

Interstage Shunsaku Data Manager
Application Development Guide

Application Development Guide

ii

Trademarks
Trademarks of other companies are used in this user guide only to identify particular products or
systems.

Product Trademark/Registered Trademark
Microsoft, Windows, and Windows Server Registered trademarks of Microsoft Corporation in

the United States and other countries.
Java Java and other trademarks relating to Java are

trademarks of Sun Microsystems, Inc in the United
States and other countries.

Linux Trademark or registered trademark of Linus
Torvalds in the United States and other countries.

Red Hat, RPM, and all trademarks and logos
based on Red Hat

Trademarks or registered trademarks of Red Hat,
Inc., in the USA and other countries.

Fujitsu documentation may contain specific technologies that apply to foreign
exchange and foreign trade control laws. When such specific technology is described
in the document, and that document is either exported or provided to a non-resident,
permission based on these laws is required.

Fujitsu Limited

First Edition (August 2004)
The contents of this manual may be revised without prior notice.

All Rights Reserved, Copyright © FUJITSU Limited 2004

iii

Preface

Purpose of this Manual
This manual describes how to create applications that use the APIs provided by Interstage
Shunsaku Data Manager (hereafter abbreviated as Shunsaku).

Target Audience
This manual is aimed at the following readers:

• Persons using Shunsaku.

• Persons developing applications that use the Shunsaku APIs.

Required Knowledge
This manual assumes that the reader has an understanding of the following topics:

• XML

• C language

• Java

• Internet basics

• Windows

• Linux

Preface

iv

Organization of this Manual
This manual is organized as follows:

• Chapter 1 - Overview

This chapter provides an overview of the functions of Shunsaku.

• Chapter 2 - Environment Setup

This chapter explains the environment settings needed for creating applications that use the
Shunsaku APIs.

• Chapter 3 - Data Search Methods

This chapter explains the data search methods that use search expressions, return expressions
and sort expressions specified as arguments for the APIs provided by Shunsaku.

• Chapter 4 - Data Updating Methods

This chapter explains how to update data using the Shunsaku APIs.

• Chapter 5 - Developing Java Applications

This chapter explains how to develop applications using Shunsaku’s Java APIs.

• Chapter 6 - Developing C Applications

This chapter explains how to develop applications using Shunsaku’s C APIs.

• Appendix A - Formats of Search Expressions, Return Expressions and Sort Expressions

This appendix explains the formats of the search expressions, return expressions and sort
expressions that are specified as arguments of the Shunsaku APIs.

• Appendix B - Sample Java Programs

This appendix provides sample programs that use the Java APIs.

• Appendix C - Sample C Programs

This appendix provides sample programs that use the C APIs.

• Appendix D - Allowable Values

This appendix explains the allowable values that are involved during the development of
Shunsaku applications.

• Appendix E – Estimating Resources

This appendix explains how to estimate resources when using applications to add, delete or
search for data.

• Appendix F - Notes on XML documents

This appendix provides notes on the XML documents that are stored in Shunsaku.

• Glossary

This defines the terms used in this manual.

Preface

v

Related Manuals
Relevant manuals are provided in the form of online manuals.

Title used in this manual Full manual title
User’s Guide Interstage Shunsaku Data Manager User’s Guide
Application Development Guide
(This manual)

Interstage Shunsaku Data Manager Application
Development Guide

Java API Reference Interstage Shunsaku Data Manager Java API
Reference

C API Reference Interstage Shunsaku Data Manager C API
Reference

Positioning of this Manual
The following table shows how Shunsaku manuals are organized.

Manual title Content
User’s Guide Explains the functions provided by Shunsaku, and

describes how to set up the environment and
operate Shunsaku.

Application Development Guide
(This manual)

Explains how to create applications that use the
Shunsaku APIs.

Java API Reference Explains the syntax of the Shunsaku Java APIs.
C API Reference Explains the syntax of the Shunsaku C APIs.

Supplementary Information

Platform-specific Information
This manual provides information for all platforms that are supported by Shunsaku.

Where information differs for each platform, the following icons are displayed in front of the
information relating to each platform.

In this case, only refer to the information relating to the platform being used.
: Indicates Windows-specific information.

: Indicates Linux-specific information.

Applicable Products

Interstage Shunsaku Data Manager

• Windows Interstage® Shunsaku Data Manager Enterprise Edition V6.0L30

• Linux Interstage® Shunsaku Data Manager Enterprise Edition V6.0L30

Preface

vi

Terminology used in Shunsaku manuals
The following table shows the correspondence of terms used in Shunsaku manuals.

 Term used in Shunsaku manual

Folder Directory The term ‘directory’ appears in some parts of
Shunsaku manuals.

Abbreviations
This document uses abbreviations for product names as shown in the following table:

Abbreviation Product name
Shunsaku Windows Interstage® Shunsaku Data Manager Enterprise Edition

Linux Interstage® Shunsaku Data Manager Enterprise Edition
Windows Microsoft® Windows® 2000 Server operating system

Microsoft® Windows® 2000 Advanced Server operating system
Microsoft® Windows Server™ 2003, Standard Edition
Microsoft® Windows Server™ 2003, Enterprise Edition

Linux Red Hat Enterprise Linux AS
Red Hat Enterprise Linux ES
Red Hat Linux

vii

Table of Contents

Chapter 1 Overview
Performing Data Searches from Applications...1-2

Performing Data Updates from Applications..1-3

Chapter 2 Environment Setup
API Configuration..2-2

Java APIs ...2-2
C APIs ..2-2

Setup...2-4
Setting Environment Variables..2-5

Setting Environment Variables (Java APIs) ...2-5

Setting Environment Variables (C APIs) ...2-6

Chapter 3 Data Search Methods
Data Search Overview ..3-2
Specifying the Search Expression ..3-4

Searching with Character Strings ..3-4
Searching for Documents that Contain a Search Keyword..3-5
Searching for Documents that Match a Search Keyword Exactly....................................3-6
Performing a Size Comparison with a Search Keyword ..3-7

Searching by Numeric Value ...3-8
Searching by Joining Multiple Conditions with Logical Operators...3-9

Sorting Search Results ...3-12
Sorting by Character String..3-12
Sorting by Numeric Value ..3-14
Sorting with Multiple Keys..3-15

Extracting Search Results...3-17
Extracting Data in XML Format..3-17

Extracting an Entire XML Document ..3-17
Extracting Data in XML Format by Specifying an Element Node3-18

Extracting Data in Text Format ..3-20
Extracting Aggregated Results ...3-22

Grouping Search Results...3-22
Grouping by Numeric Value..3-23

Table of Contents

viii

Grouping by Character String .. 3-24
Grouping by Multiple Keys... 3-26

Aggregating Search Results ... 3-27

Chapter 4 How to Update Data
Overview .. 4-2
Adding Data ... 4-3
Deleting Data ... 4-5

Chapter 5 Java Application Development
Java API Overview... 5-2
How to Use Java APIs ... 5-3

Opening Connections ... 5-3
Specifying the Host Name and Port Number in a Java Properties Object 5-3
Specifying the Host Name and Port Number Directly.. 5-4

Searching Data ... 5-4
Obtaining Search Results According to the Number of Data Items................................. 5-5
Obtaining Search Results While Adding Search Conditions ... 5-7
Obtaining Entire XML Documents ... 5-8
Obtaining Sorted Data ... 5-10
Aggregating the Content of the Data that Matches Search Conditions......................... 5-12

Updating Data ... 5-14
Adding Data ... 5-14
Deleting Data ... 5-15

Closing Connections ... 5-16
Error Handling... 5-17

Character Encoding Used by Java APIs.. 5-18
Error Codes Output when Java APIs are Used ... 5-19

Error Codes Notified from the Conductor or the Director ... 5-30

Chapter 6 C Application Development
C API Overview .. 6-2
How to Use C APIs... 6-3

Searching Data ... 6-3
Obtaining Search Results According to the Number of Data Items................................. 6-4
Obtaining Search Results while Adding Search Conditions .. 6-5
Obtaining Entire XML Documents ... 6-6
Obtaining Sorted Data ... 6-7
Aggregating the Content of the Data that Matches Search Conditions........................... 6-8

Updating Data ... 6-9
Adding Data ... 6-9
Deleting Data ... 6-10

Table of Contents

ix

Character Encoding Used by the C APIs...6-10
Error Codes Output when C APIs are Used ...6-11

Appendix A Format of Search, Return and Sort Expressions
Common Format .. A-2

Path Expressions.. A-2
Path Element ... A-2
Path Operator .. A-3

Text Expressions... A-4
Path Expressions... A-4
text()... A-4

Single-Line Function Specification.. A-6
The rlen Function... A-6
The val Function .. A-7

Search Expressions ... A-8
Logical Operators ... A-9
Conditional Expressions ... A-10

Path Expressions... A-10
Keywords ... A-10
Character String... A-11
Ellipses... A-11
Escape Characters .. A-11
Entity References .. A-11
Numeric Values.. A-12
Character String Searches .. A-12
Partial Matches .. A-13
Complete Matches... A-13
Size Comparison Searches ... A-13
Ellipses Searches .. A-14
Numeric Value Searches ... A-15

Filter Expressions ... A-18
Return Expressions.. A-20

Format Used when not Aggregating ... A-20
Path Expressions... A-20
Text Expressions.. A-21
Single-line Function Specification.. A-21

Example Return Expressions when not Aggregating ... A-21
Return Specification in XML Format .. A-21
Text Format Return Specification... A-23

Format Used when Aggregating ... A-25
Text Expressions.. A-26
Single-line Function Specification.. A-27
Aggregation Function Specifications ... A-27

Table of Contents

x

Example Return Expressions used when Aggregating ..A-28
Sort Expressions ..A-31

Sort Expression Format ..A-31
Text Expressions..A-31
Single-line Function Specification..A-32
DESC ...A-32
Sorting..A-32
Aggregation..A-33

Example Sort Expressions..A-33
Entry Example of Data Sorting ..A-34
Entry Example of Data Aggregation...A-35

Appendix B Sample Java Programs
Searching Data .. B-2

Find the Number of XML Documents that Match the Search Conditions............................. B-5
Obtain the XML Documents that Match the Search Conditions in a Specified Format B-7
Obtain All of a Particular XML Document.. B-9
Find XML Documents that Match the Search Conditions and Obtain the Documents after
they are Sorted ...B-12
Find XML Documents that Match the Search Conditions and Obtain the Documents after
their Contents are Aggregated..B-14

Updating Data ..B-17
Adding Data ..B-17
Deleting Data ..B-19

Appendix C Sample C Programs
Searching Data ..C-2

Find the Number of XML Documents that Match the Search Conditions.............................C-5
Obtain the XML Documents that Match the Search Conditions in a Specified FormatC-7
Obtain All of a Particular XML Document..C-10
Find XML Documents that Match the Search Conditions and Obtain the Documents after
They are Sorted ..C-15
Find XML Documents that Match the Search Conditions and Obtain the Documents after
Their Contents are Aggregated...C-18

Updating Data ..C-21
Adding Data ..C-21
Deleting Data ..C-23

Appendix D Allowable Values
Search Expressions and Return Expressions ...D-2
Sort Requests ..D-3

Relationship between the Total Sort Key Length and the Maximum Number of Items that
Can be Returned...D-4

Table of Contents

xi

Aggregation Requests ...D-6
Relationship between the Total Group Key Length and the Maximum Number of Items that
Can be Returned ..D-7

Appendix E Estimating Resources
Local Memory Requirements for Java APIs... E-2
Local Memory Requirements for C APIs.. E-3

Appendix F Notes on XML Documents
XML Document Format.. F-2
XML Documents in Text Files... F-3
Notes on XML Format.. F-4

Glossary

Table of Contents

xii

Chapter 1

Overview

This chapter provides an overview of Shunsaku functions.

• Performing Data Searches from Applications

• Performing Data Updates from Applications

1-1

Chapter 1: Overview

Performing Data Searches from Applications
The Shunsaku APIs enable data searches to be initiated from applications.

Shunsaku provides Java and C APIs for search operations.

Director Server

Shunsaku

conductor

Search Server
searcher

Search
data

Application Server
Application for searching data

Number of search hits, search
results

prepareSearch()

API

：Flow of application request

：Flow of results to application

director

Sort or aggregation results

setRequest()
executeSearch()

Search results

prepareSearch()
executeSearch()
getRecordID()

prepareSearchRecordID()
add()
searchByRecordID()

Record ID

prepareSearch()
setSort()
executeSearch()

Search Server
searcher

Search
data

Search Server
searcher

Search
data

sorter

Director Server

Shunsaku

conductor

Search Server
searcher

Search
data
Search
data

Application Server
Application for searching data

Number of search hits, search
results

prepareSearch()

API

：Flow of application request

：Flow of results to application

director

Sort or aggregation results

setRequest()
executeSearch()

Search results

prepareSearch()
executeSearch()
getRecordID()

prepareSearchRecordID()
add()
searchByRecordID()

Record ID

prepareSearch()
setSort()
executeSearch()

Search Server
searcher

Search
data
Search
data

Search Server
searcher

Search
data
Search
data

sorter

Figure 1-1 Searching Data from Applications

1-2

Performing Data Updates from Applications

Performing Data Updates from Applications
The Shunsaku APIs enable data updates to be initiated from applications.

Shunsaku provides Java and C APIs for update operations.

Application server

Application for updating data

: Flow of application request

: Flow of data to application

prepareInsert()
add()
executeInsert()

Add data

prepareSearch()
executeSearch()
getRecordID()

prepareDeleteRecordID()
add()
deleteByRecordID()

Record ID

Record ID is specified to
delete data

Director server

Shunsaku

conductor

Search server

searcher

Search
data

API

director
Search server

searcher

Search
data

Search server

searcher

Search
data

Application server

Application for updating data

: Flow of application request

: Flow of data to application

prepareInsert()
add()
executeInsert()

Add data

prepareSearch()
executeSearch()
getRecordID()

prepareDeleteRecordID()
add()
deleteByRecordID()

Record ID

Record ID is specified to
delete data

Director server

Shunsaku

conductor

Search server

searcher

Search
data
Search
data

API

director
Search server

searcher

Search
data
Search
data

Search server

searcher

Search
data
Search
data

Figure 1-2 Updating Data from Applications

1-3

Chapter 1: Overview

1-4

2-1

Chapter 2

Environment Setup

This chapter explains the environment settings that are required to create applications that can use
Shunsaku.

• API Configuration

• Setup

• Setting Environment Variables

Chapter 2: Environment Setup

2-2

API Configuration
This section explains the configuration of Shunsaku APIs.

Java APIs
This section explains the configuration of Java APIs.

File Configuration for Java APIs
When Shunsaku APIs are installed, the following jar format file is created.

Shunsaku installation folder\Shunsaku\lib\shunapi.jar

/opt/FJSVshnsk/lib/shunapi.jar

API Package (shunapi.jar)
This package contains Java classes for creating applications.

Refer to the Java API Reference for more information on the functions that can be implemented by
using the methods provided by the Shunsaku APIs.

C APIs
This section explains the configuration of C APIs.

Directory Configuration for C APIs
When Shunsaku APIs are installed, the following directories are created.

Shunsaku installation folder\Shunsaku\include:

This is the include file provided by the Shunsaku APIs.

Shunsaku installation folder\Shunsaku\lib:

This is the library provided by the Shunsaku APIs.

/opt/FJSVshnsk/include:

This is the include file provided by the Shunsaku APIs.

/opt/FJSVshnsk/lib:

This is the library provided by the Shunsaku APIs.

API Configuration

2-3

Include File
This include file is referenced by each function in the Shunsaku APIs. The include file is shown
below.

Table 2-1 Include File
Include file name Usage
libshun.h This file is referenced by each function in Shunsaku APIs.

Library
The following file contains the C function library for creating applications:

f3hyshun.lib

libshun.so

Refer to the C API Reference for more information on the functions that can be implemented by
using the libraries provided by the Shunsaku APIs.

Chapter 2: Environment Setup

2-4

Setup
Refer to the User’s Guide for more information on how to install Shunsaku APIs on an application
server.

Setting Environment Variables

2-5

Setting Environment Variables
This section explains the environment variables that are needed to use the Shunsaku APIs.

Setting Environment Variables (Java APIs)
Set the environment variables required for using the Shunsaku Java APIs.

Add ‘shunapi.jar’ to the CLASSPATH environment variable.

Examples of how to set these environment variables are shown below.

Example
When Shunsaku is installed using the Typical installation option:

SET CLASSPATH=C:\Program Files\Interstage
Shunsaku\Shunsaku\lib\shunapi.jar;%CLASSPATH%

Example 1
For bash, Bourne and Korn shell:

CLASSPATH=/opt/FJSVshnsk/lib/shunapi.jar:$CLASSPATH; export CLASSPATH

Example 2
For C shell:

setenv CLASSPATH /opt/FJSVshnsk/lib/shunapi.jar:$CLASSPATH

Chapter 2: Environment Setup

2-6

Setting Environment Variables (C APIs)
Set the environment variables required for using the Shunsaku C APIs.

Add ‘/opt/FJSVshnsk/lib’ to the LD_LIBRARY_PATH environment variable.

Examples of how to set these environment variables are shown below.

Example 1
For bash, Bourne and Korn shell:

LD_LIBRARY_PATH=/opt/FJSVshnsk/lib:$LD_LIBRARY_PATH ; export
LD_LIBRARY_PATH

Example 2
For C shell:

setenv LD_LIBRARY_PATH /opt/FJSVshnsk/lib:$LD_LIBRARY_PATH

3-1

Chapter 3

Data Search Methods

This chapter explains how the search expressions, return expressions and sort expressions
specified as arguments to Shunsaku API functions, are used to search for data.

• Data Search Overview

• Specifying the Search Expression

• Sorting Search Results

• Extracting Search Results

• Extracting Aggregated Results

Chapter 3: Data Search Methods

3-2

Data Search Overview
This section explains the basic approach to searching for XML documents stored in Shunsaku.

• A search expression is used to search for particular XML documents stored in Shunsaku.

• A sort expression is used to change the sequence in which XML documents are returned.

• A return expression is used to decide which elements will be aggregated or extracted from the
XML documents that are found by a search.

• A group key is selected when aggregation is to be performed. The group key is specified in the
sort expression.

Select the XML documents to search for → Search expression. (Refer to Specifying
the Search Expression.)

Change the return
sequence → Sort
expression. (Refer to
Sorting Search Results.)

Specify the elements to be extracted from the XML documents → Return
expression. (Refer to Extracting Search Results.)

Specify the group key → Sort
expression. (Refer to Extracting
Aggregated Results.)

Sort Aggregate

Shunsaku
XML

documentXML
documentXML

documentXML
document

Select the XML documents to search for → Search expression. (Refer to Specifying
the Search Expression.)

Change the return
sequence → Sort
expression. (Refer to
Sorting Search Results.)

Specify the elements to be extracted from the XML documents → Return
expression. (Refer to Extracting Search Results.)

Specify the group key → Sort
expression. (Refer to Extracting
Aggregated Results.)

Sort Aggregate

Shunsaku
XML

documentXML
documentXML

documentXML
document

Figure 3-1 Searching for XML Documents Stored in Shunsaku

Refer to Appendix A, Formats of Search Expressions, Return Expressions and Sort Expressions for
more information on the search expressions, sort expressions and return expressions.

The explanations in the following sections use a ‘Business Trip Report’ as an example. Assume that
the following XML document exists:

Sample Document

<doc>
 <employee> Employee information
 <eno>Employee number</eno>
 <name>Employee name</name>
 <sno>Section number</sno>
 <phone>Extension</phone>
 <email>address</email>

Data Search Overview

3-3

 </employee>
 <basic> Basic information
 <date>Trip date</date>
 <expense>Trip expenses</expense>
 </basic>
 <detail> Details
 <destination>Trip destination</destination>
 <area>Trip area</area>
 <purpose>Trip purpose</purpose>
 <train>Traveling expenses</train>
 <taxi>Taxi fares</taxi>
 <hotel>Accommodation costs</hotel>
 <comment>Comments</comment>
 </detail>
 <report>Trip report</report> Report
</doc>
<doc>
 :
 :

Chapter 3: Data Search Methods

3-4

Specifying the Search Expression
A search expression is used to retrieve XML documents that satisfy specified conditions from the
XML documents stored in Shunsaku. The search expression is specified in the APIs provided by
Shunsaku.

Refer to Search Expressions in Appendix A for more information.

Searching with Character Strings
It is possible to search for XML documents by specifying conditions that apply to character strings
contained in any given element node of an XML document. The following three methods can be
used to specify the conditions that apply to the character string:

• Searching for Documents that Contain a Search Keyword

• Searching for Documents that Match a Search Keyword

• Performing a Size Comparison with a Search Keyword

The examples that follow assume that the following documents exist:

Document A

<doc>
 :
 <basic>
 <date>30/01/2004</date>
 :
 </basic>
 <detail>
 <destination>Tokyo Office</destination>
 <area>Chiyoda-ku, Tokyo</area>
 <purpose>Attendance at Shunsaku Sales Conference</purpose>
 <train>7200 yen</train>
 <taxi></taxi>
 <hotel>8500 yen</hotel>
 <comment>Hotel charges were incurred due to attendance at an informal
meeting</comment>
 </detail>
 <report>The Systems Manager of the IT Department of Company A was also
at the conference</report>
</doc>

Document B

<doc>
 :
 <basic>
 <date>31/01/2004</date>
 :
 </basic>
 <detail>
 <destination>Osaka branch</destination>
 <area>Abeno-ku, Osaka-shi, Osaka</area>
 <purpose>V6.0L30 installation report</purpose>
 <train>14200 yen</train>

Specifying the Search Expression

3-5

 <taxi>1820 yen</taxi>
 <hotel></hotel>
 <comment>Plan to return home directly</comment>
 </detail>
 <report>Because the installation only took a short time</report>
</doc>

Document C

<doc>
 :
 <basic>
 <date>02/03/2004</date>
 :
 </basic>
 <detail>
 <destination>Head office</destination>
 <area>Kohoku-ku, Yokohama-shi, Kanagawa</area>
 <purpose>Regular Interstage meeting</purpose>
 <train>2400 yen</train>
 <taxi></taxi>
 <hotel></hotel>
 <comment>Sales conference materials were verified in advance</comment>
 </detail>
 <report>I received permission from the Sales Coordination Department to
verify the materials in advance</report>
</doc>

Searching for Documents that Contain a Search Keyword
It is possible to search for XML documents with an element node that has a character string that
contains a search keyword. This type of search is called a partial match search. Partial match
searches are specified by connecting the path expression and the search keyword with the
relational operator ‘=’.

Refer to Path Expression in Appendix A for more information.

Example 1
The following example shows how to search for documents that use the keyword ‘Shunsaku’ in the
trip purpose (purpose):

/doc/detail/purpose = 'Shunsaku'

Result
Document A is returned.

Example 2
If ‘//’ is specified in the path expression, a partial match search can be performed on all levels of
element nodes under any given element node. By specifying ‘*’ in the path expression, a partial
match can be performed for all element nodes under any given element node.

Note

The ‘//’ specification is a useful way to find documents that contain the search keyword in any
element node of an entire XML document, and not just in a specific element node.

Chapter 3: Data Search Methods

3-6

The following example shows how to search for documents that contain the keyword ‘Sales
Conference’ somewhere in the detailed information (detail):

/doc/detail/* = ‘Sales Conference’

Result
Documents A and C are returned.

Example 3
If ‘//’ is specified in the path expression, a partial match search can be performed on all levels of
element nodes under any given element node. By specifying ‘*’ in the path expression,a partial
match can be performed for all element nodes under any given element node.

Note

The ‘//’ specification is a useful way to find documents that contain the search keyword in any
element node of an entire XML document, and not just in a specific element node.

The following example shows how to search for documents that contain the string ‘V6.0L30’:

/doc// = 'V6\.0L30'

Result
Document B is returned.

Note

The character \’ is an escape character for a dot ‘.’.

Refer to Escape Characters for more information on escape characters.

Example 4
It is also possible to specify a wildcard within keywords to allow searches for words that begin with
or end with certain characters. Wildcards are specified as ellipses ‘…’. This kind of search is called a
‘ellipse search’. Refer to Ellipse Searches in Appendix A for more information.

The following example shows how to search for documents that contain keywords beginning with
‘Systems Manager’ and ending with ‘Company A’:

/doc/report = 'Systems Manager...Company A'

Result
Document A is returned.

Searching for Documents that Match a Search Keyword Exactly
It is possible to search for documents with an element node that contain a character string that
exactly matches a given keyword. This type of search is known as a complete match search. The
complete match search is specified by connecting the path expression and the search keyword with
the relational operator ‘==’.

Refer to Path Expression in Appendix A for more information.

Specifying the Search Expression

3-7

Example 1
The following example shows how to search for documents in which the trip destination (destination)
is specified as ‘Head Office’:

/doc/detail/destination == 'Head Office'

Result
Document C is returned.

Example 2
If ‘//’ is specified in the path expression, a complete match search can be performed on all levels of
element nodes under any given element node. By specifying ‘*’ in the path expression, a complete
match search can be performed for all element nodes under any given element node

The following example shows how to search for documents that have ‘31/01/2004’ as the value of
any element node in basic information (basic):

/doc/basic/* == '31/01/2004'

Result
Document B is returned.

Performing a Size Comparison with a Search Keyword
It is possible to search for documents that meet conditions by performing a size comparison
between a character string in any element node of an XML document and any keyword. (The size
relationship between character strings refers to the size relationship between the character code
values of those strings.) This type of search is known as a size comparison search. The size
comparison search is specified by connecting the path expression and the search keyword with the
relational operator ‘<’, ‘<=’, ‘>’ or ‘>=’.

Refer to Relational Operators in Character Searches in Appendix A for more information on
relational operators.

Example
The following example shows how to search for documents in which the trip date (date) is later than
01/02/2004:

/doc/basic/date > '01/02/2004'

Result
Document C is returned.

Note

To perform a size comparison between character codes, the character strings need to be in the
same format. For example, if the date is specified as ‘1/2/2004’, the intended documents will not be
found.

Chapter 3: Data Search Methods

3-8

Searching by Numeric Value
It is possible to search for documents that meet conditions by performing a size comparison
between the data in any element node of an XML document and the numeric value of a keyword.
For document searches using a numeric value, the character string in an element node in the XML
document is treated as a numeric value. Therefore, unlike the size comparison search, the format of
the character string need not be considered.

The data in the element node specified by the path expression is treated as a numeric value and is
compared to the numeric value specified by the keyword. The path expression and the search
keyword are specified using a relational operator.

The following relational operators can be used: ‘=’, ‘!=’, ‘<’, ‘<=’, ‘>’ and ‘>=’.

The keyword is specified as a numeral not enclosed in quotes.

Refer to Path Expressions in Appendix A for more information.

Refer to Numeric Value Searches in Appendix A for more information on numeric values and
relational operators.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 <employee>
 <eno>19980120</eno>
 <name>Taro Suzuki</name>
 <sno>1001</sno>
 <phone>2201-1101</phone>
 <email>suzuki.taro@shunsaku.fujitsu.com</email>
 </employee>
 <basic>
 <date>16/02/2004</date>
 <expense>15700 yen</expense>
 </basic>
 :
</doc>

Document B

<doc>
 <employee>
 <eno>20012111</eno>
 <name>Hanako Sato</name>
 <sno>2002</sno>
 <phone>2201-1204</phone>
 <email>sato.hanako@shunsaku.fujitsu.com</email>
 </employee>
 <basic>
 <date>18/02/2004</date>
 <expense>8500 yen</expense>
 </basic>
 :
</doc>

Specifying the Search Expression

3-9

Example 1
The following example shows how to search for documents in which the section number (sno) is
specified as 1001:

/doc/employee/sno = 1001

Result
Document A is returned.

Example 2
If ‘//’ is specified in the path expression, a search can be performed on all levels of element nodes
under any given element node. By specifying ‘*’ in the path expression, all element nodes under any
given element node can be searched.

Note

The ‘//’ specification is useful when the target element nodes can be uniquely determined without
having to express a hierarchical structure.

The following example shows how to search for documents in which the trip expenses (expense)
are not more than ¥10,000:

//expense <= 10000

Result
Document B is returned.

Searching by Joining Multiple Conditions with Logical Operators
Searches can be conducted using multiple conditions joined by logical operators. Logical operators
make it possible to search for XML documents that satisfy two conditions, or that satisfy only one of
two conditions.

The logical operators AND and OR can be specified. When both AND and OR are specified in a
search expression, AND takes precedence over OR.

Refer to Logical Operators in Appendix A for more information.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 :
 <basic>
 <date>30/01/2004</date>
 <expense>15700 yen</expense>
 </basic>
 <detail>
 <destination>Tokyo Office </destination>
 <area>Chiyoda-ku, Tokyo</area>

Chapter 3: Data Search Methods

3-10

 <purpose>Attendance at Shunsaku Sales Conference</purpose>
 :
 </detail>
 :
</doc>

Document B

<doc>
 :
 <basic>
 <date>16/02/2004</date>
 <expense>16020 yen</expense>
 </basic>
 <detail>
 <destination>Osaka branch</destination>
 <area>Abeno-ku, Osaka-shi, Osaka</area>
 <purpose>V6.0L30 installation report</purpose>
 :
 </detail>
 :
</doc>

Document C

<doc>
 :
 <basic>
 <date>02/03/2004</date>
 <expense>2400 yen</expense>
 </basic>
 <detail>
 <destination>Head office</destination>
 <area>Kohoku-ku, Yokohama-shi, Kanagawa</area>
 <purpose>Regular Interstage meeting</purpose>
 :
 </detail>
 :
</doc>

Example 1
The following example shows how to search for documents that contain the keyword ‘Interstage’ or
‘Shunsaku’ in the trip purpose (purpose):

/doc/detail/purpose = 'Interstage' OR
/doc/detail/purpose = 'Shunsaku'

Result
Documents A and C are returned.

Example 2
The following example shows how to search for documents in which the trip expenses (expense)
are not less than ¥10,000 and the trip area (area) includes ‘Osaka’:

Specifying the Search Expression

3-11

/doc/basic/expense >= 10000 AND
/doc/detail/area = 'Osaka'

Result
Document B is returned.

Example 3
To force OR to have precedence over AND, the OR conditional expression must be enclosed in
parentheses.

The following example shows how to search for documents in which the trip destination (destination)
is ‘Head Office’ or ‘Osaka Branch’ and the trip date (date) includes ‘02/2004’:

(/doc/detail/destination == 'Head Office' OR
 /doc/detail/destination == 'Osaka Branch') AND
/doc/basic/date = 02/2004'

Result
Document B is returned.

Chapter 3: Data Search Methods

3-12

Sorting Search Results
XML documents found using a search expression can be sorted according to a specified key before
being returned. To do so, a sort expression is specified in the Shunsaku APIs. The sort expression is
specified as a sort key text expression or as a single-line function specification.

Refer to Sort Expressions in Appendix A for more information on sort expressions.

Sorting by Character String
It is possible to sort search results using a character string in any element nodes of an XML
document. The size relationship between character strings refers to the size relationship between
the character code values of those strings. To use a character string to sort search results, a key
specification in the sort expression must be defined using either a text expression or the rlen single-
line function. Refer to Sort Expression Formats in Appendix A for more information on key
specifications.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 :
 <basic>
 <date>2201/2004</date>
 :
 </basic>
 <detail>
 :
 <area>Yaesu, Chiyoda-ku, Tokyo</area>
 :
 </detail>
 :
</doc>

Document B

<doc>
 :
 <basic>
 <date>03/02/2004</date>

 </basic>
 <detail>
 :
 <area>Abenomotomachi, Abeno-ku, Osaka-shi, Osaka</area>
 :
 </detail>
 :
</doc>

Sorting Search Results

3-13

Document C

<doc>
 :
 <basic>
 <date>13/01/2004</date>
 :
 </basic>
 <detail>
 :
 <area>Chuo-ku, Sapporo-shi, Hokkaido</area>
 :
 </detail>
 :
</doc>

Document D

<doc>
 :
 <basic>
 <date></date>
 :
 </basic>
 <detail>
 :
 <area>Kakuozan, Chikusa-ku, Nagoya-shi, Aichi</area>
 :
 </detail>
 :
</doc>

Example 1
The following example shows how to sort documents in ascending order according to the trip date
(date):

/doc/basic/date/text()

Result
Documents are returned in the order C, A, B, D.

Example 2
To sort character codes in descending order, specify ‘DESC’ after the key specification.

The following example shows how to sort documents in descending order according to the trip date
(date):

/doc/basic/date/text() DESC

Result
Documents are returned in the order B, A, C, D.

Chapter 3: Data Search Methods

3-14

Note

If there are no text nodes in an XML document specified by a text expression, that XML document
will be returned last, regardless of whether a ‘DESC’ specification is in place. In the above example,
Document D would be returned last in both an ascending sort and a descending sort.

Example 3
When a sort is performed using a character string, the first 20 bytes of that string are used as the
sort key. Therefore, if the length of the character string specified as the key is greater than 20 bytes,
bytes 21 onwards will not become part of the key, and the XML documents will not be sorted
correctly. In such cases, the rlen function can be used in the key specification to determine how
many characters from the start of the string will be used as the sort key. Refer to Single-line
Function Specifications in Appendix A for more information on the rlen function.

The following example shows how to sort documents according to the trip area (area):

rlen(/doc/detail/area/text(),30)

When the above is specified, the first 30 characters of the trip area will be used as the sort key.

Sorting by Numeric Value
It is possible to sort character strings in element nodes of XML documents as if they were numeric
values. To do so, specify the single-line val function in the key specification in the sort expression. A
text expression is specified as the argument of the val function. Refer to Single-line Function
Specifications in Appendix A for more information on single-line function specifications.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 :
 <basic>
 :
 <expense>7650 yen</expense>
 </basic>
</doc>

Document B

<doc>
 :
 <basic>
 :
 <expense>12980 yen</expense>
 </basic>
</doc>

Document C

<doc>
 <basic>
 :

Sorting Search Results

3-15

 <expense>No trip expenses required</expense>
 </basic>
</doc>

Document D

<doc>
 <basic>
 :
 <expense>480 yen</expense>
 </basic>
</doc>

Example 1
The following example shows how to sort documents in ascending order according to the trip
expenses (expense):

val(/doc/basic/expense/text())

Result
Documents are returned in the order C, D, A, B.

Notes

• If the character string in the text node in the XML document specified by the text expression
does not contain a numeric value, the val function will treat the value of the node as 0. In this
example, the trip expenses in Document C will be treated as 0.

• If the text node in the XML document specified by the text expression does not exist, that XML
document will be returned last.

Example 2
Specifying ‘DESC’ after the key specification will sort numeric values in descending order.

The following example shows how to sort documents in descending order according to the trip
expenses (expense):

val(/doc/basic/expense/text()) DESC

Result
Documents are returned in the order B, A, D, C.

Sorting with Multiple Keys
It is possible to perform a sort using the values of more than one element node in an XML document.
Commas are used to separate key specifications in the sort expression. The keys can be either a
numeric or character string.

Chapter 3: Data Search Methods

3-16

Multiple keys make it possible to perform more sophisticated sorting operations. For example, XML
documents can be sorted in ascending order using one element node and, if that element node is
the same in more than one document, the documents can be further sorted in ascending order using
a second element node.

Up to eight keys can be specified.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 <basic>
 <date>03/03/2004</date>
 :
 <expense>7650 yen</expense>
 </basic>
 :
</doc>

Document B

<doc>
 <basic>
 <date>03/03/2004</date>
 :
 <expense>11500 yen</expense>
 </basic>
 :
</doc>

Document C

<doc>
 <basic>
 <date>10/03/2004</date>
 :
 <expense>7650 yen</expense>
 </basic>
 :
</doc>

Example
To sort documents according to the trip date (date) and, if multiple documents contain the same trip
date, then sort in descending order according to the trip expenses (expense):

/doc/basic/date/text(),val(/doc/basic/expense/text()) DESC

Result
Documents are returned in the order B, A, C.

Extracting Search Results

3-17

Extracting Search Results
It is possible to search XML documents stored in Shunsaku and extract data in XML format or in text
format. The search results are extracted using the return expression in the APIs provided by
Shunsaku.

Refer to Formats Used When Not Performing Aggregation in Appendix A for more information on the
return expression.

Extracting Data in XML Format
Extracting the XML documents found by a search in XML format enables XML tools such as DOM
and SAX to be used.

To extract data in XML format, specify a path expression in the return parameter. This can be done
in two ways, as shown below. Use the method appropriate to the situation.

• Extracting an Entire XML Document

Extract the original XML document stored in Shunsaku without changing its format. This is the
extraction method most often used.

• Extracting Data in XML Format by Specifying an Element Node

Extract specified element nodes in XML format.

Extracting an Entire XML Document
An entire XML document can be extracted by specifying only ‘/’ in the return expression.

Example
To extract an entire XML document:

/

Result

<doc>
 <employee>
 <eno>19980120</eno>
 <name>Taro Suzuki</name>
 <sno>1001</sno>
 <phone>2201-1101</phone>
 <email>suzuki.taro@shunsaku.fujitsu.com</email>
 </employee>
 <basic>
 <date>16/02/2004</date>
 <expense>7200 yen</expense>
 </basic>
 <detail>
 <destination>Head Office</destination>
 <area>Kohoku-ku, Yokohama-shi, Kanagawa</area>
 <purpose>Regular project meeting</purpose>
 <train>6600 yen</train>
 <taxi>600 yen</taxi>
 <hotel></hotel>
 <comment>None</comment>
 </detail>

Chapter 3: Data Search Methods

3-18

 <report>Must create and report a sales results chart by next
meeting</report>
</doc>

Note

When a sort expression is specified, XML documents found using the search expression will be
returned in the order determined by the sort expression.

Extracting Data in XML Format by Specifying an Element Node
It is possible to specify a path expression in the return parameter to extract data under any node of
an XML document in XML format. The data in the element node indicated by the path expression is
expressed in XML format as an element under the root tag of the XML document.

The explanations accompanying the examples that follow assume that the following single XML
document has been found using a search expression.

<doc>
 <employee>
 <eno>19980120</eno>
 <name>Taro Suzuki</name>
 <sno>1001</sno>
 <phone>2201-1101</phone>
 <email>suzuki.taro@shunsaku.fujitsu.com</email>
 </employee>
 <basic>
 <date>16/02/2004</date>
 <expense>7200 yen</expense>
 </basic>
 <detail>
 <destination>Head office</destination>
 <area>Kohoku-ku, Yokohama-shi, Kanagawa</area>
 <purpose>Regular project meeting</purpose>
 <train>6600 yen</train>
 <taxi>600 yen</taxi>
 <hotel></hotel>
 <comment>None</comment>
 </detail>
 <report>Must create and report a sales results chart by next
meeting</report>
</doc>

Example 1
The following example shows how to extract the employee's name (name).

/doc/employee/name

Extracting Search Results

3-19

Figure 3-2 Extracting Data in XML Format

More than one return parameter can be specified in the return expression. Each path expression
must be separated using a comma.

Example 2
The following example shows how to extract the employee name (name), basic information (basic)
and the trip purpose (purpose).

/doc/employee/name,/doc/basic,/doc/detail/purpose

Result

<doc><name>Taro Suzuki</name><basic>
 <date>16/02/2004</date>
 <expense>7200 yen</expense>
 </basic><purpose>Regular project meeting</purpose></doc>

Notes
• When a sort expression is specified, XML documents found using the search expression will be

returned in the order determined by the sort expression.

• When multiple return parameters are specified, they must all be in the form of a path
expression. They cannot be specified together with text expressions or single line function
specifications (result is returned in XML format).

• If a return parameter that can match multiple elements is specified (ie. more than one path
expression, ’//’ or ’*’ is specified), the application will not be able to determine the relationship
between the elements that have been extracted.

− If some elements do not exist, the application will not be able to determine which they are.

− The application will not be able determine the path to the extracted elements.

In these situations, either extract the entire XML document, or extract data using a specification
where the return parameter isolates a single element.

<doc>
 <employee>
 <eno>19980120</eno>
 <name>Taro Suzuki</name>
 <phone>2201-1101</phone>
 <email>suzuki.taro@shunsaku.co.jp</email>
 </employee>
 :
</doc>

<doc><name>Taro Suzuki</name></doc>

Result:

Chapter 3: Data Search Methods

3-20

Extracting Data in Text Format
It is possible to specify a text expression in the return expression to extract data under any node of
an XML document in text format.

It is also possible to include a single-line function specification in the return expression. When a
single-line function specification is used, the results of the rlen function or the val function can be
extracted in text format.

Refer to Single-line Function Specifications in Appendix A for more information on single-line
function specifications.

The explanations accompanying the examples that follow assume that the following single XML
document has been found using a search expression.

<doc>
 <employee>
 <eno>19980120</eno>
 <name>Taro Suzuki</name>
 <sno>1001</sno>
 <phone>2201-1101</phone>
 <email>suzuki.taro@shunsaku.fujitsu.com</email>
 </employee>
 <basic>
 <date>16/02/2004</date>
 <expense>7200 yen</expense>
 </basic>
 <detail>
 <destination>Head Office</destination>
 <area>Kohoku-ku, Yokohama-shi, Kanagawa</area>
 <purpose>Regular project meeting</purpose>
 <train>6600 yen</train>
 <taxi>600 yen</taxi>
 <hotel></hotel>
 <comment>None</comment>
 </detail>
 <report>Must create and report a sales results chart by next
meeting</report>
</doc>

Example 1
The following example shows how to extract a trip report (report):

/doc/report/text()

Result

Must create and report a sales results chart by next meeting

Example 2
The following example shows how to extract numeric values from trip expenses (expense):

val(/doc/basic/expense/text())

Extracting Search Results

3-21

Result

7200

Example 3
More than one return parameter can be specified in the return expression. Each return parameter
must be separated with a comma. If multiple return parameters are specified, the values of the
results returned by those parameters are separated with a delimiter.

• When the Java APIs are used, the delimiter is a comma.

• When the C APIs are used, the delimiter is the character represented by character code ‘\001’.

The following example shows how to extract the employee number (eno), the employee name
(name), the trip date (date) and the trip purpose (purpose):

/doc/employee/eno/text(),/doc/employee/name/text(),/doc/basic/date/text(),
/doc/detail/purpose/text()

Result
When the Java APIs are used

19980120,Taro Suzuki,16/02/2004,Regular project meeting

Notes

• When a sort expression is specified, the search results will be returned in the order determined
by the sort expression.

• When multiple return parameters are specified, all return parameters must be specified as
either text expressions or single-line function specifications. They cannot be specified together
with a path expression (result returns in XML format).

Chapter 3: Data Search Methods

3-22

Extracting Aggregated Results
XML documents found using a search expression can be grouped and aggregated according to a
given key. To perform aggregation, include the aggregation function specification in the return
expression. A group key must also be specified in the sort expression. To produce the results of the
aggregation function specification, XML documents with the same group key are treated as a single
group. The data indicated by the text expression specified as the argument of the aggregation
function specification is treated as a numeric value for each group, and then totals, averages and
other values are determined.

Refer to Formats Used When Performing Aggregation in Appendix A for more information on the
return expression.

The following figure provides an overview of the aggregation process.

XML document 1 <doc><key>A</key><data>20</data></doc>

XML document 2 <doc><key>A</key><data>20</data></doc>

XML document 3 <doc><key>A</key><data>50</data></doc>

XML document 4 <doc><key>B</key><data>-10</data></doc>

XML document 5 <doc><key>B</key><data>20</data></doc>

Items with the same key
are treated as a single
group

Aggregate for each
group

Total (sum) 90
Average (avg) 30
Maximum (max) 50
etc

Total (sum) 10
Average (avg) 5
Maximum (max) 20
etc

Figure 3-3 Overview of the Aggregation Process

This is the method used to decide how search results will be grouped, and what will be aggregated.

• Grouping Search Results

• Aggregating Search Results

Grouping Search Results
XML documents found using a search expression are grouped according to a given key. The key
used to perform the grouping is specified in the sort expression.

Extracting Aggregated Results

3-23

Grouping by Numeric Value
Search results are grouped by treating the value of an element node in an XML document as a
numeric value. To group by numeric values, specify the single-line val function in the key
specification of the sort expression. Specify a text expression as the argument of the val function.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 <employee>
 :
 <sno>2001</sno>
 :
 </employee>
 :
</doc>

Document B

<doc>
 <employee>
 :
 <sno>2002</sno>
 :
 </employee>
 :
</doc>

Document C

<doc>
 <employee>
 :
 <sno>2001</sno>
 :
 </employee>
 :
</doc>

Document D

<doc>
 <employee>
 :
 <sno>2002</sno>
 :
 </employee>
 :
</doc>

Chapter 3: Data Search Methods

3-24

Example
The following example shows how to group XML documents that contain the same section number
(sno):

val(/doc/employee/sno/text())

Result
Documents A and C are handled as one group, and documents B and D are handled as another
group.

Grouping by Character String
Grouping can be performed using the value of an element node in an XML document. To group by a
character string, specify a text expression in the key specification of the sort expression.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 <employee>
 :
 <name>Taro Suzuki</name>
 :
 </employee>
 :
 <detail>
 :
 <area>Kakuozan, Chikusa-ku, Nagoya-shi, Aichi </area>
 :
 </detail>
 :
</doc>

Document B

<doc>
 <employee>
 :
 <name>Taro Suzuki</name>
 :
 </employee>
 :
 <detail>
 :
 <area>Yaesu, Chiyoda-ku, Tokyo</area>
 :
 </detail>
 :
</doc>

Document C

<doc>
 <employee>

Extracting Aggregated Results

3-25

 :
 <name>Hanako Sato</name>
 :
 </employee>
 :
 <detail>
 :
 <area>Yaesu, Chiyoda-ku, Tokyo</area>
 :
 </detail>
 :
</doc>

Document D

<doc>
 <employee>
 :
 <name>Hanako Sato</name>
 :
 </employee>
 :
 <detail>
 :
 <area>Imaike, Chikusa-ku, Nagoya-shi, Aichi</area>
 :
 </detail>
 :
</doc>

Example 1
The following examples shows how to group according to the employee name (name):

/doc/employee/name/text()

Result
Documents A and B are handled as one group, and documents C and D are handled as another
group.

Example 2
The process of grouping by a character string takes place using the first 20 bytes of the string as a
key. Therefore, if the value in the XML document that is indicated by the key exceeds 20 bytes,
differences in character strings from byte 21 onwards will be ignored, and dissimilar documents may
end up being placed in the same group. In such cases, the rlen function can be included in the key
specification to specify the number of characters from the start of the string that will be used as the
key. Refer to Single-line Function Specifications in Appendix A for more information on the rlen
function.

The following example shows how to group according to the trip area (area):

rlen(/doc/detail/area/text(),30)

When the above is specified, grouping will occur using the first 30 characters of the trip area.

Chapter 3: Data Search Methods

3-26

Grouping by Multiple Keys
To group by multiple keys, specify the key specifications in the sort expression by separating them
with commas. Each key specification can be specified as either a numeric or character string. When
multiple key specifications are specified, XML documents that match all the key values will be
handled as a single group. Up to eight key specifications can be specified.

The explanation that follows assumes that the following documents exist:

Document A

<doc>
 <basic>
 <date>03/03/2004</date>
 :
 </basic>
 <detail>
 :
 <destination>Head Office</destination>
 :
 </detail>
 :
</doc>

Document B

<doc>
 <basic>
 <date>03/03/2004</date>
 :
 </basic>
 <detail>
 :
 <destination>Head Office</destination>
 :
 </detail>
 :
</doc>

Document C

<doc>
 <basic>
 <date>10/03/2004</date>
 :
 </basic>
 <detail>
 :
 <destination>Head Office</destination>
 :
 </detail>
 :
</doc>

Extracting Aggregated Results

3-27

Example
The following example shows how to group documents according to the trip destination (destination)
and the trip date (date):

/doc/detail/destination/text(),/doc/basic/date/text()

Result
Documents A and B are handled as one group, and document C is handled as another group.

Aggregating Search Results
When an aggregation is performed, a group key is also extracted at the same time. The aggregation
function specification and the key specified by the sort expression can be included in the return
expression. Each return parameter is separated with a comma. If multiple return parameters are
specified, the values returned by those parameters are separated with a delimiter.

• When the Java APIs are used, the delimiter is a comma.

• When the C APIs are used, the delimiter is the character represented by character code ‘\001’.

The explanations accompanying the examples that follow assume that the following six XML
documents have been found using a search expression.

Document A

<doc>
 :
 <detail>
 <destination>Head Office</destination>
 :
 <train>8600 yen</train><taxi></taxi><hotel>6800 yen</hotel>
 :
 </detail>
 :
</doc>

Document B

<doc>
 :
 <detail>
 <destination>Head Office</destination>
 :
 <train>900 yen</train><taxi></taxi><hotel></hotel>
 :
 </detail>
 :
</doc>

Document C

<doc>
 :

Chapter 3: Data Search Methods

3-28

 <detail>
 <destination>Head office</destination>
 :
 <train>13000 yen</train><taxi></taxi><hotel>8000 yen</hotel>
 :
 </detail>
 :
</doc>

Document D

<doc>
 :
 <detail>
 <destination>Tokyo Office</destination>
 :
 <train>1600 yen</train><taxi>600 yen</taxi><hotel></hotel>
 :
 </detail>
 :
</doc>

Document E

<doc>
 :
 <detail>
 <destination>Tokyo Office</destination>
 :
 <train>400 yen</train><taxi>690 yen</taxi><hotel></hotel>
 :
 </detail>
 :
</doc>

Document F

<doc>
 :
 <detail>
 <destination>Tokyo Office</destination>
 :
 <train>280 yen</train><taxi>600 yen</taxi><hotel>8200 yen</hotel>
 :
 </detail>
 :
</doc>

It is assumed that the following sort expression has been specified in all the examples that follow:

Sort expression: /doc/detail/destination/text()

Extracting Aggregated Results

3-29

Note

The sort expression used for aggregation specifies the grouping key. Sorting is also performed using
that key. ‘DESC’ can also be specified in a sort expression used for aggregation. When ‘DESC’ is
specified, aggregation results can be extracted in descending order according to the size of the
grouping key.

Example 1
The following example shows how to find the average of traveling expenses (train):

Return expression:
/doc/detail/destination/text(),avg(/doc/detail/train/text())

Result
When the Java APIs are used

Tokyo Office,760
Head Office,7500

Example 2
The following example shows how to count the number of people who used taxis:

Return expression:
/doc/detail/destination/text(),count(/doc/detail/taxi/text())

Result
When the Java APIs are used

Tokyo Office,3
Head Office,0

Note

If no value is indicated by the text expression used as the argument of the aggregation function, it
will not be targeted for aggregation. In the above example, no one used a taxi to travel to the head
office, so the count result is 0.

If the value ‘0’ is stored in the taxi element node, it will be targeted for aggregation. To prevent data
stored in this way from being aggregated, the data can be excluded from the search process by
specifying in the search expression the condition that the taxi fare must be greater than 0.

Example 3
This example shows how to obtain the maximum taxi fare (taxi), the total accommodation costs
(hotel), and the number of trips:

Return expression :
/doc/detail/destination/text(),max(/doc/detail/taxi/text()),sum(/doc/detai
l/hotel/text()),count(/doc/detail/destination/text())

Chapter 3: Data Search Methods

3-30

Result
When the Java APIs are used

Tokyo Office,690,8200,3
Head Office,,14800,3

Note

If no value is indicated by the text expression used as the argument of the aggregation function, it
will not be targeted for aggregation. In the above example, no one used a taxi to visit the head office,
so there is no maximum value.

4-1

Chapter 4

How to Update Data

This chapter explains how to use the Shunsaku APIs to update data.

• Overview

• Adding Data

• Deleting Data

Chapter 4: How to Update Data

4-2

Overview
This section explains the basic concepts of updating XML documents stored in Shunsaku.

• XML documents can be updated either from an application via the API or using a command.

• XML documents can be added or deleted.

The process of updating XML documents stored in Shunsaku can be used to add or delete XML
documents.

XML document updates are processed for each director.

Shunsaku automatically detects if more than one update process is performed simultaneously on a
single director. When Shunsaku detects such a conflict between API-based update processes, it will
perform the processes in order. If a conflict occurs between command-based update processes or
between a command-based update process and an API-based process, Shunsaku will perform one
of the processes and return an error to the other process. Table 4-1 gives details of Shunsaku
operations when conflicts occur.

When an error occurs, its cause can be determined by examining the messages output by each
director.

Refer to the User’s Guide for more information on directors.

Table 4-1 Operations that Occur when Update Processes Conflict
Preceding
process

Subsequent process Operation when update processes conflict

API-based
update

API-based update The subsequent update process is performed after the
preceding update process has completed.

API-based
update

Command-based
update

The command of the subsequent process generates an
error.

Command-based
update

API-based update The API of the subsequent process generates an error.

Command-based
update

Command-based
update

The command of the subsequent process generates an
error.

Note: The shundimport command is used to perform command-based updates. Refer to the User’s
Guide for more information on the shundimport command.

Adding Data

4-3

Adding Data
To add data using the API, specify an XML document. To add more than one XML document, either
place the XML documents in a single area, or place the XML documents in multiple areas and
specify them together.

XML document

XML document

XML document

XML document

XML document

XML document

XML document

XML document

XML document

Specify the area where
the XML documents are
located

Multiple XML documents are located in a single area Each XML document is located in its own area

Multiple XML documents are located in multiple areas

XML document

XML document

XML document

XML document

XML document

XML document

XML document

XML document

XML document

Specify the area where
the XML documents are
located

Multiple XML documents are located in a single area Each XML document is located in its own area

Multiple XML documents are located in multiple areas

Figure 4-1 How to Specify Multiple XML Documents when Adding Data Using the API

Chapter 4: How to Update Data

4-4

When more than one director is used, the search-initiating director specified by the StartPoint
parameter in the conductor environment file is treated as the starting point, and XML documents are
added to the director in the last position.

Refer to the User’s Guide for more information on the conductor environment file.

Director server

conductorconductor

Conductor environment file

DirectorInfo 10 direct1
DirectorInfo 20 direct2
DirectorInfo 30 direct3

StartPoint 10

direct1direct1

direct2direct2

direct3direct3

Search-initiating
director

Search-initiating
director

Director to
which XML data
is added

Director to
which XML data
is added

Director server

conductorconductor

Conductor environment file

DirectorInfo 10 direct1
DirectorInfo 20 direct2
DirectorInfo 30 direct3

StartPoint 10

direct1direct1

direct2direct2

direct3direct3

Search-initiating
director

Search-initiating
director

Director to
which XML data
is added

Director to
which XML data
is added

Figure 4-2 When using More than One Director

Deleting Data

4-5

Deleting Data
The following procedure is used to delete data via the API:

Identify the XML document to be deleted and obtain its record ID

Specify the record ID and delete the XML file

Identify the XML document to be deleted and obtain its record ID

Specify the record ID and delete the XML file

Figure 4-3 Procedure to Delete Data

1. Identify the XML document to be deleted and obtain its record ID.
Perform a data search to identify the XML document to be deleted, and obtain its record ID.

2. Specify the record ID and delete the XML document.
Specify the obtained record ID to invoke the API that will perform the deletion, and delete the
XML document.

More than one record ID can be specified at once to delete multiple XML documents. If more than
one director is in use, the record IDs of the XML documents to be deleted can be specified without
making any distinction between directors. Shunsaku will gather the record IDs of the XML
documents to be deleted for each director and perform the deletion process on each director. Even if
an error is detected in a director, the deletion process will continue until its completion and the API
will return the error. At that time, the user should examine the messages output by each director to
identify and eliminate the cause of the error, then repeat the deletion process by performing another
search for XML documents to be deleted.

Chapter 4: How to Update Data

4-6

Chapter 5

Java Application Development

This chapter explains how to develop applications that use the Java APIs provided by Shunsaku.

• Java API Overview

• How to Use Java APIs

• Character Encoding Used by Java APIs

• Error Codes Output when Java APIs are Used

5-1

Chapter 5: Java Application Development

Java API Overview
The Java APIs are interfaces used to manipulate Shunsaku data from applications written in Java.

The following table lists the Java API classes.

Table 5-1 Java API Classes
Class Description
ShunConnection Opens and closes connections.
ShunPreparedRecordID Performs data searches and data deletions based on record

identifiers.
Shunsaku data can be uniquely identified using record identifiers.
Record identifiers provide valid information so long as the records that
they refer to still exist, even after the connection to Shunsaku has
been closed.

ShunPreparedStatement Performs data searches and data additions based on search
expressions, return expressions and sort expressions.

ShunResultSet Looks up the results of the search.

Refer to the Java API Reference for more information on the Java APIs provided by Shunsaku.

The Java APIs are used to create objects. The following table lists the objects created by the Java
APIs.

Table 5-2 Objects Created by the Java APIs
Object name Description
ShunConnection This object is created when a connection is opened.
ShunPreparedRecordID This object is used to perform data searches and data deletions

based on record identifiers, using the ShunConnection object.
ShunPreparedStatement This object is used to perform data searches and data additions

based on search expressions, return expressions and sort
expressions, using the ShunConnection object.

ShunResultSet This object is used to look up the results of the search, using either
the ShunPreparedStatement object or the ShunPreparedRecordID
object.

5-2

How to Use Java APIs

How to Use Java APIs
This section explains how to use the Java APIs.

Opening Connections
To open connections, create a ShunConnection object using either of the following two methods:

• Specify the host name and port number in a Java Properties object

• Specify the host name and port number directly

Specifying the Host Name and Port Number in a Java Properties Object
This section explains how to open a connection by specifying the host name and port number in a
Java Properties object.

Entry Format for the Java Properties Object

connection.host=host-name or IP-address
connection.port=port-number

Entry Items

connection.host
Specify either the host name or the IP address of the connection destination.

connection.port
Specify the port number of the connection destination.

Entry Example of the Java Properties Object
When the host name is 'DServer' and the port number is '33101'

connection.host=DServer
connection.port=33101

Entry Example

// Specify the file name
String sFileName = "Property.txt";

// Load the host name and port number from the file
Properties property = new Properties();
property.load(new FileInputStream(sFileName));

// Create a ShunConnection object
ShunConnection con = new ShunConnection(property);

5-3

Chapter 5: Java Application Development

Specifying the Host Name and Port Number Directly
This section explains how to open a connection by specifying the host name and port number
directly.

Syntax

ShunConnection object-name = new ShunConnection (host-name, port-number);

Arguments

host-name
Specify either the host name or the IP address of the connection destination.

port-number
Specify the port number of the connection destination.

Entry Example
When the host name is 'DServer' and the port number is '33101'

ShunConnection con = new ShunConnection("DServer", 33101);

Searching Data
Java APIs can be used to perform the following operations:

• Finding the number of XML documents that match the search conditions

• Obtaining the XML documents that match the search conditions in a specified format

• Obtaining all of a particular XML document

• Finding XML documents that match the search conditions and obtaining the documents after
they are sorted

• Finding XML documents that match the search conditions and obtaining the documents after
their contents are aggregated

These operations can be combined to create a wide range of applications. Refer to Searching Data
in Appendix B for sample programs used for searching data. The rest of this section will describe
how to create applications that search for data.

5-4

How to Use Java APIs

Obtaining Search Results According to the Number of Data Items
Web-based search applications usually display only a few dozen search results per page, rather
than displaying all of the search results in a single window.

In such cases, the number of data items to be obtained can be controlled by passing the reply start
number (‘position’) and the number of items to return per request (‘requestCount’) as parameters to
the setRequest method.

Shunsaku
Web application

API

prepareSearch()
setRequest()
executeSearch()

1st data item

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

Web application

prepareSearch()
setRequest()
executeSearch()

Web browser

1/2/3/4/5/6/7...
Page 3

Search results

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 11
Number of items to return
per request = 5

Reply start number = 11
Number of items to return
per request = 5

Search results
Number of hits
Search results

Number of hits

Search results
Number of hits

Search results
Number of hits

Page
specification

Page
specification

Application server

3rd data item
4th data item
5th data item

2nd data item

11th data item

13th data item
14th data item
15th data item

12th data item

Displaying
page 3

Shunsaku
Web application

API

prepareSearch()
setRequest()
executeSearch()

prepareSearch()
setRequest()
executeSearch()

1st data item

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

Web application

prepareSearch()
setRequest()
executeSearch()

prepareSearch()
setRequest()
executeSearch()

Web browser

1/2/3/4/5/6/7...
Page 3

Search results

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 11
Number of items to return
per request = 5

Reply start number = 11
Number of items to return
per request = 5

Search results
Number of hits
Search results

Number of hits

Search results
Number of hits

Search results
Number of hits

Page
specification

Page
specification

Application server

3rd data item
4th data item
5th data item

2nd data item

11th data item

13th data item
14th data item
15th data item

12th data item

Displaying
page 3

Displaying
page 3

Figure 5-1 Obtaining Search Results According to the Number of Data Items

Entry Example

ShunConnection con = new ShunConnection();

String query = "/document/base/prefecture == 'Osaka'";
String returnQuery = "/document/base/name, /document/base/price ";
ShunPreparedStatement pstmt = con.prepareSearch(query, returnQuery); (1)
pstmt.setRequest(11,5); (2)
ShunResultSet rs = pstmt.executeSearch(); (3)
System.out.println("[Number of hits] = " + rs.getHitCount()); (3)
while(rs.next()) { (4)
 System.out.println("[Search results] = " + rs.getString()); (4)
}
rs.close(); (5)

5-5

Chapter 5: Java Application Development

pstmt.close(); (5)

con.close();

(1) Create a ShunPreparedStatement Object

Create a ShunPreparedStatement object by specifying a search expression and a return
expression as parameters of the prepareSearch method. Refer to Appendix A, Format of
Search, Return and Sort Expressions for more information about search expressions and return
expressions.

(2) Set the Reply Start Number and the Number of Items to Return per Request

Specify the reply start number and the number of items to return per request in the setRequest
method. If the setRequest method is omitted, the number of items to return per request will be
set to the value specified in the AnsMax parameter in the conductor or director environment file.

Note

For the number of items to return per request, specify the number of data items to display on
each page.

(3) Execute the Search (Create a ShunResultSet Object)

Execute the search using the executeSearch method. A ShunResultSet object will be created to
hold the results of the search.

Note

The number of hits (XML documents that match the search conditions) can be obtained using
the getHitCount method. This value can be used to find such things as the number of pages of
the search results.

(4) Extract the Results of the Search

Always invoke the next method before extracting the results of the search. The next method
returns true if there is still more data that can be extracted and false otherwise.

Use one of the getXXX methods to extract the XML documents. The following table shows the
methods that can be used.

Method Function
getString Extracts XML documents as String objects.
getStringArray Extracts XML documents as a two-dimensional array of String objects.
getStream Extracts XML documents as InputStream objects.

Notes

The getStringArray method can be used to extract the search results in text format.

The getRecordID method can be used to obtain record identifiers (that uniquely identify each
data item) as well as the results of the search. Record identifiers are used to extract or delete
the corresponding entire XML documents.

(5) Close the ShunResultSet Object and the ShunPreparedStatement Object

When they are no longer required, always close the objects using the close methods of the
ShunResultSet object and the ShunPreparedStatement object.

5-6

How to Use Java APIs

Obtaining Search Results While Adding Search Conditions
When a search produces a large number of hits, it is sometimes useful to be able to narrow down
the scope of the search by adding more search conditions.

In such cases, perform a new search process by creating a new search expression and adding extra
search conditions to the search expression specified with the prepareSearch method. By repeating
this operation, the user can narrow down the search results while referring to the search results
displayed on the screen.

Shunsaku
Web application

API

prepareSearch()
setRequest()
executeSearch()

Web browser

10,000
items

Search
results

Web application

prepareSearch()
setRequest()
executeSearch()

Web browser

Search
results

Search
expression
Search

expression

New search expression
(Original conditions +
additional conditions)

New search expression
(Original conditions +
additional conditions)

Search resultsSearch results

Search resultsSearch results

Adding
Conditions

38
items

Additional
conditions

Additional
conditions

ConditionsConditions

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item

Shunsaku
Web application

API

prepareSearch()
setRequest()
executeSearch()

prepareSearch()
setRequest()
executeSearch()

Web browser

10,000
items

Search
results

Web application

prepareSearch()
setRequest()
executeSearch()

prepareSearch()
setRequest()
executeSearch()

Web browser

Search
results

Search
expression
Search

expression

New search expression
(Original conditions +
additional conditions)

New search expression
(Original conditions +
additional conditions)

Search resultsSearch results

Search resultsSearch results

Adding
Conditions

38
items

Additional
conditions

Additional
conditions

ConditionsConditions

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Figure 5-2 Obtaining Search Results While Adding Search Conditions

5-7

Chapter 5: Java Application Development

Obtaining Entire XML Documents
When searching for a particular XML document, do not obtain the entire document straightaway.
Instead, start by obtaining the partial information that can effectively identify the document. The user
can then use this partial information to pick out the desired XML document and obtain detailed
information. To extract an entire XML document, use the record identifier that is returned when the
partial information is extracted. The entire target XML document can be extracted by using this
record identifier.

Shunsaku
Web application

executeSearch()
getRecordID()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

prepareSearchRecordID()
add()
searchByRecordID()

XML document

Web browser
Details of the 3rd
data item

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search resultsSearch results

Search results
Record identifiers

Search results
Record identifiers

Detailed display for
the 3rd data item

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

Application server

API

1st data item

3rd data item
4th data item
5th data item

2nd data item

Web applicationSpecify recordSpecify record

Shunsaku
Web application

executeSearch()
getRecordID()
executeSearch()
getRecordID()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

prepareSearchRecordID()
add()
searchByRecordID()

prepareSearchRecordID()
add()
searchByRecordID()

XML document

Web browser
Details of the 3rd
data item

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search resultsSearch results

Search results
Record identifiers

Search results
Record identifiers

Detailed display for
the 3rd data item

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

Application server

API

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Web applicationSpecify recordSpecify record

Figure 5-3 Obtaining Entire XML Documents

5-8

How to Use Java APIs

Entry Example

ShunConnection con = new ShunConnection();

ShunPreparedRecordID prid = con.prepareSearchRecordID(); (1)
prid.add(recordID); (2)
ShunResultSet rs = prid.searchByRecordID(); (3)
while (rs.next()) { (4)
 System.out.println("[Result] = " + rs.getString()); (4)
}
rs.close(); (5)
prid.close(); (5)

con.close();

(1) Create a ShunPreparedRecordID Object

Use the prepareSearchRecordID method to create a ShunPreparedRecordID object.

(2) Specify the Record Identifier

Use the add method to specify the record identifier. Record identifiers can be obtained using
the getRecordID method.

Multiple record identifiers can be specified with the add method. Any existing record identifiers
will be overwritten if they are specified again.

Note

By specifying multiple record identifiers with the add method, multiple XML documents can be
obtained at once.

(3) Execute the Search (Create a ShunResultSet Object)

Execute the search using the searchByRecordID method. A ShunResultSet object will be
created to hold the results of the search.

(4) Extract the Results of the Search

Always invoke the next method before extracting the results of the search. The next method
returns true if there is still more data that can be extracted and false otherwise.

Use one of the getXXX methods to extract the XML documents. The following table shows the
methods that can be used.

Method Function
getString Extracts XML documents as String objects.
getStream Extracts XML documents as InputStream objects.

(5) Close the ShunResultSet Object and the ShunPreparedRecordID Object

When they are no longer required, always close the objects using the close methods of the
ShunResultSet object and the ShunPreparedRecordID object.

5-9

Chapter 5: Java Application Development

Obtaining Sorted Data
Sometimes it is useful to be able to sort the results of a search, using a particular element as a sort
key.

To obtain sorted partial information about the data, use the setSort method.

Shunsaku
Web application

API

prepareSearch()
setRequest()
executeSearch()

Web browser

123456 items

Search results

Web application

prepareSearch()
setSort()
executeSearch()

Web browser

Search results

Search
expression
Search

expression

Search expression,
sort expression

Search expression,
sort expression

Sorted resultsSorted results

Number of hitsNumber of hitsObtain sorted
results

ConditionsConditions
Isolate the sort target

Sorted in order

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

Shunsaku
Web application

API

prepareSearch()
setRequest()
executeSearch()

prepareSearch()
setRequest()
executeSearch()

Web browser

123456 items

Search results

Web application

prepareSearch()
setSort()
executeSearch()

prepareSearch()
setSort()
executeSearch()

Web browser

Search results

Search
expression
Search

expression

Search expression,
sort expression

Search expression,
sort expression

Sorted resultsSorted results

Number of hitsNumber of hitsObtain sorted
results

ConditionsConditions
Isolate the sort target

Sorted in order

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Figure 5-4 Obtaining Sorted Data

Note

When search results are sorted, the sort process looks up all of the XML documents that match the
search conditions. To improve response performance, it is important to narrow down the data to be
sorted by specifying a search expression that produces an appropriate number of hits. To find out
how many XML documents match the search conditions before starting a sort process, specify 0 in
the requestCount parameter (the number of items to return per request) of the setRequest method.

Entry Example

ShunConnection con = new ShunConnection();

String query = "/document/base/prefecture == 'Osaka'";
String returnQuery = "/document/base/name, /document/base/price ";
String sort = "val(/document/base/price/text()) DESC"; (1)
ShunPreparedStatement pstmt = con.prepareSearch(query, returnQuery);
 (2)
pstmt.setSort(sort); (3)

5-10

How to Use Java APIs

ShunResultSet rs = pstmt.executeSearch(); (4)
 while(rs.next())
{ (5)
 System.out.println("[Search results] = " + rs.getString()); (5)
}
rs.close(); (6)
pstmt.close(); (6)

con.close();

(1) Create a Sort Expression

Create a sort expression. Refer to Sort Expressions in Appendix A for more information on sort
expressions.

(2) Create a ShunPreparedStatement Object

Specify a search expression and a return expression with the prepareSearch method to create
a ShunPreparedStatement object. Refer to Appendix A, Format of Search, Return and Sort
Expressions for more information about search expressions and return expressions.

(3) Set the Sort Expression

Use the setSort method to set the sort expression.

Note

The total length of the sort keys specified in the sort expression determines the number of data
items that can be returned. A maximum of 1,000 items can be returned. No more data can be
returned even if a higher value is specified for the reply start number or the number of items to
return per request. The getReturnableCount method can be used to extract the maximum
number of data items that can be returned. Refer to Appendix D, Allowable Values, for a
relationship between the number of data items that can be returned and the total length of sort
keys.

(4) Execute the Search (Create a ShunResultSet Object)

Execute the search using the executeSearch method. A ShunResultSet object will be created to
hold the results of the search.

(5) Extract the Results of the Search

Always invoke the next method before extracting the results of the search. The next method
returns true if there is still more data that can be extracted and false otherwise.

Use one of the getXXX methods to extract the XML documents. The following table shows the
methods that can be used.

Method Function
getString Extracts XML documents as String objects.
getStringArray Extracts XML documents as a two-dimensional array of String objects.
getStream Extracts XML documents as InputStream objects.

Notes

The getStringArray method can be used to extract the search results in text format.

The getRecordID method can be used to obtain record identifiers (that uniquely identify each
data item) as well as the results of the search. Record identifiers are used to extract or delete
the corresponding entire XML documents.

5-11

Chapter 5: Java Application Development

(6) Close the ShunResultSet Object and the ShunPreparedStatement Object

When they are no longer required, always close the objects using the close methods of the
ShunResultSet object and the ShunPreparedStatement object.

Aggregating the Content of the Data that Matches Search Conditions
Sometimes it is useful to be able to aggregate the results of a search, using the values of particular
elements. Use the setSort method to aggregate the content of the data. By specifying an
aggregation function in the return expression used as a parameter of the prepareSearch method,
the results of the search will be aggregated before they are returned. The aggregation process can
be used to calculate totals, averages, maximums, minimums, and the number of items.

Shunsaku

APIWeb application

prepareSearch()
setSort()
executeSearch()

Web browser

Search results
Search expression,
return expression,

sort expression

Search expression,
return expression,

sort expression

Aggregated
results

Aggregated
results

Application server

Specifies an
aggregation function

1st data item

3rd data item
4th data item
5th data item

2nd data item

Shunsaku

APIWeb application

prepareSearch()
setSort()
executeSearch()

prepareSearch()
setSort()
executeSearch()

Web browser

Search results
Search expression,
return expression,

sort expression

Search expression,
return expression,

sort expression

Aggregated
results

Aggregated
results

Application server

Specifies an
aggregation function

Specifies an
aggregation function

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Figure 5-5 Aggregating the Content of the Data that Matches Search Conditions

Entry Example

ShunConnection con = new ShunConnection();

String query = "/document/base/prefecture == 'Osaka'";
String returnQuery = "max(/document/base/price/text())"; (1)
String sort = "/document/base/prefecture/text() "; (2)
ShunPreparedStatement pstmt = con prepareSearch(query, returnQuery);
 (3)
pstmt.setSort(sort); (4)
ShunResultSet rs = pstmt.executeSearch(); (5)
 while(rs.next()) { (6)
 System.out.println("[Search results] = " + rs.getString()); (6)
}
rs.close(); (7)
pstmt.close(); (7)

con.close();

5-12

How to Use Java APIs

(1) Create a Return Expression

Create a return expression. To aggregate the search results, specify an aggregation function in
the return expression. Refer to Return Expressions in Appendix A for more information on
return expressions and specifying aggregation functions.

(2) Create a Sort Expression

Create a sort expression. Refer to Sort Expressions in Appendix A for more information on sort
expressions.

(3) Create a ShunPreparedStatement Object

Specify a search expression and a return expression with the prepareSearch method () to
create a ShunPreparedStatement object. Refer to Appendix A, Format of Search, Return and
Sort Expressions for more information about search expressions and return expressions.

(4) Set the Sort Expression

Use the setSort method to set the sort expression.

Note

The total length of the sort keys specified in the sort expression determines the number of
groups that can be returned. A maximum of 1,000 items can be returned. No more data can be
returned even if a higher value is specified for the reply start number or the number of items to
return per request. Use the getReturnableCount method to obtain the maximum number of data
items that can be returned. Refer to Appendix D, Allowable Values, for a relationship between
the number of data items that can be returned and the total length of sort keys.

(5) Execute the Search (Create a ShunResultSet Object)

Execute the search using the executeSearch method. A ShunResultSet object will be created to
hold the results of the search.

(6) Extract the Results of the Search

Always invoke the next method before extracting the results of the search. The next method
returns true if there is still more data that can be extracted and false otherwise.

Use one of the getXXX methods to extract the XML documents. The following table shows the
methods that can be used.

Method Function
getString Extracts XML documents as String objects.
getStringArray Extracts XML documents as a two-dimensional array of String objects.
getStream Extracts XML documents as InputStream objects.

(7) Close the ShunResultSet Object and the ShunPreparedStatement Object

Use the close methods of the ShunResultSet object and the ShunPreparedStatement object to
close these objects when they are no longer required.

5-13

Chapter 5: Java Application Development

Updating Data
The Java APIs can be used to add and delete data. Refer to Updating Data in Appendix B for
sample programs used for updating data. This section describes how to create applications that
perform data updates.

Adding Data
To add data, use the prepareInsert method.

ShunsakuAPI
Web application

prepareInsert()
add()
executeInsert()

XML data

Web browser

Add dataAdd data

Application server
ShunsakuAPI

Web application

prepareInsert()
add()
executeInsert()

prepareInsert()
add()
executeInsert()

XML data

Web browser

Add dataAdd data

Application server

Figure 5-6 Adding Data

Entry Example

ShunConnection con = new ShunConnection();

ShunPreparedStatement pstmt = con prepareInsert(); (1)
// Read data from file
FileInputStream oFIS = new FileInputStream("newData.xml");
pstmt.add(oFIS); (2)
pstmt.executeInsert(); (3)
pstmt.close(); (4)

con.close();

(1) Create a ShunPreparedStatement Object

Use the prepareInsert method to create a ShunPreparedStatement object.

(2) Specify the Data to Add

The following table shows the methods that can be used to add data.

Method Function
add (String data) Adds String object data.
add (InputStream data) Adds InputStream object data.

5-14

How to Use Java APIs

The data specified with the add method can include multiple data items. Also, data that is
stored in multiple files can be added by invoking the add method multiple times. However, a
single data item cannot be split into multiple segments and then specified in multiple instances
of the add method.

(3) Add the Data

Use the executeInsert method to add the data.

(4) Close the ShunPreparedStatement Object

When the object is no longer required, always close it using the close method of the
ShunPreparedStatement object.

Deleting Data
To delete data, use the prepareDeleteRecordID method.

The Java APIs use record identifiers to delete data. Before deleting data, use the getRecordID
method to obtain the record identifiers of the data items to be deleted.

Shunsaku
Web application

API

executeSearch()
getRecordID()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

prepareDeleteRecordID()
add()
deleteByRecordID()

Web browser

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search results
Record identifiers

Search results
Record identifiers

Delete the
3rd data item

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

1/2/3/4/5/6/7...
Page 1

Search results

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item

Web application

Specify recordSpecify record

Shunsaku
Web application

API

executeSearch()
getRecordID()
executeSearch()
getRecordID()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

prepareDeleteRecordID()
add()
deleteByRecordID()

prepareDeleteRecordID()
add()
deleteByRecordID()

Web browser

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search results
Record identifiers

Search results
Record identifiers

Delete the
3rd data item

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

1/2/3/4/5/6/7...
Page 1

Search results

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Web application

Specify recordSpecify record

Figure 5-7 Deleting Data

5-15

Chapter 5: Java Application Development

Entry Example

ShunConnection con = new ShunConnection();

ShunPreparedRecordID prid = con prepareDeleteRecordID(); (1)
prid.add(recordID); (2)
prid.deleteByRecordID(); (3)
prid.close(); (4)

con.close();

(1) Create a ShunPreparedRecordID object

Use the prepareDeleteRecordID method to create a ShunPreparedRecordID object.

(2) Specify the Record Identifiers of the Data Items to be Deleted

Use the add method to specify the record identifier. Record identifiers can be obtained using
the getRecordID method.

Multiple record identifiers can be specified with the add method. Any existing record identifiers
will be overwritten if they are specified again.

Note

By specifying multiple record identifiers with the add method, multiple XML documents can be
deleted at once.

(3) Delete the Data

Execute the delete process using the deleteByRecordID method.

(4) Close the ShunPreparedRecordID Object

When the object is no longer required, always close it using the close method of the
ShunPreparedRecordID object.

Closing Connections
After the data searches or data updates have finished, close the connection to Shunsaku. Use the
close method to close the connection.

Entry Example

ShunConnection con = new ShunConnection();
 :
con.close();

5-16

How to Use Java APIs

Error Handling
If an error occurs with an application that uses the Java APIs, a ShunException is thrown. The
methods of the ShunException class can be used to obtain the following information:

• Error code.

• Error level.

• Error message.

Entry Example

try {
 :
} catch (ShunException ex) {
 System.out.println("Error code:" + ex.getErrCode()); (1)
 System.out.println("Error level:" + ex.getErrLevel()); (2)
 System.out.println("Error message:" + ex.getMessage()); (3)
}

(1) Error Code

The error code can be obtained using the getErrCode method. Refer to
 for more information on error codes.

Error Codes Output
when Java APIs are Used

Error Codes
Output when Java APIs are Used

(2) Error level

The error level can be obtained using the getErrLevel method.

When errors occur, the connection to Shunsaku is sometimes closed forcibly. Users can check
the error level to find out the state of the application where the error occurred.

There are two error levels, as shown in the following table.

Constant Meaning
SHUN_ERROR Indicates that a warning level error (such

as a parameter error) has occurred. Retry
from the point where the error occurred.

SHUN_ERROR_CONNECTION_TERMINATED An error has occurred, causing the
connection to Shunsaku to be forcibly
closed. Close the ShunConnection object
where the error occurred and then open a
connection again.

(3) Error message

The error message can be obtained using the getMessage method. Refer to
 for more information on error messages.

5-17

Chapter 5: Java Application Development

Character Encoding Used by Java APIs
This section explains the character encoding used by the Java APIs.

Specify UNICODE as the character encoding to be used in conditional expressions, return
expressions and sort expressions.

Search results are returned using the UNICODE encoding.

The following diagram illustrates an overview of character code conversion in the entire Shunsaku
system.

Director server

Shunsaku

director

Application server

Data search
application

Specify conditional
expressions, return
expressions and sort
expressions using
UNICODE.

Search
requestSearch

window
(HTML, etc.)

Search
window
(HTML, etc.)

Search
result
window
(HTML, etc.)

Search
result
window
(HTML, etc.)

Display search
results according to
the character
encoding of the
window.

Convert these
conditional
expressions, return
expressions and sort
expressions into the
character encoding
used to store data in
Shunsaku.

Java API

Results
sent Convert search results

back to UNICODE
before returning them.

Director
data

Search
request

Results
sent

Director server

Shunsaku

director

Application server

Data search
application

Specify conditional
expressions, return
expressions and sort
expressions using
UNICODE.

Search
requestSearch

window
(HTML, etc.)

Search
window
(HTML, etc.)

Search
result
window
(HTML, etc.)

Search
result
window
(HTML, etc.)

Display search
results according to
the character
encoding of the
window.

Convert these
conditional
expressions, return
expressions and sort
expressions into the
character encoding
used to store data in
Shunsaku.

Java API

Results
sent Convert search results

back to UNICODE
before returning them.

Director
data
Director
data

Search
request

Results
sent

Figure 5-8 Overview of Character Code Conversion

5-18

Error Codes Output when Java APIs are Used

Error Codes Output when Java APIs are Used
The following table shows the error codes output when Java APIs are used.

Table 5-3 Error Codes Output when Java APIs are Used
Category Error code Message
Parameter
error

-300 shun: ERROR: -300: The size of parameter @1@ is
incorrect.@2@

-301 shun: ERROR: -301: Null was specified as a
parameter.@1@,@2@

-302 shun: ERROR: -302: A negative number was specified as a
parameter.@1@,@2@

-303 shun: ERROR: -303: A blank space was specified as a
parameter.@1@,@2@

-304 shun: ERROR: -304: Data was not specified for insertion.@1@
-305 shun: ERROR: -305: The requested host could not be found.
-306 shun: ERROR: -306: Either the director or the conductor has not

been started, or the port number is incorrect.
-307 shun: ERROR: -307: @1@ is not a supported encoding type.
-308 shun: ERROR: -308: The properties file is null.
-309 shun: ERROR: -309: An invalid value was specified in the

properties file(@1@).
-310 shun: ERROR: -310: There is an error in the XML data.@1@
-311 shun: ERROR: -311: text() was specified in the return

expression.@1@
-312 shun: ERROR: -312: A number less than or equal to zero was

specified as a parameter.@1@,@2@
-313 shun: ERROR: -313: No RecordID has been specified.@1@
-314 shun: ERROR: -314: An invalid value was specified as a

parameter.@1@,@2@
-320 shun: ERROR: -320: ShunConnection is closed.@1@
-321 shun: ERROR: -321: This ShunPreparedStatement is not a @1@

statement.@2@

Sequence
error

-322 shun: ERROR: -322: ShunResultSet is closed.@1@
-323 shun: ERROR: -323: The cursor position is invalid.@1@
-324 shun: ERROR: -324: ShunPreparedStatement is closed.@1@
-325 shun: ERROR: -325: ShunPreparedRecordID is closed.@1@
-326 shun: ERROR: -326: This ShunPreparedRecordID is not a @1@

statement.@2@
-330 shun: ERROR: -330: An unexpected exception

occurred:@1@.@2@
-331 shun: ERROR: -331: A timeout error occurred.@1@
-332 shun: ERROR: -332: A communication error occurred.

Syntax error,
etc

-340 shun: ERROR: -340: An error occurred in the director or the
conductor(errCode=@1@).@2@

-345 shun: ERROR: -345: This method is not implemented.@1@ Others
-349 shun: ERROR: -349: A system error occurred.@1@,@2@

Environment
error

Detailed information about each error code and message is shown below.

5-19

Chapter 5: Java Application Development

Error Code = -300

Message
shun: ERROR: -300: The size of parameter @1@ is incorrect.@2@

Description
The size of parameter @1@ of method @2@ is invalid.

Parameters
@1@: Java API parameter name

@2@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that the size of the parameter is within acceptable limits and then rerun the
application. Refer to Appendix D, Allowable Values, for more information on allowable values.

Error Code = -301

Message
shun: ERROR: -301: Null was specified as a parameter.@1@,@2@

Description
A null value was specified in parameter @2@ of method @1@.

Parameters
@1@: Java API method name

@2@: Java API parameter name

System Action
Stops processing this method.

User Response
Fix the application so that a correct value is set for the parameter and then rerun the application.

Error Code = -302

Message
shun: ERROR: -302: A negative number was specified as a parameter.@1@,@2@

Description
A negative number was specified in parameter @2@ of method @1@.

Parameters
@1@: Java API method name

@2@: Java API parameter name

System Action
Stops processing this method.

5-20

Error Codes Output when Java APIs are Used

User Response
Fix the application so that a correct value is set for the parameter and then rerun the application.

Error Code = -303

Message
shun: ERROR: -303: A blank space was specified as a parameter.@1@,@2@

Description
A blank space was specified in parameter @2@ of method @1@.

Parameters
@1@: Java API method name

@2@: Java API parameter name

System Action
Stops processing this method.

User Response
Fix the application so that a correct value is set for the parameter and then rerun the application.

Error Code = -304

Message
shun: ERROR: -304: Data was not specified for insertion.@1@

Description
No additional data was specified with method @1@.

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that additional data is set correctly and then rerun the application.

Error Code = -305

Message
shun: ERROR: -305: The requested host could not be found.

Description
There is an error with the host name or IP address.

System Action
Stops processing this method.

User Response
Specify the correct host name or IP address with the ShunConnection method and then rerun the
application. Refer to Opening Connections for more information on how to specify host names and
IP addresses.

5-21

Chapter 5: Java Application Development

Error Code = -306

Message
shun: ERROR: -306: Either the director or the conductor has not been started, or the port number is
incorrect.

Description
Either the director or the conductor has not been started, or the port number is incorrect.

System Action
Stops processing this method.

User Response
• If the port number is incorrect, take the following action:

Specify the correct port number with the ShunConnection method and then rerun the program.
Refer to Opening Connections for more information on how to specify port numbers.

• If the director or the conductor has not been started, take the following action:

Start the director or conductor and then rerun the program. Refer to the User's Guide for more
information on how to start a director or conductor.

• If the connection destination server has not been started, take the following action:

Start the server and then rerun the program.

• In all other cases, take the following action.

Wait for a few moments and then rerun the command.

Error Code = -307

Message
shun: ERROR: -307: @1@ is not a supported encoding type.

Description
@1@ is not a supported character encoding.

Parameters
@1@ The specified encoding

System Action
Stops processing this method.

User Response
Use a supported character encoding.

Error Code = -308

Message
shun: ERROR: -308: The properties file is null.

Description
The Properties class object specified with the ShunConnection method is null.

System Action
Stops processing this method.

5-22

Error Codes Output when Java APIs are Used

User Response
Fix the application so that the Properties class object specified with the ShunConnection method
can be created correctly and then rerun the application. Refer to Opening Connections for more
information on how to create Properties class objects.

Error Code = -309

Message
shun: ERROR: -309: An invalid value was specified in the properties file(@1@).

Description
There is an error with a value (@1@) specified in the Java Properties file.

Parameters
@1@: parameter name

System Action
Stops processing this method.

User Response
Specify the correct information in the Java Properties file specified with the ShunConnection method
and then rerun the program. Refer to for more information on how to set up
Java Properties files.

Opening Connections

Error Code = -310

Message
shun: ERROR: -310: There is an error in the XML data.@1@

Description
There is an error with the XML document @1@.

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Check the content of the XML document.

Error Code = -311

Message
shun: ERROR: -311: text() was specified in the return expression.@1@

Description
text() was specified in the return expression @1@.

Parameters
@1@: Java API method name

System Action
Stops processing this method.

5-23

Chapter 5: Java Application Development

User Response
Fix the application so that a correct value is set in the return expression and then rerun the
application. Refer to Return Expressions in Appendix A for more information on return expressions.

Error Code = -312

Message
shun: ERROR: -312: A number less than or equal to zero was specified as a parameter.@1@,@2@

Description
A value of zero or less was specified in parameter @2@ of method @1@.

Parameters
@1@: Java API method name

@2@: Java API parameter name

System Action
Stops processing this method.

User Response
Fix the application so that a correct value is set in the parameter and then rerun the application.

Error Code = -313

Message
shun: ERROR: -313: No RecordID has been specified.@1@

Description
No record identifier has been specified for method @1@.

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that it sets a correct record ID and then rerun the application.

Error Code = -314

Message
shun: ERROR: -314: An invalid value was specified as a parameter.@1@,@2@

Description
An invalid value was specified in parameter @2@ of method @1@.

Parameters
@1@: Java API method name

@2@: Java API parameter name

5-24

Error Codes Output when Java APIs are Used

System Action
Stops processing this method.

User Response
Fix the application so that a correct value is set in the parameter and then rerun the application.

Error Code = -320

Message
shun: ERROR: -320: ShunConnection is closed.@1@

Description
The ShunConnection object has been closed. @1@

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that this method is not called until the ShunConnection object has been
created, and then rerun the application.

Error Code = -321

Message
shun: ERROR: -321: This ShunPreparedStatement is not a @1@ statement.@2@

Description
This ShunPreparedStatement object is not a @1@ statement. @2@

Parameters
@1@: The output is as follows:

• Search

• Insert:

• Delete

@2@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that it creates a ShunPreparedStatement object that can execute the method,
and then rerun the application.

5-25

Chapter 5: Java Application Development

Error Code = -322

Message
shun: ERROR: -322: ShunResultSet is closed.@1@

Description
The ShunResultSet object has been closed. @1@

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that this method is not called until the ShunResultSet object has been created,
and then rerun the application.

Error Code = -323

Message
shun: ERROR: -323: The cursor position is invalid.@1@

Description
The cursor position is invalid. @1@

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that this method is called while the cursor is in a valid position, and then rerun
the application.

Error Code = -324

Message
shun: ERROR: -324: ShunPreparedStatement is closed.@1@

Description
The ShunPreparedStatement object has been closed. @1@

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that this method is not called until the ShunPreparedStatement object has
been created, and then rerun the application.

5-26

Error Codes Output when Java APIs are Used

Error Code = -325

Message
shun: ERROR: -325: ShunPreparedRecordID is closed.@1@

Description
The ShunPreparedRecordID object has been closed. @1@

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that this method is not called until the ShunPreparedRecordID object has been
created, and then rerun the application.

Error Code = -326

Message
shun: ERROR: -326: This ShunPreparedRecordID is not a @1@ statement.@2@

Description
This ShunPreparedRecordID object is not a @1@ statement. @2@

Parameters
@1@: The output is as follows:

• Search

• Insert

• Delete

@2@: Java API method name

System Action
Stops processing this method.

User Response
Fix the application so that it creates a ShunPreparedRecordID object that can execute the method,
and then rerun the application.

Error Code = -330

Message
shun: ERROR: -330: An unexpected exception occurred:@1@.@2@

Description
A @1@ exception has occurred with method @2@.

Parameters
@1@: Exception type

@2@: Java API method name

5-27

Chapter 5: Java Application Development

System Action
Stops processing this method.

User Response
Take action appropriate to the type of exception that has occurred.

Error Code = -331

Message
shun: ERROR: -331: A timeout error occurred.@1@

Description
A timeout error occurred with method @1@.

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
Review the conditions in the search expression or the content of the additional data.

Error Code = -332

Message
shun: ERROR: -332: A communication error occurred.

Description
A communication error has occurred.

System Action
Stops processing this method.

User Response
Review the communication environment.

When updating, sorting, or aggregating data, make sure that the connection destination is a
conductor.

Error Code = -340

Message
shun: ERROR: -340: An error occurred in the director or the conductor(errCode=@1@).@2@

Description
An error (errCode = @1@) has been output by the director or the conductor. @2@

Parameters
@1@: The error code output by the director or the conductor

@2@: Java API method name

5-28

Error Codes Output when Java APIs are Used

System Action
Stops processing this method.

User Response
Take the appropriate action as described in . If
a Shunsaku system message has been output on the connection destination host, take the
appropriate action by referring to Messages that are Output to the System Log in the User's Guide.

Error Codes Output by the Conductor or the Director

Error Code = - 345

Message
shun: ERROR: -345: This method is not implemented.@1@

Description
Method @1@ is not implemented.

Parameters
@1@: Java API method name

System Action
Stops processing this method.

User Response
In the application, delete this method or replace with another method.

Error Code = - 349

Message
shun: ERROR: -349: A system error occurred.@1@,@2@

Description
A system error has occurred. @1@, @2@

Parameters
@1@: Java API method name

@2@: System error information

System Action
Stops processing this method.

User Response
Note the information in this message, and contact Fujitsu systems engineer.

5-29

Chapter 5: Java Application Development

Error Codes Output by the Conductor or the Director
The following table shows the error codes output by the conductor or the director when the error
code is -340.

Table 5-4 Error Codes Output by the Conductor or the Director
Error code Meaning User response
-1 Cannot connect to host. Check the host name or IP address and the port number

for the connection destination. If they are correct, wait a
few moments and then rerun the command.

-10 The service is not ready
to receive a request.

Wait a few moments and then rerun the command.
When updating, sorting or aggregating data, make sure
that the connection destination is a conductor.

If an error occurs when the command is rerun, determine
the cause of the error using the event log, eliminate the
error cause, and then rerun the command.

If an error occurs when the command is rerun, determine
the cause of the error using the system log (syslog),
eliminate the error cause, and then rerun the command.

-11 The maximum number
of simultaneous
requests has been
exceeded.

Wait a few moments and then rerun the command.

-12 A timeout occurred
while the system was
waiting for a response.

Wait a few moments and then rerun the command.

-13 The maximum number
of items that can be
updated, sorted or
aggregated has been
exceeded.

Wait a few moments and then rerun the command.

-20 An error was found in
the specification of a
passed parameter.

Set the correct parameter and rerun the command.

-21 A search expression
syntax error occurred.

Check the input parameter search expression and rerun
the command.

-22 A return expression
syntax error occurred.

Check the input parameter return expression and rerun
the command.

-23 A search expression
size error occurred.

Check the length of the input parameter search
expression and then rerun the command. (The size of the
search expression must be from 1 to 65, 535 bytes.)

-24 A return expression size
error occurred.

Check the length of the input parameter return expression
and then rerun the command. (The size of the return
expression must be from 0 to 65, 535 bytes.)

-25 A sort expression
syntax error occurred..

Check the sort expression input parameter and rerun the
command.

-26 A sort expression size
error occurred.

Check the length of the input parameter sort expression
and rerun the command. (The size of the sort expression
must be from 1 to 65, 535 bytes.)

5-30

Error Codes Output when Java APIs are Used

Error code Meaning User response
-27 There is an

inconsistency between
the content specified in
the sort expression and
the return expression.

Check the input parameter sort expression and return
expression and then rerun the command.

-30 The reply data storage
area was insufficient.
(*1)

Increase the size of the reply data storage area and
perform the search again.

-201 There is a problem with
the Shunsaku
environment.

Reinstall Shunsaku.

-204 The addition processing
has failed.

Check the content of the XML data and rerun the
command. Check the status of the director server and
rerun the command.

-207 The deletion processing
has failed.

Check the content of the conductor control information
and the record identifier(s) and rerun the command.
Check the status of the director server and rerun the
command.

-208 The process that
executes either the
addition or deletion
processing failed to
start.

Check the status of the director server and rerun the
command.

-209 The addition process or
the deletion process
was interrupted.

Check the status of the director server and rerun the
command.

-210 Failed to open a work
file.

Check the value of the WorkFolder parameter in the
director environment file and rerun the command.

-211 Failed to write to a work
file.

Check the status of the disk specified in the WorkFolder
parameter in the director environment file and rerun the
command.

*1: If error -30 occurs, reply data is not saved.

5-31

Chapter 5: Java Application Development

5-32

6-1

Chapter 6

C Application Development

This chapter explains how to develop applications that use the C APIs provided by Shunsaku.

• C API Overview

• How to Use C APIs

• Error Codes Output when C APIs are Used

Chapter 6: C Application Development

6-2

C API Overview
The C APIs are interfaces used to manipulate Shunsaku data from applications written in C.

The following table lists the C APIs provided by Shunsaku.

Table 6-1 API List
Function
category

Function name Description

shunsearch1 Finds the number of XML documents that match the search
conditions

shunsearch2 Obtains the XML documents that match the search conditions
in a specified format

shunsearch3 Obtains all of a particular XML document.

Lookup
operations

shunsort Finds data items that match the search conditions and obtains
the data items after they are sorted. Also finds data items that
match the search conditions and obtains the data items after
their values are aggregated.

shunadd Adds data. Update
operations shundeletebyrecid Deletes data.

Refer to the C API Reference for more information on the C APIs provided by Shunsaku.

How to Use C APIs

6-3

How to Use C APIs
This section explains how to use the C APIs.

Searching Data
The following operations can be performed using the data lookup functions provided by the C APIs:

• Finding the number of XML documents that match the search conditions

• Obtaining the XML documents that match the search conditions in a specified format

• Obtaining all of a particular XML document

• Finding XML documents that match the search conditions and obtaining the documents after
they are sorted

• Finding XML documents that match the search conditions and obtaining the documents after
their contents are aggregated

These operations can be combined to create a wide range of applications. Refer to Searching Data
in Appendix C for sample programs used for searching data. The rest of this section will describe
how to create applications that use this data to search for functions.

Chapter 6: C Application Development

6-4

Obtaining Search Results According to the Number of Data Items
Web-based search applications typically display only a few dozen search results per page, rather
than displaying all of the search results in a single window. In such cases, the number of data items
to be obtained can be controlled by specifying the reply start number and the number of items to
return per request as arguments of the shunsearch2 function.

Shunsaku

Web application
API

shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

Web application

shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 3

Search results

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 11
Number of items to
return per request = 5

Reply start number = 11
Number of items to
return per request = 5

Search results
Number of hits

Search results
Number of hits

Search results
Number of hits

Search results
Number of hitsDisplaying

page 3

Page
specification

Page
specification

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

11th data item

13th data item
14th data item
15th data item

12th data item

Shunsaku

Web application
API

shunsearch2()shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

Web application

shunsearch2()shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 3

Search results

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 1
Number of items to
return per request = 5

Reply start number = 11
Number of items to
return per request = 5

Reply start number = 11
Number of items to
return per request = 5

Search results
Number of hits

Search results
Number of hits

Search results
Number of hits

Search results
Number of hitsDisplaying

page 3

Page
specification

Page
specification

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

11th data item

13th data item
14th data item
15th data item

12th data item

Figure 6-1 Obtaining Search Results According to the Number of Data Items

Notes

• The shunsearch2 function returns record identifiers (conductor control information and reply
record identifiers) that uniquely identify the XML data along with the search results. Record
identifiers are used to extract or delete corresponding entire XML documents.

• The shunsearch2 function returns the number of hits (XML documents that match the search
conditions). This value can be used to find such things as the number of pages of the search
results.

• For the number of items to return per request, specify the number of data items to display on
each page.

How to Use C APIs

6-5

Obtaining Search Results while Adding Search Conditions
When a search produces a large number of hits, it is sometimes useful to be able to narrow down
the scope of search by adding more search conditions.

In such cases, perform a search process with the shunsearch2 function again by adding extra
search conditions to the search expression specified with the shunsearch2 function argument and
creating a new search expression. By repeating this operation, the user can narrow down the search
results while referring to the search results displayed on the screen.

Shunsaku

Web application
API

shunsearch2()

Web browser

10,000
items

Search
results

Web application

shunsearch2()

Web browser

Search
results

Search
expression

Search
expression

New search expression
(Original conditions + additional
conditions)

New search expression
(Original conditions + additional
conditions)

Search resultsSearch results

Search resultsSearch results

Adding search
conditions

38
items

Additional
conditions

Additional
conditions

ConditionsConditions

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item

Shunsaku

Web application
API

shunsearch2()shunsearch2()

Web browser

10,000
items

Search
results

Web application

shunsearch2()shunsearch2()

Web browser

Search
results

Search
expression

Search
expression

New search expression
(Original conditions + additional
conditions)

New search expression
(Original conditions + additional
conditions)

Search resultsSearch results

Search resultsSearch results

Adding search
conditions

38
items

Additional
conditions

Additional
conditions

ConditionsConditions

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item

Figure 6-2 Obtaining Search Results while Adding Search Conditions

Notes

The shunsearch2 function returns record identifiers (conductor control information and reply record
identifiers) that uniquely identify the XML documents along with the search results.

Record identifiers are used to extract or delete corresponding entire XML documents.

Chapter 6: C Application Development

6-6

Obtaining Entire XML Documents
When searching for a particular XML document, do not obtain the entire document straightaway.
Instead, start by obtaining the partial information that can effectively identify the document. The user
can then use this partial information to pick out the desired XML document and obtain detailed
information. To extract an entire XML document, use the record identifier (conductor control
information and reply record identifiers) that is returned when the partial information is extracted.
The entire target XML document can be extracted by specifying this record identifier with the
shunsearch3 function argument.

Detailed display for
the 3rd data item

Shunsaku
Web application

shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

XML document

Web browser
Details of the 3rd

data item

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search resultsSearch results

Search results
Record identifiers

Search results
Record identifiers

Specify recordSpecify record

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

Application server

API

shunsearch3()

1st data item

3rd data item
4th data item
5th data item

2nd data item

Web application

Detailed display for
the 3rd data item

Shunsaku
Web application

shunsearch2()shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

XML document

Web browser
Details of the 3rd

data item

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search resultsSearch results

Search results
Record identifiers

Search results
Record identifiers

Specify recordSpecify record

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

Application server

API

shunsearch3()shunsearch3()

1st data item

3rd data item
4th data item
5th data item

2nd data item

Web application

Figure 6-3 Obtaining Entire XML Documents

Note

By specifying multiple record identifiers with the shunsearch3 function, multiple XML documents can
be obtained at once.

How to Use C APIs

6-7

Obtaining Sorted Data
Sometimes it is useful to be able to sort the results of a search, using a particular element as a sort
key.

To obtain sorted partial information about the data, use the shunsort function.

Shunsaku
Web application

API

shunsearch1()

Web browser

123,456 items

Search results

Web application

shunsort()

Web browser

Search results

Search
expression

Search
expression

Search expression,
sort expression

Search expression,
sort expression

Sorted resultsSorted results

Number of hitsNumber of hits
Obtain sorted

results

ConditionsConditions
Isolate the sort target

Sorted in order

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

Shunsaku
Web application

API

shunsearch1()shunsearch1()

Web browser

123,456 items

Search results

Web application

shunsort()shunsort()

Web browser

Search results

Search
expression

Search
expression

Search expression,
sort expression

Search expression,
sort expression

Sorted resultsSorted results

Number of hitsNumber of hits
Obtain sorted

results

ConditionsConditions
Isolate the sort target

Sorted in order

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Figure 6-4 Obtaining Sorted Data

Notes

• In case of the shunsort function, the sort process looks up all of the XML documents that match
the search conditions. To improve response performance, it is important to narrow down the
data to be sorted by specifying a search expression that produces an appropriate number of
hits. To find out how many XML documents match the search conditions before starting a sort
process, use the shunsearch1 function.

• The shunsort function returns record identifiers (conductor control information and reply record
identifiers) that uniquely identify the XML documents along with the search results.. Record
identifiers are used to extract or delete corresponding entire XML documents.

Chapter 6: C Application Development

6-8

Note

In case of the shunsort function, the total length of the sort keys specified in the sort expression
determines the number of data items that can be returned. A maximum of 1,000 items can be
returned. No more data can be returned even if a higher value is specified for the reply start number
or the number of items to return per request. Refer to Appendix D, Allowable Values, for a
relationship between the number of data items that can be returned and the total length of sort keys.

Aggregating the Content of the Data that Matches Search Conditions
Sometimes it is useful to be able to aggregate the results of a search, using the values of particular
elements. Use the shunsort function to aggregate the content of the data. By specifying an
aggregation function in the return expression used as an argument of the shunsort function, the
results of the search will be aggregated before they are returned. The aggregation process can be
used to calculate totals, averages, maximums, minimums, and the number of items.

Shunsaku

APIWeb application

shunsort()

Web browser

Search results

Application server

Search expression,
return expression,
sort expression

Search expression,
return expression,
sort expression

Aggregated resultsAggregated results

1st data item

3rd data item
4th data item
5th data item

2nd data item

Specifies an
aggregation function

Shunsaku

APIWeb application

shunsort()shunsort()

Web browser

Search results

Application server

Search expression,
return expression,
sort expression

Search expression,
return expression,
sort expression

Aggregated resultsAggregated results

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Specifies an
aggregation function

Figure 6-5 Aggregating the Content of the Data that Matches Search Conditions

Note

In case of the shunsort function, the total length of the sort keys specified in the sort expression
determines the number of groups that can be returned. A maximum of 1,000 items can be returned.
No more data can be returned even if a higher value is specified for the reply start number or the
number of items to return per request. Refer to Appendix D, Allowable Values, for a relationship
between the number of groups that can be returned and the total length of sort keys.

How to Use C APIs

6-9

Updating Data
The C APIs can be used to add and delete data. Refer to Updating Data in Appendix C for sample
programs used for updating data. This section describes how to create applications that perform
data updates.

Adding Data
To add data, use the shunadd function.

ShunsakuAPI
Web application

shunadd()
XML data

Web browser

Add dataAdd data

Application server
ShunsakuAPI

Web application

shunadd()shunadd()
XML data

Web browser

Add dataAdd data

Application server

Figure 6-6 Adding Data

Note

The shunadd function can simultaneously add multiple XML documents using either of the following
ways:

• By sequentially listing multiple XML documents in a single data addition area

• By specifying multiple data addition areas

Chapter 6: C Application Development

6-10

Deleting Data
To delete data, use the shundeletebyrecid function.

The shundeletebyrecid function uses record identifiers (conductor control information and reply
record identifiers) to delete data. Before executing the shundeletebyrecid function, use the
shunsearch2 function or the shunsort function to obtain the record identifiers of the data to be
deleted.

Shunsaku
Web application

API

shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

shundeletebyrecid()

Web browser

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search results
Record identifiers

Search results
Record identifiers

Delete the
3rd data item

Specify recordSpecify record

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

1/2/3/4/5/6/7...
Page 1

Search results

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item

Web application

Shunsaku
Web application

API

shunsearch2()shunsearch2()

Web browser

1/2/3/4/5/6/7...
Page 1

Search results

shundeletebyrecid()shundeletebyrecid()

Web browser

Record identifier
corresponding to
the 3rd data item

Record identifier
corresponding to
the 3rd data item

Search results
Record identifiers

Search results
Record identifiers

Delete the
3rd data item

Specify recordSpecify record

Hold record
identifiers

Hold record
identifiers

Obtain record
identifiers

Obtain record
identifiers

Record identifiers

1/2/3/4/5/6/7...
Page 1

Search results

Application server

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

1st data item

3rd data item
4th data item
5th data item

2nd data item
1st data item

3rd data item
4th data item
5th data item

2nd data item

Web application

Figure 6-7 Deleting Data

Note

By specifying multiple record identifiers with the shundeletebyrecid function, multiple XML
documents can be deleted at once.

Character Encoding Used by the C APIs
For the C API search expressions, return expressions and sort expressions, use the same character
encoding as is used to store the XML documents in Shunsaku.

Error Codes Output when C APIs are Used

6-11

Error Codes Output when C APIs are Used
The following table shows the error codes output when C APIs are used.

Table 6-2 Error Codes Output when C APIs are Used
Error code Meaning User response
-1 Cannot connect to host. Check the host name or IP address and the port

number for the connection destination. If they
are correct, wait a few moments and then rerun
the command.

-10 The service is not ready to receive
a request.

Wait a few moments and then rerun the
command.
When updating, sorting or aggregating data,
make sure that the connection destination is a
conductor.

If an error occurs when the command is rerun,
determine the cause of the error using the event
log, eliminate the error cause, and then rerun
the command.

If an error occurs when the command is rerun,
determine the cause of the error using the
system log (syslog), eliminate the error cause,
and then rerun the command.

-11 The maximum number of
simultaneous requests has been
exceeded.

Wait a few moments and then rerun the
command.

-12 A timeout occurred while the
system was waiting for a response.

Wait a few moments and then rerun the
command.

-13 The maximum number of items that
can be updated, sorted or
aggregated has been exceeded.

Wait a few moments and then rerun the
command.

-20 An error was found in the
specification of a passed
parameter.

Set the correct parameter and rerun the
command.

-21 A search expression syntax error
occurred.

Check the input parameter search expression
and rerun the command.

-22 A return expression syntax error
occurred.

Check the input parameter return expression
and rerun the command.

-23 A search expression size error
occurred.

Check the length of the input parameter search
expression and then rerun the command. (The
size of the search expression must be from 1 to
65, 535 bytes.)

-24 A return expression size error
occurred.

Check the length of the input parameter return
expression and then rerun the command. (The
size of the return expression must be from 0 to
65, 535 bytes.)

-25 A sort expression syntax error
occurred.

Check the sort expression input parameter and
rerun the command.

-26 A sort expression size error
occurred.

Check the length of the input parameter sort
expression and rerun the command. (The size
of the sort expression must be from 1 to 65, 535
bytes.)

Chapter 6: C Application Development

6-12

Error code Meaning User response
-27 There is an inconsistency between

the content specified in the sort
expression and the return
expression.

Check the input parameter sort expression and
return expression and then rerun the command.

-30 The reply data storage area was
insufficient. (*1)

Increase the size of the reply data storage area
and perform the search again.

-201 There is a problem with the
Shunsaku environment.

Reinstall Shunsaku.

-204 The addition processing has failed. Check the content of the XML data and rerun
the command. Check the status of the director
server and rerun the command.

-207 The deletion processing has failed. Check the content of the conductor control
information and the record identifier(s) and
rerun the command.
Check the status of the director server and
rerun the command.

-208 The process that executes either
the addition or deletion processing
failed to start.

Check the status of the director server and
rerun the command.

-209 The addition process or the
deletion process was interrupted.

Check the status of the director server and
rerun the command.

-210 Failed to open a work file. Check the value of the WorkFolder parameter in
the director environment file and rerun the
command.

-211 Failed to write to a work file. Check the status of the disk specified in the
WorkFolder parameter in the director
environment file and rerun the command.

*1: If error -30 occurs, reply data is not saved.

A-1

Appendix A

Format of Search, Return and Sort
Expressions

This appendix explains the format of search expressions, return expressions and sort expressions
specified as arguments to Shunsaku API functions.

• Common Format

• Search Expressions

• Return Expressions

• Sort Expressions

Appendix A: Format of Search, Return and Sort Expressions

A-2

Common Format
This section details formatting common to the three types of expression (search expressions, return
expressions and sort expressions).

Path Expressions
The XML document structure is represented as a tree.

Path expressions are used to describe the position of nodes within the XML tree structure.

The format of path expressions is shown below.

/

*//

Element
name

Path operator Path element

/

*//

Element
name

Path operator Path element

Figure A-1 Path Expressions

Path Element
Path elements are used to identify individual element nodes in an XML document.

Table A-1 Path Elements
Path element Description
Element name Indicates the name of an element node.
* Indicates all of the element nodes below the upper node.

Common Format

A-3

Path Operator
Path operators express the relationship between path elements. Path operators are described in the
following table.

Table A-2 Path Operators
Path operator Description
/ The target will be the node below the upper node.
// The target will be all descendent nodes below the upper node.

Note

Symbols ‘//’ and ‘*’ cannot be entered consecutively in path expressions.

Example
An example path expression is shown below.

Document
<company>
 <name>fujitsu</name>
 <employee>
 <name>smith</name>
 <id>2000</id>
 </employee>
</company>

Figure A-2 Tree Representation of Data

Root node

Element node
company

Element node
name

Element node
employee

Element node
name

Element node
id

Text node
smith

Text node
2000

Text node
fujitsu

(1)

(2)

(3)

Appendix A: Format of Search, Return and Sort Expressions

A-4

/company/employee/name

This path expression indicates the 'name' element node below the 'employee' element node below
the 'company' element node below the root node. This node is indicated by (1) in the figure above.

//name

This path expression indicates all 'name' element nodes below the root node. These nodes are
indicated by (1) and (2) in the figure above.

/company/*/id

This path expression indicates an 'id' element node below any element node (‘name’ or ‘employee’
in the example of the figure above) below the 'company' element node below the root node. This
node is indicated by (3) in the figure above.

Text Expressions
A text expression specifies the (string) value of the text node below element nodes of an XML
document specified using path expressions.

The definition format for text expressions is shown below.

Figure A-3 Text Expressions

Path Expressions
The path expression is used to identify the positions of particular nodes within the XML tree structure.

Refer to Path Expressions for more information on path expressions.

Note

• When path expressions are specified as part of text expressions, the final element of the path
expression cannot be '*'.

text()
This function specifies the value of the text node below the element nodes specified by the path
expression. Always specify text() in text expressions.

Example
An example text expression is shown below.

/ text Path expression

Common Format

A-5

Document
<company>
 <name>fujitsu</name>
 <employee>
 <name>smith</name>
 <id>2000</id>
 </employee>
</company>

Figure A-4 Tree Representation of Data

/company/employee/name/text()

This text expression indicates the value of the text node below the 'name' element node, below the
'employee' element node, below the 'company' element node, below the root node. This value is
‘smith’ indicated by (1) in the above figure.

Root node

Element node
company

Element node
name

Element node
employee

Element node
 name

Element node
id

Text node
 smith

Text node
 2000

Text node
fujitsu

(1)

Appendix A: Format of Search, Return and Sort Expressions

A-6

Single-Line Function Specification
If single-line functions are specified, the value specified by the text expression is converted by the
function and the results are returned.

The definition format for single-line function specification is shown below.

rlen

)

Number of
characters

(

),(

val

Text
expression

Text
expression

rlen

)

Number of
characters

(

),(

val

Text
expression

Text
expression

Figure A-5 Single-line Functions

The rlen Function
The rlen function returns the specified number of characters starting with the first character of the
string expressed by the text expression.

Notes

• A number of characters between 1 and 2147483647 inclusive can be specified.

• The string expressed by the text expression will be returned unchanged if it is shorter than the
number of characters specified.

• The '//' path operator cannot be specified in the text expression.

• The '*' path element cannot be specified in the text expression.

Example

rlen(/company/name/text(),16)

Common Format

A-7

The val Function
The val function extracts only numeric values from the string expressed by the text expression.

Note

• The first numeric value that matches the format below is extracted from the string specified by
the text expression.

Figure A-6 val Function

Notes

• Commas in the integer part are ignored. If a decimal point is specified, all digits immediately
following the decimal point up to the first non-numeric character are used as the fractional part.

• Strings specified by the text expression that do not contain numbers are handled as 0.

• An error will occur if the integer part except for leading zeros has more than 18 digits.

• The first 18 digits of the decimal part are significant. Any subsequent digits are truncated.

• The '//' path operator cannot be specified in the text expression.

• The '*' path element cannot be specified in the text expression.

Example

val(/company/employee/id/text())

+

.

-

.

Number

Number

Number

Appendix A: Format of Search, Return and Sort Expressions

A-8

Search Expressions
Search expressions are used to specify search conditions that that apply to XML documents to be
retrieved

A search expression consists of one or more conditional expressions and filter expressions. Refer to
Conditional Expressions and Filter Expressions later in this section for details on conditional
expressions and filter expressions.

Use logical operators to specify more than one conditional expression or filter expression. Refer to
Logical Operators later in this section for details.

The format for search expressions is shown below.

Figure A-7 Search Expressions

Note

• Search expressions must have at least one conditional expression or filter expression.

()

∆

AND

OR

Logical
operators

∆

Conditional
expression

Filter
expression

Search
expression

∆: represents a space

Search Expressions

A-9

Logical Operators
Logical operators indicate the logical relationship between two adjacent conditional expressions and
filter expressions when multiple expressions are specified.

Logical operators are briefly explained in the following table.

Table A-3 Logical Operators
Logical
operator

Type of logical
operation

Description

AND AND operation Combines two adjacent conditional expressions by logical
operator AND.
Evaluates to TRUE only if both conditional expressions are
TRUE.
Evaluates to FALSE if either or both conditional expressions are
FALSE.

OR OR operation Combines two adjacent conditional expressions by logical
operator OR.
Evaluates to TRUE if either or both conditional expressions are
TRUE.
Evaluates to FALSE only if both conditional expressions are
FALSE.

Notes

• The AND operator is evaluated first in search expressions that contain both AND and OR
operators.

• Use parentheses '()' to change the order in which the logical operators are evaluated.

In the following example, ([conditional expression 2] OR [conditional expression 3]) is evaluated first.

[conditional expression 1] ∆AND∆ ([conditional expression 2] ∆ OR ∆
[conditional expression 3])…

∆: represents a space

Appendix A: Format of Search, Return and Sort Expressions

A-10

Conditional Expressions
Conditional expressions are used to make comparisons between keywords and the value of element
nodes (expressed by path expressions) in XML documents.

The definition format for conditional expressions is shown below.

=

∆

Relational
operators

∆
Path

expression

∆: represents a space

!=

>=

>

<=

<

!==

==

String

Numeric
value

Keyword

Figure A-8 Conditional Expressions

Conditional expressions consist of a path expression, a relational operator and a keyword.

Path Expressions
The path expression is used to identify the position of a node in the XML tree structure.

Specify an element node in the XML document to be compared.

Refer to Path Expressions for more information on path expressions.

Notes

• When performing partial match string searches, the user can specify the '//' path operator at the
end of the path expression. This represents all element nodes below the element node
specified by the path expression.

• When performing partial match string searches, the user can specify the '*' path element at the
end of the path expression.

Keywords
The keyword is the string or numeric value that is compared to the value of the element node in the
XML document that is specified with the path expression.

Search Expressions

A-11

Character String

Figure A-9 Character String

If a string is specified for the keyword, the search will be a string search.

Enclose strings in either double- or single-quotes. Double- and single-quotes cannot be used
together.

Refer to Character String Searches for more information on string searches.

Ellipses
Ellipses ‘...’ are specified in order to search for strings that contain an arbitrary number of unknown
characters.

Escape Characters
The characters in the following table must be preceded by the escape character '\' when they are
specified in strings.

For example, if 'abc\\' is specified, the search target string will be 'abc\'. The following characters
must be preceded by '\'.

Table A-4 Escape Sequence

Character Specification method
. \.
\ \\
" \"
' \'

Entity References
Characters such as '<' and '>' have special meaning in XML documents. These characters can be
expressed in XML documents using entity references.

Notes

• If a symbol (such as '<') is specified in the keyword of a partial match string search, the search
will look in the XML document for both the symbol ('<') and entity references to the symbol
('<').

• If a symbol (such as '<') is specified in the keyword of a complete match string search, the
search will only look for the symbol ('<') and not for entity references.

• If an entity reference (such as '<') is specified in the keyword, the search will only look for
entity references in the XML document.

Ellipses

”

’

”

’
Character

… Character

Appendix A: Format of Search, Return and Sort Expressions

A-12

Table A-5 Mapping Symbols to Entity References
Entity references Symbol represented
< <
> >
& &
' '
" "

Numeric Values

Figure A-10 Numeric Values

Numbers
Numbers between 0 and 9 inclusive can be specified.

If a numeric value is specified in the keyword, a numeric value search will be performed.

Refer to Numeric Value Searches for more information on numeric value searches.

Character String Searches
Three types of string search can be specified:

• Partial matches.

• Complete matches.

• Size comparison searches.

Relational Operators for Character String Searches
Relational operators for string searches specify how the string values of the element nodes specified
by the path expression will be compared to the string specified by the keyword.

+

.

-

.

Number

Number

Number

Search Expressions

A-13

The relational operators are shown below.

Table A-6 Relational Operators for Character String Searches
Relational
operators

Search type Description

= TRUE if the string specified by the keyword is contained in
the value of element node.

!=

Partial match

TRUE if the string specified by the keyword is not
contained in the value of element node.

== TRUE if the keyword matches the value of the element
node exactly.

!==

Complete match

TRUE if the keyword and the value of the element node
are even slightly different.

<, <=, >, >= Size comparison Compares the size of the value of the element node to the
keyword using the character encoding.

Partial Matches
Checks if the keyword is included in the value of the element node.

Example

/root/date = 'March’

This expression will be TRUE if the string 'March' is included in the value of the element node
indicated by '/root/date'.

Complete Matches
Checks if the string is the same as the value of the element node.

Example

/root/date == 'March 09, 2004’

This expression will be TRUE if the value of the element node indicated by '/root/date' is equal to the
string 'March 09, 2004'.

Size Comparison Searches
Compares the size of the value of the element node to the specified string, going from left to right
using the character encoding value (the hexadecimal code value of a character).

Example

/root/date > 'March 09, 2004’

This expression compares the character encoding value of the element node indicated by '/root/date'
to the character encoding value of the string 'March 09, 2004' one character at a time, starting from
the leftmost character, and evaluates to TRUE if the character encoding value of the element node
indicated by '/root/date' is larger.

Appendix A: Format of Search, Return and Sort Expressions

A-14

Note

• For string comparisons, make sure that the string specified as the keyword is the same length
as the value of the element node to which it is being compared.

Example
In the following example, the lookup document does not match the conditional expression.

Conditional Expression

/root/date <= 'March 09, 2004’

Target Lookup Document

<date>March 9, 2004</date>

Ellipses Searches
Ellipses searches are specified in order to search for strings that contain an arbitrary number of
unknown characters. For example, specifying 'ab…c' for the keyword will search for all strings that
contain any number of characters (including no characters at all) between 'ab' and 'c'.

Example
In the following example, both Document A and Document B match the search conditions.

/root//name = 'ab...c'

Document A
<root>
 <company>ABC
 <name>abxxxxc</name>
 <id>2000</id>
 </company>
</root>

Document B
<root>
 <company>ABC
 <name>abc</name>
 <id>2000</id>
 </company>
</root>

Note

• Ellipses can only be used for partial match searches.

Search Expressions

A-15

Example
In the following example, ‘==‘ is specified as the relational operator, so ellipses searches cannot be
performed. In this case, only Document A is regarded as matching the search conditions.

/root//name == 'ab...c'

Document A
<root>
 <company>ABC
 <name>ab...c</name>
 <id>2000</id>
 </company>
</root>

Document B
<root>
 <company>ABC
 <name>abxxxc</name>
 <id>2000</id>
 </company>
</root>

Numeric Value Searches
Numeric value searches use relational operators to specify either numeric matches or numeric size
comparisons.

Relational Operators for Numeric Value Searches
Relational operators for numeric searches specify how numeric values contained in the element
nodes specified by the path expression will be compared to the numeric value specified by the
keyword.

Valid relational operators are shown below.

Table A-7 Relational Operators for Numeric Searches
Relational operator Search type Description
= TRUE if the numeric value contained in the

element node matches the numeric value specified
by the keyword.

!=

Match

TRUE if the numeric value contained in the
element node does not match the numeric value
specified by the keyword.

<, <=, >, >= Size comparison Compares the size of the numeric value contained
in the element node to the numeric value specified
by the keyword.

Numeric Comparisons
Numeric comparisons extract the numeric value from the element node specified by the path
expression and compare this value to the numeric value specified in the keyword.

Appendix A: Format of Search, Return and Sort Expressions

A-16

Notes

• The first string in the value of the element node specified by the path expression that matches
the format below is treated as a numeric value. The format used for numeric values is as shown
below.

+

.

-

Number

Number

. Number
+

.

-

Number

Number

. Number

Figure A-11 Format for Numeric Values

• Commas in the integer part are ignored. If a decimal point is specified, the part from the first
decimal place to a numeric character immediately before the first non-numeric character is
treated as the fractional part.

• An error will occur if the integer part except for leading zeros has more than 18 digits.

• The first 18 digits of the decimal part are significant. Any subsequent digits are truncated.

Example

/doc/money = 1000

This expression evaluates to TRUE if the numeric value extracted from the text node below the
'money' element node below the 'doc' element node below the root node is equal to 1000.

In the following example, the value of the element node specified by the path expression contains
multiple numeric values. In such cases, only the first numeric value is extracted.

Document A

<money>ABC123,456@789</money>

- 123456 is extracted.

Document B

<money>123456 7890123</money>

- 123456 is extracted.

Document C

<money>1,500 thousand yen</money>

- 1500 is extracted.

Search Expressions

A-17

Note

• If the lookup data does not contain a valid numeric string, the result of the search conditions will
be regarded as FALSE.

The following target search string does not contain a valid numeric value string.

<money></money>

Notes

• Symbols ‘//’ cannot be entered at the end of a path expression when performing numeric
comparisons.

• Symbols ‘*’ cannot be entered at the end of a path expression when performing numeric
comparisons.

• The number of digits in the numeric value specified as the keyword does not need to match that
of the value of the element node specified with the path expression.

Keyword

/root/money > 1000

In the following example, the element node specified with the path expression will be regarded as
matching the search conditions.

<money>1000.5</money>

Note

• The number of digits used to express the integer parts and the fractional parts of element node
value does not need to be consistent across multiple XML documents.

Document 1

<money>1000.1</money>

Document 2

<money>2000.05</money>

Document 3

<money>10.5</money>

Appendix A: Format of Search, Return and Sort Expressions

A-18

Filter Expressions
Filter expressions are used to specify search conditions within the closed range of element nodes
specified by the path expressions.

The definition format for filter expressions is shown below.

()

∆

AND

OR

∆

Conditional
expression

∆: represents a space

} { Path
expression

Conditional
expression

Figure A-12 Filter Expressions

Filter expressions must have two or more conditional expressions.

Example
An example search expression containing filter expressions is shown below.

Search expression

/root/company/employee{/name = 'smith' AND /id = '1000'}

Document A
<root>
 <company>
 <employee>
 <name>smith</name>
 <id>1000</id>
 </employee>
 </company>
 <company>
 <employee>
 <name>jones</name>
 <id>2000</id>
 </employee>
 </company>
</root>

Search Expressions

A-19

Document B
<root>
 <company>
 <employee>
 <name>smith</name>
 <id>2000</id>
 </employee>
 </company>
 <company>
 <employee>
 <name>jones</name>
 <id>1000</id>
 </employee>
 </company>
</root>

In this example, Document A matches the search expression but Document B does not.

Treat ‘/root/company/employee’ as a single block. Document A contains data that matches the
conditions in braces (/name = ‘smith’ AND /id = ‘1000’), while Document B does not.

Note

• The '*' path element cannot be specified as the final element of the path expressions used in
filter expressions. Always specify an element name.

Example
In the following example, an error will occur because '*' is specified as the final path element of the
path expression.

/root//company/*{/name = 'smith' AND /id = '1000'}

Appendix A: Format of Search, Return and Sort Expressions

A-20

Return Expressions
Return expressions are used to specify data extraction formats for either extracting only particular
elements from the XML document that meets specified search conditions, or for aggregating that
data.

Return expressions use different formats, depending on whether aggregation is performed.

Format Used when not Aggregating
To return the entire record, specify '/' in the return expression.

The entire record will also be returned if a null character '' is specified in the return expression.

/

To return only certain element nodes or element values, specify either a path expression or a text
expression. Single-line functions can also be specified to convert element values.

As shown in the following definition, multiple return items can be specified, separated by commas ','.

,

Path
expression

Text
expression

Single-line function
specification

Return item

Figure A-13 Return Expression used when Aggregation is not Performed

Path Expressions
The path expression specifies which element nodes to return. The values of element nodes
specified by the path expression are returned in XML format.

The '*' path element cannot be specified as the final path element.

Refer to Path Expressions for more information on path expressions.

Example

/root/company/name

Return Expressions

A-21

Text Expressions
The text expression is used to specify which text nodes to return. The (string) values of the text
nodes specified by text expressions are returned in text format.

Refer to Text Expressions for more information on text expressions.

Example

/root/company/name/text()

Single-line Function Specification
The single-line function specification uses a function to convert the value indicated by the text
expression passed as an argument. The results of single-line function specifications are returned
without tags.

Refer to Single-Line Function Specification for more information on single-line function specification.

Example

rlen(/root/company/name/text(),10)

Example Return Expressions when not Aggregating
Some example return expressions are shown below.

Document
<doc>
 <companyname>fujitsu</companyname>
 <employee>
 <name>smith</name>
 <id>2000</id>
 <age>30</age>
 </employee>
</doc>

Return Specification in XML Format
If a path expression is specified in the return item, the corresponding element nodes will be returned
in XML format.

If multiple path expressions are specified in the return item, multiple elements are returned in the
order specified. Results will be returned for each matching document, enclosed by the root tag.

If there are no matching elements, no elements will be returned.

Example 1

Return expression

/

Appendix A: Format of Search, Return and Sort Expressions

A-22

Result: The entire record is returned.

<doc>
 <companyname>fujitsu</companyname>
 <employee>
 <name>smith</name>
 <id>2000</id>
 <age>30</age>
 </employee>
</doc>

Example 2
Return expression

/doc/employee/name

Result

<doc><name>smith</name></doc>

Example 3
Return expression

/doc/employee

Result

<doc><employee><name>smith</name><id>2000</id><age>30</age></employee>
</doc>

Example 4
Return expression

/doc/companyname,/doc/employee/id

Result

<doc><companyname>fujitsu</companyname><id>2000</id></doc>

Notes

• If the return expression includes a path expression, all return items must include a path
expression. It cannot coexist with text expressions and single-line function specifications.

• If a return parameter that will match multiple elements is specified (that is, if more than one path
expression is specified, or if "//" or "*" is specified), the application will not be able to determine
the relationship between the elements that have been extracted, as shown below. In these
situations, either extract the entire XML document, or extract data using a specification where
the return parameter isolates a single element.

Return Expressions

A-23

Example 1
If some elements do not exist, the application will not be able to determine which elements do
not exist. In this example, there is no /doc/president/name element, and so only
/doc/employee/name will be returned, but the application will not be able to determine whether
the element returned is /doc/president/name or /doc/employee/name.

Return expression

/doc/president/name,/doc/employee/name

Result

<doc><name>smith</name></doc>

Example 2
The application will not be able to determine the path to the elements that have been extracted.

In this example, the application cannot determine whether the path to the name element is
/doc/president/name or /doc/employee/name.

Document

The explanations that follow assume that the following XML document has been found.

<doc>
 <companyname>fujitsu</companyname>
 <president>
 <name>thompson</name>
 <id>1849</id>
 <age>61</age>
 </president>
<employee>
 <name>smith</name>
 <id>2000</id>
 <age>30</age>
</employee>

</doc>

Return expression

//name

Result

<doc><name>thompson</name><name>smith</name></doc>

Text Format Return Specification
If a text expression or a single-line function specification is specified in the return item, the results of
the text expression or single-line function specification will be returned as a string.

If multiple path expressions are specified in the return item, multiple strings are returned in the order
specified.

If there are no matching elements, an empty element will be indicated by consecutive delimiters.

Appendix A: Format of Search, Return and Sort Expressions

A-24

Java APIs
Extracting the Search Results Obtained by the getString Method or the getStream Method

• The values returned by each return item are separated by commas ','.

• If the specified element occurs more than once in the same document, each occurrence will be
separated by a vertical bar '|'.

Extracting the Search Results Obtained by the getStringArray Method

• Results are returned as a two dimensional array for each return item. The number of elements
in the high-order array is equal to the number of return expressions. The number of elements in
the low-order array is equal to the number of data items in a single document that apply to the
specified return expression.

C APIs
The values returned by each return item are separated by the character code '\001'.

If the specified element occurs more than once in the same document, each element will be
separated by the character code '\002'.

The character code '\001' is always attached at the end of the results returned.

In the following example, character codes '\001' and '\002' are expressed as '\1' and '\2' respectively.

Example 1: Example return item
Return expression

/doc/employee/name/text()

Result

• For the Java APIs

smith

• For the C APIs

smith \1

Example 2: Example where multiple return items are specified
Return expression

/doc/employee/name/text(),val(/doc/employee/age/text())

Result

• For the Java APIs

Smith,30

• For the C APIs

Return Expressions

A-25

Smith \1 30 \1

Note

If a return parameter that will match multiple elements is specified (that is, if more than one path
expression is specified, or if "//" or "*" is specified), the application will not be able to determine the
relationship between the elements that have been extracted

Example
Because there is no ‘age element node’ for ‘jones’ in the document below, it is impossible to tell
whether the ‘30’ in the third result relates to ‘smith’ or ‘jones’.

Document
<doc>
 <companyname>fujitsu</companyname>
 <employee>
 <name>smith</name>
 <id>2000</id>
 <age>30</age>
 </employee>
 <employee>
 <name>jones</name>
 <id>1000</id>
 </employee>
</doc>

Return expression

/doc/companyname/text(),/doc/employee/name/text(),val(/doc/employee/age/te
xt())

Result

• For the Java APIs

fujitsu,smith|jones,30

• For the C APIs

fujitsu \1 smith \2 jones \1 30 \1

Format Used when Aggregating
To aggregate data, specify text expressions, single-line function specifications, or aggregation
function specifications in the return expression. Multiple specifications can be entered with each
separated with commas. The return expression must include at least one aggregation function
specification.

A sort expression must be specified when aggregating. Refer to Sort Expressions in Appendix A for
more information on sort expressions.

Aggregation is performed as follows:

Appendix A: Format of Search, Return and Sort Expressions

A-26

• data is first sorted according to the sort key specified by the text expressions or single-line
functions specified in the sort expression

• data with the same sort key is treated as a single group

• the result of the aggregation function specification is determined for each group.

,

Aggregation
function

specification

Text
expression

Single-line function
specification

Return item

Figure A-14 Return Expressions used when Aggregating

Text Expressions
Specify a text expression when extracting a key for aggregation.

Refer to Text Expressions for more information on text expressions.

Note

• If a text expression is specified, it must be the same as the text expression used in the sort
expression. The value used as the key for aggregation will be returned.

Example

/doc/company/employee/dept/text()

Return Expressions

A-27

Single-line Function Specification
Specify single-line functions and extract the value of them when using single-line function
specifications as the key for aggregation.

Refer to Single-Line Function Specification for more information on single-line function specification.

Note

• If a single-line function is specified, it must be the same as the single-line function specification
used in the sort expression. The value used as the key for aggregation will be returned.

Example

rlen(/doc/company/employee/name/text(),3)

Aggregation Function Specifications
Aggregation function specifications aggregate the values specified by the text expression passed as
an argument.

The definition format for aggregation function specifications is shown below.

(Text expressionavg

max

min

count

sum (

(

(

(

)

)

)

)

)

Text expression

Text expression

Text expression

Text expression

Figure A-15 Aggregation Function Specifications

Notes

• If the element node specified by the text expression is not in the document, it will not be
included in the aggregation target.

• The avg, sum, max and min functions extract numeric values from the strings specified by the
text expression and aggregate these values. The principles for extracting numeric values from
text expressions are the same as for the val single-line function specification.

The avg Function
Extracts only numeric values from the strings expressed by the text expression and determines the
average of these values.

The sum Function
Extracts only numeric values from the strings expressed by the text expression and determines the
sum of these values.

Appendix A: Format of Search, Return and Sort Expressions

A-28

The max Function
Extracts only numeric values from the strings expressed by the text expression and determines the
maximum of these values.

The min Function
Extracts only numeric values from the strings expressed by the text expression and determines the
minimum of these values.

The count Function
Determines the number of elements specified by the text expression.

Notes

• The '//' path operator cannot be specified in the text expression.

• The '*' path element cannot be specified in the text expression.

Example Return Expressions used when Aggregating
Some example return expressions are shown below.

Document A
<doc>
 <companyname>fujitsu</companyname>
 <employee>
 <name>smith</name>
 <id>2000</id>
 <age>30</age>
 <comment></comment>
 </employee>
</doc>

Document B
<doc>
 <companyname>fujitsu</companyname>
 <employee>
 <name>jones</name>
 <id>1000</id>
 <age>35</age>
 <comment>team leader</comment>
 </employee>
</doc>

Example 1: Example of the avg function
Return expression

avg(/doc/employee/age/text())

Sort expression

/doc/companyname/text()

Return Expressions

A-29

Result

32.5

Example 2: Example of the count function
Return expression

count(/doc/employee/comment/text())

Sort expression

/doc/companyname/text()

Result

1

Note

• If the element specified by the text expression occurs more than once in the same document,
only the first element value is used.

Example
In the following example, the text expression '/student/subject/test/score/text()' is passed as an
argument to the avg function. In this case, Document A will not be included in the aggregation target,
the value of Document B will be treated as 80, and Document C will be 0.

Document A
<student>
 <name>smith</name>
 <subject>
 <subjectname>science</subjectname>
 </subject>
 <name>smith</name>
</student>

Document B
<student>
 <name>jones</name>
 <subject>
 <subjectname>science</subjectname>
 <test>
 <date>January 12, 2004</date>
 <score>80</score>
 </test>
 <test>
 <date>December 08, 2003</date>
 <score>70</score>
 </test>
 </subject>
</student>

Appendix A: Format of Search, Return and Sort Expressions

A-30

Document C
<student>
 <name>murphy</name>
 <subject>
 <subjectname>science</subjectname>
 <test>
 <date>January 12, 2004</date>
 <score>--</score>
 </test>
 </subject>
</student>

Return expression

avg(/student/subject/test/score/text())

Sort expression

/student/subjectname/text()

Result

40

Sort Expressions

A-31

Sort Expressions
Sort expressions are used to specify keys for either sorting or aggregating search results.

Sort Expression Format
Sort expressions can be specified using either text expressions or single-line function specifications.
In each case, the sort order (ascending or descending) can be specified. Multiple specifications can
be made with each separated by commas.

The definition format for sort expressions is shown below.

Figure A-16 Sort Expressions

Note

• Sort expressions can include up to eight key specifications.

Text Expressions
For text expressions, specify a text node to use as the key for sorting the data.

Refer to Text Expressions for more information on text expressions.

Notes

• The '//' path operator cannot be specified in the text expression.

• The '*' path element cannot be specified in the text expression.

Example

/company/employee/dept/text()

,

Text expression

Single-line function
specification

DESC
Specify keys

Appendix A: Format of Search, Return and Sort Expressions

A-32

Single-line Function Specification
Single-line function specifications can be used to sort the results of single-line functions.

Refer to Single-Line Function Specification for more information on single-line function specifications.

Example

rlen(/company/name/text(),16)

DESC
Specify DESC to return results in descending order. If omitted, results will be returned in ascending
order.

Example

/company/employee/dept/text() DESC

Sorting
The following rules apply to sorting:

• If a text expression is specified, results will be sorted using the string held by the text node
specified by the text expression.

• By default, only the leftmost 20 bytes of the string held by the text node specified with the text
expression are valid. The number of valid characters can be changed using the 'rlen' function.
The range of values that can be specified is 1 to 128.

• Any spaces, tabs or linefeed characters in the string held by the text node specified with the
text expression will be distinguished as valid values.

• If the text node specified by the text expression occurs more than once in the document, only
the value of the first text node will be used.

• If the text node specified by the text expression is not in the document, the document will be
placed last in the sorted results, regardless of the sort order.

• Specify the val function to sort numeric values. If the val function is specified, the data will be
treated as numeric, and there is no need to line up digits.

Example
If the two document items below are sorted as strings, '20' will be larger than '100'. By specifying
'val(/value/text())' in the sort expression, these values will be treated as the numbers 100 and 20,
and so 100 will be larger than 20.

<value>100</value>

<value>20</value>

Sort Expressions

A-33

Aggregation
The following rules apply to aggregating:

• If a text expression is specified, all documents where the text node specified by the text
expression hold the same string are treated as a single group.

• By default, only the leftmost 20 bytes of the string held by the text node specified with the text
expression are valid. The number of valid characters can be changed using the 'rlen' function.
The range of values that can be specified is 1 to 128.

• Any spaces, tabs or linefeed characters in the string held by the text node specified with the
text expression will be distinguished as valid values.

• If the text node specified by the text expression occurs more than once in the document, only
the value of the first text node will be used.

• Documents where the text node specified by the text expression does not exist are treated as a
single group where the group key has no value.

• Specify the val function to aggregate search results using a numeric key. If the val function is
specified, the data will be treated as numeric, and so elements with the same numeric value will
be treated as the same group even if some strings contain non-numeric values, or if the
positioning of the decimal places below the decimal point is different.

Example
If the two documents below are aggregated using '/doc/key/text()' as the key, each will be placed in
a separate group. If 'val(/doc/key/text())' is specified in the sort expression, both data items will be
treated as the numeric value 1000, and so will be aggregated as the same group.

<doc>
 <key>net1000.00g</key>
 <ship>2000</ship>
</doc>

<doc>
 <key>1,000g</key>
 <ship>1000</ship>
</doc>

Example Sort Expressions
Some example sort expressions that either sort or aggregate data are shown below.

Document A
<employee>
 <name>smith</name><age>33</age><dept>sales</dept>
</employee>

Document B
<employee>
 <name>jones</name><age>30</age><dept>general affairs</dept>
</employee>

Appendix A: Format of Search, Return and Sort Expressions

A-34

Document C
<employee>
 <name>murphy</name><age>22</age><dept>sales</dept>
</employee>

Document D
<employee>
 <name>fraser</name><age>54</age><dept>general affairs</dept>
</employee>

Document E
<employee>
 <name>morrison</name><dept>general affairs</dept>
</employee>

Document F
<employee>
 <name>mcdonald</name><age>42</age><dept>general affairs</dept>
</employee>

Entry Example of Data Sorting

Example 1
Return expression

/employee/name/text(),/employee/age/text()

Sort expression

val(/employee/age/text())

Result

• For the Java APIs
murphy,22
jones,30
smith,33
mcdonald,42
fraser,54
morrison,

• For the C APIs
murphy \1 22 \1
jones \1 30 \1
smith \1 33 \1
mcdonald \1 42 \1
fraser \1 54 \1
morrison \1 \1

Sort Expressions

A-35

Example 2
Return expression

/employee/name,/employee/age

Sort expression

val(/employee/age/text())

Result
<employee><name>murphy</name><age>22</age></employee>
<employee><name>jones</name><age>30</age></employee>
<employee><name>smith</name><age>33</age></employee>
<employee><name>mcdonald</name><age>42</age></employee>
<employee><name>fraser</name><age>54</age></employee>
<employee><name>morrison</name><age></age></employee>

Entry Example of Data Aggregation

Example
Return expression

avg(/employee/age/text()),count(/employee/age/text()),/employee/dept/text(
)

Sort expression

/employee/dept/text()

Result

• For the Java APIs
42,3,general affairs
27.5,2,sales

• For the C APIs
42 \1 3 \1 general affairs \1
27.5 \1 2 \1 sales \1

Appendix A: Format of Search, Return and Sort Expressions

A-36

B-1

Appendix B

Sample Java Programs

This appendix provides sample programs that use Java APIs.

• Searching Data

• Updating Data

Appendix B: Sample Java Programs

B-2

Searching Data
Use the APIs provided with Shunsaku to obtain search results by specifying search conditions for
the data to be retrieved.

Using Shunsaku APIs, the following searches can be performed:

The following operations can be performed using the Java APIs:

• Finding the number of XML documents that match the search conditions

• Obtaining the XML documents that match the search conditions in a specified format

• Obtaining all of a particular XML document

• Finding XML documents that match the search conditions and obtaining the documents after
they are sorted

• Finding XML documents that match the search conditions and obtaining the documents after
their contents are aggregated

Refer to the Java API Reference for details on Java APIs.

The example below uses ‘hotel reservations situation search’ to explain these operations. This
example assumes that the XML document below exists.

Refer to Appendix F, Notes on XML Documents for details on XML documents.

Sample Document

<document>
 <base>
 <name>Hotel 1</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>9000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 2</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, five minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 3</name>

Searching Data

B-3

 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>7500</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, ten minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 4</name>
 <prefecture>Osaka</prefecture>
 <address>Kita-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>5000</price>
 </base>
 <information>
 <date>2004/07/10</date>
 </information>
 <note>En-suite bathroom and toilet, three minutes walk to train
station ZZ</note>
</document>
<document>
 <base>
 <name>Hotel 5</name>
 <prefecture>Osaka</prefecture>
 <address>Kita-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/10</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
ZZ</note>
</document>
<document>
 <base>
 <name>Hotel 6</name>
 <prefecture>Kanagawa</prefecture>
 <address>Kohoku-ku Yokohama-shi Kanagawa</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>8000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 7</name>
 <prefecture>Kanagawa</prefecture>
 <address>Kohoku-ku Yokohama-shi Kanagawa</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>7000</price>
 </base>
 <information>

Appendix B: Sample Java Programs

B-4

 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, three minutes walk to train
station XX</note>
</document>
<document>
 <base>
 <name>Hotel 8</name>
 <prefecture>Kanagawa</prefecture>
 <address>Kanagawa-ku Yokohama-shi Kanagawa</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, five minutes walk to train station
XX</note>
</document>

Searching Data

B-5

Find the Number of XML Documents that Match the Search
Conditions

If there is a large amount of data to be searched, it is not practical to search all data items that
match the conditional expression. In such cases, it is useful to find out how many data items match
the specified condition.

The example below shows how to use the Java APIs to find out how many hotels match the date
and location specified as the search condition.

Search Conditions
’How many hotels are there in Osaka with vacancies on July 18 2004.’

Perform a search using the date (2004/07/18) and the location (Osaka) as the search conditions.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.ShunResultSet;
import com.fujitsu.shun.common.ShunException;

/*** Obtain the number of records that meet specified search
conditions ***/
public class JavaAPISample1 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;
 ShunResultSet rs = null;

 try {

 // Search conditional expression
 String sQuery = "/document/base/prefecture == 'Osaka' AND
/document/information/date == '2004/07/18'";
 // Return expressions
 String sReturn = "/";
 // Number of hits
 int iHitNum = 0;

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Specify a search expression and create the
ShunPreparedStatement object
 pstmt = con.prepareSearch(sQuery, sReturn);

 //Set the number of items to return per request
 pstmt.setRequest(1,0);

 //Execute the search and create the ShunResultSet object
 rs = pstmt.executeSearch();

 // Get the number of hits
 iHitNum = rs.getHitCount();
 System.out.println("Number of hits = " + iHitNum);

Appendix B: Sample Java Programs

B-6

 rs.close();
 pstmt.close();
 con.close();
 }
 catch (ShunException ex) {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 catch (Exception ex) {
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 // Recovery process in the event of an error
 finally {
 try {
 if (rs!=null) rs.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (pstmt!=null) pstmt.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Execution Results

Number of hits = 3

Searching Data

B-7

Obtain the XML Documents that Match the Search Conditions in
a Specified Format

Part of the data obtained as search results is sometimes used as additional conditions to perform
the next search operation. In this case, it is common to return only part of the data as search results
instead of the entire data.

The example below shows how to use the Java APIs to find out how many hotels match the date
and location specified as the search condition, as well as to get partial information.

Search Conditions
‘I would like to know the names and accommodation rates of up to 30 hotels in Osaka that are
available on 18 July 2004.’

In this case, specify the date (2004/07/18) and the location (Osaka) as search conditions; specify
the hotel name and its accommodation rate as search results; and then execute the search.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.ShunResultSet;
import com.fujitsu.shun.common.ShunException;

/*** Obtain the number of records that match the specified search
conditions and the data ***/
public class JavaAPISample2 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;
 ShunResultSet rs = null;

 try {
 // Search conditional expression
 String sQuery = "/document/base/prefecture == 'Osaka' AND
/document/information/date == '2004/07/18'";
 // Return expression
 String sReturn = "/document/base/name, /document/base/price";
 // Number of hits
 int iHitNum = 0;
 // Data counter
 int iDataCounter = 1;

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Specify a search expression and create the
ShunPreparedStatement object
 pstmt = con.prepareSearch(sQuery,sReturn);

 //Set the number of items to return per request
 pstmt.setRequest(1,30);

 //Execute the search and create the ShunResultSet object
 rs = pstmt.executeSearch();

 // Get the number of hits

Appendix B: Sample Java Programs

B-8

 iHitNum = rs.getHitCount();
 System.out.println("Number of hits = " + iHitNum);

 // Obtain data that matches the search conditions one item at
a time
 while(rs.next()) {
 System.out.println("[Result " + iDataCounter + "] = " +
rs.getString());
 iDataCounter++;
 }

 rs.close();
 pstmt.close();
 con.close();

 } catch (ShunException ex) {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 finally {
 try {
 if (rs!=null) rs.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (pstmt!=null) pstmt.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Execution Results

Number of hits = 3
[Result 1] = <document><name>Hotel 1</name><price>9000</price></document>
[Result 2] = <document><name>Hotel 2</name><price>6000</price></document>
[Result 3] = <document><name>Hotel 3</name><price>7500</price></document>

Searching Data

B-9

Obtain All of a Particular XML Document
After completing the Find the Number of XML Documents that Match the Search Conditions and
Obtain the XML Documents that Match the Search Conditions in a Specified Format search
operations, the next step is to refine the search and obtain all the data for a result item based on a
more precise set of conditions.

The following example uses the Java APIs to return all the data for one of the hotels whose name
was returned using Obtain the XML Documents that Match the Search Conditions in a Specified
Format search operation.

Search Conditions
‘I would like to obtain detailed information about one of the hotels in Osaka available on 18 July
2004.’

Specify the date (2004/07/18) and the location (Osaka) as search conditions and execute the search.
Also use the record ID corresponding to the hotel to obtain detailed information.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedRecordID;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.ShunResultSet;
import com.fujitsu.shun.common.ShunException;

/*** Obtain all record information corresponding to the specified
record ID ***/
public class JavaAPISample3 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;
 ShunPreparedRecordID rid = null;
 ShunResultSet rs = null;

 try {

 // Search conditional expression
 String sQuery = "/document/base/prefecture == 'Osaka' AND
/document/information/date == '2004/07/18'";
 // Return expression
 String sReturn = "/document/base/name/text()";
 // Record information
 String sRecordID = "";
 // Number of hits
 int iHitNum = 0;

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Specify a search expression and create the
ShunPreparedStatement object
 pstmt = con.prepareSearch(sQuery,sReturn);

 //Set the number of items to return per request
 pstmt.setRequest(1,30);

Appendix B: Sample Java Programs

B-10

 //Execute the search and create the ShunResultSet object
 rs = pstmt.executeSearch();

 // Get the number of hits
 iHitNum = rs.getHitCount();
 System.out.println("Number of hits = " + iHitNum);

 // Create the ShunPreparedRecordID object
 rid = con.prepareSearchRecordID();

 // Obtain one data item that matches the search conditions
 while(rs.next()) {

 // Set record information for Hotel 1
 if(rs.getString().equals("Hotel 1")) {
 rid.add(rs.getRecordID());
 }
 }

 rs.close();
 pstmt.close();

 // If acquisition of the relevant record ID is successful,
refer to the detailed data
 if(0 < rid.getCount()) {

 // Use the specified record information to create the
ShunResultSet object
 rs = rid.searchByRecordID();

 while(rs.next()) {
 // Obtain data using the record information
specification
 System.out.println("[details] = " + rs.getString());
 }

 rs.close();
 }

 rid.close();
 con.close();

 } catch (ShunException ex) {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 finally {
 try {
 if (rs!=null) rs.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (pstmt!=null) pstmt.close();
 }

Searching Data

B-11

 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (rid!=null) rid.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Execution Results
Number of hits = 3
[detail] = <document>
 <base>
 <name>Hotel 1</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>9000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
XX</note>
</document>

Appendix B: Sample Java Programs

B-12

Find XML Documents that Match the Search Conditions and
Obtain the Documents after they are Sorted

When performing a search, it is sometimes desirable to obtain the search results after they have
been sorted according to a specific element.

The following example specifies the date and location as search conditions and obtains the number
of hotels that match the conditions, as well as partial information. It shows how the Java APIs are
used to sort data in descending order according to the accommodation rate as it is obtained.

Search Conditions
‘I would like to know the hotels in Osaka that are available on 18 July 2004, and I want to sort the
results in a descending order according to the hotel rate.’

Specify the date (2004/07/18) and the location (Osaka) as search conditions and specify the
accommodation rate as a sort condition, then execute the search.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.ShunResultSet;
import com.fujitsu.shun.common.ShunException;

/*** Obtain the sorted data that matches the specified search
conditions ***/
public class JavaAPISample4 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;
 ShunResultSet rs = null;

 try {
 // Search conditional expression
 String sQuery = "/document/base/prefecture == 'Osaka' AND
/document/information/date == '2004/07/18'";
 // Return expression
 String sReturn = "/document/base/name, /document/base/price";
 // Sort expression
 String sSort = "val(/document/base/price/text()) DESC";
 // Number of hits
 int iHitNum = 0;
 // Data counter
 int iDataCounter = 1;

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Specify a search expression and create the
ShunPreparedStatement object
 pstmt = con.prepareSearch(sQuery,sReturn);

 // Specify sort expression
 pstmt.setSort(sSort);

 //Set the number of items to return per request
 pstmt.setRequest(1,30);

Searching Data

B-13

 //Execute the search and create the ShunResultSet object
 rs = pstmt.executeSearch();

 // Obtain data that matches the search conditions one item at
a time
 while(rs.next()) {
 System.out.println("[Result " + iDataCounter + "] = " +
rs.getString());
 iDataCounter++;
 }

 rs.close();
 pstmt.close();
 con.close();

 } catch (ShunException ex) {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 finally {
 try {
 if (rs!=null) rs.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (pstmt!=null) pstmt.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Execution Results

[Result 1] = <document><name>Hotel 1</name><price>9000</price></document>
[Result 2] = <document><name>Hotel 3</name><price>7500</price></document>
[Result 3] = <document><name>Hotel 2</name><price>6000</price></document>

Appendix B: Sample Java Programs

B-14

Find XML Documents that Match the Search Conditions and
Obtain the Documents after their Contents are Aggregated

When performing a search, it is sometimes desirable to obtain the search results after the value of a
specific element has been aggregated.

The following example shows how to use the Java APIs when obtaining the cheapest hotel, the most
expensive hotel, and the average hotel rate by specifying the location as a search condition.

Search Conditions
‘Of the hotels that are available on 18 July 2004, I would like to know the cheapest hotel, the most
expensive hotel, and the average hotel rate for each area.’

Specify the date (2004/07/18) as a search condition, specify an aggregation expression (min, max,
avg) for the results to be obtained and then aggregate the results.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.ShunResultSet;
import com.fujitsu.shun.common.ShunException;

/*** Aggregate the data matching the specified search condition
***/
public class JavaAPISample5 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;
 ShunResultSet rs = null;

 try{

 // Search conditional expression
 String sQuery = "/document/information/date == '2004/07/18'";
 // Return expression
 String sReturn = "/document/base/prefecture/text(),
min(/document/base/price/text()), max(/document/base/price/text()),
avg(/document/base/price/text())";
 // Sort expression
 String sSort = "/document/base/prefecture/text()";

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Specify a search expression and create the
ShunPreparedStatement object
 pstmt = con.prepareSearch(sQuery,sReturn);

 // Specify sort expression
 pstmt.setSort(sSort);

 //Set the number of items to return per request
 pstmt.setRequest(1,30);

 //Execute the search and create the ShunResultSet object
 rs = pstmt.executeSearch();

Searching Data

B-15

 // Obtain data that matches the search conditions
 int counter = 0;
 String[][] result;
 while (rs.next()) {
 counter++;
 System.out.println("[Result " + counter + "]");

 result = rs.getStringArray();
 System.out.println(" area :" +
result[0][0]);
 System.out.println(" cheapest hotel rate :" +
result[1][0]);
 System.out.println(" most expensive hotel rate:" +
result[2][0]);
 System.out.println(" average hotel rate :" +
result[3][0]);
 }

 rs.close();
 pstmt.close();
 con.close();
 }
 // Processing performed when an error occurs during execution of
the application
 catch (ShunException ex)
 {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 finally {
 try {
 if (rs!=null) rs.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (pstmt!=null) pstmt.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Appendix B: Sample Java Programs

B-16

Execution Results

[Result 1]
 area :Kanagawa
 cheapest hotel rate :6000
 most expensive hotel rate:8000
 average hotel rate :7000
[Result 2]
 area :Osaka
 cheapest hotel rate :6000
 most expensive hotel rate:9000
 average hotel rate :7500

Updating Data

B-17

Updating Data
The Java APIs provided by Shunsaku are used to update data.

The following can be done using Java APIs:

• Adding Data

• Deleting Data

Refer to the Java API Reference for details on Java APIs.

In this section, the ‘Hotel reservation status search’ sample document provided in Searching Data
will be used to explain the update procedure.

Refer to Appendix F, Notes on XML Documents, for details on XML documents.

Adding Data
The following example shows how the Java APIs are used to add data.

Data to be Added
‘I would like to add an item of information about a Kanagawa hotel (Hotel 9 information).’

Assemble the data to be added and then add the data.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.common.ShunException;

/*** Add the specified data ***/
public class JavaAPISample6 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;

 try{

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Create a ShunPreparedStatement object to add the data
 pstmt = con.prepareInsert();

 // Create the data to be added
 String addData = "<document>"
 + " <base>"
 + " <name>Hotel 9</name>"
 + " <prefecture>Kanagawa</prefecture>"
 + " <address>Knanagawa-ku Yokohama-shi
Kanagawa</address>"
 + " <detail>http://xxxxx.co.jp</detail>"
 + " <price>6000</price>"

Appendix B: Sample Java Programs

B-18

 + " </base>"
 + " <information>"
 + " <date>2004/07/18</date>"
 + " </information>"
 + "<note>En-suite bathroom and toilet, five
minutes walk to train station XX</note>"
 + "</document>";

 // Add data
 pstmt.add(addData);

 // Perform data addition
 pstmt.executeInsert();

 System.out.println("Addition complete");

 pstmt.close();
 con.close();
 }
 // Processing performed when an error occurs during execution of
the application
 catch (ShunException ex)
 {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 catch (Exception e)
 {
 System.out.println("ERROR MESSAGE : " + e.getMessage());
 e.printStackTrace();
 }
 finally {
 try {
 if (pstmt!=null) pstmt.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Execution Results

Addition complete

Updating Data

B-19

Deleting Data
The following example shows how the Java APIs are used to delete data.

Search Conditions
‘I would like to delete the Hotel 9 data from the data for hotels in Kanagawa that are available on 18
July 2004.’

Perform a search using the date (2004/07/18) and the location (Kanagawa) as search conditions,
and then delete the data that matches the hotel name ‘Hotel 9’.

Example Using the Java APIs
The following is a sample program using the Java APIs.

import com.fujitsu.shun.ShunConnection;
import com.fujitsu.shun.ShunPreparedRecordID;
import com.fujitsu.shun.ShunPreparedStatement;
import com.fujitsu.shun.ShunResultSet;
import com.fujitsu.shun.common.ShunException;

/*** Delete the specified data ***/
public class JavaAPISample7 {
 public static void main(String[] args) {

 ShunConnection con = null;
 ShunPreparedStatement pstmt = null;
 ShunPreparedRecordID rid = null;
 ShunResultSet rs = null;

 try{

 // Search expression
 String sQuery = "/document/base/prefecture == 'Kanagawa' AND
/document/information/date == '2004/07/18'";

 // Return expression
 String sReturn = "/document/base/name/text()";

 // Create the ShunConnection object
 con = new ShunConnection("DServer", 33101);

 // Specify a search expression and create the
ShunPreparedStatement object
 pstmt = con.prepareSearch(sQuery,sReturn);

 //Set the number of items to return per request
 pstmt.setRequest(1,30);

 // Create the Shun PreparedRecordIDCreate object
 rid = con.prepareDeleteRecordID();

 // Execute the search and create the ShunResultSet object
 rs = pstmt.executeSearch();

 // Obtain the record ID of Hotel 9
 while(rs.next())
 {
 if(rs.getString().equals("Hotel 9"))

Appendix B: Sample Java Programs

B-20

 {
 rid.add(rs.getRecordID());
 }
 }

 rs.close();
 pstmt.close();

 // If acquisition of the record ID is successful, delete the
corresponding data.
 if(0 < rid.getCount()) {

 rid.deleteByRecordID();
 System.out.println("Deletion complete");
 }

 rid.close();
 con.close();
 }
 // Processing performed when an error occurs during execution of
the application
 catch (ShunException ex)
 {
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 finally {
 try {
 if (rs!=null) rs.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (pstmt!=null) pstmt.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (rid!=null) rid.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());
 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 try {
 if (con!=null) con.close();
 }
 catch (ShunException ex){
 System.out.println("Error code:" + ex.getErrCode());

Updating Data

B-21

 System.out.println("Error level:" + ex.getErrLevel());
 System.out.println("Error message:" + ex.getMessage());
 ex.printStackTrace();
 }
 }
 }
}

Execution Results

Deletion complete

Appendix B: Sample Java Programs

B-22

C-1

Appendix C

Sample C Programs

This appendix provides examples of programs that use C APIs.

• Searching Data

• Updating Data

Appendix C: Sample C Programs

C-2

Searching Data
Use the APIs provided by Shunsaku to obtain search results by specifying search conditions for the
data to be retrieved.

The following operations can be performed using the C APIs:

• Finding the number of XML documents that match the search conditions

• Obtaining the XML documents that match the search conditions in a specified format

• Obtaining all of a particular XML document

• Finding XML documents that match the search conditions and obtaining the documents after
they are sorted

• Finding XML documents that match the search conditions and obtaining the documents after
their contents are aggregated

Refer to the C API Reference for details on C APIs.

The example below uses ‘hotel reservation status search’ to explain these operations. This example
assumes that the XML document below exists.

Refer to Appendix F, Notes on XML Documents for details on XML documents.

Sample Document

<document>
 <base>
 <name>Hotel 1</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>9000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 2</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, five minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 3</name>
 <prefecture>Osaka</prefecture>

Searching Data

C-3

 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>7500</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, ten minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 4</name>
 <prefecture>Osaka</prefecture>
 <address>Kita-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>5000</price>
 </base>
 <information>
 <date>2004/07/10</date>
 </information>
 <note>En-suite bathroom and toilet, three minutes walk to train
station ZZ</note>
</document>
<document>
 <base>
 <name>Hotel 5</name>
 <prefecture>Osaka</prefecture>
 <address>Kita-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/10</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
ZZ</note>
</document>
<document>
 <base>
 <name>Hotel 6</name>
 <prefecture>Kanagawa</prefecture>
 <address>Kohoku-ku Yokohama-shi Kanagawa</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>8000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
XX</note>
</document>
<document>
 <base>
 <name>Hotel 7</name>
 <prefecture>Kanagawa</prefecture>
 <address>Kohoku-ku Yokohama-shi Kanagawa</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>7000</price>
 </base>
 <information>
 <date>2004/07/18</date>

Appendix C: Sample C Programs

C-4

 </information>
 <note>En-suite bathroom and toilet, three minutes walk to train
station XX</note>
</document>
<document>
 <base>
 <name>Hotel 8</name>
 <prefecture>Kanagawa</prefecture>
 <address>Kanagawa-ku Yokohama-shi Kanagawa</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, five minutes walk to train station
XX</note>
</document>

Searching Data

C-5

Find the Number of XML Documents that Match the Search
Conditions

If there is a large amount of data to be searched, it is not practical to search all data items that
match the conditional expression. In such cases, it is useful to find out how many data items match
the specified condition.

The example below shows how to use the C APIs to find out how many hotels match the date and
location specified as the search condition.

Search Conditions
’How many hotels in Osaka have vacancies on July 18 2004?’

Perform a search using the date (2004/07/18) and the location (Osaka) as the search condition.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include "libshun.h"

int main() {

 /*** Declaration of work variables ***/
 int sts;

 /*** Variable declaration for input parameters ***/
 char hostname[24];

 /*** Variable declaration for output parameters ***/
 int Hit_Cnt;

 /*** Initialize input parameters***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 sts = 0;
 Hit_Cnt = 0;

 /*** Call the API (the shunsearch1 function) ***/
 sts = shunsearch1(hostname,
 33101,
 "/document {/base/prefecture == 'Osaka' "
 "AND /information/date == '2004/07/18'}",
 NULL,
 &Hit_Cnt);

 /*** Export output parameters ***/
 if (sts == 0) {
 printf("Number of hits = %d\n", Hit_Cnt);
 return 0;
 } else {
 printf("Error code :%d\n", sts);
 return 1;

Appendix C: Sample C Programs

C-6

 }
}

Execution Results

Number of hits = 3

Searching Data

C-7

Obtain the XML Documents that Match the Search Conditions in
a Specified Format

Part of the data obtained as search results is sometimes used as additional conditions to perform
the next search operation. In this case, it is common to return only part of the data as search results
instead of the entire data.

The example below shows how to use the C APIs to find out how many hotels match the date and
location specified as the search condition, as well as to get partial information.

Search Conditions
‘I would like to know the names and accommodation rates of up to 30 hotels in Osaka that are
available on 18 July 2004.’

Perform a search using the date (July 18, 2004) and the location (Osaka) as the search conditions,
and then obtain the names and accommodation rates of 30 hotels from the results of this search.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "libshun.h"

#define START_NO 1
#define RECORD_CNT 30
#define SECURE_SIZE 4096

int main() {

 /*** Declaration of work variables ***/
 int i;
 int sts;
 char *wkData;

 /*** Variable declaration for input parameters ***/
 char hostname[24];
 int StartNo = START_NO;
 int RecordCnt = RECORD_CNT;
 int Secure_Size = SECURE_SIZE;

 /*** Variable declaration for output parameters ***/
 int Hit_Cnt;
 int Return_Cnt;
 int Stored_Size;
 Sdsma *Dsma;
 char *Data;

 /*** Initialize input parameters ***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 sts = 0;
 Hit_Cnt = 0;

Appendix C: Sample C Programs

C-8

 Return_Cnt = 0;
 Stored_Size = 0;

 /*** Allocate memory for output parameter response data ***/
 /* Allocate the area for response data */
 Dsma = (Sdsma*)malloc(sizeof(Sdsma) * RecordCnt);
 memset(Dsma,0,sizeof(Sdsma) * RecordCnt);
 for (i = 0; i < RecordCnt; i++) {
 Dsma[i].Rec_Ctl = (char*)malloc(COND_CTL_LEN);
 Dsma[i].Rec_ID = (char*)malloc(ROW_ID_LEN);
 memset(Dsma[i].Rec_Ctl, 0, COND_CTL_LEN);
 memset(Dsma[i].Rec_ID, 0, ROW_ID_LEN);
 Dsma[i].Rec_Ptr = 0;
 Dsma[i].Rtn_Len = 0;
 }
 Data = (char*)malloc(sizeof(char) * Secure_Size);
 memset(Data, 0, sizeof(char) * Secure_Size);

 /*** Call the API (the shunsearch2 function) ***/
 sts = shunsearch2(hostname,
 33101,
 StartNo,
 RecordCnt,
 "/document/base/prefecture == 'Osaka' "
 "AND /document/information/date == '2004/07/18'",
 "/document/base/name, /document/base/price",
 NULL,
 NULL,
 Secure_Size,
 &Hit_Cnt,
 &Return_Cnt,
 &Stored_Size,
 Dsma,
 Data);

 /*** Export output parameters ***/
 if (sts == 0) {
 printf("Number of hits = %d\n", Hit_Cnt);

 if (Hit_Cnt != 0) {
 for (i = 0; i < Return_Cnt; i++) {
 if (Dsma[i].Rtn_Len != 0) {
 wkData = (char*)malloc(Dsma[i].Rtn_Len + 1);
 memset(wkData, 0, Dsma[i].Rtn_Len + 1);
 memcpy(wkData, Dsma[i].Rec_Ptr, Dsma[i].Rtn_Len);
 printf("[Result]No. %d = %s\n ", StartNo+i, wkData);
 free(wkData);
 } else {
 printf("[Result]No. %d = No data", StartNo+i);
 }
 }
 }
 } else {
 printf("Error code :%d\n", sts);
 printf("Size of the area for returned data :%d\n", Stored_Size);
 }

 /*** Release memory for the output parameters ***/
 for (i = 0; i < RecordCnt; i++) {
 free(Dsma[i].Rec_Ctl);
 free(Dsma[i].Rec_ID);
 }

Searching Data

C-9

 free(Dsma);
 free(Data);

 if (sts == 0) return 0;
 else return 1;
}

Execution Results

Number of hits = 3
[Result 1] = <document><name>Hotel 1</name><price>9000</price></document>
[Result 2] = <document><name>Hotel 2</name><price>6000</price></document>
[Result 3] = <document><name>Hotel 3</name><price>7500</price></document>

Appendix C: Sample C Programs

C-10

Obtain All of a Particular XML Document
After completing the ‘Find the Number of XML Documents that Match the Search Conditions’ and
‘Searching Data’ search operations, the next step is to refine the search and obtain all the data
based on a more precise set of conditions.

The following example uses the C APIs to return all the data for one of the hotels whose name was
returned using the ‘Obtain the XML Documents that Match the Search Conditions in a Specified
Format’ search operation.

Search Conditions
Find the names of 30 hotels in Osaka with vacancies on July 18 2004

Perform a search using the date (2004/07/18) and the location (Osaka) as the search conditions,
and then obtain detailed information on a particular hotel using the record identifier corresponding to
that hotel name.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "libshun.h"

#define START_NO 1
#define RECORD_CNT 30
#define SECURE_SIZE 4096

typedef struct record_id{
 char cond_id[COND_CTL_LEN];
 char row_id[ROW_ID_LEN];
} record_id_t;

int main() {

 /*** Declaration of work variables ***/
 int i;
 int sts;
 int sts2;
 char *wkData;

 /*** Variable declaration for input parameters ***/
 char hostname[24];
 int StartNo = START_NO;
 int RecordCnt = RECORD_CNT;
 int Secure_Size = SECURE_SIZE;

 /*** Variable declaration for output parameters (shunsearch2) ***/
 int Hit_Cnt;
 int Return_Cnt;
 int Stored_Size;
 Sdsma *Dsma;
 char *Data;
 record_id_t *record_area = NULL;

 /*** Variable declaration for output parameters (shunsearch3) ***/
 int Hit_Cnt2;
 int Return_Cnt2;

Searching Data

C-11

 int Stored_Size2;
 Sdsma *Dsma3;
 char *Data3;
 record_id_t *record_area3 = NULL;
 char **row_id_area = NULL;
 char **cond_id_area = NULL;

 /*** Initialize input parameters ***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 sts = 0;
 Hit_Cnt = 0;
 Return_Cnt = 0;
 Stored_Size = 0;

 /*** Allocate memory for output parameter response data ***/
 /* Allocate the area for response data */
 record_area = (record_id_t *)malloc(RecordCnt * sizeof(record_id_t));
 memset(record_area, 0x00, RecordCnt * sizeof(record_id_t));

 Dsma = (Sdsma *)malloc(RecordCnt * sizeof(Sdsma));
 memset(Dsma, 0x00, RecordCnt * sizeof(Sdsma));

 for (i = 0; i < RecordCnt; i++) {
 Dsma[i].Rec_Ctl = (char *)&(record_area[i].cond_id);
 Dsma[i].Rec_ID = (char *)&(record_area[i].row_id);
 }

 Data = (char *)malloc(Secure_Size);
 memset(Data, 0x00, Secure_Size);

 /*** Call the API (the shunsearch2 function)***/
 sts = shunsearch2(hostname,
 33101,
 StartNo,
 RecordCnt,
 "/document/base/prefecture == 'Osaka' "
 "AND /document/information/date == '2004/07/18'",
 "/document/base/name, /document/base/price",
 NULL,
 NULL,
 Secure_Size,
 &Hit_Cnt,
 &Return_Cnt,
 &Stored_Size,
 Dsma,
 Data);

 /*** Export output parameters ***/
 if (sts != 0) {
 printf("Error code(shunsearch2) :%d\n", sts);
 printf("Size of the area for returned data(shunsearch2) :%d\n",
Stored_Size);
 goto skip_search3;
 }

 printf("Number of hits(shunsearch2) = %d\n", Hit_Cnt);
 printf("Number of responses(shunsearch2) = %d\n", Return_Cnt);

Appendix C: Sample C Programs

C-12

 if (Return_Cnt == 0) {
 printf("There were no responses\n");
 goto skip_search3;
 }

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 sts2 = 0;
 Hit_Cnt2 = 0;
 Return_Cnt2 = 0;
 Stored_Size2 = 0;

 row_id_area = (char **)malloc(Return_Cnt * sizeof(char *));

 memset(row_id_area, 0x00, Return_Cnt * sizeof(char *));
 for (i = 0; i < Return_Cnt; i++) {
 row_id_area[i] = (char *)&(record_area[i].row_id);
 }

 cond_id_area = (char **)malloc(Return_Cnt * sizeof(char *));

 memset(cond_id_area, 0x00, Return_Cnt * sizeof(char *));
 for (i = 0; i < Return_Cnt; i++) {
 cond_id_area[i] = (char *)&(record_area[i].cond_id);
 }

 /* Allocate a return area for the record identifier (ROW_ID) for the
reply data
 */
 /* Allocate an area equal to (the number of items to return per
request) x sizeof(record_id_t) */
 record_area3 = (record_id_t *)malloc(Return_Cnt *
sizeof(record_id_t));
 memset(record_area3, 0x00, Return_Cnt * sizeof(record_id_t));

 /* Allocate an area for the management array that stores reply data */
 /* Allocate an area equal to (the number of items to return per
request) x sizeof(Dsma) */
 Dsma3 = (Sdsma *)malloc(Return_Cnt * sizeof(Sdsma));
 memset(Dsma3, 0x00, Return_Cnt * sizeof(Sdsma));

 for (i = 0; i < Return_Cnt; i++) {
 Dsma3[i].Rec_Ctl = (char *)&(record_area3[i].cond_id);
 Dsma3[i].Rec_ID = (char *)&(record_area3[i].row_id);
 }

 Data3 = (char *)malloc(Secure_Size);
 memset(Data3, 0x00, Secure_Size);

 /*** Call the API (the shunsearch3 function) ***/
 sts2 = shunsearch3(hostname,
 33101,
 Return_Cnt,
 cond_id_area,
 row_id_area,
 NULL,
 Secure_Size,
 &Hit_Cnt2,
 &Return_Cnt2,
 &Stored_Size2,
 Dsma3,

Searching Data

C-13

 Data3);

 /*** Export output parameters ***/
 if (sts2 == 0) {
 printf("Number of hits(shunsearch3) = %d\n", Hit_Cnt2);
 printf("Number of responses(shunsearch3) = %d\n", Return_Cnt2);

 if (Return_Cnt2 > 0) {
 for (i = 0; i < Return_Cnt2; i++){
 wkData = (char *)malloc(Dsma3[i].Rtn_Len + 1);
 memset(wkData, 0x00, Dsma3[i].Rtn_Len + 1);
 if (Dsma3[i].Rtn_Len != 0) {
 memcpy(wkData,
 Dsma3[i].Rec_Ptr,
 Dsma3[i].Rtn_Len);
 }
 printf("[Details]No. %d = %s\n", i+1, wkData);
 free(wkData);
 }
 }
 } else {
 printf("Error code(shunsearch3) :%d\n", sts2);
 printf("Size of the area for returned data(shunsearch3) :%d\n",
Stored_Size2);
 }

 /*** Release memory for the output parameters ***/

 /* Release the area for response data for shunsearch3*/
 free(cond_id_area);
 free(row_id_area);
 free(record_area3);
 free(Dsma3);
 free(Data3);
 sts = sts2;

 skip_search3:
 /* Release the area for response data for shunsearch2*/
 free(record_area);
 free(Dsma);
 free(Data);

 if (sts == 0) return 0;
 else return 1;
}

Execution Results

Number of hits(shunsearch2) = 3
Number of responses(shunsearch2) = 3
Number of hits(shunsearch3) = 3
Number of responses(shunsearch3) = 3
[Details]No. 1 = <document>
 <base>
 <name>Hotel 1</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>9000</price>
 </base>

Appendix C: Sample C Programs

C-14

 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, two minutes walk to train station
XX</note>
</document>
[Detail]No. 2 = <document>
 <base>
 <name>Hotel 2</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>6000</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, five minutes walk to train station
XX</note>
</document>
[Detail]No. 3 = <document>
 <base>
 <name>Hotel 3</name>
 <prefecture>Osaka</prefecture>
 <address>Chuo-ku Osaka</address>
 <detail>http://xxxxx.co.jp</detail>
 <price>7500</price>
 </base>
 <information>
 <date>2004/07/18</date>
 </information>
 <note>En-suite bathroom and toilet, ten minutes walk to train station
XX</note>
</document>

Searching Data

C-15

Find XML Documents that Match the Search Conditions and
Obtain the Documents after They are Sorted

When performing a search, it is sometimes desirable to obtain the search results after they have
been sorted according to a specific element.

The following example specifies the date and location as search conditions and obtains the number
of hotels that match the conditions, as well as partial information.

It shows how the C APIs are used to obtain the results after they have been sorted according to the
accommodation rate.

Search Conditions
‘I would like to know 30 hotels in Osaka that are available on 18 July 2004, and I want to sort the
results in a descending order according to the accommodation rate.’

Specify the date (2004/07/18) and the location (Osaka) as search conditions and execute the search.
Then, obtain the top 30 hotel names after they have been sorted in descending order according to
the accommodation rate.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "libshun.h"

#define START_NO 1
#define RECORD_CNT 30
#define SECURE_SIZE 4096

int main() {

 /*** Declaration of work variables ***/
 int i;
 int sts;
 char *wkData;

 /*** Variable declaration for input parameters ***/
 char hostname[24];
 int StartNo = START_NO;
 int RecordCnt = RECORD_CNT;
 int Secure_Size = SECURE_SIZE;

 /*** Variable declaration for output parameters ***/
 int Hit_Cnt;
 int Return_Cnt;
 int Available_Cnt;
 int Stored_Size;
 Sdsma *Dsma;
 char *Data;

 /*** Initialize input parameters ***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

Appendix C: Sample C Programs

C-16

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 Hit_Cnt = 0;
 Return_Cnt = 0;
 Available_Cnt = 0;
 Stored_Size = 0;

 /*** Allocate memory for output parameter response data ***/
 /* Allocate the area for response data */
 Dsma = (Sdsma*)malloc(sizeof(Sdsma) * RecordCnt);
 memset(Dsma,0,sizeof(Sdsma) * RecordCnt);
 for (i = 0; i < RecordCnt; i++) {
 Dsma[i].Rec_Ctl = (char*)malloc(COND_CTL_LEN);
 Dsma[i].Rec_ID = (char*)malloc(ROW_ID_LEN);
 memset(Dsma[i].Rec_Ctl, 0, COND_CTL_LEN);
 memset(Dsma[i].Rec_ID, 0, ROW_ID_LEN);
 Dsma[i].Rec_Ptr = 0;
 Dsma[i].Rtn_Len = 0;
 }
 Data = (char*)malloc(sizeof(char) * Secure_Size);
 memset(Data, 0, sizeof(char) * Secure_Size);

 /*** Call the API (the shunsort function) ***/
 sts = shunsort(hostname,
 33101,
 StartNo,
 RecordCnt,
 "/document/base/prefecture == 'Osaka' "
 "AND /document/information/date == '2004/07/18'",
 "/document/base/name, /document/base/price",
 "/document/base/price/text() DESC",
 Secure_Size,
 &Hit_Cnt,
 &Return_Cnt,
 &Available_Cnt,

 &Stored_Size,
 Dsma,
 Data);

 /*** Export output parameters ***/
 if (sts == 0) {
 printf("Number of hits = %d\n", Hit_Cnt);

 if (Hit_Cnt != 0) {
 for (i = 0; i < Return_Cnt; i++) {
 if (Dsma[i].Rtn_Len != 0) {
 wkData = (char*)malloc(Dsma[i].Rtn_Len + 1);
 memset(wkData, 0, Dsma[i].Rtn_Len + 1);
 memcpy(wkData, Dsma[i].Rec_Ptr, Dsma[i].Rtn_Len);
 printf("[Result]No. %d = %s\n", StartNo+i, wkData);
 free(wkData);
 } else {
 printf("[Result]No. %d = No data", StartNo+i);
 }
 }
 }
 } else {
 printf("Error code :%d\n", sts);
 printf("Size of the area for returned data :%d\n", Stored_Size);
 }

Searching Data

C-17

 /*** Release memory for the output parameters ***/
 for (i = 0; i < RecordCnt; i++) {
 free(Dsma[i].Rec_Ctl);
 free(Dsma[i].Rec_ID);
 }
 free(Dsma);
 free(Data);

 if (sts == 0) return 0;
 else return 1;
}

Execution Results

Number of hits = 3
[Result 1] = <document><name>Hotel 1</name><price>9000</price></document>
[Result 2] = <document><name>Hotel 3</name><price>7500</price></document>
[Result 3] = <document><name>Hotel 2</name><price>6000</price></document>

Appendix C: Sample C Programs

C-18

Find XML Documents that Match the Search Conditions and
Obtain the Documents after Their Contents are Aggregated

When performing a search, it is sometimes desirable to obtain the search results after the value of a
specific element has been aggregated.

The following example shows how to use the C APIs when obtaining the number of hotels that meet
the date and location specified in the search conditional expression, as well as the cheapest hotel,
the most expensive hotel, and the average hotel rate.

Search Conditions
‘Of the hotels that are available on 18 July 2004, I would like to know the cheapest hotel, the most
expensive hotel, and the average hotel rate for each area.’

Specify the date (2004/07/18) as a search condition and perform a search.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "libshun.h"

#define START_NO 1
#define RECORD_CNT 30
#define SECURE_SIZE 4096

int main() {

 /*** Declaration of work variables ***/
 int i, j, k;
 int sts;
 char *wkData;

 /*** Variable declaration for input parameters ***/
 char hostname[24];
 int StartNo = START_NO;
 int RecordCnt = RECORD_CNT;
 int Secure_Size = SECURE_SIZE;

 /*** Variable declaration for output parameters ***/
 int Hit_Cnt;
 int Return_Cnt;
 int Available_Cnt;
 int Stored_Size;
 Sdsma *Dsma;
 char *Data;

 /*** Initialize input parameters ***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 Hit_Cnt = 0;
 Return_Cnt = 0;

Searching Data

C-19

 Available_Cnt = 0;
 Stored_Size = 0;

 /*** Allocate memory for output parameter response data ***/
 /* Allocate the area for response data */
 Dsma = (Sdsma*)malloc(sizeof(Sdsma) * RecordCnt);
 memset(Dsma,0,sizeof(Sdsma) * RecordCnt);
 for (i = 0; i < RecordCnt; i++) {
 Dsma[i].Rec_Ctl = (char*)malloc(COND_CTL_LEN);
 Dsma[i].Rec_ID = (char*)malloc(ROW_ID_LEN);
 memset(Dsma[i].Rec_Ctl, 0, COND_CTL_LEN);
 memset(Dsma[i].Rec_ID, 0, ROW_ID_LEN);
 Dsma[i].Rec_Ptr = 0;
 Dsma[i].Rtn_Len = 0;
 }
 Data = (char*)malloc(sizeof(char) * Secure_Size);
 memset(Data, 0, sizeof(char) * Secure_Size);

 /*** Call the API (the shunsort function) ***/
 sts = shunsort(hostname,
 33101,
 StartNo,
 RecordCnt,
 "/document/information/date == '2004/07/18'",
 "/document/base/prefecture/text(),"
 "count(/document/base/prefecture/text()),"
 "max(/document/base/price/text()),"
 "min(/document/base/price/text()),"
 "avg(/document/base/price/text())",
 "/document/base/prefecture/text()",
 Secure_Size,
 &Hit_Cnt,
 &Return_Cnt,
 &Available_Cnt,
 &Stored_Size,
 Dsma,
 Data);

 /*** Export output parameters ***/
 if (sts == 0) {
 printf("Number of hits = %d\n", Hit_Cnt);

 if (Hit_Cnt != 0) {
 for (i = 0; i < Return_Cnt; i++) {
 if (Dsma[i].Rtn_Len != 0) {
 wkData = (char*)malloc(Dsma[i].Rtn_Len + 1);
 memset(wkData, 0, Dsma[i].Rtn_Len + 1);
 printf("[Result]No. %d =", StartNo+i);
 for (j = 0, k = 0; j < Dsma[i].Rtn_Len; j++) {
 if (Dsma[i].Rec_Ptr[j] != '\001' &&
 Dsma[i].Rec_Ptr[j] != '\002') {
 wkData[k] = Dsma[i].Rec_Ptr[j];
 k++;
 } else {
 printf(" %s", wkData);
 memset(wkData, 0, Dsma[i].Rtn_Len + 1);
 k = 0;
 }
 }
 if (k > 0) {
 printf(" %s", wkData);
 }

Appendix C: Sample C Programs

C-20

 printf("\n");
 free(wkData);

 } else {
 printf("[Result]No. %d = No data", StartNo+i);
 }
 }
 }
 } else {
 printf("Error code :%d\n", sts);
 printf("Size of the area for returned data :%d\n", Stored_Size);
 }

 /*** Release memory for the output parameters ***/
 for (i = 0; i < RecordCnt; i++) {
 free(Dsma[i].Rec_Ctl);
 free(Dsma[i].Rec_ID);
 }
 free(Dsma);
 free(Data);

 if (sts == 0) return 0;
 else return 1;
}

Execution Results

Number of hits = 6
[Result 1] = Kanagawa 3 8000 6000 7000
[Result 2] = Osaka 3 9000 6000 7500

Updating Data

C-21

Updating Data
The C APIs provided by Shunsaku are used to update data.

The C APIs enable the following operations to be performed:

• Adding Data

• Deleting Data

Refer to C API Reference for details on C APIs.

In this section, the ‘hotel reservation status search’ sample document provided in Searching Data
will be used to explain the update procedure.

Refer to Notes on XML Documents in Appendix F for details on XML documents.

Adding Data
The following example shows how the C APIs are used to add data.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "libshun.h"

#define ADDDATA_CNT 1
#define ADDDATA_LEN 1024

int main() {

 /*** Declaration of work variables ***/
 int i;
 int sts;

 /*** Variable declaration for input parameters ***/
 char hostname[24];
 int DataArray_Cnt = ADDDATA_CNT;
 char **DataArray;

 /*** Initialize input parameters ***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

 /*** Allocate memory for input parameters and additional record data
***/
 /* Allocate the area for additional record data */
 DataArray = (char**)malloc(sizeof(char *) * DataArray_Cnt);
 memset(DataArray,0,sizeof(char *) * DataArray_Cnt);
 for (i = 0; i < DataArray_Cnt; i++) {
 DataArray[i] = (char *)malloc(ADDDATA_LEN);
 memset(DataArray[i], 0, ADDDATA_LEN);
 strcpy(DataArray[i],

Appendix C: Sample C Programs

C-22

 "<document>"
 " <base>"
 " <name>Hotel 9</name>"
 " <prefecture>Kanagawa</prefecture>"
 " <address>Kanagawa-ku Yokohama-shi
Kanagawa</address>"
 " <detail>http://xxxxx.co.jp</detail>"
 " <price>6000</price>"
 " </base>"
 " <information>"
 " <date>2004/07/18</date>"
 " </information>"
 "<note>En-suite bathroom and toilet, five minutes walk to
train station XX</note>"
 "</document>");
 }

 /*** Call the API (the shunadd function) ***/
 sts = shunadd(hostname,
 33101,
 DataArray_Cnt,
 DataArray);

 if (sts != 0) {
 printf("Error code :%d\n", sts);
 } else {
 printf("Addition successful\n");
 }

 for (i = 0; i < DataArray_Cnt; i++) {
 free(DataArray[i]);
 }
 free(DataArray);

 if (sts == 0) return 0;
 else return 1;
}

Execution Results

Addition successful

Updating Data

C-23

Deleting Data
The following example shows how the C APIs are used to delete data.

Search Conditions for Data to Delete
‘I would like to delete the data for hotels in Osaka that are available on 18 July 2004.’

Perform a search using the date (2004/07/18) and the location (Osaka) as search conditions, and
then delete the data of up to 30 of the hotels that are found.

Example Using the C APIs
The following is a sample program using the C APIs.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "libshun.h"

#define START_NO 1
#define RECORD_CNT 30
#define SECURE_SIZE 4096

typedef struct record_id{
 char cond_id[COND_CTL_LEN];
 char row_id[ROW_ID_LEN];
} record_id_t;

int main() {

 /*** Declaration of work variables ***/
 int i;
 int sts;
 int sts2;

 /*** Variable declaration for input parameters ***/
 char hostname[24];
 int StartNo = START_NO;
 int RecordCnt = RECORD_CNT;
 int Secure_Size = SECURE_SIZE;

 /*** Variable declaration for output parameters (shunsearch2) ***/
 int Hit_Cnt;
 int Return_Cnt;
 int Stored_Size;
 Sdsma *Dsma;
 char *Data;
 record_id_t *record_area = NULL;

 /*** Variable declaration for output parameters (shundeletebyrecid)
***/
 char **row_id_area = NULL;
 char **cond_id_area = NULL;

 /*** Initialize input parameters ***/
 /* Clear input parameters */
 memset(hostname, 0, sizeof hostname);
 strcpy(hostname, "DServer");

 /*** Initialize output parameters ***/

Appendix C: Sample C Programs

C-24

 /* Clear output parameters */
 sts = 0;
 Hit_Cnt = 0;
 Return_Cnt = 0;
 Stored_Size = 0;

 /*** Allocate memory for output parameter response data***/
 /* Allocate the area for response data */
 record_area = (record_id_t *)malloc(RecordCnt * sizeof(record_id_t));
 memset(record_area, 0x00, RecordCnt * sizeof(record_id_t));

 Dsma = (Sdsma *)malloc(RecordCnt * sizeof(Sdsma));
 memset(Dsma, 0x00, RecordCnt * sizeof(Sdsma));

 for (i = 0; i < RecordCnt; i++) {
 Dsma[i].Rec_Ctl = record_area[i].cond_id;
 Dsma[i].Rec_ID = record_area[i].row_id;
 }

 Data = (char *)malloc(Secure_Size);
 memset(Data, 0x00, Secure_Size);

 /*** Call the API (the shunsearch2 function)***/
 sts = shunsearch2(hostname,
 33101,
 StartNo,
 RecordCnt,
 "/document/base/prefecture == 'Kanagawa' "
 "AND /document/information/date == '2004/07/18' "
 "AND /document/base/name == 'Hotel 9'",
 "/document/base/name, /document/base/price",
 NULL,
 NULL,
 Secure_Size,
 &Hit_Cnt,
 &Return_Cnt,
 &Stored_Size,
 Dsma,
 Data);

 /*** Export output parameters ***/
 if (sts != 0) {
 printf("Error code(shunsearch2) :%d\n", sts);
 printf("Size of the area for returned data(shunsearch2) :%d\n",
Stored_Size);
 goto skip_delete;
 }

 printf("Number of hits(shunsearch2) = %d\n", Hit_Cnt);
 printf("Number of responses(shunsearch2) = %d\n", Return_Cnt);

 if (Return_Cnt == 0) {
 printf("There were no responses\n");
 goto skip_delete;
 }

 /*** Initialize output parameters ***/
 /* Clear output parameters */
 sts2 = 0;

 row_id_area = (char **)malloc(Return_Cnt * sizeof(char *));

Updating Data

C-25

 memset(row_id_area, 0x00, Return_Cnt * sizeof(char *));
 for (i = 0; i < Return_Cnt; i++) {
 row_id_area[i] = record_area[i].row_id;
 }

 cond_id_area = (char **)malloc(Return_Cnt * sizeof(char *));

 memset(cond_id_area, 0x00, Return_Cnt * sizeof(char *));
 for (i = 0; i < Return_Cnt; i++) {
 cond_id_area[i] = record_area[i].cond_id;
 }

 /*** Call the API (the shundeletebyrecid function) ***/
 sts2 = shundeletebyrecid(hostname,
 33101,
 Return_Cnt,
 cond_id_area,
 row_id_area);

 if (sts2 != 0) {
 printf("Error code(shundeletebyrecid) :%d\n", sts2);
 } else {
 printf("Deletion successful\n");
 }

 /*** Release memory for the output parameters ***/
 /* Release the area for response data for shunsearch2*/
 free(cond_id_area);
 free(row_id_area);
 sts = sts2;

 skip_delete:
 free(Data);
 free(Dsma);
 free(record_area);

 if (sts == 0) return 0;
 else return 1;
}

Execution Results

Number of hits(shunsearch2) = 1
Number of responses(shunsearch2) = 1
Deletion successful

Appendix C: Sample C Programs

C-26

D-1

Appendix D

Allowable Values

This appendix explains the allowable values associated with developing Shunsaku applications.

• Search Expressions and Return Expressions

• Sort Requests

• Aggregation Requests

Appendix D: Allowable Values

D-2

Search Expressions and Return Expressions
The following table lists the allowable values associated with search expressions and return
expressions.

Table D-1 Allowable Values for Search Expressions and Return Expressions
Item Allowable value
Length of search expression From 1 to 65, 535 bytes (excluding \0)
Length of return expression From 1 to 65, 535 bytes (excluding \0)

Sort Requests

D-3

Sort Requests
The following table lists the allowable values associated with sort requests.

Table D-2 Allowable Values for Sort Requests
Item Allowable value Remarks
Maximum number of
keys that can be
specified

8

Sort expression From 1 to 65, 535
bytes (excluding
\0)

Total sort key length 1 to 2,000 bytes The total sort key length is the combined length of
all the sort keys in key specifications.
Refer to Relationship between the Total Sort Key
Length and the Maximum Number of Items that
Can be Returned for more information on how the
total sort key length affects the number of items
that can be returned.

Number of
characters when the
rlen function is
specified in key
specifications

1 to 128 Refer to Table D-4, Character Encoding and the
Byte Length of Each Character of the Character
String Produced by the rlen Function, for the length
of the character string produced by the rlen
function.

Number of items that
can be returned

100 to 1,000
records

When the total length of sort keys is 200 bytes or
less, the records corresponding to the top 1,000
items can be returned.
When the total length of sort keys exceeds 200
bytes, the number of records that can be returned
is indicated in Relationship between the Total Sort
Key Length and the Maximum Number of Items
that Can be Returned.

Appendix D: Allowable Values

D-4

Relationship between the Total Sort Key Length and the
Maximum Number of Items that Can be Returned

The total sort key length is equal to the total combined length of all sort keys used in key
specifications. The sort key length differs according to the key specification format, as shown below.

Table D-3 Relationship between the Total Sort Key Length and the Maximum Number of
Items that Can be Returned

Key specification
format

Sort key length Remarks

val function 16 bytes
Text expression 20 bytes Data is sorted by using the first 20 bytes of data as

a key. If a character string exceeding 20 bytes is
used to sort data, specify the rlen function in key
specifications in the sort expression. Doing so
enables a string of up to 128 characters to be used
as a sort key.

rlen function Refer to Table D-4,
Character
Encoding and the
Byte Length of
Each Character of
the Character
String Produced by
the rlen Function,
for the length of
the character
string produced by
the rlen function.

The character encoding of the director data determines the byte length of each character of the
character string produced by the rlen function, as shown below.

Table D-4 Character Encoding and the Byte Length of Each Character of the Character String
Produced by the rlen Function

Character encoding Bytes per character Example
UTF-8 4 bytes rlen(/root/name/text(),50) would be treated as 200

bytes.
Shift-JIS 2 bytes rlen(/root/name/text(),50) would be treated as 100

bytes.
EUC 3 bytes rlen(/root/name/text(),50) would be treated as 150

bytes.

Sort Requests

D-5

The following table shows how the total sort key length affects the number of records that Shunsaku
can return.

Table D-5 Relationship between the Total Sort Key Length and the Maximum Items Returned
Total Sort Key Length (bytes) Maximum Items Returned
1 to 200 1,000
201 to 300 700
301 to 400 500
401 to 500 400
501 to 700 300
701 to 1,000 200
1,001 to 2,000 100

Appendix D: Allowable Values

D-6

Aggregation Requests
The following table lists the allowable values associated with aggregation requests.

Table D-6 Allowable Values for Aggregation Requests
Item Allowable value Remarks
Maximum number of
keys that can be
specified

8

Sort expression From 1 to 65, 535
bytes (excluding
\0)

Total group key
length

1 to 2,000 bytes The total group key length is the total combined
length of all the group keys in key specifications.
Refer to Table D-9, Relationship between the
Group Key Length and the Maximum Number of
Items that Can be Returned, for more information
on the total length of all the group keys in key
specifications.

Number of
characters when the
rlen function is
specified in key
specifications

1 to 128 Refer to Table D-4, Character Encoding and the
Byte Length of Each Character of the Character
String Produced by the rlen Function, for the length
of the character string produced by the rlen
function.

Number of items that
can be returned

100 to 1,000
records

When the total length of group keys is 200 bytes or
less, the records corresponding to the top 1,000
items can be returned.
When the total length of group keys exceeds 200
bytes, the number of groups that can be returned is
indicated in Table D-9, Relationship between the
Group Key Length and the Maximum Number of
Items that Can be Returned.

Aggregation Requests

D-7

Relationship between the Total Group Key Length and the
Maximum Number of Items that Can be Returned

The total group key length is equal to the total combined length of all group keys used in key
specifications. The group key length differs according to the key specification format, as shown
below.

Table D-7 Relationship between the Total Group Key Length and the Maximum Number of
Items that Can be Returned
Key specification
format

Group key length Remarks

val function 16 bytes
Text expression 20 bytes Data is grouped by using the first 20 bytes of data

as a key. If a character string exceeding 20 bytes is
used to group data, specify the rlen function in key
specifications in the sort expression. Doing so
enables a string of up to 128 characters to be used
as a group key.

rlen function Refer to Table D-4,
Character
Encoding and the
Byte Length of
Each Character of
the Character
String Produced by
the rlen Function,
for the length of
the character
string produced by
the rlen function.

The character encoding of the director data determines the byte length of each character of the
character string produced by the rlen function, as shown below.

Table D-8 Encoding and the Byte Length of Each Character of the Character String Produced
by the rlen Function

Character Encoding Bytes per character Example
UTF-8 4 bytes rlen(/root/name/text(),50) would be treated as 200

bytes.
Shift-JIS 2 bytes rlen(/root/name/text(),50) would be treated as 100

bytes.
EUC 3 bytes rlen(/root/name/text(),50) would be treated as 150

bytes.

Appendix D: Allowable Values

D-8

The following table shows how the total group key length affects the number of groups that
Shunsaku can return.

Table D-9 Relationship between the Group Key Length and the Maximum Number of Items
that Can be Returned

Total Group Key Length (bytes) Maximum Groups Returned
1 to 200 1,000
201 to 300 700
301 to 400 500
401 to 500 400
501 to 700 300
701 to 1,000 200
1,001 to 2,000 100

E-1

Appendix E

Estimating Resources

This appendix explains how to estimate resources when using an application to add, delete or
search for data. Use to obtain an approximate estimate of the amount of memory used by the
Shunsaku APIs when the application runs

• Local Memory Requirements for Java APIs

• Local Memory Requirements for C APIs

Appendix E: Estimating Resources

E-2

Local Memory Requirements for Java APIs
Java APIs use a memory area known as the heap, which is managed entirely by the JavaVM. The
default size of the heap is 64 MB. To change the size of the heap, execute java with the ‘-Xmx’
option specified as below.

Example
To set the maximum size of the heap area to 128 MB:

java –Xmx128m name of class to be executed

Notes

• Specify the ‘-verbose:gc’ option with the java command.

Refer to SDK Tool in the Java 2 SDK, Standard Edition Document for more information on the
java command.

• Use the jheap command accompanied with Interstage Application Server V6.0L10 or later.

Refer to the Software Release Note - Java heap monitoring tool (jheap) accompanied with
Interstage Application Server V6.0L10 or later for more information on jheap.

Local Memory Requirements for C APIs

5-3

Local Memory Requirements for C APIs
The formula for estimating local memory is shown below.

Definition unit Variable elements Size (bytes)
Send/Receive area Standard record size

The number of APIs
executed concurrently

Standard record size × the number of APIs
executed concurrently

Example
An example calculation for local memory used by APIs is shown below.

If the variable elements are as follows:

• The standard record size: 4,000 bytes

• The number of APIs executed concurrently: 100

4,000 × 100 = 400,000(approx. 400 KB)

Note

• Local memory allocated by applications is required in addition to the above.

Appendix E: Estimating Resources

E-4

F-1

Appendix F

Notes on XML Documents

This appendix provides notes on the following for XML documents in Shunsaku:

• XML Document Format

• XML Documents in Text Files

• Notes on XML Format

Appendix F: Notes on XML Documents

F-2

XML Document Format
XML documents in Shunsaku must be well-formed.

It is also possible to store only the XML document body text, without the XML declarations, DTDs,
etc.

XML Documents in Text Files

F-3

XML Documents in Text Files
Multiple XML documents can be imported directly to Shunsaku from text files. This can be done in a
single operation if all of the XML documents are stored sequentially in a single file.

Shunsaku stores multiple XML documents in a single file with each separated as one record (or one
document unit).

Note

• Any character strings or symbols following the root end tag for a document are treated as the
next XML document.

Document A
<!-- Starting A -->
<A>
 aaam

<!-- End A -->

Document B
<!-- Starting B -->
<A>
 <C>aaam</C>

<!-- End B -->

If the two documents above are stored as a single file and then imported, the root end tag ’’ will
be treated as the end of document A. When the entire document B is retrieved, it will contain the
text ’<!-- End A -->’ from document A.

Retrieved Document A
<!-- Starting A -->
<A>
 aaam

Retrieved Document B
<!-- End A -->
<!-- Starting B -->
<A>
 <C>aaam</C>

Appendix F: Notes on XML Documents

F-4

Notes on XML Format
The following notes apply to the XML format of XML documents stored in Shunsaku:

• Preliminary sections such as XML declarations and DTDs cannot be specified as search targets.

• The values of attributes or namespaces cannot be specified as search targets.

• Shunsaku does not check the syntax of XML documents, so it is necessary to ensure that
syntactically correct XML documents are specified.

Glossary

Application server
A server where the applications used to operate Shunsaku are located.

When the Shunsaku APIs are installed, applications can use the APIs to utilize the search and
update functions of Shunsaku.

attributeRule
A tag that defines attributes in the data in XML format. This is defined in a mapping rule file.

columnRule
A tag that defines items in the data in XML format. This is defined in a mapping rule file.

Conductor
A module that receives and responds to search requests.

Conductor control information
Information that is used together with record identifiers to uniquely identify records stored in
Shunsaku.

Conductor environment file
A file that defines the application environment used to operate a conductor.

Conductor identifier
A name used to identify the application environment for each conductor.

Conductor log file
A file used to maintain the application log of a conductor.

Connection
Connection between the application and Shunsaku.

Glossary-1

Glossary

Default mapping rule
Mapping rules that are used when no mapping rules are specified.

Degradation
A function that enables search and update processing to continue by redistributing search data from
searchers when abnormalities occur to the remaining searchers.

Director
A module that receives and responds to search requests.

Director data
Data that has been converted from data in XML format to a format that can be managed within
Shunsaku.

Director data file
A general term used to refer collectively to both director data management files and director data
storage files.

Director data management file
A general term for files used to manage director data storage files.

Director data management files and director data storage files are referred to collectively as “director
data files”.

Director data storage file
A general term for files used to store director data.

Director data storage files and director data management files are referred to collectively as “director
data files”.

Director environment file
A file that defines the application environment used to operate a director.

Director identifier
A name used to identify the application environment for each director.

Director log file
A file used to maintain the application log of a director.

Director server
A server where a conductor, directors and a sorter are located. It functions as a window for receiving
search and update requests from applications.

documentFountain
An interface for obtaining data in XML format.

documentRule
A tag that defines an XML declaration in the data in XML format. this is defined in a mapping rule file.

DOM (Document Object Model)
A specification that defines an object model and a platform-independent and language-independent
interface for data in XML format. This converts data in XML format into a tree structure.

Glossary-2

Glossary

Escape character
The escape character ’\’ is placed in front of the following characters in order to specify them as part
of the search string:

Charater Description
. full stop
\ forward slash
“ double quote
‘ single quote

extensionRule
A tag that defines additional information in the data in XML format. This is defined in a mapping rule
file.

Filter
A portion of a search expression that specifies certain conditions to retrieve the desired XML data
elements.

Fragmentation
Refers to file fragmentation.

Fragmentation refers to the state in which data that should exist as a single block exists as separate
fragments.

Shunsaku eliminates fragmentation by optimizing director data files.

Fragmentation rate
Refers to the degree of file fragmentation.

In Shunsaku, the fragmentation rate is determined by the number of stored records, the number of
deleted records and the number of updated records in director data files.

A high fragmentation rate means a large amount of wasted disk space.

Grouping
The priority of search processes can be determined by using parentheses “()” in the search
expression.

JDBC (Java Database Connectivity)
APIs for accessing relational databases from Java programs.

JDBC driver
A driver for accessing databases via JDBC.

Local memory
The memory area used by a process.

Mapping rule
A rule that defines the correspondence between the input data and the output data in XML format.

Glossary-3

Glossary

Mapping rule file
A file that stores mapping rules. This file is used as input to the XMLGenerator.

MappingRule
A tag that defines the highest order tag in the data in XML format. This is defined in a mapping rule
file.

Node
Each junction on the tree structure data in XML format. It represents an element or its content.

parentRule
A tag that defines parent elements in the data in XML format. This is defined in a mapping rule file.

Path
A specification used to indicate nodes targeted for retrieval or nodes to which filtering conditions are
to be applied.

Path expression
A specification used to indicate specific nodes or groups of nodes within an XML node tree. It
specifies nodes to which filtering conditions are to be applied.

Record identifier
A unique identifier that can be used to identify each Shunsaku record.

ResultSet
An object for storing the results of an SQL query.

Return expression
An expression that represents the data extraction format for extracting particular elements from data
that meets certain search criteria or for aggregating these elements.

SAX (Simple API for XML)
APIs used when applications use an XML processor to verify and analyze XML documents. Each
line in the XML document is read sequentially starting from the beginning of the document, and the
appropriate processing procedures are called as each element is processed.

Search data
Lookup data distributed from a director to a searcher.

Search data is loaded into the memory of a search server.

Search expression
An expression that represents criteria used to search for XML documents that satisfy specified
conditions.

Search server
A server where a searcher is located.

Searcher
A module that executes searches.

Glossary-4

Glossary

Searcher environment file
A file that defines the application environment used to operate a searcher.

Searcher identifier
A name used to identify the application environments for each searcher.

Searcher log file
A file used to maintain the application log of a searcher.

Shared memory
An area of memory that can be referenced by different processes.

Sort expression
An expression that represents keys for sorting or aggregating search results.

Sorter
A module that sorts or aggregates search results.

Sorter environment file
A file that defines the application environment used to operate a sorter.

Sorter identifier
A name used to identify the application environments for each sorter.

Sorter log file
A file used to maintain the application log of a sorter.

SQL (Structured Query Language)
An international standard structured query language that stipulates the syntax used to access
relational databases.

Well-formed XML document
A document that satisfies the minimum standards needed to conform to the specifications of an XML
document, namely:

• It has only one root element.

• If it has a starting tag, it also has an ending tag.

• Tag nesting is correctly encoded.

XML processor
A program that inputs an XML file and parses it so that it can be processed by an application.

Glossary-5

Glossary

Glossary-6

	Interstage Shunsaku Data Manager�Application Development Guide
	Preface
	Table of Contents
	Chapter 1 Overview
	Performing Data Searches from Applications
	Performing Data Updates from Applications

	Chapter 2 Environment Setup
	API Configuration
	Java APIs
	C APIs

	Setup
	Setting Environment Variables
	Setting Environment Variables (Java APIs)
	Setting Environment Variables (C APIs)

	Chapter 3 Data Search Methods
	Data Search Overview
	Specifying the Search Expression
	Searching with Character Strings
	Searching for Documents that Contain a Search Keyword
	Searching for Documents that Match a Search Keyword Exactly
	Performing a Size Comparison with a Search Keyword

	Searching by Numeric Value
	Searching by Joining Multiple Conditions with Logical Operators

	Sorting Search Results
	Sorting by Character String
	Sorting by Numeric Value
	Sorting with Multiple Keys

	Extracting Search Results
	Extracting Data in XML Format
	Extracting an Entire XML Document
	Extracting Data in XML Format by Specifying an Element Node

	Extracting Data in Text Format

	Extracting Aggregated Results
	Grouping Search Results
	Grouping by Numeric Value
	Grouping by Character String
	Grouping by Multiple Keys

	Aggregating Search Results

	Chapter 4 How to Update Data
	Overview
	Adding Data
	Deleting Data

	Chapter 5 Java Application Development
	Java API Overview
	How to Use Java APIs
	Opening Connections
	Specifying the Host Name and Port Number in a Java Properties Object
	Specifying the Host Name and Port Number Directly

	Searching Data
	Obtaining Search Results According to the Number of Data Items
	Obtaining Search Results While Adding Search Conditions
	Obtaining Entire XML Documents
	Obtaining Sorted Data
	Aggregating the Content of the Data that Matches Search Conditions

	Updating Data
	Adding Data
	Deleting Data

	Closing Connections
	Error Handling

	Character Encoding Used by Java APIs
	Error Codes Output when Java APIs are Used
	Error Codes Output by the Conductor or the Director

	Chapter 6 C Application Development
	C API Overview
	How to Use C APIs
	Searching Data
	Obtaining Search Results According to the Number of Data Items
	Obtaining Search Results while Adding Search Conditions
	Obtaining Entire XML Documents
	Obtaining Sorted Data
	Aggregating the Content of the Data that Matches Search Conditions

	Updating Data
	Adding Data
	Deleting Data

	Character Encoding Used by the C APIs

	Error Codes Output when C APIs are Used

	Appendix A Format of Search, Return and Sort Expressions
	Common Format
	Path Expressions
	Path Element
	Path Operator

	Text Expressions
	Path Expressions
	text()

	Single-Line Function Specification
	The rlen Function
	The val Function

	Search Expressions
	Logical Operators
	Conditional Expressions
	Path Expressions
	Keywords
	Character String
	Ellipses
	Escape Characters
	Entity References
	Numeric Values
	Character String Searches
	Partial Matches
	Complete Matches
	Size Comparison Searches
	Ellipses Searches
	Numeric Value Searches

	Filter Expressions

	Return Expressions
	Format Used when not Aggregating
	Path Expressions
	Text Expressions
	Single-line Function Specification

	Example Return Expressions when not Aggregating
	Return Specification in XML Format
	Text Format Return Specification

	Format Used when Aggregating
	Text Expressions
	Single-line Function Specification
	Aggregation Function Specifications

	Example Return Expressions used when Aggregating

	Sort Expressions
	Sort Expression Format
	Text Expressions
	Single-line Function Specification
	DESC
	Sorting
	Aggregation

	Example Sort Expressions
	Entry Example of Data Sorting
	Entry Example of Data Aggregation

	Appendix B Sample Java Programs
	Searching Data
	Find the Number of XML Documents that Match the Search Conditions
	Obtain the XML Documents that Match the Search Conditions in a Specified Format
	Obtain All of a Particular XML Document
	Find XML Documents that Match the Search Conditions and Obtain the Documents after they are Sorted
	Find XML Documents that Match the Search Conditions and Obtain the Documents after their Contents are Aggregated

	Updating Data
	Adding Data
	Deleting Data

	Appendix C Sample C Programs
	Searching Data
	Find the Number of XML Documents that Match the Search Conditions
	Obtain the XML Documents that Match the Search Conditions in a Specified Format
	Obtain All of a Particular XML Document
	Find XML Documents that Match the Search Conditions and Obtain the Documents after They are Sorted
	Find XML Documents that Match the Search Conditions and Obtain the Documents after Their Contents are Aggregated

	Updating Data
	Adding Data
	Deleting Data

	Appendix D Allowable Values
	Search Expressions and Return Expressions
	Sort Requests
	Relationship between the Total Sort Key Length and the Maximum Number of Items that Can be Returned

	Aggregation Requests
	Relationship between the Total Group Key Length and the Maximum Number of Items that Can be Returned

	Appendix E Estimating Resources
	Local Memory Requirements for Java APIs
	Local Memory Requirements for C APIs

	Appendix F Notes on XML Documents
	XML Document Format
	XML Documents in Text Files
	Notes on XML Format

	Glossary

