

Maximise Application Performance

Copyright 2013 FUJITSU LIMITED

The K computer - Developed by RIKEN & Fujitsu

System Overview

- Super-large-scale system combining 88,128 processors
- Combination of advanced technology developed by Fujitsu
- Development was completed in June 2012.

The K computer in Kobe, H	yogo
---------------------------	------

(1) FLOPS: the number of FLoating Operations Per Second. 1 petaflops is 10¹⁵ (1 quadrillion), 1 gigaflops is 10⁹ (1 billion) calculations per second

Theoretical calculation speed : 11.28 petaflops ⁽¹⁾	
LINPACK performance : 10.51 petaflops	
Processors: 88,128	
Total memory: 1.26 petabytes	
SPARC64 [™] VIIIfx (8 cores, 128 gigaflops)	
6-dimensional mesh/torus topology (Tofu)	

K computer and **PRIMEHPC FX10**

Fujitsu supercomputer w/ enhanced technology introduced for K computer

	K computer	PRIMEHPC FX10	Note
CPU	SPARC64 VIIIfx	SPARC64 IXfx	SPARC V9 + HPC-ACE
Peak perf.	128 GFLOPS	236.5 GFLOPS	
# of cores	8	16	
Memory	16GB	32GB/64GB	2GB/core~
BW	64GB/s	85GB/s	
Interconnect	6D mesh/torus	\leftarrow	Tofu interconnect
System size	X x Y x 17	X x Y x 9	Z=0 is I/O node
link BW	5GB/s x bidirectional	\leftarrow	

Software stack for Fujitsu supercomputers

Applications

HPC Portal / System Management Portal

Technical Computing Suite

System Management

- System managementSystem control

- System monitoring System operation support

Job Management

- Job managerJob scheduler
- Resource managementParallel

High Performance File System FEFS

- Lustre based high performance distributed file system
- High scalability, high reliability and availability

Automatic parallelisation compiler

Fortran

• (

• (++

Tools and math. libraries

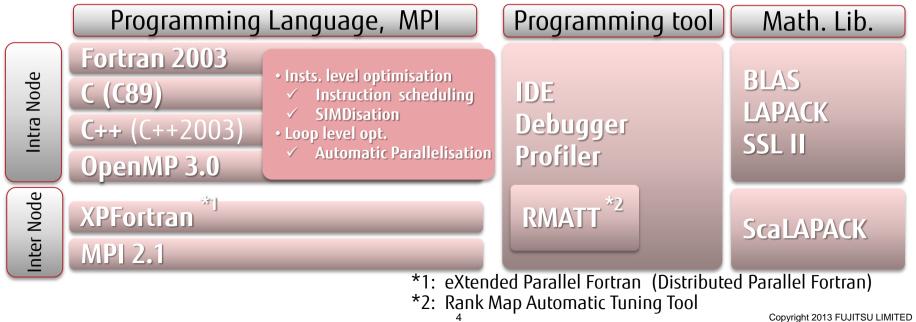
- Programming support tools
- Mathematical libraries

Parallel languages and libraries OpenMP

MPI

XPFortran

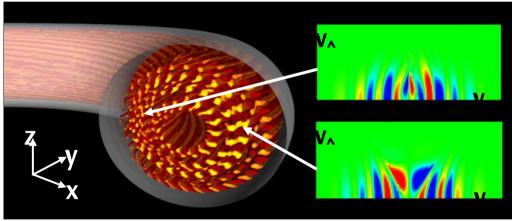
Linux based OS (enhanced for FX10)


PRIMEHPC FX10

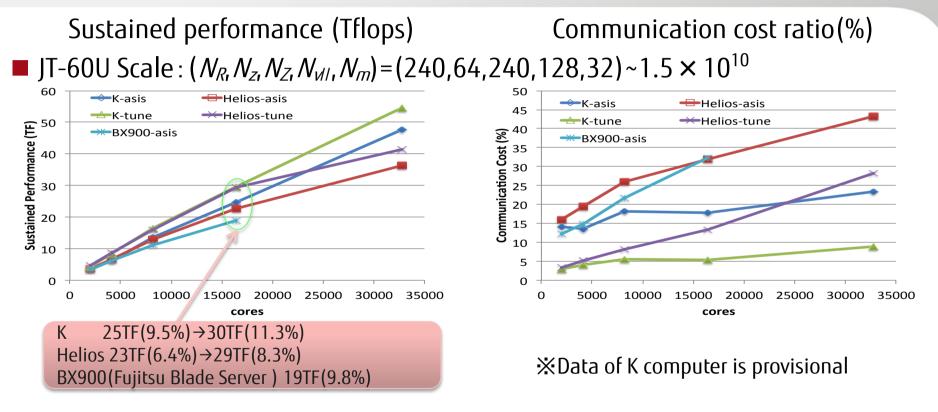
*Technical Computing Suite is also available for x86 clusters

Language system overview

Fortran C/C++ Compiler Programming model (OpenMP, MPI, XPFortran) Instruction level /Loop level optimisation using HPC-ACE Debugging and Tuning tools for massively parallel supercomputer


Application Results

Simulation of turbulent fusion plasma

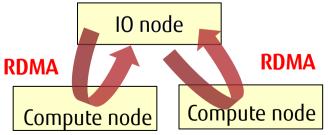

Gyrokinetic Toroidal 5D Eulerian Code GT5D

[Idomura et al., Comput. Phys. Commun (2008); Nuclear Fusion (2009)]

- Prediction of reactor performance limited by plasma turbulent transport
- Describe dynamics of fuel plasma distribution in 5D phase space
- Resolve from machine size ~1m to ion gyro-radius ~1mm

Strong Scheduling of GT5D code (JT-60 scale)

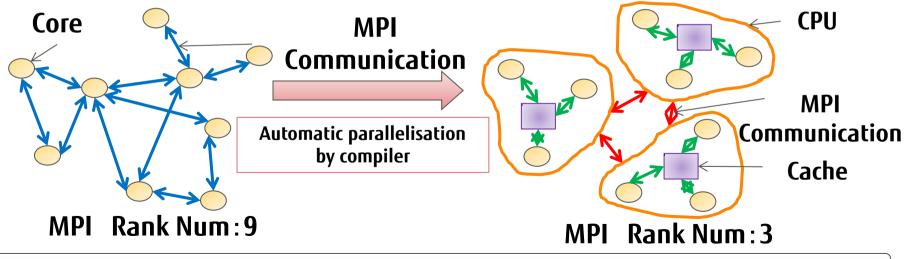
[Y. Idomura et al., Int. J. HPC Appl. in press] Presents by Y. Idomura in The Japan Atomic Energy Agency


Reduce system jitter

Optimised system software (incl. OS/FEFS) to minimise Operating System activity <FX10 + TCSuite> <IA Cluster w/ TCSuite> <IA Cluster w/o TCSuite>

e.g) Minimise Operating System jitter with RDMA of Tofu

- a. Node / service health check
- b. System information monitor (remote sadc)
- c. Job information monitor (CPU time/used memory)

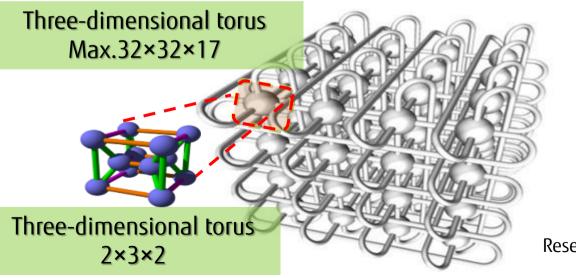


VISIMPACT – Hybrid parallelisation –

<u>VISIMPACT</u>(Virtual Single Processor by Integrated Multi-core Parallel Architecture) MPI program is automatically compiled to hybrid parallelisation (process and multithread) and executed

 \Rightarrow Communication overhead and memory usage reduced by MPI rank number decrease

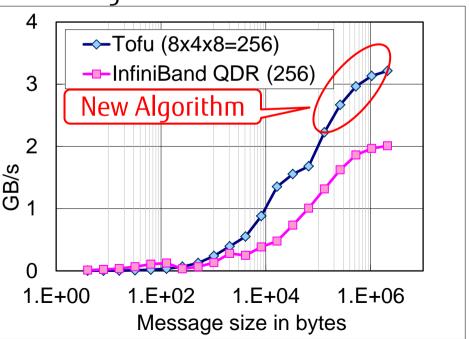
 \Rightarrow Synchronisation overhead reduced by hardware barrier synchronisation between CPU cores


Inheriting and advancing vectorisation technology, corresponding to the Many core era

Network topology of Tofu interconnect

Six-dimensional mesh/torus direct connection network (MAX.32x32x17x2x3x2)

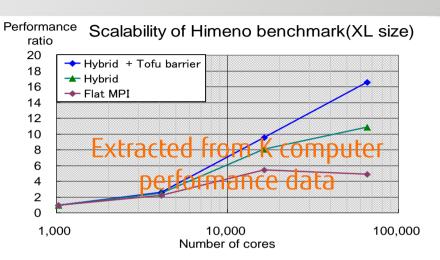
- Highly scalable compared to three-dimensional torus
- High operability and reliability
- Average number of hops, bisection bandwidth is improved with additional dimensions

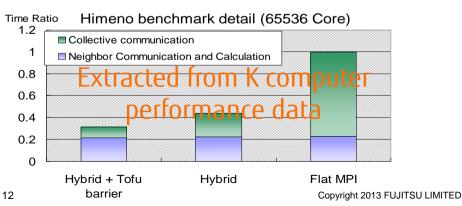


Research Paper of Tofu interconnect technology published in IEEE computer(2009) Optimised alltoall communication of Tofu interconnect

- Usage of uniform link is important for alltoall communication performance efficiency
- Development of a new algorithm to take advantage of Tofu
- Provide optimised library
- Surpassed Fat-Tree in measurement of 256 nodes (InfiniBand QDR)
 - Ease of porting applications

Programming Model for High Scalability

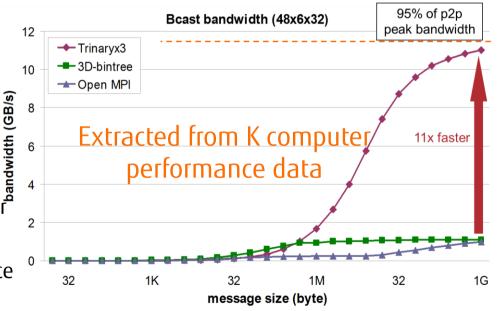

Hybrid parallelisation by VISIMPACT and MPI library


■ VISIMPACT

- Automated multi-thread parallelisation
- •High performance thread synchronisation using Inter-core hardware barrier synchronisation function

■ MPI library

 High performance collective communications using Tofu barrier synchronisation function

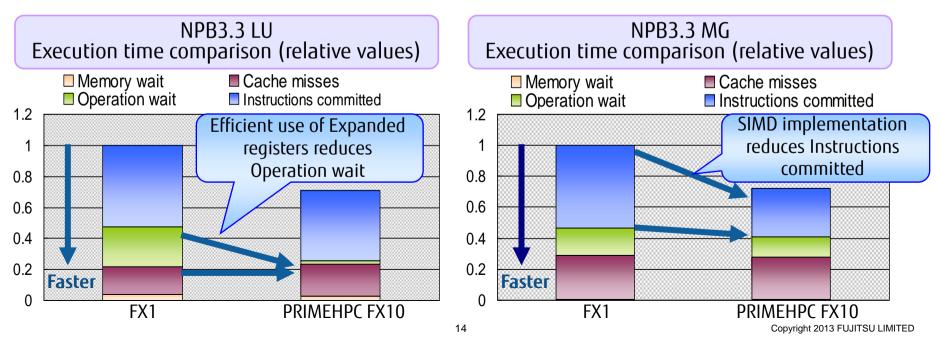


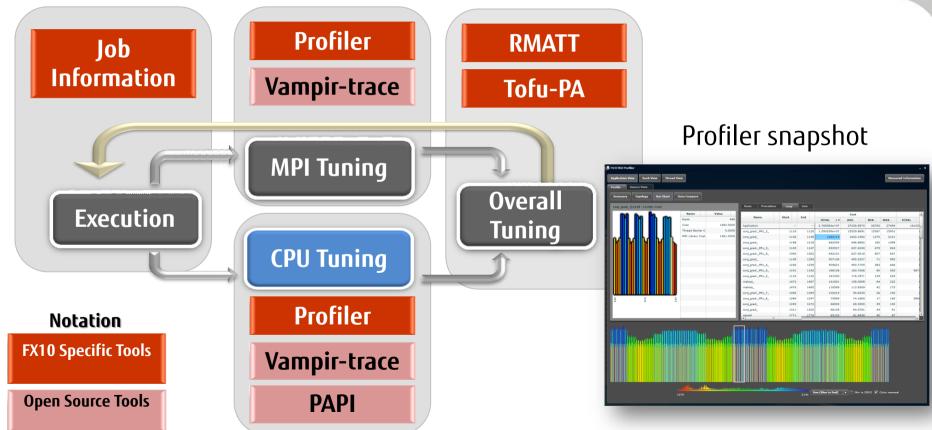
1K 32 1M 32 1G message size (byte)

Customised MPI Library for High Scalability

Point-to-Point communication

- Use special type of low-latency path that bypasses the software layer
- •Transfer method optimisation according to data length, process location and number of hops
- Collective communication
 - High performance Barrier synchronisation, Ällreduce, Bcast and Reduce using Tofu barrier function
 - Scalable Bcast, Allgather, Allgatherv, Allreduce and Alltoall algorithm optimised for Tofu network




Compiler Optimisation for High Performance

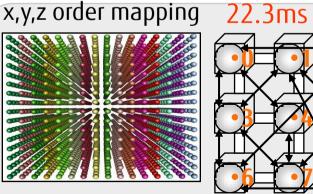
FUJITSU

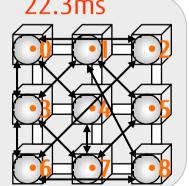
- Instruction-level parallelism with SIMD instructions
- Improvement of computing efficiency using Expanded registers
- Improvement of cache efficiency using Sector cache

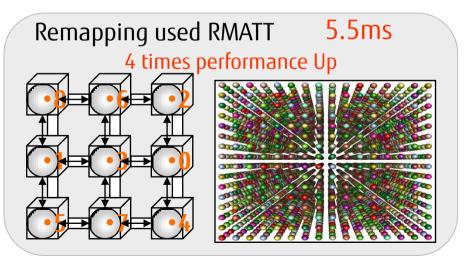
Application Tuning Cycle and Tools

FUITSU

Rank Mapping Optimisation (RMATT)


Network Configuration Communication Pattern (Communication processing contents between Rank)


ioput **Optimised Rank Map** RMATT Reduce number of hops and congestion output


Apply MPI Allgather Communication Processing Performance

• Rank number : 4096 rank

Network Configuration : 16x16x16 node (4096)

apply

FUJITSU

shaping tomorrow with you