

Evaluation of Notebook and Desktop Personal computer through the EcoLeaf Type III Environmental Label

Kensuke Fuse and Satoshi Oikawa Fujitsu Ltd.

EcoDesign 2005 Dec. 12-14, 2005

4th International symposium on Environmentally Conscious Design and Inverse Manufacturing

Introduction

The Purpose of this Study

• In this study, notebook and desktop PC, which EcoLeaf Type III labels are certified, are analyzed and the potentials for effective environmental loads reduction are discussed.

What is the EcoLeaf Label

- •A Japanese version of Type III environmental labeling program launched in June 2002.
- •Promoted by the Japan Environmental Management Association for Industry (JEMAI).

Fujitsu's Activities

- Acquired thirty eight labels for PCs and two for magneto-optic disc drives.
- Acquired System Certification, which enables to verify collected data internally and publish by ourselves, in PC business units.

Notebook PC: 33 products (From Jun. 2003)

4 products (From Apr. 2005) **Desktop PC:**

PC Display: 1 products (From Apr. 2005)

MO: **2 products** (From Sep. 2004)

Sum. 40 products

Data Collection through Global Supply Chain

Supply Chain Data Management

- For Global EMS
- For Chemical Substances (such as RoHS compliance)
- **©** For Fujitsu's Green Assessment
- For Life Cycle Assessment etc...

PSC for Personal Computer

What is PSC

- •A set of standards named Product Specification Criteria (PSC) for each product categories in order to ensure the objectivity and consistency of declared information.
- The first PSC for notebook PCs was developed in 2003 and later modified to include the evaluations of desktop PCs and monitors.

Summary of Personal Computer's PSC

⇒ Functional unit is set as one unit of product. Product stages are divided into five.

[PRODUCTION]

- -Both raw materials acquisition and material manufacturing are calculated at *Materials Production stage*.
- -LCD panel manufacturing, mounting of the main board, and product assembly are considered as foreground data source and reported at *Product Production stage*.

[DISTRIBUTION]

-The transportation between the product assembly site to Japanese domestic customers.

[USE]

- -Three modes are considered: active/standby, energy saving, and off mode.
- -Products are assumed to be in use 240 days a year for 4 years.

[DISPOSAL/RECYCLE]

-The product collection rate is set to 100% and a deduction is made for product reuse, component reuse, and material recycling.

Comparison of Notebook and Desktop PCs

Product Specifications

		FMV-C5200
	FMV-C6200	VL-171SE
CPU	Intel® Celeron® M processor	Intel® Celeron® D processor
	350(1.3GHz)	330 (2.66GHz)
Memory	256MB	256MB
HDD	40GB	40GB
Display type	TFT Clolor LCD	TFT Clolor LCD
Display size	14.1inch	17inch
ODD drive	CD-ROM	CD-ROM
FDD drive	×	0
Product weight	3.39 kg	10.97 kg
Total weight	4.93 kg	14.59 kg
(inc. packaging)		l

Overall Results of Comparisons

Figure: CO₂ emission of Notebook and Desktop PCs

-Life cycle CO₂ emissions of

(including the recycle effects)

 \Rightarrow Notebook PC is 105(kg-CO₂)

 \Rightarrow Desktop PC is 311(kg-CO₂)

THE POSSIBILITIES ARE INFINITE All Rights Reserved, Copyright(C) Fujitsu Limited 2005

Stage Breakdown of Notebook PC

Figure: Stage Breakdown of Notebook PC

- Production stage is as high as Use stages
- due to... -the high manufacturing loads of semiconductor and LCD panel
 - -the low electricity consumption during the operation and standby mode
 - -the short replacement cycle
- ⇒Application of environmentally benign manufacturing processes for semiconductor and LCD panel will contribute to reduce the total CO₂ emission
- **⇒**Electricity reduction during OFF mode is another challenge for further reduction

Stage Breakdown of Desktop PC

Figure: Stage Breakdown of Desktop PC

- **Use stage** is the highest
 - -contributes more than 60% of the total emission
 - -Energy saving capabilities is not as significant as portable products
- **⇒**More efforts can be made to reduce the electricity consumption especially in the operation/standby mode.

Application of Social Cost [EXTRA]

Figure: Social Cost of Notebook PC

Figure: Social Cost of Desktop PC

- •Life cycle impact assessment method based on endpoint modeling* (LIME) is applied.
 - *Developed by the National Institute of Advanced Industrial Science and Technology
- •Human health and Social welfare are the major elements of social costs.
- As a result, social costs of Notebook PC is ¥383, whereas Desktop PC is ¥1,080.

Conclusion

- Data collection from global supply chain is the key issue even in the framework of LCA.
- Environmentally significant stage of notebook PC is different from that of Desktop PC, thus required different solutions.
- Manufacturing of LCD panel and printed circuit board, and electric consumptions during operation/standby and off mode are the key factors to reduce environmental loads of PCs.