To achieve the energy saving, downsizing for all power electronics

High-Efficiency GaN HEMT Power Device

Marketing Department
Power Device Division
Fujitsu Semiconductor Limited
GaN Power Device’s Merits

Energy Saving
- Current Status: The device’s size is large because of the high breakdown voltage.
- **GaN’s Merit**: A smaller die size (lower resistance) even for the high breakdown voltage.
- Much Lower Power Consumption

Downsizing
- Current Status: The capacitor and the inductor is large!!
- **GaN’s Merit**: Higher switching frequency ⇒ It is possible to reduce the size of Capacitor and Inductor.
- More Compact Equipment Size
GaN Power Device can be applied in all areas of Automotive, Industrial and Consumer.
FSL’s GaN Power Device

<table>
<thead>
<tr>
<th>Parameters</th>
<th>30V</th>
<th>150V</th>
<th>600V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain Current [A]</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Threshold voltage [V]</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>On Resistance [mΩ]</td>
<td>12.5</td>
<td>13</td>
<td>92</td>
</tr>
<tr>
<td>Gate Charge [nC]</td>
<td>4</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Package (sample)</td>
<td>WLCSP</td>
<td>WLCSP</td>
<td>TO247</td>
</tr>
</tbody>
</table>

All products’ sample is available
GaN Power Device’s Development and Mass Production

Fujitsu Semiconductor’s Aizuwakamatsu Plant
Design・Evaluation・Mass Production

Fujitsu Labs Research and Development

Copyright 2013 FUJITSU SEMICONDUCTOR LIMITED
2.5kW Power Supply for ICT System

2.5kW PSU Specification
- Input: 80 - 230V
- Output: 12V / 208A
- Volume: 2.4L

80-230VAC
Synchronous Rectifier

Inductor
Output diode
Capacitor
GaN-HEMT

380VDC
2.5kW Power Supply for ICT System
GaN-HEMT vs. Si-MOSFET

Higher efficiency than Si FET was confirmed

Input: 230VAC, output: 380V, Switching Frequency: 75KHz
High Frequency PFC Evaluation Board

Compact size due to the higher switching frequency

Specification

- **Input:** 100 – 240 V
- **Output:** 380V / 4A
- **Volume:** 202 cm³
- **Efficiency:** 86%@1MHz
GaN-HEMT vs. Si-MOSFET (HV)

GaN power device showed higher efficiency potential at high switching frequency.

<table>
<thead>
<tr>
<th></th>
<th>GaN HEMT</th>
<th>Si FET</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DS}[\text{A}]$</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>$R_{on}[\text{m}\Omega]$</td>
<td>100</td>
<td>190</td>
</tr>
</tbody>
</table>
High Switching Frequency PFC Board

Specification

Input: AC 80 – 240 V
Output: DC400 V
Switching Freq: 350/500 kHz
Efficiency: 96.75%
New Lineup 150V GaN Power Device

DC characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage</td>
<td>V</td>
<td>150</td>
</tr>
<tr>
<td>Threshold Voltage</td>
<td>V</td>
<td>1.8</td>
</tr>
<tr>
<td>On - Resistance</td>
<td>mΩ</td>
<td>13</td>
</tr>
</tbody>
</table>

AC characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance (Ciss)</td>
<td>pF</td>
<td>950</td>
</tr>
<tr>
<td>Output capacitance (Coss)</td>
<td>pF</td>
<td>550</td>
</tr>
<tr>
<td>Reverse transfer capacitance (Crss)</td>
<td>pF</td>
<td>80</td>
</tr>
<tr>
<td>Gate charge capacity (Qg)</td>
<td>nC</td>
<td>16</td>
</tr>
</tbody>
</table>

Compare with Si MOSFET, GaN HEMT’s FOM is less half
shaping tomorrow with you