Practical Use of Lead-Free Tin-Zinc-Aluminum (Sn-Zn-Al) Solder

あらまし

富士通では,環境汚染物質である鉛を製品から全廃することを目標に,全社で段階的な鉛の使用削減に取り組んでいる。今回,新たに鉛フリーはんだとして,錫-亜鉛-アルミニウムから成る製造性・接合信頼性に優れたはんだを開発した。

開発した鉛フリーはんだは,錫-鉛共晶はんだと同等の融点を持ち,普及が始まっている 錫-銀-銅はんだに比べ,低温実装プロセスの実現が可能である。さらに,現状の鉛を含む部 品端子および将来採用が拡大される鉛フリー部品端子に対する接合信頼性にも優れ,早急な 鉛フリー化の推進を可能とする。すでに,一部の富士通製品に本はんだを用いたプリント板 ユニットが搭載されており,今後,ほかの製品への展開を計画している。本稿では,開発し た鉛フリーはんだの基礎特性と実用化に向けての研究成果について述べる。

Abstract

Fujitsu has implemented a company-wide effort to progressively reduce the use of lead and eventually eliminate this environmental pollutant from its products. As part of this effort, it has developed a new lead-free solder that consists of tin, zinc, and aluminum and yet offers superior productivity and joint reliability. The new lead-free solder has a melting point equivalent to that of a tin-lead eutectic solder, and enables devices to be packaged at a lower temperature than with the increasingly popular tin-silver-copper solder. The new lead-free solder ensures highly reliable soldering both for existing component pins that contain lead, as well as lead-free component pins which will be widely used in the future. Thus, the new lead-free solder accelerates the elimination of lead from products. Fujitsu has already used PC boards containing the new lead-free solder in some products, and plans to extend its use to other products. This paper describes the characteristics of the new leadfree solder and the results of a study on its practical use.

神谷佳久(かみや よしひさ) 先行生産技術開発部 所属 現在,鉛フリーはんだを含めた微 細接合技術開発に従事。

本間 仁(ほんま ひとし) 共通テクノロジ統括センターコン ボーネント実装技術部 所属 現在,鉛フリーはんだを含めた微 細接合技術開発に従事。

北嶋雅之(きたじま まさゆき) 先行生産技術開発部先行プロセス 技術開発部 所属 現在,鉛フリーはんだを含めた微 細接合技術開発に従事。

まえがき

富士通では,環境汚染物質である鉛(Pb)を製 品から全廃することを目標に,全社で段階的な鉛の 使用削減に取り組んでいる。具体的には,「富士通 第三期環境行動計画」に基づき,富士通グループ製 品の有鉛はんだ全廃時期を2004年3月末に設定し ている。

すでに,EUのRHS (Restriction of Hazardous Substances in Electrical and Electronic Equipment:欧州危険物質使用制限指令)施行時 期が2006年7月に予定され,電子産業界の対応が注 目されている。国内メーカでは, 第(Sn)-銀 (Ag)-銅(Cu)はんだを用いた製品が広く普及し ているが,表-1に示すように実装プロセスの高温化 を強いられ,有鉛はんだに替わるはんだを使用した ときの部品耐熱性の改善,消費電力量の増加などに よる新たな課題を招く恐れがある。そのため,有鉛 はんだの早期全廃には,部品実装温度の低温化が不 可欠である⁽¹⁾富士通は解決策として,199 の融点 を有し,接合信頼性に優れる錫-亜鉛(Zn)-アルミ ニウム(Al)はんだを世界で初めて開発した。

今回,鉛を含むはんだめっきリードの接合において,Sn-Zn-Biはんだの接合信頼性劣化原因を解明し,さらに,従来Sn-Zn系はんだの欠点であったはんだ濡れ性の低下を,Alの最適添加により改善したはんだペーストを完成させ,一部製品への適用を開始した。

Sn-Zn-Biはんだの接合信頼性

Sn-Zn系はんだは,融点が200 以下と魅力的で あるが,酸化性の激しいZnを含むため,市販のは んだは,はんだ濡れ性の低下をBiを添加すること で補っている。また,CuとZnの反応性の高さから, Sn-Zn系はんだのCuめっき基板への適用は接合信 頼性上困難とされていた。しかし,Cuめっき基板 は,富士通製品基板の主流を占めるため,Cuめっ き基板に対する信頼性確保は必須である。そのため, Cuめっき基板に対するSn-Zn-Bi系はんだの接合信 頼性評価を実施し,製品への適用可否を検証した。

Sn-8Zn-3Bi(wt%)から成る市販のはんだペー ストを用い,窒素雰囲気中ではんだ付けしたCu めっき基板製品は,温度サイクル(-30 ~80 , 300サイクル)試験後に約20%の基板が電気機能不 良となり,はんだとCu基板パッドの界面がはく離 していた。

なお,金(Au)めっきを施した基板においては, 温度サイクル試験後もCuめっき基板で見られたよ うな界面はく離は発生しなかった。Auめっき基板 においては,ニッケル(Ni)-Zn金属間化合物層の 存在が認められ, Cu-Zn金属間化合物層よりも強固 な接合界面を形成していた。また,評価した製品基 板はSMD (Surface Mount Device: 表面実装部) 品)を両面に実装しており,表裏2回のリフロー時 の加熱ストレス,装置組立時の機械的応力が界面は く離を促進したと考える。はく離原因解明のため, 製品製造プロセスを考慮した評価試験を実施した。 評価試験は, Sn-10Pb (wt%)のはんだめっきを 施したCuリードから成るLQFP (Low Profile Quad Flat Package) 208 pinパッケージ部品をCu めっき基板に実装し, 接合強度を評価した。リフ ロー通過回数を2回とし,基板を100mmあたり 1.5 mmそらせ,応力印加状態にした。150 ×100 時間加熱後の信頼性評価において, Sn-8Zn-3Bi (wt%)はんだで接合した基板は,初期ではリード 引張強度が約10 N/リードあったのに対し,150

はんだの種類	中温系はんだ 錫-亜鉛 (Sn-Zn) 系	高温系はんだ 錫-銀 (Sn-Ag) 系	従来有鉛はんだ 錫-鉛 (Sn-Pb) 系
融点()	199	218	183
長所	・錫-鉛共晶はんだの融点に近い ・低価格	・高い接合信頼性 ・機械特性に優れる	・リフローの低温化が可能 (低耐熱部品のリフロー可能) ・低価格
短所	・合金の酸化が激しい ・各種金属との接合信頼性が未知	・高い融点	・有害な鉛を含む
課題	 ・はんだ濡れ性が劣る ・長期接合信頼性 	 ・リフロー温度の均一化 ・部品耐熱性の向上 ・リペア対応 	・EUで全廃予定

表-1 鉛フリーはんだの特徴と課題

×100時間の高温放置後に,界面はく離が発生し, 強度測定が不可能となった⁽²⁾

つぎに,Biを含まないSn-Znはんだで同様の接合 信頼性評価を行った結果,界面はく離の発生が完全 に抑制された。また,Pbを含まないパラジウム (Pd)めっき部品リードで接合信頼性評価を実施し た場合でも界面はく離は発生しないことを確認した。

Sn-Zn-Biはんだを使用した場合のはく離原因を 解明するため,初期接合界面をEPMA(Electron Probe Micro Analyzer)を用いて観察した。その結 果,Cu基板界面に約6µm程度のCu-Zn金属間化合 物層と、はんだ中にはんだ構成元素であるBiと リードめっき成分のPbが同位置に存在するのが確 認された。高温放置後は,Cu-Zn金属間化合物層の 膜厚が約8 µm程度に増加し,はんだ層との界面か らのはく離が認められた。はく離か所近くには, PbとBiの混合層が点在しているのが確認でき, 図-1に示すようにCuめっき基板側には2 μm程度の 凹凸面を持つCu-Zn金属間化合物が一面に存在し, その上部に帯状のBiリッチ層が認められた。また, はんだフィレット側のはく離面には帯状のPbリッ チ層があり,一部にBiが存在していた。Sn-Zn-Bi はんだを用いた場合, Sn-Pbはんだめっきリードと Cuめっき基板における接合では,リードのPbとは んだのBiが混合層を形成し,加熱により接合界面 に偏析後,はんだ中のSnと融合し融点99.5 のSn-Pb-Bi三元共晶組成を形成する。最終的には,低融 点のSn-Pb-Bi三元共晶合金のみで接合界面が保た れるため加熱によりはく離が発生したと考える (図-2)。

AI添加によるZnの酸化抑制

接合信頼性評価結果から,部品のリード材料に Pbを含む場合,Biを含むSn-Zn系はんだをCuめっ き基板の接合に適用することはできない。一方, Biを含まないSn-Znはんだは,加熱による接合面の はく離が発生しにくい長所があるが,Znの酸化反 応性の高さから濡れ性が劣り,はんだペーストの経 時変化が著しいなどの短所がある。

そこで著者らは,Biの代わりにAlを添加することでSn-Zn系はんだの濡れ性を改善させることを考

(a) Cuめっき基板側はく離界面

(b) はんだフィレット側はく離界面

図-1 高温放置後のSn-Zn-Biはんだ接合部はく離界面 Fig.1-Rupture side at junction by Sn-Zn-Bi solder after high temperature leaving.

図-2 Sn-Zn-BiはんだとCuめっきパッド界面はく離発生メカニズム Fig.2-Mechanism of occurrence of interfacial separation between Sn-Zn-Bi solder and Copper pad.

えた。すなわち,はんだ面に存在するZn原子と酸 素分子との反応を,Al原子に代替させることで, はんだ全体の酸化が抑制できると考えた。

Zn表面に酸素分子が吸着すると、表面のZn原子 から電子を吸引し,酸化物が形成される。さらに Zn原子の場合,酸化膜やZn中を酸素分子がすり抜 けて拡散反応が進行し,厚い酸化物層を生成する。 このため,はんだの濡れ性は著しく低下する。一方, Al原子を添加した場合、Al原子の酸化反応が優先 的に行われ,Al原子から成る緻密で薄い酸化膜が 瞬時に形成される。Al原子は表-2に示す化学特性か らも電子を放出しやすく,酸素分子との反応性が高 い。さらに,Zn合金中に含まれるAl原子ははんだ 表面に偏析し,Zn原子と酸素分子の接触を保護す る。AI原子がはんだ表面に偏析する原因は明らか でないが,酸素分子側をプラスとし,はんだ表面側 をマイナスとする界面状態を維持するため,電子放 出性の高いAl原子が連続してはんだ表面に供給さ れるためと考える。

さらに,Al原子から成る酸化膜は,水分の侵入 も抑制するため,高温高湿環境下での耐腐食性向上 が期待できる。

Zn合金中のAI挙動調査

酸化時のAl原子とZn原子の挙動を明確にするた め、ZnとAlのみから成る合金を製作し、加熱処理 前後における合金深さ方向の表面元素分析を行った。 Zn単体およびZn-8Al(wt%)から成る合金に、表 面酸化を促進させる目的で200 ×1時間の加熱処 理を行った。その後、μ-オージェ電子分光装置に より表面より深さ方向の元素分布を分析した。

その結果,Zn単体では初めに表面が酸化され, 徐々に内部まで酸化が進むのに対し,Alを添加し た合金は,酸化が進むとAlが合金表面に偏析して いくことが判明した。すなわち,Al添加Zn合金に おいては,Al原子がZn原子より先に酸化し,合金 はある程度の酸化膜形成後,酸化が進行しないこと が判明した。このため,Al原子はZn合金の酸化性

表-2 Zn, Al, Cu原子の酸化性

電子の放出しやすさの目安	Zn	Al	Cu
イオン化エネルギー (kcal/J)	217	138	178
電気陰性度(ポーリングの値)	1.6	1.5	1.9

抑制に有効な元素であることが確認できた。

また, Sn-Zn-Alのはんだ粉末を形成し,表面状 態をEPMA分析した場合でも,表面から数10 (1 = 1/10 nm)以下の範囲でのみAlが検出され, Alの表面偏析を確認できた。

Sn-Zn-Alはんだの濡れ性改善効果

Sn-Znはんだに,Alを過剰添加すると表面のAl酸 化膜厚が増加し,はんだの濡れ性が損なわれる。今 回,Al添加量を変化させた粒径約 40µmのSn-Zn-Alはんだ粉を作成し,表面の酸化皮膜厚と酸素濃 度から,Al添加量の最適値を検討した。AES (Auger Electron Spectroscopy:オージェ電子分光 法)により,はんだ粉表面より深さ方向の元素分布 を測定した結果,図-3に示すようにAlを添加するこ とにより,Sn-Znはんだ表面でAlが偏析し,はんだ 粉の酸化を抑制することが確認できた。AESを用 いた測定結果では,酸化皮膜厚は,無添加時と比較 し,Alを60ppm程度添加することで1/4以下に減少 した。Alを添加することでAlがはんだ表面全体を 覆い,良好な酸化抑制効果を得たと考えられる⁽³⁾

さらに, Sn-Zn-Alはんだの濡れ性改善効果を確 認するため,メニスカス試験により,大気中の試験 雰囲気で濡れ時間を測定した。

メニスカス試験機を用い,塩酸水溶液で洗浄した 銅板(5mm×40mm×板厚0.1mm)に,RMA (Rosin Mildly Activated)タイプのフラックスを 塗布後,240,250 および260 に加熱したは

図-3 はんだ粉末のAl添加量と酸化膜厚 Fig.3-Amount of Al addition of solder powder and oxidized film thickness.

んだ溶湯中へ,浸漬速度20 mm/sで浸漬深さ5 mm まで浸漬し,濡れ時間を最大8秒間測定した。

Sn-Zn共晶はんだは濡れ時間の測定が不可能で あったが, Sn-8Zn-0.0060Al(wt%)から成るはん だ組成における濡れ時間は,いずれの溶湯温度にお いても2秒以下の値を示した。さらに,図-4に示す ようにSn-Znはんだに対するAlの最適添加範囲は, 約0.0020 ~ 0.0100(wt%)であることを確認した。 また,Znについては,3.0~14.0(wt%)の範囲内 で良好な濡れ時間を得た。

Sn-Zn-Alはんだ接合信頼性

Sn-Zn-AlはんだでSn-Pbはんだめっきを施した CuリードLQFP部品をCuめっき基板に接合部ピー ク温度215 で実装し,接合部界面の断面観察を 行った。

その結果,図-5に示すようにSn-Zn共晶はんだで は,接合初期に金属間化合物層が約6µmあり,は んだ層との界面にカーケンドルボイドが観察された。 高温放置後は,金属間化合物層厚およびカーケンド ルボイドが増加した。Sn-Zn-Alはんだでは金属間 化合物層が接合初期で約1µm,加熱後で約2µmと 薄く,カーケンドルボイドの数も少なく,良好な接 合界面が得られた。これは,添加したAlによって Znの拡散反応による金属間化合物層の成長および カーケンドルボイドの生成が抑制されたものと推測 される。

なお,150 × 1,000時間放置後も,リード引張 強度は,10 N/リード以上を保持した。

さらに,LQFP部品を85 /85%RHの高温高湿環 境に600時間放置後,部品リードの引張強度を測定

図-4 Sn-8Zn-AlはんだのAl添加量とはんだ濡れ時間 Fig.4-Wetting time of Sn-8Zn-Al (wt%) solder.

した。その結果においても, Sn-Zn-AlはんだはAl を添加しないはんだに比べ良好な接合強度を示した。

Sn-Zn-Alはんだの実用化検討

Cuめっき基板から成る製品プリント板ユニット を粒径 40 µmのSn-Zn-Alはんだペーストを用い, 各種接合信頼性試験を実施し,表-3の結果を得た。

なお,開発したはんだペーストは,5 保管で3 か月間保存でき,0.4 mmピッチ印刷パターンにお いて24時間の連続印刷が可能であった。

本評価結果から,富士通周辺機株式会社で,図-6 に示す液晶ディスプレイ製品の量産適用を開始した。

BGAはんだボール実装信頼性

現在,BGA (Ball Grid Array)はんだボールに, Sn-Ag-Cuはんだの適用が開始されているが,Sn-Ag-CuはんだボールとSn-Ag-Cuはんだペーストの 組合せは従来プロセスに比べ高温な実装プロセスを 要する。

実装プロセスの低温化を目的に, Sn-Zn-Alはん だペーストで直径760 µmのSn-Zn-Alはんだボール

(a) Sn-Zn共晶はんだ

図-5 Sn-Zn-AlはんだとCuめっき基板接合界面 Fig.5-Cu plating circuit board jointed interface with Sn-Zn-Al solder.

図-6 Sn-Zn-Alはんだ適用製品(液晶ディスプレイ:VL-151VAW)とプリント板ユニット Fig.6-Photograph of Fujitsu product.

試験項目	試験条件	結果			
MIL加湿サイクル (MIL-STD-202F)	-10 ~65 /湿度80%RH以上 ×5サイクル	合格			
高温クリープ	80 × 500時間	合格			
温度サイクル	-30 ~80 ×3,000サイクル	合格			
振動試験	10~500 Hz/1.5 mm振幅	合格			
落下試験	梱包状態落下	合格			
二酸化硫黄ガス暴露	ガス濃度200 ppm × 10日	合格			
絶縁抵抗劣化試験	40 /湿度90%RH×1,000時間	合格			

- 図-7 金 (Au) めっき電極パッドの 760 µmはんだボー ル接合信頼性
- Fig.7- 760 μm Sn-Zn-Al solder ball share strength on Au electrode pad.

を,接合部ピーク温度215 で評価基板に実装した 後,150 での高温放置試験を実施した。各放置時 間ごとの接合シェア強度(ボールシェア強度)は, 図-7に示すように,良好な結果を得た。

また,直径90 µmのはんだボールを,図-8に示す ようにCuめっき電極パッドに実装した結果,Cu-

図-8 90 µm Sn-Zn-AlはんだボールとCuめっき電極 パッド接合部界面

Fig.8- 90 μ m Sn-Zn-Al solder ball joint on Cu electrode pad.

Zn金属間化合物層厚1µmでシェア強度は,約 500mN/ボールを示した。Sn-Zn-AlはんだはBGA ボールとしての適用可能性も高いと考えられる。

む す び

開発した錫-亜鉛-アルミニウムはんだは,製造性 および接合信頼性において,従来の錫-鉛共晶はん だと同等な特性を有しており,電子機器実装プロセ スにおける鉛フリー化のための有効なソリューショ ンを提供できる。

富士通は,今後も環境保護活動のグローバルトッ プランナを目指し,先駆的な取組みを行っていく所 存である。

参考文献

- (1)北嶋雅之ほか:錫-銀-銅はんだによる鉛フリー化技術. *FUJITSU*, Vol.51, No.5, p.341-344 (2000).
- (2)北嶋雅之ほか:Sn-Zn-Al系鉛フリーはんだ材料の開発.第11回マイクロエレクトロニクスシンポジウム論 文集,大阪,2001-10,エレクトロニクス実装学会,

p.247-250 (2001).

 (3)北嶋雅之ほか:Sn-Zn-Al系鉛フリーはんだの接合信頼性.第12回マイクロエレクトロニクスシンポジウム論文集,大阪,2002-10,エレクトロニクス実装学会, p.179-182(2002).

