F²MC-8FX FAMILY
8-BIT MICROCONTROLLER
MB95200 SERIES

BLDC MOTOR BACK EMF 120°
DRIVER METHOD

APPLICATION NOTE
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Change of Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-04-30</td>
<td>Glede.luo</td>
<td>V1.0, First draft</td>
</tr>
<tr>
<td>2009-05-13</td>
<td>Glede.luo</td>
<td>V1.1, Modify according Document Feedback</td>
</tr>
</tbody>
</table>

This manual contains 26 pages.

1. The products described in this manual and the specifications thereof may be changed without prior notice. To obtain up-to-date information and/or specifications, contact your Fujitsu sales representative or Fujitsu authorized dealer.

2. Fujitsu will not be liable for infringement of copyright, industrial property right, or other rights of a third party caused by the use of information or drawings described in this manual.

3. The contents of this manual may not be transferred or copied without the express permission of Fujitsu.

4. The products contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

5. Some of the products described in this manual may be strategic materials (or special technology) as defined by the Foreign Exchange and Foreign Trade Control Law. In such cases, the products or portions thereof must not be exported without permission as defined under the law.

© 2009 Fujitsu Semiconductor (Shanghai) Co., Ltd.
CONTENTS

- **REVISION HISTORY** .. 2

CONTENTS .. 3

1 INTRODUCTION .. 5

2 BACKGROUND DESCRIPTION ... 6

2.1 Description of Multi-pulse Generator ... 6

2.1.1 Block Diagram of Multi-pulse Generator ... 6

2.1.2 Registers of Multi-pulse Generator ... 7

2.2 Back EMF Description ... 9

2.2.1 Back EMF Generation ... 9

2.2.2 Motor Complete Revolution ... 10

2.2.3 Back EMF Modeling .. 11

3 HARDWARE DESIGN DESCRIPTION .. 12

3.1 System Block Diagram Description ... 12

3.2 Position Detection Resolver .. 13

3.2.1 Position Detection Circuit Design .. 13

3.2.2 Potential Divider .. 14

4 FIRMWARE PRINCIPLES AND THEORY .. 15

4.1 Firmware Main Flowchart .. 15

4.2 Sensorless Startup.. 16

4.2.1 Startup Driving Pattern .. 16

4.2.2 Back EMF Zero Crossing Detection .. 17

4.2.3 Startup Algorithm .. 18

4.3 Transition from Startup to Normal Run ... 19

4.4 Normal Run ... 20

4.4.1 Driving Pattern .. 20

4.4.2 Real Time Parameters .. 21

4.4.3 Arm Chopping Technique ... 22

5 NOTES ON USING BACK EMF DRIVER METHOD ... 24

5.1 Relationship between Driving Patterns and Position Detection 24

5.2 Notes on Operation of DTTI Input Control ... 24

5.3 Advantage or Disadvantage of Sensorless Control .. 24

5.3.1 Advantage of Sensorless Control .. 24

5.3.2 Disadvantage of Sensorless Control .. 24
6 MORE INFORMATION .. 25
7 APPENDIX ... 25
 7.1 Figures ... 26
1 Introduction

This document describes the BLDC (Brushless DC) motor back EMF 120° driver method used by MB95330H series 8-bit microcontroller.
2 Background Description

This chapter describes the multi-pulse generator (MPG) and back EMF 120° driver BLDC motor.

2.1 Description of Multi-pulse Generator

The multi-pulse generator consists of a 16-bit PPG timer, a 16-bit reload timer and a waveform sequencer. By using the waveform sequencer, 16-bit PPG timer output signal can be directed to multi-pulse generator output (OPT5 to OPT0) according to the input signal of multi-pulse generator (SNI2 to SNI0). Meanwhile, the OPT5 to OPT0 output signal can be terminated by DTTI input in case of emergency. The OPT5 to OPT0 output signals are synchronized with the PPG signal in order to eliminate the unwanted glitch.

2.1.1 Block Diagram of Multi-pulse Generator

Figure 2.1-1: Block Diagram of Multi-pulse Generator

Figure 2.1-1 shows the block diagram of multi-pulse generator.
16-bit PPG Timer

The 16-bit PPG timer is used to provide the PPG signal for waveform sequencer. Details of 16-bit PPG timer are described in Hardware Manual of MB95330H Series.

16-bit Reload Timer

The 16-bit reload timer is used to act as interval timer for waveform sequencer. Details of 16-bit reload timer are described in Hardware Manual of MB95330H Series.

Waveform Sequencer

The waveform sequencer is the core of multi-pulse generator, which can generate various waveforms.

2.1.2 Registers of Multi-pulse Generator

<table>
<thead>
<tr>
<th>Output control register (upper)</th>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPCUR</td>
<td>066H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DTIE</td>
<td>DTIF</td>
<td>NRSL</td>
<td>OPS2</td>
<td>OPS1</td>
<td>OPS0</td>
<td>WTIF</td>
<td>WTIE</td>
<td>R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output control register (lower)</th>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPCLR</td>
<td>067H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDIF</td>
<td>PDIE</td>
<td>OPE5</td>
<td>OPE4</td>
<td>OPE3</td>
<td>OPE2</td>
<td>OPE1</td>
<td>OPE0</td>
<td>R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output data register (upper)</th>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPDLR</td>
<td>0FDCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BNKF</td>
<td>RDA2</td>
<td>RDA1</td>
<td>RDA0</td>
<td>OP51</td>
<td>OP50</td>
<td>OP41</td>
<td>OP40</td>
<td>R R R R R R R R R R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output data register (lower)</th>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPDLR0</td>
<td>0FDDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXXXXXXX0B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OP31</td>
<td>OP30</td>
<td>OP21</td>
<td>OP20</td>
<td>OP11</td>
<td>OP10</td>
<td>OP01</td>
<td>OP00</td>
<td>R R R R R R R R R R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output data buffer registers (upper)</th>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPDBURB</td>
<td>0FC4H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>BNKF</td>
<td>RDA2</td>
<td>RDA1</td>
<td>RDA0</td>
<td>OP51</td>
<td>OP50</td>
<td>OP41</td>
<td>OP40</td>
<td>R R R R R R R R R R</td>
</tr>
<tr>
<td>OPDBUR0</td>
<td>0FDAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td>(Even addresses)</td>
<td></td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W R/W R/W R/W R/W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output data buffer registers (lower)</th>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPDLR8</td>
<td>0FC5H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>OP31</td>
<td>OP30</td>
<td>OP21</td>
<td>OP20</td>
<td>OP11</td>
<td>OP10</td>
<td>OP01</td>
<td>OP00</td>
<td>R R R R R R R R R R</td>
</tr>
<tr>
<td>OPDLR80</td>
<td>0FDBH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00000000B</td>
</tr>
<tr>
<td>(Odd addresses)</td>
<td></td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W R/W R/W R/W R/W</td>
</tr>
</tbody>
</table>

R/W : Readable/writable (The read value is the same as the write value.)
R : Read only (The read value is indeterminate.)
x : Indeterminate
Input control register (upper)

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCUR 006B_H</td>
<td>WTS1</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>00000000_a</td>
<td></td>
</tr>
</tbody>
</table>

Input control register (lower)

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPCLR 006A_H</td>
<td>CPE1</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>00000000_b</td>
<td></td>
</tr>
</tbody>
</table>

Compare clear register (upper)

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPCUR 0FDE_H</td>
<td>CL15</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>XXXXXXXX_B</td>
<td></td>
</tr>
</tbody>
</table>

Compare clear register (lower)

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPCLR 0FDF_H</td>
<td>CL07</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>XXXXXXXX_B</td>
<td></td>
</tr>
</tbody>
</table>

Timer buffer register (upper)

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMBUR 0FE2_H</td>
<td>T15</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>XXXXXXXX_B</td>
<td></td>
</tr>
</tbody>
</table>

Timer buffer register (lower)

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMBLR 0FE3_H</td>
<td>T07</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>XXXXXXXX_B</td>
<td></td>
</tr>
</tbody>
</table>

Timer control status register

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCSR 006B_H</td>
<td>TCLR</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>00000000_c</td>
<td></td>
</tr>
</tbody>
</table>

Noise cancellation control register

<table>
<thead>
<tr>
<th>Address</th>
<th>bit7</th>
<th>bit6</th>
<th>bit5</th>
<th>bit4</th>
<th>bit3</th>
<th>bit2</th>
<th>bit1</th>
<th>bit0</th>
<th>Initial value</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCCR 006A_H</td>
<td>S21</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>00000000_d</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.1-2: Registers of Multi-pulse Generator

Figure 2.1-2 shows registers of multi-pulse generator. For more detailed information, please refer to Chapter 24 in Hardware Manual of MB95330H Series.
2.2 Back EMF Description

2.2.1 Back EMF Generation
Based on simple physical theory, when there is a relative motion between a conductor and a magnetic field, the current will flow through the conductor and a potential difference is generated.

![Figure 2.2-1: Motor Relative Motion by Potential Difference](image)

Apply the same principle to a brushless DC motor and user can find the induced current on the phase coil which is open.

Study the above situations and monitor the marker A and A’ in the “Before” and “After” respectively, user can recognise the induced current and its direction.
2.2.2 Motor Complete Revolution
By applying the same analysis, below shows a motor rotating mechanism on the complete revolution.

![Motor Rotating Mechanism on the Complete Revolution](image)

By detecting the rising and falling edge of induced voltage on the opened phase coil terminal, communication can be done electronically, it is the basic principle how sensorless control of brushless DC motor can work.
2.2.3 Back EMF Modeling
In order to understand how the back EMF is useful in the implementation, it is important to study the 3 phase back EMF modelling.

\[
U = V_n + Eu \\
V = V_n + Ev + iR + Ldi/dt \\
W = V_n + Ew - iR - Ldi/dt \\
Ev = -Ew, \\
U = (V + W) / 2 + Eu \\
\]

If \(V = B(VCC) \)
\[W = 0(GND) \]
\[Eu = 0(\text{zero crossing}) \]
then

At Zero Crossing
\[U = VCC / 2 \]

From the above explanation, we can see an important fact that the voltage on the opened terminal is equal to half of the power supply VCC at zero crossing.

Therefore, in order to recognise the time of zero crossing, the voltage on the terminal of phase coil is compared with the VCC/2. However, since the VCC is very high, VCC/2 level and the voltage from the terminal are scaled down to a suitable level so that it can be fed to the comparator.
3 Hardware Design Description

This chapter describes system hardware design.

3.1 System Block Diagram Description

The basic configuration of a sensorless controlled brushless DC motor system is shown below.

![System Block Diagram](image)

The basic components are:

- **IGBT-IPM**
 - IGBT-IPM (intelligent power module) consists of an IGBT model and a signal driver circuit. It is connected to the MCU output port and 3 phase brushless DC motor.

- **Position resolver**
 - This circuit consists of a simple potential divider and isolators. It captures the potential from phase coils and is compared with a fixed voltage. Through the isolators are connected to the input port of MCU.

- **MB95330**
 - Core of the sensorless control, which accepts output from position resolver and drives the IPM through the isolators.

- **IPM power supply**
 - IPM can supply current to its upper arms switches and lower arm switches.

- **Main power supply**
 - Provides a stable high DC voltage to drive the motor or compressor.
3.2 Position Detection Resolver

3.2.1 Position Detection Circuit Design
One of the critical circuitry is the position resolver; it must be very precise to differentiate a few micro-volt signals.

![Figure 3.2-1: Position Detection Resolver Circuit Design](image)

Comparators
Low offset type can give more precise position detection timing.
Practically, protection diode circuit for each input is used to avoid exceeding signal swinging.

Resistors
The resistors should be kept stable when temperature changes.
Low tolerance type should be used and the precision is at least 1%.
The precision of these resistors is critical to sensorless control.

Decoupling capacitors
PWM noise from the phase voltage should be decoupled before being fed to the MCU. Therefore, each comparator input should build in a decoupling capacitor.
3.2.2 Potential Divider
The high voltage on the terminal should be scaled down by a carefully designed potential divider circuitry.

![Figure 3.2-2: 3 Phase Back EMF Potential Divider Circuitry](image)

Above is the potential divider used in the implementation. Resistors with low tolerance and special values such as $523\,\Omega$ and $2.26k\,\Omega$ are used to realize a precise potential divider. Precision is very critical to the sensorless control, an insufficient precision design generally leads to unstable startup.

U, V and W are connected to the 3 phase terminal. P is connected to the positive terminal of power supply, the $470k\,\Omega$, $2.26k\,\Omega$ and $523\,\Omega$ resistors create a scaled down value of VCC/2.
4 Firmware Principles and Theory

The chapter describes firmware operation principles and theory.

4.1 Firmware Main Flowchart

When the rotor stops, the rotor position is unknown because of the missing of position sensor, so the back EMF measurement does not work.

![Flow Chart of Startup Motor Rotor](image)

Figure 4.1-1: Flow Chart of Startup Motor Rotor

There are 2 stages before entering normal running status.

Sensorless startup

The rotor may rotate opposite to the desired direction for a short moment, or even very seldom fail to startup, in this case, user can perform forced startup. Forced startup can be implemented easily by small code size and is very suitable to control brushless DC compressor. User can try startup again by retry function when the compressor starts abnormally.

Judgement of normal running state

This judgment algorithm ensures the compressor is running perfectly and is suitable to enter normal running.
4.2 Sensorless Startup

4.2.1 Startup Driving Pattern
Here is the driving pattern used for sensorless startup.

Although the pattern is simple to be implemented, the sensorless startup is very reliable. The compressor always starts up successfully without any retry.

A – B is the mask-off time which MCU external interrupts are disabled.
B – A’ is the time which MCU external interrupts are enabled.

Figure 4.2-1: Driving Pattern Used for Sensorless Startup
4.2.2 Back EMF Zero Crossing Detection
In sensorless startup, the back EMF generated at the very first moment is extremely small. Below is a captured waveform showing the back EMF in the terminal and the scaled down VCC/2 level.

Back EMF zero crossing happens when the minimum point has a value lower than that of E/2.

Figure 4.2-2: Back EMF Zero Crossing Detection
4.2.3 Startup Algorithm
There is a simple algorithm used in startup stage.

![Flowchart Diagram](image)

Figure 4.2-3: Simple Algorithm Used in Startup Stage

Change state
Change state when there is a back EMF zero crossing interrupt or a preset timer timeout. Preset timer value ranges from 50ms to 200ms tested according to the compressor used.

Change to normal run
The state change is monitored for about 10 - 30 electrical cycles, if the deviation of the duration is not too much, it is assumed the compressor is running smoothly.
4.3 Transition from Startup to Normal Run

In the implementation, only the state change duration of last electrical cycle is considered.

A simple formula below can be used to ensure the value of last 6 items does not exceed the smallest deviation value.

\[T_{\text{max}} < k \times T_{\text{min}} \]

Where \(T_{\text{min}} \) and \(T_{\text{max}} \) are the minimum value and maximum value of the 6 items, \(k \) is a constant and the range of \(k \) is from 5 to 10.
4.4 Normal Run

4.4.1 Driving Pattern
The normal-run consists of 12 different driving patterns and 6 different states. Below shows the relationship between the driving patterns and the expected interrupts from the position detection circuit.

Marker explanation:
A : position detection interrupts
B : change state
C : change chopping-arm
D : position detection interrupt enable
A' : next position detection interrupts
A – B: commutation delay
B – C: change arm delay
C – D: change arm mask-off period

Figure 4.4-1: Driving Pattern of Normal Run
4.4.2 Real Time Parameters
Some real-time parameters are very important in normal running status and are critical to the motor operation.

Figure 4.4-2: In Fact Drive Pattern of the Motor Operation

Commutation delay
It is the state change delay after the position detection interrupts.
This parameter depends on the characteristics of the target motor and current rotational speed.
0 to 30 electrical degrees are typical practical value.
This parameter usually used to fine the efficiency and torque at different speed.

Position detection mask
Position detect interrupt is masked off just after arm changes, an unwanted interrupt may happens at that time.

Position detection ready
Starting from that time, position detection interrupt is possible to interrupt the MCU.
4.4.3 Arm Chopping Technique
The use of arm chopping to capture rising or falling edge of back EMF is critical. Here describes how to capture rising and falling edge of back EMF using appropriate chopping arm.

Rising edge detection

Lower arm chopping will cause the voltage on the opened terminal to exceed the middle reference level, and generates a lot of unwanted interrupts, MCU input interrupt is masked off at this moment.

Upper arm chopping will cause the voltage on the opened terminal to exceed the middle reference level only when the back EMF is really zero-crossing, it is a valuable instance to MCU.

![Figure 4.4-3: Rising Edge Detection Waveform of Back EMF](image)
Falling edge detection

Upper arm chopping will cause the voltage on the opened terminal to exceed the middle reference level, and generates a lot of unwanted interrupts, MCU input interrupt is masked off at this moment.

Lower arm chopping will cause the voltage on the opened terminal to exceed the middle reference level only when the back EMF is really zero-crossing, it is a valuable instance to MCU.

![Falling Edge Detection Waveform of Back EMF](image)

Figure 4.4-4: Falling Edge Detection Waveform of Back EMF
5 Notes on Using Back EMF Driver method

The chapter describes notes on using BLDC motor Back EMF 120° Driver method.

5.1 Relationship between Driving Patterns and Position Detection

The relationship between the driving patterns and the expected interrupts from the position detection circuit varies depending on BLDC motor, so user should first find the relationship of them, and then set registers in code.

5.2 Notes on Operation of DTTI Input Control

In system, the DTTI over current protection should be enabled. The OPT5 to OPT0 is fixed at the inactive level when the low input level is placed at the DTTI pin.

Even while the output is fixed at the inactive level by the input of the DTTI pin, the timer keeps running, the position detection function does not stop and the data transfer from the output data buffer register (OPDBR) to the output data register (OPDR) is continued for waveform generation, but no waveform is output to the OPT5 to OPT0 pins.

5.3 Advantage or Disadvantage of Sensorless Control

5.3.1 Advantage of Sensorless Control

BLDC motor back EMF 120° driver is sensorless control. The system has no position sensor of hardware design. It drives BLDC motor which has position sensor or position sensorless motor. As a result, the system debases difficulty of hardware design.

5.3.2 Disadvantage of Sensorless Control

The system has no position, so user should calculate the back EMF to find current position of motor by position detection triggered. As a result, the system increases operation of software design and increases difficulty of firmware design.
6 More Information

For more information on FUJITSU MB95200 products, please visit following websites:

English version:
http://www.fujitsu.com/cn/fsp/services/mcu/mb95/application_notes.html

Simplified Chinese Version:
http://www.fujitsu.com/cn/fss/services/mcu/mb95/application_notes.html
7 Appendix

7.1 Figures

Figure 2.1-1: Block Diagram of Multi-pulse Generator ... 6
Figure 2.1-2: Registers of Multi-pulse Generator .. 8
Figure 2.2-1: Motor Relative Motion by Potential Difference ... 9
Figure 2.2-2: Motor Rotating Mechanism on the Complete Revolution 10
Figure 2.2-3: 3 Phase Back EMF Modelling ... 11
Figure 3.1-1: System Block Diagram ... 12
Figure 3.2-1: Position Detection Resolver Circuit Design .. 13
Figure 3.2-2: 3 Phase Back EMF Potential Divider Circuitry .. 14
Figure 4.1-1: Flow Chart of Startup Motor Rotor .. 15
Figure 4.2-1: Driving Pattern Used for Sensorless Startup .. 16
Figure 4.2-2: Back EMF Zero Crossing Detection ... 17
Figure 4.2-3: Simple Algorithm Used in Startup Stage .. 18
Figure 4.3-1: Ensure Electrical Cycle’s Value of Startup to Normal Run 19
Figure 4.4-1: Driving Pattern of Normal Run .. 20
Figure 4.4-2: In Fact Drive Pattern of the Motor Operation ... 21
Figure 4.4-3: Rising Edge Detection Waveform of Back EMF ... 22
Figure 4.4-4: Falling Edge Detection Waveform of Back EMF ... 23