Eco-efficiency Factor of Personal Computer Utilizing EcoLeaf and LIME

*Fuse, K.1, Oikawa, S.1, and Ebisu, K.2

Fujitsu LTD.¹ and Fujitsu Laboratories LTD²

Oct. 25-27, 2004 The Sixth International Conference on EcoBalance

Outline

- 1. Introduction
- 2. Fujitsu's Activities toward Eco-efficiency
- 3. Case study
- 4. Discussion
- 5. Conclusion

1. Introduction

[Why applying the Eco-efficiency for IT-Products?]

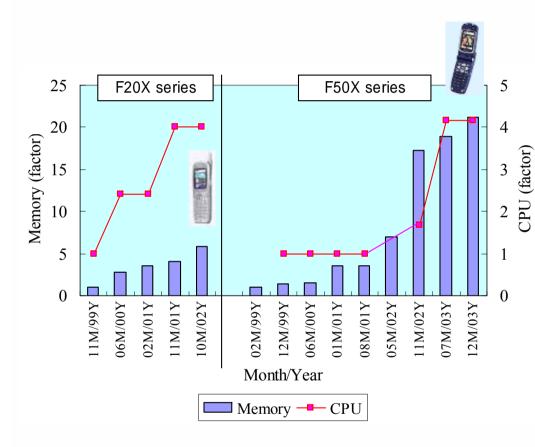
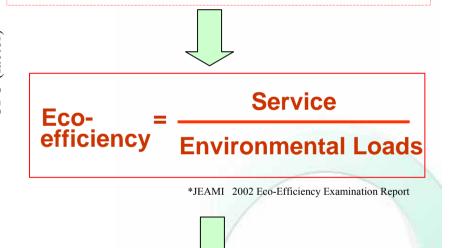



Fig: Transitions of CPU and Memory for mobile phone

- Sustainable Development
 - 1: Maintaining the value of life
 - 2: Reducing the environmental loads

- Development of IT products
 - 1: Rapid increase in the product performance
 - 2: Eco-Design

2. Fujitsu's Activities toward Eco-efficiency

[Eco-efficiency/Factor X]

- Member of the Eco-efficiency Examination Committee sponsored by Ministry of Economy, Trade and Industry (METI)
- Eco-efficiency Factor (by Fujitsu) =

Service (New product/Old product)

Environmental loads (New product/Old product)

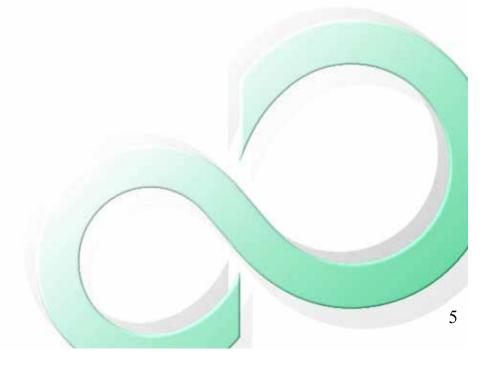
[Application Examples]

Personal Computer
: 2002 Fujitsu Group Environmental Report
: EcoDesign 2002

: 2004 Fujitsu Group Sustainable Report

Scanner : ENVIRO-SHIGA 2003

: 2003 Fujitsu Group Sustainable Report


Mobile Phone : EcoDesign 2003

: 2004 Fujitsu Group Sustainable Report

3. Case Study: Notebook Personal Computer

3-1. Product Selection

A: FMV-5120NA/X

- Released: the year 1996
- Display size: 10.4 inch
- Weight (main body): 4.6 kg

B: FMV-718NU4/B

- Released: the year 2003
- Display size: 14.1 inch
- Weight (main body): 3.4 kg

3-2. Environmental Loads

[Various Eco-Label in accordance with ISO]

Type

The results of the label is expressed by passed/failed and the label is certified by the third party.

Examples...

The Eco Mark Program: by JEA

Type

Companies/Organizations assess and declare the environmental loads individually.

Environmental Emblem: by Fujitsu

Type

The quantitative results of environmental loads based on Life Cycle Assessment (LCA) method.

EcoLeaf

- Promoted by the Japan Environmental Management Association for Industry (JEMAI)
- Started from June 2002
- Registered by 30 companies and 200 products (by Oct. 2004)

Framework of EcoLeaf Env. Label

Consumer

Publication

(Internet, catalogue, exhibition and etc...)

Verification by External Expert

Verification by Internal Expert

Preparation of EcoLeaf Label (PEAD · PEIDS · Product data sheet)

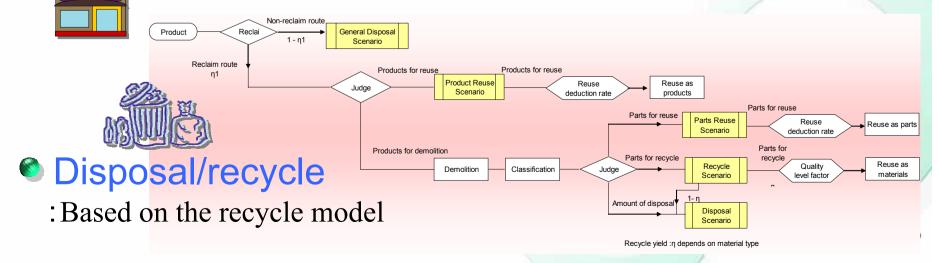
Setting of LCA computation rules for each product category (PSC)

Various verification steps by EcoLeaf program:

Review committee

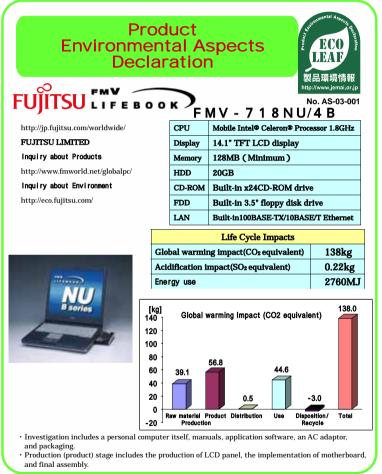
Review committee

Internal verification is allowed only when System Certification is acquired.


Approval by the **PSC review committee**

*PSC: Product Specification Criteria

PSC for Notebook PC


Material Mfg: Acquisition of materials using base unit Background data

- Product Mfg: LCD panel mfg, mounting of main printed circuit board, and product assembly Foreground data
- Transportation: Distance from mfg site to customer is set as 500km. Add overseas transportation if applicable.
- Operation/standby=4.5H/day, Energy saving mode=4.5H/day
 Operation days=240days/yr, operation yrs=4yrs

Results from the EcoLeaf (1)

Product Environmental Aspects Declaration

Notes

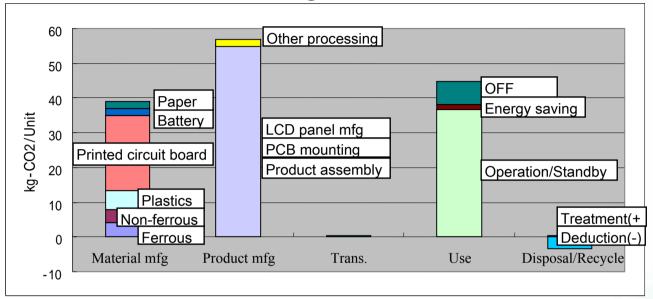
- Visit EcoLeaf website under JEMAI homepage at http://www.jemai.or.jp/ecoleaf_e/ for full details including below.
- Original LCA data is available on PEIDS: Product Environmental Information Declaration Sheet, and Product Data Sheet.
- 3. Unified rules and requirements for EcoLeaf LCA, for intended product category, are available as a PSC: Product Specification Criteria.
- All Unit Functions are based on Japan domestic data. This is due to a lack of base data for full establishment of localized Unit Functions for
 oversea locations for now.

[Supplemental environmental information]

- Conformed to the International Energy Star Program.
- Manufactured at ISO14001 certified factories.

- Obtained in June 2003
- **First** in the PC industry

Product Environmental Information Data Sheet


The state of the s

Product Data Sheet

Results from the EcoLeaf (2)

• CO₂ emission of the each stage (FMV-718NU4/B)

The results of LCI for two products

Unit:	kg
ONTETA/E	

	5120NA/X	718NU4/B		5120NA/X	718NU4/B
(IN)	(old)	(new)	(OUT)	(old)	(new)
Coal	22.5	16.8	CO_2	162	136
Crude oil (fuel)	28.7	22.4	SOx	0.160	0.121
Natural gas	8.27	7.00	NOx	0.180	0.138
Crude oil (ingredients)	2.33	1.14	N_2O	0.00785	0.00635
Iron ore	2.47	1.18	CH₄	0.00278	0.00241
Copper ore	0.112	0.0406	Dust	0.0173	0.0126
Bauxite	0.481	0.228	Soloid waste	5.32	4.35
Water	16900	14000	Slag	2.81	1.64
etc			etc		

Application of LIME for Integration

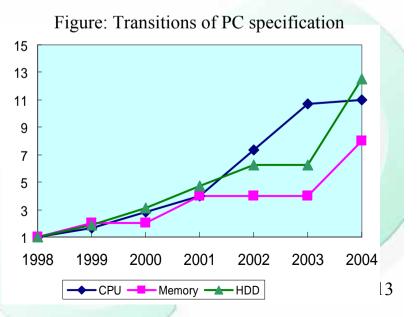
- Life cycle Impact assessment Method based on Endpoint modeling (LIME)
 - Developed by "Research Center for Life Cycle Assessment of the National Institute of Advanced Industrial Science and Technology (AIST)
 - Japanese version of the endpoint-type life cycle impact assessment method
- The result of this case study
 - Apply inventory data from the EcoLeaf to LIME
 - Non-dimensional indicator based on conjoint analysis is selected for integration

Table: The result of integrated environmental loads

	FMV-5120NA/X	FMV-718NU4/B	
Production	246.4	220.2	De-materialized design
Distribution	7.1	3.0	+
Use	122.1	80.9	Energy saving design
Disposition	-2.9	-7.0	
Sum	372.7	297.2	In total -20%
	¥ 642	¥ 512	12

3-3. Service Values (1)

• How to express the product service?


- Fixed?
- Market Survey ?
- Sales Price ?
- Product Functionality ?
- etc...

Premises for the diffusion of Eco-efficiency

- Simplicity : Easily understood by the consumers!
- Clearness : Accessible data from the website!
- Continuity: Able to be calculated in the same criteria!

Core Hardware Specifications

Service Values (2)

Method

- Apply "Hardware Specification" for service parameters
- CPU clock number (GHz), Memory size (MB), and Hard Disk Drive capacity (GB) are selected as core specifications
- In order to unite three different specification, the following equation is applied:

Average of square root = $\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} S_i^2$

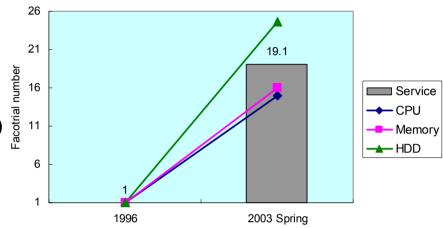


Figure: The comparison of hardware specification

Table: The service value of notebook PC

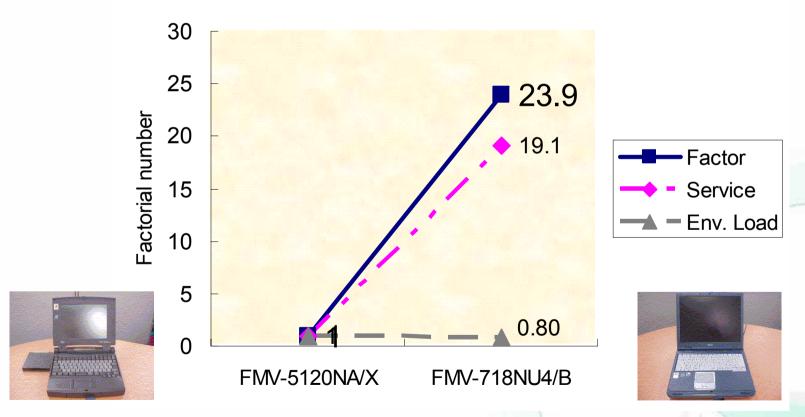
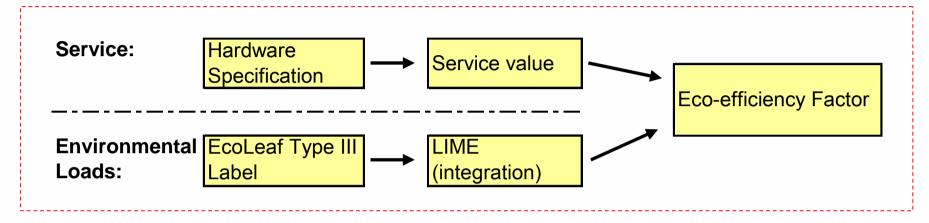
Service	unit	FMV-5120NA/X FMV-718NU4/B		
		(a)	(b)	S=(b)/(a)
CPU	GHz	0.12	1.8	15.0
Memory	MB	8	128	16.0
HDD	GB	0.81	20	24.7

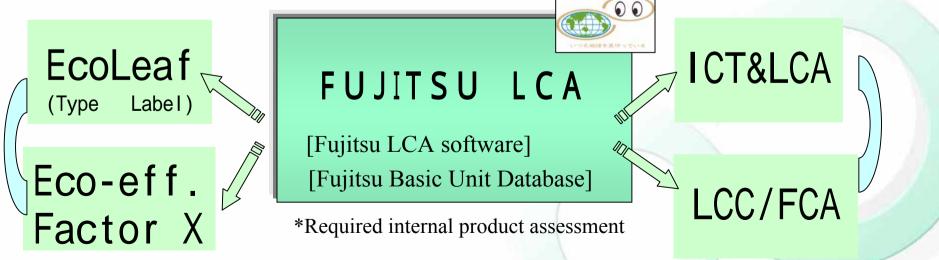
Results

Service value has increased 19 times in seven years

3-4. Result of Eco-efficiency Factor

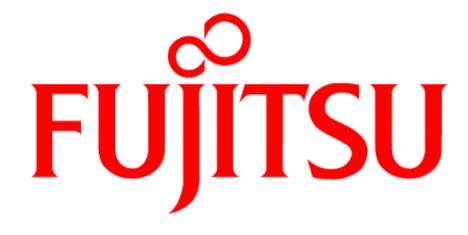
Eco-efficiency Factor $= \frac{Service(\sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} S_{i}^{2}})}{\text{Env. loads} (B/A)} = 19.1/0.8 = 23.9$


Fig. Eco-efficiency Factor of Notebook PC

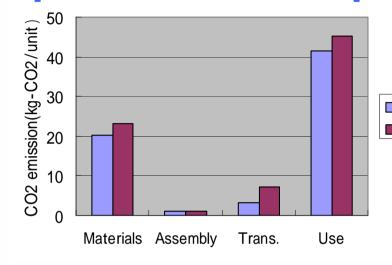
4. Discussion

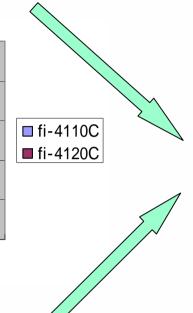
Data Flow of this Case Study



Integration of Eco-indicators

5. Conclusion

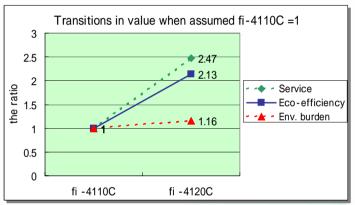

- It is essential to evaluate the <u>service value</u> in the framework of Eco-efficiency, especially for <u>IT products</u>.
- The Eco-efficiency Factor becomes <u>24 times</u> in seven years for the Notebook PC.
- <u>EcoLeaf</u> is the useful data source for inventory analysis and integration of environmental impacts is successfully done by <u>LIME</u> method.
- Factor X is a crucial communication tool in order to purchase excellent and environmentally sounds products.



THE POSSIBILITIES ARE INFINITE

Summary of Scanner

[Environmental Loads]



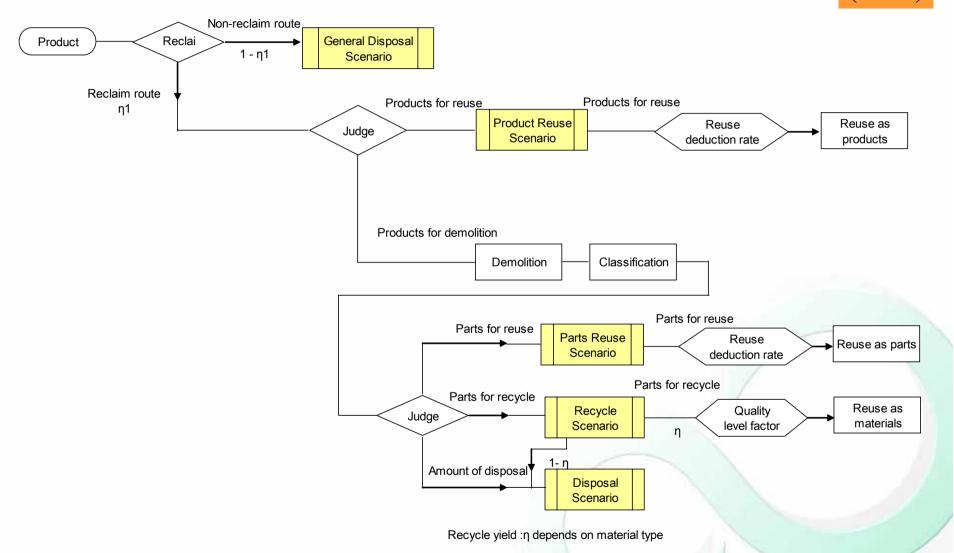
(Extra)

[Result]

2.47

Factor 2.1

[Service]

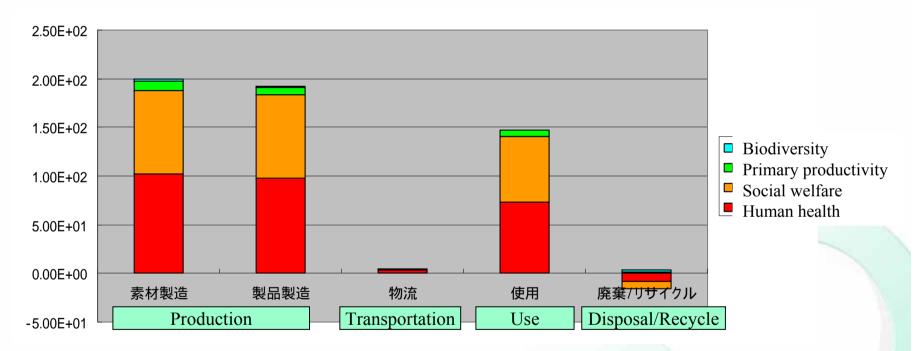

Services	Ratio of new/old			
(Item X)	(Item Y)	S=(b)/(a)	$=\{1/\mathbf{n}\cdot\SigmaS^{\prime}\}$	^2}^0.5
Optical	Basic resolution	2.00	} 3.81	
performance	Readout speed	5.00	J	
Media-processing	Max. media size	1.00	} 1.24	2.
performance	Media thickness	1.44	J	1
Data-processing	Program numbers	1.50	1.50	J
performance	(pre-installed)			

1999 vs. 2002

EcoLeaf Recycling Model

(Extra)

Other EcoLeaf Results of Notebook PC


(Extra)

Life Cycle Cost (LCC)

(Extra)

Compute integrated environmental loads based on monetary units

The Results of Social Cost = \$512 (=\$4.7)

^{*} Applied LIME (Life cycle impact assessment method based on endpoint modeling) developed by the Research Center for Life Cycle Assessment of the National Institute of Advanced Industrial Science and Technology(AIST)