MB86297A ‘Carmine’
Timing Analysis of the DDR Interface

© Fujitsu Microelectronics Europe GmbH

History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Version</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.02.2008</td>
<td>Anders Ramdahl</td>
<td>0.01</td>
<td>First draft</td>
</tr>
<tr>
<td>06.02.2008</td>
<td>Anders Ramdahl</td>
<td>0.02</td>
<td>Second draft</td>
</tr>
<tr>
<td>08.02.2008</td>
<td>Anders Ramdahl</td>
<td>0.03</td>
<td>Third draft</td>
</tr>
<tr>
<td>11.02.2008</td>
<td>Anders Ramdahl</td>
<td>1.00</td>
<td>First release</td>
</tr>
</tbody>
</table>
Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH restricts its warranties and its liability for all products delivered free of charge (e.g. software include or header files, application examples, Application Notes, target boards, evaluation boards, engineering samples of IC’s etc.), its performance and any consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. Note, all these products are intended and must only be used in an evaluation laboratory environment.

1. Fujitsu Microelectronics Europe GmbH warrants that the Product will perform substantially in accordance with the accompanying written materials for a period of 90 days from the date of receipt by the customer. Concerning the hardware components of the Product, Fujitsu Microelectronics Europe GmbH warrants that the Product will be free from defects in material and workmanship under use and service as specified in the accompanying written materials for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Microelectronics Europe GmbH’s entire liability and the customer’s exclusive remedy shall be, at Fujitsu Microelectronics Europe GmbH’s sole discretion, either return of the purchase price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu Microelectronics Europe GmbH in original packing and without further defects resulting from the customer’s use or the transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu Microelectronics Europe GmbH, or abuse or misapplication attributable to the customer or any other third party not relating to Fujitsu Microelectronics Europe GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Microelectronics Europe GmbH disclaims all other warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and fitness for a particular purpose for which the Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH’s and its suppliers’ liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Microelectronics Europe GmbH and its suppliers be liable for any damages whatsoever (including but without limitation, consequential and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in full effect.
0 Abstract

This document describes the timing analysis required to ensure proper operation of the DDR interface of the MB86297A 'Carmine' graphics driver from Fujitsu.

1 References

Referenced documents:

Additional information:
CIBIS Fujitsu, MB86297A ‘Carmine’ IBIS Model rev. 1.7
CPDG Fujitsu, MB86297A ‘Carmine’ PCB Design Guideline rev. 1.30, 4 June 2007

All Fujitsu documents listed above are available on the Fujitsu Graphics Solutions website: [http://www.fujitsu.com/emea/services/microelectronics/displaycontrollers/]

2 Definitions

2.1 Naming Conventions

In order to distinguish between the different timing parameters, the following notation is used:

*_DDR DDR SDRAM timing parameter, e.g. t_{DQSCK_DDR}.
The corresponding timing parameter in JESD79E is defined without the suffix.

*_PCB Timing parameter derived from IBIS simulation of PCB, e.g. t_{CK_PCB}
Timing parameters without any of these suffixes are taken from the CHWRM.
Additionally, minimum and maximum ratings are denoted by *_{MIN} and *_{MAX} suffixes.
3 Timing Analysis

3.1 Timing Groups

In order to simplify the timing analysis, the DDR signals have been divided into groups with similar timing characteristics. This allows the timing analysis to be done on the timing groups instead of the individual signals.

Figure 1 shows the timing groups in a simplified circuit diagram. Table 1 lists which signals belong to which timing group.

<table>
<thead>
<tr>
<th>Timing Group</th>
<th>Signals</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK</td>
<td>CK, CKn</td>
<td></td>
</tr>
<tr>
<td>CMD</td>
<td>CKE, RAS, CAS, WE, A, BA0, BA1</td>
<td>A refers to all address signals</td>
</tr>
<tr>
<td>DQS</td>
<td>DQS</td>
<td></td>
</tr>
<tr>
<td>DQ</td>
<td>DQ, DM</td>
<td>DQ and DM refer to all data and data mask signals</td>
</tr>
<tr>
<td>LOOP</td>
<td>LOOP</td>
<td>PCB delay compensation loop of MB86297A. This signal is not part of JESD79E.</td>
</tr>
</tbody>
</table>

Table 1 Timing Groups
3.2 PCB Delays

Due to the high speed nature of the DDR interface, the PCB delays have to be taken into account during the timing analysis. Figure 2 defines the PCB delays used throughout this document.

Since it is normally not possible to measure the PCB delays in actual hardware, these parameters have to be derived from IBIS simulations. This also has the added advantage of allowing the timing to be checked before any PCB is produced.

Since the DQS and DQ groups are bidirectional and the two chips have different pad characteristics, the PCB delays have to be derived for both directions.

Fujitsu provides an IBIS model for the MB86297A. The DDR SDRAM manufacturer should provide IBIS models for their products.

Figure 2 PCB Delays

![Figure 2 PCB Delays Diagram]
3.3 Write Timing

In order to achieve timing closure for write operations, all signals have to arrive at the DDR SDRAM within the specified timing conditions.

Skew introduced by the PCB has to be taken into account. For a well balanced design where all the PCB delays are matched, the PCB skew is negligible compared to the available timing margins. If so, the PCB skew can be disregarded. For clarity, the PCB skews have been written within parentheses in the conditions below.

CMD-CK setup and hold timing:

\[
(1) \quad t_{VD_setup_CMD} - (t_{CMD_PCB} - t_{CK_PCB}) > t_{IS_DDR_MIN}
\]

\[
(2) \quad t_{VD_hold_CMD} + (t_{CMD_PCB} - t_{CK_PCB}) > t_{IH_DDR_MIN}
\]

DQS-CK setup and hold timing:

\[
(3) \quad t_{Skew_DQS_CK_MIN} + (t_{DQS1_PCB} - t_{CK_PCB}) + t_{CK} > t_{DQSS_DDR_MIN}
\]

\[
(4) \quad t_{Skew_DQS_CK_MAX} + (t_{DQS1_PCB} - t_{CK_PCB}) + t_{CK} < t_{DQSS_DDR_MAX}
\]

In the CHWRM, the setup and hold timing is defined as skew between DQS and CK instead of setup and hold timing. In order to translate these parameters into JESD79E conformant ones, a clock period \(t_{CK} \) has to be added, as seen in (3) and (4).

DQ-DQS setup and hold timing:

\[
(5) \quad t_{VD_setup_DQ} - (t_{DQ1_PCB} - t_{DQS1_PCB}) > t_{DS_DDR_MIN}
\]

\[
(6) \quad t_{VD_hold_DQ} + (t_{DQ1_PCB} - t_{DQS1_PCB}) > t_{DH_DDR_MIN}
\]

3.4 Read Timing

In order to achieve timing closure for read operations, all signals have to arrive at the MB86297A 'Carmine' within the specified timing conditions.

DQ-DQS setup and hold timing:

\[
(7) \quad t_{DQSQ_DDR_MAX} + (t_{DQ2_PCB} - t_{DQS2_PCB}) < t_{SETUP_DQ}
\]

\[
(8) \quad t_{DH_DDR_MIN} + (t_{DQ2_PCB} - t_{DQS2_PCB}) > t_{HOLD_DQ}
\]

Due to the definition of \(t_{SETUP_DQ} \) in the CHWRM, the negative value has to be used, as seen in (7).

As for the write timing, the PCB skew of (7) and (8) can be disregarded if the PCB delays of DQ and DQS are well matched. For clarity, the PCB skews have been written within parentheses in the above conditions.
DQS round trip time:

\[
\begin{align*}
\text{MIN DQS RTTPCBDQSMIN DDRDQSCKPCB CK t} & \quad < \quad t_{\text{RTT DQS MIN}} \\
\text{MAX DQS RTTPCBDQSMAX DDRDQSCKPCB CK } t & \quad > \quad t_{\text{RTT DQS MAX}}
\end{align*}
\]

\[
\begin{align*}
\text{LOOP Round Trip Time:} \\
\text{MIN LBCKRTTPCBLOOPMINLBCKRTT} & \quad < \quad t_{\text{RTT LBCK MIN}} \\
\text{MAX LBCKRTTPCBLOOPMINLBCKRTT} & \quad > \quad t_{\text{RTT LBCK MAX}}
\end{align*}
\]

Please note that \(t_{\text{RTT LBCK MIN}}\) has a negative value in the CHWRM. Since the PCB delay is always positive, the left part of (11) is always fulfilled.

Difference between \(\text{LOOP Round Trip Time}\) and \(\text{DQS Round Trip Time}\):

\[
\begin{align*}
\text{(12)} & \quad t_{\text{CK PCB}} + t_{\text{DQSCK_DDR_MIN}} + t_{\text{DQS2_PCIE}} - t_{\text{LOOP_PCIE}} > t_{\text{Skew_LP_CLK MIN}} \\
\text{(13)} & \quad t_{\text{CK PCB}} + t_{\text{DQSCK_DDR_MAX}} + t_{\text{DQS2_PCIE}} - t_{\text{LOOP_PCIE}} < t_{\text{Skew_LP_CLK MAX}}
\end{align*}
\]
Appendix A Tested DDR SDRAMs

Theoretically, the MB86297A 'Carmine' graphics controller should work with any JEDEC-compliant DDR SDRAM.

Table 2 lists DDR SDRAMs that have been successfully tested in hardware together with the MB86297A 'Carmine'.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Size</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung</td>
<td>K4H561638F-UC</td>
<td>16M×16</td>
<td>Used on MB86297A 'Carmine' PCI evaluation board</td>
</tr>
</tbody>
</table>

Table 2 Tested DDR SDRAMs