ORB to be used must be selected in setting up the applet execution environment.

Set the following types of Java runtime environment property information as the JavaVM start options in
the jbkplugin.properties file attached to the orb.properties file or JBK plug-in.

If the same properties are written in both the orb.properties and jbkplugin.properties files, the properties
written in the jbkplugin.properties file are effective.

Table 11-9 Property Names and Setting Values
Property name Setting value

org.omg.CORBA.ORBClass com.fujitsu.ObjectDirector.CORBA.ORB

javax.rmi.CORBA.StubClass com.fujitsu.ObjectDirector.rmi.CORBA.
StubDelegateImpl

javax.rmi.CORBA.UtilClass com.fujitsu.ObjectDirector.rmi.CORBA.
UtilDelegateImpl

javax.rmi.CORBA.PortableRemoteObjectClass com.fujitsu.ObjectDirector.rmi.CORBA.
PortableRemoteObjectDelegateImpl

Note

When operating an applet using Portable-ORB, do not use the following property:

• org.omg.CORBA.ORBSingletonClass

Portable-ORB Operation Environment File Settings
When using Portable-ORB, you need to set the PORB_HOME parameters with an HTML file in order to
specify the storage position for the operation environment files. The operation environment files shown in
Table 11-10 exist in Portable-ORB.

Table 11-10 Operation Environment Files
Operation Environment Files File Name

Environment Definition File config

Object References Information Storage File initial_services

Object References Search Information File initial_hosts

Chapter 11: How to call EJB Applications

11-20

You need to store these operation environment files in the Web server’s document root sub directory.

Note: Do not store the operation environment files under the user authentication directory when
authentication is to be performed by the Web Server based on the user name and password.

There is a way to specify a different operation environment file for each applet and a way to specify the
same operation environment file for multiple applets. These methods are described below: Using different
operation environment file for each applet is depicted in Figure 11-2.

Figure 11-2 Using Different Operation Environments with Different Applets

Applet A that executes on Client A uses the Applet A operation environment file, and Apple B that executes
on Client B uses the Applet B operation environment file

There are two procedures for specifying operation environment files in applet units: one that specifies
PORB_HOME and another that does not specify PORB_HOME.

Specifying PORB_HOME
When specifying PORB_HOME, create an etc directory for the operation environment file of each applet
and store it in its sub directory. Specify the relative path from the Web server’s document root as the
storage location for the operation environment files with an HTML file’s <PARAM> tag in PORB_HOME
parameters. The etc directory is not included in this designation.

Sample directory structures are displayed below. The operation environment file for Applet A is stored in
the ap1Aenv/etc sub directory and the operation environment file for Applet B is stored in the ap1Benv/etc
sub directory on the Web server’s document root directory on the World Wide Web

Calling procedure

11-21

/-
 - [Web] - [envfile] - [aplAenv] - [etc] – appletA operation environment file
 - [aplBenv] - [etc] – appletB operation environment file
 - [applet] - [appletA] – appletA.html
 - appletA.class
 [appletB] – appletB.html
 - appletB.class

In the above example, the PORB_HOME parameters for each applet are set with a <PARAM> tag, shown
in the following examples.

Applet A <PARAM> Tag Example

<HTML>
 <HEAD><!--demo.html--></HEAD>
 <TITLE>Java sample Applet </TITLE>
 <BODY>
 <H1>Java sample Applet</H1>
 <applet code="applet.class" width=300 height=250>
 <PARAM NAME=PORB_HOME VALUE=envfile/aplAenv>
 </applet>

 </BODY>
 </HTML>

Applet B <PARAM> Tag Example

<HTML>
 <HEAD><!--demo.html--></HEAD>
 <TITLE>Java sample Applet </TITLE>
 <BODY>
 <H1>Java sample Applet</H1>
 <applet code="applet.class" width=300 height=250>
 <PARAM NAME=PORB_HOME VALUE=envfile/aplBenv>
 </applet>

 </BODY>
 </HTML>

PORB_HOME Not Specified

When PORB_HOME is not specified, create the etc directory in the directory where each applet is stored
and store the operation environment file there. Sample directory structures are displayed below.

/-
 - [Web] - [applet] - [appletA] – appletA.html
 - appletA.class
 - [etc] – appletA operation environment
file
 [appletB] – appletB.html
 - appletB.class

Chapter 11: How to call EJB Applications

11-22

 - [etc] – appletB operation environment
file

Remarks

Use the “PORB_HOME not specified” method when using the file protocol. The file protocol is used when
HTML files stored on a local disk are directly specified using applet viewer (a browser and JDK tool)
instead of the Web Server.

Using a Uniform Operation Environment with Multiple Applets

This is depicted in Figure 11-3.

Figure 11-3 Operation Environments under Multiple Applets

Use a common operation environment file with Applet A executing on Client A and Applet B executing on
Client B. For the operation environment files’ storage location, specify the relative path from the Web
server’s document root with a <PARAM> tag for Applet A’s HTML file and Applet B’s HTML file in
PORB_HOME parameters. The etc directory is not included in this designation.

Sample directory structures are shown below. Portable-ORB is installed on the /Web (The Web server’s
document root directory) sub directory’s porb directory, and the operation environment file is stored in its
sub directory’s etc directory.

/-
 - [Web] - [porb] - [lib] - ODporb.jar...
 - [etc] – operation environment file
 - [applet] - [appletA] – appletA.html

Calling procedure

11-23

 - appletA.class
 [appletB] – appletB.html
 - appletB.class

Specify a path to /Web/porb to be able to utilize the operation environment files on the /Web/porb/etc
subdirectory in the HTML files for Applet A and B. The following examples show the <PARAM> tag
descriptions for each applet.

Applet A <PARAM> Description Example

 <HTML>
 <HEAD><!--demo.html--></HEAD>
 <TITLE>Java sample Applet </TITLE>
 <BODY>
 <H1>Java sample Applet</H1>
 <applet code="applet A.class" width=300 height=250>
 <PARAM NAME=PORB_HOME VALUE=porb>
 </applet>

 </BODY>
 </HTML>

Applet B <PARAM> Description Example

 <HTML>
 <HEAD><!--demo.html--></HEAD>
 <TITLE>Java sample Applet </TITLE>
 <BODY>
 <H1>Java sample Applet</H1>
 <applet code="appletB.class" width=300 height=250>
 <PARAM NAME=PORB_HOME VALUE=porb>
 </applet>

 </BODY>
 </HTML>

Remarks

• Use the environment settings command porbeditenv for creating and/or editing operation
environment files.

• When creating an etc directory to store the operating environment file, make sure you create it using
lower-case alphabetical characters.

Chapter 11: How to call EJB Applications

11-24

Editing the JBK Plug-in Setup File
Specify the following class paths as the JavaVM start options in the jbkplugin.properties file attached to the
JBK plug-in.

• When JDK is used

%JAVA_HOME%\jre\lib\isejb.jar

• When JRE is used

%JAVA_HOME%\lib\isejb.jar

Setting Example

jbk.plugin.vmoption=-classpath C:\JBKplugin\jre13\lib\isejb.jar
-Dorg.omg.CORBA.ORBClass=com.fujitsu.ObjectDirector.CORBA.ORB
-Djavax.rmi.CORBA.StubClass=com.fujitsu.ObjectDirector.rmi.CORBA.
StubDelegateImpl
 -Djavax.rmi.CORBA.UtilClass=com.fujitsu.ObjectDirector.rmi.CORBA.
UtilDelegateImpl
-Djavax.rmi.CORBA.PortableRemoteObjectClass=com.fujitsu.ObjectDirector.rmi.
CORBA.PortableRemoteObjectDelegateImpl

Digital Signature in Applets
To download and operate a Java applet, put a digital signature on the applet or Portable-ORB. The Java
applet running as a CORBA client is downloaded from the Web server, and accesses the remote machine
on which the CORBA server application runs through a network. Therefore, a digital signature must be put
on a Java applet whenever it is downloaded for operation, whether a pre-installed version Java library or
Portable-ORB is used.

The jar files that require digital signature are:

• Applet jar file

• Client distribution data jar file

• Portable-ORB jar file

• EJB Service client jar file

The policy file used by the JBK plug-in can also be used to set permissions. For details of the policy file
used by the JBK plug-in, refer to the “Apworks J Business Kit Online Manual”.

Digital Signature of JDK/JRE1.3 or later (when using keytool/jarsigner/policytool)
This section describes the procedures for using digital signatures. JDK signature tools such as keytool,
jarsigner or policytool are used as the signature tool in this case.

Note

If operation is carried out without downloading Portable-ORB or if pre-installed Java clients are used in
JDK/JRE1.3 or later, authorization needs to be set for the Java libraries in each environment, using
policytool. For information about authorization setting for Java libraries, refer to Setting Permission for
Java Libraries.

Calling procedure

11-25

Remarks

Refer to JDK documentation for details about the signature tools. When using the J Business Kit, refer to
the “Apworks J Business Kit Online Manual”.

Perform the digital signing procedure as follows

(1) Creating a Pair of Certificate Key

Create a pair of certificate key to specify the additional information of the certificate and the alias name to
access it. The example when setting samplesigner alias name and 365 (days) valid term of the certificate
is shown below.

keytool -genkey -alias samplesigner -dname "cn=samplesigner, ou=JAVA PROJECT,
o=FUJITSU, c=JA" -validity 365

-genkey

To create a pair of certificate key

-alias

Alias name to access the certificate

-dname

Signer, organization, company or country

-validity

Valid term of certificate

When executing, the passwords for the key store and the pair of certificate key to be created are required.
These passwords are necessary to access to the key store and the pair of certificate key.

The key store is a database which manages information of the pair of certificate key, and it doesn't exist
when JDK/JRE is installed but it is created at the first execution of keytool.

Caution

The certificates created here and the certificates to be imported by each client machine must be created at
the same time. Even if the same content is specified in the -dname option, certificates created at different
times will be identified as different certificates.

(2) Application to jar Archive File

Apply digital signature to jar archive file with the created certificate.

In the following example, it is signed for Sample.jar with the certificate created in step (1) above.

jarsigner -signedjar Sample.jar.sig Sample.jar samplesigner

-signedjar

Specifies the name of the jar file to which a signature is applied (the default value is the name of the
signature source jar file).

Chapter 11: How to call EJB Applications

11-26

Sample.jar

Specifies the name of the certificate source jar file.

samplesigner

Specifies the alias of the certificate for which a signature is executed.

When executing, the passwords for the key store and the pair of certificate key are required. Input the
passwords that you specified in (1) above.

Refer to “Including Java class files in a jar File(installed version Java library)” or “Including Java class files
in a jar File(Portable-ORB)” for the procedure for creating a jar archive file.

When multiple jar archive files are to be created by the same author, repeat the processing in (2).

 (3) Verifying Application of a Signature in a jar Archive File

Use the following commands to verify that the signature is correctly implemented in the jar archive file that
applies a signature.

 jarsigner -verify sample.jar.sig

-verify

Specifies verification of the digital signature of the jar archive file.

sample.jar.sig

Specifies the jar archive file whose digital signature is to be verified.

Normally, when a digital signature is implemented, message “jar verified” is displayed. When a digital
signature is not implemented, message “jar is unsigned. (signatures missing or not parsable)” is
displayed.

After checking that the digital signature is implemented normally, change the extension to *.jar to use the
file as a jar file (example: delete sample.jar used before applying the signature and change sample.jar.sig
to tet.jar).

To display the detailed digital signature information, execute the command by specifying the
–verbose/-certs option.

(4) Exporting a Certificate

Export the certificate to be used at the client system whom an applet is downloaded into. Specify the alias
name of the certificate created in (1) above.

keytool -export -alias samplesigner -file samplesign.cer

-export

To acquire the certificate

-alias

Alias name of the certificate to acquire

Calling procedure

11-27

-file

File name to store the certificate to acquire

When executing, the password for the key store is required. Input the password that you specified in (1)
above.

(5) Importing a Certificate

Import the certificate to the client system whom an applet is downloaded into. This operation needs to run
at the client system. Copy the certificate, samplesign.cer to the client machine in advance.

keytool -import -alias sampleuser -file samplesign.cer

-import

To import the certificate

-alias

Alias name of the certificate to import

-file

File name to store the certificate to import

When executing, the password for the key store is required. This is required to access to the key store.
When prompted to accept the certificate imported, enter "yes".

The alias (specified in –alias) option is required to specify the certificate (specified in –file) for subsequent
operations. Specify an alias of the certificate for which authorization is to be set when setting policy in “(6),
Setting a Permission for the Certificate.”

(6) Setting a Permission for the Certificate

Use policytool to set permission for the certificate which is imported to the client system. This operation
needs to run at the client system.

The policytool command is a GUI tool associated to define security policies.

This command is used to set or change the authorization of Java classes signed using this command or
stored in any location. For information about the settings of the policytool command, refer to policytool
Command Setting (Supplements).

policytool Command Setting (Supplements)
Refer to “Application Interstage Application Server” for how to set the policytool command.

V7.0 Distributed Application Development Guide (CORBA Service Edition).

Chapter 11: How to call EJB Applications

11-28

Notes
Restrictions on creating EJB applications are shown below:

• The name of the EJB application must not exceed 255 characters.

• The name of the business method must not exceed 256 characters. If the rules for conversion from
Java to IDL are to be used, define a business method with a name in such a way that the business
method name after conversion does not exceed 256 characters.

• The names of the Home and Remote interfaces must not exceed 234 characters (including the
package name).

12-1

Chapter 12

DB Access Environment Definition

Chapter 12: DB Access Environment Definition

12-2

Specifying the DB Access Environment Definitions
The DB access environment definition is used to add/change/delete the datasource definition that is
necessary for using the database

Note

Customize Tool is a tool for providing compatibility for environments of previous versions. Customizing
with the Interstage Management Console has been possible since V6, but Customize Tool when you need
the DB access environment definition.

Refer to the manual for the previous version for details of the use of Customize Tool.

Execute the following command and start Customize Tool.

ejbcustx -ejbdb

Notes
There are the following restrictions when the datasource defined in the DB access environment definition
is used with IJServer.

Function Restriction

Transaction Isolation
Level

Operates at the DBMS default transaction separation level.

Pre-opened connection Cannot be used.

The number of
Maximum Connection

Operates at 64 by default.

Connection Timeout Operates at 5 seconds by default.

Idle Timeout Operates at 600 seconds by default.

13-1

Chapter 13

Customize by EJB Service Operation
Command

This explains how to customize the EJB application execution environment and DB definition information
using the operation command of Customize Tool.

Customize by the EJB service operation command allows you to edit the following contents, based on the
XML format definition file that you can update: EJB application runtime environment definitions and Rapid
Invocation definitions ("Enterprise Bean Definition information"), and DB access environment definitions
("DB definition information").

The EJB service operation commands to be used for customize are broadly classified into the following
two functions.

• Definition File Export

EJB application runtime environment definitions and Rapid Invocation definitions, and DB access
environment definitions are exported to the XML format definition file.

• Definition File Import

Updated XML-format definition file contents are imported to the EJB application runtime environment
definitions and Rapid Invocation definitions, and DB access environment definitions.

The following describes the flow of customize using the EJB service operation command, definition file
exporting and importing procedures, and the contents and description examples of each definition file.

Only information defined by the DB access environment definition becomes an export/import object for DB
definition information. Refer to “DB Access Environment Definition” for details of the DB access
environment definition.

Chapter 13: Customize by EJB Service Operation Command

13-2

Customize Flow
Customize edits each type of definition information by executing the ejbdefimport/ejbdbdefimport
command, based on the definition file that is exported from the EJB server by using the
ejbdefexport/ejbdbdefexport command or that is newly created.

The figure below shows the customized flow using the ejbdefimport/ejbdbdefimport command.

<ejbdef>
<ejb-jar>

<enterprise-beans>
<entity>

<display-n
<ejb-n/ejb
<home>E_Bm
<remote>E_

<ejbdef>
<ejb-jar>

<enterprise-beans>
<entity>

<display-n
<ejb-n/ejb
<home>E_Bm
<remote>E_

ejbdefexport

ejbdefimport

Enterprise Bean Definition Files

EJB Service

<datasource-entry>
<version>1.1</version>
<previous>1.0</previous>
<name>DV0001</name>
<type>JDBC 1.22</type>
<url>URL0001</url>
<userid>ID0001</userid>

</datasource-entry>

DB Definition Files

DB Definition Files

ejbdbdefexport

ejbdbdefimport

Application
Folder

Enterprise Bean
定義情報

Enterprise Bean
定義情報

Enterprise Bean
Definition

Informaiton

Figure 13-1 Customized Flow using the ejbdefimport/ejbdbdefimport command

This section explains each definition file and the commands that are used for customize.

The table below lists the definition files to be used to customize flow.

Table 13-1 Definition files
Definition files Description

Enterprise Bean Definition
files

This file represents the Enterprise Bean definition information (runtime
environment definitions of EJB applications installed in the application
folder and Rapid Invocation definitions) in XML format.

DB Definition files This file represents the DB definition information (DB access environment
definitions) in XML format.

Customize Flow

13-3

The table below lists the command used to customize flow.

Table 13-2 Commands Used in Customize
Commands Function

ejbdefexport Exports the Enterprise Bean definition information to the Enterprise Bean
definition file.

ejbdefimport Imports the Enterprise Bean definition file to the Enterprise Bean definition
file.

ejbdbdefexport Exports the EJB service DB definition information to the DB definition file.

ejbdbdefimport Imports the DB definition file to the EJB service DB definition information.

For details of each command, refer to the Reference Manual (Command Edition)

Export and Import of Enterprise Bean Definition Information
This section explains the export and import of the Enterprise Bean definition information.

Export of Enterprise Bean Definition Information
When the ejbdefexport command is executed, predefined Enterprise Bean definition information is
exported to the Enterprise Bean definition file.

At this point, all Enterprise Bean definition files in the IJServer can be exported.

Example

• When the SampleEB information stored in the IJServer "TestIJServer" is exported

ejbdefexport SampleEB -i TestIJServer -f c:\ejb\deffile.xml

• When the information of all EJB applications installed in the IJServer "TestIJServer" is exported to the
c:\ejb directory.

ejbdefexport -i TestIJServer -all c:\ejb

• When the SampleEB information stored in the IJServer "TestIJServer" is exported

ejbdefexport SampleEB -i TestIJServer -f /tmp/ejb/deffile.xml

• When the information of all EJB applications installed in the IJServer "TestIJServer" is exported to the
/tmp/ejb directory.

ejbdefexport -i TestIJServer -all /tmp/ejb

Chapter 13: Customize by EJB Service Operation Command

13-4

Import of Enterprise Bean Definition Information
The Enterprise Bean definition file is imported by executing the ejbdefimport command. This imports the
definition file contents to the Enterprise Bean definition. To prepare the Enterprise Bean definition file,
create a new or edit an existing file that is exported with the ejbdefexport command.

Multiple Enterprise Bean definition files can be imported simultaneously.

Example

• When the Enterprise Bean definition information deployed in the IJServer "TestIJServer" defined in
c:\ejb\deffile.xml is imported

ejbdefimport -i TestIJServer -f c:\ejb\deffile.xml

• When the information of all Enterprise Bean definition files deployed in the IJServer "TestIJServer" in
the c:\ejb folder is imported

ejbdefimport -i TestIJServer -all c:\ejb

• When the Enterprise Bean definition information deployed in the IJServer "TestIJServer" defined in
/tmp/ejb/deffile.xml is imported

ejbdefimport -i TestIJServer -f /tmp/ejb/deffile.xml

• When the information of all Enterprise Bean definition files deployed in the IJServer "TestIJServer" in
the /tmp/ejb folder is imported

ejbdefimport -all /tmp/ejb

Note

If the ejbdefimport command is executed by specifying DB definition information in the -f option or the
ejbdefimport command is executed while DB definition information exists in the folder specified in the
-all option, the following error occurs during import.

An error occurred during reading of definition file (file name).
There is no root element declaration.
file:///(X) : Line X, Column X The above error was detected.
EJB3504S-20-093-XXXX

Customize Flow

13-5

Export and Import of DB Definition Information
This section explains the export and import of the Enterprise Bean definition information.

Export of DB Definition Information
When the ejbdbdefexport command is executed, predefined DB definition information is exported to the
specified file.

Example

• When DB definition information is exported to the c:\ejb\DBDef.xml file

ejbdbdefexport -f c:\ejb\DBDef.xml

• When DB definition information is exported to the /tmp/ejb/DBDef.xml file

ejbdbdefexport -f /tmp/ejb/DBDef.xml

Import of DB Definition Information
The DB definition file is imported by executing the ejbdbdefimport command. This imports the definition
file contents to the DB definition. To prepare the DB definition file, create a new file or edit an existing one
that is exported with the ejbdbdefexport command.

Example

• When the DB definition information, defined in c:\ejb\DBDef.xml, is imported

ejbdbdefimport -f c:\ejb\DBDef.xml

• When the DB definition information, defined in /tmp/ejb/DBDef.xml, is imported

ejbdbdefimport -f /tmp/ejb/DBDef.xml

Note

When the DB definition information is exported, the DB definition file "password" tab displays "*" as many
as the password characters that are set in the DB definition information. Before importing the DB
definition file exported from the EJB server, change the "password" tab value to the correct password
during definition file editing.

An error occurred during reading of definition file (file name).
There is no root element declaration.
file:///(X) : Line X, Column X The above error was detected.
EJB3504S-20-093-XXXX

Chapter 13: Customize by EJB Service Operation Command

13-6

Contents of Enterprise Bean Definition File
This describes the Enterprise Bean definition file in XML format.

The file contents are as follows.

Table Details
Tab name: XML tab name in definition file

Value: XML value in definition file

Meaning: Tab meaning (the Customize Tool displays its item names.)

Editing: Whether values can be edited (O: Yes; X: No)

Correspondence to Interstage Management Console screen: Correspondence to customize Tool screen

Table 13-3 EJB Tab Value, Meaning and Correspondence
Tab Name Value Meaning Editing Correspondence

to Interstage
Management
Console Screen

ejb-name? Any character string Enterprise Bean
name

X

home? Any character string Home interface
name

X

remote? Any character string Remote interface
name

X

Local-home? Any character string Local Home
interface name

X

local? Any character string Local interface
name

X

ejb-class? Any character string Enterprise Bean
class name

X

session-type? Choose from the following values.

Stateful

Stateless

Session Type X

Session

transaction-type? Choose from the following values.

Bean

Container

Transaction Type O

EJB Application
Information

description? Any character string Explanation X env-entry+

env-entry-name Any character string

When the correspondence of
env-entry-name is not taken in
export between the definition file and
Enterprise Bean definition
information, it becomes an error.

Property name X

Environment
Property

Customize Flow

13-7

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

env-entry-type Choose from the following values.

java.lang.Boolean

java.lang.String

java.lang.Integer

java.lang.Double

java.lang.Byte

java.lang.Short

java.lang.Long

java.lang.Float

java.lang.Charactor

Type O

env-entry-value? Choose from the following values.

java.lang.Boolean:True/False

java.lang.String: Any character string

java.lang.Integer:
-2147483648-2147483647

java.lang.Double:
-1.7976931348623157E308-1.7976
931348623157E308

java.lang.Byte:-128-127

java.lang.Short: -32768-32767

java.lang.Long:
-9223372036854775808-92233720
36854775807

java.lang.Float:
-3.4028234663852886E38-3.40282
34663852886E38

java.lang.Character: Any
character string

Value O

description? Any character string Explanation X

ejb-ref-name Any character string Enterprise Bean
JNDI name

X

ejb-ref-type Choose from the following values.

Session

Entity

Enterprise Bean
Type

X

home Any character string Home interface
name

X

remote Any character string Remote interface
name

X

ejb-ref+

ejb-link? Any character string Enterprise Bean
name

X

EJB Reference

Chapter 13: Customize by EJB Service Operation Command

13-8

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

ejb-local-ref-nam
e

Any character string Enterprise Bean
JNDI name

ejb-local-link? Any character string Enterprise Bean
name

ejb-ref-type Choose from the following values.

Session

Entity

Enterprise Bean
Type

local-home Any character string Local Home
interface name

ejb-local-ref+

local Any character string Local interface
name

Local EJB
Reference

description? Any character string Explanation X

role-name Any character string Code base
Security role name

X

security-role-r
ef+

role-link Any character string Code base
Security role name

X

Security Role
Reference

description? Any character string Explanation X

res-ref-name Any character string Resource
manager name

X

res-type Any character string Class/Interface
name

X

resource-ref+

res-auth Choose from the following values.

Application

Container

Resource
authority

X

Resource
Reference

description?

Any character string Explanation X

resource-env-ref-
name

Any character string Resource
manager name

X

resource-env-r
ef+

resource-env-ref-t
ype

Any character string Class/Interface
name

X

Resource
Environment
Reference

Customize Flow

13-9

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

ejb-name? Any character string Enterprise Bean
name

X

home? Any character string Home interface
name

X

remote? Any character string Remote interface
name

X

Local-home? Any character string Local Home
interface name

X

local? Any character string Local interface
name

X

entity

ejb-class? Any character string Enterprise Bean
class name

X

persistence-type? Choose from the following values.

Bean

Container

Persistence Type X

prim-key-class? Any character string PrimaryKey Class
name

X

reentrant? Choose from the following values.

True

False

Re-entrant type X

primkey-field? Any character string PrimaryKey field
name

X

EJB Application
Information

env-entry+ Refer to env-entry of session tag.

ejb-ref+ Refer to ejb-ref of Session Tag.

security-role-ref+ Refer to security-role-ref of Session Tag.

resource-ref+ Refer to resource-ref of Session Tag

resource-env-ref+ Refer to resource-env-ref of Session Tag

description? Explanation X

method
-name

 method X query-
metho
d

method
-param
s

 method X

query*

result-type-mappi
ng?

Choose from the following values.

Local

Remote

EJB QL X

query

Chapter 13: Customize by EJB Service Operation Command

13-10

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

ejb-name? Any character string Enterprise Bean
name

X

ejb-class? Any character string Enterprise Bean
name

X

transaction-type? Choose from the following values.

Bean

Container

Transaction Type O

message-selector? Any character string Message Selector O

destination-type Choose from the following values.

javax.jms.Topic

javax.jms.Queue

Destination Type O message-drive
n-destination?

subscription-dura
bility?

Choose from the following values.

Durable

NonDurable

Subscription
Durability

O

EJB Application
Information

env-entry+ Refer to env-entry of session tag.

ejb-ref+ Refer to ejb-ref of Session Tag.

security-identity? Refer to security-identity of Session Tag.

resource-ref+ Refer to resource-ref of Session Tag

message-dr
iven-bean

resource-env-ref+ Refer to resource-env-ref of Session Tag

description? Any character string Explanation X

description? Any character string Explanation X

ejb-relation-name
?

Any character string ejb relation name X

descrip
tion?

Any character string Explanation X

ejb-rela
tionship
-role-na
me?

Any character string ejb relationship
role name

X

multipli
city

Choose from the following values

One

Many

multiplicity X

relationships?

ejb-relation+

ejb-rel
ationsh
ip-role

cascad
e-delet
e?

- Record deletion X

CMR Mapping
Definition

Customize Flow

13-11

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

d
es
cri
pti
o
n
?

Any character string Explanation X re
lat
io
ns
hi
p-
ro
le
-s
o
ur
ce

ej
b-
n
a
m
e

Any character string Enterprise Bean
name

X

d
es
cri
pti
o
n
?

Any character string Explanation X

c
m
r-f
iel
d-
n
a
m
e

Any character string cmr-field-name X

c
m
r-f
iel
d
?

c
m
r-f
iel
d-
ty
p
e
?

Any character string Type X

 ejb-rel
ationsh
ip-role

The above-mentioned reference

description? Any character string Explanation X security-role+

role-name Any character string Security role name X

Security Role

Chapter 13: Customize by EJB Service Operation Command

13-12

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

role-name+ Any character string

It is necessary to define the specified
character string in role-name of the
security-role tag.

Security role name O

description? Any character string Explanation O

ejb-name Any character string Enterprise Bean
name

X

method-intf Any character string Interface name X

method-name Any character string Method name X

method-permis
sion+

method+

method-params? Any character string Parameter X

Method Permission

method+ Refer to method of method-permission Tag. O container-trans
action+

trans-attribute Choose from the following values.

NotSupported

Required

Supports

RequiresNew

Mandatory

Never

Transaction
Attribute

O

Transaction

description? Any character string Memo O

deploy-ejb-version? The following value fixation

1.1

2.0

Based on EJB
specification
version

X version-entry?

deploy-java-version? Choose from the following values.

1.1

1.2

1.3

1.4

JDK version used
for deployment

X

Interstage
Extended
Information

Customize Flow

13-13

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

jndi-name? (Note 3) Any character string Enterprise Bean
JNDI name

X

tran-timeout? Choose from the following values.

0-2147483647

Transaction time
out

O

tran-kind? (Note 1) Choose from the following values.

Local

Global

Distributed
Transaction

O

EJB Application
name

base?

local-mode? Choose from the following values.

False

True

Use of local
invocation

O Interstage
Extended
Information

redirect-mode? Choose from the following values.

False

True

Standard
output/Standard
error output mode

O redirect? (Note
1)

redirect-path? Any character string Standard
output/Standard
error output mode

O

-

max-instance? (Note 3) Choose from the following values.

1-64

Number of initial
start instances

O

session-timeout? (Note 3) Choose from the following values.

0-2147483647

Session timeout
value

O

session-idle-timeout? (Note 3) Choose from the following values.

0-2147483647

No-communicatio
n monitoring time

O

max-ejbobject? (Note 3) Choose from the following values.

1-64

Number of Stateful
Beans that are
connected
concurrently

O

session_eb

stateless-instance-create-type?
(Note 3)

Choose from the following values.

At Start-Up

At First Access

Stateless and
other bean
reference function

O

-

entity-timeout? Choose from the following values.

1-2147483647

EJB object time
out value of Entity
Bean

O

entity-instance-type Choose from the following values.

ReadWrite

ReadOnly

Sequential

Entity Bean
instance
management
mode

O

entity-eb?

entity-instance-size Choose from the following values.

1-2147483647

Number of Entity
Bean instances

O

Interstage
Extended
Information

Chapter 13: Customize by EJB Service Operation Command

13-14

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

 entity-instance-create-type Choose from the following values.

At Start-Up

At First Access

As Required

Entity Bean
instance
generation mode

O

subscription-na
me?

Any character string Subscriber
identifier

O

connection-fact
ory-name?

Any character string ConnectionFactor
y name

O

bean-pool-size? Choose from the following values.

1-10000000

Number of
initial start
instances

O

destination-nam
e?

Any character string Destination name O

retry-count? Choose from the following values.

1-2147483647

Retry count O

backup-connecti
on-factory-name
?

Any character string JMS
ConnectionFactor
y name for use
against error loop

O

messa-driven-
eb?

jms

backup-destinati
on-name?

Any character string Destination name
for use against
error loop

O

Message-driven
Bean Extended
Information

userid Any character string User ID O runas-entry

password Any character string Password O

Security Identity

Customize Flow

13-15

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

datasource-name? Any character string Datasource name O

schema-name? Any character string Schema name O

table-name? Any character string Table name O

CMF Mapping
Definition

select-for-update? Choose from the following values.
False
True

Addition of FOR
UPDATE clause to
findByPrimaryKey
method

O finder Method
Definition

field-name Any character string

When the correspondence of
env-entry-name is not taken in
export between the definition file and
Enterprise Bean definition
information, an error occurs.

Field name X

field-type? Any character string Type X

field-map+

dbcolumn-name Any character string DB Column name O

CMF Mapping
Definition

finder-key-name Any character string

When the correspondence of
env-entry-name is not taken in
export between the definition file and
Enterprise Bean definition
information, an error occurs.

Method signature X

fujitsu-cmp-defi
nition

finder-map+

finder-query-strin
g

Any character string Query O

finder Method
Definition

Chapter 13: Customize by EJB Service Operation Command

13-16

Tab Name Value Meaning Editing Correspondence
to Interstage
Management
Console Screen

datasource-name? Any character string Data source name O

ejb-name Any character string Enterprise Bean
name

O

schema-name Any character string schema-name O

table-name Any character string table-name O

default-
dbcolu
mn-na
me

Any character string CMP field name O

is-prim
ary-key

Choose from the following values.
True
False

Primary key O

CMF Mapping
Definition

fo
rei
gn
-k
ey
?

fo
rei
gn
-ej
b-
na
m
e

Any character string External key O

field-na
me

Any character string CMP field name O

ejb?

field-
map2
x

field-m
ap-entr
y2x*

dbcolu
mn-na
me

Any character string DB column name O

join-name Any character string Join table name O

schema-name Any character string schema-name O

table-name Any character string table-name O

ejb-na
me

Any character string Enterprise Bean
name

O source

cmr-fiel
d?

Any character string CMR field name O

ejb-na
me

Any character string Enterprise Bean
name

O sink

cmr-fiel
d

Any character string CMR field name O

fujitsu-cmp2x-
mapping-defini
tion (Specified
exclusively
from
fujitsu-cmp-defi
nition)

join-o
bject*

field-map2x See ejb tag field-map2x O

CMR Mapping
Definition

Note

Note 1) This tag is invalid if it is defined for V7 or later.

Note 2) This tag is normally not used.

Customize Flow

13-17

Note 3) A similar definition can be made when a function that is compatible with a previous version is used.
Refer to the previous version manual for details of the form and the XML value.

• Tags with ? may be omitted.

• Tags with + may be repeatedly specified.

• If editing-enabled items with optional values are checked to see whether the specified value is
included in the options. Items of the numeric value type are checked to see whether the value type
and range are correct.

• If editing-enabled items exist in the Enterprise Bean definition information, they are changed to
Enterprise Bean definition file values.

• If editing-enabled items are not included in the Enterprise Bean definition information, they are added
to that information.

• The definition file value and Enterprise Bean definition information value of an editing-disabled item
are compared. If these values differ, an error occurs.

Note

When the Enterprise Bean definition information is exported, the "password" of the Enterprise Bean
definition information file displays "*" (one per password character). If the information is imported without
changing this value, the character string is passed as is to the Enterprise Bean definition information.

DB Definition File Contents
This describes DB Definition File Contents the in XML format.

The file contents are as follows.

Table Details
Tab name: XML tab name in definition file

Value: XML value in definition file

Meaning: Tab meaning (the Customize Tool displays its item names.)

Editing: Whether values can be edited (O: Yes; X: No)

Correspondence to customize Tool screen: Correspondence to customize Tool screen

Table 13-4 DB Tab Value, Meaning and Correspondence
Tab name Value Meaning Editing Correspondence to

Customize Tool
screen

registration-name Any character string The JNDI registration
name of the data
source must be
unique.

O DB Access
Environment
Definition

driver-name? Any character string Driver class name O DB Access
Environment
Definition

Chapter 13: Customize by EJB Service Operation Command

13-18

Tab name Value Meaning Editing Correspondence to
Customize Tool
screen

driver-type Choose from the
following values.

JDBC1.22

JDBC2.0

JDBC Driver version O DB Access
Environment
Definition

datasource-name? Any character string Datasource name O DB Access
Environment
Definition

url? Any character string URL of JDBC1.22
driver

O DB Access
Environment
Definition

userid? Any character string User ID O DB Access
Environment
Definition

password? Any character string Password O DB Access
Environment
Definition

initial-context-factory
?

Any character string Class name for JNDI
service provider to
access Naming
Service

O DB Access
Environment
Definition

provider-url? Any character string Class name for JNDI
service provider to
access Naming
Service

O DB Access
Environment
Definition

• The one to select the value checks whether the specified value exists in the selection leg.

• <registration-name> cannot set the value which overlaps with other <registration-name>.

• The item to which setting is mandatory has a different value specified by <driver-type>.

• Tags with ? may be omitted.

• Tags with + may be repeatedly specified.

The item which the DB definition file sets is different according to the version of JDBC used.

Table 13-5 Omissible Settings
Omissible JDBC1.22 JDBC2.0

registration-name O O

driver-name O X

driver-type O O

datasource-name X O

url O X

Customize Flow

13-19

Omissible JDBC1.22 JDBC2.0

userid O Required when userid is set

password O Required when userid is set

Required when userid is set

initial-context-factory X O

provider-url X O

O: Setting is required X: Setting is not required.

Note

When DB definition information is exported, the "password" of the DB definition file displays "*" (one per
password character). If the information is imported without changing this value, the character string is
passed as is to the DB definition information.

Enterprise Bean Definition File Example
This sample provides an Enterprise Bean definition file example.

<?xml version="1.0" encoding="Shift_JIS"?>
<!DOCTYPE ejbdef SYSTEM "ejbdef.dtd">
<ejbdef>
 <ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SampleCMPSession</ejb-name>

 <home>packageCMPSession.SampleCMPSessionHome</home>

 <remote>packageCMPSession.SampleCMPSessionRemote</remote>

 <ejb-class>packageCMPSession.SampleCMPSession</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Bean</transaction-type>

 <env-entry>
 <env-entry-name>SampleCMPSession/Trace</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>OFF</env-entry-value>
 </env-entry>

 <ejb-ref>
 <ejb-ref-name>ejb/SampleCMP</ejb-ref-name>

 <ejb-ref-type>Entity</ejb-ref-type>

Chapter 13: Customize by EJB Service Operation Command

13-20

 <home>SampleCMPHome</home>

 <remote>SampleCMPRemote</remote>

 <ejb-link>SampleCMP</ejb-link>
 </ejb-ref>
 </session>
 </enterprise-beans>
 </ejb-jar>

 <fujitsu-bean-definition>
 <base>
 <jndi-name>SampleCMPSession</jndi-name>

 <tran-timeout>0</tran-timeout>

 <local-mode>False</local-mode>
 </base>

 <session-eb>
 <max-instance>16</max-instance>

 <session-timeout>0</session-timeout>

 <session-idle-timeout>600</session-idle-timeout>

 <max-ejbobject>1024</max-ejbobject>

 <stateless-instance-create-type>At First
Access</stateless-instance-create-type>

 </session-eb>
 </fujitsu-bean-definition>
</ejbdef>

Customize Flow

13-21

DB Definition File Example
This sample provides a DB definition file example.

<?xml version="1.0" encoding="Shift_JIS"?>
<!DOCTYPE fujitsu-datasource-definition SYSTEM "ejbdbdef.dtd">
<fujitsu-datasource-definition>
 <datasource-entry>
 <registration-name>DS0001</registration-name>

 <driver-name>oracle.jdbc.driver.OracleDriver</driver-name>

 <driver-type>JDBC 1.22</driver-type>

 <url>jdbc:oracle:thin:@host:1521:TEST_DB</url>

 <userid>user</userid>

 <password>********</password>
 </datasource-entry>

 <datasource-entry>
 <registration-name>DS00011</registration-name>

 <driver-type>JDBC 2.0</driver-type>

 <datasource-name>jdbc/DataSourceName1</datasource-name>

<initial-context-factory><initial-context-factory>com.sun.jndi.fscontext.Ref
FSContextFactory</initial-context-factory>

 <provider-url>file:///c:/tmp/JNDI</provider-url>
 </datasource-entry>
</fujitsu-datasource-definition>

Chapter 13: Customize by EJB Service Operation Command

13-22

14-1

Chapter 14

Using the Interstage JDBC Driver

This chapter explains the Interstage JDBC Driver used to connect EJB applications to the SQL Server.

Microsoft(R) JDBC driver is recommended, although the Interstage JDBC driver is offered in Interstage
Application Server. Refer to “Environment set up when SQL Server is used” before using Microsoft(R)
JDBC driver to connect EJB applications to SQL Server

Chapter 14: Using the Interstage JDBC Driver

14-2

Overview of Interstage JDBC Driver
The Interstage JDBC Driver provides a function that enables an EJB application to link with an SQL Server
via the JDBC interface.

DB Server

Server

Interstage

EJB
application

SQL Server

Interstage
JDBC Driver

ODBC
Driver SQL Server

Figure 14-1 Linking Interstage with an SQL Server

Environment Setup Required for Connection to SQL Server
When SQL Server is used, the environment is set according to the following procedures.

1. Confirm the Java environment.

2. Set the environment variables

Set the following environment variables. Set these environment variables to the WorkUnit definition
with the Interstage Management Console when you use the WorkUnit. There is no need to set them
to the WorkUnit definition for system environment variables.

Environment variables Setting value

PATH C:\Interstage\EJB\jdbc\bin

CLASSPATH C:\Interstage\EJB\jdbc\lib\fjisjdbc2.jar

3. Register ODBC datasource

The ODBC datasource administrator registers the ODBC datasource. Refer to “SQL Server Books
Online” before registering the ODBC datasource with Windows NT (R).

Overview of Interstage JDBC Driver

14-3

Note

• Use system DSN for the ODBC datasource.

• Do not use the ODBC driver's Connection Pooling function.

4. Start JDBC Naming Service.

Start the execution of the following commands and Naming Service.

java com.fujitsu.interstage.jdbc.FJJdbcNameService [<port_no>]

- [] This can be omitted.

- < port_no>: The port number is specified here. This is 10526 by default.

5. Register the datasource with the JDBC datasource registration tool.

Refer to Help of the JDBC datasource registration tool before registering the JDBC datasource.

6. Define the resource access.

Use the Interstage Management Console to define the resource access. Refer to Help for the
Interstage Management Console for details.

Chapter 14: Using the Interstage JDBC Driver

14-4

Methods of Connection to an SQL Server
Two methods are available for an EJB application to connect to an SQL Server using the Interstage JDBC
Driver:

1. Using the Enterprise Bean Environment

This method involves performing a lookup in the EJB application (as for the datasource defined by DB
Access Environment Definition).

2. Using the Interstage JDBC Driver directly

This method enables the use of the Interstage JDBC Driver directly from an EJB application.

Using the Enterprise Bean Environment
The following operations are required for connection to the SQL Sever using the Enterprise Bean
Environment:

• Define a datasource in the DB access environment definition.

• Describe datasource lookup processing in an EJB application.

For the datasource definition, refer to J2EE Management Tool.

For writing datasource lookup processing in the EJB application, refer to Common.

Using the Interstage JDBC Driver Directly
When connecting to the SQL Server from the EJB application using the Interstage JDBC Driver directly,
two connection methods are available. Describe either of the following operations in the EJB application.

• Operation after datasource connection

• Operation after URL connection

Methods of Connection to an SQL Server

14-5

Datasource Connection Processing
For connection using the JDBC datasource, set the following parameters in the application.

Sample coding

 Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,<factory_class_name>);
 env.put(Context.PROVIDER_URL,<provider_url>);
 InitialContext ctx = new InitialContext(env);
 Datasource ds = (Datasource)ctx.lookup("jdbc/<datasource_name>");
 Connection con = ds.getConnection();

<factory_class_name>
Specify com.fujitsu.interstage.jdbc.FJJdbcContextFactory.

This parameter cannot be omitted.

<provider_url>
Specify the URL used for connection to the naming service.

This parameter cannot be omitted.

The syntax is as follows:

FJIS://<host>[:<port_no>]

(the parameter inside [] is optional)

• <host>

Specify the local host.

• <port_no>

Specify the port number used for connection to the naming service. The default is 10526.

Example

The port number used for connection to the naming service is 10527.

FJIS://localhost:10527

Chapter 14: Using the Interstage JDBC Driver

14-6

<datasource_name>
Specify the JDBC datasource name that was specified when the JDBC datasource was stored.

This parameter cannot be omitted.

Example

The datasource name is MYDS.

Datasource ds = (Datasource)ctx.lookup("jdbc/MYDS")

URL Connection Processing
For connection using URL, set the following in the application program:

Sample coding

Class.forName(<driver_name>);
Connection con = DriverManager.getConnection(<url>,<user>,<password>);

<driver_name>
Specify com.fujitsu.interstage.jdbc.FJDriver.

This parameter cannot be omitted.

<url>
Specify the database to be connected to.

This parameter cannot be omitted.

The syntax is as follows:

jdbc:fjis:///<ODBC_DatasourceName>

• <ODBC_DatasourceName>

Specify the datasource name that was set by the ODBC datasource administrator.

This parameter cannot be omitted.

<user>
Specify the user ID used for connection to the database.

This parameter cannot be omitted.

<password>
Specify the password corresponding to the user ID used for connection to the database.

This parameter cannot be omitted.

Part IV

JTS/JTA Edition

15-1

Chapter 15

Using Java Transaction API (JTA)

JTA is a distributed transaction operation API supplied by a transaction service. The Java transaction
service (JTS) is the transaction service supplied by Interstage.

Chapter 15: Using Java Transaction API (JTA)

15-2

JTA
This section explains the following topics:

• JTA Interfaces

• User Transaction Interface

JTA Interfaces
The JTA specifications were proposed as a standard Java interface by Sun Microsystems, Inc.

Components embedded in a distributed transaction are J2EE application and resource manager.

JTA enables multiple components to be interlinked so that they can be handled as one transaction.

JTA has the following interfaces.

Table 15-1 JTA Interfaces

Interface Description

javax.transaction.UserTransaction Interface that instructs the start or completion of a
transaction. This interface can be used by an application.

javax.transaction.TransactionManager Interface used by the transaction manager. This interface
cannot ordinarily be used from an application.

javax.transaction.Transaction Interface that logically handles a transaction. Usually, this
interface cannot be used by an application.

javax.transaction.Synchronization Interface that performs completion and synchronous
processing of a transaction. Usually, this interface cannot be
used by an application.

javax.transaction.Status Interface that defines the state of a transaction. The value
returned in the getStatus method of UserTransaction is
defined in this interface.

javax.transaction.xa.XAResource Interface between the transaction manager and resource
manager. Usually, this interface need not be used by an
application.

javax.transaction.xa.Xid Identifier interface used when the resource manager handles
a transaction. Usually, this interface need not be used by an
application.

Note

A JTA that can be used by applications is the UserTransaction interface. The TransactionManager
interface cannot be used in an application.

JTA

15-3

User Transaction Interface
The User Transaction interface is included inJTA.

The user transaction interface has the functions listed in Table 15-2.

Table 15-2 Functions Provided by the User Transaction Interface

Function name Description

begin Starts a transaction, and associates the thread with the transaction.

commit Completes a commit operation on the transaction corresponding to the
thread.

getStatus Obtains the status of the transaction related to the thread.

rollback Completes a rollback operation on the transaction related to the thread.

setRollbackonly Allows only rollback to be performed on the corresponding transaction.

setTransactionTimeout Sets the transaction timeout.

A transaction timeout must be specified before a transaction starts.

Note

A transaction timeout must be specified using the setTransactionTimeout method before a transaction
starts.

If a transaction timeout is specified after a transaction starts, it is not applied to the started transaction.

Environment Setup for the User Transaction Interface
To use the User Transaction interface in a J2EE application other than an EJB application, define the
following class libraries in a class path.

• fjtsclient.jar (class library for JTS clients)

• isj2ee.jar (class library of J2EE)

• class library of CORBA service

• class library for EJB service (required for creating an EJB client application)

Note

Class libraries for JTS client can be installed only by the server function. They are not installed by the
client function. To run a JTA application in environment in which the client function is installed, class
libraries for JTS client must be copied from the environment in which the server function is installed.

Class libraries are stored in the following locations on the environment in which the server function is
installed.

Chapter 15: Using Java Transaction API (JTA)

15-4

Class library for clients
Storage locations

C:\INTERSTAGE\ots\lib\fjtsclient.jar

/opt/FSUNots/lib/fjtsclient.jar

/opt/FJSVots/lib/fjtsclient.jar

Note

When using the User Transaction interface in an EJB application, do not define a JTS class library in the
environment variable class path.

Acquiring the User Transaction Interface
This section explains how to acquire the UserTransaction object from JNDI to use the User Transaction
interface.

To acquire the UserTransaction object from JNDI, define JNDI environment properties.

For details on the JNDI environment properties, see Setting Details of JNDI Environment Properties in
Chapter 6 .

When acquiring the UserTransaction object from JNDI, specify the JNDI name below.

java:comp/UserTransaction

Example

InitialContext ic = new InitialContext();
UserTransaction ut = ic.lookup("java:comp/UserTransaction");

Note

If JNDI environment properties are not correctly defined, lookup processing fails. In this case, confirm
the setting of the JNDI environment properties.

Generating a JTA Application

15-5

Generating a JTA Application
This section explains how to generate a JTA application.

Application Configuration
Figure 15-1 shows an example of a client application configuration that takes the following processes
into account.

Figure 15-1 Client Application Configuration

Initialization process
Use JNDI to acquire the UserTansaction object.

Start a transaction
Start a transaction.

Application process section
Describe the business logic.

Completion of transaction
Commit or roll back a transaction.

Chapter 15: Using Java Transaction API (JTA)

15-6

Performing Initialization Process and Acquiring the
UserTransaction object

Generate InitialContext, and then acquire the javax.transaction.UserTransaction object.

When acquiring the UserTransaction object from JNDI, specify the JNDI name below.

java:comp/UserTransaction

Example

The following is a process description example.

/* Initialization process*/
javax.transaction.UserTransaction ut = null;
javax.naming.Context ic = null;
// Create of InitialContext
try{
 ic = new InitialContext();
} catch(NamingException e) {
 System.out.println("error: new InitialContext()");
 System.exit(1);
}
// Acquisition of UserTransaction
try {
 ut = (UserTransaction)ic.lookup(“java:comp/UserTransaction”);
} catch(NamingException e) {
 System.out.println("error: lookup UserTransaction");
 System.exit(1);
}

From Transaction Start to Transaction Stop
To start a transaction with the UserTransaction interface, issue the begin method.

To complete a transaction with the UserTransaction interface, issue the commit or rollback method. The
commit method is used to determine a kind of processing and the rollback method is used to cancel the
processing.

Example

An example of description of processing is as follows.

// Acquisition of UserTransaction
try {
 ut = (UserTransaction)ic.lookup(“java:comp/UserTransaction”);
} catch(NamingException e) {
 System.err.println("error: lookup UserTransaction");
 System.exit(1);
}
try {
 ut.begin();
} catch (NotSupportedException e) {

Generating a JTA Application

15-7

 System.err.println("The thread is already associated with a transaction
");
 System.exit(1);
} catch(SystemException e) {
 System.err.println("The system error has been encountered");
 System.exit(1);
}

try {
// Describe the business logic.
} catch(Throwable e) {
// In this example, when the process fails, the flag is set to false.
commitRequest = false;
}

if(commitRequest) {
 try {
 ut.commit();
 } catch(RollbackException e) {
 System.err.println("The transaction has been rolled back rather than
committed");
 } catch(SystemException e) {
 System.err.println("The system error has been encountered.");
 }
} else {
 try {
 ut.rollback();
 } catch(java.lang.IllegalStateException e) {
 System.err.println("The current thread is not associated with a
transaction.");
 } catch(SystemException e) {
 System.err.println("The system error has been encountered.");
 }
}

JTA Application Example

/* Initialization process*/
javax.transaction.UserTransaction ut = null;
javax.naming.Context ic = null;
// Create of InitialContext
try{
 ic = new InitialContext(); (1)
} catch(NamingException e) {
 System.out.println("error: new InitialContext()");
 System.exit(1);
}
// Acquisition of UserTransaction
try {
 ut = (UserTransaction)ic.lookup(“java:comp/UserTransaction”); (2)
} catch(NamingException e) {
 System.err.println("error: lookup UserTransaction");
 System.exit(1);

Chapter 15: Using Java Transaction API (JTA)

15-8

}
try {
 ut.begin(); (3)
} catch (NotSupportedException e) {
 System.err.println("The thread is already associated with a transaction
");
 System.exit(1);
} catch(SystemException e) {
 System.err.println("The system error has been encountered");
 System.exit(1);
}

try {
 // Describe the business logic. (4)
} catch(Throwable e) {
 // In this example, when the process fails, the flag is set to false.
 commitRequest = false;
}

if(commitRequest) { (5)
 try {
 ut.commit(); (6)
 } catch(RollbackException e) {
 System.err.println("The transaction has been rolled back rather than
committed");
 } catch(SystemException e) {
 System.err.println("The system error has been encountered.");
 }
} else {
 try {
 ut.rollback(); (6)
 } catch(java.lang.IllegalStateException e) {
 System.err.println("The current thread is not associated with a
transaction.");
 } catch(SystemException e) {
 System.err.println("The system error has been encountered.");
 }
}

1. To use JNDI, generate InitialContext.

2. Acquire the javax.transaction.UserTransaction object from JNDI.

3. Start a transaction using the javax.tansaction.UserTransaction.begin method.

4. Describe a business process.

5. Confirm whether the transaction can be committed, and determine the state of the transaction.

6. When determining and terminating the transaction, use the commit method to commit the
transaction.

7. When not committing the transaction because of an error, use the rollback method to roll back the
transaction.

Note

For details on JNDI, refer to JNDI in Chapter 4.

Generating a JTA Application

15-9

Precautions

When the Client Application Failed to be Activated
Confirm whether necessary information is defined in environment variables.

• fjtsclient.jar (class library for JTS clients)

• isj2ee.jar (class library of J2EE)

• class library of CORBA service

• class library for EJB service (required for creating an EJB client application)

For environment properties necessary for JNDI, refer to JNDI in Chapter 4.

If the Client Application Detects an Error
If the client application detects an error as detailed below, terminate the transaction by issuing the
rollback command:

• If the client application detects an abnormality within its own programs.

• If the server application notifies the client application of an error.

Chapter 15: Using Java Transaction API (JTA)

15-10

Part V

JMS Edition

16-1

Chapter 16

Environment Settings for Interstage JMS

This chapter describes the environment settings for using Interstage JMS.

Chapter 16: Environment Settings for Interstage JMS

16-2

Environment Settings for the Event Channel
Operation Machine

This section describes the environment settings for the machine that performs operation of the event
channel used for sending/receiving messages by the JMS application.

The following table lists the commands provided by the Event Service.

Table 16-1 List of Commands of the Event Service
Classification Command name Outline

Environment essetcnf Administers Event Service configuration
information

Event Service esmonitor Displays Event Service status

esstartfctry Starts an Event Channel factory Event Factory

esstopfctry Stops an Event Channel factory

esmkunit Generates an Unit

esrmunit Deletes an Unit

esstartunit Starts an Unit

Unit

esstopunit Stops an Unit

esmkchnl Generates an Event Channel

esrmchnl Deletes an Event Channel

esstartchnl Starts an Event Channel

esstopchnl Stops an Event Channel

essetcnfchnl Sets an operating environment for Event Channels

Event Channel

esmonitorchnl Displays Event Channel connection information

The following table shows the correspondence between terms used in the Event Service and terms used
in Interstage JMS.

Table 16-2 List of Terms used in the Event Service and Interstage JMS
Event Service Interstage JMS

Event Channel Topic or Queue

Statically generated channels Topic or Queue

Dynamically generated channels TemporaryTopic or TemporaryQueue

Consumer Subscriber or Receiver

Supplier Publisher or Sender

Event Data Message

Environment Settings for the Event Channel Operation Machine

16-3

Environment Setting before Operation
The following figure shows the procedure for environment setting before the operation.

Figure 16-1 Event Channel Operation Machine Environment Setting Operations

Starting Interstage
Activate the Event Service by starting Interstage with the isstart command.

isstart

Note

After adding the line 'Event Service=yes' to the Interstage operating environment definition file, initialize
Interstage using the isinit command.

Creating and Starting a Unit
To use the following functions, create a unit with the esmkunit command.

• Durable Subscription function

• Event channel unvolatilizing function (message assurance function)

• Local transaction function (message assurance function)

• Global transaction function (message assurance function)

Example

Creating a unit using the unit definition file 'unit1.def'.

esmkunit -uf unit1.def

Edit the following items in the unit definition file as required:

• unitmode

Specify std (standard unit) or ext (extended unit). To use the global transaction function, specify ext.

• trandir

Specify the directory to store the transaction files. For Windows®, the directory must be in NTFS.

Chapter 16: Environment Settings for Interstage JMS

16-4

• sysdir

Specify the directory to store the system files. For Windows®, the directory must be in NTFS.

• userdir

Specify the directory to store event data files. For Windows®, the directory must be in NTFS.

The 'esunit01.def' prototype of a unit definition file is in the following directory (default installation path):

C:\Interstage\eswin\etc\def

/opt/FJSVes/etc/def

Then, start the unit by using the esstartunit command.

Example

Starting the unit name 'unit1'

esstartunit -unit unit1

Creating a Static Event Channel
Create an event channel used for sending/receiving messages by the JMS application by using the
esmkchnl command.

Specify the following options and arguments as required:

• -notify

This option is required.

• -ptp

For the Point-To-Point messaging model, specify this option. When this option is omitted, the
Publish/Subscribe messaging model is assumed.

• -persist all

Specify -persist all when the Durable Subscription function, persistent function of the event channel,
local transaction function, or global transaction function is used.

• -tran

Specify -tran when the global transaction function is not used.

• -ots

Specify -ots when the global transaction function is used.

Environment Settings for the Event Channel Operation Machine

16-5

Example

For Publish/Subscribe messaging model:

Specify as shown below when the event channel 'mychannel' for operation using the persistent function of
the event channel and local transaction function should be created in the group 'mygroup':

esmkchnl -g mygroup -c mychannel -notify -persist all -tran

For Point-To-Point messaging model:

Specify as shown below when the event channel 'mychannel' for operation using the persistent function of
the event channel and local transaction function should be created in the group 'mygroup':

esmkchnl -g mygroup -c mychannel -notify -ptp -persist all -tran

Note

Check that the database linkage service has been started before global transaction operation.

Ensure you specify a database linkage service concurrency value higher than the total number of
subscribers and publishers (or receivers and senders).

For more information, refer to the JTS Operation chapter.

In the Point-To-Point messaging model, change the timeout value of the local transaction (default:
604,800 seconds) to a smaller value (about 300 seconds is recommended) with the essetcnfchnl
command (-ltrntime option specification).

Changing the Event Channel Operating Environment
The event channel operating environment can be changed by:

• Setting the event service configuration information with the essetcnf command

• Setting the event channel environment information with the essetcnfchnl command

The following describes the command options.

Table 16-3 essetcnf Command and essetcnfchnl Command Options
Option Description

-schmax Maximum number of activations of the static event channel used by a topic or queue

-dchmax Maximum number of activations of the dynamic event channel used by a temporary
topic or temporary queue

-edinit Initial number of messages that can be stored in an event channel

-edmax Maximum number of messages that can be stored in an event channel

-wtime Message waiting time (second) (*1)

-coninit Initial number of subscribers or receivers that can be connected to an event channel

-conext Extended number of subscribers or receivers that can be connected to an event
channel

Chapter 16: Environment Settings for Interstage JMS

16-6

Option Description

-conenum Number of extensions of subscribers or receivers that can be connected to an event
channel

-supinit Initial number of publishers or senders that can be connected to an event channel

-supext Extended number of publishers or senders that can be connected to an event channel

-supenum Number of extensions of publishers or senders that can be connected to an event
channel

-logsize Size of the log file (in Kbytes) which stores error information from the Event Service

-loglevel Error information level sent to the log file

-logdump Event data dump size sent to the log file

-gtrnmax Number of global transactions that can be executed simultaneously

-ltrntime Local transaction timeout period (in seconds)

-2pctime Two-phase commit timeout monitoring period (in seconds)

-retrytime Retry interval during recovery (in seconds)

-retrymax Recovery retry count

-chkcon Error return mode during disconnection of subscribers

-dcache Number of memory caches for messages at persistent operation of an event channel

*1) A value of ten seconds or more is recommended as the waiting time of the event data. If setting a wait
time of less than 10 seconds, configure operations that do not wait for event data using the
receiveNoWait() method.

This value varies with the period_receive_timeout value of the CORBA service operating
environment file (config). The timeout for receiving messages specified by receive() is checked at the
intervals set for the wait time. Therefore, the timeout for receiving messages is returned as follows:

• For 'Wait time for event data >= Value of receive()'

The timeout for receiving messages is returned as 'Wait time for event data'.

Example

Wait time for event data: '40 seconds', Value of receive() '10': 40 seconds

• For 'Wait time for event data < Value of receive()'

The timeout for receiving messages is returned as 'Wait time for event data * Number of checks'.

Example

Wait time for event data: '40 seconds', Value of receive() '50': 80 (40 * 2) seconds

Environment Settings for the Event Channel Operation Machine

16-7

Note

When the environment of an Event Service in persistent operation is modified, only the following
configuration information and environment information can be modified.

• -wtime

• -dtime

• -logsize

• -loglevel

• -logdump

• -ltrntime

• -2pctime

• -chkcon

If you try to change other information, the operating environment of the event channel in persistent
operation may be modified. This means the integrity of the persistent information may not be retained, and
the event channel in persistent operation must be recreated.

Environment Deletion after Operation
The following figure shows the procedure for environment deletion after the operation:

Figure 16-2 Event Channel Operation Machine Environment Deletion Operations

Deleting the Static Event Channel
Delete the event channel used for sending/receiving messages by the JMS application by using the
esrmchnl command.

Example

Specify as shown below to delete all event channels belonging to the group 'mygroup'.

esrmchnl -g mygroup

Note

If a unit is being used, you must activate it by using the esstartunit command.

Chapter 16: Environment Settings for Interstage JMS

16-8

Stopping and Deleting a Unit
If a unit is being used, forcibly stop it by using the esstopunit command.

Example

Stopping the unit name 'unit1' forcibly.

esstopunit –unit unit1 -o off

Then, delete the unit by using the esrmunit command.

Example

Deleting the unit name 'unit1'.

esrmunit –unit unit1

Stopping Interstage
Stop the Event Service forcibly by stopping Interstage using the isstop command.

isstop -f

Environment Settings for the JMS Application Operation Machine

16-9

Environment Settings for the JMS Application
Operation Machine

This section describes the environment settings for the machine that operates JMS applications.

The following definitions are needed for operation of JMS applications by the user:

• JNDI environment definition

Definition needed for the JMS application to access the Naming Service of JNDI

• ConnectionFactory definition

Definition needed to connect to the Interstage JMS provider

• Destination definition

Definition information of the destination to/from which messages are sent/received by the JMS
application

The following table lists the commands provided by Interstage JMS:

Table 16-4 List of Commands of Interstage JMS
Classification Command name Outline

jmsmkfact Registers ConnectionFactory definition

jmsrmfact Deletes ConnectionFactory definition

ConnectionFactory

jmsinfofact Lists ConnectionFactory definitions

jmsmkdst Registers Destination definition

jmsrmdst Deletes Destination definition

Destination

jmsinfodst Lists Destination definitions

jmsrmds Deletes durable Subscriber durable Subscriber

jmsinfods Lists durable Subscribers

Check that the paths and class files required for the operation of JMS applications are defined in the
following environment variables (default installation path).

• Environment variable PATH

JDK path (Note 1)

C:\Interstage\J2EE\bin (Note 2)

C:\Interstage\jms\bin (Note 2)

Chapter 16: Environment Settings for Interstage JMS

16-10

• Environment variable CLASSPATH

C:\Interstage\ODWIN\etc\Class\ODjava2.jar (Note 3)

C:\Interstage\eswin\lib\esnotifyjava2.jar (Note 4) (Note 5)

C:\Interstage\J2EE\lib\isj2ee.jar

C:\Interstage\jms\lib\fjmsprovider.jar

C:\Interstage\ots\lib\fjtsclient.jar (Note 6) (Note 7)

• Environment variable PATH

JDK path (Note 1)

/opt/FJSVj2ee/bin

/opt/FJSVjms/bin

• Environment variable CLASSPATH

/opt/FSUNod/etc/class/ODjava2.jar (Note 3)

/opt/FJSVes/lib/esnotifyjava2.jar (Note 5)

/opt/FJSVj2ee/lib/isj2ee.jar

/opt/FJSVjms/lib/fjmsprovider.jar

/opt/FSUNots/lib/fjtsclient.jar (Note 6)

• Environment variable LD_LIBRARY_PATH

/opt/FSUNod/lib

/opt/FJSVjms/lib

Environment Settings for the JMS Application Operation Machine

16-11

• Environment variable PATH

JDK path (Note 1)

/opt/FJSVj2ee/bin

/opt/FJSVjms/bin

• Environment variable CLASSPATH

/opt/FJSVod/etc/class/ODjava2.jar (Note 3)

/opt/FJSVes/lib/esnotifyjava2.jar (Note 5)

/opt/FJSVj2ee/lib/isj2ee.jar

/opt/FJSVjms/lib/fjmsprovider.jar

/opt/FJSVots/lib/fjtsclient.jar (Note 6)

• Environment variable LD_LIBRARY_PATH

/opt/FJSVod/lib

/opt/FJSVjms/lib

Note 1) If multiple JDKs are installed, make a setting so that the JDK to be used has a valid path.

Note 2) On Windows® 9x and Windows® Me, you need to set the PATH variable as a system
environment variable after installation.

Note 3) If JDK 1.4 is used, set the following class file:

ODjava4.jar

Note 4) If the Interstage client function is installed, set the following class file:

C:\Interstage\ODWIN\etc\Class\esnotifyjava2.jar

Note 5) If the JDK 1.4 is used, set the following class file:

esnotifyjava4.jar

Note 6) Required to use the global transaction function.

Note 7) Must be retrieved by the database linkage service from the host in which the function is installed.

Note

Check that the CORBA service (ObjectDirector) is specified in the environment setup file as an ORB to be
used.

Create a text file called orb.properties associated with the ORB to be used, then save this text file under
'lib' within the directory defined in the Java system properties file 'java.home.' Save according to the
instructions below for each installed package, including: Interstage Java Server Package (for Linux, Java
execution environment), Interstage Apworks Client Runtime Package, and the JDK/JRE.

Chapter 16: Environment Settings for Interstage JMS

16-12

Interstage Java Server Package

For JRE1.3
 <Installation directory of Interstage Java Server Package>\jbk3\jre\lib
For JDK1.3
 <Installation directory of Interstage Java Server Package>\jbk3\jdk\jre\lib
For JDK1.4
 <Installation directory of Interstage Java Server Package>\jbk4\jdk\jre\lib

Interstage Apworks Client Runtime Package

For JRE1.3
 <Installation directory of Interstage Apworks Client Runtime
Package>\jbk3\jre\lib
For JRE1.4
 <Installation directory of Interstage Apworks Client Runtime
Package>\jbk4\jre\lib

The function equivalent to Interstage Apworks Client Runtime Package (See Note below)

For JRE1.3
 <Installation directory of the function equivalent to Interstage Apworks Client
Runtime Package>\jre13\lib
For JRE1.4
 <Installation directory of the function equivalent to Interstage Apworks Client
Runtime Package>\jre14\lib

Note

Interstage Client function installation directory locations (equivalent to Interstage Apworks Client Runtime
Package, included with the Interstage Java Server Package or JRE JBK plug-in).

Interstage Java Server Package (for Linux, Java execution environment)

For JRE1.3
 <Installation directory of Interstage Java Server Package>/jre13/lib
For JRE1.4
 <Installation directory of Interstage Java Server Package>/jre14/lib
For JDK1.3
 <Installation directory of Interstage Java Server Package>/jdk13/jre/lib
For JDK1.4
<Installation directory of Interstage Java Server Package>/jdk14/jre/lib

Environment Settings for the JMS Application Operation Machine

16-13

Example settings for the orb.properties file:

 org.omg.CORBA.ORBClass=com.fujitsu.ObjectDirector.CORBA.ORB
 org.omg.CORBA.ORBSingletonClass=com.fujitsu.ObjectDirector.CORBA.
SingletonORB

Environment Setting before Operation
The following figure shows the procedure for environment setting before operation:

Figure 16-3 Application Operation Machine Environment Setting

Setting JNDI Environment Definitions
To allow a JMS application to access the JNDI naming service, you need to specify an environment
property or specify a resource manager name in the reference resource information of deployment
descriptor.

• For information on a client container, refer to Setting J2EE Application Clients in Chapter 6.

• For information on an EJB container, refer to Common in Chapter 28.

• For information on a Web container, refer to The Servlet Service Environment Definition Files in
Chapter 11.

Registering ConnectionFactory Definition
Register the ConnectionFactory definitions to be referenced by the JMS application by using the
jmsmkfact command.

Specify the following option or argument as required:

• -t

Specify when ConnectionFactory is of TopicConnectionFactory type.

• -q

Specify when ConnectionFactory is of QueueConnectionFactory type.

• -x

Specify -x to use the global transaction function.

Chapter 16: Environment Settings for Interstage JMS

16-14

Example

For Publish/Subscribe messaging model:

Specify as shown below to register the ConnectionFactory definition of TopicConnectionFactory type
whose client ID is 'client' and JNDI name is 'java:comp/env/jms/TestTopicConnectionFactory'.

jmsmkfact -t -i client TestTopicConnectionFactory

For Point-To-Point messaging model:

Specify as shown below to register the ConnectionFactory definition of QueueConnectionFactory type
whose client ID is 'client' and JNDI name is 'java:comp/env/jms/TestQueueConnectionFactory'.

jmsmkfact -q -i client TestQueueConnectionFactory

Note

The ConnectionFactory definition can also be registered using the J2EE Management tool or the J2EE
resource access definition.

Registering Destination Definition
Register the Destination definitions to be referenced by the JMS application by using the jmsmkdst
command.

Specify the following option or argument as required:

• -t

Specify when Destination is of Topic type.

• -q

Specify when Destination is of Queue type.

Example

For Publish/Subscribe messaging model:

Specify as shown below to associate the event channel 'mychannel' of the group 'mygroup' with the
Destination definition of Topic type whose JNDI name is 'java:comp/env/jms/TestTopic'.

jmsmkdst -t -g mygroup -c mychannel TestTopic

For Point-To-Point messaging model:

Specify as shown below to associate the event channel 'mychannel' of the group 'mygroup' with the
Destination definition of Queue type whose JNDI name is 'java:comp/env/jms/TestQueue'.

jmsmkdst -q -g mygroup -c mychannel TestQueue

Environment Settings for the JMS Application Operation Machine

16-15

Note

The Destination definition can also be registered using the J2EE Management tool or the J2EE resource
access definition.

Environment Setup during Web Application Operation
To use JMS in a Web application, you need to make the following settings:

JServlet environment definition file (jswatch.conf)
• Environment variables

Set the following environment variables in [containername].env.

− Environment variable PATH

− Environment variable CLASSPATH

− Environment variable LD_LIBRARY_PATH

Note

For information on the environment variables to be specified, refer to Environment Settings for the JMS
Application Operation Machine in Chapter 39.

The following shows some setting examples.

Path settings
 [containername].env=PATH=C:\Interstage\J2EE\bin
 [containername].env=PATH=C:\Interstage\jms\bin
Class path settings
 [containername].env=CLASSPATH=C:\Interstage\ODWIN\etc\class\ODjava2.jar
 [containername].env=CLASSPATH=C:\Interstage\eswin\lib\esnotifyjava2.jar
 [containername].env=CLASSPATH=C:\Interstage\J2EE\lib\isj2ee.jar
 [containername].env=CLASSPATH=C:\Interstage\jms\lib\fjmsprovider.jar

Path settings
 [containername].env=PATH=/opt/FJSVj2ee/bin
 [containername].env=PATH=/opt/FJSVjms/bin
Class path settings
 [containername].env=CLASSPATH=/opt/FSUNod/etc/class/ODjava2.jar
 [containername].env=CLASSPATH=/opt/FJSVes/lib/esnotifyjava2.jar
 [containername].env=CLASSPATH=/opt/FJSVj2ee/lib/isj2ee.jar
 [containername].env=CLASSPATH=/opt/FJSVjms/lib/fjmsprovider.jar
Library path settings
 [containername].env=LD_LIBRARY_PATH=/opt/FSUNod/lib:/opt/FJSVjms/lib

Chapter 16: Environment Settings for Interstage JMS

16-16

Path settings
 [containername].env=PATH=/opt/FJSVj2ee/bin
 [containername].env=PATH=/opt/FJSVjms/bin
Class path settings
 [containername].env=CLASSPATH=/opt/FJSVod/etc/class/ODjava2.jar
 [containername].env=CLASSPATH=/opt/FJSVes/lib/esnotifyjava2.jar
 [containername].env=CLASSPATH=/opt/FJSVj2ee/lib/isj2ee.jar
 [containername].env=CLASSPATH=/opt/FJSVjms/lib/fjmsprovider.jar
Library path settings
 [containername].env=LD_LIBRARY_PATH=/opt/FJSVod/lib:/opt/FJSVjms/lib

• Startup parameters

Set an environment property in [containername].bin.parameters to enable the object reference
function.

Web application environment definition file (web.xml)
Make a ConnectionFactory definition.

For information on a JServlet environment and a Web application environment definition file, refer to The
Servlet Service Environment Definition Files in Chapter 11.

Environment Deletion after Operation
The following figure shows the procedure for environment deletion after operation:

Figure 16-4 Application Operation Machine Environment Deletion

Deleting ConnectionFactory Definition
Delete the ConnectionFactory definitions by using the jmsrmfact command.

Example

Specify as shown below to delete the ConnectionFactory definition whose JNDI name is
'java:comp/env/jms/TestTopicConnectionFactory'.

jmsrmfact TestTopicConnectionFactory

Note

The ConnectionFactory definition can also be deleted using the J2EE Management tool or the J2EE
resource access definition.

Environment Settings for the JMS Application Operation Machine

16-17

Deleting Destination Definition
Delete the Destination definitions by using the jmsrmdst command.

Example

Specify as shown below to delete the Destination definition whose JNDI name is
'java:comp/env/jms/TestTopic'.

jmsrmdst TestTopic

Note

The Destination definition can also be deleted using the J2EE Management tool or the J2EE resource
access definition.

Deleting Durable Subscriber
When the Durable Subscription function was used, if a durable Subscriber is not deleted by an application
with the unsubscribe method, a durable Subscriber must be deleted with the jmsrmdst command.

Example

Specify as shown below to delete the durable Subscriber whose Durable Subscription name is 'dsub' and
client ID is 'client'.

jmsrmds -n dsub -i client

Durable Subscription name and client ID can be checked with the jmsinfods command.

Note

If a durable Subscriber is deleted, you must activate the event channel by using the esstartchnl command.

Chapter 16: Environment Settings for Interstage JMS

16-18

17-1

Chapter 17

Developing a JMS Application

This chapter describes the development procedure of a JMS application.

Chapter 17: Developing a JMS Application

17-2

Designing an Application
Design a JMS application according to its purpose as follows:

• When a message arrives at the destination, it should be processed automatically

Use the Message Listener.

• In the Publish/Subscribe messaging model, messages delivered when the receiving JMS application
is stopped should be received

Use the Durable Subscription function.

• Message losses should be prevented

Use the message persistent function and the local transaction function.

• Message processing and database processing should be guaranteed consistently

Use the global transaction function.

• When a receiver application wants to receive only the interested information

Use the message selector function.

• When a channel is not created for each sender site or receiver site to save resources

Use the message selector function.

• When the environment of an event service does not need to be changed even if a sender site or
receiver site is changed frequently

Use the message selector function.

• In the Point-To-Point messaging model, when messages stored in the queue need to be monitored

Use the queue browser function.

Creating a JMS Application

17-3

Creating a JMS Application
Create an application in accordance with the Java Message Service 1.0.2 specification released by US
Sun Microsystems, Inc.

Publish/Subscribe Messaging Model
This section describes developing an application in the Publish/Subscribe messaging model.

In the Publish/Subscribe messaging model, a publisher (sending application) and a subscriber (receiving
application) are used.

A publisher sends a message to the event channel while a subscriber requests the event channel for a
message.

Creating a Publisher
A publisher sends a message to the event channel. The following provides a procedure example and a
processing flow in which a publisher sends a message to the event channel.

Publisher

public class Publisher {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic');
/* 3 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
4 */
 TopicSession topicSession =
 topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
/* 5 */
 TopicPublisher topicPublisher = topicSession.createPublisher(topic);
/* 6 */
 topicPublisher.publish(Message); /*
7 */
 topicConnection.close(); /*
8 */

Chapter 17: Developing a JMS Application

17-4

 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Create TopicConnection.

5. Create TopicSession.

6. Create TopicPublisher.

7. Send a message.

8. Close TopicConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Creating a Subscriber
A subscriber requests the event channel for a message. The following provides a procedure example and
a processing flow in which a subscriber requests the event channel for a message.

Subscriber

public class SubscriberS {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
4 */
 TopicSession topicSession =
 topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
/* 5 */
 TopicSubscriber topicSubscriber = topicSession.createSubscriber(topic);
/* 6 */
 topicConnection.start(); /*
7 */

Creating a JMS Application

17-5

 Message message = topicSubscriber.receive(); /*
8 */
 topicConnection.close(); /*
9 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Create TopicConnection.

5. Create TopicSession.

6. Create TopicSubscriber.

7. Start the delivery of a message upon connection.

8. Receive a message.

9. Close TopicConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Point-To-Point Messaging Model
This section describes developing an application in the Point-To-Point messaging model.

In the Point-To-Point messaging model, a sender (sending application) and a receiver (receiving
application) are used.

A sender sends a message to the event channel while a receiver requests the event channel for a
message.

Chapter 17: Developing a JMS Application

17-6

Creating a Sender
A sender sends a message to the event channel. The following provides a procedure example and a
processing flow in which a sender sends a message to the event channel.

Sender

public class Sender {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");
/* 2 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");
/* 3 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection(); /*
4 */
 QueueSession queueSession =
 queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
/* 5 */
 QueueSender queueSender = queueSession.createSender(queue); /*
6 */
 queueSender.send(Message); /*
7 */
 queueConnection.close(); /*
8 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Create QueueConnection.

5. Create QueueSession.

6. Create QueueSender.

7. Send a message.

8. Close QueueConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Creating a JMS Application

17-7

Creating a Receiver
A receiver requests the event channel for a message. The following provides a procedure example and a
processing flow in which a receiver requests the event channel for a message.

Subscriber

public class SubscriberS {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext();
* 1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
 /* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection();
* 4 */
 TopicSession topicSession =
 topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 /* 5 */
 TopicSubscriber topicSubscriber = topicSession.createSubscriber(topic);
 /* 6 */
 topicConnection.start(); /*
7 */
 Message message = topicSubscriber.receive(); /*
8 */
 topicConnection.close(); /*
9 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Create QueueConnection.

5. Create QueueSession.

6. Create QueueReceiver.

7. Start the delivery of a message upon connection.

8. Receive a message.

9. Close QueueConnection.

Chapter 17: Developing a JMS Application

17-8

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to Setting Details of JNDI Environment Properties in Chapter 6.

Message Listener
This section describes developing a receiving application using Message Listener.

Message Listener is a function of automatically handling a message when it arrives at a receiver.

Creating a Subscriber using Message Listener
To handle a received message, register a Message Listener object. When a message arrives, Message
Listener is invoked. The following provides a procedure example and a processing flow for receiving a
message using Message Listener.

Subscriber using Message Listener

public class SubscriberA implements MessageListener { /*
1 */
 public static void main() {
 ...
 SubscriberA subscriber = new SubscriberA(); /*
2 */
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
3 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 4 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 5 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
6 */
 TopicSession topicSession =
 topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
/* 7 */
 TopicSubscriber topicSubscriber = topicSession.createSubscriber(topic);
/* 8 */
 topicSubscriber.setMessageListener(subscriber); /*
9 */
 topicConnection.start(); /*
10 */
 /* Queuing processing */
 topicConnection.close(); /*
11 */
 } catch(Exception e) {
 ...
 }
 ...
 }

Creating a JMS Application

17-9

 public void onMessage(Message message) {
 ...
 try {
 } catch(JMSException e) {
 ...
 }
 ...
 }
}

1. Implement a MessageListener interface.

2. Create a class instance.

3. Construct a JNDI start context.

4. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

5. Acquire a Topic object (if the JNDI name is 'Topic').

6. Create TopicConnection.

7. Create TopicSession.

8. Create TopicSubscriber.

9. Register the MessageListener object.

10. Start the delivery of a message upon connection.

11. Close TopicConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Creating a Receiver using Message Listener
To handle a received message, register a Message Listener object. When a message arrives, Message
Listener is invoked. The following provides a procedure example and a processing flow for receiving a
message using Message Listener.

Receiver using Message Listener

public class ReceiverA implements MessageListener { /*
1 */
 public static void main() {
 ...
 ReceiverA receiver = new ReceiverA(); /*
2 */
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
3 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");

Chapter 17: Developing a JMS Application

17-10

/* 4 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");
/* 5 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection(); /*
6 */
 QueueSession queueSession =
 queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
/* 7 */
 QueueReceiver queueReceiver = queueSession.createReceiver(queue); /*
8 */
 queueReceiver.setMessageListener(receiver); /*
9 */
 queueConnection.start(); /*
10 */
 /* Queuing processing */
 queueConnection.close(); /*
11 */
 } catch(Exception e) {
 ...
 }
 ...
 }

 public void onMessage(Message message) {
 ...
 try {
 } catch(JMSException e) {
 ...
 }
 ...
 }
}

1. Implement a MessageListener interface.

2. Create a class instance.

3. Construct a JNDI start context.

4. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

5. Acquire a Queue object (if the JNDI name is 'Queue').

6. Create QueueConnection.

7. Create QueueSession.

8. Create QueueReceiver.

9. Register the MessageListener object.

10. Start the delivery of a message upon connection.

11. Close QueueConnection.

Creating a JMS Application

17-11

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Durable Subscription Function
This section describes developing a receiving application using the Durable Subscription function.

The Durable Subscription function is a function that allows a message sent while an application is not
active to be received after the application becomes active.

Creating a Subscriber using the Durable Subscription Function
Create a durable subscriber. A durable subscriber requests the event channel for a message. The
following provides a procedure example and a processing flow for receiving a message using the Durable
Subscription function.

Subscriber using the Durable Subscription Function

public class SubscriberD {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
4 */
 TopicSession topicSession =
 topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
/* 5 */
 TopicSubscriber topicSubscriber =
 topicSession.createDurableSubscriber(topic, "dsub"); /*
6 */
 topicConnection.start(); /*
7 */
 Message message = topicSubscriber.receive(); /*
8 */
 topicSubscriber.close(); /*
9 */
 topicSession.unsubscribe("dsub"); /*
10 */
 topicConnection.close(); /*

Chapter 17: Developing a JMS Application

17-12

11 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Create TopicConnection.

5. Create TopicSession.

6. Create Durable TopicSubscriber (if the Durable Subscription name is 'dsub').

7. Start the delivery of a message upon connection.

8. Receive a message.

9. Close Durable TopicSubscriber.

10. Release Durable TopicSubscriber (if messages that were sent during interruption of the application
are not received after restarting).

11. Close TopicConnection.

Notes

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

When Durable TopicSubscriber is released, the connection state maintained by the JMS provider in place
of the application is deleted, so messages that were sent during interruption of the application cannot be
received after restarting of the application. Release Durable TopicSubscriber only when the Durable
Subscription function is no longer required.

Note on using the Durable Subscription Function
A durable subscriber is identified using the Durable Subscription name and a client identifier. To start up
multiple applications on the same machine, either use a different Durable Subscription name for each of
them or use a ConnectionFactory definition that specifies a different client identifier.

Creating a JMS Application

17-13

Message Priority and Lifetime
The priority and lifetime of a message can be specified only by the sender of the message.

Such a specification can be made using the publish(Message message, int deliveryMode, int priority, long
timeToLive) method of the TopicPublisher interface or the send (Message message, int deliveryMode, int
priority, long timeToLive) method for the QueueSender interface.

If this method is not used, the default priority and lifetime is assumed.

By default, the priority is 4 and the lifetime is endless. These settings can be changed using setPriority(int
defaultPriority) and setTimeToLive(long timeToLive) of the MessageProducer interface.

• As the priority, specify in priority a value from 0 to 9 in the order of increasing priority.

• As the lifetime, specify in timeToLive time in milliseconds.

Note

Although time in milliseconds is supported in timeToLive, the message timeout time of an event channel is
specified only in seconds. Thus, the timeToLive value is rounded to the nearest value.

Message Persistent Function
To use the message persistent function, you need to:

For Publish/Subscribe Messaging Model
1. Use the esmkchnl command to create a persistent channel.

2. Specify javax.jms.DeliveryMode.PERSISTENT in argument deliveryMode of the publish method of
the TopicPublisher interface on the publisher side.

For Point-To-Point Messaging Model
1. Use the esmkchnl command of specifying -ptp option to create a persistent channel.

2. Specify javax.jms.DeliveryMode.PERSISTENT in argument deliveryMode of the send method of the
QueueSender interface on the sender side.

Local Transaction

Creating a Publisher using a Local Transaction

Publisher in a Local Transaction

public class Publisher {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");

Chapter 17: Developing a JMS Application

17-14

/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
4 */
 TopicSession topicSession = topicConnection.createTopicSession(true, 0);
/* 5 */
 TopicPublisher topicPublisher = topicSession.createPublisher(topic);
/* 6 */
 topicPublisher.publish(Message); /*
7 */
 topicSession.commit(); /*
8 */
 topicConnection.close(); /*
9 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Create TopicConnection.

5. Create TopicSession.

6. Create TopicPublisher.

7. Send a message.

8. Make commitment.

9. Close TopicConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Creating a Subscriber using a Local Transaction

Subscriber in a Local Transaction

public class SubscriberS {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */

Creating a JMS Application

17-15

 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
4 */
 TopicSession topicSession = topicConnection.createTopicSession(true, 0);
/* 5 */
 TopicSubscriber topicSubscriber = topicSession.createSubscriber(topic);
/* 6 */
 topicConnection.start(); /*7
*/
 Message message = topicSubscriber.receive(); /*
8 */
 topicSession.commit(); /*
9 */
 topicConnection.close(); /*
10 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Create TopicConnection.

5. Create TopicSession.

6. Create TopicSubscriber.

7. Start the delivery of a message upon connection.

8. Receive a message.

9. Make commitment.

10. Close TopicConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Chapter 17: Developing a JMS Application

17-16

Creating a Sender using a Local Transaction

Sender in a Local Transaction

public class Sender {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext();
/* 1 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");
 /* 2 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");
 /* 3 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection();
/* 4 */
 QueueSession queueSession = queueConnection.createQueueSession(true, 0);
 /* 5 */
 QueueSender queueSender = queueSession.createSender(queue);
/* 6 */
 queueSender.send(Message);
/* 7 */
 queueSession.commit();
/* 8 */
 queueConnection.close();
/* 9 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Create QueueConnection.

5. Create QueueSession.

6. Create QueueSender.

7. Send a message.

8. Make commitment.

9. Close QueueConnection.

Creating a JMS Application

17-17

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Creating a Receiver using a Local Transaction

Receiver in a Local Transaction

public class ReceiverS {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");
/* 2 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");
/* 3 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection(); /*
4 */
 QueueSession queueSession = queueConnection.createQueueSession(true, 0);
/* 5 */
 QueueReceiver queueReceiver = queueSession.createReceiver(queue); /*
6 */
 queueConnection.start(); /*
7 */
 Message message = queueReceiver.receive(); /*
8 */
 queueSession.commit(); /*
9 */
 queueConnection.close(); /*
10 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Create QueueConnection.

5. Create QueueSession.

6. Create QueueReceiver.

7. Start the delivery of a message upon connection.

Chapter 17: Developing a JMS Application

17-18

8. Receive a message.

9. Make commitment.

10. Close QueueConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Global Transaction

Creating a Publisher using a Global Transaction

Publisher in a Global Transaction

public class Publisher {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 javax.transaction.UserTransaction ut =
(javax.transaction.UserTransaction)
 initialContext.lookup("java:comp/UserTransaction"); /*
4 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
5 */
 TopicSession topicSession = topicConnection.createTopicSession(true ,
 0);/* 6 */
 TopicPublisher topicPublisher = topicSession.createPublisher(topic);
/* 7 */
 ut.begin(); /*
8 */
 topicPublisher.publish(Message); /*
9 */
 ut.commit(); /*
10 */
 topicConnection.close(); /*
11 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

Creating a JMS Application

17-19

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Acquire a user transaction object.

5. Create TopicConnection.

6. Create TopicSession.

7. Create TopicPublisher.

8. Start a global transaction.

9. Send a message.

10. Complete the global transaction.

11. lose TopicConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Creating a Subscriber using a Global Transaction

Subscriber in a Global Transaction

public class SubscriberS {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)
 initialContext.lookup("java:comp/env/jms/TopicConnectionFactory");
/* 2 */
 Topic topic = (Topic)initialContext.lookup("java:comp/env/jms/Topic");
/* 3 */
 javax.transaction.UserTransaction ut =
(javax.transaction.UserTransaction)
 initialContext.lookup("java:comp/UserTransaction"); /*
4 */
 TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection(); /*
5 */
 TopicSession topicSession = topicConnection.createTopicSession(true ,
0);/* 6 */
 TopicSubscriber topicSubscriber = topicSession.createSubscriber(topic);
/* 7 */
 topicConnection.start(); /*
8 */
 ut.begin(); /*
9 */
 Message message = topicSubscriber.receive(); /*
10 */

Chapter 17: Developing a JMS Application

17-20

 ut.commit(); /*
11 */
 topicConnection.close(); /*
12 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a TopicConnectionFactory object (if the JNDI name is 'TopicConnectionFactory').

3. Acquire a Topic object (if the JNDI name is 'Topic').

4. Acquire a user transaction object.

5. Create TopicConnection.

6. Create TopicSession.

7. Create TopicSubscriber.

8. Start the delivery of a message upon connection.

9. Start a global transaction.

10. Receive a message.

11. Complete the global transaction.

12. Close TopicConnection.

Notes

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

When the Durable Subscription function is used, releasing (unsubscribe) the Durable Subscription can be
specified between start (begin) of global transaction and end (commit) of the global transaction.

Creating a Sender using a Global Transaction

Sender in a Global Transaction

public class Sender {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");
/* 2 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");

Creating a JMS Application

17-21

/* 3 */
 javax.transaction.UserTransaction ut =
(javax.transaction.UserTransaction)
 initialContext.lookup("java:comp/UserTransaction"); /*
4 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection(); /*
5 */
 QueueSession queueSession = queueConnection.createQueueSession(true ,
0);/* 6 */
 QueueSender queueSender = queueSession.createSender(queue); /*
7 */
 ut.begin(); /*
8 */
 queueSender.send(Message); /*
9 */
 ut.commit(); /*
10 */
 queueConnection.close(); /*
11 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Acquire a user transaction object.

5. Create QueueConnection.

6. Create QueueSession.

7. Create QueueSender.

8. Start a global transaction.

9. Send a message.

10. Complete the global transaction.

11. Close QueueConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Chapter 17: Developing a JMS Application

17-22

Creating a Receiver using a Global Transaction

Receiver in a Global Transaction

public class ReceiverS {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");
/* 2 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");
/* 3 */
 javax.transaction.UserTransaction ut =
(javax.transaction.UserTransaction)
 initialContext.lookup("java:comp/UserTransaction"); /*
4 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection(); /*
5 */
 QueueSession queueSession = queueConnection.createQueueSession(true ,
0);/* 6 */
 QueueReceiver queueReceiver = queueSession.createReceiver(queue); /*
7 */
 queueConnection.start(); /*
8 */
 ut.begin(); /*
9 */
 Message message = queueReceiver.receive(); /*
10 */
 ut.commit(); /*
11 */
 queueConnection.close(); /*
12 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Acquire a user transaction object.

5. Create QueueConnection.

6. Create QueueSession.

7. Create QueueReceiver.

Creating a JMS Application

17-23

8. Start the delivery of a message upon connection.

9. Start a global transaction.

10. Receive a message.

11. Complete the global transaction.

12. Close QueueConnection.

Note

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Note on Starting an Application
Before starting an application, specify True in the following environment property:

 com.fujitsu.ObjectDirector.CORBA.GlobalTransactionMode

For information on the specification of an environment property, refer to 'Setting Details of JNDI
Environment Properties' in Chapter 6.

The following shows a specification example (specification in a command line).

java -Dcom.fujitsu.ObjectDirector.CORBA.GlobalTransactionMode=True Publisher

Linkage with a CORBA Application

Communication from a JMS Application to a CORBA Application
During communication from a JMS application to a CORBA application via the notification service, a JMS
Message is converted to StructuredEvent.

Interstage JMS supports BytesMessage and TextMessage as the JMS message types that can be linked
with a CORBA application.

The following shows the conversion of a JMS Message to StructuredEvent.

Table 17-1 Conversion of JMS Message to Structured Event
Location JMS Message StructuredEvent

Header JMSPriority

JMSExpiration

QoS property

Priority

Timeout

FixedHeader: Automatically added by JMS-Provider

domain_name='JMS'

type_name='v5.0'

event_name=''

Property Not converted

Chapter 17: Developing a JMS Application

17-24

Location JMS Message StructuredEvent

BytesMessage Should be retrieved as a sequence-type of octet-type. Body

TextMessage Should be retrieved as a wstring-type.

Correspondence between JMSPriority and QoS property priority.

JMSPriority: 0 1 2 3 4 5 6 7 8 9

Priority(QoS): -3 -3 -2 -1 0 1 2 2 3 3

Communication from a CORBA Application to a JMS Application
During communication from a CORBA application to a JMS application via the notification service, only
conversion from remainder_of_body of StructuredEvent to the body of a JMS Message is enabled.

Interstage JMS supports the following StructuredEvent data types that can be linked with a CORBA
application.

Table 17-2 StructuredEvent Data Types
StructuredEvent JMS Message

string-type

wstring-type

TextMessage

array of octet-type

sequence-type of octet-type

BytesMessage

Message Selector Function
To use the message selector function, you need to create the following applications:

(1) Sending Application
The send application specifies a property value that corresponds to the message selector when a
message is created.

The following examples show how to set the property value 'FUJITSU' and property name 'NAME' in a
message.

String name = "FUJITSU";
message.setStringProperty("NAME", name);

Creating a JMS Application

17-25

(2) Receiving Application
The receive application specifies a message selector statement as a parameter when a Subscriber,
Durable Subscriber, Receiver, or Browser is created. A message selector statement is a query character
string to be used in the WHERE clause of an SQL statement.

The following example shows how to set up a message selector to receive messages with the property
name 'NAME' and the property value 'FUJITSU'.

String selector = "NAME = 'FUJITSU'";
topicsession.createSubscriber(topic, selector);

Message Selector Conditional Expression
Conditional expressions follow the format to be used in the WHERE clause of an SQL statement in
SQL-92.

color = 'blue'

The element 'color' on the left side in the above conditional expression is called an identifier. The identifier
is compared with the property name of JMS Messages during filtering.

The element 'blue' on the right side is called a literal. The literal is compared with the property value of
JMS Messages during filtering.

Literals come in three types: Character string literal, exact numeric literal, and approximate numeric
literal.

A character string literal must be enclosed in single quotation marks.

An exact numeric literal is a value without a decimal place such as 57, -957, and +62.

An approximate numeric literal is either a value with an exponential part such as 7E3 and -57.9E2 or a
value with a decimal place such as 7., -95.7, and +6.2.

For more information on the syntax of a conditional expression, refer to 'Interface Message in Package
javax.jms', in the Java documentation.

The following shows examples of conditional expressions.

• Comparison operation conditional expression

The following comparison operators can be used.

= (is equal to)

> (is greater than)

>= (is equal to or greater than)

< (is less than)

<= (is equal to or less than)

<> (is not equal to)

Chapter 17: Developing a JMS Application

17-26

Example

JMS Messages where the property with property name NAME has a property value 'FUJITSU' can be
received.

NAME = 'FUJITSU'

Example

JMS Messages where the property with property name NUMBER has a property value of 1000 or
more can be received.

NUMBER >= 1000

Example

JMS Messages where the property with property name NUMBER has a property value of 230 or less
can be received.

NUMBER <= 10 * 20 + 30

As shown in these examples, arithmetic operators (+, -, *, and /) can be used.

• BETWEEN conditional expression

A BETWEEN conditional expression allows you to perform searches over a range.

Example

JMS Messages where the property with property name NUMBER has a property value between (and
including) 100 and 1000 can be received.

NUMBER BETWEEN 100 AND 1000

Example

JMS Messages where the property with property name NUMBER has a property value less than 100
or more than 1000 can be received.

NUMBER NOT BETWEEN 100 AND 1000

• LIKE conditional expression

A LIKE conditional expression allows to perform searches using pattern search.

Specify '%' and '_' in a character string literal to perform pattern search.

'_' represents any character and '%' represents any character string.

An escape character that is an option is an independent character literal used to handle '_' or '%'
merely as a character string.

Creating a JMS Application

17-27

Example

JMS Messages where the property with property name PROPERTY has a property value of the form
'any character(s) + C' can be received.

PROPERTY LIKE '%C'

JMS Messages can be received if the property value is ABC, CCC, or C but cannot be received if the
property value is AB.

Example

JMS Messages where the property with property name PROPERTY has a property value that is not
of the form 'any character(s) + C' can be received.

PROPERTY NOT LIKE '%C'

JMS Messages can be received if the property value is AB but cannot be received if the property
value is ABC, CCC, or C.

Example

JMS Messages where the property with property name PROPERTY has a property value 'any one
character + C' can be received.

PROPERTY LIKE '_C'

JMS Messages can be received if the property value is AC or CC but cannot be received if the
property value is ABC or C.

Example

JMS Messages where the property with property name PROPERTY has a property value of the form
'any character(s) + % + C' can be received.

PROPERTY LIKE '%#%C' ESCAPE '#'

JMS Messages can be received if the property value is A%C but cannot be received if the property
value is AAC.

• NULL conditional expression

The NULL conditional expression allows to perform searches depending on whether a property is
present.

Example

JMS Messages without property name PROPERTY can be received.

PROPERTY IS NULL

Chapter 17: Developing a JMS Application

17-28

Example

JMS Messages with property name PROPERTY can be received.

PROPERTY IS NOT NULL

• IN conditional expression

The IN conditional expression allows to search items in a list.

Example

JMS Messages with where the property with property name PROPERTY has the property value
'AAA', 'BBB' or 'CCC' can be received.

PROPERTY IN ('AAA','BBB','CCC')

Example

JMS Messages where the property with property name PROPERTY has a property value other than
'AAA', 'BBB' or 'CCC' can be received.

PROPERTY NOT IN ('AAA','BBB','CCC')

• Mixture of conditional expressions

A mixture of the above conditional expressions can be specified using NOT, AND, or OR.

Example

JMS Messages where the property with property name NUMBER has a property value between (and
including) 100 and 1000 OR the property with property name PROPERTY has a property value of the
form 'any character(s) + C' can be received.

(NUMBER BETWEEN 100 AND 1000) OR (PROPERTY LIKE '%C')

Example

JMS Messages where the property with property name NUMBER has a property value between (and
including) 100 and 1000 AND the property with property name PROPERTY has a property value of
the form 'any character(s) + C' can be received.

(NUMBER BETWEEN 100 AND 1000) AND (PROPERTY LIKE '%C')

Creating a JMS Application

17-29

Example

JMS Messages where the property with property name NUMBER has a property value between (and
including) 100 and 1000 OR the property with property name PROPERTY has a property value other
than of the form 'any character(s) + C' can be received.

NOT ((NUMBER BETWEEN 100 AND 1000) AND (PROPERTY LIKE '%C'))

Notes

• A message selector statement with a length up to 4096 bytes can be specified.

• An identifier or character string literal with a length up to 1024 bytes can be specified in a conditional
expression.

• Up to a total of 512 identifiers and character string literals can be specified in a conditional
expression.

• Up to 256 lists can be specified in an IN conditional expression.

Queue Browser Function
In the application, create a browser to reference messages accumulated in a queue.

After that, the messages can be retrieved in sequence and the contents of the queue can be browsed.

The following shows an example of the required procedures and the processing flow for a queue browser.

Browser

public class Browser {
 public static void main() {
 ...
 try {
 InitialContext initialContext = new InitialContext(); /*
1 */
 QueueConnectionFactory queueConnectionFactory = (QueueConnectionFactory)
 initialContext.lookup("java:comp/env/jms/QueueConnectionFactory");
/* 2 */
 Queue queue = (Queue)initialContext.lookup("java:comp/env/jms/Queue");
/* 3 */
 QueueConnection queueConnection =
 queueConnectionFactory.createQueueConnection(); /*
4 */
 QueueSession queueSession =
 queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
/* 5 */
 QueueBrowser queueBrowser = queueSession.createBrowser(queue); /*
6 */
 queueConnection.start(); /*
7 */
 java.util.Enumeration e = qBrowser.getEnumeration(); /*
8 */
 Message message;

Chapter 17: Developing a JMS Application

17-30

 while (e.hasMoreElements()) {
 message = e.nextElement(); /*
9 */
 ...
 }
 queueBrowser.close(); /*
10 */
 queueConnection.close(); /*
11 */
 } catch(Exception e) {
 ...
 }
 ...
 }
}

1. Construct a JNDI start context.

2. Acquire a QueueConnectionFactory object (if the JNDI name is 'QueueConnectionFactory').

3. Acquire a Queue object (if the JNDI name is 'Queue').

4. Create QueueConnection.

5. Create QueueSession.

6. Create QueueBrowser.

7. Start the delivery of a message upon connection.

8. Start browsing.

9. Acquire one message.

10. Close QueueBrowser.

11. Close QueueConnection.

Notes

For information on the specification of an environment property when a JNDI start context is constructed,
refer to 'Setting Details of JNDI Environment Properties' in Chapter 6.

Only one queue browser can be used per channel.

Notes on Using TopicRequestor/QueueRequestor
The request method of the TopicRequestor class or the QueueRequestor class sends a request message
to Topic or Queue and waits for the response. Depending on the application configuration, the request
method does not respond when the receiver application is not connected or the receiver application does
not return the response message.

To avoid the indefinite wait in the queue described above, the system property can be used for instruct the
response from the request method if no response is returned from the method in a certain time.

System property name

com.fujitsu.interstage.jms.receive_timeout

Creating a JMS Application

17-31

Specification

Set the timeout time in units of milliseconds.

Example

-Dcom.fujitsu.interstage.jms.receive_timeout=10000

Note

If a value smaller than the -wtime set value of the Event Service operating environment is specified, the
queuing time is set to -wtime.

If a timeout occurs, the request method returns null.

Chapter 17: Developing a JMS Application

17-32

Interface
This section describes JMS APIs supported by Interstage JMS.

API lists of the package javax.jms are shown below.

For information on APIs, refer to Package javax.jms in the Java docs.

API List of the Package javax.jms (Part 1)
Table 17-3 API List of javax.jms

Interface name/Class
name

Method Support

readBoolean() O

readByte() O

readBytes(byte[] value) O

readBytes(byte[] value, int length) O

readChar() O

readDouble() O

readFloat() O

readInt() O

readLong() O

readShort() O

readUnsignedByte() O

readUnsignedShort() O

readUTF() O

reset() O

writeBoolean(boolean value) O

writeByte(byte value) O

BytesMessage

writeBytes(byte[] value) O

Interface

17-33

Interface name/Class
name

Method Support

writeBytes(byte[] value, int offset, int length) O

writeChar(char value) O

writeDouble(double value) O

writeFloat(float value) O

writeInt(int value) O

writeLong(long value) O

writeObject(java.lang.Object value) O

writeShort(short value) O

writeUTF(java.lang.String value) O

close() O

getClientID() O

getExceptionListener() O

getMetaData() O

setClientID(java.lang.String clientID) O

setExceptionListener(ExceptionListener listener) O

start() O

Connection

stop() O

close() O ConnectionConsumer

getServerSessionPool() O

ConnectionFactory No method

O: Supported

X: Not supported

Chapter 17: Developing a JMS Application

17-34

API List of the Package javax.jms (Part 2)
Table 17-4 API List of javax.jms

Interface name/Class
name

Method Support

getJMSMajorVersion() O

getJMSMinorVersion() O

getJMSProviderName() O (See Note)

getJMSVersion() O

getJMSXPropertyNames() O

getProviderMajorVersion() O

getProviderMinorVersion() O

ConnectionMetaData

getProviderVersion() O

DeliveryMode No method

Destination No method

ExceptionListener onException(JMSException exception) O

Interface

17-35

Interface name/Class
name

Method Support

getBoolean(java.lang.String name) O

getByte(java.lang.String name) O

getBytes(java.lang.String name) O

getChar(java.lang.String name) O

getDouble(java.lang.String name) O

getFloat(java.lang.String name) O

getInt(java.lang.String name) O

getLong(java.lang.String name) O

getMapNames() O

getObject(java.lang.String name) O

getShort(java.lang.String name) O

getString(java.lang.String name) O

itemExists(java.lang.String name) O

setBoolean(java.lang.String name, boolean value) O

setByte(java.lang.String name, byte value) O

setBytes(java.lang.String name, byte[] value) O

setBytes(java.lang.String name, byte[] value, int offset, int
length)

O

setChar(java.lang.String name, char value) O

setDouble(java.lang.String name, double value) O

setFloat(java.lang.String name, float value) O

setInt(java.lang.String name, int value) O

setLong(java.lang.String name, long value) O

setObject(java.lang.String name, java.lang.Object value) O

setShort(java.lang.String name, short value) O

MapMessage

setString(java.lang.String name, java.lang.String value) O

O: Supported

X: Not supported

Note: 'Interstage Application Server' is returned.

Chapter 17: Developing a JMS Application

17-36

API List of the Package javax.jms (Part 3)
Table 17-5 API List of javax.jms

Interface name/Class
name

Method Support

acknowledge() O

clearBody() O

clearProperties() O

getBooleanProperty(java.lang.String name) O

getByteProperty(java.lang.String name) O

getDoubleProperty(java.lang.String name) O

getFloatProperty(java.lang.String name) O

getIntProperty(java.lang.String name) O

getJMSCorrelationID() O

getJMSCorrelationIDAsBytes() X

getJMSDeliveryMode() O

getJMSDestination() O

getJMSExpiration() O

getJMSMessageID() O

getJMSPriority() O

getJMSRedelivered() O

getJMSReplyTo() O

getJMSTimestamp() O

getJMSType() O

getLongProperty(java.lang.String name) O

getObjectProperty(java.lang.String name) O

getPropertyNames() O

getShortProperty(java.lang.String name) O

getStringProperty(java.lang.String name) O

Message

propertyExists(java.lang.String name) O

Interface

17-37

Interface name/Class
name

Method Support

setBooleanProperty(java.lang.String name, boolean
value)

O

setByteProperty(java.lang.String name, byte value) O

setDoubleProperty(java.lang.String name, double value) O

setFloatProperty(java.lang.String name, float value) O

setIntProperty(java.lang.String name, int value) O

setJMSCorrelationID(java.lang.String correlationID) O

setJMSCorrelationIDAsBytes(byte[] correlationID) X

setJMSDeliveryMode(int deliveryMode) O

setJMSDestination(Destination destination) O

setJMSExpiration(long expiration) O

setJMSMessageID(java.lang.String id) O

setJMSPriority(int priority) O

setJMSRedelivered(boolean redelivered) O

setJMSReplyTo(Destination replyTo) O

setJMSTimestamp(long timestamp) O

setJMSType(java.lang.String type) O

setLongProperty(java.lang.String name, long value) O

setObjectProperty(java.lang.String name,
java.lang.Object value)

O

setShortProperty(java.lang.String name, short value) O

setStringProperty(java.lang.String name, java.lang.String
value)

O

O: Supported

X: Not supported

Chapter 17: Developing a JMS Application

17-38

API List of the Package javax.jms (Part 4)
Table 17-6 API List of javax.jms

Interface name/Class
name

Method Support

close() O

getMessageListener() O

getMessageSelector() O

receive() O

receive(long timeout) O (Note 1)

receiveNoWait() O (Note 2)

MessageConsumer

setMessageListener(MessageListener listener) O

MessageListener onMessage(Message message) O

close() O

getDeliveryMode() O

getDisableMessageID() O

getDisableMessageTimestamp() O

getPriority() O

getTimeToLive() O

setDeliveryMode(int deliveryMode) O (Note 3)

setDisableMessageID(boolean value) O

setDisableMessageTimestamp(boolean value) O

setPriority(int defaultPriority) O

MessageProducer

setTimeToLive(long timeToLive) O (Note 4)

getObject() O ObjectMessage

setObject(java.io.Serializable object) O

O: Supported

X: Not supported

Interface

17-39

Note 1) The timeout for receiving messages specified by receive() is checked at the intervals set for the
wait time for the event channel event data. Therefore, the timeout for receiving messages is returned as
follows:

• For 'Wait time for event data >= Value of receive()'

The timeout for receiving messages is returned as 'Wait time for event data'.

Example

Wait time for event data: '40 seconds', Value of receive() '10': 40 seconds

• For 'Wait time for event data < Value of receive()'

The timeout for receiving messages is returned as 'Wait time for event data * Number of checks'.

Example

Wait time for event data: '40 seconds', Value of receive() '50': 80 (40 * 2) seconds

Configure operations to not wait for event data using the receiveNoWait() method instead of the receive()
method if performing operations that do not wait for messages.

Note 2) This method immediately returns null when there is no message which can be received.

Note 3) Only the same mode as the delivery mode of the event channel is supported.

Note 4) timeToLive supports in milliseconds. However, since the message timeout of the event channel is
in seconds, timeToLive is rounded off to the nearest value.

API List of the Package javax.jms (Part 5)
Table 17-7 API List of javax.jms

Interface name/Class name Method Support

getQueueName() O Queue

toString() O (Note 1)

close() O

getEnumeration() O

getMessageSelector() O

QueueBrowser

getQueue() O

createConnectionConsumer(Queue queue,
java.lang.String messageSelector,
ServerSessionPool sessionPool, int maxMessages)

O QueueConnection

createQueueSession(boolean transacted, int
acknowledgeMode)

O (Note 2)

createQueueConnection() O QueueConnectionFactory

createQueueConnection(java.lang.String userName,
java.lang.String password)

O

QueueReceiver getQueue() O

Chapter 17: Developing a JMS Application

17-40

Interface name/Class name Method Support

close() O QueueRequestor

request(Message message) O

getQueue() O

send(Message message) O

send(Message message, int deliveryMode, int priority,
long timeToLive)

O (Note 3)

send(Queue queue, Message message) O

QueueSender

send(Queue queue, Message message, int
deliveryMode, int priority, long timeToLive)

O (Note 3)

createBrowser(Queue queue) O

createBrowser(Queue queue, java.lang.String
messageSelector)

O

createQueue(java.lang.String queueName) O

createReceiver(Queue queue) O

createReceiver(Queue queue, java.lang.String
messageSelector)

O

createSender(Queue queue) O

QueueSession

createTemporaryQueue() O

O: Supported

X: Not supported

Note 1) 'com.fujitsu.interstage.jms:<Queue name>::<the group name of the event channel>::<the
channel name of the event channel>' is returned.

Note 2) userName and password are ignored.

Note 3) timeToLive supports in milliseconds. However, since the message timeout of the event channel is
in seconds, timeToLive is rounded off to the nearest value.

Interface

17-41

API List of the Package javax.jms (Part 6)
Table 17-8 API List of javax.jms

Interface name/Class
name

Method Support

getSession() O ServerSession

start() O

ServerSessionPool getServerSession() O

close() O

commit() O

createBytesMessage() O

createMapMessage() O

createMessage() O

createObjectMessage() O

createObjectMessage(java.io.Serializable object) O

createStreamMessage() O

createTextMessage() O

createTextMessage(java.lang.String text) O

getMessageListener() O

getTransacted() O

recover() O

rollback() O

run() O

Session

setMessageListener(MessageListener listener) O (Note 1)

Chapter 17: Developing a JMS Application

17-42

Interface name/Class
name

Method Support

readBoolean() O

readByte() O

readBytes(byte[] value) O

readChar() O

readDouble() O

readFloat() O

readInt() O

readLong() O

readObject() O

readShort() O

readString() O

reset() O

writeBoolean(boolean value) O

writeByte(byte value) O

writeBytes(byte[] value) O

writeBytes(byte[] value, int offset, int length) O

writeChar(char value) O

writeDouble(double value) O

writeFloat(float value) O

writeInt(int value) O

writeLong(long value) O

writeObject(java.lang.Object value) O

writeShort(short value) O

StreamMessage

writeString(java.lang.String value) O

TemporaryQueue delete() O

TemporaryTopic delete() O

O: Supported

X: Not supported

Note 1) Synchronous and asynchronous messages cannot be received simultaneously by one
MessageConsumer.

Interface

17-43

API List of the Package javax.jms (Part 7)
Table 17-9 API List of javax.jms

Interface name/class name Method Support

getText() O TextMessage

setText(java.lang.String string) O

getTopicName() O Topic

toString() O (Note 1)

createConnectionConsumer(Topic topic,
java.lang.String messageSelector, ServerSessionPool
sessionPool, int maxMessages)

O

createDurableConnectionConsumer(Topic topic,
java.lang.String subscriptionName, java.lang.String
messageSelector, ServerSessionPool sessionPool, int
maxMessages)

O

TopicConnection

createTopicSession(boolean transacted, int
acknowledgeMode)

O

createTopicConnection() O TopicConnectionFactory

createTopicConnection(java.lang.String userName,
java.lang.String password)

O (Note 2)

getTopic() O

publish(Message message) O

publish(Message message, int deliveryMode, int
priority, long timeToLive)

O (Note 3)

publish(Topic topic, Message message) O

TopicPublisher

publish(Topic topic, Message message, int
deliveryMode, int priority, long timeToLive)

O (Note 3)

close() O TopicRequestor

request(Message message) O

createDurableSubscriber(Topic topic, java.lang.String
name)

O

createDurableSubscriber(Topic topic, java.lang.String
name, java.lang.String messageSelector, boolean
noLocal)

O

createPublisher(Topic topic) O

createSubscriber(Topic topic) O

createSubscriber(Topic topic, java.lang.String
messageSelector, boolean noLocal)

O

TopicSession

createTemporaryTopic() O

Chapter 17: Developing a JMS Application

17-44

Interface name/class name Method Support

createTopic(java.lang.String topicName) O

unsubscribe(java.lang.String name) O

getNoLocal() O TopicSubscriber

getTopic() O

O: Supported

X: Not supported

Note 1) 'com.fujitsu.interstage.jms:<Topic name>::<the group name of the event channel>::<the channel
name of the event channel>' is returned.

Note 2) userName and password are ignored.

Note 3) timeToLive supports in milliseconds. However, since the message timeout of the event channel is
in seconds, timeToLive is rounded off to the nearest value.

API List of the Package javax.jms (Part 8)
Table 17-10 API List of javax.jms

Interface name/class
name

Method Support

XAConnection No method

XAConnectionFactory No method

createQueueSession(boolean transacted, int
acknowledgeMode)

X XAQueueConnection

createXAQueueSession() X

createXAQueueConnection() X XAQueueConnection
Factory createXAQueueConnection(java.lang.String userName,

java.lang.String password)
X

XAQueueSession getQueueSession() X

commit() X

getTransacted() X

getXAResource() X

XASession

rollback() X

createTopicSession(boolean transacted, int
acknowledgeMode)

X XATopicConnection

createXATopicSession() X

Interface

17-45

Interface name/class
name

Method Support

createXATopicConnection() X XATopicConnection
Factory createXATopicConnection(java.lang.String userName,

java.lang.String password)
X

XATopicSession getTopicSession() X

O: Supported

X: Not supported

Note) The XA interface is not supported.

Chapter 17: Developing a JMS Application

17-46

Part VI

Connector Edition

18-1

Chapter 18

Basic Functions of the Interstage Connector

This chapter explains the basic function of Interstage Connector.

Chapter 18: Basic Functions of the Interstage Connector

18-2

Connection Management
Interstage connector provides a function to connect a resource of connector by acquiring
ConnectionFactory of the connector from JNDI.

Interstage Connector’s pool manager manages connection information after making the first connection.
Consequently, it makes it possible to access the resource from many clients or to construct an application
environment for which a frequent access to the resource access is necessary.

Timeout for the Pooled Connection
The container automatically releases unused connections that exceed the time-out period.

To set the time-out value refer to the following file. The initial value is 600 (= 10 min.). The unit is seconds.

C:\Interstage\J2EE\etc\JCA\jca.properties

/opt/FJSVj2ee/etc/jca/jca.properties

Set the following property in the above-mentioned file. The initial value (600) is set by default.

Property name Property value

idle.resource.threshold Timeout value

To set the time-out period to 300 seconds, change it as follows.

idle.resource.threshold=300

Transaction Management

18-3

Transaction Management
Interstage connector provides functionality to manage the transaction of the resource by using the
transaction function provided by EJB. The transaction across several resource managers can be
managed this way.

Supported Transaction Support Level
Interstage Connector supports each transaction level of resource adapter.

The transaction support level of resource adapter is defined in the transaction-support tag of deployment
descriptor. There is a difference at the transaction level supported by resource adapter according to the
specified value as follows.

Table 18-1 Transaction Level Supported by Resource Adapter
Transaction type Usage

XA transaction support "XATransaction" is specified for transaction-support tag.

The global transaction function of EJB is used, and the transaction
management that cooperates with the resources other than resource adapter
is possible. The transaction is processed by two-phase committing protocol.

Local transaction support "LocalTransaction" is specified for local transaction support
transaction-support tag.

It cannot be used with two-phase committing protocol (2PC) unlike the XA
transaction. Only one resource recommended to be accessed in one
transaction because it is always processed by one phase committing
protocol.

No transaction "NoTransaction" is specified for transaction-support tag.

Resource adapter to which this transaction type is supported does not
cooperate with the transaction.

It is possible to cooperate with the transaction ("Container" is specified for a transaction attribute) that the
container controls when resource adapter that supports XA transaction or a local transaction is used.

Note when Transaction Function is Used
To use XA transactions, do as follows: From the Interstage Management Console, select [WorkUnit] >
[IJServer name] > [EJB container setting] > [Use distributed transaction] and select "Use."

Chapter 18: Basic Functions of the Interstage Connector

18-4

Security Management
For Interstage Connector, a safe security management function to EIS is supported. Safety to EIS is
secured by this function, and the resource that EIS manages is protected. This function uses the resource
connection manager function of EJB.

Table 18-2 Security Management Function
How to sign on Specification of

resource connection
Operation

Sign-on by application
management

Application The resource is accessed by specifying a user
ID/password by the application. Information set by the
application has the following two cases.

In case that connect from EJB application to resource,
and who can connect to the resource are specified in
the EJB application:

Use user ID and password that are specified in EJB
application.

In other cases:

Use user ID and the password to which the user is
authorised by the J2EE application client or the Web
applications.

Sign-on by container
management

Container This connects by user ID/password to which the
container is set as follows:

Interstage Management Console

Part VII

Tool Edition

19-1

Chapter 19

J2EE Resource Access Definition

The J2EE resource access definition is a function for creating a resource access definition that is needed
for referencing JDBC, JMS, connector, or JavaMail objects by the naming service using GUI windows.

The J2EE resource access definition is used when the Interstage client function is installed. To create a
resource definition on the server, use the Interstage Management Console.

This chapter explains how to activate the J2EE resource access definition.

Note

The J2EE resource access definition cannot be used to define PostgreSQL data sources. When using the
client package to access PostgreSQL from the J2EE application client, use the fjj2eeadmin command.

Refer to the Reference Manual (Command Edition) for details of the fjj2eeadmin command.

Chapter 19: J2EE Resource Access Definition

19-2

Activating the J2EE resource access definition
This section explains the following topics:

• J2EE resource access definition activation command

• Initial window for J2EE resource access definition

J2EE resource access definition activation command
Use the j2eejndisetup command to activate the J2EE resource access definition.

j2eejndisetup

Refer to "JNDI Operation Commands" in the “Reference Manual (Command Edition)” for details of the
j2eejndisetup command.

Refer to "Messages Output during Resource Access Definition" in the Messages for explanations of the
error and warning messages displayed during execution of the J2EE resource access definition and the
required actions.

Notes

• When executing the J2EE resource access definition, make sure the following values are set in the
environment variables.

[CLASSPATH]

 C:\Interstage\j2ee\lib\isj2ee.jar

[PATH]

 C:\Interstage\bin

• A Java environment must be set up to execute the J2EE resource access definition.

− Installing Java

Install the Interstage Apworks client operation package.

− Setting up the Java environment

Make sure the following value is set in environment variable PATH.

When the JDK1.3 system is used : C:\Interstage\JDK13\jre\bin

When the JRE1.3 system is used : C:\Interstage\JRE13\bin

When the JDK1.4 system is used : C:\Interstage\JDK14\jre\bin

When the JRE1.4 system is used : C:\Interstage\JRE14\bin

• Execute the J2EE resource access definition with administrator authority.

Activating the J2EE resource access definition

19-3

Initial window for J2EE resource access definition
When the J2EE resource access definition is activated normally, the "J2EE resource access definition"
window shown below opens.

Figure 19-1 J2EE Resource Access Definition Window

Chapter 19: J2EE Resource Access Definition

19-4

Index-1

Index

APIs
Interstage JMS, 17-32, 17-33, 17-35, 17-37, 17-39,

17-40, 17-42, 17-44

Applet Programming, 11-6, 11-16

application development flow
EJB Service, 9-2

application operation machine
Interstage JMS, 16-9

applications
JMS, 17-1

creating, 17-1

client application detects an error, 15-8, 15-9

CMF data types supported, 10-4

CMP definitions, 10-2

ConnectionFactory
JMS, 16-9

CORBA application
JMS linkage, 17-23

database
definition file contents, 13-17
definition file sample, 13-21
export definition information, 13-4
import definition information, 13-4

datasource_name, 14-6

debugging EJB applications, 9-5

debugging using snap, 2-68

deployment descriptor
transaction attribute, 8-10
transaction type, 8-10

Descriptions of HTML Files, 11-6

design
JMS applications, 17-2

Destination definition
JMS, 16-9

driver_name, 14-6

Durable Subscription, 17-11

EJB
customize by the service operation command, 13-1
definition file contents, 13-5
definition file sample, 13-19
export definition information, 13-3
import definition information, 13-3

EJB application deployment, 9-4

EJB Service
Entity bean optimization, 8-4

EJB Service Operation command, 13-1
customize flow, 13-2

ejbdbdefexport, 13-3

ejbdbdefimport, 13-3

ejbdefexport, 13-3

ejbdefimport, 13-3

Enterprise Bean Environment, 14-4

Entity bean
optimization, 8-4

Entity Bean instance management mode, 8-2

environment settings
Interstage JMS, 16-1

application operation machine, 16-9
event channel operation machine, 16-2

JMS, 2-48

J2EE User's Guide - Index

Index-2

Event Service
commands, 16-2

factory_class_name, 14-5

Global transaction, 17-18

instance management mode, 10-3

interfaces
Interstage JMS, 17-32, 17-33, 17-35, 17-37, 17-39,

17-40, 17-42, 17-44

Interstage JMS
APIs, 17-32, 17-33, 17-35, 17-37, 17-39, 17-40, 17-

42, 17-44
environment settings, 16-1

application operation machine, 16-9
event channel operation machine, 16-2

interfaces, 17-32, 17-33, 17-35, 17-37, 17-39, 17-
40, 17-42, 17-44

J2ee security function, 4-2
setup, 4-9

jar command, 11-17

javax.jms, 17-32, 17-34, 17-36, 17-38, 17-39
Interstage JMS, 17-32, 17-33, 17-35, 17-37, 17-39,

17-40, 17-42, 17-44

JDBC Driver
overview, 14-2

JMS
applications, 17-1

creating, 17-3
design, 17-2
design process, 17-2
Durable Subscription, 17-11
Global transaction, 17-18
linkage with CORBA application, 17-23
Message Listener model, 17-8
message priority, 17-13
PTP model, 17-5
Pub/Sub model, 17-3

Connection Factory, 16-9
Destination definition, 16-9
environment settings, 2-48
event channel operation machine, 16-2

deleting, 2-49
Event Service

commands, 16-2
installation, 2-48
JNDI, 16-9

ObjectDirector Event Service
installing, 2-48

JNDI
JMS, 16-9

JTS
database, 2-47

Message Listener, 17-8

messages
priority and lifetime, 17-13

ObjectDirector
EventService, 2-48

ObjectDirector EventService
installing, 2-48

password, 14-6

policytool
command setting, 11-28

Portable-ORB, 11-6

Portable-ORB Operation Environment File Settings,
11-19

provider_url, 14-5

PTP, 17-5

Pub/Sub, 17-3

Servlet service
input code automatic conversion function, 5-2

setting
transaction attribute, 8-10
transaction type, 8-10

SQL server
connection methods, 14-4
connevtion via JDBC Driver, 14-4

Table Details, 13-5

transaction attribute
setting, 8-10

transaction types
setting, 8-10

url, 14-6

user, 14-6

User Transaction Interface, 15-3

J2EE User's Guide - Index

Index-3

Web application
Servlet Service, 6-1

Web application development
Notes, 6-2

Web applications
calling HTML, image & other files, 7-7
calling JSPs, 7-6
calling servlets, 7-2

J2EE User's Guide - Index

Index-4

	J2EE User’s Guide
	Preface
	Table of Contents
	Part I J2EE Common Edition
	Chapter 1 Design of J2EE Application
	Environment Where J2EE Applications are Operated (IJServer)
	What is IJServer
	IJServer Types
	IJServer File Configuration
	Current Directory of IJServer
	Class Used by IJServer
	Class List used by IJServer

	Startup/Shutdown Execution Class
	How to Create an Execution Class
	How to Register an Execution Class

	Class Loader
	Layer of a Class Loader
	Loading a Class

	Structure of a Class Loader
	Separation of Class Loaders
	Setting Method
	Separation Pattern of Class Loaders

	Changing the Search Order of Class Loaders
	Setting Method
	Priority Exception

	Class Settings used by IJServer
	XML Parser
	Classes Common to Multiple IJServers
	Common Classes in IJServer
	Environment Variable: CLASSPATH
	Application Classes

	Settings of XML Parser
	Setting an XML Parser to be used for each IJServer
	Specifying an XML Parser to be used for each Application

	Problem Investigation with the Trace Function
	Output Format
	Output Items
	Log Output Example
	Setting Method
	Example of Use

	Notes to be taken when Class Loaders are used
	Notes to be taken when the JDBC Driver is used
	Notes about using the Connector
	Notes about Using JNI with J2EE Applications

	Transaction Control
	Transaction Control Method
	Default Transaction
	Distributed Transaction

	Transaction Linkage Enabled Resources

	Chapter 2 Operating J2EE Applications
	Preparing J2EE Applications
	Developing J2EE Applications
	Setting the Deployment Descriptor
	Packaging Class Files

	Deploying and Setting J2EE Applications
	Deploying J2EE Applications
	HotDeploy Function of J2EE
	Design Method
	Operation Method
	Status of Deployed Modules
	Modules that are Activated or Inactivated at Deployment, Redeployment, Undeployment, or Reactivating
	Shared Directory

	Preparation for Servlet Service Operation
	Setting up Web Server Environment
	Interstage HTTP Server Environment Settings
	Microsoft® Internet Information Services Environ�
	Installing Microsoft® Internet Information Servi�
	Preventing Interstage HTTP Server Automatic Startup
	Microsoft® Internet Information Services Environ�
	Interstage Environment Settings
	Sun Java System Web Server Environment Settings
	Installing Sun Java System WebServer and Interstage
	Preventing Interstage HTTP Server Automatic Startup
	Sun Java System Web Server Environment Settings
	Interstage Environment Settings

	Procedure for Operation by Separating IJServer and Web Server
	Spreading Requests when using Sessions in Servlet and JSP
	Example of Preparation for Operation

	Coexistence with Version 5.1 or earlier Servlet Service

	Request Distribution Control by Web Server Connector
	Distributing Procedure and Viewing the Status using the Commands
	Pattern 1: Distribution control for each machine
	Pattern 2: Distribution Control for each IJServer WorkUnit(1)
	Pattern 3: Distribution Control for each IJServer WorkUnit(2)
	Pattern 4: Suppress for a connection to the IJServer WorkUnit

	Monitoring Web Server Connector Faults
	Advance Preparation
	Settings Items
	Examples of Preparation before Operation
	Viewing the Operation Status

	Procedure for Using JTS
	Flow to Operation Start
	1. Setting Resource Manager Environment
	2. Setting the Transaction Service Environment
	3. Storing Resource Definition Information
	4. Starting the Database
	5. Starting the Transaction Service
	6. Starting the Application

	Flow to Operation End

	Procedure for Using JMS
	Flow to Operation Start
	Flow to Operation End
	Monitoring the Operational Status of an Event Channel

	Procedure for Using JavaMail
	Mail Sending Application
	1. Lookup Processing of JavaMail Resources
	2. Creating a message
	3. Making a Connection with the SMTP Server
	4. Sending the Message

	Mail Receiving Application
	1. Lookup Processing of JavaMail Resources
	2. Making a Connection with the Mail Server
	3. Opening the Receive Directory
	4. Extracting Messages

	Customizing and Checking the Operating Environment
	Customizing the Operating Environment
	Setting the Value of Scale-value
	Setting for using the Fujitsu XML Processor
	Tuning the CORBA Service Environment Definition

	Checking the Operating Environment
	Setting the Environment Variable
	Environment Setup of Java
	Setting for using IJServer
	Settings for Use of the EJB Service Run Command

	Debugging Application
	Debugging using Snap
	Information Output to Snap
	Snap Environment Setup
	Method Information of EJB Application Invoked by a Client
	EJB Application Method Information
	javax.transaction.UserTransaction API Information
	Database Manipulation Statement Information
	EJB Container Transaction Control Information
	J2EE Application User Debug Information
	Log Output Method for Support
	Snap File Output Example

	Using Application Debugging Information
	Debugging Information
	Output of Exception Information to the Standard Error Output

	Using the Debugger
	Automatic Thread Dump Collection
	Debugging using Java Method Trace

	Chapter 3 JNDI
	JNDI Service Provider Environment Setup
	Environment Setup for Referencing EJB
	Environment setup in client environment

	Environment Setup when JDBC (Database) is Referenced
	Environment set up when Symfoware is used
	Environment set up when Oracle is used
	Environment set up when SQL Server is used

	Environment Setup when JMS is Referenced
	Environment Setup when JavaMail is Referenced
	Environment Setup when URL is Referenced
	Environment Setup when connector is Referenced
	Description in deployment descriptor file
	Referencing Objects
	Name Conversion Function
	Name conversion file
	interstage.xml file

	Transaction Function using the UserTransaction Interface
	J2EE Application Client deployment descriptor file Detailed Set Up

	Chapter 4 The J2EE Application Security Function
	The Security Function
	User Authentication
	About User Authentication
	Directory Service
	Applications which Authenticate Users

	Access Constraints
	Method Permissions
	Security Methods
	Resource-connectable User Control Function
	Run-as Security Function

	Embedding the Security Function
	Directory Service Setting
	Setting Up the Security Management Environment Definition Files
	User and Security Role Settings
	Directory Service work procedure

	Setting the Security Function into the J2EE Application Client
	Setting up the User Authentication
	Setting up the Resource-connectable User Control Function

	Setting the Security Function into a Web Application
	Setting up the User Authentication
	Setting up the Access Constraint
	Setting up the Resource-connectable User Control Function

	Setting the Security Function into the EJB Application
	Setting up the Method Permission
	Setting up the Resource-connectable User Control Function

	Collecting the Authentication Log of the Security Function
	Action when a Security Function Error Occurs

	Part II Servlet/JSP Edition
	Chapter 5 Functions of the Servlet Service
	Input Code Automatic Conversion Function
	Custom Tag Pooling Function

	Chapter 6 Web Application Development
	Notes on the Development of Web Applications
	Notes when Using Cookies
	Cross-site-scripting Fragility Problem
	Errors and Exceptions
	Specifying an error page for the HTTP error status code

	Web Application Environment Definition File (Deployment Descriptor)
	Coding Format of the Web Application Environment Definition File (Deployment Descriptor)
	Notes on Coding

	Web Application Environment Definition File Tags
	Definition Details

	Web Application Environment Definition File Tag Definitions
	Start and End of Web Application Environment Definition Files
	The Name of a Servlet Context
	Servlet Context Initialization Parameters
	Filter Class
	Filter class Application Target
	Listener Class
	Servlet Attributes
	Servlet Mapping
	Session Parameter
	Mime Types
	Welcome Files
	Resources during Error Occurrence
	JSP Tag Libraries
	External Resource Environment Reference
	Defining References to External Resources
	Access Limit
	User Authentication
	Security Role
	Application Environment Entry
	EJB Object Reference
	EJB object reference of Local interface

	Chapter 7 How to Call Web Applications
	Calling Servlets
	Call that Requires Mapping
	Call That Does Not Require Mapping

	Calling JSPs
	Calling HTML, Image and Other Files

	Part III EJB Edition
	Chapter 8 Basic Functions of the EJB Service
	Session Bean Time Monitoring
	Managing Entity Bean Instances
	Setting the Number of Instances
	Instance Management Mode
	Instance creation Mode

	Entity Bean Optimization
	EJB QL
	What is a Message-driven Bean?
	JMS Destination and JMS ConnectionFactory definitions

	Durable Subscription Function
	Register and Delete Durable Subscriber Definition

	Message Backup Function in Abnormal Circumstances
	How to Restore the Serialized Message

	Performance Option
	Mass Update of Multiple Records
	Caching of SQL Statements
	Local invocation
	Setting Transaction Types and Attributes
	Time Monitoring Functions Supported by EJB Service
	Timeout setting of each function

	Maximum Time Monitoring Function for Application Processing
	Waiting Time Monitoring Function for Server Return
	Idle-time monitoring function of STATEFUL Session Bean
	Setting Values for Individual Time Monitoring Functions
	Timer deletion of EJB object
	Notes in EJB Service

	Chapter 9 EJB Application Development
	Application Development Flow
	Developing an EJB Application
	Deployment of an EJB Application
	Debugging an EJB Application
	Using the Development Environment of Other Companies
	Work Procedure
	Developing CMP Entity Beans

	Storage Place of Sample Applications

	Chapter 10 How to create Entity
	CMP Definitions
	Notes on Instance Management Modes
	Correspondence between Data Types Defined in a CMP, and DBMS SQL Data Types
	Standard Data Types
	Available Standard Data Types
	CMF Data Types for which Null Values Can be Used
	Recommended Data Types

	Other Classes
	Classes that Can be Defined

	Using the Development Environment of Other Companies
	Work Procedure
	Developing CMP Entity Beans

	Storage Place of Sample Applications

	Chapter 11 How to call EJB Applications
	Calling procedure
	Specifying search processing
	Example of searching for one instance
	Example of searching for multiple instances (collection interface)
	Relationship between Enterprise Bean Instance, EJB Object, and EJB Home
	EJB object and Enterprise Bean instance generation timing
	Method called to generate or delete an Enterprise Bean instance

	Using Java Applets
	Using Portable ORB

	Development procedure (pre-installed version Java library)
	Descriptions of HTML Files
	Applet Programming
	Packaging an Applet as a jar File
	Using the jar Command

	Client Setup (Pre-installed Java Clients)
	Setting Permission for Java Libraries

	Development procedure (Portable-ORB)
	Specification in the HTML file
	Files to be downloaded
	Applet jar files
	jar files for Portable-ORB
	jar files for EJB Service client
	Applet Programming
	Packaging an Applet as a jar File
	Bundling Client Distribution Data in a jar File
	Command Usage Examples
	Storing jar Files in the Web Server
	Setting up the Portable-ORB Environment in the Web Server

	Setting client environment (Portable-ORB)
	Specify the ORB (Object Request Broker)
	Portable-ORB Operation Environment File Settings
	Specifying PORB_HOME

	Editing the JBK Plug-in Setup File
	Digital Signature in Applets
	Digital Signature of JDK/JRE1.3 or later (when using keytool/jarsigner/policytool)

	policytool Command Setting (Supplements)
	Notes

	Chapter 12 DB Access Environment Definition
	Specifying the DB Access Environment Definitions
	Notes

	Chapter 13 Customize by EJB Service Operation Command
	Customize Flow
	Export and Import of Enterprise Bean Definition Information
	Export and Import of DB Definition Information
	Contents of Enterprise Bean Definition File
	DB Definition File Contents
	Enterprise Bean Definition File Example
	DB Definition File Example

	Chapter 14 Using the Interstage JDBC Driver
	Overview of Interstage JDBC Driver
	Environment Setup Required for Connection to SQL Server

	Methods of Connection to an SQL Server
	Using the Enterprise Bean Environment
	Using the Interstage JDBC Driver Directly
	Datasource Connection Processing
	URL Connection Processing

	Part IV JTS/JTA Edition
	Chapter 15 Using Java Transaction API (JTA)
	JTA
	JTA Interfaces
	User Transaction Interface
	Environment Setup for the User Transaction Interface
	Acquiring the User Transaction Interface

	Generating a JTA Application
	Application Configuration
	Performing Initialization Process and Acquiring the UserTransaction object
	From Transaction Start to Transaction Stop
	JTA Application Example
	Precautions

	Part V JMS Edition
	Chapter 16 Environment Settings for Interstage JMS
	Environment Settings for the Event Channel Operation Machine
	Environment Setting before Operation
	Starting Interstage
	Creating and Starting a Unit
	Creating a Static Event Channel
	Changing the Event Channel Operating Environment

	Environment Deletion after Operation
	Deleting the Static Event Channel
	Stopping and Deleting a Unit
	Stopping Interstage

	Environment Settings for the JMS Application Operation Machine
	Environment Setting before Operation
	Setting JNDI Environment Definitions
	Registering ConnectionFactory Definition
	Registering Destination Definition
	Environment Setup during Web Application Operation

	Environment Deletion after Operation
	Deleting ConnectionFactory Definition
	Deleting Destination Definition
	Deleting Durable Subscriber

	Chapter 17 Developing a JMS Application
	Designing an Application
	Creating a JMS Application
	Publish/Subscribe Messaging Model
	Creating a Publisher
	Creating a Subscriber

	Point-To-Point Messaging Model
	Creating a Sender
	Creating a Receiver

	Message Listener
	Creating a Subscriber using Message Listener
	Creating a Receiver using Message Listener

	Durable Subscription Function
	Creating a Subscriber using the Durable Subscription Function
	Note on using the Durable Subscription Function

	Message Priority and Lifetime
	Message Persistent Function
	Local Transaction
	Creating a Publisher using a Local Transaction
	Creating a Subscriber using a Local Transaction
	Creating a Sender using a Local Transaction
	Creating a Receiver using a Local Transaction

	Global Transaction
	Creating a Publisher using a Global Transaction
	Creating a Subscriber using a Global Transaction
	Creating a Sender using a Global Transaction
	Creating a Receiver using a Global Transaction
	Note on Starting an Application

	Linkage with a CORBA Application
	Communication from a JMS Application to a CORBA Application
	Communication from a CORBA Application to a JMS Application

	Message Selector Function
	Message Selector Conditional Expression

	Queue Browser Function
	Notes on Using TopicRequestor/QueueRequestor

	Interface
	API List of the Package javax.jms (Part 1)
	API List of the Package javax.jms (Part 2)
	API List of the Package javax.jms (Part 3)
	API List of the Package javax.jms (Part 4)
	API List of the Package javax.jms (Part 5)
	API List of the Package javax.jms (Part 6)
	API List of the Package javax.jms (Part 7)
	API List of the Package javax.jms (Part 8)

	Part VI Connector Edition
	Chapter 18 Basic Functions of the Interstage Connector
	Connection Management
	Timeout for the Pooled Connection

	Transaction Management
	Supported Transaction Support Level
	Note when Transaction Function is Used

	Security Management

	Part VII Tool Edition
	Chapter 19 J2EE Resource Access Definition
	Activating the J2EE resource access definition
	J2EE resource access definition activation command
	Initial window for J2EE resource access definition

	Index

