The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

All rights reserved, Copyright FUJITSU MICROELECTRONICS LIMITED 2008 - 2009
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Ver.</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008/05/16</td>
<td>1.0</td>
<td>Newly issued</td>
</tr>
<tr>
<td>2008/07/10</td>
<td>1.0a</td>
<td>Added notes to i page</td>
</tr>
<tr>
<td>2009/04/22</td>
<td>1.1</td>
<td>Added description of "Resetting auto refresh interval"</td>
</tr>
</tbody>
</table>
Contents

1. DDR2 controller .. 1

 1.1. Self refresh setting sample at STOP mode ... 1
1. DDR2 controller

1.1. Self refresh setting sample at STOP mode

In MB86R01, DDR2DRAM contents are able to be retained by self refresh command to DDR2SDRAM during STOP mode. Example of self refresh setting is shown below.

As a precondition, access to SDRAM must be stopped (stop of GDC operations)

1. ODTCONT off (ODT of SDRAM)
 Write "0000" to DROS register (Offset + 0x60)

2. Resetting auto refresh interval
 Write '0041' to DRCR register (Offset + 0x0E)
 Write '0141' to DRCR register (Offset + 0x0E)
 Wait is in the range of 166MHz[ns] x 30cycles = 180[ns] to refresh interval (setting value of bit7-0 of DRCR)

3. Issue self refresh entry CMD to SDRAM
 Write '0008' to DRIC1 register (Offset + 0x02)
 Write '0000' to DRIC2 register (Offset + 0x04)
 Write '8001' to DRIC register (Offset + 0x00)

4. IRESET/IUSRRST and IDLLRST on
 Write '00000000' to CDCRC register (Offset + 0xEC) of the CCNT module

5. PLL Bypass mode on
 Write "CX" to CRPR register (Offset + 0x00) of the CRG module
 Do not change PLLMO[3:0] field of CRPR register

6. STOP enable on
 Write "80" to CRSR register (Offset + 0x0C) of the CRG module

7. External interrupt High Level setting
 Write "00000055" to EILVL register (Offset + 0x08) of the EXIRC module

8. External interrupt enable on (case of INT_A[0] ON)
 Write "00000001" to EIENB register (Offset +0x00) of the EXIRC module

9. STOP mode on (Wait for External interrupt)
 MCR p15, 0, R1, c7, c0, 4

As a precondition, IRC module's external interrupt must be set as acceptable

External interrupt High Level?

Y

A

Continue to the next sheet

N
(10) Eliminate external interrupt factor at Interrupt Handler

(11) PLL Bypass mode on
 Write "4X" to CRPR register
 (Offset + 0x00) of the CRG module
 Do not change PLLMODE[3:0] field of CRPR register

(12) PLL Lock up Time Wait

(13) IRESET/IUSRRST release.
 Write "00000002" to CDCRC register
 (Offset + 0xEC) of the CCNT module

(14) 166MHz[ns]) x 20cycles = 120[ns] or more Wait

(15) IDLLRST release
 Write "00000003" to CDCRC register
 (Offset + 0xEC) of the CCNT module

(16) DLL LOCK up time (79[µs]) or more Wait

(17) MCKE on (issue Self Refresh Exit CMD to SDRAM)
 Write "003F" to DRIC1 register (Offset + 0x02)
 Write "0000" to DRIC2 register (Offset + 0x04)
 Write "C000" to DRIC register (Offset + 0x00)

(18) Issue NOP CMD x 3 times to SDRAM
 Write "C001" to DRIC register (Offset + 0x00)
 Write "C001" to DRIC register (Offset + 0x00)
 Write "C001" to DRIC register (Offset + 0x00)

(19) Shift to ODTCONT on (SDRAM side) and DDR2C
 normal operation mode
 Write "0001" to DROS register (Offset + 0x60)
 Write "4000" to DRIC register (Offset + 0x00)

(20) 166MHz ([ns]) x 200 cycles = 1200[ns] or more Wait

Release access stop to SDRAM
(GDC is operable)