System Power Management IC for Mobile Terminals

MB39C316

A power management IC for mobile terminals that has a 3-channel DC/DC converter and 4-channel LDO and offers extended operation lifetime with 1-cell lithium ion battery using a high-efficiency buck/boost conversion 1-channel DC/DC converter. Each DC/DC converter circuit has a function to detect the load current. It automatically switches between Normal mode (PWM) and Eco-mode (PFM). It also supports communication interfaces conforming to I²C bus and is capable of notifying internal status, power reset, and so forth.

* LDO : Low Drop Output (Regulator)

Product Features

Small size and light-weight
- WL-CSP (Wafer Level-Chip Size Package)
- 49-pin 0.4mm pitch
- Size (3.14mm×3.11mm×0.8mm)

Multiple functions
- Power supply voltage range: 2.7V to 5.5V
 - Supporting 1-cell lithium ion battery
- Constant-voltage power supply
 - DC/DC converter: 3-channel,
 - LDO: 4-channel
- Buck/boost DC/DC converter (3.3V output) enables operation even when the voltage from the lithium ion battery is 3.3V or lower
- ON/OFF control of LDO and DC/DC converters by external signals or register setting
- Conforms to I²C bus (400kbps at max.):
 - Various status notifications and controls
- Protective functions: over-current protection (OCP), short-circuit protection (SCP), under-voltage lockout (UVLO), and over-temperature protection (OTP)
- 32kHz output for RTC: stable clock generation achieved by connecting an external crystal oscillator
- Current consumption: 150μA at standby

Table 1 shows the specifications of the constant-voltage power management.

MB39C316 is a power management IC that is capable of...
supplying the power voltage to the application processor and so forth utilized in the development of products for a ubiquitous network society. Each power output sequence for this product is fixed by the startup/shutdown conditions for both rising and falling.

Standard Characteristics

The following section presents the standard characteristics for typical constant-voltage power output. **Figure 1** presents the conversion efficiency-load current characteristic as buck conversion DC/DC characteristics (DCDC1), **Figure 2** the characteristics of load step response, and **Figure 3** the ripple of output voltage. **Figure 4** presents the conversion efficiency-load current characteristic as buck/boost conversion DC/DC characteristics (DCDC3), **Figure 5** the ripple of output voltage, and **Figure 6** the LDO characteristics (LDO1).

Application Examples

Figure 7 presents the mobile terminal system configuration.

Evaluation Board

To simplify the single-unit evaluation of this product, we offer an evaluation board with the following features (Photo 2):

*All power management terminals, input/output terminals,

Table 1 Specifications of the Constant-Voltage Power Management

<table>
<thead>
<tr>
<th>Constant-voltage power management</th>
<th>Output voltage</th>
<th>Output current (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC/DC down conversion</td>
<td>1.2V</td>
<td>800mA</td>
</tr>
<tr>
<td></td>
<td>1.8V</td>
<td>600mA</td>
</tr>
<tr>
<td>DC/DC up/down conversion</td>
<td>3.3V</td>
<td>650mA</td>
</tr>
<tr>
<td></td>
<td>2.85V</td>
<td>200mA</td>
</tr>
<tr>
<td></td>
<td>2.9V</td>
<td>6.5mA</td>
</tr>
<tr>
<td></td>
<td>1.2V/1.3V</td>
<td>84mA</td>
</tr>
<tr>
<td></td>
<td>1.2V</td>
<td>260mA</td>
</tr>
</tbody>
</table>

Figure 1 Conversion Efficiency-load current characteristic (DCDC1)

Figure 2 Characteristics of Load Step Response (DCDC1)

Figure 3 Ripple of output voltage (DCDC1)

Figure 4 Conversion Efficiency-load current characteristic (DCDC3)

Figure 5 Ripple of output voltage (DCDC3)

Figure 6 LDO characteristics (LDO1)
and GND terminals necessary for evaluation are set up as monitor terminals
* An SW is integrated on the external setup terminal to enable “L” and “H” settings
* A PC interface may be attached using USB1.0 for an I2C bus interface

Future Development

FUJITSU has developed numerous system power management ICs for cell phones. This product has been developed for mobile devices by applying our accumulated technology and know-how. In the future, we plan to develop power management IC products that offer the characteristics required in power management voltage for CPUs and high-speed FPGA cores (output voltage precision, load step response characteristics, low ripple, PSRR, and so forth) for applications in portable devices.

NOTES

* I2C bus is a registered trademark of Phillips.
New Products

MB39C316

Photo 2 External view of Evaluation Board (MB39C316EVB)

Figure 7 Mobile Terminal System Configuration

![Diagram of Mobile Terminal System Configuration]

- **VIN**: 2.7V to 5.5V
- **Lithium battery**
- **Crystal oscillator**
- **MB39C316**
 - DC/DC 3 channels
 - LDO 4 channels

System block
- **FLASH**
- **SDRAM**
- **SoC**

Application block
- 3.3V/650mA
- 1.8V/600mA
- 1.2V/800mA
- 2.85V/200mA
- 1.2V/260mA
- (1.2/1.3V)/84mA
- 2.9V/6.5mA

32.76kHz