PRIMEQUEST 4000 シリーズ

オペレーティングマニュアル

06/2025

CA92344-5399-07

コメント... 提案... 修正

ユーザマニュアル部門は、このマニュアルに対するお客様のご意見をお待ちしております。 フィードバックにより、お客様個々のニーズに合わせてマニュアルを最適化することができま す。

https://support.ts.fujitsu.com/IndexContact.asp?Ing=COM&In=true.

著作権および商標

Copyright 2025 Fsas Technologies Inc.

All rights reserved.

お届けまでの日数は在庫状況によって異なります。技術的修正の権利を有します。

使用されているハードウェア名およびソフトウェア名は、各社の商標です。

- 本書の内容は、事前通告なしに変更されることがあります。
- 本書に記載されたデータの使用に起因する、第三者の特許権およびその他の権利の侵害について、Fsas Technologies はいかなる責任も負いません。
- 本書のいかなる部分も Fsas Technologies の書面による事前の許可なしにいかなる形体で も複製することを禁じます。
- Microsoft、Windows、Windows Server、Hyper-V および BitLocker は、米国およびその他の 国における Microsoft Corporation の商標または登録商標です。
- Linux は、米国およびその他の国における Linus Torvalds の登録商標です。
- Red Hat、Shadowman のロゴおよび JBoss は、米国およびその他の国における Red Hat, Red Had Enterprise Linux. の登録商標です。
- Intel、Intel のロゴ、Intel Atom Inside、Intel Atom Inside、Intel Atom Inside、Intel vPro、 Core Inside、celeron、Celeron Inside、Itanron Inside、Itanium Inside、Pentium、Pentium Inside、Xeon、Xeon Phi、Xeon Inside、Ultrabook は、Intel Corporationの商標または登録 商標です。
- Ethernet は、日本における Fuji Xerox Co., Ltd. の登録商標であり、米国およびその他の国 における Xerox Corp. の登録商標です。
- VMware は、米国およびその他の国における VMware, Inc. の商標または登録商標です。
- その他の会社名および製品名は、それぞれの所有者の商標または登録商標です。
- このマニュアルでは、一部のシステム名および製品名の商標表示を省略しています。

本書をお読みになる前に

お客様の安全のために

このマニュアルには、この製品を安全かつ正しくご使用いただくための重要な 情報が記載されています。

この製品を使用する前に、マニュアルをよくお読みください。付属の『Safety Notes and Regulations』マニュアルをよくお読みになり、安全上の注意事項を ご理解されたうえで製品を使用してください。このマニュアルと『Safety Notes and Regulations』マニュアルは、この製品の使用中にすぐに参照できる 安全な場所に保管してください。

電波障害対策について

この製品は、「クラス A」の情報技術装置(ITE: Information Technology Equipment)です。この製品を家庭環境で使用すると電波妨害を引き起こすこ とがあります。この場合にはユーザーが適切な対策を取る必要のあることがあ ります。

VCCI-A

アルミ電解コンデンサについて

製品のプリント基板アセンブリとマウスおよびキーボードに使用されているア ルミニウム電解コンデンサは、寿命のあるコンポーネントです。動作寿命を超 えてこれらのコンポーネントを使用すると、電解質漏出や電解質減少が発生し、 悪臭や煙が排出されることがあります。

ガイドラインとして、通常のオフィス環境(25°C)では、保守サポート期間 (5年)以内に動作寿命に達することはないと予想されます。ただし、製品を高 温の環境で使用した場合などに、動作寿命が短くなることがあります。動作寿 命を超えた交換可能なコンポーネントの交換コストはお客様にご負担いただき ます。これらは単なるガイドラインですので、保守サポート期間中のトラブル フリーの動作を保証するものではありません。

ハイセイフティ用途での使用について

この製品は、商業地域および工業地域でサーバとして使用するように設計および製造されています。

本製品は、職場規制の第2項に従ったビジュアルディスプレイワークプレース での使用には適していません (TX サーバシステムを除いて、すべてのサーバシ ステムに該当します)。

ビジュアルディスプレイワークプレースとして使用する場合は、不便に感じる 反射を避けるために、直接視野に入る場所に設置しないでください (TX サーバ システムにのみ該当します)。

このデバイスは、極端に高度な安全性が要求される用途や、そのような安全性 を保証できない限り生命や人体に直接および重大な危険を及ぼす用途向けに設 計および製造されていません。

この製品の用途には、原子力発電所での核反応、自動飛行機の飛行制御、航空 管制、公共交通機関の交通管制、生命維持用の医療機器、兵器システムのミサ イル誘導コントロールなどが含まれます(以後、「高安全用途」とします)。お 客様は、高安全用途に必要とされる安全性のレベルを保証するための措置が取 られない限り、このような高安全用途にこの製品を使用してはなりません。高 安全用途にこの製品を使用する予定がある場合は、弊社営業担当者にご相談く ださい。

瞬時電圧低下対策について

この製品は、雷によって生じた電源ユニットの瞬時電圧低下により影響を受け る可能性があります。瞬時電圧低下を防ぐために、AC 無停電電源装置の使用 を推奨します。

(この注記は、JEITA(社団法人電子情報技術産業協会)が発行したガイドライン 『パーソナルコンピュータの瞬時電圧低下対策』に従っています。)

日本の外為法、外国為替および外国貿易管理法によって規制されるテクノロジ 一について

弊社が発行したドキュメントには、日本の外為法、外国為替および外国貿易管 理法によってコントロールされるテクノロジーが含まれることがあります。こ のようなテクノロジーは、上記法律に従って最初に許可を受けずに、日本から 国外に持ち出したり、日本の非居住者に譲渡してはなりません。

高調波電流規格について

この製品は高調波電流規格 JIS C 61000-3-2 に準拠しています。

日本のみ: SATA HDD について

このサーバの SATA バージョンは、SATA/BC-SATA ストレージインターフェー スを搭載した HDD をサポートしています。ご使用の HDD のタイプによって 使用方法と動作条件が異なりますので、ご注意ください。

使用できるタイプの HDD の使用方法と動作条件の詳細は、以下の Web サイト を参照してください。

https://jp.fujitsu.com/platform/server/primergy/harddisk/

日本のみ:

この製品には遮蔽 LAN ケーブルを使用してください。

英国の輸入業者情報

Fujitsu Services Limited

Lovelace Road, Bracknell, Berks. RG12 8SN, United Kingdom

バージョン履歴

版番号	発行日	説明	
V 1.0	2023 年 06 月	初版リリース(ドラフト)	
	2023 年 07 月	初版リリース	
V 2.0	2023 年 08	- 「機能」を更新	
	月	–「サーバの仕様」を更新	
		- 「ユーザが行う作業」を更新	
		- 「サーバのラック取り付け/取り外し」を更新	
		- 「SB ユニットのボタン、コネクタ、表示ラン プ」を更新	
		- 「設定項目の一覧」を追加	
		- 「HII Configuration Utility の起動」を追加	
V 3.0	2023 年 09 月	- 「サーバのラック取り付け/取り外し」を更新	
		–「入力電源接続の仕様」を更新	
		- 「トラブルシューティングとヒント」を更新	
V 4.0	2024 年 05	- 「サーバの仕様」を更新	
	Я	- 「サーバのラック取り付け/取り外し」を更新	
		- 「アドレス範囲ミラーの設定」を更新	
		- 「BIOS ファームウェアのアップデートに関す る注意事項」を更新	
		– タイトル「付録」を「付録 1」に変更	
		- 「バス番号」を更新	
		- 「PHP スロットとスロット番号」を削除	
		–「デバイスパス」を更新	
		- 「付録 2」を追加	

版番号	発行日	説明
V 5.0	2024 年 08 月	- 「付録 2」を更新
V 6.0	2024 年 11	- 「付録 2」を更新
	月	- 編集上の変更
V 7.0	2025 年 06	- 「DIMM の取り付け順序」を更新
	月 	- 編集上のリブランディング

目次

1	序文	15
1.1	このマニュアルの概念と対象読者	15
1.2	ドキュメントの概要	15
1.3	表記規定	16
2	機能の概要	19
2.1	モデル	19
2.2	特長	19
2.3	サーバの仕様	26
3	設置手順、概要	37
4	<u>注意事項</u>	39
4.1	安全について	39
4.1.1	安全について(基本)	39
4.1.2	作業を始める前に	40
4.1.3	インストールと操作	40
4.1.4	バッテリー	41
4.1.5	静電気に非常に弱いデバイスが搭載されたモジュール	42
4.1.6	その他の注意事項	43
4.2	FCC クラス A 適合性宣言	43
4.3	サーバの輸送	44
4.4	環境保護	45

目次

5	ハードウェアの取り付け	47
5.1	地震対策	47
5.2	エレベーターの積載条件	48
5.3	設置環境	49
5.3.1	ほこり	49
5.3.2	腐食性ガス	50
5.3.3	海水(塩害)	50
5.3.4	設置エリア	51
5.4	セットアップワークフロー	53
5.4.1	ユーザが行う事前準備	53
5.4.2	ユーザが行う作業	53
5.4.3	フィールドエンジニアが行う作業	55
5.5	サーバの開梱	55
5.6	サーバのラック取り付け/取り外し	56
5.7	デバイスのサーバへの接続	63
5.8	主電源へのサーバの接続	63
5.8.1	取り付け要件	64
5.8.2	入力電源接続の仕様	65
5.8.3	電源コードの配線図	67
5.8.4	電源コードの接続	70
5.8.5	取り付けおよび接続作業の確認	71
5.9	ケーブルの接続と取り外しに関する注記	72
6	起動と操作	73
6.1	各部名称と表示ランプ	73
6.1.1	サーバ前面	73
6.1.1.1	OPL のボタンと表示ランプ	74
6.1.1.2	SB ユニットのボタン、コネクタ、表示ランプ	75
6.1.1.3	DU SAS の表示ランプ	79
6.1.1.4	 DU_NVMe の表示ランプ	80

6.1.1.5	ホットプラグ SAS HDD/SSD モジュールの表示ランプ	81
6.1.1.6	ホットプラグ PCle SSD SFF モジュールの表示ランプ	82
6.1.2	サーバの背面	83
6.1.2.1	IOU の表示ランプ	84
6.1.2.2	PCI_Box の表示ランプ	86
6.1.2.3	MLANU のコネクタと表示ランプ	88
6.1.2.4	LAN 表示ランプ	89
6.1.2.5	PSU の表示フンフ	90
6.1.2.6	FANU の表示フラフ	91
6.2	サーバの電源オン/オフ	93
6.3	サーバの設定	95
6.3.1	SAS RAID コントローラカードの設定	95
6.3.2	Fast Boot の設定	96
6.3.3	メモリミラーの設定	96
6.3.3.1	アドレス範囲ミラーの設定	97
6.3.4	REST API を使用した RAID 構成のバックアップと復元	99
6.3.4.1	REST API を使用した RAID 構成のバックアップ	100
6.3.4.2	REST API を使用した RAID 構成の復元	103
6.3.5	ServerView Installation Manager を使用したサーバの設定と OS	
0.0.0	のインストール	104
0.3.0	Serverview Installation Manager を使用しないサーバの設定と	105
	05 01 22 1-12	105
6.4	サーバのお手入れ	106
6.5	M.2 SSD 交換後のソフトウェア RAID のリビルド	106
6.6	ホットプラグの手順	106
6.6.1	Red Hat Enterprise Linux の交換手順	107
6.6.2	Windows Server の交換手順	108
6.6.3	Red Hat Enterprise Linux の追加手順	112
6.6.4	Windows Server の追加手順	113
6.7	BIOS ファームウェアのアップデートに関する注意事項	113
6.8	2.5 インチの HDD/SSD モジュールの取り付け	114
6.9	PSU の取り付け	116
-		

目次

7	資産とデータ保護	119
7.1	機械的アクセスの保護	119
7.2	BIOS セットアップのセキュリティ機能	119
8	トラブルシューティングとヒント	121
8.1	System Power LED が点灯しない	121
8.2	パーティションの電源を自動で切断する	121
8.3	モニタ画面の縞模様のちらつき	
8.4	画面が表示されない、または表示がずれる	122
8.5	日時が正しくない	123
8.6	システムの起動時にドライブが「dead」となる	
8.7	追加したドライブが「defective」と報告される	123
8.8	画面上のエラーメッセージ	124
9	付録 1	125
9.1	パス番号	125
9.2	デバイスパス	125
9.3	PCle SSD SFF スロット番号の交換	126
9.4	DIMM の取り付け順序	126
9.5	設定項目の一覧	129
9.6	パンドルソフトウェア	130
9.7	VMware のインストールに関する注意事項	130
9. 8	HII Configuration Utility の起動	131

9.9	パーティション	
9.9.1	パーティション機能	
9.9.2	Partition 粒度	
9.9.3	Partition 構成規則	
9.9.4	Partition セットアップ	
9.9.5	Home SB	
9.9.6	Reserved SB	
9.9.7	Flexible I/O	

10	付録 2	137
		107

1 序文

PRIMEQUEST 4000 はスケーラブルな Intel CPU 搭載のラックサーバで、中~ 大規模データベースのデータベース管理システムとして、または仮想化テクノ ロジを使用して膨大な種類のアプリケーションを実行する統合基盤としてな ど、クリティカルな企業シナリオに対応します。

高度なハードウェアおよびソフトウェアコンポーネントを搭載し、本サーバは ハイレベルのデータセキュリティと可用性を備えています。これには、ホット プラグ HDD/SSD モジュール、ホットプラグシステムファン、ホットプラグ PSU、Server Management ServerView Suite、故障前の検出と解析 (PDA)、 サーバ自動再構成/サーバ自動再起動 (ASR&R: Automatic Server Reconfiguration and Restart) があります。

BIOS セットアップおよびシステムボードでのセキュリティ機能で、サーバ上 のデータを操作されないように保護します。ロックできるラックドアにより、 セキュリティが一層強化されています。

PRIMEQUEST 4000 のサイズは、5 HU (ハイユニット)です。

1.1 このマニュアルの概念と対象読者

このオペレーティングマニュアルには、サーバの設置方法、セットアップ方法、 操作方法が記載されています。

このオペレーティングマニュアルの対象読者は、ハードウェアを設置して、シ ステムをスムーズに動作させる作業を担当している方々です。オペレーティン グマニュアルには、ご購入いただきました PRIMEQUEST 4000 を動作させる ために必要なすべての情報が記載されています。

さまざまな拡張オプションを理解するには、ハードウェア分野およびデータ伝送分野に精通している必要があり、基盤となる OS に関する基本知識が必要です。

1.2 ドキュメントの概要

PRIMEQUEST 4000 の詳細は、以下のドキュメントに記載されています。

- Safety Notes and Regulations.
- 『PRIMEQUEST 4000 シリーズ iRMC S6 コンセプトとインターフェース』
- 『PRIMEQUEST 4000 シリーズ iRMC S6 Web インターフェース』
- 『PRIMEQUEST 4000 シリーズ iRMC S6 コンフィグレーションとメンテナ ンス』
- 『PRIMEQUEST 4000 シリーズ iRMC S6 RESTful API』
- 『PRIMEQUEST 4000 シリーズ BIOS セットアップユーティリティリファレンスマニュアル』

 PRIMEQUEST ハードウェアおよび ServerView ソフトウェアのすべて のドキュメントは、こちらからオンラインで入手できます: https://support.ts.fujitsu.com/
 PRIMEQUEST のドキュメントー式は、DVD ISO イメージとしてこちら からダウンロードすることもできます: ftp://ftp.ts.fujitsu.com/images/serverview/manuals

その他の情報源

- ServerView Suite 用語集
- モニタのマニュアル
- ボードとドライブのドキュメント
- OS ドキュメント
- OS の情報ファイル

1.3 表記規定

このマニュアルでは以下の表記規定を使用します。

等幅フォントのテキスト	コマンドまたはメニューアイテムを示します。		
かぎ括弧(「」) 二重か ぎ括弧(『』)	かぎ括弧(「」)は、章の名前を示します。 二重か ぎ括弧(『』)は、他のマニュアル名などを示して います。		

•	記載されている順序で行う必要がある作業です。
注意	この記号が付いている文章には、特に注意してくだ さい。この表示を無視して、誤った取り扱いをする と、生命が危険にさらされたり、システムが破壊さ れたり、データが失われる可能性があります。
i	追加情報、注記、ヒントを示しています。

表 1: 表記規定

2 機能の概要

この項では、PRIMEQUEST 4000 のモデル、機能および技術仕様について説明 します。

2.1 モデル

PRIMEQUEST 4000 シリーズには 4 つのモデルがあります。

- PRIMEQUEST 4400S Lite
- PRIMEQUEST 4400S
- PRIMEQUEST 4400E
- PRIMEQUEST 4400L

シャーシは、すべてのモデルで共通です。コンポーネントは、モデルによって 異なることがあります。

サーバには次のものを搭載できます。

- 1 つまたは 2 つの CPU を各システムボードに取り付けることができます
- 最大 2 つの SBU を取り付けることができます。
- 最大 2 つの IOU を取り付けることができます。
- 最大 2 つの DU を取り付けることができます。
- 最大 2 つの MLANU を取り付けることができます。
- PCI_Box の数:2

2.2 特長

eLCM

eLCM (embedded Life Cycle Management) では、「eLCM アップデート管理」、 「eLCM イメージ管理」、「eLCM PrimeCollect」により、システム、運用、保守 を実装するまでのライフサイクル全体を管理できます。

Fast Boot

Fast Boot は、PRIMEQUEST 4000 の起動時間を短縮する機能です。

システムボード

PRIMEQUEST 4000 には、システムボード(SB)を2つ搭載できます。SBの 機能については『PRIMEQUEST 4000 シリーズ iRMC S6 コンフィグレーショ ンとメンテナンス』に記載されており、BIOS セットアップの方法については 『PRIMEQUEST 4000 シリーズ BIOS セットアップユーティリティリファレン スマニュアル』を参照してください。

ハードディスクドライブ(HDD)

PRIMEQUEST 4000 にはさまざまなタイプの DisK Units (DU)があります。 DU モデルによっては、各 DU には、8 台の HDD/SSD モジュールまたは 8 台 の PCle SSD SFF モジュールを搭載でき、4 台の HDD/SSD と 4 台の PCle SSD SFF を混在させることもできます。各モジュールには 2.5 インチドライ ブを収容できます。モジュールはケーブル接続なしで SAS/PCle バックプレー ンに接続されます。

そのため、HDD/SSD/PCle モジュールまたは PCle SSD SFF モジュールの抜き 差しが簡単です。

サーバに対応する RAID 構成がある場合は、HDD/SSD モジュールまたは PCIe SSD SFF モジュールを動作中に交換することもできます。

SAS コントローラカード(RAID コントローラのオプション)

SAS コントローラカードでは最大 4 台の SAS HDD に対応し、RAID 機能を有 効または無効にできます。RAID 機能を有効にする場合、レベル 0、1、1E、5、 6、10 がサポートされます。

フラッシュバックアップユニット

操作パネルユニット(OPU)では、IO ユニット(IOU)ごとに2つのFBUを 取り付けることができます。このため、システムに合計4台のFBUを取り付 けることができます。FBUとRAIDカードの接続を表2OPUのFBUおよび IOUのPCIの接続に示します。RAIDカードのIOUへの書き込みキャッシュ 情報は、停電時にFBUから提供される電源によって、フラッシュメモリにバッ クアップされます。

OPU の FBU#	PRIMEQUEST 4400S Lite	PRIMEQUEST 4400S/4400E/ 4400L	サポートされる PCle スロ ット
FBU#0	はい	はい	IOU#0のPCIe Slot#5
FBU#1	はい	はい	IOU#0のPCIe Slot#6
FBU#2	はい	はい	IOU#1のPCIe Slot#5
FBU#3	はい	はい	IOU#1 の PCIe Slot#6

表 2: OPU の FBU および IOU の PCI の接続

電源

PRIMEQUEST 4000 には、最大 4 台のホットプラグ PSU(主電源電圧 100 V ~ 127 V または 200 V ~ 240 V に対応する 2200 Watt (DPS-2200AB) または 2600 Watt (DPS-2600DB)) があります。

冗長構成では、1 台の PSU が故障しても、残りの PSU により、動作が停止することはありません。故障した電源ユニットは操作中に交換できます。

Server 服务器/伺服器 PRIMEQUEST 4400E MODEL 型号/型號 MCL2AG			
PART NO. CA05973-8801	输 入/輸入	100 - 127 / 200 - 240 V~	
SER. NO. 1541340001 1phase		50-60 Hz	
DATE 2023-02 14/12.6 A x 4			
Fsas Technologies 日本制	造/製造	MADE IN JAPAN	

図 1: 2200W PSU のラベルの例

Server 服务器/伺服器	PRIMEQUEST 4400E	MODEL	型号/型號 MCL2AC111
PART NO. CA05973-88	301 输	ì 入/輸入	200 - 240 V~
SER. NO. 1541340001	1phase		50-60 Hz
DATE 2023-02	15.5 A x 4		
Fsas Technologies	日本制造/製	造	MADE IN JAPAN

図 2: 2600W PSU のラベルの例

Advanced Thermal Option (ATO)

Advanced Thermal Option (ATO)によって、5 °C ~ 40 °C という幅広い温度範囲でシステムを動作させることができます。

このオプションはカスタムメイドのみ発注でき、銘板上の該当す るロゴで示されます。

デバイスが環境温度 35 °C を超える場合、PSU、FANU、SBU、IOU、DU また は MLANU の交換中にサーマルスロットリングが発生するため、パフォーマン スが一時的に低下します。

∕ ▲ 注意

∖Advanced Thermal Option を搭載するシステムには、高温の動作範囲に 対応するコンポーネントのみ取り付けることができます。この詳細につ いては、システム構成図を参照してください。

ハイレベルの可用性とデータセキュリティ

メモリデータへのアクセスが行われ、メインメモリの1bit エラーが認識された 場合、ECC(エラー修正コード)方式で自動的に修正されます。

使用されているメモリモジュールは SDDC および ADDDC-MR テクノロジー (Chipkill™)をサポートしています。これにより、メモリエラーの監視と修正 の効果がさらに向上します。

メモリモジュールは、完全ミラーリングまたはアドレス範囲のミラーリングに よって故障から保護できます(メモリミラーリングには、8 つのメモリモジュ ールが必要です)。

ASR&R (Automatic Server Reconfiguration and Restart) は、エラー発生時に システムを再起動し、故障しているシステムコンポーネントを自動的に「非表 示」にします。

Fsas Technologies の PDA(故障前の検出と解析)技術は、システム信頼性の ために重要なすべてのコンポーネントを分析/監視します。

SAS コントローラカードは RAID レベル 0、1、1E、5、6、10、50、60 をサポートするため、システムの可用性と信頼性が向上します。

ホットプラグの HDD/SSD モジュール、ファン、PSU を追加することで、信頼 性を拡張できます。

内蔵 Management LAN コネクタ付きの iRMC S6

iRMC S6 (integrated Remote Management Controller) は、内蔵 Management LAN ポートと拡張機能を搭載した Baseboard Management Controller (BMC) です。iRMC S6 はシステム状態に関係なく PRIMEQUEST 4000 の完全な制御 を可能にし、とりわけ、システム状態が「out-of-band」の PRIMEQUEST 4000 のコントロールを可能にします。

iRMC S6 には以下の新しい機能があります。

- HTML5 に基づくビデオリダイレクション:
 HTML5 をサポートするブラウザでビデオリダイレクションを開始します。
- REST API 新しい管理インターフェースとして、Redfish 1.0 をベースとする REST API を提供します。REST API を使用してシステムの BIOS の構成と電源管理を 設定できます。

iRMC S6 がサポートしている主な機能には、以下のものがあります。

- iRMC S6 の独自の Web サーバを介したブラウザアクセス
- セキュアな通信(SSH、SSL)
- 管理するサーバの電源管理(システム状態に依存)
- 消費電力管理
- リモートストレージとしての仮想ドライブへの接続
- テキストベースおよびグラフィカルコンソールへの接続(ビデオリダイレクション)
- リモートストレージ
- コマンドラインインターフェース (CLI)
- シンプル/インタラクティブ/スクリプトベース iRMC S6 の設定
- iRMC S6 のユーザ管理
- LDAP ディレクトリサービスを使用したマルチコンピュータ/グローバル iRMC S6 ユーザ管理
- DNS/DHCP を使用した自動ネットワーク設定
- サーバのスタンバイ電源を使用した iRMC S6 の稼働
- 全体にわたるアラーム管理

- システムイベントログ(SEL)の読み取りと処理
- IPMI サポート
- CIM/WS-MAN サポート
- ユーザログイン / ログアウト監査の内部イベントログ
- Redfish
 - iRMC S6 の詳細は、以下のマニュアルに記載されています。
 - 『PRIMEQUEST 4000 シリーズ iRMC S6 コンセプトとインターフェ
 ース』
 - 『PRIMEQUEST 4000 シリーズ iRMC S6 Web インターフェース』
 - 『PRIMEQUEST 4000 シリーズ iRMC S6 コンフィグレーションとメ ンテナンス』

サーバ管理

サーバ管理は、Fsas Technologies が提供する ServerView Operations Manager と PDA(故障前の検出と解析)を使用して実現します。PDAは、システムエ ラーや過負荷の危険な兆候を初期段階で報告し、予防措置を講じられるように します。

ServerView Operations Manager を使用すると、ネットワーク内のすべての PRIMEQUEST 4000 を管理端末で管理できます。

ServerView Operations Manager は、次の機能をサポートしています。

- サーバの状態には関係なく 24 時間の監視
- HTTPS/SSL(128 ビット)で保護された高性能グラフィカルコンソールへの接続(AVR)
- USB を使用したリモートストレージ
- リモート電源投入
- CPU および周辺の温度監視
- プロセッサとメインメモリについての状態およびエラーの詳細レポート
- メモリモジュールまたはプロセッサで故障が発生した場合の、サーバ自動再構成/サーバ自動再起動(ASR&R: Automatic Server Reconfiguration and Restart)用 Watchdog タイマー

- 電力監視
- ASR&R で OS を監視するための Watchdog タイマー

ServerView Operations Manager についての詳細は、関連ドキュメントに記載 されています。

ServerView Installation Manager

添付の ServerView Installation Manager ソフトウェアですばやく正確に PRIMEQUEST サーバを設定できます。サーバ OS のインストールに、ユーザ ガイド付きメニューを使用できます(詳細は、95 ページの「サーバの設定」 を参照)。

サービスとサポート

PRIMEQUEST 4000 は保守がしやすいモジュール式で、すばやく簡単に保守を 行えます。

コンポーネントの交換に使用するハンドルとロック(タッチポイント)は、す ぐにわかるように緑色になっています。

取り付けおよび取り外しの際の不適切な取り扱いによってコンポーネントが破 損しないようにするため、触れてもコンポーネントが破損しないすべての場所 も、緑色で示しています。

システムボード上の iRMC(リモートマネジメントコントローラ内蔵)を使用 して、PRIMEQUEST 4000 をリモートで保守およびサービスすることもできま す。これにより、OS やハードウェアに故障が発生しても、システム解析のリ モート診断、リモート設定、およびリモート再起動を行うことができます。

ServerView Remote Management

ServerView Remote Management は、Fsas Technologies の PRIMEQUEST 4000 用リモートマネジメントソリューションです。ServerView Remote Management およびシステムボードに組み込まれた関連のハードウェアコン ポーネントにより、リモート監視および保守、並びにエラー発生時の運用高速 復旧が可能です。

リモート監視および保守では、時間とコストのかかるオンサイト修理を回避し て、サービスコストを削減することができます。これにより総保有コストが削 減され、リモート管理ソリューションに対する優れた費用対効果を得ることが できます。 管理者は、iRMC S6 の Web インターフェースを介してすべてのシステム情報、 およびファン速度や電圧などのセンサからの情報にアクセスできます(23ペ ージの「内蔵 Management LAN コネクタ付きの iRMC S6」を参照)。また、 テキストベース/グラフィックコンソールの接続(AVR:ビデオリダイレクショ ン)を起動して、リモートストレージとして仮想ドライブに接続することもで きます。

- iRMC S6 の詳細は、以下のマニュアルに記載されています。
 - 『PRIMEQUEST 4000 シリーズ iRMC S6 コンセプトとインターフェ
 ース』
 - 『PRIMEQUEST 4000 シリーズ iRMC S6 Web インターフェース』
 - 『PRIMEQUEST 4000 シリーズ iRMC S6 コンフィグレーションとメ ンテナンス』

Partition 管理

PRIMEQUEST 4000 には、サーバ内の独立したシステムとして動作する複数の 物理パーティションを組み込むことができます。パーティションは独立したハ ードウェアユニットなので、各パーティションは独立したサーバと見なすこと ができます。Physical Partition の独立性により、各パーティションは異なる OS をインストールできます。

パーティションの詳細については、133 ページの「パーティション」を参照し てください。

2.3 サーバの仕様

システムボード

	PRIMEQUEST 4400S Lite	PRIMEQUEST 4400S/4400E/ 4400L
システムボー ドタイプ	D3987	D3986
チップセット	Intel® C741 チップセット	Intel® C741 チップセット

表 3: システムボードの仕様

Processor

	PRIMEQUEST 4400S Lite	PRIMEQUEST 4400S/4400E/ 4400L
プロセッサの 数とタイプ	1 個または 2 個の Intel® Xeon® CPU(Platinum、 Gold)	1 個 ~ 4 個の Intel® Xeon® CPU(Platinum、Gold)
プロセッサに 関する注記	1 個以上のプロセッサを構成す のプロセッサを混在させないこ	る必要がある。異なるタイプ こと。

表 4: プロセッサの仕様

メモリモジュール構成

	PRIMEQUEST 4000
メモリスロット	64(各 32 スロットある 2 個のシステムボードに分 散)
メモリスロットの種類	DIMM (DDR5) RDIMM、LR-DIMM
メモリ速度	最大 4800 MT/s (1DPC) または 4400 MT/s (2DPC)
メモリ容量 (接続元 - 接続先)	最小. 32 GB ~ 最大 16 TB(DDR5 DIMM の合計)
メモリ保護	SDDC、ADDDC-MR、メモリミラーリング(完全 ミラーリングとアドレス範囲のミラーリング)
メモリの注記	システムボードに少なくとも1DIMM を取り付け る必要があります(システムボードごとに 32 DIMM スロット)。

表 5: PRIMEQUEST 4000 でのメモリモジュール構成の指定

インターフェース

	PRIMEQUEST 4000
USB コネクタ	8 x USB 3.0 (8 x フロント)
グラフィック(15 ピン)	2 x VGA (2 x フロント)

	PRIMEQUEST 4000
LAN/Ethernet (RJ-45)	4 x Maintenance LAN ポート(1000 Mbit/s)
	2 x Management LAN ポート(1000 Mbit/s)

表 6: インターフェースの仕様

I 各 SB に KVM インターフェースが接続されています(常時接続ではありません)。KVM インターフェースに接続するには、フロントカバーを取り外します。フロントカバーを取り外した状態での動作の継続はサポートしません。

USB タイプの外部ディスクまたは USB タイプのフラッシュメモリ接続 は、保証ではサポートされていません。

オンボードまたは内蔵コントローラ

	PRIMEQUEST 4000
RAID コントローラ	2 x 8 ポート RAID 0/1 または RAID 5/6 コントロー ラ(オプション)
リモートマネジメントコ ントローラ	リモートマネジメントコントローラ(iRMC S6、グ ラフィックコントローラを含めて 32 MB のメモリ を搭載)、IPMI 2.0 互換
Trusted Platform Module (TPM)	Infineon/独立モジュール、TCG V2.0 準拠(オプション)

表 7: オンボードまたは内蔵コントローラの仕様

オンボードまたは内蔵ストレージ

	PRIMEQUEST 4000
M.2 SSD	オプションとして 2 x M.2 SSD、SATA インターフ ェースによる接続、RAID 0/1/10 のサポート

表 8: オンボードまたは内蔵ストレージの仕様

IOU のスロット

各 IOU に 7 個の PCI スロットがあります。

	PRIMEQUEST 4000
PCI-Express Gen5 x 8	2 x 8Lane スロット(LP)(PHP)
	2 x 8Lane スロット(LP)(PCNC)
PCI-Express Gen5 x 16	1 x 16Lane スロット(LP)
	2 x 16Lane スロット(LP)(CXL)

表 9: IOU スロットの仕様

PCI_Box のスロット

各 PCI_Box に 12 個の PCI スロットがあります。

	PRIMEQUEST 4000
PCI-Express Gen3 x8	12 x 8Lane スロット(FH) (PHP)

表 10: IOU スロットの仕様

ドライブベイ

	PRIMEQUEST 4000
ドライブベイ構成	最大 16 個のドライブベイ
	8 x 2.5 インチ SAS HDD/SSD または 8 x 2.5 イン チ PCle SSD SFF を搭載でき、4 x SAS HDD/SSD と 4 x PCle SSD SFF を混在させることもできま す。
アクセス可能なドライブ に関する注記	使用できるすべてのオプションを、対応するシステ ム構成図に記載しています。

表 11: ドライブベイの仕様

ファン

	PRIMEQUEST 4000
ファンの数	6 個のファン
ファン構成	ホットプラグ

	PRIMEQUEST 4000	
風量	 風量の計算式: 1. ファンデューティベースに基づく式 y: 風量(m³/h)、x: ファンデューティ(%) y = 2E-06x⁴ - 0.0006x³ + 0.0413x² + 9.3239x + 06.020 	
	2. ファン回転速度に基づく式 y: 風量(m ³ /h)、x: FAN#0 の回転速度(rpm) y = 5E-06x ² - 0.0203x + 113.26	

表 12: ファンの仕様

操作パネル

	PRIMEQUEST 4000	
操作ボタン	System Location ボタン	
状態 LED	システム電源(緑色/白色)	
	System Alarm(オレンジ色)	
	System Location(青色)	

表 13: 操作パネルの仕様

寸法/質量

	PRIMEQUEST 4000
ラック (W x D x H)	445 mm x 820 mm x 217.9 mm(フロントベゼルを 除く)
ラックでの取り付け時の 奥行き	910 mm(ラック取り付け時の、ラック前面の列か ら背面のケーブルの端まで)
ハイユニットラック	5 U
19 インチラックマウン ト	はい
ラックでのケーブル配線 時の奥行き	100 mm

	PRIMEQUEST 4000		
質量	最小 61 kg、最大 82.44 kg(実際の質量は構成に よって異なる)		
	PCI_Box の重量 : 35kg		
	 これは、搭載されるオプションデバイスの 最大数の重量です。ただし、ラック取り付 けレール(7 kg)とケーブルは含まれません。 		
ラック取り付けキット	5.7 kg		

表 14: 寸法/質量の仕様

換気クリアランス

前面/背面ともに最低 200mm

周囲の環境

	PRIMEQUEST 4000	
環境クラス 3K2	EN 60721 / IEC 721 Part 3-3	
環境クラス 2K2	EN 60721 / IEC 721 Part 3-2	
温度:		
動作時(3K2)	5°C ~ 35°C (ATO なし)	
	5°C ~ 40°C(ATO 搭載)	
運送時(2K2)	-25 °C ~ 60 °C	
湿度	8% ~ 85%(結露なきこと)、最大露点温度 21 °C (結露なきこと)	

表 15: 周囲の環境の仕様

高度、環境温度、および湿度の条件

	PRIMEQUEST 4000
動作時:	
温度 °C(°F)	(*1)

	PRIMEQUEST 4000
湿度 %RH	20 ~ 80
最大湿球温度 °C(°F)	29 (84.2)
非動作時(*2):	
温度 °C(°F)	05 ~ 50 (32 ~ 122)
湿度 %RH	8 ~ 80
最大湿球温度 °C(°F)	29 (84.2)

表 16: 環境温度と湿度の条件の仕様

(*1)

温度条件は、設置場所の海抜によって異なります(表 17 高度および環境温度 条件の仕様を参照)。許容される設置場所の高度設定 +- 100 m。

(*2)

使用していない場合、既定では、ユニットを梱包して保管する必要があります。

	PRIMEQUEST 4000			
高度 - m(ft)	環境温度条件-°C(°F)			
Advanced Thermal Option なし:				
0 ~ 1000 (0 ~ 3281)	5 ~ 35 (41 ~ 95.0)			
1000 ~ 1500 (3281 ~ 4921)	5 ~ 33 (41 ~ 91.4)			
1500 ~ 2000 (4921 ~ 6562)	5 ~ 31 (41 ~ 87.8)			
2000 ~ 3000 (6562 ~ 9843)	5 ~ 28 (41 ~ 82.4)			
Advanced Thermal Option あり	Advanced Thermal Option あり:			
0 ~ 1000 (0 ~ 3281)	5 ~ 40 (41 ~ 104.0)			
1000 ~ 1500 (3281 ~ 4921)	5 ~ 38 (41 ~ 100.0)			
1500 ~ 2000 (4921 ~ 6562)	5 ~ 36 (41 ~ 96.8)			
2000 ~ 3000 (6562 ~ 9843)	5 ~ 33 (41 ~ 91.4)			

表 17: 高度および環境温度条件の仕様

騒音値(構成によって異なる)

騒音値はシステム構成によって異なります。

	PRIMEQUEST 4000	
音量レベル L _{WAd}	5.3 B 未満(待機時)	
(ISO 9296、25°C 未満)	6.3 B 未満(操作時)	
バイスタンダ位置における音圧レベ	< 34.2 dB (A)(待機時)	
ル L _{pAm} (ISO 9296、25°C 未満)	<44.5 dB (A)(操作時)	

表 18: 騒音レベルの仕様

電源のデータ(ホットプラグ PSU)

	2200 Watt PSU (DPS-2200AB)	2600 Watt PSU (DPS-2600DB)
電気定格 [*]	100 V ~ 127 V / 14 A	200 V ~ 240 V / 15.5 A
	200 V ~ 240 V / 12.6 A	
周波数	50 Hz / 60 Hz	50 Hz / 60 Hz
発熱量	7823 kJ/h(7415 BTU/h)	10289 kJ/h(9752 BTU/h)
主電源	20 A	20 A
保護クラス	1	1

表 19: 電源上のデータの仕様 (ホットプラグ PSU)

^{*}取り付けられている PSU モデルによって異なります。システムのレーティン グプレートを参照してください。

最大 DC 負荷の詳細は、64 ページの「取り付け要件」を参照してください。

	IO_PSU (US50HG)	
電気定格*	100 V ~ 120 V / 7.3 A	
	200 V ~ 240 V / 3.5 A	
周波数	50 Hz / 60 Hz	
発熱量	2498 kJ/h(2368 BTU/h)	
主電源	15 A	
保護クラス	1	

表 20: 電源のデータの仕様 (PCI_Box)

主電源への接続

PRIMEQUEST 4000 は、最小 2 本のコードで、または冗長動作の場合に最大 4 本のコードで主電源に接続されます。ビル設備では、コード接続ごとに適切な ヒューズが必要です(表 19 電源上のデータの仕様(ホットプラグ PSU)を参 照)。アースされたコンセントを使用します(保護クラス | デバイス)。

配電ボードブレーカーの条件

最適な状態でデバイスを使用するには、お客様の配電ボードブレーカーが、次の表の条件を満たしている必要があります。

入力電圧	装置/名前	配電ボードブレーカーの容量		
		日本/海外一般	ブラジル	
AC 100-120 V	シャーシベースユ ニット	20 A	-	
AC 200-240 V	シャーシベースユ ニット	20 A	16 A	
	アウトレットボッ クス	30 A	32 A	

表 21: 配電ボードブレーカーの条件

規則および基準の遵守

	PRIMEQUEST 4000
世界共通	CB-Scheme (ITE)
	CISPR 32
	RoHS(グローバル RoHS 規制に基づく物質制限)
	WEEE (Waste Electrical and Electronical Equipment)
米国/カナダ	安全 NRTL
	FCC 47CFR パート 15 クラス A/ICES-003
日本	VCCI クラス A / JEITA / JFL(日本のエネルギー)
オーストラリア/	AUS/NZ (RCM クラス A EMC)
ニュージーランド	

	PRIMEQUEST 4000
台湾	BSMI
韓国	KC マーク EMC クラス A

表 22: 規則および基準のコンプライアンスの仕様
3 設置手順、概要

この章には、サーバの設置に必要な手順の概要が記載されています。クロスリ ファレンス先の項には、該当するインストール手順の詳細が記載されています。

- ▶ 最初に、39 ページの「注意事項」の 39 ページの「安全について」をお読みください。
- ▶ 設置する場所にサーバを運びます。
- ▶ サーバを開梱し、輸送中に受けた目に見える損傷がないかどうかパッケージの中身を確認して、配達された商品が納品書に記載されている詳細と一致しているかどうかを確認します(55ページの「サーバの開梱」を参照)。
- ▶ 必要なマニュアルが揃っていることを確認します(15ページの「ドキュメントの概要」を参照)。必要に応じて PDF ファイルを印刷します。
- ▶ 追加注文したコンポーネントは、サーバとは別個に配達される場合があります。取り付けについては、元のコンポーネントのマニュアルを参照してください。
- ▶ システムユニットにサーバを設置します(47 ページの「ハードウェアの取り付け」を参照)。
- ▶ サーバの前面にあるコントロールと表示ランプの意味を把握しておきます (を参照 73 ページの「起動と操作」)。
- ▶ OS とアプリケーションをサーバにインストールします。

OS とアプリケーションをサーバにインストールする場合、次のオプションが あります。

- ServerView Installation Manager を使用したリモートインストール

このインストール方法は、LAN 接続と DHCP サーバ(Deployment Server) が使用でき、クローン作成要件を満たしていない場合に推奨します。

ServerView Installation Manager を使用する、または使用しないローカルインストール

ローカルインストールは、最も不便な方法です。リモートインストールの要件もクローニングの要件も満たさない場合に限り推奨します。

ServerView Installation Manager がサポートしていない OS をインストール する場合は、ServerViewInstallation Manager を使用せずにインストールで きます。

サーバのリモートインストールまたはローカルインストールの方法 について、詳細は『ServerView Installation Manager』取扱説明書を参 照してください。

https://www.fujitsu.com/jp/products/computing/servers/primequest/ products/4000/catalog/

4 注意事項

この章では、サーバを取り扱う際の安全についての注意事項について説明します。

4.1 安全について

4.1.1 安全について(基本)

▶ 以下の安全上についての注意事項は、『Safety Notes and Regulations』 ┃ マニュアルにも記載されています。

このデバイスは、IT 機器関連の安全規則に適合しています。目的の環境にサー バを設置できるかどうかについてご質問がある場合は、販売店または弊社カス タマサービス部門にお問い合わせください。

〉 注意

- このマニュアルに記載されている作業は、技術担当者以外は行わないでください。技術担当者とは、ハードウェアおよびソフトウェアを含め、サーバを設置するための訓練を受けている要員のことです。
 - デバイスの修理は、サービス要員が行うものとします。不正にサーバを修理すると保証が無効となり、メーカーの責任は免除されますので、ご注意ください。
 - このマニュアルのガイドラインを遵守しなかったり、不適切な修理を 行うと、ユーザが危険(感電、エネルギーハザード、火災により)に さらされたり、装置が破損する可能性があります。
 - サーバで内部オプションの取り付け、取り外しを行う前に、サーバ、 すべての周辺装置、および接続されているその他すべてのデバイスの 電源を切ってください。また、電源コードをすべてコンセントから抜 いてください。ケーブルを抜かなかった場合、感電の恐れがありま す。

4.1.2 作業を始める前に

- デバイスを設置する際、および操作する前に、お使いのデバイスの環境条件についての指示を守ってください。
 - サーバを低温環境から移動した場合は、マシンの内部/外部の両方で結 露が発生することがあります。サーバが室温に順応し、完全に乾燥し た状態になってから、作業を始めてください。この要件が満たされな いと、サーバが破損する場合があります。
 - サーバを輸送する際は、必ず元の梱包材に入れるか、あるいは、衝撃 からサーバを保護するように梱包してください。

4.1.3 インストールと操作

▲ 注意

- Advanced Thermal Option によって、5<SpecialCharacter Type="NonBreakingSpace"> </SpecialCharacter>°C ~ 40<SpecialCharacter Type="NonBreakingSpace"> </
 SpecialCharacter>°C という幅広い温度範囲でシステムを動作させる ことができます。
 - IEC309 コネクタ付き工業用(一般用)電源回路網から電力を供給する設置にこのデバイスが組み込まれている場合は、(一般用)電源の保護が、A型コネクタの非工業用(一般用)電源回路網の要件に準拠している必要があります。
 - デバイスを主電源電圧から完全に切断するには、すべての電源プラグをコンセントから抜きます。
 - 干渉を防ぐために適切なシールドを施してあるデータケーブルをご 使用ください。
 - ・ 荒天時には、データ伝送ケーブルの接続または切断は行わないでくだ さい(落雷の危険性があります)。
 - ブレスレットやペーパークリップなどの物や液体がデバイス内部に 入る可能性がないことを確認します(感電やショートの危険性があり ます)。

∕ ो 注意

- ▲● 緊急時(たとえば、各コントロール要素、電源ケーブルの破損や、液体や異物の侵入)には、直ちにデバイスの電源を切り、接地された電源コンセントからデバイスを抜き、弊社カスタマサービスセンターに連絡してください。
 - ケースが完全に組み立てられ、取り付けベイの背面カバーが所定の位置に取り付けられている(感電、冷却、防火、干渉抑制)場合のみ、 (IEC 60950-1/EN 60950-1 に従って)デバイスの正しい動作が保証されます。
 - 安全性、電磁環境適合性、および通信端末機器を規定する要件および 規則を満たすシステム拡張機器のみ、取り付けることができます。それ以外の拡張機器を取り付けると、システムが破損したり、安全規定 に違反する場合があります。適合する拡張機器についての情報は、弊 社カスタマサービスセンターまたは販売店で入手できます。
 - 警告ラベル(稲妻マークなど)が付いているコンポーネントを開けたり、取り外したり、交換する作業は、認可された資格を持つ要員以外は行わないでください。
 - システム拡張機器の設置または交換中にデバイスが破損した場合は、 保証が無効になります。
 - モニタのオペレーティングマニュアルに規定されている解像度とリ フレッシュレートのみ設定してください。これを守らなかった場合 は、モニタが出力されないことがあります。製品を購入したメーカー または会社の営業担当者/システムエンジニア(SE)にお問い合わせく ださい。PRIMEQUEST 4000 シリーズに関する照会:ご質問や懸念 がある場合は、Fsas Technologies Contact Line にお問い合わせくだ さい。

4.1.4 バッテリー

▲ 注意

- () バッテリーの交換を正しく行わないと、破裂の危険性があります。 バッテリーは、同じ型のバッテリーか、メーカーが推奨する型のバッ テリーと交換できます。
 - バッテリーはゴミ箱に捨てないでください。

- ▲ バッテリーは、特別廃棄物についての自治体の規制に従って、廃棄す る必要があります。
 - バッテリーを挿入する向きに注意してください。
 - このサーバに使用されるバッテリーは、誤った取り扱いによって火災 または化学熱傷の原因となることがあります。バッテリーの分解、 100 °C(212 °F)に達する加熱、焼却は行わないでください。
 - 汚染物質が含まれているバッテリーには、すべてマーク(ゴミ箱の絵に×印)が付いています。また、以下のような汚染物質として分類されている重金属の化学記号も記載されます。
 Cd カドミウム
 Hg 水銀
 Pb 鉛

4.1.5 静電気に非常に弱いデバイスが搭載されたモジュー ル

静電気に非常に弱いデバイスが搭載されたモジュールは、以下のステッカーで 識別されます。

図 3: ESD ラベル

ESD(ElectroStatic Discharge) ラベルが付いたコンポーネントを取り扱う際は、必ず次の点を守ってください。

- ▶ システムの電源を切り、電源コンセントから電源プラグを抜いてから、ESD が搭載されたコンポーネントの取り付けや取り外しを行ってください。
- ▶ このようなコンポーネントを取り扱う前に、接地された物(アース)に触れるなどして静電気の帯電を常に放電する必要がある。

- ▶ 使用するすべてのデバイスやツールは、静電気の影響を受けないようにする。
- ▶ 自分とシステムユニットを接続する適切な接地ケーブル(アース)を手首に 巻く。
- ► ESD が搭載されたコンポーネントを持つ場合は、必ず端または緑色の部分 (タッチポイント)を握る。
- ▶ ESD のコネクタや導電路に絶対に触らない。
- ▶ すべてのコンポーネントを静電気フリーなパッドに配置する。

4.1.6 その他の注意事項

- ▶ お手入れの際は、106 ページの「サーバのお手入れ」の指示に従ってください。
- ► このオペレーティングマニュアルとその他のドキュメント(アップグレード &メンテナンスマニュアルやドキュメント DVD など)はデバイスの近くに 保管してください。他メーカーに機器を譲渡する場合は、すべてのドキュメ ントを同梱してください。

4.2 FCC クラスA 適合性宣言

デバイスに FCC 宣言の表示がある場合は、本書に別段の規定がない限り、この宣言は本書に記載されている製品に適用されます。その他の製品に関する宣言は、付属のドキュメントに記載されます。

注意:

この機器は、FCC 規則の Part 15 で規定されている「クラス A」デジタルデバ イスの条件に準拠していることが、試験を通じて検証されていて、デジタルデ バイスについてのカナダ干渉発生機器標準 ICES-003 のすべての要件を満たし ています。これらの制限は、本装置を家庭内設置で運用する場合に、電波障害 に対する適切な保護措置が行われるように設計されています。本製品は、無線 周波エネルギーを発生、使用、また放射する可能性があり、無線通信に有害な 干渉を引き起こすことがありますが、手順に厳密に従って設置、利用する場合 はその限りではありません。ただし、特定の設置条件で干渉が発生しないとい う保証はありません。本製品によってラジオまたはテレビに有害な干渉が発生 する場合(機器のスイッチをオン/オフして確認できます)、以下の1つまたは 複数の対策を講じて干渉を修復することを推奨します。

▶ 受信アンテナの方向を変えるか設置場所を変えます。

- ▶ 装置と受信機との距離を広げます。
- ▶ 装置を、受信機が接続されている回路とは別のコンセントに接続します。
- ▶ 販売店または経験を積んだラジオ/TV 技術者にサポートを依頼します。

この機器を許可なく改造したり、Fsas Technologies が指定する以外の接続ケー ブルや機器の代替使用または接続を行った場合は、これによって生じたラジオ またはテレビの干渉について、Fsas Technologies は、一切の責任を負わないも のとします。このような許可のない改造、代替使用、接続によって生じた干渉 は、ユーザの責任で修正するものとします。

本装置をいずれかのオプションの周辺機器またはホストデバイスに接続するに は、シールドされた I/O ケーブルを使用する必要があります。遮蔽 I/O ケーブ ルを使用しないと、FCC および ICES 規則に違反する場合があります。

4.3 サーバの輸送

▲ 注意

サーバを輸送する際は、必ず元の梱包材に入れるか、あるいは、衝撃からサーバを保護するように梱包してください。設置場所に着くまで、サーバの梱包箱を開梱しないでください。

サーバを持ち上げたり運んだりする場合は、他の人に手伝ってもらって ください。

4.4 環境保護

環境に優しい製品の設計と開発

この製品は、「環境に優しい製品の設計と開発」のための Fsas Technologies の 基準に従って設計された製品です。具体的には、耐久性、資材の選択とラベリ ング、排出物、梱包材、分解とリサイクルの容易さなどの要因が配慮されてい ます。これにより資源が節約され、環境への危害が小さくなります。

省電力について

常に電源を入れておく必要のないデバイスは、必要になるまで電源を入れない ことはもとより、長期間使用しない場合や、作業の完了後も電源を切るよう心 がけてください。

梱包材について

梱包材は捨てないでください。システムを輸送するために、梱包材が後日必要 になる場合があります。装置を輸送する際は、できれば元の梱包材に入れてく ださい。

消耗品の取り扱い方法

プリンタの消耗品やバッテリーを廃棄する際は、該当する国の規制に従ってく ださい。

EU ガイドラインに従って、分類されていない一般廃棄物と一緒にバッテリー を廃棄することはできません。バッテリーは、メーカー、販売店、正規代理店 に無料で返却してリサイクルまたは破棄してもらうことができます。

汚染物質が含まれているバッテリーには、すべてマーク(ゴミ箱の絵に×印) が付いています。また、以下のような汚染物質として分類されている重金属の 化学記号も記載されます。

Cd カドミウム Hg 水銀 Pb 鉛

プラスチック製のケース部品のラベル

可能な限り、お客様独自のラベルをプラスチック製の部品に貼らないでください。貼った場合、リサイクルが困難になります。

返却、リサイクルおよび廃棄

返却、リサイクル、廃棄を行う場合は、各自治体の規制に従ってください。 ヨーロッパでのデバイスおよび消耗品の返却とリサイクルに関する詳細は、 『Returning used devices』マニュアルにも記載しています。このマニュアルは、 最寄りの Fsas Technologies の支店または以下のサイトで入手できます。 https://ts.fujitsu.com/recycling

5 ハードウェアの取り付け

注意
 39 ページの「注意事項」の安全についての注意事項に従ってください。
 サーバを極端な環境に置かないでください(表 15 周囲の環境の仕様を参照)。サーバを塵埃、湿度、高温から保護してください。
 サーバを動作させる前に、表 23 環境に順応する時間に示すサーバが環境に順応するための時間を確保してください。
 環境温度条件を確認します。サーバは、表 15 周囲の環境の仕様および表 17 高度および環境温度条件の仕様に記載される環境条件を満たす場所に設置することができます。

温度差(°C)	環境に順応するための最短時間(h)
5	3
10	5
15	7
20	8
25	9
30	10

表 23:環境に順応する時間

表 23 環境に順応する時間に記載されている環境に順応する時間とは、オペレ ーティング環境の温度と、サーバが以前に置かれていた温度(外気温度、輸送 温度、または保管温度)との差異のことです。

5.1 地震対策

地震対策の目的は、コンピュータが転倒して破損することを防止することと、 オペレータの安全とシステムの迅速な回復を保証することです。コンピュータ システムの損傷を防ぐために、Fsas Technologies では「固定構造」と呼ばれる 地震対策を提供しています。(固定構造では、デバイスを所定の位置に固定し て、落下を防止します。) 固定構造の必要性は、以下の要素から判断します。

- 設置場所の床振動の大きさ
- 床が上げ床であるかどうか
- デバイスの構造

地震対策や、地震に備えた作業を実際に行う前に、Fsas Technologies の技術担 当部門にご相談ください。

5.2 エレベーターの積載条件

デバイスが取り付けられたラックは、平均的なコンピュータよりも幅がありま す。そのため、ラックでの運搬にエレベーターを使用するには、エレベーター に搬入する前に、ラックのサイドボードやドアを取り外す必要がある場合があ ります。ラックでの運搬にエレベーターを使用する場合は、下記の表でエレベ ーターの積載条件を参照し、ラックをエレベーターに搬入できるか確認してく ださい。

エレベ ーター コード	積載容 量 [kg]	幅(1)	奥行き (1)	高さ (1)	幅(2)	高さ (2)	ラックモデル 2742/2737/272 4/2642/2624/26 16/1740/1640/1 624
P-6-C0	450	1400	850	2300	800	2100	搬入不可
P-9-C0	600	1400	1100	2300	800	2100	搬入不可
P-11- C0	750	1400	1350	2300	800	2100	搬入可能
P-13- C0	900	1600	1350	2300	900	2100	搬入可能
P-15- C0	1000	1600 1800	1500 1300	2300	900 1000	2100	搬入可能
P-17- C0	1150	1800 3000	1500 1300	2300	1000 1100	2100	搬入可能
P-20- C0	1350	1800 3000	1700 1500	2300	1000 1100	2100	搬入可能

エレベ ーター コード	積載容 量 [kg]	幅(1)	奥行き (1)	高さ (1)	幅(2)	高さ (2)	ラックモデル 2742/2737/272 4/2642/2624/26 16/1740/1640/1 624
P-24- C0	1600	3000 2150	1750 1600	2300	1100	2100	搬入可能

表 24: エレベーターの積載条件

(1) キャビネットの内部寸法 [mm]

(2) ドアの開口部の寸法 [mm]

5.3 設置環境

この項では、PRIMEQUEST 4000 および PCI_Box の設置環境について説明し ます。

5.3.1 ほこり

浮遊粒子

コンピュータルームの浮遊粒子が 0.15 mg/m3 を超えないようにしてくださ い。コンピュータは、浮遊粒子に対処するように設計されています。この値は 通常のオフィスでは許容範囲内です。ただし、この値を通常のコンピュータル ームで維持するには、ほこりなどの浮遊粒子のある屋外の空気の換気が少なく、 たばこの煙がないことが条件となります。

ほこりの除去

ほこりなどの浮遊粒子は、エアコンのフィルタで収集されます。床面と床下を 定期的に清掃して、コンピュータルームからほこりを除去してください。

以下の場合に清掃が必要です。

- コンピュータルームの準備が整ったとき、およびコンピュータを搬入する前。
- コンピュータルームの修復時。

● コンピュータの移動時や、デバイスの再度配置時。

ほこりがたまる場合は、デバイスの周辺のエリアを定期的に清掃します。

5.3.2 腐食性ガス

浮遊粒子

腐食性ガスや塩風により、デバイスは腐食、誤動作、破損し、寿命が著しく低 下します。

適切な空気クリーニング装置を提供して、腐食性ガスを除去してください。また、部屋の空気圧を正圧にして、外部からの腐食性ガスの侵入を防ぎます。化 学工場エリア、温泉/火山帯などが、腐食性ガスの発生元と考えられます。

ガスの名前	許容レベル
硫化水素(H ₂ S)	7.1 ppb 未満
二酸化硫黄(酸化硫黄)(SO ₂)	37 ppb 未満
塩化水素(HCL)	6.6 ppb 未満
塩素(Cl ₂)	3.4 ppb 未満
フッ化水素 (HF)	3.6 ppb 未満
二酸化窒素(窒素酸化物)(NO ₂)	52 ppb 未満
アンモニア (NH3)	420 ppb 未満
オゾン (O3)	5 ppb 未満
流体蒸気	0.2 mg/m ³ 未満

表 25: 腐食性ガスの許容レベル

5.3.3 海水(塩害)

沿岸部では、塩風により大量の海塩粒子が浮遊しています。海塩粒子をコンピ ュータに残しておくと、水分を含んだ粒子や化学的に凝固した粒子によって、 コンポーネントの絶縁不良や腐食劣化が発生します。そのため、コンピュータ は沿岸部から離れた場所に設置する必要があります。

海塩粒子による破損を防止するための取り付け基準を以下に示します。

基準:コンピュータは、沿岸部から 0.5 km 以上離れた場所に設置する必要があります(外部からの空気の侵入を阻止するエアコンがある場合を除きます)。

5.3.4 設置エリア

PQ4000 シリーズサーバは 5U システムです。1 つのラックに最大 5 つのシス テムを取り付けることができます(高さ 27U 未満)。

19 インチラックにサーバを取り付けるときに、設置エリアを確認してください(図を参照)。

図 4: 設置エリア

А	700 mm	モデル : 2724/2737/2742
	800 mm	モデル : 2616/2624/2642

5.4 セットアップワークフロー

5.4.1 ユーザが行う事前準備

ユーザは、以下の事前準備を行う必要があります。

- 製品カタログに記載されている温度および湿度条件を満たす環境を準備し、 設置場所でターゲットサーバの電源の準備を行います。
- ターゲットサーバをネットワーク環境に接続する際は、サーバが接続されているネットワーク環境を確立し、ネットワーク環境が正しく動作することを確認し、サーバのネットワークポートの準備を行います。
- 作業当日の担当者(責任者)の手配。

5.4.2 ユーザが行う作業

ユーザは、指定された順序で以下の作業を行います。

番号	作業項目	作業内容と説明
1	セットアップ	- iRMCの接続と設定(動作環境)
		- 実際の操作に使用する接続環境を設定します。
		実際の動作に使用する IP アドレスを設定するなど、 iRMC 接続環境を設定します。
		- iRMC 設定の初期化
		ユーザアカウント名やシステム名など、iRMC 全体の パラメータを設定します。
		- 各種モードの設定
		必要に応じてモードを設定します。
		- システムの起動とシステムの起動の確認
		システムを起動して、正常に起動したことを確認しま す。
		- 設定情報の保存
		iRMC の設定情報を保存します。
2	OS とバンドル	OS とバンドルソフトウェアをインストールします。
ソフトウェアの インストール		ServerView RAID Manager(SVRM)もインストール する必要があります。
		ハードウェア監視ツールの FC カードユーティリテ ィと SVRM を同時にインストールします。
3	インストール後 の作業	監視方法を指定し、指定した内容を保存します。
4	SNMP とセキュ リティの設定	SNMP とセキュリティを設定します。

5.4.3 フィールドエンジニアが行う作業

フィールドエンジニアはユニットを設定します。これには、次の作業が含まれます。

- 設置されたコンポーネントの確認
- メインユニットの設置の準備
- システムのチェックなど
- フィールドエンジニアは、以下の定期検査も行います。
- エラーログとアラームの確認
- 取り付け条件と使用条件の確認
- サーバのクリーニング

以下の作業は、フィールドエンジニアの範囲外です。

- 製品以外の接続または設定
- ネットワーク環境の構築
- ターゲット装置と周辺装置の輸送
- 電源とネットワークを接続するための構築
- ラックに取り付けられているサーバの交換
- ラックの取り付け(耐震キットなどの取り付けは、フィールドエンジニアの 作業の範囲内です)
- 20 kg 以上、高さ 25U 以上のデバイスのラック取り付け、または 60 kg 以上のデバイスのラック取り付け

5.5 サーバの開梱

∕ ▲ 注意

39 ページの「注意事項」の安全についての注意事項に従ってください。
 PRIMEQUEST 4000 は必ず 4 人以上で持ち運んでください。(『Safety Notes and Regulations』マニュアルを参照してください。)
 設置場所に着くまで、サーバの梱包箱を開梱しないでください。

- ▶ 設置する場所にサーバを運びます。
- ▶ すべての部品を開梱します。

サーバノードを再度輸送する場合に備えて、元の梱包材を保管しておいてく ださい(日本には適用されません)。

- ▶ 輸送中の破損がないかどうか確認します。
- ▶ 配達された商品が納品書に記載されている明細と一致しているかどうかを 確認します。 製品名と製品のシリアル番号は、ID カードに記載されています(73ページの「ID カード(1)」を参照)。
- ▶ 配達された商品が納品書の詳細と一致していない場合は、直ちに納入業者に 通知します。

5.6 サーバのラック取り付け/取り外し

△ 注意

39 ページの「注意事項」に記載されているラックマウント作業の安全上の情報と注意事項をお読みください。

サーバのラックへの取り付けまたは取り外しに関しては、少なくとも4 名以上で作業を行ってください。(『Safety Notes and Regulations』マ ニュアルを参照してください。)

ラックシステム要件

PRIMECENTER ラック、DataCenter ラック、19 インチスタンダードラックの ラックシステムは、PRIMEQUEST4000 の設置に対応しています。

• 現在市販されている大半の他社製ラックシステムへの設置にも対応して ・ います。

Fsas Technologies では、PRIMEQUEST 4000 シリーズサーバ(周辺装置を含む)を他社製のラックに取り付けた場合に問題が発生しないことを保証しません。

例: ラックの構造により冷却空気の供給が不十分なことや、他社製のラ ックの強度が不十分であることが原因の冷却に関する問題など。 換気のコンセプトに適合し適切な換気を確保するため、ラックの未使用領域は ダミーカバーでふさいでください。

電源は、ラックに取り付けられた複数のソケットから供給されます。

Fsas Technologies のラックシステム

PRIMECENTER ラック、DataCenter ラック、19 インチスタンダードラックの 主な特長は以下のとおりです。

- ラックレールキットには前後の長さ調整機能があり、異なる奥行きのラックに調整できます。
- PRIMECENTER ラックと DataCenter ラックについて: 別のラックへのレールの取り付けについては、各ラックのテクニカルマ ニュアルに記載されています。

他社製ラック

他社製のラックに PRIMEQUEST 製品を取り付ける場合、ラックが PRIMEQUEST 製品の仕様と要件を満たしていることを、お客様自身で確認す る必要があります。

Fsas Technologies では、PRIMEQUEST 4000 シリーズサーバ(周辺装置を含む)を他社製のラックに取り付けた場合に問題が発生しないことを保証しません。

例: ラックの構造により冷却空気の供給が不十分なことや、他社製のラ ックの強度が不十分であることが原因の冷却に関する問題など。

他社製のラックへの搭載が必須の場合は、ラックが次の構造上の要件を 満たしていることを確認してください。

チェック 番号	条項	条件	参照先	
ラックの	ラックの長さ			
チェック 1	ポスト間の許容可 能な間隔	695 mm ~ 785 mm	図 5 ラックの長さ を参照してくださ い。	

チェック	条項	条件	参照先
当 ち チェック 2	フロントポストと リアカバーの間の 長さ	>910 mm(35.8 インチ)	図 5 ラックの長さ を参照してくださ い。
チェック 3	フロントポストと フロントカバーの 間の長さ	100 mm(3.9 インチ)よ り長い	図 5 ラックの長さ を参照してくださ い。
ラックの			
チェック 4	左右のポスト間の 距離 (前後のポスト に共通)	450 mm(17.7 インチ) より長い	図 6 ラックの幅を 参照してください。 図 7 ラックポスト の形式を参照して ください。
チェック 5	左右のデバイス取 り付け位置の穴と 穴の間の距離 (前後 のポストに共通)	465 mm(18.3 インチ) より長い (EIA 標準)	図 6 ラックの幅を 参照してください。 図 7 ラックポスト の形式を参照して ください。
チェック 6	ブラケットの取り 付けスペース	図の影付き部分には、干 渉物(補強用ポストまた はオプション)があって はなりません。	図 6 ラックの幅を 参照してください。
ラックのヲ	形式		
チェック 7	穴のピッチ	EIA 標準、汎用ピッチ	図 7 ラックポスト の形式を参照して ください。
チェック 8	穴の形式とサイズ	角穴の両側の長さ: 9.5x9.5 mm(0.37 イン チ)~ 10x10 mm (0.39 インチ)	図 7 ラックポスト の形式を参照して ください。
チェック 9	ケーブル取り出し ロ	ケーブルは、下側または 背面から取り外せます。	図 5 ラックの長さ を参照してくださ い。

チェック 番号	条項	条件	参照先
チェック 10	ラックの搭載容量	合計重量は、ラックの搭 載容量よりも少ない必要 があります。	-
		 ラックの搭載容 量は、耐震対策 が施された場合 変わることがあ ります。 	
チェック 11	ラックの領域開口 率	フロントカバーとリアカ バーの、ラックの領域開 口率は 60% を超える必 要があります。	-
		・ 1 サーバはラック 前面から吸気 し、ラック背面 に排気します。	
チェック 12	ラックの転倒防止 対策	ラックの転倒防止対策を 施す必要があります。	-

図 5: ラックの長さ

1 フロントカバー

3 リアポスト

2 フロントポスト

4 リアカバー

図 6: ラックの幅

- 1 フロントカバー
- 2 フロントポスト
- 3 リアポスト
- 4 リアカバー

- 5 ブラケット取り付け領域
- 6 ブラケット取り付けの幅
- 7 PRIMEQUEST のシャーシの幅
- 8 PRIMEQUEST のシャーシ

図 7: ラックポストの形式

その他の条件

構造上の条件に加えて、以下の条件も検討する必要があります。

- ラックに取り付けられているデバイスの冷却

ラック内部の温度が温度条件を満たすようにラックを取り付けます(26 ペ ージの「サーバの仕様」の「周囲の環境」を参照)。

特に、ラックの空いているスペースの前面を覆い、デバイスからの排気が吸 気口に再循環するのを防ぐために必要な措置を講じます。

- 保守作業領域の確保(サービス領域)

Fsas Technologies の認定サービスエンジニアが行う保守作業に必要なサービス領域を確保します。51 ページの「設置エリア」 および使用するラックの取り付けマニュアルを参照して、サービス領域を決定します。

5.7 デバイスのサーバへの接続

外部デバイス用のコネクタが、サーバの前面にあります。取り付けた拡張カードに応じて、追加のコネクタをサーバで使用できます(オプションの SAS コネクタなど)。

・ 接続できる一部のデバイスには、ドライバなどの特殊ソフトウェアなが 必要です(接続するデバイスについてはマニュアルを参照)。

図 8: フロント (SBU) のコネクタ

各 SBU の前面には、4 つの USB コネクタ(1)とビデオコネクタ(2)があり ます。

► USB またはビデオコネクタを接続する前に、Home SB を確認してください。Home SB の USB コネクタとビデオコネクタのみを使用できます。

モニタの接続

- ▶ モニタのデータケーブルを、SBUの前面のビデオコネクタに接続します。
- ▶ モニタの電源コードを屋内主電源の接地された電源コンセント、またはラックの主電源タップに接続します。

5.8 主電源へのサーバの接続

5.8.1 取り付け要件

電源ユニットサブシステムは以下により構成されます。

- ホットプラグ PSU
- 配電ボード(PDB)

電源サブシステムは最大4台のPSUをサポートし、このPSUはすべてPDB に接続されています。システム全体は定格100V~127V、200V~240V、 14A~12.6A、50Hz~60Hz(2200WPSU)、および200V~240V、 15.5A、47Hz~63Hz(2600WPSU)です。最小システム構成では、2台以 上のPSUを取り付ける必要があります。PSUは、PSUが冗長の場合のみホッ トスワップ可能とみなされます。システムは、*AC 冗長または非AC 冗長をサ ポートする構成にできます。

・ **I** *AC 冗長は、クリティカルなビジネス用途に推奨します。この場合、サ ブシステムの冗長部分が別の AC ソース(無停電電源装置(UPS)など) に接続されているため、停電時もシステムは動作し続けます。

▲ AC 冗長構成および AC 非冗長構成の最大 DC 負荷については、下の表 を参照してください。

AC 冗長構成の場合の取り付け要件

AC 冗長構成の場合、2 台の PSU をメイン AC ソースに接続し、その他の 2 台の PSU を別の AC ソース(UPS など)に接続します。

PSU 構成	最大 DC 負荷	DC 冗長
2+2 (4 PSU)	(200 V ~ 240 V) : 5075 W	はい

表 26: AC 冗長構成の最大 DC 負荷要件(2600W PSU)

PSU 構成	最大 DC 負荷	DC 冗長
2+2 (4 PSU)	(200 V ~ 240 V) : 4290 W	はい

表 27: AC 冗長構成の最大 DC 負荷要件(2200W PSU)

AC 非冗長構成の場合の取り付け要件

AC 冗長を必要としないシステムの場合、最大4台の PSU を使用して電源サブ システムを取り付けることができます。PSU は、単一または複数の AC ソース に接続できます。

PSU 構成	最大 DC 負荷	DC 冗長
2+0 (2 PSU)	(200 V ~ 240 V) : 4290 W	はい
2+1 (3 PSU)		
2+2 (4 PSU)		
3+0 (3 PSU)	100 V ~ 127 V(最大	はい
3+1 (4 PSU)	3190 W)	

表 28: AC 非冗長構成の最大 DC 負荷要件(2200W PSU)

PRIMEQUEST 4000 には以下のものが含まれています。

- 4 x プロセッサ
- 16 TB のメモリ (DDR5 DIMM の合計)
- 18 x PCle アドインカード(SAS RAID コントローラカード搭載)
- 8 台の SAS HDD/SSD、8 台の PCIe SSD SFF または 4 台の SAS HDD/SSD と 4 台の PCIe SSD SFF の混在での搭載が可能

5.8.2 入力電源接続の仕様

宛先	プラグ形式	注記	
100 V	アース端子付きパラ	ウォールマウント配電時の接続	
	レル2極ブラグ 「NEMA Standard 5-15P」	受配電 [] 	アース端子付きパラ レル 2 極プラグ (125 V 15 A)用配電 「NEMA standard 5-15R」

宛先	プラグ形式	注記	
200 V (日本の み)	アース端子付きパラ レル 2 極プラグ 「NEMA standard L6-15P」	ウォールマウント配電時の接続	
			アース端子付きパラ レル 2 極プラグ (250V 15A) 用配電 「NEMA standard L6-15R」
	アース端子付きパラ レル 2 極プラグ 「NEMA standard L6-20P」	ウォールマウント配電時の接続	
		受配電 (P) し D	アース端子付きパラ レル 2 極プラグ (250V 20A) 用配電 「NEMA standard L6-20R」
200 V	IEC60320-C20 タイ プ(Base_Unit の場 合)	配電ボックスでの接続	
		受け側のコン セント形式	IEC60320-C19 タイ プ

表 29: 入力電源接続の仕様(Base_Unit)

宛先	プラグ形式	注記	
100 V	アース端子付きパラ レル 2 極プラグ 「NEMA Standard 5-15P」	ウォールマウント配電時の接続	
		受配電 [] [] 	アース端子付きパラ レル 2 極プラグ (125 V 15 A) 用配電 「NEMA standard 5-15R」
200 V	アース端子付きパラ レル 2 極プラグ 「NEMA standard L6-15P」	ウォールマウント配電時の接続	
		受配電 (マレク)	アース端子付きパラ レル 2 極プラグ (250V 15A) 用配電 「NEMA standard L6-15R」

宛先	プラグ形式	注記	
200 V	IEC60320-C14 タイ プ	配電ボックスでの接続	
		受け側のコン セント形式	IEC60320-C13 タイ プ

表 30: 入力電源接続の仕様 (PCI_Box)

5.8.3 電源コードの配線図

PSU 非冗長(2+0)

電源を非冗長にするには、2 台の PSU と 2 本の電源ケーブル(200 V NEMA L 6 - 20 P)を配線する必要があります。

図 9: PSU 非冗長(2+0)の配線図

PSU 冗長(2+1)

電源を冗長にするには、3 台の PSU と 3 本の電源ケーブル(200 V NEMA L 6 - 20 P)を配線する必要があります。

図 10: PSU 冗長(2+1)の配線図

PSU 冗長(2+2)

電源を冗長にするには、4 台の PSU と 4 本の電源ケーブル(200 V NEMA L 6 - 20 P)を配線する必要があります。

図 11: PSU 冗長(2+2)の配線図

AC 冗長構成の PSU 冗長(2+2)

電源を冗長にするには、4 台の PSU と 4 本の電源ケーブル(200 V NEMA L 6 - 20 P)を配線する必要があります。

図 12: AC 冗長構成の PSU 冗長(2+2)の配線図

PSU 非冗長(3+0)

電源を非冗長にするには、3 台の PSU と 3 本の電源ケーブル(100 V NEMA 5 - 15 P)を配線する必要があります。

図 13: PSU 非冗長(3+0)の配線図

PSU 冗長(3+1)

電源を冗長にするには、4 台の PSU と 4 本の電源ケーブル(100 V NEMA 5 - 15 P)を配線する必要があります。

図 14: PSU 冗長(3+1)の配線図

5.8.4 電源コードの接続

- ▶ サーバの電源コードを PSU に接続します。
- ▶ 電源コードをケーブルクランプで固定し、絶縁コネクタがサーバから誤って 外れないようにします。

- 図 15: 電源コードを固定するためのケーブルクランプ
- ▶ ケーブルクランプにケーブルを通します。

- ▶ ケーブルクランプを引き締め、電源コードを固定します。 これで、絶縁コネクタが誤ってサーバから外れることがありません。
- ▶ 主電源プラグを屋内電源の接地された電源コンセント、またはラックの電源 タップに接続します(ラックのテクニカルマニュアルを参照)。

5.8.5 取り付けおよび接続作業の確認

作業時間:5分

次の手順に従って、取り付けおよび接続作業を確認します。

- ▶ 同梱されている電源ケーブルを使用して、メインユニットと PCI 拡張ユニットを接続します。他の製品に付属する電源ケーブルを使用しないでください。
- ▶ 受け側のコンセントを準備します。できるだけメインユニットと PCI 拡張 ユニットの近くで準備します。

図 16: 上げ床の下の電源ケーブルの接続

1 上げ床

3 水平位置

- 2 垂直位置
- ► コンセントボックス、メインユニット、または PCI ボックスの電源ケーブル を上げ床の下で接続する場合、電源ケーブルコネクタの形状およびケーブル の曲げ半径を、上げ床の下で 300 mm 以上にすることを推奨します。この場 合、コンセントを垂直に取り付けます。

▶ 上げ床の下の高さが 300 mm 未満の場合は、コンセントを水平に取り付けます。

5.9 ケーブルの接続と取り外しに関する注記

∕ ▲注意

- >▶ 接続するデバイスに付属するマニュアルを必ずお読みください。
 - ▶ 雷雨の時にケーブルの抜き差しは行わないでください。
 - ▶ ケーブルを取り外す際に引っ張らないでください。必ずプラグを つかんでケーブルを抜いてください。
 - ▶ 外部デバイスをサーバに接続したり、サーバから取り外す場合に は、以下の手順に従います。
 - ▶ 電源を切った後、すぐに電源を入れる場合は、必ず 10 秒以上待ってから電源を入れてください。

ケーブルの接続

- ▶ すべての電源と装置のスイッチを切ります。
- ▶ 適切に接地された電源コンセントからすべての電源コードを抜きます。
- ▶ すべてのケーブルをサーバと周辺装置に接続します。
- ▶ すべてのデータ通信ケーブルをユーティリティソケットに差し込みます。
- ▶ すべての電源コードを適切に接地された電源コンセントに差し込みます。

ケーブルの取り外し

- ▶ すべての電源と装置のスイッチを切ります。
- ▶ 適切に接地された電源コンセントからすべての電源コードを抜きます。
- ▶ すべてのデータ通信ケーブルをユーティリティソケットから抜きます。
- ▶ サーバとすべての周辺装置からケーブルを抜きます。

 ▲ LAN ケーブルを接続したり取り外したりするときに、サーバの電源を 切る必要はありません。データの喪失を防止するには、チーミング機 能を有効にする必要があります。
6 起動と操作

注意 39ページの「注意事項」の安全についての注意事項に従ってください。

6.1 各部名称と表示ランプ

6.1.1 サーバ前面

図 17: サーバ前面

- 1 ID カード
- 2 2 台目のディスクユニット (DU#1)、 SAS HDD/SSD または PCle SSD SFF 6 1 台目のディスクユニット (DU#0)、 ベイを搭載(オプション)
- 3 操作パネルユニット(OPU)と操作パ ネル(OPL)
- 4 2 台目の SB ユニット (SB#1)

5 1台目の SB ユニット (SB#0)

SAS HDD/SSD または PCIe SSD SFF ベイを搭載

ID カード (1)

ID カードを最後まで引き出して、元に戻せます。ID カードには、サーバの iRMC のデフォルトパスワード、モデル名、部品番号、シリアル番号などのさ まざまなシステム情報が記載されています。

6.1.1.1 OPL のボタンと表示ランプ

OPU には OPL (操作パネル) があります。

OPL には次の機能があります。

- OPL には、システム状態を表示するシステム LED があります。
- OPLにはシャーシの周辺温度を監視するための周辺温度センサが搭載されています。

図 18: OPL のボタンと表示ランプ

- 1 System Power LED
- 2 System Alarm LED

3 System Location LED および Location ボタン

System Power LED (1)

サーバの電源状態を表示します。 色:緑色/白色

System Alarm LED (2)

ユーザが保守できないコンポーネントに、「警告」と「(異常) エラー」が存在 するかを示します。 色:オレンジ色

System Location LED (3)

サーバを識別します。 色:青色

Location ボタン(3)

OPL の System Location LED を強調表示します。

番号	状態	System Power	System Alarm	System Location
1	AC オフおよびパーテ ィション電源オフ	オフ		
2	AC オンおよびパーテ ィション電源オフ	オン(白色)		
3	パーティション電源 オン	オン(緑色)		
4	エラー		オン (オレン ジ色)	
5	識別			オン(青色)

表 31: OPL LED の表示と状態

6.1.1.2 SB ユニットのボタン、コネクタ、表示ランプ

ボタン

図 19: SB ユニットのボタン

1 Force Power Off ボタン 2 iRMC Reset ボタン

Force Power Off ボタン(1)

SB には Force Power Off ボタンがあり、iRMC の故障により SB をオフにでき ない場合に、SB を強制的にオフにできます。SB をオフにするには、5 秒以上 ボタンを押したままにする必要があります。伸ばしたペーパークリップの先端 を使ってボタンを押します。

このボタンは押さないでください。このボタンは、フィールドエンジニアのみが使用します。

iRMC Reset ボタン(2)

OS を停止せずに iRMC をリセットします。iRMC がハングアップした場合は、 このボタンを使用して iRMC をリカバリします。伸ばしたペーパークリップの 先端を使ってボタンを押します。

通常の運用操作中は、このボタンを押さないでください。このボタンは、iRMC がハングしている場合のみ使用してください。

コネクタ

図 20: SB ユニットのコネクタ

1 4 x USB コネクタ(SB ユニットごと) 2 ビデオコネクタ(SB ユニットごと)

表示ランプ

図 21: SB ユニットの表示ランプ

- 1 Power LED
- 2 Alarm LED

- 3 Location LED
- 4 iRMC Status LED

Power LED (1)

SB の電源状態を表示します。 色:緑色

Alarm LED (2)

SB エラーが発生しているかどうかを表示します。 色:オレンジ色

Location LED (3)

SB の識別。 色 : 青色

iRMC Status LED (4)

iRMC の状態を表示します。 色 : 白色

番号	状態	Power	Alarm	Location	iRMC Status
1	AC 入力オフおよ びすべてのパーテ ィション電源オフ	オフ	オフ	オフ	オフ
2	AC オン、パーテ ィション電源オ フ、iRMC ファー ムウェアブート	オフ			点滅 (白色) 0.5 HZ
3	AC オン、パーテ ィション電源オ フ、iRMC ファー ムウェアのブート 完了	オフ			オン (白色)
4	SB を含むパーテ ィション電源オン	オン(緑色)			
5	SBエラー		オン(オレ ンジ色)		
6	SB の識別			オン (青色)	
7	iRMC ファームウ ェアのリブート				点滅 (白色) 0.5 HZ
8	iRMC PFR リカバ リ				点滅 (白色) 0.5 HZ
9	iRMC PFR リカバ リが失敗した				点滅 (白色) 4 HZ

表 32: SB LED の表示と状態

6.1.1.3 DU_SAS の表示ランプ

図 22: DU_SAS の表示ランプ

1 Power LED

3 Location LED

2 Alarm LED

Power LED (1)

DU_SAS の電源状態を表示します。 色:緑色

状態	説明
オン(緑色)	DU_SAS 電源オン
オフ	DU_SAS 電源オフ

Alarm LED (2)

DU_SAS エラーが発生しているかどうかを表示します。 色:オレンジ色

状態	説明
オン(オレンジ色)	DU_SAS エラー
オフ	DU_SAS エラーなし

Location LED (3)

DU_SAS 識別。 色 : 青色

状態	説明
オン(青色)	DU_SAS 識別

6.1.1.4 DU_NVMe の表示ランプ

図 23: DU_NVMe の表示ランプ

1 Power LED

3 Location LED

2 Alarm LED

Power LED (1)

DU_NVMe の電源状態を表示します。

色:緑色

状態	説明
オン(緑色)	DU_NVMe 電源オン
オフ	DU_NVMe 電源オフ

Alarm LED (2)

DU_NVMe エラーが発生しているかどうかを表示します。 色:オレンジ色

状態	説明
オン(オレンジ色)	DU_NVMe エラー
オフ	No DU_NVMe エラー

Location LED (3)

DU_NVMe の識別。 色:青色

状態	説明
オン(青色)	DU_NVMe の識別

6.1.1.5 ホットプラグ SAS HDD/SSD モジュールの表示ランプ

図 24: ホットプラグ SAS HDD/SSD モジュールの表示ランプ

1 SAS HDD/SSD Access LED 2 SAS HDD/SSD Alarm LED

SAS HDD/SSD Access LED (1)

状態	説明
オン(緑色)	HDD/SSD がアクティブ(ドライブがアクティブ、ドライ ブにアクセス中)
オフ	HDD/SSD が非アクティブ(ドライブが非アクティブ)。

SAS HDD/SSD Alarm LED (2)

状態	説明
オフ	HDD/SSD エラーの検出なし。
オン(オレンジ色)	HDD/SSD エラーが検出された。
	考えられる原因:
	– ドライブが故障していて交換の必要がある。
	– RAID リビルドプロセスに失敗した。
	– HDD/SSD モジュールが正しく挿入されていない。
ゆっくり点滅(オ	HDD/SSD RAID リビルド中です。RAID アレイに組み込
レンジ色)	まれていたドライブの交換後にデータを復元中です。

HDD または SSD で継続的にエラーが発生する場合、速やかにドライブを交換 してください。動作中に交換できます。

6.1.1.6 ホットプラグ PCle SSD SFF モジュールの表示ランプ

図 25: ホットプラグ PCle SSD SFF モジュールの表示ランプ

1 PCIe SSD SFF Access LED 2 PCIe SSD SFF Alarm LED

PCIe SSD SFF Access LED (1)

状態	説明
オン(緑色)	PCle SSD SFF がアクティブ(ドライブがアクティブ、ド ライブにアクセス中)。
点滅(緑色) (2 高速点滅、 4 Hz)	PCle SSD SFF は非アクティブ(ドライブが非アクティ ブ)。

PCIe SSD SFF Alarm LED (2)

状態	説明
オフ	PCle SSD SFF エラーの検出なし。
オン(オレンジ色)	PCle SSD SFF エラーが検出された。
	考えられる原因:
	– ドライブが故障していて交換の必要がある。
	– RAID リビルドプロセスに失敗した。
	– PCle SSD SFF モジュールが正しく挿入されていな い。
点滅(オレンジ色)	PCle SSD SFF の識別

PCIe SSD SFF モジュールで継続的にエラーが発生する場合、速やかにドライ ブを交換してください。動作中に交換できます。

6.1.2 サーバの背面

図 26: サーバの背面

- 1 2 x PSU
- 2 3xファンユニット
- 3 2 台目の MLAN ユニット (MLANU#1)
- 4 1 台目の MLAN ユニット (MLANU#0) 8 2 台目の IO ユニット (IOU#1)
- 5 3xファンユニット
- 6 2 x PSU
- 7 1 台目の IO ユニット (IOU#0)

6.1.2.1 IOU の表示ランプ

図 27: IOU の表示ランプ

- 1 Power LED
- 2 Alarm LED
- 3 Location LED
- Power LED (1)

IOU の電源状態を表示します。 色:緑色

Alarm LED (2)

IOU エラーが発生しているかどうかを表示します。 色:オレンジ色

Location LED (3)

IOU の識別。 色:青色

- 4 PCI Slot Alarm LED
- 5 PCI Slot Power LED

PCI Slot Alarm LED (4)

PCI スロットのエラーが発生しているかどうかを表示します。 色:オレンジ色

状態	説明
オン(オレンジ色)	PCI カードスロットエラー
オフ	PCI カードスロットエラーなし

番号	状態	Power	Alarm	Location
1	AC オフおよびパーテ ィション電源オフ	オフ	オフ	オフ
2	IOU を含むパーティ ション電源オン	オン(緑色)		
3	IOU エラー		オン(オレン ジ色)	
4	IOU の識別			オン(青色)

表 33: IOU LED の表示と状態

PCI Slot Power LED (5)

PCIスロットの電源状態を表示します。 色:緑色

状態	説明
オン(緑色)	PCI スロット電源オン
オフ	PCI スロット電源オフ

6.1.2.2 PCI_Box の表示ランプ

図 28: IOU#0 の Slot#2 と Slot#3 の位置

追加の PCI_Box をケーブルで IOU#0 の Slot#2 と Slot#3 に接続できます。

図 29: PCI_Box の表示ランプ

1 Power LED

3 Location LED

2 Alarm LED

Power LED (1)

PCI_Box の電源状態を表示します。 色:緑色

Alarm LED (2)

PCI_Box エラーが発生しているかどうかを表示します。 色:オレンジ色

Location LED (3)

PCI_Box 識別 色:青色

番号	状態	Power	Alarm	Location
1	AC オフおよびパーテ ィション電源オフ	オフ	オフ	オフ
2	PCI_Box を含むパー ティション電源オン	オン(緑色)		
3	PCI_Box エラー		オン (オレン ジ色)	
4	PCI_Box 識別			オン(青色)

表 34: PCI_Box LED の表示と状態

6.1.2.3 MLANU のコネクタと表示ランプ

コネクタ

図 30: MLANU のコネクタ

- 1 Management LAN コネクタ
- 2 Maintenance LAN コネクタ (ローカル)
- 3 Maintenance LAN コネクタ (リモート)

表示ランプ

3

Location LED

図 31: MLANU の表示ランプ

- 1 Power LED
- 2 Alarm LED

Power LED (1)

MLANU の電源状態を表示します。 色:緑色

Alarm LED (2)

MLANU エラーが発生しているかどうかを表示します。 色:オレンジ色

Location LED (3)

MLANU の識別。 色:青色

番号	状態	Power	Alarm	Location
1	AC : オフ	オフ	オフ	オフ
2	AC オンおよび MLANU 電源オン	オン(緑色)		
3	MLANU エラー		オン(オレン ジ色)	
4	MLANU の識別			オン(青色)

表 35: MLANU LED の表示と状態

6.1.2.4 LAN 表示ランプ

図 32: LAN 表示ランプ

1 LAN speed LED

2 LAN link/transfer LED

LAN speed LED (1)

状態	説明
オン(黄色)	転送速度1Gbit/s のデータトラフィック。
オン(緑色)	転送速度 100 Mbit/s のデータトラフィック。
オフ	転送速度 10 Mbit/s のデータトラフィック。

LAN link/transfer LED (2)

状態	説明
オン(緑色)	LAN 接続が確立されました。
オフ	LAN が接続されていません。
点滅 (緑色)	LAN データ転送中です。

Management LAN コネクタはマネジメントインターフェース(iRMC S6)として使用され、リモートマネジメントで使用できるようになって います。

6.1.2.5 PSU の表示ランプ

図 33: PSU の表示ランプ

1 Power/Alarm LED

Power/Alarm LED (1)

AC が PSU に入力されているかどうか、PSU のオン/オフの状態、および PSU エラーが発生しているかどうかを表示します。 色:緑色/オレンジ色

状態	説明
オン(緑色)	AC 入力オンおよびシステム電源オン
オン(オレンジ色)	非冗長電源システム : PSU 故障(PSU は動作してい ません)
	OTP (Over Temperature)、OCP (Over Current Protection)、UVP (Under Voltage Protection)、OVP (Over Voltage Protection)
オン(オレンジ色)	PSU の識別
点滅(オレンジ色)	PSU 故障(PSU はまだ動作中)
	高温、高電力、高電流、低速ファン
点 滅(緑色)	AC 入力オンおよびシステム電源オフ
オフ	すべての PSU の AC 入力オフ

6.1.2.6 FANU の表示ランプ

図 34: FANU の表示ランプ

- 1 Power LED
- 2 Alarm LED

3 Location LED

Power LED (1)

FANU の電源状態を表示します。 色:緑色

Alarm LED (2)

FANU エラーが発生しているかどうかを表示します。 色:オレンジ色

Location LED (3)

FANU の識別。 色:青色

番号	状態	Power	Alarm	Location
1	AC : オフ	オフ	オフ	オフ
2	AC オンおよび FANU 電源オン	オン(緑色)		
3	FANU エラー		オン(オレン ジ色)	
4	FANU の識別			オン(青色)

表 36: FANU LED の表示と状態

6.2 サーバの電源オン/オフ

∕ ▲ 注意

- ・ サーバの電源を入れたまま、持ち運んだり、衝撃や振動を与えたりしないでください。サーバ内部のハードディスクを損傷し、データを消失する原因となります。
 - サーバ本体環境条件の温度条件(5°C~40°C)の範囲内で電源を入れてください。動作環境の詳細については26ページの「サーバの仕様」を参照してください。サーバの保証温度範囲内で使用しないと「データの破損」や「動作が不安定になる」などの問題が発生する場合があります。サーバを動作保証温度範囲外で使用した場合に破損や故障が発生しても、弊社は一切の責任を負いません。
 - 電源を切った後、すぐに電源を入れる場合は、必ず10秒以上待ってから電源を入れてください。
- PQ4000 には電源ボタンがありません。サーバの電源のオン/オフを切り替えるには、iRMC Web インターフェースを使用します。

iRMC Web インターフェースを起動してサーバのオン/オフメニューを 表示するには、『PRIMEQUEST 4000 シリーズ iRMC S6 Web インター フェース』を参照してください。

iRMC Web インターフェースには、サーバの電源のオン/オフを切り替え るさまざまなオプションがあります(『PRIMEQUEST 4000 シリーズ iRMC S6 RESTful API』を参照)。

サーバの電源をオンに切り替える

admin@RMManager	× +	-						•	- 0 ×
iRMC S6 Web Ser	ver	10.103.141.210/system			⊕ Language ∨	<u>e</u> ac	lmin 🗸	Help V	FUJITSU
System	Logs	Tools	Settings	Administration	60			ID	ك 🗲
System Board								_	System power butto
O Power		Overview							
1 Cooling		 System Information 	ation						
S Mass Storage		Model Name	PRI	MEQUEST 4400E					
Software		Chassis Type PQ4400E				- 1			
Network		Serial Number QM22250015							
•		Part Number							
Graphics		Asset Tag	Sys	tem Asset Tag					
		System GUID	000	00000-0000-0000-0000-453030343420					
		BIOS Version	V1.	0.0.0 R0.13.0 for D3986-A1x					
Model Name: PRIMEQUEST 44	400E	 Operating System 	em (OS) Informatio	on					
Host Name: RMManager Asset Tag: System Asset Tag https://10.165.141.218/#	10:19 AM	 System Board I 	nformation						
🔳 🔎 🖬 🌔) 🔚 🖺							^ 🖬 🕼	17:27

図 35: システム電源ボタン

▶ iRMC Web インターフェースを起動して、サーバの「システム電源ボタン」 を選択します。

サーバに電源が入り、システムテストが実行されて OS がブートします。 ハードウェア構成によっては、起動に数分かかることがあります。 POST フェーズ中に、画面に Fujitsu ロゴが表示されます。

サーバの電源オフ

▶ iRMC Web インターフェースを使用して OS を適切にシャットダウンしま す。 その他の電源オプション

- タイマー制御の電源オン/オフ

iRMC S6 のタイマーを使用して、サーバの電源をオン/オフする時刻を設定 できます。

- Wake up On LAN (WOL)

LAN 経由のコマンド(Magic Packet[™])でサーバをオンします。

i WOL は IOU 内の PCI カードでサポートされています。 IPv4 では、LAN カードのみ WOL をサポートします。IPv6 では、FC カードのみ WOL をサポートします。

- 停電後

停電後、サーバは自動的にリブートします (BIOS または iRMC S6 での設定 による)。

6.3 サーバの設定

この項では、サーバの設定および OS のインストールについて説明します。

・ 動作中に BIOS セットアップで省電力機能が無効になっていることを確 認します。

6.3.1 SAS RAID コントローラカードの設定

サーバには、「MegaRAID 機能」を持つ SAS RAID コントローラが搭載されて います。SAS RAID コントローラは、インストール前またはインストール中に ServerView Installation Manager を使用して設定できます。ServerView Installation Manager の使用を推奨します。

Modular RAID コントローラの詳細については、RAID カードのマニュア ルを参照してください。

このドキュメントは、オンラインで入手できます(https:// support.ts.fujitsu.com/)。

■ コントローラのマニュアルに記載されていない OS についての説明は、 ドライバ CD の該当 readme ファイルに記載されています。

6.3.2 Fast Boot の設定

■ BIOS セットアップで「Fast Boot」を Enable に設定した場合、同じデ ■ バイスでも起動時間が異なる場合があります。

6.3.3 メモリミラーの設定

PRIMEQUEST 4000 では、フルミラーモードとアドレスレンジミラーモード は、メモリミラーとしてサポートされ、CPU の機能が使用されます。iRMC Web インターフェースからフルミラーまたはアドレスレンジミラーを選択で きます。

ミラータイプ	説明
Full Mirror	メモリミラーリングは、シャーシに含 まれるすべての SB のメモリに対して 実行されます。
アドレスレンジミラー	メモリミラーリングは、シャーシに含 まれる一部のメモリに対して実行さ れます。ミラーリングするメモリサ イズは BIOS または OS で指定され ます。

表 37: メモリミラーモード

メモリミラ一条件

126 ページの「DIMM の取り付け順序」を参照して DIMM を 取り付けます。

6.3.3.1 アドレス範囲ミラーの設定

この項では、Red Hat Enterprise Linux で**アドレス範囲ミラー**を使用する方法を 説明します。iRMC Web インターフェースで「**管理**」を選択し、「**詳細設定**」 ->「**パーティション構成**」 -> 「SB #x メモリモード」で「アドレス範囲ミラ ー」モードに変更して、BIOS メニューまたは「OS Request」でミラーサイズ を指定する必要があります。

最大および最小ミラーサイズ

"設定手順" で <Percentage of mirror size> に割合を設定できます。

- 最大値は 50 です。
- 最小値には、次の2つのルールがあります。
 - 1. ミラーサイズは 16 GB 以上である必要があります。

たとえば、取り付けられているメモリサイズが 128 GB の場合は 13%、 取り付けられているメモリサイズが 256 GB の場合は 7% です。

2. ミラーサイズの割合は 3% 以上である必要があります。

たとえば、取り付けられているメモリサイズが1TBの場合は3パーセント、取り付けられているメモリサイズが2TBの場合は3パーセントです。

これらのルールでは、1 GB = 1024 x 1024 x 1024 B で計算されます。

設定手順

- ▶ システムを停止します。
- ▶ iRMC Web インターフェースで、「管理」を選択し、「詳細設定」 -> 「パー ティション構成」 -> 「SB #x メモリモード」で「アドレス範囲ミラー」モ ードに変更します。
- ▶ システムを起動します。

▶ OS で次のコマンドを実行します。

efibootmgr -m t -M <Percentage of mirror size>

ミラーサイズの割合については、97 ページの「最大および最小ミラーサイズ」を参照してください。

▶ システムをリブートします。

systemct1 reboot

- ▶ 以下のメッセージが /var/log/message に出力されていることを確認します。 efi: Memory: XXXM/YYYM mirrored memory 数字は XXX および YYY で表示されます。
- ▶ /etc/default/grub を次のように変更します。

GRUB_CMDLINE_LINUX の行に "kernelcore=mirror numa_zonelist_order=zone" を追加します。

▶ 次のコマンドを実行します。

Red Hat Enterprise Linux 8 の場合:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

Red Hat Enterprise Linux 9 の場合:

grub2-mkconfig -o /boot/grub2/grub.cfg

▶ システムをリブートします。

systemct1 reboot

注記

- SBを追加または削除する場合、またはメモリを追加または削除する場合、
 ミラーするメモリサイズの設定は、SBまたはメモリを追加または削除する
 前と同じままになります。
- SB を削除したり、メモリを削除した場合に、「アドレス範囲ミラー」のミ ラーサイズの設定が、ミラーリング可能な最大メモリサイズを超えていない か確認してください。BIOS メニューの「BIOS Menu Setting」でミラーサ イズを指定する場合、各 SB の CPU の下にあるメモリのミラーサイズ設定 が、ミラーリング可能な最大メモリサイズを超えていないかどうかを確認し ます。

- 実際のミラー容量は、指定されたミラー容量よりも最大 "CPU の数 * 3 GB" 小さくなります。そのため、ミラー容量または割合を次のように指定しま す。
 - 指定するミラー容量 >= 要求されるミラー容量 + CPU の数 * 3 GB

たとえば、2 つの SB (4 つの CPU) がすべて取り付けられているシステム のメモリ容量として 256 GB が必要な場合は、アドレス範囲ミラーの設定 に、268 GB (256 GB + 4 CPU * 3 GB) 以上を指定します。

すべてのスロットに 16 GB DIMM が取り付けられ、合計メモリ容量が 384 GB の場合、メモリ領域として 37% 以上を指定すると、256 GB 以上の メモリ領域が保護されます。

Red Hat Enterprise Linux に関する注意事項

- ミラーサイズの割合が最小値未満の場合、OSを起動できない可能性があり ます。
- カーネルで使用されるメモリ領域は、ミラー領域に限定されます。
- システムの動作によっては、カーネルで使用できるメモリが不十分な場合
 や、システムが正常に動作しない場合があります。この場合、ミラーサイズ
 を大きくしてください。

6.3.4 REST API を使用した RAID 構成のバックアップと 復元

以下に、REST API を使用した RAID 構成のバックアップと復元について説明 します。

■ バックアップ後に RAID 構成が変更された場合は、再びバックアップを Ⅰ 行い、バックアップ時と同じ RAID 構成を使用して復元してください。

6.3.4.1 REST API を使用した RAID 構成のパックアップ

▶ Server/HWConfigurationIrmc/Adapters/RAIDAdapter で指定された サブプロファイルを作成します。プロファイルは、以下のコマンドを使用し てプロファイルストアに作成されます。形式は JSON になります。

```
ユーザ:パスワード (admin:admin) と、コマンドの例に示される IP アドレスの部分 (172.17.167.219) は顧客の環境に合わせます。
```

コマンドの例

```
C:\curl -u admin:admin -H "Accept: application/json" -X
POST -i http://172.17.167.219/rest/v1/0em/eLCM/
ProfileManagement/get?PARAM_PATH= Server/
HWConfigurationIrmc/Adapters/RAIDAdapter
```

応答の例

HTTP/1.1 202 Accepted

rest/v1/Oem/eLCM/ProfileManagement/RAIDAdapter

Data: Tue, 08 Dec 2015 09:18:49 GMT

Server: iRMC S6 Webserver

Content-Length: 139

Content-Type: application/json; charset=UTF-8

```
{
```

"Session":{

"id":5,

"WorkSequence": "obtainProfileParameters",

```
"Start":"",
```

```
"Duration":0.
```

```
"Status":"activated"
```

```
}
```

```
-
```

```
▶ プロファイルの内容は次のコマンドで取得できます。内容をファイルに保
 存するには、-oオプションと出力パスを追加します。(例:
 C:RaidConfig.json)
  コマンドの例
 C:\>curl -u admin:admin -H "Accept: application/json" -X
 GET -i http://172.17.167.219/rest/v1/0em/eLCM/
 ProfileManagement/RAIDAdapter -o C:\RaidConfig.json
 応答の例
 HTTP/1.1 200 OK
 Data: Tue. 08 Dec 2015 09:28:54 GMT
 Server: iRMC S6 Webserver
 Content-Length: 865
 Content-Type: application/json; charset=UTF-8
 Content-disposition: attachment:
  filename="rest/v1/Oem/eLCM/ProfileManagement/RAIDAdapter"
  "Server":{
  "HWConfigurationIrmc":{
  "Adapters":{
  "RAIDAdapter":[
  {
  "@AdapterId": "RAIDAdapter1",
  "@ConfigurationType": "Addressing",
  PhysicalDisks:{
  PhysicalDisk:[
  ł
  "@Number":"0".
  "Slot":"0".
```

- ► その後、クリーニングセッションとプロファイルストアに注意する必要があります。
 - ▶ 次のコマンドを使用してセッションを削除します。

コマンドの例

C:\>curl -u admin:admin -H "Accept: application/json" -X DELETE -i http://172.17.167.219/session Information/5/ remove

応答の例

HTTP/1.1 200 OK

Date: Tue, 08 Dec 2015 09:18:55 GMT

Server: iRMC S6 Webserver

Transfer-Encoding: chunked

Content-Type: application/json; charset=UTF-8

▶ 次のコマンドを使用してプロファイルストアからプロファイルを削除します。

コマンドの例

C:\>curl -u admin:admin -H "Accept: application/json" -X DELETE -i http://172.17.167.219/rest/v1/Oem/eLCM/ ProfileManagement/RAIDAdapter

応答の例

HTTP/1.1 200 OK Date: Tue, 08 Dec 2015 09:18:56 GMT Server: iRMC S6 Webserver Transfer-Encoding: chunked Content-Type: application/json; charset=UTF-8

6.3.4.2 REST API を使用した RAID 構成の復元

▶ バックアップした RAID 構成(RaidConfig.json など)用に Sub-Profile を準備します(100 ページの「REST API を使用した RAID 構成のバックアップ」を参照)。

```
▶ 以下のコマンドを使用してプロファイルを適用します。
  コマンドの例
 C:\>curl -u admin:admin -H "Accept:application/ison" -X
  POST -i http://172.17.167.219/rest/v1/0em/eLCM/
  ProfileManagement/set - data@C:\RaidConfig.json
 応答の例
 HTTP/1.1 202 Accepted
 Data: Tue. 08 Dec 2015 09:18:59 GMT
  Server: iRMC S6 Webserver
 Content-Length: 128
 Content-Type: application/json; charset=UTF-8
  ł
  "Session":{
  "id":5.
  "WorkSequence": "applyProfile",
  "Start":"".
  "Duration":0.
  "Status": "activated"
  }
```

▶ プロファイルストアで RAID プロファイルをもう一度作成して、取得します。次に、RAID 操作の結果に従って新しい設定を見つけます。

6.3.5 ServerView Installation Manager を使用したサーバ の設定と OS のインストール

添付の ServerView Suite DVD に収録されている ServerView Installation Manager は、サーバのセットアップを容易にし、OS のインストール作業の簡 素化、サーバ管理用のソフトウェアのインストールを実現します。また、

ServerView Configuration Manager を使用したサーバ固有の設定、ServerView RAID Manager を使用した RAID コントローラの設定が実現できます。

ServerView Installation Manager の利点

- サーバハードウェアとディスクアレイの設定をウィザードでサポートします。
- すべての主要なサーバ OS のインストールをウィザードでサポートします。
- 同じハードウェア構成をした複数の PRIMEQUEST サーバを無人インスト ールするための、設定ファイルの作成をウィザードでサポートします。
- ドライバと追加のソフトウェアをインストールします。

・ インストールできるソフトウェアは、お使いのサーバのハードウェア構成によって異なります。この構成は自動的に検出されます。

I RAID コントローラのマニュアルに記載されていない OS についての説 明は、下記の readme ファイルに記載されています。 https://www.fujitsu.com/global/support/products/computing/servers/ primergy/drivers/ (世界市場向け)。

ServerView Installation Manager の操作方法と追加情報についての詳細は、付属のマニュアルを参照してください。

ServerView Installation Manager を使用している場合は、サーバの設定と OS のインストール方法を説明する次の項をスキップすることができます。

6.3.6 ServerView Installation Manager を使用しないサー バの設定と OS のインストール

OS のインストール

- ▶ 仮想メディアでインストールする OS の CD/DVD/BD を接続します。
- ▶ サーバをリブートします。
- ▶ 画面の指示および OS のマニュアルに従います。

6.4 サーバのお手入れ

▲ 注意

- ▲ サーバの電源を切り、適切に接地された電源コンセントから電源プラ グを抜いてください。
 - 内部部品はご自身でお手入れせず、サービス技術担当者にご依頼ください。
 - 研削材を含む洗浄剤またはプラスチックを腐食させる可能性のある 洗浄剤は使用しないでください。
 - 液体がシステムに入らないようにしてください。サーバおよびモニ タの換気領域はきれいにしてください。
 - クリーニング用スプレーは使用しないでください(可燃性タイプを含む)。デバイスの故障や火災の原因となる可能性があります。
- ▶ キーボードとマウスは殺菌クロスで拭いてください。
- ▶ サーバおよびモニタのお手入れは、乾いた布で拭いてください。特に汚れがひどい場合は、薄めた家庭用洗剤で湿らせてしっかり絞った布を使ってください。

6.5 M.2 SSD 交換後のソフトウェア RAID のリビ ルド

M.2 SSD の 1 つを交換した後、Red Hat Enterprise Linux で M.2 SSD のソフト ウェア RAID をリビルドするには、mdadm コマンドを使用してください。

6.6 ホットプラグの手順

IOU の Slot#0 (PCIC #0) と Slot#1 (PCIC #1)、および PCI_Box のすべての スロットは、ホットプラグをサポートします。各スロットには、PCI スロット の電源状態と、PCI スロットのエラーが発生するかどうかを示す 2 つの LED が あります。

6.6.1 Red Hat Enterprise Linux の交換手順

- ▶ ターゲット PCI カードのスロット番号を確認します。
- ▶ PCI Express スロットの電源状態を確認します。
 - ▶ 最初のステップで確認したスロット番号を使用して、/sys/bus/pci/ slots directory にこのスロット情報用のディレクトリが含まれてい ることを確認します。このディレクトリは、参照および使用されます。以 下では、最初の手順で確認した PCI Express スロット番号が、次の形式の ディレクトリパスの <slot number>の場所に示されます。ここで、ディ レクトリは操作ターゲットです。

/sys/bus/pci/slots/<slot number>

► このディレクトリの "power" ファイルの内容を表示して、スロットの PCI カードの有効/無効を確認します。

cat /sys/bus/pci/slots/<slot number>/power

- ▶ 0 と表示される場合は無効、1 と表示される場合は有効です。
- ▶ PCI Express スロットの電源を切ります。
 - ▶ ターゲットスロットに対応するディレクトリ内の "power" ファイルに "0" を書き込みます。
 - ▶ PCIカードが無効になり、LEDはオフになり、取り外し準備が整います。 この操作により、関連するアダプタに関連するデバイスをシステムから取り外すことができます。

例

PCI Express スロット番号が 20 の PCI Express スロットの電源をオフに します。

echo 0 > /sys/bus/pci/slots/20/power

- ▶ PCI カードを交換します。
- ▶ 2 つ目の手順で、交換した PCI カードの電源状態を確認します。

┇ 詳細は、外付け資料の 137 ページの「付録 2」 を参照してください。

6.6.2 Windows Server の交換手順

- ▶ ターゲット PCI カードのバス番号を確認します(125 ページの「バス番号」 を参照)。
- ▶ デバイスマネージャでターゲット PCI カードを確認します。
 - ▶ デバイスマネージャを開き、最初のステップで確認したバス番号でター ゲットデバイスを特定します。
 - ▶ 交換される PCI カードのタイプのインターフェースと参照プロパティを 選択します。
 - ▶「General」を選択し、「Location」を参照して、セグメント番号とバス番号がターゲットデバイスに対応しているか否かを確認します。次のステップでターゲットデバイス名が必要ですので、事前に確認します。
| el(R) I3 | 350 Gigabit Netv | vork Connection Properties | |
|-------------------|--|---|--------------------|
| Teaming
Genera | a) VLANs B
al Link Spee | oot Options Driver Details R
ed Advanced Power Mana | esources
gement |
| 2 | Device type:
Manufacturer:
Location: | Network adapters
Intel
PCI Slot 4 (PCI bus 96, device 0, func | tion 0) |
| Devic | e status
device is working : | voperlu | |
| 1 nis | device is working p | sropeny. | - |
| | | | |
| | | | * |
| | | | |
| | | | |
| | | | |
| | | | |
| | | OK | Cancel |

- ▶ デバイスマネージャでターゲット PCI カードを無効にします。
 - ▶ 前の手順で特定したターゲットデバイスを選択し、デバイスマネージャを 使用して無効にします。

Device Manager	
File Action View Help	
E AWIN-JOEKP4U8V10	
🕑 🚰 Computer	
E pisk drives	
Display adapters	
DVD/CD-ROM drives	
DE ATA/ATAPI contro	Bers -
Montors	
Network adapters	
Tabal(0) 1250 Gr	Update Driver Software
Tokel(P) 1350 Gk	Disable
Intel(R) 1350 Gr	Uninstal
Intel(R) 1350 Gic	
Intel(R) 1350 Gr	Scan for hardware changes
Intel(R) I350 Giç	Properties
Intel(R) I350 Giga	at Network Connection #8
Other devices	
🖲 🛄 Processors	
G Storage controllers	
🖭 🚛 System devices	
🛞 🏺 Universal Serial Bus co	ntrollers

▶ 後続のダイアログが開いたら、「Yes」をクリックします。

- ► コンピュータから安全に取り外したデバイスを使用して、ターゲット PCI カードを停止します。
 - ▶ デスクトップ表示の右下の情報ゾーンで、コンピュータからデバイスを安 全に取り外すアイコンをクリックします。
 - ▶ 表示される一覧で、特定したターゲットデバイス名をクリックし、PCI カードを無効にします。

同じデバイス名のデバイスが複数あり、デバイスを識別できない場合は、次の手順で削除するデバイスを特定します。

- a)「Safely Remove Hardware」の「Open Devices and Printers」 または「Control Panel」を使用して「Devices and Printers」 を開きます。
- b) ターゲットデバイスを右クリックして「**Properties**」を開きま す。
- c)「Hardware」タブを開き、「Properties」をクリックして、選択 したデバイスがターゲットデバイスであるかを確認します。
- d) デバイスを右クリックして「**Remove device**」をクリックしま す。
- ▶ PCI カードを交換します。
- ▶ デバイスマネージャを使用して交換した PCI カードを確認します。 ターゲット PCI カードを交換したら、デバイスマネージャを開き、ターゲット PCI カードが正しく認識されていることを確認します。
 - 「デバイスマネージャ」ビューで示されるように、デバイスマネージ ャでターゲットデバイスを右クリックして、表示されるメニューに 「有効」がある場合は「有効」にチェックします。

(「無効」の場合は、この作業は必要ありません)

6.6.3 Red Hat Enterprise Linux の追加手順

- ▶ PCI カードの取り付け用 PCI スロットを確認します。
- ▶ PCI カードを取り付けます。

- ▶ 追加した PCI カードの PCI Express スロットの電源状態を確認します。
 - ▶ 最初のステップで確認したスロット番号を使用して、/sys/bus/pci/ slots directory にこのスロット情報用のディレクトリが含まれてい ることを確認します。このディレクトリは、参照および使用されます。以 下では、最初の手順で確認した PCI Express スロット番号が、次の形式の ディレクトリパスの <slot number>の場所に示されます。ここで、ディ レクトリは操作ターゲットです。

/sys/bus/pci/slots/<slot number>

► このディレクトリの "power" ファイルの内容を表示して、スロットの PCI カードの有効/無効を確認します。

cat /sys/bus/pci/slots/<slot number>/power

▶ 0と表示される場合は無効、1と表示される場合は有効です。

6.6.4 Windows Server の追加手順

- ▶ PCI カードの取り付け用 PCI スロットを確認します。
- ▶ PCI カードを取り付けます。
- ▶ デバイスマネージャを使用して、インストールされている PCI カードを確認します。

PCIカードを取り付けたら、デバイスマネージャを開き、新しい PCIカード が正しく認識されていることを確認します。

 「デバイスマネージャ」ビューで示されるように、デバイスマネージ ャでターゲットデバイスを右クリックして、表示されるメニューに 「有効」がある場合は「有効」にチェックします。

(「無効」の場合は、この作業は必要ありません)

6.7 BIOS ファームウェアのアップデートに関す る注意事項

PRIMEQUEST 4000 シリーズサーバは BIOS と iRMC ファームウェアで設定 されます。ファームウェアは、各ファームウェアを統合する統合ファームウェ アとして管理されます。ファームウェアは iRMC からバッチでアップデートさ れます(システム内のすべての場所にあるすべてのファームウェアに適用され ます)。

Intel® TXT 機能を有効にした場合、オフラインアップデートかオンラインアッ プデートかにかかわらず、ファームウェアをアップデートすることはできません。

Intel® TXT 機能を無効にすると、ファームウェアをアップデートできます。

6.8 2.5 インチの HDD/SSD モジュールの取り付け

2.5 インチ HDD/SSD ダミーモジュールの取り外し

図 36: 2.5 インチ HDD/SSD ダミーモジュールの取り外し

▶ 両方のタブを同時に押して(1)、ダミーモジュールをベイから引き出します (2)。

 ダミーモジュールは今後使うかもしれないので、保管しておいてく ださい。

▶ 該当する EMC 指令に準拠し、かつ冷却要件を満たすために、使用 していない HDD/SSD ベイにダミーモジュールを必ず装着してく ださい。

注意

2.5 インチ HDD/SSD モジュールの取り付け

図 37: ロッキングレバーを開ける

▶ 緑色のロッキングクリップをはさんで(1)、ロッキングレバーを開きます (2)。

図 38: 2.5 インチ HDD/SSD モジュールの取り付け

- ▶ ドライブベイに HDD/SSD モジュールを挿入し、慎重に最後まで押し込みます(1)。
- ▶ ロッキングレバーを閉じて、HDD/SSD モジュールを所定の位置に固定します(2)。

► RAID アレイを使用する場合は、追加の HDD/SSD を RAID アレイに追加し ます。

RAID アレイの設定については、構成で使用する RAID コントローラのドキュメントを参照してください。

6.9 PSU の取り付け

ダミーカバーの取り外し

図 39: ダミーカバーの取り外し

- ▶ リリースラッチを押して、ダミーカバーを取り出します。
- 注意 ▶ ダミーカバーは今後使うかもしれないので、保管しておいてください。
 - ▶ PSU を取り外して、すぐに新しい PSU に交換しない場合、該当する EMC 指令に準拠し、かつ冷却要件を満たすために、ダミーカバーをベイに再び取り付けてください。

PSU の取り付け

図 40: PSU の取り付け

- ▶ 目的の PSU を PSU ベイに挿入し、ロッキングラッチが固定されるまで押し込みます。
- ▶ 電源コードを専用の PSU に接続します(63 ページの「主電源へのサーバの 接続」を参照)。
- ▶ 必要に応じて、iRMC S6 Web インターフェースを使用して必要な冗長構成 または非冗長構成を構成します。

7 資産とデータ保護

7.1 機械的アクセスの保護

ロックできるラックドアを使用してサーバへの不正アクセスを防止していま す。

7.2 BIOS セットアップのセキュリティ機能

BIOS セットアップの「**Security**」メニューには、データを不正アクセスから 保護するさまざまなオプションがあります。これらのオプションを組み合わせ て、システムに最適な保護を設定することができます。

■ 「Security」メニューの詳細については、『PRIMEQUEST 4000 シリーズ BIOS セットアップユーティリティリファレンスマニュアル』を参照し てください。

8 トラブルシューティングとヒント

▲ ▲ ▲ ▲

 『Safety Notes and Regulations』マニュアルおよび 39 ページの「注 意事項」に記載される安全についての注意事項に従ってください。

故障が発生した場合は、本章や、接続しているデバイスに関するマニュアル、 および使用しているソフトウェアのヘルプシステムに記載されている措置を講 じて解決を試みてください。

問題を解決できない場合は、次の手順に従います。

- ▶ 故障に至った手順と状況をリストアップします。表示されたエラーメッセ ージもリストアップします。
- ► Fsas Technologies Contact Line に連絡して、何をすべきかを問い合わせて ください。

詳細は『PRIMEQUEST 4000 シリーズ』「はじめにお読みください」を参照 ください。

8.1 System Power LED が点灯しない

サーバを主電源に接続しても、System Power LED が点灯しない。

電源ケーブルが正しく接続されていない

▶ 電源ケーブルがサーバおよび接地された電源コンセントに正しく接続されているかどうか確認します。

8.2 パーティションの電源を自動で切断する

サーバ管理がエラーを検出した

▶ iRMC の Web インターフェースで System Event Log のエラーリストを確認し、エラーをなくします。

8.3 モニタ画面の縞模様のちらつき

∕ 注意

 この場合、予定外の停電やシステムの運用操作に影響する可能性がある ため、パーティションをできるだけ早くシャットダウンします。

モニタが設定された水平周波数をサポートしていない

- ▶ モニタ画面がサポートする水平周波数を確認してください。水平周波数(回線周波数または水平偏向周波数ともいいます)はモニタのドキュメントに記載されています。
- ▶ 水平周波数をモニタに設定する方法について、詳細は OS または画面コント ローラ用ソフトウェアのドキュメントを参照し、記載の手順に従ってください。

8.4 画面が表示されない、または表示がずれる

モニタまたはアプリケーションプログラムに不適切な水平周波数や解像度が選 択されています。

- ▶ モニタ画面がサポートする水平周波数を確認してください。水平周波数(回線周波数または水平偏向周波数ともいいます)はモニタのドキュメントに記載されています。
- ▶ 水平周波数をモニタに設定する方法について、詳細は OS または画面コント ローラ用ソフトウェアのドキュメントを参照し、記載の手順に従ってください。

8.5 日時が正しくない

▶ OS、または BIOS セットアップの「Information」メニューで、「System Date」と「System Time」をそれぞれ選択して、日時を設定します。

 OS がシステム時刻に影響を与えることがあります。たとえば、OS のシステム時刻は Linux のシステム時刻からずれることがあるので、 デフォルト設定ではシャットダウン時にシステム時刻を上書きする ようになっています。

サーバの電源を切ってから再び電源を入れても、まだ日付および時刻が正しく ない場合は、リチウムバッテリーを交換するか(詳細は『PRIMEQUEST 4000 シリーズ リファレンスマニュアル』を参照)、修理センターにお問い合わせく ださい。その代わり、営業担当者またはシステムエンジニア(SE)にお問い合わ せください。PRIMEQUEST 4000 シリーズに関する照会:ご質問や懸念があ る場合は、Fsas Technologies Contact Line にお問い合わせください。

8.6 システムの起動時にドライブが「dead」となる

RAID コントローラの設定が正しくない

▶ RAID コントローラユーティリティを使用してドライブの設定を確認します。詳細については、RAID コントローラのマニュアルを参照してください。 このドキュメントは、オンラインで入手できます。 <https://support.ts.fujitsu.com/IndexDownload.asp? SoftwareGuid=5CFE1F8A-F56B-4190-BC3A-9DDABF7E27F9>

8.7 追加したドライブが「defective」と報告され る

該当のドライブに対して RAID コントローラが設定されていない

該当のドライブは、おそらくシステムの電源が切られているときに取り付けら れたと考えられます。 ▶ 該当するユーティリティを使用してドライブの RAID コントローラを設定 し直します。詳細については、RAID コントローラのマニュアルを参照して ください。

または

▶ システムの電源を入れた状態でドライブの削除と再インストールを行います。ドライブに異常があると引き続き表示される場合は交換します。

8.8 画面上のエラーメッセージ

エラーメッセージの意味は、Fsas Technologies マニュアルサーバに収録されて いる該当コンポーネントおよびプログラムのドキュメントに説明されていま す。

9 付録1

9.1 バス番号

外付け資料の 137 ページの「付録 2」 を参照して、「PCI バス番号からのスロットの場所」を指定します。これは、マルチパス構成で MID: 15039 が検出されますが、ハードログにスロットの位置が表示されないためです。

9.2 デバイスパス

Port/Slot		DevicePath
DU_SAS#0,	Slot#0	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x10,0x0)
DU_NVME#0,		
DU_SAS/NVME#0	Slot#1	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0x4,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
IOU#0	Slot#0	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x10,0x0)
	Slot#1	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x18,0x0)
	Slot#2	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0)
	Slot#3	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
	Slot#4	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x10,0x0)
	Slot#5	PciRoot(0x30) / Pci(0x1,0x0)
	Slot#6	PciRoot(0x110) / Pci(0x1,0x0)
DU_SAS#1,	Slot#0	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0x4,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
DU_NVME#1,		
DU_SAS/NVME#1	Slot#1	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x10,0x0)
IOU#1	Slot#0	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x10,0x0)
	Slot#1	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x18,0x0)
	Slot#2	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0)
	Slot#3	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
	Slot#4	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x10,0x0)
	Slot#5	PciRoot(0x40) / Pci(0x1,0x0)
	Slot#6	PciRoot(0x120) / Pci(0x1,0x0)
PCI_Box#0	Slot#0	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x9,0x0)
	Slot#1	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0)
	Slot#2	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x1,0x0)
	Slot#3	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x5,0x0)
	Slot#4	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x4,0x0)
	Slot#5	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
	Slot#6	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x9,0x0)
	Slot#7	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0)
	Slot#8	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x1,0x0)
	Slot#9	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x5,0x0)
	Slot#10	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x4,0x0)
	Slot#11	PciRoot(0x10) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
PCI_Box#1	Slot#0	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x9,0x0)
	Slot#1	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0)
	Slot#2	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x1,0x0)
	Slot#3	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x5,0x0)
	Slot#4	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0x4,0x0)
	Slot#5	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x8,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0)
	Slot#6	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x9,0x0)
	Slot#7	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0)
	Slot#8	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x1,0x0)
	Slot#9	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x5,0x0)
	Slot#10	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x0,0x0) / Pci(0x4,0x0)
	Slot#11	PciRoot(0x20) / Pci(0x1,0x0) / Pci(0x0,0x0) / Pci(0xC,0x0) / Pci(0x0,0x0) / Pci(0

図 41: デバイスパス(16 進数)

Port/Slot		DevicePath				
USB Port	Port#0	PciRoot(0x0) / Pci(0x14,0x0) / USB(0x8,0x0)				
		PciRoot(0x0) / Pci(0x14,0x0) / USB(0x14,0x0)				
	Port#1	PciRoot(0x0) / Pci(0x14,0x0) / USB(0x7,0x0)				
		PciRoot(0x0) / Pci(0x14,0x0) / USB(0x13,0x0)				
	Port#2	PciRoot(0x0) / Pci(0x14,0x0) / USB(0x6,0x0)				
		PciRoot(0x0) / Pci(0x14,0x0) / USB(0x12,0x0)				
	Port#3	PciRoot(0x0) / Pci(0x14,0x0) / USB(0x5,0x0)				
		PciRoot(0x0) / Pci(0x14,0x0) / USB(0x11,0x0)				
Virtual media	CD/DVD image	PciRoot(0x0) / Pci(0x14,0x0) / USB(0x3,0x0) / USB(0x0,0x0)				
	HDD image	PciRoot(0x0) / Pci(0x14,0x0) / USB(0x3,0x0) / USB(0x1,0x0)				

表 38: デバイスパス、USB 関連(16 進数)

9.3 PCIe SSD SFF スロット番号の交換

DU_NVMe に取り付けられている PCle SSD SFF の取り付け位置については、 iRMC Web インターフェースに表示される PCle SSD SFF 番号を実際の取り 付け位置に置き替える必要があります。

PCle SSD SFF スロット番号	PCle SSD SFF# (iRMC)
0	1
1	0
2	3
3	2

9.4 DIMM の取り付け順序

PRIMEQUEST 4000 は、以下の DIMM をサポートします。

- DDR5 DIMM をサポート。
- 容量が 32 GB、64 GB、128 GB、256 GB の DDR5 DIMM をサポートします。
- DDR5 DIMM(最大 6400 MT/s)をサポート。

PCIe DIMM の取り付け順序

- CPU ごとに少なくとも1枚の DIMM を取り付ける必要があります。
- 1 つの CPU ごとに最大 16 個の DIMM を取り付けることができます。
- 次の表に、DIMM の取り付け順序を示します。DIMM は、数字の小さい順から順に取り付けます。

_		CPU#n							
Memory Mode	Lockstep	0A0	0B0	0C0	0D0	0 E 0	0F0	0G0	оно
		0A1	0B1	0C1	0D1	0E1	0F1	0G1	0H1
Normal	Disabled	1	5	3	4	3	4	2	5
	/Enabled	6	7	6	7	6	7	6	7
Full Mirror	Disabled	1	1	1	1	1	1	1	1
/Address Range		2	2	2	2	2	2	2	2
Mirror	Enabled	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-

付録 1

各 DIMM の混合取り付け条件

RDIMM と RDIMM (3DS) は、DDR CH 内、CPU 内、またはパーティション内で混在させることはできません。システム内で異なるパーティションで混在させることができます。

	32 GB 1R RDIMM	64 GB 2R RDIMM	128 GB 4R RDIMM (3DS)	256 GB 8R RDIMM (3DS)
32GB 1R RDIMM	はい	はい ¹⁾		
64GB 2R RDIMM	はい ¹⁾	はい		
128GB 4R RDIMM (3DS)			はい	はい ²⁾
256GB 8R RDIMM (3DS)			はい ²⁾	はい

表 39: 各 DIMM の混在条件

はい: DDR CH 内で混在可能

空白:DDR CH 内で混在不可

¹⁾ CPU で 1R/2R を混在させる場合、CPU のすべての DDR チャネルは、遠端 (DIMM#xx0) の 2R DIMM と近端(DIMM#xx1) の 1R DIMM の合計 16 枚をサ ポートします。

²⁾ CPU で 4R/8R を混在させる場合、CPU のすべての DDR チャネルは、遠端 (DIMM#xx0)の 16 8R DIMM と近端(DIMM#xx1)の 4R DIMM の合計 16 枚 をサポートします。

	RDIMM	RDIMM (3DS)
RDIMM	はい	
RDIMM (3DS)		はい

表 40: チャネル内の DIMM タイプの混在

はい:サポート対象 空白:未サポート

- DRAM device size が 16GB の DIMM と 32GB の DIMM は DDR CH 内およ びパーティション内で混在不可。
- DDR5-4800 DIMM と DDR5-5600 DIMM は DDR CH 内で混在不可。

各メモリモードの DIMM の混在搭載条件

各メモリモードの DIMM の混在搭載条件を次の表に示します。

同じ記号は、テーブルに定義された同じ DIMM をインストールできることを意味します。

異なる記号は、異なる DIMM を混在できることを意味します。

_					CPU	#n			
Memory Mode	Lockstep	0A0	0B0	0C0	0D0	0E0	0F0	0G0	0H0
		0A1	0B1	0C1	0D1	0E1	0F1	0G1	0H1
Normal	Disabled		Δ	0	☆	∇	\diamond	Â	\heartsuit
	/Enabled	•	2	9	Ĩ	Q	E	ġ	-
Full Mirror	Disabled			Δ	Δ	0	0	☆	☆
/Address Range		∇	∇	\diamond		Ģ	\bigcirc	\heartsuit	\heartsuit
Mirror	Enabled	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-

- ランク数の異なる 3DS 以外の RDIMM を DDR チャネル内で一緒に取り付ける場合は、ランク数が最大の DIMM を遠端に取り付け、ランク数が最小の DIMM を近端に取り付ける必要があります。
- Full Mirror (Capacity Keep) Mode で、CPU の Integrated Memory Controllers (IMC) 間で容量が異なる DIMM が混在する場合、DIMM 故障時のリブート後 に DIMM の容量が減少することがあります。容量を維持するためには、CPU の iMC 間に同じ容量の DIMM を搭載することが必要です。

9.5 設定項目の一覧

UEFI の設定項目

『PRIMEQUEST 4000 シリーズ BIOS セットアップユーティリティリファレン スマニュアル』の「付録 B」、「設定項目の一覧」を参照してください。

iRMC の設定項目

『PRIMEQUEST 4000 シリーズ iRMC S6 Web インターフェース』を参照して ください。

9.6 バンドルソフトウェア

番号	名前	機能	Windows	RHEL
1	DSNAP	基本 OS の動作として実行 している Windows でコマン ドを実行した場合に、基本情 報を収集します。	サポート 対象	サポート 対象外の 構成
2	ソフトウェアサ ポートガイド	トラブルシューティングに 必要な情報の収集に関する ガイダンスを提供します。	サポート 対象	サポート 対象外の 構成
3	HBA 閉塞機能	異常ノードへのアクセスを 停止します。	サポート 対象外の 構成	サポート 対象
4	ServerView Installation Manager (SVIM)	セットアップの作業をサポ ートします。	サポート 対象	サポート 対象
5	ServerView Agentless Service (SVAS)	パーティションユニットの ハードウェアを監視します。	サポート 対象	サポート 対象

表 41: バンドルソフトウェア

FC カードのオンラインツールをインストールすることをお勧めしま す。

9.7 VMware のインストールに関する注意事項

以下では、内蔵 HDD/SSD で構成される RAID 環境を使用して VMware vSphere をインストールする方法と、インストールに関する注意事項について 説明します。

VMware 内部ディスクでの RAID 環境の構築

PRIMEQUEST 4000 シリーズでは、RAID 0、RAID 1、RAID 1E、RAID 5、 RAID 6、RAID 10 および RAID 50 が内蔵 HDD/SSD でサポートされています。

内蔵ハードディスクを使用した RAID 構成の構築の詳細については、次の SAS RAID コントローラガイドを参照してください。

- 12Gb/s MegaRAID SAS Software

VMware バンドルソフトウェアのインストール

バンドルソフトウェアは ServerView Suite DVD(Tools) に保存されています。 ファイルを ServerView Suite DVD(Tools) からコピーして使用できます。

VMware vSphere に必要なバンドルソフトウェアを次の表に示します。

バンドルソフトウェア	インストール先
ServerView ESXi CIM Provider	VMware ESXi

表 42: VMware に接続するソフトウェアのインストール

Address Range Mirror の設定

VMware vSphere 6.5 以降は Address Range Mirror をサポートします。 Address Range Mirror は UEFI メニューで構成します。設定の詳細について は、『PRIMEQUEST 4000 シリーズ D3986 BIOS セットアップユーティリティ リファレンスマニュアル』を参照してください。

9.8 HII Configuration Utility の起動

この章の手順には管理者権限が必要です。

▶「Configuration」を選択して、UEFIで「[Enter]」キーを押します。

Information Configuration Security Boot Exit	<f1:help></f1:help>
• Onboard Devices Configuration	
PCI Subsystem Configuration	
▶ CPU Configuration	
Memory Configuration	
▶ SATA Configuration	
▶ CSM Configuration	
▶ USB Configuration	
▶ Super IO Configuration	
 UEFI Network Stack Configuration 	
Power Configuration	
▶ iSCSI Configuration	
▶ Driver Health	
▶ sadump Configuration	
Network Device List	

図 42: 「Configuration」画面(A)

► RAID コントローラを選択し、「Configuration」画面で「[Enter]」キーを押します。

HII Configuration Utility の「Main Menu」画面が表示されます。

Information Configuration Security Boot Exit	<f1:help></f1:help>
 Onboard Devices Configuration PCI Subsystem Configuration CPU Configuration Memory Configuration SATA Configuration 	
 CSM Configuration USB Configuration Super IO Configuration UEFI Network Stack Configuration Power Configuration 	
 iSCSI Configuration Driver Health sadump Configuration LSI MegaRAID <praid ep420i=""> Configuration Utility - 03.11.08.02</praid> 	

図 43: 「Configuration」画面(B)

↓ メニューと PCI カードの設定については、PCI カードのマニュアルを参照してください。

9.9 パーティション

9.9.1 パーティション機能

PRIMEQUEST 4000 にはパーティション機能があり、シャーシのハードウェア リソースを複数の論理システムに分割し、分割された各システムを個別に動作 させます。

パーティション機能には次の特長があります。

- 複数のサービスを同じシャーシに組み込み、システムを柔軟に運用できます。
- パーティション機能により、1つの Partition の問題が、ハードウェアレベル で別の Partition に影響しないようにします。

すべてのモデルで最大パーティション数は2です。

9.9.2 Partition 粒度

Partition は、Partition を構成する各コンポーネントの粒度を下に示します。

コンポーネント	粒度
SB	物理 SB 1 つ
IOU	物理 IOU 1 つ
DU_SAS	物理 DU_SAS 1 つ
DU_NVMe	物理 DU_NVMe 1 つ
DU_SAS_NVMe	物理 DU_SAS_NVMe 1 つ
PCI_Box	物理 PCI_Box の半分(6 スロット)

表 43: Partition を構成する各コンポーネントのパーティション粒度

9.9.3 Partition 構成規則

Partition 構成は以下のすべての条件を満たす必要があります。

- Partition に複数の SB が含まれていること。
- Partition に複数の IOU が含まれていること。

DU_SAS、DU_NVMe、DU_SAS_NVMe は、それらが属する IOU を有効にす る必要があります。

コンポーネント	要件
SB	1 つ以上
IOU	1 つ以上
DU_SAS	含める必要はありません
DU_NVMe	含める必要はありません
DU_SAS_NVMe	含める必要はありません
PCI_Box	含める必要はありません

表 44:構成に必要なコンポーネント

ソースコンポーネント	対象コンポーネント
IOU#0	DU_SAS#0、DU_NVMe#0、DU_SAS_NVMe#0
IOU#1	DU_SAS#1、DU_NVMe#1、DU_SAS_NVMe#1

表 45: 特定のコンポーネントを含むコンポーネント

Partition 構成の例

最大2つの Partitions をすべてのモデルで作成できます。次の図に、Partition の構成の例を示します。実線は、それらのコンポーネントが取り付けられてい ることを示し、点線は、それらのコンポーネントが取り付けられていないこと を意味します。

図 44: Partition 構成の例

(a) Partition の構成例 1:2 つの Partitions が作成されています。

(b) Partition の構成例 2: SB#0 と SB#1 が Partition#0 に含まれています。

(c) Partition の構成例 3 : 2 つの SB と 1 つの IOU が Partition#0 に含まれています。

(d) Partition の構成例 4: SB と 2 つの IOU が Partition#0 に含まれています。

9.9.4 Partition セットアップ

Partition セットアップは、iRMC Web インターフェースを使用して行います。

iRMC Web インターフェースの詳細については、『PRIMEQUEST 4000 シリーズ iRMC S6 Web インターフェース』を参照してください。

9.9.5 Home SB

CPU の IIO (PCI インターフェース) と PCH レガシー機能を有効にする SB は、Partition を構成する SB の中で Home SB と呼ばれます。Partition には、 必ず 1 つの Home SB が含まれます。

SB を 2 つ含む Partition を構成する場合、iRMC-WebUI を使用して Home SB である SB を指定できます。

Partition に SB が 2 つある場合、SB#0 がデフォルトで Home SB になり、 Home SB を手動で SB#1 に変更できます。

Home SB を Partition から削除すると、残りの SB が Home SB になります。

Reserved SB 動作中の Home SB の設定:

Home SB を Reserved SB に切り替える場合は、Reserved SB を Home SB にします。

Home SB 機能

Home SB では、他の SB とは異なり次の機能が有効です。

1. レガシー IO (PCH)

レガシー IO が有効であり、USB ポートと VGA ポートは Home SB でのみ 使用できます。

2. 基準クロックソース

Home SB のクロックソースは、Partition のクロックソースになります。

9.9.6 Reserved SB

PRIMEQUEST 4000 は Reserved SB 機能をサポートします。

Reserved SB 機能は、故障した SB を Partition から自動的に削除し、シャーシ にあらかじめ取り付けられている予備の SB を Partition にして Partition をリ ブートします。問題が発生した場合に、障害が発生した SB に置き換えられる 予備の SB を Reserved SB といいます。

9.9.7 Flexible I/O

Flexible I/O モードとは、SB と IOU の配置に関係なく、Partition を SB と IOU の任意の組み合わせで構成する機能です。Home SB の CPU のみ、Flexible I/O モードで PCI Express の IO リソースに接続します。システムから表示される PCI バスツリーの構成は、SB リソースと IO リソースが増加しても縮小しても 変更されません。そのため、それらのリソースの変更や故障のよる機能低下に 柔軟に対処できます。

10 付録 2

「PRIMEQUEST4000 PCI Express カードの活性保守およびパーティション停止保守 (CA92344-5849)」を参照。