Running uClinux on ARM Cortex-M3 Platform

Fujitsu Computer Technologies Limited
Sun Wei
June 7th 2012
About Me & My Workplace

- graduated from Univ. of Aizu in Sept. 2011
- entered Fujitsu in Oct. 2011
 - embedded software & hardware
 - server, storage system, network appliance
 - system LSI in cell phone, IC card

Firmware Engineering Department I

my work
 - kernel building
 - middleware selection & building
 - cross tool chain customization
Contents

- Introduction
 - Background
 - Basics

- Issues
 - Linux Test Project
 - Middleware
 - Cross tool chain
 - Shared library for uClinux/uClibc
 - Exeecute In Place

- Conclusion
Contents

- Introduction
 - Background
 - Basics
- Issues
 - Linux Test Project
 - Middleware
 - Cross tool chain
 - Shared library for uClinux/uClibc
 - eXecute In Place
- Conclusion
Background

- Applications
 - Merchant Microcontrollers
 - Automotive Control Systems
 - Motor Control Systems
 - White Goods controllers
 - Wireless and Wired Sensor Networks
 - Mass Storage Controllers
 - Printers
 - Network Devices

- Microcontrollers
 - small size
 - low cost
 - multi-function
 - network connection
 - dynamic power

REF: http://www.arm.com/products/processors/cortex-m/index.php
Background

- **ARM Cortex-M Series**
 - cost-sensitive solutions for deterministic microcontroller applications

- **ARM Cortex-M3 processors**
 - designed to deliver industry-leading deterministic behavior, lowest sleep and dynamic power, and smallest area possible whilst maintaining high processing efficiency

- 1.25 DMIPS/MHz
- Thumb/Thumb-2
- Memory Protection Unit

REF: http://www.arm.com/products/processors/cortex-m/index.php
Background

- uClinux - www.uclinux.org
 - a derivative of Linux 2.0 kernel intended for microcontrollers without MMU

- uClinux-dist distribution
 - uClinux kernel + middleware(including libc)
 - latest version: uClinux-dist-20120401
 - 2.0.39, 2.4.34 and 3.3 kernel sources
 - both the older uC-libc and newer uClibc-0.9.29 libraries
Background

- Microcontrollers based on Cortex-M3
 - Fujitsu FM3
 - NXP LPC1788
 - STmicroelectronics STM32F2
 - Microsemi SmartFusion cSOC

- uClinux on Cortex-M3
 - ARM-Linux, Emcraft, ST

Problems
- lack of virtual memory
- limited resources

Efforts

Cooperation
Basics: MMU & MPU

MMU: Memory Management Unit
- virtual memory
- memory protection

MPU: Memory Protection Unit
- protection regions
- overlapping protection regions
- access permissions
- exporting memory attributes to the system
Basics: ARM, Thumb & Thumb-2

<table>
<thead>
<tr>
<th></th>
<th>Bit</th>
<th>Operations</th>
<th>Performance</th>
<th>Code density</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td>32</td>
<td>rich</td>
<td>better</td>
<td>inferior</td>
</tr>
<tr>
<td>Thumb</td>
<td>16</td>
<td>most</td>
<td>inferior</td>
<td>better</td>
</tr>
<tr>
<td>Thumb-2</td>
<td>16 and 32</td>
<td>rich</td>
<td>good</td>
<td>good</td>
</tr>
</tbody>
</table>

Thumb-2 is enhancement of Thumb
Cortex-M3 supports Thumb & Thumb-2
Basics: uClinux VS Linux

- **virtual memory**

- **uClinux**: contiguous and unexpandable
- **Linux**: discontinuous or swap, expand at runtime
Basics: uClinux VS Linux

- **fixed address**
 - fix up address references in a program once it is loaded into RAM

- **PIC (Position Independent Code)**
 - code that uses only relative addressing by a means of GOT, Global Offset Table
Basics: uClinux VS Linux

- memory fragment

- uClinux: preallocated buffer pool
 - replacing malloc calls with buffer requests in case of fragment caused by dynamic memory allocation
Basics: uClinux VS Linux

vfork VS fork

no memory copy, create child process, suspend parent process, share the address space

no memory copy, create child process, suspend parent process, share the address space

-parent process
-child process
-share memory region

-copying the entire address space of the process & copy-on-write

-parent process memory region
-sharing data
-child process memory region

uClinux cannot use fork due to MMU-less
Basics: uClibc

- A C library for developing embedded Linux systems
 - Smaller than glibc/eglibc but supports almost apps
 - Licensed under LGPL
 - Not supports shared libraries on MMU-less

Latest version: uClibc-0.9.33.2 May 15 2012
Contents

- Introduction
 - Background
 - Basics

- Issues
 - Linux Test Project
 - Middleware
 - Cross tool chain
 - Shared library for uClinux/uClibc
 - eXecute In Place

- Conclusion
Issues

- problems & efforts
 - Linux Test Project
 - Middleware
 - Cross tool chain

- status
 - Shared library for uClinux/uClibc
 - eXecute In Place
Linux Test Project

- test suites that validate the reliability, robustness, and stability of Linux
- latest version: Apr. 1st 2012; 3000+ tests

Concerns about MMU-less

- FORK_OR_VFORK
- \texttt{mmap()}: MAP_PRIVATE

our effort

- 829 test cases: 247 compile NG; 219 test NG
- compile NG: fork, signal, ustat.h, others
- test NG: panic/freeze, system calls, etc.
- results: 574 tested = (351 OK) + (223 NG->OK)
Middleware

- about 330 middleware in uClinux-dist
 - Library: popt, ssl, png...
 - Core application: init, reboot, shutdown...
 - Flash tool: flashw, netflash, recover...
 - File system: mount, fdisk, mke2fs...
 - Network: ftp, http, iptables...
 - Busybox ...
Middleware

- not keep up with open source
 - new functionality can not be used
 - vulnerability exists

- Example: dropbear
 - 0.52 onwards has vulnerability CVE-2012-0920
 - 2012/02/22 dropbear-201255 released
 - 2012/04/01 uClinux-dist dropbear 0.43

- our effort
 - busybox1.10.2 -> busybox1.17.0
 - dropbear0.43 -> dropbear0.52 -> dropbear-201255
Cross Tool Chain

- CodeSourcery
 - arm-2010q1-189-arm-uclinuxeabi

- Our effort
 - zlib and gmp
 - required by openssh, openswan
 - libpthread
 - libpthread for ARM not for Thumb
 - uclibc in A2F modified sources of pthread
 (http://lists.uclibc.org/pipermail/uclibc/2010-February/043580.html)
pthreads_test

```c
#include <stdio.h>
#include <pthread.h>

void* thread_test(void* ptr)
{
    while(1)
    {
        printf("i am pthread
");
    }

int main()
{
    pthread_t pid;
    pthread_create(&pid, NULL, thread_test, NULL);
    while(1)
    {
        printf("i am main pthread
");
    return 0;
}
```
Cross Tool Chain

cross compile

- `arm-uclinuxeabi-gcc pthread_test.c -o pthread_test -mthumb -mcpu=cortex-m3 -Os -march=armv7-m -lpthread`

- mcpu and march

- link to libpthread for thumb

/bin # ./pthread_test
i am main pthread
i am pthread
Shared library for uClinux/uClibc

- approaches
 - axLinux contribution
 - RidgeRun: ELF format files
 - SnapGear: uClinux Flat file format

(http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/Two-approaches-to-shared-library-support-for-uClinuxuClibc/)
eXecute In Place

- the text segment can reside in flash memory and need not be copied to RAM at all
XIP

- application XIP
 - compiler newer than gcc-4.x cannot be used for XIP uClinux because of the "R_ARM_GOTOFF32" relocation type
 - older compiler not support cortex-m3

- kernel XIP
 - General setup->Kernel Execute-In-Place from ROM = y
 - General setup->Kernel .text physical address = 0xNNNNNNNNN
Emcraft A2F-LNX-EVB

<table>
<thead>
<tr>
<th></th>
<th>Start-up time(sec)</th>
<th>ROM size(KB)</th>
<th>RAM size(KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uboot</td>
<td>kernel</td>
<td>total</td>
</tr>
<tr>
<td>Non-XIP</td>
<td>0.453</td>
<td>1.625</td>
<td>2.078</td>
</tr>
<tr>
<td>XIP</td>
<td>0.219</td>
<td>1.984</td>
<td>2.203</td>
</tr>
<tr>
<td>ratio</td>
<td>48.3%</td>
<td>122.1%</td>
<td>106.0%</td>
</tr>
</tbody>
</table>

- faster start-up time of uboot
- no much effect on ROM
- lower RAM reserved by kernel
- more free RAM for applications
Conclusion

- MMU-less architecture for low-cost embedded products
- Many pending issues
 - LTP for uClinux
 - middleware
 - cross tool chain
 - Shared library for uClinux/uClibc
 - application XIP
- Let’s do it!

demonstration