
The Tofu Interconnect D

Yuichiro Ajima, Takahiro Kawashima, Takayuki Okamoto, Naoyuki
Shida, Kouichi Hirai, Toshiyuki Shimizu

Next Generation Technical Computing Unit
Fujitsu Limited

Kawasaki, Japan
{aji, t-kawashima, tokamoto, shidax, k-hirai,

t.shimizu}@jp.fujitsu.com

Shinya Hiramoto, Yoshiro Ikeda, Takahide Yoshikawa, Kenji Uchida,
Tomohiro Inoue

AI Platform Business Unit
Fujitsu Limited

Kawasaki, Japan
{hiramoto.shinya, ikeda.yoshir-02, yoshikawa.takah, k_uchida,

inoue.tomohiro}@jp.fujitsu.com

Abstract—In this paper, we introduce a new highly
scalable interconnect called Tofu interconnect D that will be used
in the post-K machine. This machine will officially be operational
around 2021. The letter D represents high “density” node and
“dynamic” packet slicing for “dual-rail” transfer. Herein we
describe the design and the evaluation results of TofuD. Due to
the high-density packaging, the optical link ratio of TofuD has
decreased to 25% from the 66% optical link ratio of Tofu2.
TofuD applies a new technique called dynamic packet slicing to
reduce latency and to improve fault resilience. The evaluation
results show that the one-way 8-byte Put latency is 0.49 μs. This
is 31% lower than the latency of Tofu2. The injection rate per
node is 38.1 GB/s which is approximately 83% of the injection
rate of Tofu2. The link efficiency is as high as approximately
93%.

Keywords— high-performance computing, interconnect, high-
density packaging, fault resilience

I. INTRODUCTION

The Tofu interconnect family is a group of system
interconnects for highly scalable HPC systems developed by
Fujitsu. The Tofu Interconnect D (TofuD) is a new member to
this family and designed for used in the post-K machine [1]
that will be operational around 2021. Tofu stands for “torus
fusion” that represents the designed combination of dimensions
with an independent configuration and a routing algorithm. The
letter D represents high “density” node and “dynamic” packet
slicing for “dual-rail” transfer. In this paper, we describe the
design overview, specification, and evaluation results of TofuD.
The design overview includes the new node configuration that
incorporates the high-density memory packaging technology,
the optimizations for the increasing number of non-uniform
memory access (NUMA) domains, and a new packet transfer
technique that reduces latency and improves resilience.

Section II explains the background of this work. Section III
presents related work. Section IV introduces the design of
TofuD, and Section V presents the results of performance
evaluation. Section VI concludes this paper.

II. BACKGROUND

A. Tofu Interconnect
The Tofu interconnect [2][3] was developed for the K

computer [4] that became operational in 2012. The 6D
mesh/torus network of Tofu achieved high scalability of 82,944
compute nodes, and the virtual 3D torus rank mapping scheme
provided both high availability and topology-aware
programmability. Tofu was also used in the PRIMEHPC FX10
system which doubled the number of processor cores per node
to sixteen from eight of the K computer.

A node address in the physical 6D network is represented
by six-dimensional coordinates X, Y, Z, A, B, and C. The A
and C coordinates can be 0 or 1, and the B coordinate can be 0,
1, or 2. The range of the X, Y, and Z coordinates depends on
the system size. Two nodes whose coordinates are different by
1 in one axis and identical in the other five axes are “adjacent”
and are connected to each other. When a certain axis is
configured as a torus, the node with coordinate 0 in the axis
and the node with the maximum coordinate value are
connected to each other. The A- and C-axes are fixed to the
mesh configuration and the B-axis is fixed to the torus
configuration. Each node has 10 ports for the 6D mesh/torus
network. Each of the X-, Y-, Z-, and B-axes uses two ports,
and each of the A- and C-axes use one port.

Each link provided 5.0 GB/s peak throughput. Each link
had 8 lanes of high-speed differential I/O signals at a 6.25-
Gbps data rate. Tofu was implemented as an interconnect
controller (ICC) chip with 80 lanes of signals for the network.
All links were electric, and there was no optical link in the
original Tofu interconnect.

Each node had four Tofu network interfaces (TNIs) so that
four data were simultaneously transmitted to four independent
directions and four data were received from four independent
directions. The injection bandwidth per node was 20 GB/s. The
total injection bandwidth (which yields the theoretical peak
performance of the nearest neighbor data exchange) of the K
computer was 1.66 PB/s. The bisection bandwidth (which
yields the theoretical peak performance of global data
exchange) of the K computer was 46.1 TB/s for the physical
18×2×2 mesh and the 24×16×3 torus network, or 34.6 TB/s for
the virtual 48×36×48 torus network. In a large torus network,

646

2018 IEEE International Conference on Cluster Computing

2168-9253/18/$31.00 ©2018 IEEE
DOI 10.1109/CLUSTER.2018.00090

there are performance differences of one to two orders of
magnitude depending on the communication pattern; therefore
topology-aware tuning of applications is important.

The TNI provided the communication function of remote
direct memory access (RDMA) Put/Get, system packet, and
Tofu barrier. The system packet was used for system control
and IP communication. The Tofu barrier handles multiple
stages of communication for barrier synchronization with
hardware that is unaffected by OS jitter that severely
deteriorates the latency when software handles the
communication. Barrier gate (BG) is a hard-wired module that
synchronously communicates with other BGs. Specifically,
each BG waits for signals from up to two preset BGs, and then
transmits signals to up to two other preset BGs. There are two
types of BG, start-and-end point and relay point. Each start-
and-end point BG is fixedly associated with an interface called
a barrier channel (BCH). The MPI library allocates these
communication resources at the creation of each communicator.
The reduce-broadcast tree algorithm consumes one BCH and
five BGs, or the recursive-doubling algorithm consumes one
BCH and log2(n) BGs. A BG can perform the reduction
operation so that the Tofu barrier can perform all-reduce
collective communication that is limited to one element. In
Tofu, the Tofu barrier was available only on TNI number 0 and
there were 8 BCHs and 64 BGs; 8 BGs were for start-and-end
points and 56 BGs were for relay points. Therefore, up to eight
communicators per node could simultaneously use the Tofu
barrier. When there were multiple processes on a node, the
intra-node processes were synchronized by software and the
representative process used a BCH for the inter-node
synchronization.

B. Tofu Interconnect 2
The next version Tofu interconnect 2 (Tofu2) [5][6] was

designed for the PRIMEHPC FX100 system launched in 2015.
Each node of FX100 had eight packages of hybrid memory
cube (HMC) that contained a stack of memory dice. In contrast,
each node of the K computer and FX10 had eight inline
memory modules that had been used over 30 years. This
transition from a wide memory module to a small memory
package reduced the node footprint of FX100.

To reduce the node footprint further, the Tofu2
implementation also shifted to processor chip integration from
the independent ICC chip of Tofu. Considering the balance
with 128 collocated signal lanes for memory on the processor
chip, Tofu2 halved the number of signal lanes to 40 from the
80 signal lanes of Tofu. To compensate for halving the number
of signal lanes, Tofu2 significantly improved the data rate of
the signals from 6.25-Gbps to 25.78125-Gbps by introducing
optical links. The link bandwidth and the injection bandwidth
per node were increased to 12.5 GB/s and 50 GB/s,
respectively.

In the communication function of Tofu2, the following
features were extended; RDMA atomic read modify write,
triggered communication (called session mode for non-
blocking collective communication), and RDMA for system
use.

In FX100, not only the number of compute cores were
increased to 32, but the recommended number of user
processes in a node was also increased from 1 to 2 because two
NUMA domains called core-memory groups (CMGs) were
introduced on a chip. Therefore, the number of RDMA
communication resources called control queues (CQs) was
required to be increased to allocate dedicated CQ to each user
process. In Tofu, each TNI had three CQs and one out of the
three CQs was fixed for system use. For one or two user
processes per node, each process was assigned one dedicated
CQ per TNI and the MPI communication library internally
used four CQs simultaneously. When the number of processes
per node exceeded two, the total number of assigned CQs for
each process decreased. When the number of processes per
node exceeded eight, CQs were shared by multiple processes.
In Tofu2, the number of CQs per TNI increased from 3 to 12 to
avoid shared CQ even if the number of processes per node was
32.

C. The Post-K Computer
The post-K computer is a system developed to replace the

K computer and will start operating around 2021. The post-K
computer is designed to take full advantage of the assets of the
K computer such as applications, users, tools, system
operational knowledge, and the facility. The post-K is required
not only to expand application domains, but also to
significantly improve application performance, specifically up
to 100 times or more than that on the K. Fujitsu cooperates
with the asset holder RIKEN and develops leading edge
technologies of FX100 to construct the post-K machine.

III. RELATED WORK

This section describes the system interconnects used in the
recent world-class systems other than the Tofu interconnect
family. All systems have the same level of bisection bandwidth
which represents the theoretical peak performance of global
data exchange. On the other hand, the total injection bandwidth
significantly differs depending on the type of network topology.
Some systems have a total injection bandwidth close or equal
to their own bisection bandwidth and the other systems have a
total injection bandwidth much higher than their own bisection
bandwidth.

A. InfiniBandTM
InfiniBandTM (IB) [7] is a standard specification of

interconnect defined by the InfiniBand® Trade Association. IB
products have been widely used to build HPC clusters. The
network interface is called host channel adapter (HCA) and an
ordinary HCA is implemented as a discrete chip and mounted
on an adaptor card. An ordinary IB network is constructed by
using switch boxes. Constructing an interconnection network
with independent components such as adapter cards and switch
boxes is disadvantageous in terms of packaging density and
power consumption. However, there is the advantage in the
flexibility of configuration. For example, a node configuration
that has an increased number of HCAs enhances injection
bandwidth and accelerates communication intensive
applications. In the other example, the network configuration
called a full-bisection bandwidth fat-tree, of which the

647

bisection bandwidth is equivalent to the total injection
bandwidth, suppresses variation in the execution time of
applications not optimized for the network topology.

Mellanox’s dual-rail EDR IB HCA will be used in the
Summit system [8] which will start full operation in 2019. The
injection bandwidth per node is 25 GB/s. The total injection or
bisection bandwidth will be approximately 115 TB/s. The
TaihuLight system, which started operation in 2016, also used
Mellanox’s IB HCAs and switch chips [9]. The Sunway
network of TaihuLight was constructed as a four-stage tapered
fat-tree. The total injection bandwidth was 512 TB/s and the
bisection bandwidth was approximately 70 TB/s. There was a
rare example of IB HCA integration. Oracle’s Sonoma
processor [10] was designed for high-density scale-out servers
and there were two built-in HCAs on a chip. The injection
bandwidth per node was 13.6 GB/s.

B. Omni-Path
Omni-Path [11] is Intel’s HPC interconnect family. In the

first generation, the host fabric interface (HFI) is implemented
as a discrete chip and mounted on an adaptor card or integrated
into a CPU package. Omni-Path is considered likely to be used
in the future Aurora system [12]. The first-generation Omni-
Path was used in the Oakforest-PACS system that became
operational in 2016. The injection bandwidth per node was
12.5 GB/s. The total injection or bisection bandwidth was
102.6 TB/s.

C. Aries Interconnect
The Aries interconnect [13] developed by Cray is a highly

scalable system interconnect that employs a Dragonfly-based
topology. The network interface and the router were
implemented together in a discrete chip. Each Aries chip had
four network interfaces and connected four nodes. Each
network interface had two ports to connect the internal router
port. Each router port operated at a link throughput of 4.7 GB/s
for global links or 5.25 GB/s in a group of 384 nodes.
Therefore, the injection bandwidth per node was 10.5 GB/s.
The upgraded Piz Daint system that started operation in 2016
used Aries. The total injection bandwidth and the bisection
bandwidth were 71 TB/s and 36 TB/s respectively.

D. Blue Gene/Q Five-dimensional Torus
IBM Blue Gene/Q (BG/Q) was a highly scalable

supercomputer that had a five-dimensional torus network
[14][15]. Each node has 10 links for the torus network and
each link provides 2.0 GB/s peak throughput. The injection
bandwidth per node was 20 GB/s. The Sequoia system that
started classified operations in 2013 was a BG/Q system with
98,304 nodes. The total injection bandwidth was 1.97 PB/s and
the bisection bandwidth was 49.2 TB/s. The characteristics and
performance of the BG/Q five-dimensional torus network were
similar to those of the 6D mesh/torus network of the Tofu
interconnect.

IV. DESIGN OF TOFUD

This section describes the design of TofuD focusing on the
difference compared to Tofu2.

A. Node Configuration
Figure 1 shows a block diagram of the post-K computer

node. The number of CMGs increased to four from two of
Tofu2, and the number of TNIs also increased from four to six.
The CMGs and the TNIs are connected by the network on chip
(NOC). As the number of CMGs increases, there is a
difference in the distance between TNIs and each CMG. Two
CMGs are far from TNIs, and the other two CMGs are near
TNIs.

Figure 2 shows a prototype CMU. Two processor packages
and three cable cages are cooled by water. One compute node
consists of one package in which one processor chip and four
stacks of high bandwidth memory (HBM) are integrated. As a
trade-off with the use of the high-density memory packaging
technology, the number of memory stacks per node has halved
from FX100 that used eight packages of HMC. In order to
balance with the halved number of memory stacks, the TofuD
again halved the number of signal lanes to 20 from 40 of Tofu2.

To reduce the hardware cost, the TofuD uses mainstream
quad-lane active optical cables. Half of the CMUs in a shelf
connect two optical cables of the X- and Y-axes, and the other
half connect three optical cables of the X-, Y-, and Z-axes.
Each active optical cable is shared by two links in the same
direction of two compute nodes on the same CMU. Although
the number of signals for each active optical cable is one-third
of that of the board-mount optical assembly used in Tofu2, the
number of optical modules on the board reduces to 2.5 from 8
of FX100 owing to the reductions in the optical link ratio,
number of high-speed signals per node, and number of nodes
per board.

PCIe Controller

TNI0

NOC

c
c
c
c

c c
c
c

c
c
c
cc

c
c
c
c

c
c
cc

c
c
c

c
c

Memory

c
c
c
c

c c
c
c

c
c

c
cc

Memory

Memory

c
c
c
c

c
c
cc

c
c
c

c
c

Memory

CMG CMG

CMG CMG

TNI1

TNI2

TNI3

TNI4

TNI5

Tofu

Network

Router

X+
X-
Y+
Y-
Z+
Z-
A
B+
B-
C

Fig. 1. Block diagram of the post-K computer node

648

Fig. 2. Prototype CPU memory unit

B. Package Structure and Link Configuration
In a rack of the post-K computer, each of the upper and

lower halves of the rack houses 192 nodes with the geometry
(X, Y, Z, A, B, C) = (2, 2, 4, 2, 3, 2). Each half rack
accommodates four building blocks called “shelves,” two in
the front-side and two in the rear-side. The geometry of a shelf
is (X, Y, Z, A, B, C) = (1, 1, 4, 2, 3, 2). Figure 3 shows a
prototype rack of the post-K computer. Each side of the rack
stores four shelves vertically. Each shelf houses 24 CPU
memory units (CMUs) that loads two nodes connected in C-
axis.

All connections in a half rack use electric links and the
connections out of a half rack use optical links. Therefore, half
of the connections in the X- and Y-axes and one fourth of the
connections in the Z-axis use optical links. Because of the
high-density packaging and large structure of the half rack, the
optical link ratio of the TofuD is as low as 25%, which has
substantially decreased from 66% for Tofu2 that used optical
links for connection out of a 2U chassis with the geometry (X,
Y, Z, A, B, C) = (1, 1, 3, 2, 1, 2).

Fig. 3. Prototype rack of the post-K computer

C. Injection Rate per Node
Table I shows the comparison of node and link

configurations within the Tofu family. TofuD uses a high-
speed signal of 28-Gbps data rate that is approximately 9%
faster than that of Tofu2. However, due to the reduction of the
number of signals, TofuD reduces the link bandwidth to 6.8
GB/s, which is approximately 54% for Tofu2. To compensate
the reduction in the link bandwidth, TofuD increases the
number of simultaneous communications from 4 of Tofu2 to 6.
The injection rate of TofuD is enhanced to approximately 80%
of that of Tofu2. There are six adjacent nodes in the virtual 3D
torus therefore topology-aware algorithms can use six
simultaneous communications effectively.

The logic circuits of TofuD operate at a 425-MHz clock
frequency, which is about 9% faster than the clock frequency
of Tofu2. The width of the datapath decreases from 256 to 128
bits as the number of signal lanes decreased.

TABLE I. DATA RATES OF SIGNAL AND INJECTION RATES

 Tofu Tofu2 TofuD

Number of signal lanes per node 80 40 20

Data rate (Gbps) 6.25 25.78125 28.05

Link bandwidth (GB/s) 5.0 12.5 6.8

Number of TNIs per node 4 4 6

Injection bandwidth per node (GB/s) 20 50 40.8

649

D. Communication Resources
TABLE II shows a comparison of the number of

communication resources within the Tofu family. Both the
number of compute cores and the number of TNIs per node
increased by 1.5 times from Tofu2, and the number of CQs per
TNI remained constant at 12. In Tofu2, there was no change in
the Tofu barrier. In TofuD, the amount of communication
resources for the Tofu barrier has increased as the number of
CMGs has increased. To allocate a BCH from a different TNI
to each CMG, the Tofu barrier becomes available on all TNIs
in TofuD, and the number of resources per node increased
significantly for both BCH and BG. The ratio of the BCH to
BG increased from 1:8 to 1:3 because the reduce-broadcast tree
algorithm for the intra-node part of synchronization is assumed
to reduce the number of BGs to be used. The buffer size of
each BG is also expanded so that the Tofu barrier can perform
all-reduce of eight integer or three floating point elements with
one synchronization.

TABLE II. NUMA DOMAIN AND COMMUNICATION RESOURCES

 Tofu Tofu2 TofuD

Number of compute cores per node 8, 16 32 48

Number of CMGs per node 1 2 4

Number of TNIs per node 4 4 6

Number of CQs per node 12 48 72

Number of BCHs per node 8 8 96

Number of BGs per node 64 64 288

E. Dynamic Packet Slicing for Dual-rail Transfer
The physical coding sublayer (PCS) of Tofu2 was

developed based on the 100Gb Ethernet technology. The
packet transfer latency of Tofu2 was increased to
approximately 0.3 μs from approximately 0.1 μs for Tofu
because of the complex transmission technology including
encoding, symbol detection, multi-lane distribution, and lane-
to-lane deskew. In Tofu2, there was another issue in the fault-
tolerance feature as follows. Tofu2 introduced the link
degradation feature that reduced the number of active lanes
without losing a packet. However, once the link degraded, the
number of lanes never recovered; therefore, there is no fault
resilience.

To address these issues, TofuD applies a new technique
called dynamic packet slicing for dual-rail transfer. To address
the latency issue, TofuD implements independent PCS for each
signal lane and splits a packet in the data-link layer. To address
the fault-resilience issue, TofuD duplicates a packet and
redundantly transfers it in both lanes as opposed to reducing
the number of active lanes. The data link layer adds
information to the packet, indicating that the packet has been
split or duplicated. The data link layer monitors the receiver-
side PCS’s detection frequencies of CRC and other
transmission errors and adds the transmission quality status
information to the packet as well. The data link layer
determines the split mode of the packet, depending on the
received transmission quality status information.

Figure 4 shows the frame format that includes a routing
header, a transport layer packet (TLP), and padding space for a
data link layer packet (DLLP). First, the data link layer stores a
DLLP to the frame. Next, the data link layer simultaneously
generates two slices from the frame. The routing header is
duplicated to the two slices, TLP and DLLP are split or
duplicated, and the padding is removed. Finally, the two slices
are distributed to two PCSs and each PCS adds a preamble, a
CRC code called FCS, and inter-frame gap to the slice.

Figure 5 shows the undivided slice format that includes a
routing header, full TLP, full DLLP, and control codes to
envelop the payload. Figure 6 shows the divided slice formats
that includes a routing header, a split TLP, a split DLLP, and
control codes to envelop the payload. The PAT field in a slice
indicates the pattern of packet splitting, and the STAT field
indicates the status of the observed transmission quality. The
PAT field is defined as a 3-bit width field for future expansion
to quad-lane.

+0 +1 +2 +3 +4 +5 +6 +7
routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC

TLP +0 TLP +1 TLP +2 TLP +3 TLP +4 TLP +5 TLP +6 TLP +7
TLP +8 TLP +9 TLP +10 TLP +11 TLP +12 TLP +13 TLP +14 TLP +15

transport layer TLP

TLP +(32LEN+16) TLP +(32LEN+17) TLP +(32LEN+18) TLP +(32LEN+19) TLP +(32LEN+20) TLP +(32LEN+21) TLP +(32LEN+22) TLP +(32LEN+23)
TLP +(32LEN+24) TLP +(32LEN+25) TLP +(32LEN+26) TLP +(32LEN+27) TLP +(32LEN+28) TLP +(32LEN+29) TLP +(32LEN+30) TLP +(32LEN+31)

(padding)

F
F

(data link layer)

Fig. 4. Frame format

650

+0 +1 +2 +3 +4 +5 +6 +7

preamble 1 1 1 1 1 0 1 1 1 0 1 1
routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC PAT STAT SEQ

TLP +0 TLP +1 TLP +2 TLP +3 TLP +4 TLP +5 TLP +6 TLP +7
TLP +8 TLP +9 TLP +10 TLP +11 TLP +12 TLP +13 TLP +14 TLP +15

transport layer TLP

TLP +(32LEN+16) TLP +(32LEN+17) TLP +(32LEN+18) TLP +(32LEN+19) TLP +(32LEN+20) TLP +(32LEN+21) TLP +(32LEN+22) TLP +(32LEN+23)
TLP +(32LEN+24) TLP +(32LEN+25) TLP +(32LEN+26) TLP +(32LEN+27) TLP +(32LEN+28) TLP +(32LEN+29) TLP +(32LEN+30) TLP +(32LEN+31)

DLLP +0 DLLP +1 DLLP +2 DLLP +3 other control +0 other control +1 other control +2 other control +3
DLLP +4 DLLP +5 DLLP +6 DLLP +7 other control +4 other control +5 other control +6 other control +7

F DLLP +8 DLLP +9 DLLP +10 DLLP +11 0
F DLLP +12 DLLP +13 DLLP +14 DLLP +15 FCS
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

inter-frame gap 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

data link layer

Fig. 5. Undivided slice format for the duplicate-mode

+0 +1 +2 +3 +4 +5 +6 +7
preamble 1 1 1 1 1 0 1 1 1 0 1 1

routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC PAT STAT SEQ
TLP +0 TLP +1 TLP +2 TLP +3 TLP +4 TLP +5 TLP +6 TLP +7

TLP +16 TLP +17 TLP +18 TLP +19 TLP +20 TLP +21 TLP +22 TLP +23
transport layer

TLP +(32LEN) TLP +(32LEN+1) TLP +(32LEN+2) TLP +(32LEN+3) TLP +(32LEN+4) TLP +(32LEN+5) TLP +(32LEN+6) TLP +(32LEN+7)
TLP +(32LEN+16) TLP +(32LEN+17) TLP +(32LEN+18) TLP +(32LEN+19) TLP +(32LEN+20) TLP +(32LEN+21) TLP +(32LEN+22) TLP +(32LEN+23)

DLLP +0 DLLP +1 DLLP +2 DLLP +3 other control +0 other control +1 other control +2 other control +3
F DLLP +8 DLLP +9 DLLP +10 DLLP +11 FCS
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

inter-frame gap 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

+0 +1 +2 +3 +4 +5 +6 +7
preamble 1 1 1 1 1 0 1 1 1 0 1 1

routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC PAT STAT SEQ
TLP +8 TLP +9 TLP +10 TLP +11 TLP +12 TLP +13 TLP +14 TLP +15

TLP +24 TLP +25 TLP +26 TLP +27 TLP +28 TLP +29 TLP +30 TLP +31
transport layer

TLP +(32LEN+8) TLP +(32LEN+9) TLP +(32LEN+10) TLP +(32LEN+11) TLP +(32LEN+12) TLP +(32LEN+13) TLP +(32LEN+14) TLP +(32LEN+15)
TLP +(32LEN+24) TLP +(32LEN+25) TLP +(32LEN+26) TLP +(32LEN+27) TLP +(32LEN+28) TLP +(32LEN+29) TLP +(32LEN+30) TLP +(32LEN+31)

DLLP +4 DLLP +5 DLLP +6 DLLP +7 other control +4 other control +5 other control +6 other control +7
F DLLP +12 DLLP +13 DLLP +14 DLLP +15 FCS
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

inter-frame gap 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

data link layer

data link layer

Fig. 6. Divided slice format for the split-mode

V. PERFORMANCE EVALUATION

This section gives early evaluation results of the
fundamental performance of TofuD.

A. Evaluation Environment
The communication performance of TofuD was evaluated

by system-level logic simulations. The simulation models were
built using the Verilog RTL codes for the production, and
included multiple nodes. The simulations were performed on
Cadence’s hardware emulators. The simulated processor cores
executed the test programs that used the TofuD hardware
directly. The latency results were measured directly from the
simulation waveforms; thus we obtained one-way latencies
without halving average round-trip latencies. The throughput
results were derived from the measured latency values.

For Tofu and Tofu2, the evaluation results of latency
breakdown were obtained from the simulation waveforms as
well as TofuD. The other results of Tofu and Tofu2 were
evaluated with actual machines using the low-level
communication library.

In these preliminary evaluations, the test programs included
no communication software stack such as an MPI library;
therefore, the evaluation results included no software overhead,
and all test programs performed nearest-neighbor
communication.

B. Latency
TABLE III shows the evaluated results of the latencies of

Tofu, Tofu2, and TofuD. In each evaluation, it is assumed that
a Put transfer is executed between the nearest neighbor nodes
on the same board, and the time from when the initiator

651

process started the Put transfer to when the target process read
the data was measured.

In Tofu, the direct descriptor feature reduced the latency by
more than 0.2 μs. In Tofu2, the cache injection feature reduced
the latency by nearly 0.2 μs. Both these reductions in Tofu and
Tofu2 are the result of bypassing the main memory with the
newly introduced features of the network interface.

In TofuD, the latency is reduced by approximately 0.2 μs
again. Overall, the latency has been reduced by 46% from Tofu
and 31% from Tofu2. The reduction is mainly due to the over-
hauling of the transmission technology such as the
compensation for signal skew, and reconsideration of the
pipeline design of data-paths. There is an additional penalty of
approximately 0.05 μs if the initiator process runs on a far
CMG in the initiator node and the target process also runs on a
far CMG in the target node. Although the difference is small in
TofuD, the increasing density and locality on the chip may
impact the communication latency in future systems.

Figure 7 presents the breakdowns of latency of one-way
and one-hop Put transfer. A latency value for each component
was obtained from the simulation waveforms. In Tofu2, the
packet transfer latency through one link and two switches was
increased by approximately 0.2 μs from Tofu due to the
complex PCS derived from 100 Gb Ethernet. The packet
transfer latency of TofuD achieved nearly the same latency as
Tofu owing to the new dynamic packet slicing technique. In
TofuD, the part of the one-way Put latency other than the
packet transfer was almost the same as Tofu2. In total,
approximately 0.2 μs of one-way Put latency has been reduced
in TofuD compared with Tofu2.

C. Injection Rate
TABLE IV lists the evaluation results of injection rates and

efficiencies of Tofu, Tofu2, and TofuD. In Tofu and Tofu2,
four Put transfers in different directions were simultaneously
executed and total throughputs were evaluated. In TofuD, six
Put transfers in different directions were executed.

The injection rate of TofuD is more than two times higher
than that of Tofu and 17% lower than that of Tofu2. The
efficiencies of Tofu are lower than that of a single Put transfer,
because Tofu was not integrated in the processor chip, leading
to a bottleneck in the bus that connects the processor chip and
the interconnect controller chip. The relatively low efficiencies
are mainly because of the packet size of the bus, which
includes only one cache line of data.

TABLE III. ONE-WAY 8-BYTE PUT LATENCIES BETWEEN NEAREST

NEIGHBOR NODES OF TOFU FAMILY

 Communication settings Latency [μs]

Tofu Descriptor on main memory 1.15

 Direct Descriptor 0.91

Tofu2 Cache injection OFF 0.87

 Cache injection ON 0.71

TofuD To/From far CMGs 0.54

 To/From near CMGs 0.49

0

100

200

300

400

500

600

700

800

900

1000

Tofu Tofu2 TofuD

la
te

nc
y

(n
se

c)

Rx CPU

Rx Host bus

Rx TNI

Packet Transfer

Tx TNI

Tx Host bus

Tx CPU

Fig. 7. Comparison of latency breakdowns of one-way Put transfer

TABLE IV. INJECTION RATES AND EFFICIENCIES OF SIMULTANEOUS PUT

TRANSFERS OF TOFU FAMILY

 Injection rate [GB/s] Efficiency [%]

Tofu (K) 15.0 77

Tofu (FX10) 17.6 88

Tofu2 45.8 92

TofuD 38.1 93

Tofu2 and TofuD are integrated into the processor chips
and the efficiencies of injection rates are almost the same as
that of the single Put transfer presented in the next subsection.

D. Throughput
TABLE V shows the evaluated results of Put throughputs

and the efficiencies of Tofu, Tofu2, and TofuD. The
throughput of TofuD is 33% faster than that of Tofu and 45%
slower than that of Tofu2. The efficiencies exceed 90% for all
versions. These high efficiencies are the distinctive
characteristics of the Tofu interconnect family, and are due to
the rather large packet size for an HPC interconnect. Although
a larger packet size is costly in design, it also reduces the
software overheads of system-wide communication protocols
such as IP over Tofu.

TABLE V. THROUGHPUTS OF PUT TRANSFER AND EFFICIENCIES OF THE

TOFU FAMILY

 Throughput [GB/s] Efficiency [%]

Tofu 4.76 95

Tofu2 11.46 92

TofuD 6.35 93

652

The efficiency of Tofu2 is slightly lower than that of Tofu
and TofuD. This mainly because of the overhead of data
alignment. Tofu and TofuD were implemented in 128-bit data-
paths and the data alignment was 16 bytes. Tofu2 was
implemented in 256-bit width and the alignment was 32 bytes.

E. Intra-node Latency of the Tofu Barrier
The Tofu barrier is extended for intra-node use in TofuD.

This subsection presents the evaluated latency results of the
intra-node Tofu barrier. First, the latency of each component
was evaluated from the waveform of a simple test that uses
only one BCH and two BGs connected in series. The latency
result of a BCH and a start-and-end BG was approximately
0.48 μs, and the latency result of a relay BG was nearly 0.13 μs.

Next, intra-node synchronization latencies using Tofu
barrier were evaluated using the test programs. The number of
BCHs to be synchronized varied from 4 to 48. If the number of
BCHs exceeds the number of TNI, multiple BCHs were used
in a TNI. The test programs used the reduce-broadcast tree
algorithm for intra-TNI synchronization and the recursive
doubling algorithm for inter-TNI synchronization. The total
number of used BGs per node and the number of
communication stages for each test program was shown in
TABLE VI. In these test programs, one process operated all
BCHs; therefore, the deviation of the synchronization start time
was small as compared with the actual usage condition in
which each BCH is operated by a different process.

Figure 8 shows the evaluated results and the estimated
latencies. The minimum latencies were estimated so that the
latency component of relay BGs increased in proportion to the
log2 of the number of BCHs. However, as the number of
BCHs per TNI increased beyond 1, the evaluation results
became worse than the estimated minimum latencies. The
waveform result showed that all BCHs and BGs were serially
processed. The latency of the BCH and the BG at the start
point were overlapped between BCHs for 0.19 μs out of 0.48
μs and the remaining 0.29 μs were serialized. The estimated
latencies of processing the BG and the BCH serially were close
to the evaluation results.

The evaluation results showed that there was the latency
penalty when allocating multiple BCHs from the same TNI to
the same communicator. The MPI library should be
implemented using the Tofu barrier avoiding this penalty as
follows. If the number of processes in a node does not exceed
six, the MPI library should allocate one BCH to each process
from different TNI. If the number of processes in a node
exceeds six, the MPI library should allocate one BCH to each
of six groups of processes. Each group of processes share one
BCH and synchronize within the group via memory.

TABLE VI. CONFIGURATIONS OF THE TEST PROGRAMS OF THE TOFU

BARRIER

Number of start-and-end points 1 4 8 16 48

Number of TNIs 1 4 6 6 6

Max. number of BCHs per TNI 1 1 2 3 8

Max. number of BGs per TNI 2 2 5 9 24

Number of communication stages 2 2 4 6 9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 4 16 64
la

te
nc

y
(μ

se
c)

number of BCHs per node

Estimated latencies
assuming serialization

Evaluated results from
waveform

Estimated minimum
latencies

Fig. 8. Estimated and evaluated results of the Tofu barrier test programs

VI. CONCLUSION

In this paper, we introduced a new and highly scalable
interconnect called Tofu Interconnect D that will be used in the
post-K machine, which will be operational around 2021. The
letter D represents high “density” node and “dynamic” packet
slicing for “dual-rail” transfer. This paper described the design
of TofuD including the package structure of the node, the rack,
the link configuration between nodes, the injection rate per
node, increased communication resources and a new packet
transfer technique. This paper also presented the evaluation
results of TofuD. The one-way 8-byte Put latency was 0.49 μs
that was reduced by 31% from that for Tofu2. The injection
rate per node was 38.1 GB/s which was approximately 83% of
the injection rate for Tofu2. The link efficiency was as high as
approximately 93%. Additionally, the evaluation results
showed the constraints on the in-node usage of the Tofu barrier
to avoid performance penalty.

653

REFERENCES

[1] RIKEN Center for Computational Science – About the Project. [online]

Available at: http://www.r-ccs.riken.jp/en/postk/project [Accessed: 06-
May - 2018]

[2] Y. Ajima, S. Sumimoto and T. Shimizu, "Tofu: A 6D Mesh/Torus
Interconnect for Exascale Computers," in IEEE Computer, vol. 42, no.
11, pp. 36?40, 2009.

[3] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto and T. Shimizu, “The Tofu
Interconnect,” IEEE 19th Annual Symposium on High Performance
Interconnects (HOTI), pp. 87-94, 2011.

[4] H. Miyazaki, Y. Kusano, N. Shinjo, F. Shoji, M. Yokokawa and T.
Watanabe, “Overview of the K computer System,” Fujitsu Scientific and
Technical Journal, vol. 48, no.3, pp. 255-265, 2012.

[5] Y. Ajima et al. "Tofu Interconnect 2: System-on-Chip Integration of
High-Performance Interconnect," In Proceedings of the 29th
International Conference on Supercomputing (ISC14), pp. 498-507,
2014.

[6] Y. Ajima et al., “The Tofu Interconnect 2,” IEEE 22nd Annual
Symposium on High-Performance Interconnects (HOTI), pp. 57-62,
2014.

[7] InfiniBand Trade Association, InfiniBand Architecture Specification
Volume 1 Release 1.2.1, 2007.

[8] Oak Ridge Leadership Computing Facility – Summit. [online] Available
at: https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
[Accessed: 06- May - 2018]

[9] Jack Dongarra, "Report on the Sunway TaihuLight System." [online]
Available at:
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-
report-2016.pdf [Accessed: 06- May - 2018]

[10] B. Vinaik and R. Puri, “Oracle’s Sonoma Processor: Advanced Low-
cost SPARC Processor for Enterprise Workloads,” HotChips 27, 2015.

[11] M. S. Birrittella et al., “Intel Omni-path Architecture: Enabling Scalable,
High Performance Fabrics,” IEEE 23rd Annual Symposium on High-
Performance Interconnects (HOTI), pp. 1-9, 2015.

[12] Intel – Aurora Fact Sheet. [online] Available at:
https://www.intel.com/content/www/us/en/high-performance-
computing/aurora-fact-sheet.html [Accessed: 15- May - 2018]

[13] G. Faanes, et al., “Cray cascade: a scable HPC system based on a
Dragonfly network,” In Proceedings of the International Conference on
High Performance

[14] D. Chen, et al., “The IBM Blue Gene/Q Interconnection Network and
Message Unit,” In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC 2012),
Article 26, 2011.

[15] D. Chen et al., “Looking under the hood of the IBM Blue Gene/Q
network,” 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1-12, 2012.

654

