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F.CHAPTER 1

Overview

1.1 Navigating the SPARC64 V 
Implementation Supplement
We suggest that you approach this Implementation Supplement SPARC Joint 
Programming Specification as follows. 

1. Familiarize yourself with the SPARC64 V processor and its components by 
reading these sections:

■ The SPARC64 V processor on page 2
■ Component Overview on page 4
■ Processor Pipeline on page 31

2. Study the terminology in Chapter 2, Definitions: 

3. For details of architectural changes, see the remaining chapters in this 
Implementation Supplement as your interests direct.

For this revision, we added new appendixes: Appendix R, UPA Programmer’s Model, 
and Appendix S, Summary of Differences between SPARC64 V and UltraSPARC-III.

1.2 Fonts and Notational Conventions
Please refer to Section 1.2 of Commonality for font and notational conventions.
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1.3 The SPARC64 V processor
The SPARC64 V processor is a high-performance, high-reliability, and high-integrity 
processor that fully implements the instruction set architecture that conforms to 
SPARC V9, as described in JPS1 Commonality. In addition, the SPARC64 V processor 
implements the following features:

■ 64-bit virtual address space and 43-bit physical address space
■ Advanced RAS features that enable high-integrity error handling

Microarchitecture for High Performance

The SPARC64 V is an out-of-order execution superscalar processor that issues up to 
four instructions per cycle. Instructions in the predicted path are issued in program 
order and are stored temporarily in reservation stations until they are dispatched out 
of program order to appropriate execution units. Instructions commit in program 
order when no exceptional conditions occur during execution and all prior 
instructions commit (that is, the result of the instruction execution becomes visible). 
Out-of-order execution in SPARC64 V contributes to high performance.

SPARC64 V implements a large branch history buffer to predict its instruction path. 
The history buffer is large enough to sustain a good prediction rate for large-scale 
programs such as DBMS and to support the advanced instruction fetch mechanism 
of SPARC64 V. This instruction fetch scheme predicts the execution path beyond the 
multiple conditional branches in accordance with the branch history. It then tries to 
prefetch instructions on the predicted path as much as possible to reduce the effect 
of the performance penalty caused by instruction cache misses.

High Integration

SPARC64 V integrates an on-board, associative, level-2 cache. The level-2 cache is 
unified for instruction and data. It is the lowest layer in the cache hierarchy.

This integration contributes to both performance and reliability of SPARC64 V. It 
enables shorter access time and more associativity and thus contributes to higher 
performance. It contributes to higher reliability by eliminating the external 
connections for level-2 cache.

High Reliability and High Integrity

SPARC64 V implements the following advanced RAS features for reliability and 
integrity beyond that of ordinary microprocessors.
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1. Advanced RAS features for caches

■ Strong cache error protection:
■ ECC protection for D1 (Data level 1) cache data, U2 (unified level 2) cache data, 

and the U2 cache tag.
■ Parity protection for I1 (Instruction level 1) cache data.
■ Parity protection and duplication for the I1 cache tag and the D1 cache tag.

■ Automatic correction of all types of single-bit error:
■ Automatic single-bit error correction for the ECC protected data.
■ Invalidation and refilling of I1 cache data for the I1 cache data parity error.
■ Copying from duplicated tag for I1 cache tag and D1 cache tag parity errors.

■ Dynamic way reduction while cache consistency is maintained.

■ Error marking for cacheable data uncorrectable errors:
■ Special error-marking pattern for cacheable data with uncorrectable errors. The 

identification of the module that first detects the error is embedded in the 
special pattern. 

■ Error-source isolation with faulty module identification in the special error-
marking. The identification information enables the processor to avoid 
repetitive error logging for the same error cause.

2. Advanced RAS features for the core

■ Strong error protection:
■ Parity protection for all data paths.
■ Parity protection for most of software-visible registers and internal temporary 

registers.
■ Parity prediction or residue checking for the accumulator output.

■ Hardware instruction retry

■ Support for software instruction retry (after failure of hardware instruction retry)

■ Error isolation for software recovery:
■ Error indication for each programmable register group.
■ Indication of retryability of the trapped instruction.
■ Use of different error traps to differentiate degrees of adverse effects on the 

CPU and the system.

3. Extended RAS interface to software

■ Error classification according to the severity of the effect on program execution:
■ Urgent error (nonmaskable): Unable to continue execution without OS 

intervention; reported through a trap.
■ Restrainable error (maskable): OS controls whether the error is reported 

through a trap, so error does not directly affect program execution. 

■ Isolated error indication to determine the effect on software
Release 1.0, 1 July 2002 F. Chapter 1 Overview 3



■ Asynchronous data error (ADE) trap for additional errors:
■ Relaxed instruction end method (precise, retryable, not retryable) for the 

async_data_error exception to indicate how the instruction should end; depends 
on the executing instruction and the detected error.

■ Some ADE traps that are deferred but retryable.
■ Simultaneous reporting of all detected ADE errors at the error barrier for correct 

handling of retryability.

1.3.1 Component Overview
The SPARC64 V processor contains these components.

■ Instruction control Unit (IU)
■ Execution Unit (EU)
■ Storage Unit (SU)
■ Secondary cache and eXternal access Unit (SXU)

FIGURE 1-1 illustrates the major units; the following subsections describe them.
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FIGURE 1-1 SPARC64 V Major Units
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1.3.2 Instruction Control Unit (IU)
The IU predicts the instruction execution path, fetches instructions on the predicted 
path, distributes the fetched instructions to appropriate reservation stations, and 
dispatches the instructions to the execution pipeline. The instructions are executed 
out of order, and the IU commits the instructions in order. Major blocks are defined 
in TABLE 1-1.

1.3.3 Execution Unit (EU)
The EU carries out execution of all integer arithmetic, logical, shift instructions, all 
floating-point instructions, and all VIS graphic instructions. TABLE 1-2 describes the 
EU major blocks.

TABLE 1-1 Instruction Control Unit Major Blocks

Name Description

Instruction fetch pipeline Five stages: fetch address generation, iTLB access, iTLB match, 
I-Cache fetch, and a write to I-buffer.

Branch history 16K entries, 4-way set associative.

Instruction buffer Six entries, 32 bytes/entry.

Reservation station Six reservation stations to hold instructions until they can 
execute: RSBR for branch and the other control-transfer 
instructions; RSA for load/store instructions; RSEA and RSEB for 
integer arithmetic instructions; RSFA and RSFB for floating-point 
arithmetic and VIS instructions.

Commit stack entries Sixty-four entries; basically one instruction/entry, to hold 
information about instructions issued but not yet committed.

PC, nPC, CCR, FSR Program-visible registers for instruction execution control.

TABLE 1-2 Execution Unit Major Blocks 

Name Description

General register (gr) renaming 
register file (GUB: gr update 
buffer)

Thirty-two entries, 8 read ports, 2 write ports

Gr architecture register file (GPR) 160 entries, 1 read port, 2 write ports

Floating-point (fr) renaming 
register file (FUB: fr update 
buffer)

Thirty-two entries, 8 read ports, 2 write ports

Fr architecture register file (FPR) Thirty-two entries, 
6 read ports, 2 write ports

EU control logic Controls the instruction execution stages: instruction 
selection, register read, and execution.
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1.3.4 Storage Unit (SU)
The SU handles all sourcing and sinking of data for load and store instructions. 
TABLE 1-3 describes the SU major blocks.

Interface registers Input/output registers to other units.

Two integer execution pipelines 
(EXA, EXB)

64-bit ALU and shifters.

Two floating-point and graphics 
execution pipelines (FLA, FLB)

Each floating-point execution pipeline can execute floating 
point multiply, floating point add/sub, floating-point 
multiply and add, floating point div/sqrt, and floating-
point graphics instruction.

Two virtual address adders for 
memory access pipeline (EAGA, 
EAGB)

Two 64-bit virtual addresses for load/store.

TABLE 1-3 Storage Unit Major Blocks

Name Description

Instruction level-1 cache 128-Kbyte, 2-way associative, 64-byte line; provides low latency 
instruction source

Data level-1 cache 128-Kbyte, 2-way associative, 64-byte line, writeback; provides 
the low latency data source for loads and stores.

Instruction Translation 
Buffer

1024 entries, 2-way associative TLB for 8-Kbyte pages,
1024 entries, 2-way associative TLB for 4-Mbyte pages1,
32 entries, fully associative TLB for unlocked 64-Kbyte, 512-

Kbyte, 4-Mbyte1 pages and locked pages in all sizes.

1. Unloced 4-Mbyte page entry is stored either in 2-way associative TLB or fully associative
TLB exclusively, depending on the setting.

Data Translation Buffer 1024 entries, 2-way associative TLB for 8-Kbyte pages,
1024 entries, 2-way associative TLB for 4-Mbyte pages1,
32 entries, fully associative TLB for unlocked 64-Kbyte, 512-

Kbyte, 4-Mbyte1 pages and locked pages in all sizes.

Store queue Decouples the pipeline from the latency of store operations. 
Allows the pipeline to continue flowing while the store waits for 
data, and eventually writes into the data level 1 cache.

TABLE 1-2 Execution Unit Major Blocks  (Continued)

Name Description
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1.3.5 Secondary Cache and External Access Unit (SXU)
The SXU controls the operation of unified level-2 caches and the external data access 
interface (extended UPA interface). TABLE 1-4 describes the major blocks of the SXU.

TABLE 1-4 Secondary Cache and External Access Unit Major Blocks

Name Description

Unified level-2 cache 2-Mbyte, 4-way associative, 64-byte line, writeback; provides low 
latency data source for both instruction level-1 cache and data 
level-1 cache.

Movein buffer Sixteen entries, 64-bytes/entry; catches returning data from 
memory system in response to the cache line read request. A 
maximum of 16 outstanding cache read operations can be issued.

Moveout buffer Eight entries, 64-bytes/entry; holds writeback data. A maximum 
of 8 outstanding writeback requests can be issued.

Extended UPA interface 
control logic

Send/receive transaction packets to/from Extended UPA 
interface connected to the system.
8 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



F.CHAPTER 2

Definitions

This chapter defines concepts unique to the SPARC64 V, the Fujitsu implementation 
of SPARC JPS1. For definition of terms that are common to all implementations, 
please refer to Chapter 2 of Commonality.

committed Term applied to an instruction when it has completed without error and all 
prior instructions have completed without error and have been committed. When 
an instruction is committed, the state of the machine is permanently changed 
to reflect the result of the instruction; the previously existing state is no longer 
needed and can be discarded.

completed Term applied to an instruction after it has finished, has sent a nonerror status to 
the issue unit, and all of its source operands are nonspeculative. Note: 
Although the state of the machine has been temporarily altered by completion 
of an instruction, the state has not yet been permanently changed and the old 
state can be recovered until the instruction has been committed.

executed Term applied to an instruction that has been processed by an execution unit 
such as a load unit. An instruction is in execution as long as it is still being 
processed by an execution unit.

fetched Term applied to an instruction that is obtained from the I2 instruction cache or 
from the on-chip internal cache and sent to the issue unit.

finished Term applied to an instruction when it has completed execution in a functional 
unit and has forwarded its result onto a result bus. Results on the result bus are 
transferred to the register file, as are the waiting instructions in the instruction 
queues.

initiated Term applied to an instruction when it has all of the resources that it needs (for 
example, source operands) and has been selected for execution.

instruction dispatch Synonym: instruction initiation.

instruction issued Term applied to an instruction when it has been dispatched to a reservation 
station.
9



instruction retired Term applied to an instruction when all machine resources (serial numbers, 
renamed registers) have been reclaimed and are available for use by other 
instructions. An instruction can only be retired after it has been committed.

instruction stall Term applied to an instruction that is not allowed to be issued. Not every 
instruction can be issued in a given cycle. The SPARC64 V implementation 
imposes certain issue constraints based on resource availability and program 
requirements.

issue-stalling
instruction An instruction that prevents new instructions from being issued until it has 

committed.

machine sync The state of a machine when all previously executing instructions have 
committed; that is, when no issued but uncommitted instructions are in the 
machine.

Memory Management
Unit (MMU) Refers to the address translation hardware in SPARC64 V that translates 64-bit 

virtual address into physical address. The MMU is composed of the mITLB, 
mDTLB, uITLB, uDTLB, and the ASI registers used to manage address 
translation.

mTLB Main TLB. Split into I and D, called mITLB and mDTLB, respectively. Contains 
address translations for the uITLB and uDTLB. When the uITLB or uDTLB do 
not contain a translation, they ask the mTLB for the translation. If the mTLB 
contains the translation, it sends the translation to the respective uTLB. If the 
mTLB does not contain the translation, it generates a fast access exception to a 
software translation trap handler, which will load the translation information 
(TTE) into the mTLB and retry the access. See also TLB.

uDTLB Micro Data TLB. A small, fully associative buffer that contains address 
translations for data accesses. Misses in the uDTLB are handled by the mTLB.

uITLB Micro Instruction TLB. A small, fully associative buffer that contains address 
translations for instruction accesses. Misses in the uTLB are handled by the 
mTLB.

nonspeculative A distribution system whereby a result is guaranteed known correct or an 
operand state is known to be valid. SPARC64 V employs speculative 
distribution, meaning that results can be distributed from functional units 
before the point at which guaranteed validity of the result is known.

reclaimed The status when all instruction-related resources that were held until commit 
have been released and are available for subsequent instructions. Instruction 
resources are usually reclaimed a few cycles after they are committed.

rename registers A large set of hardware registers implemented by SPARC64 V that are invisible 
to the programmer. Before instructions are issued, source and destination 
registers are mapped onto this set of rename registers. This allows instructions 
that normally would be blocked, waiting for an architected register, to proceed 
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in parallel. When instructions are committed, results in renamed registers are 
posted to the architected registers in the proper sequence to produce the correct 
program results.

scan A method used to initialize all of the machine state within a chip. In a chip that 
has been designed to be scannable, all of the machine state is connected in one 
or several loops called “scan rings.” Initialization data can be scanned into the 
chip through the scan rings. The state of the machine also can be scanned out  
through the scan rings.

reservation station A holding location that buffers dispatched instructions until all input operands 
are available. SPARC64 V implements dataflow execution based on operand 
availability. When operands are available, the instructions in the reservation 
station are scheduled for execution. Reservation stations also contain special 
tag-matching logic that captures the appropriate operand data. Reservation 
stations are sometimes referred to as queues (for example, the integer queue).

speculative A distribution system whereby a result is not guaranteed as known to be 
correct or an operand state is not known to be valid. SPARC64 V employs 
speculative distribution, meaning results can be distributed from functional 
units before the point at which guaranteed validity of the result is known.

superscalar An implementation that allows several instructions to be issued, executed, and 
committed in one clock cycle. SPARC64 V issues up to 4 instructions per clock 
cycle.

sync Synonym: machine sync.

syncing instruction An instruction that causes a machine sync. Thus, before a syncing instruction is 
issued, all previous instructions (in program order) must have been committed. 
At that point, the syncing instruction is issued, executed, completed, and 
committed by itself.

TLB Translation lookaside buffer.
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F.CHAPTER 3

Architectural Overview

Please refer to Chapter 3 in the Commonality section of SPARC Joint Programming 
Specification.
13
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F.CHAPTER 4

Data Formats

Please refer to Chapter 4, Data Formats in Commonality. 
15
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F.CHAPTER 5

Registers

The SPARC64 V processor includes two types of registers: general-purpose—that is, 
working, data, control/status—and ASI registers.

The SPARC V9 architecture also defines two implementation-dependent registers: 
the IU Deferred-Trap Queue and the Floating-Point Deferred-Trap Queue (FQ); 
SPARC64 V does not need or contain either queue. All processor traps caused by 
instruction execution are precise, and there are several disrupting traps caused by 
asynchronous events, such as interrupts, asynchronous error conditions, and 
RED_state entry traps.

For general information, please see parallel subsections of Chapter 5 in 
Commonality. For easier referencing, this chapter follows the organization of 
Chapter 5 in Commonality.

For information on MMU registers, please refer to Section F.10, Internal Registers and 
ASI operations, on page 92.

The chapter contains these sections:

■ Nonprivileged Registers on page 17
■ Privileged Registers on page 19

5.1 Nonprivileged Registers
Most of the definitions for the registers are as described in the corresponding 
sections of Commonality. Only SPARC64 V-specific features are described in this 
section.
17



5.1.7 Floating-Point State Register (FSR)
Please refer to Section 5.1.7 of Commonality for the description of FSR.

The sections below describe SPARC64 V-specific features of the FSR register.

FSR_nonstandard_fp (NS) 

SPARC V9 defines the FSR.NS bit which, when set to 1, causes the FPU to produce 
implementation-dependent results that may not conform to IEEE Std 754-1985. 
SPARC64 V implements this bit. 

When FSR.NS = 1, denormal input operands and denormal results that would 
otherwise trap are flushed to 0 of the same sign and an inexact exception is signalled 
(that may be masked by FSR.TEM.NXM). See Section B.6, Floating-Point Nonstandard 
Mode, on page 61 for details.

When FSR.NS = 0, the normal IEEE Std 754-1985 behavior is implemented.

FSR_version (ver)

For each SPARC V9 IU implementation (as identified by its VER.impl field), there 
may be one or more FPU implementations or none. This field identifies the 
particular FPU implementation present. For the first SPARC64 V, FSR.ver = 0 (impl. 
dep. #19); however, future versions of the architecture may set FSR.ver to other 
values. Consult the SPARC64 V Data Sheet for the setting of FSR.ver for your 
chipset.

FSR_floating-point_trap_type (ftt)

The complete conditions under which SPARC64 V triggers fp_exception_other with 
trap type unfinished_FPop is described in Section B.6, Floating-Point Nonstandard Mode, 
on page 61 (impl. dep. #248).

FSR_current_exception (cexc) 

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were 
generated by the most recently executed FPop instruction. The absence of an 
exception causes the corresponding bit to be cleared.

In SPARC64 V, the cexc bits are set according to the following pseudocode:

if (<LDFSR or LDXFSR commits>)
<update using data from LDFSR or LDXFSR>;

else if (<FPop commits with ftt = 0>)
<update using value from FPU>
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else if (<FPop commits with IEEE_754_exception>)
<set one bit in the CEXC field as supplied by FPU>;

else if (<FPop commits with unfinished_FPop error>)
<no change>;

else if (<FPop commits with unimplemented_FPop error>)
<no change>;

else
<no change>;

FSR Conformance      

SPARC V9 allows the TEM, cexc, and aexc fields to be implemented in hardware in 
either of two ways (both of which comply with IEEE Std 754-1985). SPARC64 V 
follows case (1); that is, it implements all three fields in conformance with IEEE Std 
754-1985. See FSR Conformance in Section 5.1.7 of Commonality for more 
information about other implementation methods.

5.1.9 Tick (TICK) Register
SPARC64 V implements TICK.counter register as a 63-bit register (impl. dep. 
#105).

Implementation Note – On SPARC64 V, the counter part of the value returned 
when the TICK register is read is the value of TICK.counter when the RDTICK 
instruction is executed. The difference between the counter values read from the 
TICK register on two reads reflects the number of processor cycles executed between 
the executions of the RDTICK instructions, not their commits. In longer code 
sequences, the difference between this value and the value that would have been 
obtained when the instructions are committed would have been small.

5.2 Privileged Registers
Please refer to Section 5.2 of Commonality for the description of privileged registers.

5.2.6 Trap State (TSTATE) Register
SPARC64 V implements only bits 2:0 of the TSTATE.CWP field. Writes to bits 4 and 3 
are ignored, and reads of these bits always return zeroes.
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Note – Spurious setting of the PSTATE.RED bit by privileged software should not 
be performed, since it will take the SPARC64 V into RED_state without the 
required sequencing.

5.2.9 Version (VER) Register
TABLE 5-1 shows the values for the VER register for SPARC64 V.

The manuf field contains Fujitsu’s 8-bit JEDEC code in the lower 8 bits and zeroes in 
the upper 8 bits. The manuf, impl, and mask fields are implemented so that they 
may change in future SPARC64 V processor versions. The mask field is incremented 
by 1 any time a programmer-visible revision is made to the processor. See the 
SPARC64 V Data Sheet to determine the current setting of the mask field.

5.2.11 Ancillary State Registers (ASRs)
Please refer to Section 5.2.11 of Commonality for details of the ASRs.

Performance Control Register (PCR) (ASR 16)

SPARC64 V implements the PCR register as described in SPARC JPS1 Commonality, 
with additional features as described in this section.

In SPARC64 V, the accessibility of PCR when PSTATE.PRIV = 0 is determined by 
PCR.PRIV. If PSTATE.PRIV = 0 and PCR.PRIV = 1, an attempt to execute either 
RDPCR or WRPCR will cause a privileged_action exception. If PSTATE.PRIV = 0 and 
PCR.PRIV = 0, RDPCR operates without privilege violation and WRPCR causes a 
privileged_action exception only when an attempt is made to change (that is, write 1 
to) PCR.PRIV (impl. dep. #250).

See Appendix Q, Performance Instrumentation, for a detailed discussion of the PCR 
and PIC register usage and event count definitions.

TABLE 5-1 VER Register Encodings 

Bits Field Value

63:48 manuf 000416 (impl. dep. #104)

47:32 impl 5 (impl. dep. #13)

31:24 mask n (The value of n depends on the processor chip version)

15:8 maxtl 5

4:0 maxwin 7
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The Performance Control Register in SPARC64 V is illustrated in FIGURE 5-1 and 
described in TABLE 5-2. 

FIGURE 5-1 SPARC64 V Performance Control Register (PCR) (ASR 16)

TABLE 5-2 PCR Bit Description 

Bit Field Description

47:32 OVF Overflow Clear/Set/Status. Used to read counter overflow status (via RDPCR) and clear 
or set counter overflow status bits (via WRPCR). PCR.OVF is a SPARC64 V-specific field 
(impl. dep. #207).
The following figure depicts the bit layout of SPARC64 V OVF field for four counter 
pairs. Counter status bits are cleared on write of 0 to the appropriate OVF bit. 

26 OVRO Overflow read-only. Write-only/read-as-zero field specifying PCR.OVF update behavior 
for WRPCR.PCR. The OVRO field is implementation -dependent (impl. dep. #207). 
WRPCR.PCR with PCR.OVRO = 1 inhibits updating of PCR.OVF for the current write 
only. The intention of PCR.OVRO is to write PCR while preserving current PCR.OVF 
value. PCR.OVF is maintained internally by hardware, so a subsequent RDPCR.PCR 
returns accurate overflow status at the time.

24:22 NC Number of counter pairs. Three-bit, read-only field specifying the number of counter 
pairs, encoded as 0–7 for 1–8 counter pairs (impl. dep. #207). 
For SPARC64 V, the hardcoded value of NC is 3 (indicating presence of 4 counter pairs).

 20:18 SC Select PIC. In SPARC64 V, three-bit field specifying which counter pair is currently 
selected as PIC (ASR 17) and which SU/SL values are visible to software. On write, 
PCR.SC selects which counter pair is updated (unless PCR.ULRO is set; see below). On 
read, PCR.SC selects which counter pair is to be read through PIC (ASR 17).

16:11 SU Defined (as S1) in SPARC JPS1 Commonality.

 9:4 SL Defined (as S0) in SPARC JPS1 Commonality.

3 ULRO Implementation-dependent field (impl. dep. #207) that specifies whether SU/SL are 
read-only. In SPARC64 V, this field is write-only/read-as-zero, specifying update 
behavior of SU/SL on write. When PCR.ULRO = 1, SU/SL are considered as read-only; 
the values set on PCR.SU/PCR.SL are not written into SU/SL. When PCR.ULRO = 0, 
SU/SL are updated. PCR.ULRO is intended to switch visible PIC by writing PCR.SC, 
without affecting current selection of SU/SL of that PIC. On PCR read, PCR.SU/PCR.SL 
always shows the current setting of the PIC regardless of PCR.ULRO.

2 UT Defined in SPARC JPS1 Commonality.

1 ST Defined in SPARC JPS1 Commonality.

63 16 10 9 4 0

OVF 0 SLSU0SC

171821

0NC

2224

0OVRO

26273132
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ULRO UT ST PRIV

1231120
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01234567

L2U2L3U3
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Performance Instrumentation Counter (PIC) Register (ASR 
17)

The PIC register is implemented as described in SPARC JPS1 Commonality.

Four PICs are implemented in SPARC64 V. Each is accessed through ASR 17, using 
PCR.SC as a select field. Read/write access to the PIC will access the PICU/PICL 
counter pair selected by PCR. For PICU/PICL encodings of specific event counters, 
see Appendix Q, Performance Instrumentation.

Counter Overflow.On overflow, counters wrap to 0, SOFTINT register bit 15 is set, 
and an interrupt level-15 exception is generated. The counter overflow trap is 
triggered on the transition from value FFFF FFFF16 to value 0. If multiple overflows 
are generated simultaneously, then multiple overflow status bits will be set. If 
overflow status bits are already set, then they remain set on counter overflow.

Overflow status bits are cleared by software writing 0 to the appropriate bit of 
PCR.OVF and may be set by writing 1 to the appropriate bit. Setting these bits by 
software does not generate a level 15 interrupt.

Dispatch Control Register (DCR) (ASR 18)

The DCR is not implemented in SPARC64 V. Zero is returned on read, and writes to 
the register are ignored. The DCR is a privileged register; attempted access by 
nonprivileged (user) code generates a privileged_opcode exception. 

5.2.12 Registers Referenced Through ASIs

Data Cache Unit Control Register (DCUCR)

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 016.

The Data Cache Unit Control Register contains fields that control several memory-
related hardware functions. The functions include Instruction, Prefetch, write and 
data caches, MMUs, and watchpoint setting. SPARC64 V implements most of 
DCUCUR’s functions described in Section 5.2.12 of Commonality.

0 PRIV Defined in SPARC JPS1 Commonality, with the additional function of controlling PCR 
accessibility as described above (impl. dep. #250).

TABLE 5-2 PCR Bit Description  (Continued)

Bit Field Description
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After a power-on reset (POR), all fields of DCUCR, including implementation-
dependent fields, are set to 0. After a WDR, XIR, or SIR reset, all fields of DCUCR, 
including implementation-dependent fields, are set to 0.

The Data Cache Unit Control Register is illustrated in FIGURE 5-2 and described in 
TABLE 5-3. In the table, bits are grouped by function rather than by strict bit sequence.

FIGURE 5-2 DCU Control Register Access Data Format (ASI 4516)

TABLE 5-3 DCUCR Description 

Bits Field Type Use — Description

49:48 CP, CV RW Not implemented in SPARC64 V (impl. dep. #232). It reads as 0 and writes to 
it are ignored.

47:42 impl. dep. Not used. It reads as 0 and writes to it are ignored.

41 WEAK_SPCA RW Used for disabling speculative memory access (impl. dep. #240). When 
DCUCR.WEAK_SPCA = 1, the branch history table is cleared and no longer 
issues aggressive instruction prefetch. 
During DCUCR.WEAK_SPCA = 1, aggressive instruction prefetching is 
disabled and any load and store instructions are considered presync 
instructions that are executed when all previous instructions are committed. 
Because all CTI are considered as not taken, instructions residing beyond 1 
Kbyte of a CTI may be fetched and executed. 
On entering aggressive instruction Prefetch disable mode, supervisor 
software should issue membar #Sync, to make sure all in-flight instructions 
in the pipeline are discarded.
During DCUCR.WEAK_SPCA = 1, an L2 cache flush by writing 1 to 
ASI_L2_CTRL.U2_FLUSH remains pending internally until 
DCUCR.WEAK_SPCA is set to 0. To wait for completion of the cache flush, a 
member #Sync must be issued after DCUCR.WEAK_SPCA is set to 0. 
Executing a membar #Sync while the DCUCR.WEAK_SPCA = 1 after writing 1 
to ASI_L2_CTRL.U2_FLUSH does not wait for the cache flush to complete.

40:33 PM<7:0> Defined in SPARC JPS1 Commonality.

32:25 VM<7:0> Defined in SPARC JPS1 Commonality.

24, 23 PR, PW Defined in SPARC JPS1 Commonality.

22, 21 VR, VW Defined in SPARC JPS1 Commonality.

20:4 — Reserved.

3 DM Defined in SPARC JPS1 Commonality.

2 IM Defined in SPARC JPS1 Commonality.

Implementation dependent PM VM PR PW VR DM 0

012342122234042 20

VW

2425323347

IM 00

4849

0

5063

—— WEAK_SPCA

41
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Data Watchpoint Registers

No implementation-dependent feature of SPARC64 V reduces the reliability of data 
watchpoints (impl. dep. #244).

SPARC64 V employs conservative check of PA/VA watchpoint over partial store 
instruction. See Section A.42, Partial Store (VIS I), on page 57 for details.

Instruction Trap Register

SPARC64 V implements the Instruction Trap Register (impl. dep. #205).

In SPARC64 V, the least significant 11 bits (bits 10:0) of a CALL or branch (BPcc, 
FBPfcc, Bicc, BPr) instruction in an instruction cache are identical to their 
architectural encoding (as it appears in main memory) (impl. dep. #245).

5.2.13 Floating-Point Deferred-Trap Queue (FQ)
SPARC64 V does not contain a Floating-Point Deferred-trap Queue (impl. dep. #24). 
An attempt to read FQ with an RDPR instruction generates an illegal_instruction 
exception (impl. dep. #25).

5.2.14 IU Deferred-Trap Queue
SPARC64 V neither has nor needs an IU deferred-trap queue (impl. dep. #16)

1 DC RW Not implemented in SPARC64 V (impl. dep. #252). It reads as 0 and writes to 
it are ignored.

0 IC RW Not implemented in SPARC64 V (impl. dep. #253). It reads as 0 and writes to 
it are ignored.

TABLE 5-3 DCUCR Description  (Continued)

Bits Field Type Use — Description
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F.CHAPTER 6

Instructions

This chapter presents SPARC64 V implementation-specific instruction details and the 
processor pipeline information in these subsections:

■ Instruction Execution on page 25
■ Instruction Formats and Fields on page 28
■ Instruction Categories on page 29
■ Processor Pipeline on page 31

For additional, general information, please see parallel subsections of Chapter 6 in 
Commonality. For easy referencing, we follow the organization of Chapter 6 in 
Commonality.

6.1 Instruction Execution
SPARC64 V is an advanced superscalar implementation of SPARC V9. Several 
instructions may be issued and executed in parallel. Although SPARC64 V provides 
serial program execution semantics, some of the implementation characteristics 
described below are part of the architecture visible to software for correctness and 
efficiency. The affected software includes optimizing compilers and supervisor code.

6.1.1 Data Prefetch
SPARC64 V employs speculative (out of program order) execution of instructions; in 
most cases, the effect of these instructions can be undone if the speculation proves to 
be incorrect.1 However, exceptions can occur because of speculative data 
prefetching. Formally, SPARC64 V employs the following rules regarding speculative 
prefetching:

1. An async_data_error may be signalled during speculative data prefetching.
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1. If a memory operation y resolves to a volatile memory address (location[y]), 
SPARC64 V will not speculatively prefetch location[y] for any reason; location[y] 
will be fetched or stored to only when operation y is commitable.

2. If a memory operation y resolves to a nonvolatile memory address (location[y]), 
SPARC64 V may speculatively prefetch location[y] subject, adhering to the 
following subrules:

a. If an operation y can be speculatively prefetched according to the prior rule, 
operations with store semantics are speculatively prefetched for ownership 
only if they are prefetched to cacheable locations. Operations without store 
semantics are speculatively prefetched even if they are noncacheable as long as 
they are not volatile.

b. Atomic operations (CAS(X)A, LDSTUB, SWAP) are never speculatively 
prefetched.

SPARC64 V provides two mechanisms to avoid speculative execution of a load:

1. Avoid speculation by disallowing speculative accesses to certain memory pages or 
I/O spaces. This can be done by setting the E (side-effect) bit in the PTE for all 
memory pages that should not allow speculation. All accesses made to memory 
pages that have the E bit set in their PTE will be delayed until they are no longer 
speculative or until they are cancelled. See Appendix F, Memory Management Unit, 
for details.

2. Alternate space load instructions that force program order, such as 
ASI_PHYS_BYPASS_WITH_EBIT[_L] (AS I = 1516, 1D16), will not be speculatively 
executed.

6.1.2 Instruction Prefetch
The processor prefetches instructions to minimize cases where the processor must 
wait for instruction fetch. In combination with branch prediction, prefetching may 
cause the processor to access instructions that are not subsequently executed. In 
some cases, the speculative instruction accesses will reference data pages. 
SPARC64 V does not generate a trap for any exception that is caused by an 
instruction fetch until all of the instructions before it (in program order) have been 
committed.1

1. Hardware errors and other asynchronous errors may generate a trap even if the instruction that caused the 
trap is never committed.
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6.1.3 Syncing Instructions
SPARC64 V has instructions, called syncing instructions, that stop execution for the 
number of cycles it takes to clear the pipeline and to synchronize the processor. 
There are two types of synchronization, pre and post. A presyncing instruction waits 
for all previous instructions to commit, commits by itself, and then issues successive 
instructions. A postsyncing instruction issues by itself and prevents the successive 
instructions from issuing until it is committed. Some instructions have both pre- and 
postsync attributes. 

In SPARC64 V almost all instructions commit in order, but store instruction commit 
before becoming globally visible. A few syncing instructions cause the processor to 
discard prefetched instructions and to refetch the successive instructions. TABLE 6-1 
lists all pre-/postsync instructions and the effects of instruction execution.

TABLE 6-1 SPARC64 V Syncing Instructions 

Opcode

Presyncing Postsyncing

Sync?
Wait for 
store global 
visibility?

Sync?
Discard 
prefetched 
instructions?

ALIGNADDRESS{_LITTLE} Yes

BMASK Yes

DONE Yes Yes

FCMP(GT,LE,NE,EQ)(16,32) Yes

FLUSH Yes Yes Yes

FMOV(s,d)icc Yes

FMOVr Yes

LDD Yes Yes

LDDA Yes Yes

LDDFA Yes

memory access with 
ASI=ASI_PHYS_BYPASS_EC{_LITTLE}, 
ASI_PHYS_BYPASS_EC_WITH_E_BIT{_LITTLE}

Yes

LDFSR, LDXFSR Yes

MEMBAR Yes Yes1 Yes

MOVfcc Yes

MULScc Yes

PDIST Yes

RDASR Yes

RETRY Yes Yes

SIAM Yes

STBAR Yes

STD Yes
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6.2 Instruction Formats and Fields
Instructions are encoded in five major 32-bit formats and several minor formats. 
Please refer to Section 6.2 of Commonality for illustrations of four major formats. 
FIGURE 6-1 illustrates Format 5, unique to SPARC64 V. 

FIGURE 6-1 Summary of Instruction Formats: Format 5

Instruction fields are those shown in Section 6.2 of Commonality. Three additional 
fields are implemented in SPARC64 V. They are described in TABLE 6-2. 

STDA Yes

STDFA Yes

STFSR, STXFSR Yes

Tcc Yes Yes Yes

WRASR Yes2 Yes

1. When #cmask ! = 0.
2. WRGSR only.

TABLE 6-2 Instruction Fields Specific to SPARC64 V

Bits Field Description

13:9 rs3 This 5-bit field is the address of the third f register source operand for 
the floating-point multiply-add and multiply-subtract instruction.

8.7 var This 2-bit field specifies which specific operation (variation) to perform 
for the floating-point multiply-add and multiply-subtract instructions

6.5 size This 2-bit field specifies the size of the operands for the floating-point 
multiply-add and multiply-subtract instructions.

TABLE 6-1 SPARC64 V Syncing Instructions  (Continued)

Opcode

Presyncing Postsyncing

Sync?
Wait for 
store global 
visibility?

Sync?
Discard 
prefetched 
instructions?

op3rdop rs1 rs3 rs2var

Format 5 (op = 2, op3 = 3716): FMADD, FMSUB, FNMADD, and FNMSUB (in place of IMPDEP2B)

31 141924 18 13 12 5 4 02530 29 11 10 9 7 617 8

size
28 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



Since size = 00 is not IMPDEP2B and since size = 11 assumed quad operations but 
is not implemented in SPARC64 V, the instruction with size = 00 or 11 generates an 
illegal_instruction exception in SPARC64 V.

6.3 Instruction Categories
SPARC V9 instructions comprise the categories listed below. All categories are 
described in Section 6.3 of Commonality. Subsections in bold face are SPARC64 V 
implementation dependencies.

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access
■ Privileged register access
■ Floating-point operate (FPop)
■ Implementation-dependent

6.3.3 Control-Transfer Instructions (CTIs)
These are the basic control-transfer instruction types:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch 
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)

Instructions other than CALL and JMPL are described in their entirety in Section 6.3.2 
of Commonality. SPARC64 V implements CALL and JMPL as described below. 

CALL and JMPL Instructions

SPARC64 V writes all 64 bits of the PC into the destination register when 
PSTATE.AM = 0. The upper 32 bits of r[15] (CALL) or of r[rd] (JMPL) are written 
as zeroes when PSTATE.AM = 1 (impl. dep. #125).
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SPARC64 V implements JMPL and CALL return prediction hardware in a form of 
special stack, called the Return Address Stack (RAS). Whenever a CALL or JMPL that 
writes to %o7 (r[15]) occurs, SPARC64 V “pushes” the return address (PC+8) onto 
the RAS. When either of the synthetic instructions retl (JMPL [%o7+8]) and ret (JMPL 
[%i7+8]) are subsequently executed, the return address is predicted to be the 
address stored on the top of the RAS and the RAS is “popped.” If the prediction in 
the RAS is incorrect, SPARC64 V backs up and starts issuing instructions from the 
correct target address. This backup takes a few extra cycles. 

Programming Note – For maximum performance, software and compilers must 
take into account how the RAS works. For example, tricks that do nonstandard 
returns in hopes of boosting performance may require more cycles if they cause the 
wrong RAS value to be used for predicting the address of the return. Heavily nested 
calls can also cause earlier entries in the RAS to be overwritten by newer entries, 
since the RAS only has a limited number of entries. Eventually, some return 
addresses will be mispredicted because of the overflow of the RAS. 

6.3.7 Floating-Point Operate (FPop) Instructions
The complete conditions of generating an fp_exception_other exception with 
FSR.ftt = unfinished_FPop are described in Section B.6, Floating-Point Nonstandard 
Mode on page 61.

The SPARC64 V-specific FMADD and FMSUB instructions (described below) are also 
floating-point operations. They require the floating-point unit to be enabled; 
otherwise, an fp_disabled trap is generated. They also affect the FSR, like FPop 
instructions. However, these instructions are not included in the FPop category and, 
hence, reserved encodings in these opcodes generate an illegal_instruction exception, as 
defined in Section 6.3.9 of Commonality.

6.3.8 Implementation-Dependent Instructions
SPARC64 V uses the IMPDEP2 instruction to implement the Floating-Point Multiply-
Add/Subtract and Negative Multiply-Add/Subtract instructions; these have an op3 
field = 3716 (IMPDEP2). See Floating-Point Multiply-Add/Subtract on page 50 for fuller 
definitions of these instructions. Opcode space is reserved in IMPDEP2 for the quad-
precision forms of these instructions. However, SPARC64 V does not currently 
implement the quad-precision forms, and the processor generates an illegal_instruction 
exception if a quad-precision form is specified. Since these instructions are not part 
of the required SPARC V9 architecture, the operating system does not supply 
software emulation routines for the quad versions of these instructions.

SPARC64 V uses the IMPDEP1 instruction to implement the graphics acceleration 
instructions.
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6.4 Processor Pipeline
The pipeline of SPARC64 V consists of fifteen stages, shown in FIGURE 6-2. Each 
stage is referenced by one or two letters as follows:   

6.4.1 Instruction Fetch Stages
■ IA (Instruction Address generation) — Calculate fetch target address.

■ IT (Instruction TLB Tag access) — Instruction TLB tag search. Search of BRHIS 
and RAS is also started.

■ IM (Instruction TLB tag Match) — Check TLB tag is matched.
The result of BRHIS and RAS search is also available at this stage and is 
forwarded to IA stage for subsequent fetch.

■ IB (Instruction cache Buffer read) — Read L1 cache data if TLB is hit.

■ IR (Instruction read Result) — Write to I-Buffer.

IA through IR stages are dedicated to instruction fetch. These stages work in concert 
with the cache access unit to supply instructions to subsequent stages. The 
instructions fetched from memory or cache are stored in the Instruction Buffer (I-
buffer). The I-buffer has six entries, each of which can hold 32-byte-aligned 32-byte 
data (eight instructions).

SPARC64 V has a branch prediction mechanism and resources named BRHIS 
(BRanch HIStory) and RAS (Return Address Stack). Instruction fetch stages use these 
resources to determine fetch addresses.

Instruction fetch stages are designed so that they work independently of subsequent 
stages as much as possible. And they can fetch instructions even when execution 
stages stall. These stages fetch until the I-Buffer is full; further fetches are possible by 
requesting prefetches to the L1 cache.

IA IT IM IB IR

E D P B X U W

Ps Ts Ms Bs Rs
Release 1.0, 1 July 2002 F. Chapter 6 Instructions 31



FIGURE 6-2 SPARC64 V Pipeline
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6.4.2 Issue Stages
■ E (Entry) — Instructions are passed from fetch stages.

■ D (Decode) — Assign resources and dispatch to reservation station (RS.)

SPARC64 V is an out-of-order execution CPU. It has six execution units (two of 
arithmetic and logic unit, two of floating-point unit, two of load/store unit). Each 
unit except the load/store unit has its own reservation station. E and D stages are 
issue stages that decode instructions and dispatch them to the target RS. SPARC64 V 
can issue up to four instructions per cycle.

The resources needed to execute an instruction are assigned in the issue stages. The 
resources to be allocated include the following: 

■ Commit stack entry (CSE)

■ Renaming registers of integer (GUB) and floating-point (FUB)

■ Entries of reservations stations 

■ Memory access ports

Resources needed for an instruction are specific to the instruction, but all resources 
must be assigned at these stages. In normal execution, assigned resources are 
released at the very last stage of the pipeline, W-stage.1 Instructions between the E-
stage and W-stage are considered to be in-flight. When an exception is signalled, all 
in-flight instructions and the resources used by them are released immediately. This 
behavior enables the decoder to restart issuing instructions as quickly as possible.

The number of in-flight instructions depends on how many resources are needed by 
them. The maximum number is 64. 

6.4.3 Execution Stages
■ P (priority) — Select an instruction from those that have met the conditions for 

execution.

■ B (buffer read) — Read register file, or receive forwarded data from another 
pipelines.

■ X (execute) — Execution.

Instructions in reservation stations will be executed when certain conditions are met, 
for example, the values of source registers are known, the execution unit is available. 
Execution latency varies from one to many, depending on the instruction.

1. An entry in a reservation station is released at the X-stage.
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Execution Stages for Cache Access

Memory access requests are passed to the cache access pipeline after the target 
address is calculated. Cache access stages work the same way as instruction fetch 
stages, except for the handling of branch prediction. See Section 6.4.1, Instruction 
Fetch Stages, for details. Stages in instruction fetch and cache access correspond as 
follows:

When an exception is signalled, fetch ports and store ports used by memory access 
instructions are released. The cache access pipeline itself remains working in order to 
complete outgoing memory accesses. When data is returned, it is then stored to the 
cache. 

6.4.4 Completion Stages
■ U (Update) — Update of physical (renamed) register.

■ W (Write) — Update of architectural registers and retire; exception handling.

■ After an out-of-order execution, execution reverts to program order to complete. 
Exception handling is done in the completion stages. Exceptions occurring in 
execution stages are not handled immediately but are signalled when the 
instruction is completed.1 

Instruction Fetch Stages Cache Access

IA Ps

IT Ts

IM Ms

IB Bs

IR Rs

1. RAS-related exception may be signalled before completion.
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F.CHAPTER7

Traps

Please refer to Chapter 7 of Commonality. Section numbers in this chapter 
correspond to those in Chapter 7 of Commonality.

This chapter adds SPARC64 V-specific information in the following sections:

■ Processor States, Normal and Special Traps on page 35
■ RED_state on page 36
■ error_state on page 36

■ Trap Categories on page 37
■ Deferred Traps on page 37
■ Reset Traps on page 37
■ Uses of the Trap Categories on page 37

■ Trap Control on page 38
■ PIL Control on page 38

■ Trap-Table Entry Addresses on page 38
■ Trap Type (TT) on page 38
■ Details of Supported Traps on page 39

■ Exception and Interrupt Descriptions on page 39

7.1 Processor States, Normal and Special 
Traps
Please refer to Section 7.1 of Commonality.
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7.1.1 RED_state

RED_state Trap Table

The RED_state trap vector is located at an implementation-dependent address 
referred to as RSTVaddr. The value of RSTVaddr is a constant within each 
implementation; in SPARC64 V this virtual address is FFFF FFFF F000 000016, 
which translates to physical address 0000 07FF F000 000016 in RED_state (impl. 
dep. #114).

RED_state Execution Environment

In RED_state, the processor is forced to execute in a restricted environment by 
overriding the values of some processor controls and state registers.

Note – The values are overridden, not set, allowing them to be switched atomically.

SPARC64 V has the following implementation-dependent behavior in RED_state 
(impl. dep. #115):

■ While in RED_state, all internal ITLB-based translation functions are disabled. 
DTLB-based translations are disabled upon entry but may be reenabled by 
software while in RED_state. However, ASI-based access functions to the TLBs 
are still available.

■ While mTLBs and uTLBs are disabled, all accesses are assumed to be 
noncacheable and strongly ordered for data access.

■ XIR errors are not masked and can cause a trap. 

Note – When RED_state is entered because of component failures, the handler 
should attempt to recover from potentially catastrophic error conditions or to disable 
the failing components. When RED_state is entered after a reset, the software 
should create the environment necessary to restore the system to a running state.

7.1.2 error_state
The processor enters error_state when a trap occurs while the processor is 
already at its maximum supported trap level (that is, when TL = MAXTL) (impl. dep. 
#39).
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Although the standard behavior of the CPU upon an entry into error_state is to 
internally generate a watchdog_reset (WDR), the CPU optionally stays halted upon an 
entry to error_state depending on a setting in the OPSR register (impl. dep #40, 
#254).

7.2 Trap Categories
Please refer to Section 7.2 of Commonality.

An exception or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap
■ Reset trap

7.2.2 Deferred Traps
Please refer to Section 7.2.2 of Commonality.

SPARC64 V implements a deferred trap to signal certain error conditions (impl. dep. 
#32). Please refer to the description of I_UGE error on “Relation between %tpc and 
the instruction that caused the error” row in TABLE P-2 (page 156) for details. See also 
Instruction End-Method at ADE Trap on page 170.

7.2.4 Reset Traps
Please refer to Section 7.2.4 of Commonality.

In SPARC64 V, a watchdog reset (WDR) occurs when the processor has not 
committed an instruction for 233 processor clocks.

7.2.5 Uses of the Trap Categories
Please refer to Section 7.2.5 of Commonality.

All exceptions that occur as the result of program execution are precise in 
SPARC64 V (impl. dep. #33).

An exception caused after the initial access of a multiple-access load or store 
instruction (LDD(A), STD(A), LDSTUB, CASA, CASXA, or SWAP) that causes a 
catastrophic exception is precise in SPARC64 V.
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7.3 Trap Control
Please refer to Section 7.3 of Commonality.

7.3.1 PIL Control
SPARC64 V receives external interrupts from the UPA interconnect. They cause an 
interrupt_vector_trap (TT = 6016). The interrupt vector trap handler reads the interrupt 
information and then schedules SPARC V9-compatible interrupts by writing bits in 
the SOFTINT register. Please refer to Section 5.2.11 of Commonality for details.

During handling of SPARC V9-compatible interrupts by SPARC64 V, the PIL 
register is checked. If an interrupt has sufficient priority, SPARC64 V will stop 
issuing new instructions, will flush all uncommitted instructions, and then will 
vector to the trap handler. The only exception to this process occurs when 
SPARC64 V is processing a higher-priority trap.

SPARC64 V takes a normal disrupting trap upon receipt of an interrupt request.

7.4 Trap-Table Entry Addresses
Please refer to Section 7.4 of Commonality.

7.4.2 Trap Type (TT)
Please refer to Section 7.4.2 of Commonality.

SPARC64 V implements all mandatory SPARC V9 and SPARC JPS1 exceptions, as 
described in Chapter 7 of Commonality, plus the exception listed in TABLE 7-1, which 
is specific to SPARC64 V (impl. dep. #35; impl. dep. #36).

TABLE 7-1 Exceptions Specific to SPARC64 V

Exception or Interrupt Request TT Priority

async_data_error 04016 2
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7.4.4 Details of Supported Traps
Please refer to Section 7.4.4 in Commonality.

SPARC64 V Implementation-Specific Traps

SPARC64 V supports the following implementation-specific trap type:
■ async_data_error

7.5 Trap Processing
Please refer to Section 7.5 of Commonality.

7.6 Exception and Interrupt Descriptions
Please refer to Section 7.6 of Commonality.

7.6.4 SPARC V9 Implementation-Dependent, Optional 
Traps That Are Mandatory in SPARC JPS1
Please refer to Section 7.6.4 of Commonality.

SPARC64 V implements all six traps that are implementation dependent in SPARC 
V9 but mandatory in JPSI (impl. dep. #35). Se Section 7.6.4 of Commonality for 
details.

7.6.5  SPARC JPS1 Implementation-Dependent Traps
Please refer to Section 7.6.5 of Commonality.

SPARC64 V implements the following traps that are implementation dependent 
(impl. dep. #35). 

■ async_data_error [tt = 04016] (Preemptive or disrupting) (impl. dep. #218) — 
SPARC64 V implements the async_data_error exception to signal the following 
errors.
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■ Uncorrectable errors in the internal architecture registers (general registers–gr, 
floating-point registers–fr, ASR, ASI registers)

■ Uncorrectable errors in the core pipeline
■ System data corruption
■ Watch dog timeout first time
■ TLB access error upon access by an ldxa or stxa instruction

Multiple errors may be reported in a single generation of the async_data_error 
exception. Depending on the situation, the async_data_error trap becomes a precise 
trap, a disrupting trap, or a preemptive trap upon error detection. The TPC and 
TNPC stacked by the exception may indicate the exact instruction, the preceding 
instruction, or the subsequent instruction inducing the error. See Appendix P for 
details of the async_data_error exception in SPARC64 V.
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F.CHAPTER 8

Memory Models

The SPARC V9 architecture is a model that specifies the behavior observable by 
software on SPARC V9 systems. Therefore, access to memory can be implemented in 
any manner, as long as the behavior observed by software conforms to that of the 
models described in Chapter 8 of Commonality and defined in Appendix D, Formal 
Specification of the Memory Models, also in Commonality.

The SPARC V9 architecture defines three different memory models: Total Store Order 
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC V9 
processors must provide Total Store Order (or a more strongly ordered model, for 
example, Sequential Consistency) to ensure SPARC V8 compatibility.

Whether the PSO or RMO models are supported by SPARC V9 systems is 
implementation dependent; SPARC64 V behaves in a manner that guarantees 
adherence to whichever memory model is currently in effect.

This chapter describes the following major SPARC64 V-specific details of memory 
models.

■ SPARC V9 Memory Model on page 42

For general information, please see parallel subsections of Chapter 8 in 
Commonality. For easier referencing, this chapter follows the organization of 
Chapter 8 in Commonality, listing subsections whether or not there are 
implementation-specific details.
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8.1 Overview

Note – The words “hardware memory model” denote the underlying hardware 
memory models as differentiated from the “SPARC V9 memory model,” which is the 
memory model the programmer selects in PSTATE.MM.

SPARC64 V supports only one mode of memory handling to guarantee correct 
operation under any of the three SPARC V9 memory ordering models (impl. dep. 
#113):

■ Total Store Order — All loads are ordered with respect to loads, and all stores are 
ordered with respect to loads and stores. This behavior is a superset of the 
requirements for the SPARC V9 memory models TSO, PSO, and RMO. When 
PSTATE.MM selects TSO or PSO, SPARC64 V operates in this mode. Since 
programs written for PSO (or RMO) will always work if run under Total Store 
Order, this behavior is safe but does not take advantage of the reduced restrictions 
of PSO.

8.4 SPARC V9 Memory Model
Please refer to Section 8.4 of Commonality.

In addition, this section describes SPARC64 V-specific details about the processor/
memory interface model.

8.4.5 Mode Control
SPARC64 V implements Total Store Ordering for all PSTATE.MM. Writing 112 into 
PSTATE.MM also causes the machine to use TSO (impl. dep. #119). However, the 
encoding 112 should not be used, since future version of SPARC64 V may use this 
encoding for a new memory model.

8.4.6 Synchronizing Instruction and Data Memory
All caches in a SPARC64 V-based system (uniprocessor or multiprocessor) have a 
unified cache consistency protocol and implement strong coherence between 
instruction and data caches. Writes to any data cache cause invalidations to the 
42 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



corresponding locations in all instruction caches; references to any instruction cache 
cause corresponding modified data to be flushed and corresponding unmodified 
data to be invalidated from all data caches. The flush operation is still operative in 
SPARC64 V, however.

Since the FLUSH instruction synchronizes the processor, the total latency varies 
depending on the situation in SPARC64 V. Assuming all prior instructions are 
completed, the latency of FLUSH is 18 CPU cycles.
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F.APPENDIX A

Instruction Definitions: 
SPARC64 V Extensions

This appendix describes the SPARC64 V-specific implementation of the instructions 
in Appendix A of Commonality. If an instruction is not described in this appendix, 
then no SPARC64 V implementation-dependency applies.

■ See TABLE A-1 of Commonality for the location at which general information about 
the instruction can be found. 

■ Section numbers refer to the parallel section numbers in Appendix A of 
Commonality.

TABLE A-1 lists four instructions that are unique to SPARC64 V. 

Each instruction definition consists of these parts:

1. A table of the opcodes defined in the subsection with the values of the field(s) 
that uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations a dash 
(—) indicates that the field is reserved for future versions of the architecture and 
shall be 0 in any instance of the instruction. If a conforming SPARC V9 
implementation encounters nonzero values in these fields, its behavior is 
undefined.

3. A list of the suggested assembly language syntax, as described in Appendix G, 
Assembly Language Syntax.

TABLE A-1 Implementation-Specific Instructions

Operation Name Page V9 Ext?

FMADD(s,d) Floating-point multiply add page 50 ✓

FMSUB(s,d) Floating-point multiply subtract page 50 ✓

FNMADD(s,d) Floating-point multiply negate add page 50 ✓

FNMSUB(s,d) Floating-point multiply negate subtract page 50 ✓
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4. A description of the features, restrictions, and exception-causing conditions.

5. A list of exceptions that can occur as a consequence of attempting to execute the 
instruction(s). Exceptions due to an instruction_access_error, 
instruction_access_exception, fast_instruction_access_MMU_miss, async_data_error, 
ECC_error, and interrupts are not listed because they can occur on any instruction. 

Also, any instruction that is not implemented in hardware shall generate an 
illegal_instruction exception (or fp_exception_other exception with 
ftt = unimplemented_FPop for floating-point instructions) when it is executed. 

The illegal_instruction trap can occur during chip debug on any instruction that has 
been programmed into the processor ’s IIU_INST_TRAP (ASI = 6016, VA = 0). 
These traps are also not listed under each instruction.

The following traps never occur in SPARC64 V:
■ instruction_access_MMU_miss
■ data_access_MMU_miss
■ data_access_protection
■ unimplemented_LDD
■ unimplemented_STD
■ LDQF_mem_address_not_aligned
■ STQF_mem_address_not_aligned
■ internal_processor_error
■ fp_exception_other (ftt = invalid_fp_register)

This appendix does not include any timing information (in either cycles or clock 
time).

The following SPARC64 V-specific extensions are described.

■ Block Load and Store Instructions (VIS I) on page 47
■ Call and Link on page 49
■ Implementation-Dependent Instructions on page 49
■ Jump and Link on page 53
■ Load Quadword, Atomic [Physical] on page 54
■ Memory Barrier on page 55
■ Partial Store (VIS I) on page 57
■ Prefetch Data on page 57
■ Read State Register on page 58
■ SHUTDOWN (VIS I) on page 58
■ Write State Register on page 59
■ Deprecated Instructions on page 59
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A.4 Block Load and Store Instructions (VIS I)
The following notes summarize behavior of block load/store instructions in 
SPARC64 V.

1. Block load and store operations are not atomic, in that they are internally 
decomposed into eight independent, 8-byte load/store operations in SPARC64 V. 
Each load/store is always issued and performed in the RMO memory model and 
obeys all prior MEMBAR and atomic instruction-imposed ordering constraints.

2. Block load/store instructions are out of the scope of V9 memory models, meaning 
that self-consistency of memory reference instruction is not always maintained if 
block load/store instructions are involved in the execution flow. The following 
table describes the implemented ordering constraints for block load/store 
instructions with respect to the other memory reference instructions with an 
operand address conflict in SPARC64 V:

To maintain the memory ordering even for the memory address conflicts, MEMBAR 
instructions shall be inserted into appropriate location in the program. 

Although self-consistency with respect to the block load/store and the other 
memory reference instructions is not maintained in some cases, register conflicts 
between the other instructions and block load/store instructions are maintained 
in SPARC64 V. The read-after-write, write-after-read, and write-after-write 
obstructions between a block load/store instruction and the other arithmetic 
instructions are detected and handled appropriately. 

3. Block load instruction operate on the cache if the operand is present. 

Program Order for conflicting bld/bst/ld/st Ordered/
Out-of-Orderfirst next

store blockstore Ordered

store blockload Ordered

load blockstore Ordered

load blockload Ordered

blockstore store Out-of-Order

blockstore load Out-of-Order

blockstore blockstore Out-of-Order

blockstore blockload Out-of-Order

blockload store Ordered

blockload load Ordered

blockload blockstore Ordered

blockload blockload Ordered
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4. The block store with commit instruction always stores the operand in main 
storage and invalidates the line in the L1D cache if it is present. The invalidation 
is performed through an S_INV_REQ transaction through UPA by the system 
controller.

5. The block store instruction stores the operand into main storage if it is not present 
in the operand cache and the status of the line is invalid, shared, or owned. In 
case the line is not present in the L1D cache and is exclusive or modified on the 
L2 cache, the block store instruction modifies only the line in L2 cache. If the line 
is present in the operand cache and the status is either clean/shared or clean/
owned, the line is stored in main storage. If the line is present in the operand 
cache and the status is clean/exclusive, the line in the operand cache is 
invalidated and the operand is stored in  the L2 cache. If the line is in the operand 
cache and the status is modified/modified, the operand is stored in the operand 
cache. The following table summarizes each cache status before block store and 
the results of the block store. Blank cells mean that no action occurred in the 
corresponding cache or memory, and the data, if it exists, is unchanged.

Exceptions fp_disabled
PA_watchpoint 
VA_watchpoint
illegal_instruction (misaligned rd)
mem_address_not_aligned (see Block Load and Store ASIs on page 120)
data_access_exception (see Block Load and Store ASIs on page 120)
LDDF_mem_address_not_aligned (see Block Load and Store ASIs on page 120)
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

Storage Status

Cache status 
before bst

L1 Invalid Valid

L2 E, M I, S, O E M S, O

Action

L1 — — invalidate — —

L2 update — update update S

Memory — update — — update
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A.12 Call and Link
SPARC64 V clears the upper 32 bits of the PC value in r[15] when PSTATE.AM is 
set (impl. dep. #125). The value written into r[15] is visible to the instruction in the 
delay slot.

SPARC64 V has a special hardware table, called the return address stack, to predict 
the return address from a subroutine. Though the return prediction stack achieves 
better performance in normal cases, there is a special use of the CALL instruction 
(call.+8) that may have an undesirable effect on the return address stack. In this 
case, the CALL instruction is used to read the PC contents, not to call a subroutine. In 
SPARC64 V, the return address of the CALL (PC + 8) is not stored in its return 
address stack, to avoid a detrimental performance effect. When a ret or retl is 
executed, the value in the return address stack is used to predict the return address. 

A.24 Implementation-Dependent Instructions

The IMPDEP1 and IMPDEP2 instructions are completely implementation dependent. 
Implementation-dependent aspects include their operation, the interpretation of bits 
29–25 and 18–0 in their encodings, and which (if any) exceptions they may cause.

SPARC64 V uses IMPDEP1 to encode VIS instructions (impl. dep. #106).

SPARC64 V uses IMPDEP2B to encode the Floating-Point Multiply Add/Subtract 
instructions (impl. dep. #106). See Section A.24.1, Floating-Point Multiply-Add/
Subtract, on page 50 for details.

See I.1.2, Implementation-Dependent and Reserved Opcodes, in Commonality for 
information about extending the SPARC V9 instruction set by means of the 
implementation-dependent instructions.

Compatibility Note – These instructions replace the CPopn instructions in 
SPARC V8. 

Exceptions implementation-dependent (IMPDEP2)

Opcode op3 Operation

IMPDEP1 11 0110 Implementation-Dependent Instruction 1

IMPDEP2 11 0111 Implementation-Dependent Instruction 2
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A.24.1 Floating-Point Multiply-Add/Subtract
SPARC64 V uses IMPDEP2B opcode space to encode the Floating-Point Multiply 
Add/Subtract instructions. 

† 11 is reserved for quad.

Format (5)

Opcode Variation Size† Operation

FMADDs 00 01 Multiply-Add Single

FMADDd 00 10 Multiply-Add Double

FMSUBs 01 01 Multiply-Subtract Single

FMSUBd 01 10 Multiply-Subtract Double

FNMADDs 11 01 Negative Multiply-Add Single

FNMADDd 11 10 Negative Multiply-Add Double

FNMSUBs 10 01 Negative Multiply-Subtract Single

FNMSUBd 10 10 Negative Multiply-Subtract Double

Operation Implementation

Multiply-Add rd ← rs1 × rs2 + rs3

Multiply-Subtract rd ← rs1 × rs2 − rs3

Negative Multiply-Subtract rd ← − (rs1 × rs2 − rs3)

Negative Multiple-Add rd ← − (rs1 × rs2 + rs3)

Assembly Language Syntax

fmadds fregrs1, fregrs2, fregrs3, fregrd

fmaddd fregrs1, fregrs2, fregrs3, fregrd

fmsubs fregrs1, fregrs2, fregrs3, fregrd

fmsubd fregrs1, fregrs2, fregrs3, fregrd

fnmadds fregrs1, fregrs2, fregrs3, fregrd

fnmaddd fregrs1, fregrs2, fregrs3, fregrd

fnmsubs fregrs1, fregrs2, fregrs3, fregrd

fnmsubd fregrs1, fregrs2, fregrs3, fregrd

10 110111 rs2rd

31 1824 02530 29 19 4567891314

sizevarrs3rs1
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Description The Floating-point Multiply-Add instructions multiply the registers specified by the 
rs1 field times the registers specified by the rs2 field, add that product to the 
registers specified by the rs3 field, then write the result into the registers specified 
by the rd field.

The Floating-point Multiply-Subtract instructions multiply the registers specified by 
the rs1 field times the registers specified by the rs2 field, subtract from that 
product the registers specified by the rs3 field, and then write the result into the 
registers specified by the rd field.

The Floating-point Negative Multiply-Add instructions multiply the registers 
specified by the rs1 field times the registers specified by the rs2 field, negate the 
product, subtract from that negated value the registers specified by the rs3 field, and 
then write the result into the registers specified by the rd field.

The Floating-point Negative Multiply-Subtract instructions multiply the registers 
specified by the rs1 field times the registers specified by the rs2 field, negate the 
product, add that negated product to the registers specified by the rs3 field, and 
then write the result into the registers specified by the rd field.

All of the operations above are treated as separate multiply and add/subtract 
operations in SPARC64 V. That is, a multiply operation is first performed with a 
complete rounding step (as if it were a single multiply operation), and then an add/
subtract operation is performed with a complete rounding step (as if it were a single 
add/subtract operation). Consequently, at most two rounding errors can be 
incurred.1

Special behaviors in handling traps are generated in a Floating-point Multiply-Add/
Subtract instruction in SPARC64 V because of its implementation characteristics. If 
any trapping exception is detected in the multiply part in the process of a Floating-
point Multiply-Add/Subtract instruction, the execution of the instruction is aborted, 
the exception condition is recorded in FSR.cexc and FSR.aexc, and the CPU traps 
with the exception condition. The add/subtract part of the instruction is only 
performed when the multiply-part of the instruction does not have any trapping 
exceptions. 

As described in the TABLE A-2, if there are trapping IEEE754 exception conditions in 
either of the operations FMUL or FADD/SUB, only the trapping exception condition is 
recorded in the cexc, and the aexc is not modified. If there are no trapping IEEE754 
exception conditions, every nontrapping exception condition is ORed into the cexc 
and the cexc is accumulated into the aexc. The boundary conditions of an 
unfinished_FPop trap for Floating-point Multiply-Add/Subtract instructions are 
exactly same as for FMUL and FADD/SUB instructions; if either of the operations 

1. Note that this implementation differs from previous SPARC64 implementations, which incurred at most one 
rounding error.
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detects any conditions for an unfinished_FPop trap, the Floating-point Multiply-Add/
Subtract instruction generates the unfinished_FPop exception. In this case, none of rd, 
cexc, or aexc are modified.

Detailed contents of cexc and aexc depending on the various conditions are 
described in TABLE A-3 and TABLE A-4. The following terminology is used: uf, of, inv, 
and nx are nontrapping IEEE exception conditions—underflow, overflow, invalid 
operation, and inexact, respectively. 

In the tables, the conditions in the shaded columns are all reported as an 
unfinished_FPop trap by SPARC64 V. In addition, the conditions with “—” do not 
exist.

TABLE A-2 Exceptions in Floating-Point Multiply-Add/Subtract Instructions

FMUL IEEE754 trap No trap No trap

FADD/SUB — IEEE754 trap No trap
cexc Exception condition of FMUL Exception condition of FADD Logical or of the nontrapping exception 

conditions of FMUL and FADD/SUB
aexc No change No change Logical OR of the cexc (above) and the 

aexc

TABLE A-3 Non-Trapping cexc When FSR.NS = 0

FADD

none nx of nx inv

FMUL

none none nx of nx inv

nx nx nx of nx inv nx

of nx of nx of nx of nx inv of nx

uf nx uf nx uf nx uf of nx uf inv nx

inv inv — — inv

TABLE A-4 Non-Trapping aexc When FSR.NS = 1

FADD

none nx of nx uf nx inv

FMUL

none none nx of nx uf nx inv

nx nx nx of nx uf nx inv nx

of nx of nx of nx of nx — inv of nx

uf nx uf nx — — — uf inv nx

inv inv — — — inv
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Programming Note – The Multiply Add/Subtract instructions are encoded in the 
SPARC V9 IMPDEP2 opcode space, and they are specific to the SPARC64 V 
implementation. They cannot be used in any programs that will be executed on any 
other SPARC V9 processor, unless that implementation exactly matches the 
SPARC64 V use for the IMPDEP2 opcode.

Exceptions fp_disabled
fp_exception_ieee_754 (NV, NX, OF, UF)
illegal_instruction (size = 002 or 112) (fp_disabled is not checked for these encodings)
fp_exception_other (unfinished_FPop)

A.29 Jump and Link
SPARC64 V clears the upper 32 bits of the PC value in r[rd] when PSTATE.AM is set 
(impl. dep. #125). The value written into r[rd] is visible to the instruction in the 
delay slot.

If either of the low-order two bits of the jump address is nonzero, a 
mem_address_not_aligned exception occurs. However, when the JMPL instruction 
causes a mem_address_not_aligned trap, DSFSR and DSFAR are not updated.

If the JMPL instruction has r[rd] = 15, SPARC64 V stores PC + 8 in a hardware table 
called return address stack (RAS). When a ret (jmpl %i7+8, %g0) or retl (jmpl 
%o7+8, %g0) is executed, the value in the RAS is used to predict the return address.

JMPL with rd = 0 can be used to return from a subroutine. The typical return 
address is “r[31] + 8” if a nonleaf routine (one that uses the SAVE instruction) is 
entered by a CALL instruction, or “r[15] + 8” if a leaf routine (one that does not 
use the SAVE instruction) is entered by a CALL instruction or by a JMPL instruction 
with rd = 15.
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A.30 Load Quadword, Atomic [Physical]
The Load Quadword ASIs in this section are specific to SPARC64 V, as an extension 
to SPARC JPS1.

 

Format (3) LDDA

Description ASIs 3416 and 3C16 are used with the LDDA instruction to atomically read a 128-bit 
data item, using physical addressing. The data are placed in an even/odd pair of 64-
bit registers. The lowest-address 64 bits are placed in the even-numbered register; 
the highest-address 64 bits are placed in the odd-numbered register. The reference is 
made from the nucleus context. 

In addition to the usual traps for LDDA using a privileged ASI, a 
data_access_exception exception occurs for a noncacheable access or for the use of the 
quadword-load ASIs with any instruction other than LDDA. A 
mem_address_not_aligned exception is generated if the access is not aligned on a 16-
byte boundary.

ASIs 3416 and 3C16 are supported in SPARC64 V in addition to those for Load 
Quadword Atomic for virtually addressed data (ASIs 2416 and 2C16).

The memory access for a load quad instruction with ASI_QUAD_LDD_PHYS{_L} 
behaves as if the following TTE is set:

opcode imm_asi ASI value operation

LDDA ASI_QUAD_LDD_PHYS 3416 128-bit atomic load, physically 
addressed

LDDA ASI_QUAD_LDD_PHYS_L 3C16 128-bit atomic load, little-endian, 
physically addressed

Assembly Language Syntax

ldda [reg_addr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18 14 13 5 4

rd11 010011 simm_13rs1 i=1

rd11 010011 imm_asirs1 rs2i=0
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■ TTE.NFO= 0 
■ TTE.CP = 1 
■ TTE.CV = 0 
■ TTE.E = 0
■ TTE.P = 1 
■ TTE.W = 0 

Note – TTE.IE depends on the endianness of the ASI. When the ASI is 03416, 
TTE.IE = 0; TTE.IE = 1 when the ASI is 03C16.

Therefore, the atomic quad load physical instruction can only be applied to a 
cacheable memory area. Semantically, ASI_QUAD_LDD_PHYS{_L} (03416 and 
03C16) is a combination of ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC.

With respect to little endian memory, a Load Quadword Atomic instruction behaves 
as if it comprises two 64-bit loads, each of which is byte-swapped independently 
before being written into its respective destination register.

Exceptions: privileged_action
PA_watchpoint (recognized on only the first 8 bytes of a transfer)
illegal_instruction (misaligned rd)
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.35 Memory Barrier

Format (3)

Assembly Language Syntax

membar membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

67

cmask
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Description The memory barrier instruction, MEMBAR, has two complementary functions: to 
express order constraints between memory references and to provide explicit control 
of memory-reference completion. The membar_mask field in the suggested assembly 
language is the concatenation of the cmask and mmask instruction fields.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-5 specifies 
the order constraint that each bit of mmask (selected when set to 1) imposes on 
memory references appearing before and after the MEMBAR. From zero to four mask 
bits can be selected in the mmask field.

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask 
field, described in TABLE A-6, specify additional constraints on the order of memory 
references and the processing of instructions. If cmask is zero, then MEMBAR enforces 
the partial ordering specified by the mmask field; if cmask is nonzero, then 
completion and partial order constraints are applied. 

TABLE A-5 Order Constraints Imposed by mmask Bits 

Mask Bit Name Description

mmask<3> #StoreStore The effects of all stores appearing before the MEMBAR instruction must be 
visible to all processors before the effect of any stores following the MEMBAR. 
Equivalent to the deprecated STBAR instruction. Has no effect on SPARC64 V 
since all stores are performed in program order.

mmask<2> #LoadStore All loads appearing before the MEMBAR instruction must have been performed 
before the effects of any stores following the MEMBAR are visible to any other 
processor. Has no effect on SPARC64 V since all stores are performed in 
program order and must occur after performance of any load.

mmask<1> #StoreLoad The effects of all stores appearing before the MEMBAR instruction must be 
visible to all processors before loads following the MEMBAR may be performed.

mmask<0> #LoadLoad All loads appearing before the MEMBAR instruction must have been performed 
before any loads following the MEMBAR may be performed. Has no effect on 
SPARC64 V since all loads are performed after any prior loads.

TABLE A-6 Bits in the cmask Field

Mask Bit Function Name Description

cmask<2> Synchronization
barrier

#Sync All operations (including nonmemory reference operations) 
appearing before the MEMBAR must have been performed, and 
the effects of any exceptions become visible before any 
instruction after the MEMBAR may be initiated.

cmask<1> Memory issue
barrier

#MemIssue All memory reference operations appearing before the MEMBAR 
must have been performed before any memory operation after 
the MEMBAR may be initiated. Equivalent to #Sync in 
SPARC64 V.

cmask<0> Lookaside
barrier

#Lookaside A store appearing before the MEMBAR must complete before 
any load following the MEMBAR referencing the same address 
can be initiated. Equivalent to #Sync in SPARC64 V.
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A.42 Partial Store (VIS I)
Please refer A.42 in Commonality for general details.

Watchpoint exceptions on partial store instructions occur conservatively on 
SPARC64 V. The DCUCR Data Watchpoint masks are only checked for nonzero value 
(watchpoint enabled). The byte store mask (r[rs2]) in the partial store instruction 
is ignored, and a watchpoint exception can occur even if the mask is zero (that is, no 
store will take place) (impl. dep. #249).

For a partial store instruction with mask = 0, SPARC64 V still issues a UPA 
transaction with zero-byte mask.

Exceptions: fp_disabled
PA_watchpoint
VA_watchpoint
illegal_instruction (misaligned rd)
mem_address_not_aligned (see Partial Store ASIs on page 120)
data_access_exception (see Partial Store ASIs on page 120)
LDDF_mem_address_not_aligned (see Partial Store ASIs on page 120)
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.49 Prefetch Data
Please refer to Section A.49, Prefetch Data, of Commonality for principal information.

The prefetcha instruction of SPARC64 V works for the following ASIs.

■ ASI_PRIMARY (08016), ASI_PRIMARY_LITTLE (08816)

■ ASI_SECONDARY (08116), ASI_SECONDARY_LITTLE (08916)

■ ASI_NUCLEUS (0416), ASI_NUCLEUS_LITTLE (0C16)

■ ASI_PRIMARY_AS_IF_USER (01016), ASI_PRIMARY_AS_IF_USER_LITTLE 
(01816)

■ ASI_SECONDARY_AS_IF_USER (01116), ASI_SECONDARY_AS_IF_USER_LITTLE 
( 01916)

If an ASI other than the above is specified, prefetcha is executed as a nop.
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TABLE A-7 describes prefetch variants implemented in SPARC64 V. 

A.51 Read State Register
In SPARC64 V, an RDPCR instruction will generate a privileged_action exception if 
PSTATE.PRIV = 0 and PCR.PRIV = 1. If PSTATE.PRIV = 0 and PCR.PRIV = 0, 
RDPCR will not cause any access privilege violation exception (impl. dep. #250).

A.70 SHUTDOWN (VIS I)
In SPARC64 V, SHUTDOWN acts as a NOP in privileged mode (impl. dep. #206).

TABLE A-7 Prefetch Variants 

fcn Fetch to: Status Description

0 L1D S
1 L2 S
2 L1D M
3 L2 M
4 — — NOP
5-15 reserved (SPARC V9) illegal_instruction exception is signalled.
16-19 implementation 

dependent. 
NOP

20 L1D S If an access causes an mTLB miss, 
fast_data_access_MMU_miss exception is signalled.

21 L2 S If an access causes an mTLB miss, 
fast_data_access_MMU_miss exception is signalled.

22 L1D M If an access causes an mTLB miss, 
fast_data_access_MMU_miss exception is signalled.

23 L2 M If an access causes an mTLB miss, 
fast_data_access_MMU_miss exception is signalled.

24-31 implementation 
dependent

NOP
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A.70 Write State Register
In SPARC64 V, a WRPCR instruction will cause a privileged_action exception if 
PSTATE.PRIV = 0 and PCR.PRIV = 1. If PSTATE.PRIV = 0 and PCR.PRIV = 0, 
WRPCR causes a privileged_action exception only when an attempt is made to change 
(that is, write 1 to) PCR.PRIV (impl. dep. #250).

A.71 Deprecated Instructions
The deprecated instructions in A.71 of Commonality are provided only for 
compatibility with previous versions of the architecture. They should not be used in 
new software.

A.71.10 Store Barrier
In SPARC64 V, STBAR behaves as NOP since the hardware memory models always 
enforce the semantics of these MEMBARs for all memory accesses.
Release 1.0, 1 July 2002 F. Chapter A Instruction Definitions: SPARC64 V Extensions 59



60 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



F.APPENDIX B

IEEE Std 754-1985 Requirements for 
SPARC V9

The IEEE Std 754-1985 floating-point standard contains a number of implementation 
dependencies. 

Please see Appendix B of Commonality for choices for these implementation 
dependencies, to ensure that SPARC V9 implementations are as consistent as 
possible. 

Following is information specific to the SPARC64 V implementation of SPARC V9 in 
these sections:

■ Traps Inhibiting Results on page 61
■ Floating-Point Nonstandard Mode on page 61

B.1 Traps Inhibiting Results
Please refer to Section B.1 of Commonality.

The SPARC64 V hardware, in conjunction with kernel or emulation code, produces 
the results described in this section.

B.6 Floating-Point Nonstandard Mode
In this section, the hardware boundary conditions for the unfinished_FPop exception 
and the nonstandard mode of SPARC64 V floating-point hardware are discussed. 
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SPARC64 V floating-point hardware has its specific range of computation. If either 
the values of input operands or the value of the intermediate result shows that the 
computation may not fall in the range that hardware provides, SPARC64 V generates 
an fp_exception_other exception (tt = 02216) with FSR.ftt = 0216 (unfinished_FPop) 
and the operation is taken over by software. 

The kernel emulation routine completes the remaining floating-point operation in 
accordance with the IEEE 754-1985 floating-point standard (impl. dep. #3). 

SPARC64 V implements a nonstandard mode, enabled when FSR.NS is set (see 
FSR_nonstandard_fp (NS) on page 18). Depending on the setting in FSR.NS, the 
behavior of SPARC64 V with respect to the floating-point computation varies.

B.6.1 fp_exception_other Exception (ftt=unfinished_FPop)
SPARC64 V may invoke an fp_exception_other (tt = 02216) exception with FSR.ftt = 
unfinished_FPop (ftt = 0216) in FsTOd, FdTOs, FADD(s,d), FSUB(s,d), 
FsMULd(s,d), FMUL(s,d), FDIV(s,d), FSQRT(s,d) floating-point instructions. In 
addition, Floating-point Multiply-Add/Subtract instructions generate the exception, 
since the instruction is the combination of a multiply and an add/subtract operation: 
FMADD(s,d), FMSUB(s,d), FNMADD(s,d), and FNMADD(s,d). 

The following basic policies govern the detection of boundary conditions:

1. When one of the operands is a denormalized number and the other operand is a 
normal non-zero floating-point number (except for a NaN or an infinity), an 
fp_exception_other with unfinished_FPop condition is signalled. The cases in which 
the result is a zero or an overflow are excluded. 

2. When both operands are denormalized numbers, except for the cases in which the 
result is a zero or an overflow, an fp_exception_other with unfinished_FPop condition 
is signalled. 

3. When both operands are normal, the result before rounding is a denormalized 
number and TEM.UFM = 0, and fp_exception_other with unfinished_FPop condition 
is signalled, except for the cases in which the result is a zero. 

When the result is expected to be a constant, such as an exact zero or an infinity, and 
an insignificant computation will furnish the result, SPARC64 V tries to calculate the 
result without signalling an unfinished_FPop exception. 
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Implementation Note – Detecting the exact boundary conditions requires a large 
amount of hardware. SPARC64 V detects approximate boundary conditions by 
calculating the exponent intermediate result (the exponent before rounding) from 
input operands, to avoid the hardware cost. Since the computation of the boundary 
conditions is approximate, the detection of a zero result or an overflow result shall 
be pessimistic. SPARC64 V generates an unfinished_FPop exception pessimistically.

The equations to calculate the result exponent to detect the boundary conditions 
from the input exponents are presented in TABLE B-1, where Er is the approximation 
of the biased result exponent before rounding and is calculated only from the input 
exponents (esrc1, esrc2). Er is to be used for detecting the boundary condition for an 
unfinished_FPop. 

esrc1 and esrc2 are the biased exponents of the input operands. When the 
corresponding input operand is a denormalized number, the value is 0. 

From Er, eres is calculated. eres is a biased result exponent, after mantissa alignment 
and before rounding, where the appropriate adjustment of the exponent is applied to 
the result mantissa: left-shifting or right-shifting the mantissa to the implicit 1 at the 
left of the binary point, subtracting or adding the shift-amount to the exponent. The 
result mantissa is assumed to be 1.xxxx in calculating eres. If the result is a 
denormalized number, eres is less than zero. 

TABLE B-2 describes the boundary condition of each floating-point instruction that 
generates an unfinished_FPop exception. 

TABLE B-1 Result Exponent Approximation for Detecting unfinished_FPop Boundary 
Conditions

Operation Formula

fmuls Er = esrc1 + esrc2 − 126

fmuld Er = esrc1 + esrc2 − 1022

fdivs Er = esrc1 - esrc2 + 126

fdivd Er = esrc1 - esrc2 + 1022

TABLE B-2 unfinished_FPop Boundary Conditions 

Operation Boundary Conditions

FdTOs −25 < eres < 1 and TEM.UFM = 0. 

FsTOd Second operand (rs2) is a denormalized number. 

FADDs, FSUBs, 
FADDd, FSUBd

1. One of the operands is a denormalized number, and the other operand is a normal, 
nonzero floating-point number (except for a NaN and an infinity)1.

2. Both operands are denormalized numbers.
3. Both operands are normal nonzero floating-point numbers (except for a NaN and 

an infinity), eres < 1, and TEM.UFM = 0. 
Release 1.0, 1 July 2002 F. Chapter B IEEE Std 754-1985 Requirements for SPARC V9 63



Pessimistic Zero

If a condition in TABLE B-3 is true, SPARC64 V generates the result as a pessimistic 
zero, meaning that the result is a denormalized minimum or a zero, depending on 
the rounding mode (FSR.RD).

FMULs, FMULd 1. One of the operands is a denormalized number, the other operand is a normal, 
nonzero floating-point number (except for a NaN and an infinity), and

single precision: -25 < Er
double precision: -54 < Er

2. Both operands are normal, nonzero floating-point numbers (except for a NaN and 
an infinity), TEM.UFM = 0, and

single precision: −25 < eres < 1
double precision: −54 < eres < 1

FsMULd 1. One of the operands is a denormalized number, and the other operand is a normal, 
nonzero floating-point number (except for a NaN and an infinity). 

2. Both operands are denormalized numbers.

FDIVs, FDIVd 1. The dividend (operand1; rs1) is a normal, nonzero floating-point number (except 
for a NaN and an infinity), the divisor (operand2; rs2) is a denormalized number, 
and

single precision: Er < 255
double precision: Er < 2047

2. The dividend (operand1; rs1) is a denormalized number, the divisor (operand2; 
rs2) is a normal, nonzero floating-point number (except for a NaN and an infinity), 
and

single precision: −25 < Er
double precision: −54 < Er

3. Both operands are denormalized numbers.
4. Both operands are normal, nonzero floating-point numbers (except for a NaN and 

an infinity), TEM.UFM = 0 and
single precision: −25 < eres < 1
double precision: −54 < eres < 1

FSQRTs, FSQRTd The input operand (operand2; rs2) is a positive nonzero and is a denormalized 
number. 

1. Operation of 0 and denormalized number generates a result in accordance with the IEEE754-1985 standard.

TABLE B-2 unfinished_FPop Boundary Conditions  (Continued)

Operation Boundary Conditions
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Pessimistic Overflow

If a condition in TABLE B-4 is true, SPARC64 V regards the operation as having an 
overflow condition. 

B.6.2 Operation Under FSR.NS = 1
When FSR.NS = 1 (nonstandard mode), SPARC64 V zeroes all the input 
denormalized operands before the operation and signals an inexact exception if 
enabled. If the operation generates a denormalized result, SPARC64 V zeroes the 
result and also signals an inexact exception if enabled. The following list defines the 
operation in detail. 

■ If either operand is a denormalized number and both operands are non-zero, non-
NaN, and non-infinity numbers, the input denormalized operand is replaced with 
a zero with same sign, and the operation is performed. If enabled, inexact 
exception is signalled; an fp_exception_ieee_754 (tt = 02116) is generated, with 
nxc=1 in FSR.cexc (FSR.ftt=0116; IEEE754_exception). However, if the 
operation is FDIV(s,d) and either a division_by_zero or an invalid_operation 
condition is detected, or if the operation is FSQRT(s,d) and an invalid_operation 
condition is detected, the inexact condition is not reported. 

■ If the result before rounding is a denormalized number, the result is flushed to a 
zero with a same sign and signals either an underflow exception or an inexact 
exception, depending on FSR.TEM. 

As observed from the preceding, when FSR.NS = 1, SPARC64 V generates neither 
an unfinished_FPop exception nor a denormalized number as a result. TABLE B-5 

TABLE B-3 Conditions for a Pessimistic Zero 

Operations

Conditions

One operand is denormalized1

1. Both operands are non-zero, non-NaN, and non-infinity numbers. 

Both are denormalized Both are normal fp-number2

2. Both may be zero, but both are non-NaN and non-infinity numbers. 

FdTOs always — eres ≤ -25

FMULs, 
FMULd

single precision: Er ≤ −25
double precision: Er ≤ −54

Always single precision: eres ≤ −25
double precision: eres ≤ −54

FDIVs, 
FDIVd

single precision: Er ≤ −25
double precision: Er ≤ −54

Never single precision: eres ≤ −25
double precision: eres ≤ −54

TABLE B-4 Pessimistic Overflow Conditions

Operations Conditions

FDIVs The divisor (operand2; rs2) is a denormalized number and, Er ≥ 255.

FDIVd The divisor (operand2; rs2) is a denormalized number and, E ≥ 2047.
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summarizes the behavior of SPARC64 V floating-point hardware depending on 
FSR.NS.

Note – The result and behavior of SPARC64 V of the shaded column in the tables 
Table B-5 and Table B-6 conform to IEEE754-1985 standard.

Note – Throughout Table B-5 and Table B-6, lowercase exception conditions such as 
nx, uf, of, dv and nv are nontrapping IEEE 754 exceptions. Uppercase exception 
conditions such as NX, UF, OF, DZ and NV are trapping IEEE 754 exceptions. 

 
TABLE B-5 Floating-Point Exceptional Conditions and Results 

FSR.N
S

Denorm : 
Norm1

1. One of the operands is a denormalized number, and the other operand is a normal or a denormalized number
(non- zero, non-NaN, and non-infinity). 

Result 
Denorm2

2. The result before rounding turns out to be a denormalized number.

Pessimistic 
Zero

Pessimistic 
Overflow UFM OFM NXM Result

0

No Yes
Yes

—

1 — — UF

0 — 1 NX

— 0 uf + nx, a signed zero, or a signed 
Dmin3

3. Dmin = denormalized minimum. 

No 1 — — UF

0 — — unfinished_FPop4

4. If the FPop is either FADD{s,d}, or FSUB{s,d} and the operation is 0 ± denormalized number, SPARC64 V does
not generate an unfinished_FPop and generates a result according to IEEE754-1985 standard.

No — — — — — Conforms to IEEE754-1985

Yes n/a

Yes —
1

—
— UF

0 1 NX

0 uf + nx, a signed zero, or a signed 
Dmin

No Yes —
1 — OF

0 1 NX

0 of + nx, a signed infinity, or a 
signed Nmax5

5. Nmax = normalized maximum.  

No — — unfinished_FPop

1
No Yes

— —

1 — — UF

0 — 1 NX

0 uf + nx, a signed zero

No — — — Conforms to IEEE754-1985

Yes — TABLE B-6
66 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



TABLE B-6 describes how SPARC64 V behaves when FSR.NS = 1 (nonstandard mode). 

TABLE B-6 Nonarithmetic Operations Under FSR.NS = 1 

Operations op1= denorm
op2=
denorm UFM NXM DVM NVM Result

FsTOd — Yes — 1 — — NX

0 — — nx, a signed zero

FdTOs — Yes 1 — — — UF

0 1 — — NX

0 — — uf + nx, a signed zero

FADDs, 
FSUBs, 
FADDd, 
FSUBd

Yes No

—

1 — — NX

0 — — nx, op2

No Yes 1 — — NX

0 — — nx, op1

Yes Yes 1 — — NX

0 — — nx, a signed zero

FMULs, 
FMULd, 
FsMULd

Yes —
—

1 — — NX

0 — — nx, a signed zero

— Yes 1 — — NX

0 nx, a signed zero

FDIVs, 
FDIVd

Yes No

—

1 — — NX

0 — — nx, a signed zero

No Yes — 1 — DZ

— 0 — dz, a signed infinity

Yes Yes — — 1 NV

— — 0 nv, dNaN1

1. A single precision dNaN is 7FFF.FFFF16, and a double precision dNaN is 7FFF.FFFF.FFFF.FFFF16. 

FSQRTs, 
FSQRTd —

Yes and op2 
> 0 —

1 — — NX

0 — — nx, zero

Yes and op2 
< 0

— — 1 NV

— — 0 nv, dNaN
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F.APPENDIX C

Implementation Dependencies

This appendix summarizes implementation dependencies. In SPARC V9 and SPARC 
JPS1, the notation “IMPL. DEP. #nn:” identifies the definition of an implementation 
dependency; the notation “(impl. dep. #nn)” identifies a reference to an 
implementation dependency. These dependencies are described by their number nn 
in TABLE C-1 on page 70. These numbers have been removed from the body of this 
document for SPARC64 V to make the document more readable. TABLE C-1 has been 
modified to include descriptions of the manner in which SPARC64 V has resolved 
each implementation dependency.

Note – SPARC International maintains a document, Implementation Characteristics of 
Current SPARC-V9-based Products, Revision 9.x, that describes the implementation-
dependent design features of all SPARC V9-compliant implementations. Contact 
SPARC International for this document at

home page: www.sparc.org
email: info@sparc.org

C.1 Definition of an Implementation 
Dependency
Please refer to Section C.1 of Commonality.
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C.2 Hardware Characteristics
Please refer to Section C.2 of Commonality.

C.3 Implementation Dependency Categories
Please refer to Section C.3 of Commonality.

C.4 List of Implementation Dependencies
TABLE C-1 provides a complete list of how each implementation dependency is 
treated in the SPARC64 V implementation. 

TABLE C-1 SPARC64 V Implementation Dependencies  (1 of 11)

Nbr SPARC64 V Implementation Notes Page

1 Software emulation of instructions
The operating system emulates all instructions that generate 
illegal_instruction or unimplemented_FPop exceptions.

—

2 Number of IU registers
SPARC64 V supports eight register windows (NWINDOWS = 8).
SPARC64 V supports an additional two global register sets (Interrupt 
globals and MMU globals) for a total of 160 integer registers.

—

3 Incorrect IEEE Std 754-1985 results
See Section B.6, Floating-Point Nonstandard Mode, on page 61 for details.

62

4–5 Reserved.

6 I/O registers privileged status
This dependency is beyond the scope of this publication. It should be 
defined in each system that uses SPARC64 V.

—

7 I/O register definitions
This dependency is beyond the scope of this publication. It should be 
defined in each system that uses SPARC64 V.

—

8 RDASR/WRASR target registers
See A.50 and A.70 in Commonality for details of implementation-dependent 
RDASR/WRASR instructions.

—
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9 RDASR/WRASR privileged status
See A.50 and A.70 in Commonality for details of implementation-dependent 
RDASR/WRASR instructions.

—

10–12 Reserved.

13 VER.impl
VER.impl = 5 for the SPARC64 V processor.

20

14–15 Reserved. —

16 IU deferred-trap queue
SPARC64 V neither has nor needs an IU deferred-trap queue.

24

17 Reserved. —

18 Nonstandard IEEE 754-1985 results
SPARC64 V flushes denormal operands and results to zero when 
FSR.NS = 1. For the treatment of denormalized numbers, please refer to 
Section B.6, Floating-Point Nonstandard Mode, on page 61 for details.

18, 62

19 FPU version, FSR.ver
FSR.ver = 0 for SPARC64 V.

18

20–21 Reserved.

22 FPU TEM, cexc, and aexc
SPARC64 V implements all bits in the TEM, cexc, and aexc fields in 
hardware.

19

23 Floating-point traps
In SPARC64 V floating-point traps are always precise; no FQ is needed.

24

24 FPU deferred-trap queue (FQ)
SPARC64 V neither has nor needs a floating-point deferred-trap queue.

24

25 RDPR of FQ with nonexistent FQ
Attempting to execute an RDPR of the FQ causes an illegal_instruction 
exception.

24

26–28 Reserved. —

29 Address space identifier (ASI) definitions
The ASIs that are supported by SPARC64 V are defined in Appendix L, 
Address Space Identifiers.

—

30 ASI address decoding
SPARC64 V supports all of the listed ASIs.

117

31 Catastrophic error exceptions
SPARC64 V contains a watchdog timer that times out after no instruction 
has been committed for a specified number of cycles. If the timer times out, 
the CPU tries to invoke an async_data_error trap. If the counter continues to 
count to reach 233, the processor enters error_state. Upon an entry to 
error_state, the processor optionally generates a WDR reset to recover 
from error_state.

138
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32 Deferred traps
SPARC64 V signals a deferred trap in a few of its severe error conditions. 
SPARC64 V does not contain a deferred trap queue.

37, 149

33 Trap precision
There are no deferred traps in SPARC64 V other than the trap caused by a 
few severe error conditions. All traps that occur as the result of program 
execution are precise.

37

34 Interrupt clearing
For details of interrupt handling see Appendix N, Interrupt Handling.

—

35 Implementation-dependent traps
SPARC64 V supports the following traps that are implementation 
dependent: 
• interrupt_vector_trap (tt = 06016)
• PA_watchpoint (tt = 06116)
• VA_watchpoint (tt = 06216)
• ECC_error (tt = 06316)
• fast_instruction_access_MMU_miss (tt = 06416 through 06716)
• fast_data_access_MMU_miss (tt = 06816 through 06B16)
• fast_data_access_protection (tt = 06C16 through 06F16)
• async_data_error (tt = 04016)

39, 39

36 Trap priorities
SPARC64 V’s implementation-dependent traps have the following 
priorities:
• interrupt_vector_trap (priority=16)
• PA_watchpoint (priority=12)
• VA_watchpoint (priority=1)
• ECC_error (priority=33)
• fast_instruction_access_MMU_miss (priority = 2)
• fast_data_access_MMU_miss (priority = 12)
• fast_data_access_protection (priority = 12)
• async_data_error (priority = 2)

38

37 Reset trap
SPARC64 V implements power-on reset (POR) and watchdog reset.

37

38 Effect of reset trap on implementation-dependent registers
See Section O.3, Processor State after Reset and in RED_state, on page 141.

141

39 Entering error_state on implementation-dependent errors
CPU watchdog timeout at 233 ticks, a normal trap, or an SIR at TL = MAXTL 
causes the CPU to enter error_state.

36

40 Error_state processor state
SPARC64 V optionally takes a watchdog reset trap after entry to 
error_state. Most error-logging register state will be preserved. (See also 
impl. dep. #254.)

36

41 Reserved.
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42 FLUSH instruction
SPARC64 V implements the FLUSH instruction in hardware.

—

43 Reserved.

44 Data access FPU trap
The destination register(s) are unchanged if an access error occurs.

—

45–46 Reserved.

47 RDASR
See A.50, Read State Register, in Commonality for details.

—

48 WRASR
See A.70, Write State Register, in Commonality for details.

—

49–54 Reserved.

55 Floating-point underflow detection
See FSR_underflow in Section 5.1.7 of Commonality for details.

—

56–100 Reserved.

101 Maximum trap level
MAXTL = 5.

20

102 Clean windows trap
SPARC64 V generates a clean_window exception; register windows are 
cleaned in software. 

—

103 Prefetch instructions
SPARC64 V implements PREFETCH variations 0–3 and 20–23 with the 
following implementation-dependent characteristics:
• The prefetches have observable effects in privileged code.
• Prefetch variants 0–3 do not cause a fast_data_access_MMU_miss trap, 

because the prefetch is dropped when a fast_data_access_MMU_miss 
condition happens. On the other hand, prefetch variants 20–23 cause 
data_access_MMU_miss traps on TLB misses.

• All prefetches are for 64-byte cache lines, which are aligned on a 64-byte 
boundary.

• See Section A.49, Prefetch Data, on page 57, for implemented variations 
and their characteristics.

• Prefetches will work normally if the ASI is ASI_PRIMARY, 
ASI_SECONDARY, or ASI_NUCLEUS, ASI_PRIMARY_AS_IF_USER, 
ASI_SECONDARY_AS_IF_USER, and their little-endian pairs.

—

104 VER.manuf
VER.manuf = 000416. The least significant 8 bits are Fujitsu’s JEDEC 
manufacturing code.

20

105 TICK register
SPARC64 V implements 63 bits of the TICK register; it increments on every 
clock cycle.

19
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106 IMPDEPn instructions
SPARC64 V uses the IMPDEP2 opcode for the Multiply Add/Subtract 
instructions. SPARC64 V also conforms to Sun’s specification for VIS-1 and 
VIS-2.

49

107 Unimplemented LDD trap
SPARC64 V implements LDD in hardware.

—

108 Unimplemented STD trap
SPARC64 V implements STD in hardware.

—

109 LDDF_mem_address_not_aligned
If the address is word aligned but not doubleword aligned, SPARC64 V 
generates the LDDF_mem_address_not_aligned exception. The trap handler 
software emulates the instruction.

—

110 STDF_mem_address_not_aligned
If the address is word aligned but not doubleword aligned, SPARC64 V 
generates the STDF_mem_address_not_aligned exception. The trap handler 
software emulates the instruction.

—

111 LDQF_mem_address_not_aligned
SPARC64 V generates an illegal_instruction exception for all LDQFs. The 
processor does not perform the check for fp_disabled. The trap handler 
software emulates the instruction.

—

112 STQF_mem_address_not_aligned
SPARC64 V generates an illegal_instruction exception for all STQFs. The 
processor does not perform the check for fp_disabled. The trap handler 
software emulates the instruction.

—

113 Implemented memory models
SPARC64 V implements Total Store Order (TSO) for all the memory models 
specified in PSTATE.MM. See Chapter 8, Memory Models, for details.

42

114 RED_state trap vector address (RSTVaddr)
RSTVaddr is a constant in SPARC64 V, where:
VA=FFFF FFFF F000 000016 and
PA=07FF F000 000016

36

115 RED_state processor state
See RED_state on page 36 for details of implementation-specific actions in 
RED_state.

36

116 SIR_enable control flag
See Section A.60 SIR in Commonality for details.

—

117 MMU disabled prefetch behavior
Prefetch and nonfaulting Load always succeed when the MMU is disabled.

91

118 Identifying I/O locations
This dependency is beyond the scope of this publication. It should be 
defined in a system that uses SPARC64 V.

—
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119 Unimplemented values for PSTATE.MM
Writing 112 into PSTATE.MM causes the machine to use the TSO memory 
model. However, the encoding 112 should not be used, since future versions 
of SPARC64 V may use this encoding for a new memory model.

42

120 Coherence and atomicity of memory operations
Although SPARC64 V implements the UPA-based cache coherency 
mechanism, this dependency is beyond the scope of this publication. It 
should be defined in a system that uses SPARC64 V.

—

121 Implementation-dependent memory model
SPARC64 V implements TSO, PSO, and RMO memory models. See 
Chapter 8, Memory Models, for details.
Accesses to pages with the E (Volatile) bit of their MMU page table entry set 
are also made in program order.

—

122 FLUSH latency
Since the FLUSH instruction synchronizes the processor, its total latency 
varies depending on many portions of the SPARC64 V processor ’s state. 
Assuming that all prior instructions are completed, the latency of FLUSH is 
18 processor cycles.

—

123 Input/output (I/O) semantics
This dependency is beyond the scope of this publication. It should be 
defined in a system that uses SPARC64 V.

—

124 Implicit ASI when TL > 0
See Section 5.1.7 of Commonality for details.

—

125 Address masking
When PSTATE.AM = 1, SPARC64 V does mask out the high-order 32 bits of 
the PC when transmitting it to the destination register.

29, 49, 53

126 Register Windows State Registers width
NWINDOWS for SPARC64 V is 8; therefore, only 3 bits are implemented for 
the following registers: CWP, CANSAVE, CANRESTORE, OTHERWIN. If an 
attempt is made to write a value greater than NWINDOWS − 1 to any of these 
registers, the extraneous upper bits are discarded. The CLEANWIN register 
contains 3 bits.

—

127–201 Reserved.

202 fast_ECC_error trap
fast_ECC_error trap is not implemented in SPARC64 V.

—

203 Dispatch Control Register bits 13:6 and 1
SPARC64 V does not implement DCR.

22

204 DCR bits 5:3 and 0
SPARC64 V does not implement DCR.

22

205 Instruction Trap Register
SPARC64 V implements the Instruction Trap Register.

24
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206 SHUTDOWN instruction
In privileged mode the SHUTDOWN instruction executes as a NOP in 
SPARC64 V.

58

207 PCR register bits 47:32, 26:17, and bit 3
SPARC64 V uses these bits for the following purposes:
• Bits 47:32 for set/clear/show status of overflow (OVF).
• Bit 26 for validity of OVF field (OVRO).
• Bits 24:22 for number of counter pair (NC).
• Bits 20:18 for counter selector (SC).
• Bit 3 for validity of SU/SL field (ULRO).
Other implementation-dependent bits are read as 0 and writes to them are 
ignored.

20, 21, 
201

208 Ordering of errors captured in instruction execution
The order in which errors are captured during instruction execution is 
implementation dependent. Ordering can be in program order or in order of 
detection.

—

209 Software intervention after instruction-induced error
Precision of the trap to signal an instruction-induced error for which 
recovery requires software intervention is implementation dependent.

—

210 ERROR output signal
The causes and the semantics of ERROR output signal are implementation 
dependent.

—

211 Error logging registers’ information
The information that the error logging registers preserves beyond the reset 
induced by an ERROR signal is implementation dependent.

—

212 Trap with fatal error
Generation of a trap along with ERROR signal assertion upon detection of a 
fatal error is implementation dependent.

—

213 AFSR.PRIV
SPARC64 V does not implement the AFSR.PRIV bit.

—

214 Enable/disable control for deferred traps
SPARC64 V does not implement a control feature for deferred traps.

—

215 Error barrier
DONE and RETRY instructions may implicitly provide an error barrier 
function as MEMBAR #Sync. Whether DONE and RETRY instructions provide 
an error barrier is implementation dependent.

—

216 data_access_error trap precision
data_access_error trap is always precise in SPARC64 V.

—

217 instruction_access_error trap precision
instruction_access_error trap is always precise in SPARC64 V.

—
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218 async_data_error
async_data_error trap is implemented in SPARC64 V, using tt = 4016. See 
Appendix P for details.

39

219 Asynchronous Fault Address Register (AFAR) allocation
SPARC64 V implements two AFARs:
• VA = 0016 for an error occurring in D1 cache.
• VA = 0816 for an error occurring in U2 cache.

177, 178

220 Addition of logging and control registers for error handling
SPARC64 V implements various features for sustaining reliability. See 
Appendix P for details.

—

221 Special/signalling ECCs
The method to generate “special” or “signalling” ECCs and whether 
processor-ID is embedded into the data associated with special/signalling 
ECCs is implementation dependent.

—

222 TLB organization
SPARC64 V has the following TLB organization:
• Level-2 micro ITLB (uITLB), 32-way fully associative
• Level-1 micro DTLB (uDTLB), 32-way fully associative
• Level-2 IMMU-TLB—consisting of sITLB (set-associative Instruction TLB) 

and fITLB (fully associative Instruction TLB).
• Level-2 DMMU-TLB—consisting of sDTLB (set-associative Data TLB) and 

fDTLB (fully associative Data TLB).

85

223 TLB multiple-hit detection
On SPARC64 V, TLB multiple hit detection is supported. However, the 
multiple hit is not detected at every TLB reference. When the micro-TLB 
(uTLB), which is the cache of sTLB and fTLB, matches the virtual address, 
the multiple hit in sTLB and fTLB is not detected. The multiple hit is 
detected only when the micro-TLB mismatches and the main TLB is 
referenced. 

86

224 MMU physical address width
The SPARC64 V MMU implements 43-bit physical addresses. The PA field of 
the TTE holds a 43-bit physical address. Bits 46:43 of each TTE always read 
as 0 and writes to them are ignored. The MMU translates virtual addresses 
into 43-bit physical addresses. Each cache tag holds bits 42:6 of physical 
addresses. 

86

225 TLB locking of entries
In SPARC64 V, when a TTE with its lock bit set is written into TLB through 
the Data In register, the TTE is automatically written into the corresponding 
fully associative TLB and locked in the TLB. Otherwise, the TTE is written 
into the corresponding sTLB of fTLB, depending on its page size.

87

226 TTE support for CV bit
SPARC64 V does not support the CV bit in TTE. Since I1 and D1 are 
virtually indexed caches, unaliasing is supported by SPARC64 V. See also 
impl. dep. #232.

87
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227 TSB number of entries
SPARC64 V supports a maximum of 16 million entries in the common TSB 
and a maximum of 32 million lines the Split TSB.

88

228 TSB_Hash supplied from TSB or context-ID register
TSB_Hash is generated from the context-ID register in SPARC64 V.

88

229 TSB_Base address generation
SPARC64 V generates the TSB_Base address directly from the TLB 
Extension Registers. By maintaining compatibility with UltraSPARC I/II, 
SPARC64 V provides mode flag MCNTL.JPS1_TSBP. When 
MCNTL.JPS1_TSBP = 0, the TSB_Base register is used.

88

230 data_access_exception trap
SPARC64 generates data_access_exception only for the causes listed in 
Section 7.6.1 of Commonality.

89

231 MMU physical address variability
SPARC64 V supports both 41-bit and 43-bit physical address mode. The 
initial width of the physical address is controlled by OPSR.

91

232 DCU Control Register CP and CV bits
SPARC64 V does not implement CP and CV bits in the DCU Control 
Register. See also impl. dep. #226.

23, 91

233 TSB_Hash field
SPARC64 V does not implement TSB_Hash.

92

234 TLB replacement algorithm
For fTLB, SPARC64 V implements a pseudo-LRU. For sTLB, LRU is used.

93

235 TLB data access address assignment
The MMU TLB data-access address assignment and the purpose of the 
address are implementation dependent.

94

236 TSB_Size field width
In SPARC64 V, TSB_Size is 4 bits wide, occupying bits 3:0 of the TSB 
register. The maximum number of TSB entries is, therefore, 512 × 215 (16M 
entries).

97

237 DSFAR/DSFSR for JMPL/RETURN mem_address_not_aligned
A mem_address_not_aligned exception that occurs during a JMPL or RETURN 
instruction does not update either the D-SFAR or D-SFSR register.

 89, 97

238 TLB page offset for large page sizes
On SPARC64 V, even for a large page, written data for TLB Data Register is 
preserved for bits representing an offset in a page, so the data previously 
written is returned regardless of the page size.

87

239 Register access by ASIs 5516 and 5D16
In SPARC64 V, VA<63:19> of IMMU ASI 5516 and DMMU ASI 5D16 are 
ignored. An access to virtual addresses 4000016 to 60FF816 is treated as an 
access 0000016 to 20FF816

92
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240 DCU Control Register bits 47:41
SPARC64 V uses bit 41 for WEAK_SPCA, which enables/disables memory 
access in speculative paths.

23

241 Address Masking and DSFAR
SPARC64 V writes zeroes to the more significant 32 bits of DSFAR.

—

242 TLB lock bit
In SPARC64 V, only the fITLB and the fDTLB support the lock bit. The lock 
bit in sITLB and sDTLB is read as 0 and writes to it are ignored.

87

243 Interrupt Vector Dispatch Status Register BUSY/NACK pairs
In SPARC64 V, 32 BUSY/NACK pairs are implemented in the Interrupt 
Vector Dispatch Status Register.

136

244 Data Watchpoint Reliability
No implementation-dependent features of SPARC64 V reduce the reliability 
of data watchpoints.

24

245 Call/Branch displacement encoding in I-Cache
In SPARC64 V, the least significant 11 bits (bits 10:0) of a CALL or branch 
(BPcc, FBPfcc, Bicc, BPr) instruction in an instruction cache are identical 
to the architectural encoding (as they appear in main memory).

24

246 VA<38:29> for Interrupt Vector Dispatch Register Access
SPARC64 V ignores all 10 bits of VA<38:29> when the Interrupt Vector 
Dispatch Register is written.

136

247 Interrupt Vector Receive Register SID fields
SPARC64 V obtains the interrupt source identifier SID_L from the UPA 
packet.

136

248 Conditions for fp_exception_other with unfinished_FPop
SPARC64 V triggers fp_exception_other with trap type unfinished_FPop 
under the standard conditions described in Commonality Section 5.1.7.

18

249 Data watchpoint for Partial Store instruction
Watchpoint exceptions on Partial Store instructions occur conservatively on 
SPARC64 V. The DCUCR Data Watchpoint masks are only checked for 
nonzero value (watchpoint enabled). The byte store mask (r[rs2]) in the 
Partial Store instruction is ignored, and a watchpoint exception can occur 
even if the mask is zero (that is, no store will take place).

57

250 PCR accessibility when PSTATE.PRIV = 0
In SPARC64 V, the accessibility of PCR when PSTATE.PRIV = 0 is 
determined by PCR.PRIV. If PSTATE.PRIV = 0 and PCR.PRIV = 1, an 
attempt to execute either RDPCR or WRPCR will cause a privileged_action 
exception. If PSTATE.PRIV = 0 and PCR.PRIV = 0, RDPCR operates without 
privilege violation and WRPCR generates a privileged_action exception only 
when an attempt is made to change (that is, write 1 to) PCR.PRIV.

20, 22, 58

251 Reserved. —
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252 DCUCR.DC (Data Cache Enable)
SPARC64 V does not implement DCUCR.DC.

24

253 DCUCR.IC (Instruction Cache Enable)
SPARC64 V does not implement DCUCR.IC.

24

254 Means of exiting error_state
The standard behavior of a SPARC64 V CPU upon entry into 
error_state is to reset itself by internally generating a watchdog_reset 
(WDR). However, OPSR can be set so that when error_state is entered, the 
processor remains halted in error_state instead of generating a 
watchdog_reset.

37, 146

255 LDDFA with ASI E016 or E116 and misaligned destination register number 
No exception is generated based on the destination register rd. 

120

256 LDDFA with ASI E016 or E116 and misaligned memory address 
For LDDFA with ASI E016 or E11 and a memory address aligned on a 2n-byte 
boundary, a SPARC64 V processor behaves as follows:
n ≥ 3 (≥ 8-byte alignment): no exception related to memory address 
alignment is generated.
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is 
generated.
n ≤ 1 (≤ 2-byte alignment):   mem_address_not_aligned exception is 
generated. 

120

257 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address 
For LDDFA with C016–C516 or C816–CD16 and a memory address aligned on 
a 2n-byte boundary, a SPARC64 V processor behaves as follows:
n ≥ 3 (≥ 8-byte alignment): no exception related to memory address 
alignment is generated.
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is 
generated.
n ≤ 1 (≤ 2-byte alignment):   mem_address_not_aligned exception is 
generated.

120

258 ASI_SERIAL_ID 
SPARC64 V provides an identification code for each processor.

119
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F.APPENDIX D

Formal Specification of the Memory 
Models

Please refer to Appendix D of Commonality.
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F.APPENDIX E

Opcode Maps

Please refer to Appendix E in Commonality. TABLE E-1 lists the opcode map for the 
SPARC64 V IMPDEP2 instruction. 

TABLE E-1 IMPDEP2 (op = 2, op3 = 3716) 

var (instruction <8:7>)

00 01 10 11

size 
(instruction<6:5>)

00 (not used — reserved)

01 FMADDs FMSUBs FNMADDs FNMADDs

10 FMADDd FMSUBd SNMSUBd FNMSUBd

11 (reserved for quad operations)
83
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F.APPENDIX F

Memory Management Unit

The Memory Management Unit (MMU) architecture of SPARC64 V conforms to the 
MMU architecture defined in Appendix F of Commonality but with some model 
dependency. See Appendix F in Commonality for the basic definitions of the 
SPARC64 V MMU. 

Section numbers in this appendix correspond to those in Appendix F of 
Commonality. Figures and tables, however, are numbered consecutively.

This appendix describes the implementation dependencies and other additional 
information about the SPARC64 V MMU. For SPARC64 V implementations, we first 
list the implementation dependency as given in TABLE C-1 of Commonality, then 
describe the SPARC64 V implementation. 

F.1 Virtual Address Translation
IMPL. DEP. #222: TLB organization is JPS1 implementation dependent.

SPARC64 V has the following TLB organization:

■ Level-1 micro ITLB (uITLB), 32-way fully associative

■ Level-1 micro DTLB (uDTLB), 32-way fully associative

■ Level-2 IMMU-TLB consists of sITLB (set-associative Instruction TLB) and 
fITLB (fully associative Instruction TLB).

■ Level-2 DMMU-TLB consists of sDTLB (set-associative Data TLB) and fDTLB 
(fully associative Data TLB).

TABLE F-1 shows the organization of SPARC64 V TLBs.

Hardware contains micro-ITLB and micro-DTLB as the temporary memory of the 
main TLBs, as shown in TABLE F-1. In contrast to the micro-TLBs, sTLB and fTLB 
are called main TLBs.
85



The micro-TLBs are coherent to main TLBs and are not visible to software, with 
the exception of TLB multiple hit detection. Hardware maintains the consistency 
between micro-TLBs and main TLBs.

No other details on micro-TLB are provided because software cannot execute 
direct operations to micro-TLB and its configuration is invisible to software. 

IMPL. DEP. #223: Whether TLB multiple-hit detections are supported in JPS1 is 
implementation dependent.

On SPARC64 V, TLB multiple hit detection is supported. However, the multiple 
hit is not detected at every TLB reference. When the micro-TLB (uTLB), which is 
the cache of sTLB and fTLB, matches the virtual address, the multiple hit in sTLB 
and fTLB is not detected. The multiple hit is detected only when the micro-TLB 
mismatches and main TLB is referenced.

F.2 Translation Table Entry (TTE)
IMPL DEP. in Commonality TABLE F-1: TTE_Data bits 46–43 are implementation 
dependent.

On SPARC64 V, TTE_Data bits 46:43 are reserved.

IMPL. DEP. #224: Physical address width support by the MMU is implementation 
dependent in JPS1; minimum PA width is 43 bits.

The SPARC64 V MMU implements 43-bit physical addresses. The PA field of the 
TTE holds a 43-bit physical address. The MMU translates virtual addresses into 
43-bit physical addresses. Each cache tag holds bits 42:6 of physical addresses. 

Bits 46:43 of each TTE always read as 0 and writes to them are ignored.

A cacheable access for a physical address ≥ 400 0000 000016 always causes the 
cache miss for the U2 cache and generates a UPA request for the cacheable access. 
The urgent error ASI_UGESR.SDC is signalled after the UPA cacheable access is 
requested.

TABLE F-1 Organization of SPARC64 V TLBs

Feature sITLB and sDTLB fITLB and fDTLB

Entries 2048 32

Associativity 2-way set associative Fully associative

Page size supported 8 KB/4MB 8 KB/64 KB/512 KB/4 MB

Locked translation entry Not supported Supported

Unlocked translation entry Supported Supported
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The physical address length to be passed to the UPA interface is 41 bits or 43 bits, 
as designated in the ASI_UPA_CONFIG.AM field. When the 41-bit PA is specified 
in ASI_UPA_CONFIG.AM, the most significant 2 bits of the CPU internal physical 
address are discarded and only the remaining least significant 41 bits are passed 
to the UPA address bus. If the discarded most significant 2 bits are not 0, the 
urgent error ASI_UGESR.SDC is detected after the invalid address transfer to the 
UPA interface. Otherwise, when the 43-bit PA is specified in 
ASI_UPA_CONFIG.AM, the entire 43 bits of CPU internal physical address are 
passed to the UPA address bus.

IMPL. DEP. #238: When page offset bits for larger page size (PA<15:13>, PA<18:13>, 
and PA<21:13> for 64-Kbyte, 512-Kbyte, and 4-Mbyte pages, respectively) are stored 
in the TLB, it is implementation dependent whether the data returned from those 
fields by a Data Access read are zero or the data previously written to them.

On SPARC64 V, the data returned from PA<15:13>, PA<18:13>, and PA<21:13> for 
64-Kbyte, 512-Kbyte, and 4-Mbyte pages, respectively, by a Data Access read are 
the data previously written to them.

IMPL. DEP. #225: The mechanism by which entries in TLB are locked is 
implementation dependent in JPS1.

In SPARC64 V, when a TTE with its lock bit set is written into TLB through the 
Data In register, the TTE is automatically written into the corresponding fully 
associative TLB and locked in the TLB. Otherwise, the TTE is written into the 
corresponding sTLB or fTLB, depending on its page size.

IMPL. DEP. #242: An implementation containing multiple TLBs may implement the L 
(lock) bit in all TLBs but is only required to implement a lock bit in one TLB for each 
page size. If the lock bit is not implemented in a particular TLB, it is read as 0 and 
writes to it are ignored.

In SPARC64 V, only the fITLB and the fDTLB support the lock bit as described in 
TABLE F-1. The lock bit in sITLB and sDTLB is read as 0 and writes to it are 
ignored.

IMPL. DEP. #226: Whether the CV bit is supported in TTE is implementation 
dependent in JPS1. When the CV bit in TTE is not provided and the implementation 
has virtually indexed caches, the implementation should support hardware 
unaliasing for the caches.

In SPARC64 V, no TLB supports the CV bit in TTE. SPARC64 V supports hardware 
unaliasing for the caches. The CV bit in any TLB entry is read as 0 and writes to it 
are ignored.
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F.3.3 TSB Organization

IMPL. DEP. #227: The maximum number of entries in a TSB is implementation 
dependent in JPS1. See impl. dep. #228 for the limitation of TSB_size in TSB 
registers.

SPARC64 V supports a maximum of 16 million lines in the common TSB and a 
maximum 32 million lines in the split TSB. The maximum number N in 
FIGURE F-4 of Commonality is 16 million (16 * 220).

F.4.2 TSB Pointer Formation

IMPL. DEP. #228: Whether TSB_Hash is supplied from a TSB Extension Register or 
from a context-ID register is implementation dependent in JPS1. Only for cases of 
direct hash with context-ID can the width of the TSB_size field be wider than 3 
bits.

On SPARC64 V, TSB_Hash is supplied from a context-ID register. The width of 
the TSB_size field is 4 bits.

IMPL. DEP. #229: Whether the implementation generates the TSB Base address by 
exclusive-ORing the TSB Base Register and a TSB Extension Register or by taking the 
TSB_Base field directly from the TSB Extension Register is implementation 
dependent in JPS1. This implementation dependency is only to maintain 
compatibility with the TLB miss handling software of UltraSPARC I/II.

On SPARC64 V, when ASI_MCNTL.JPS1_TSBP = 1, the TSB Base address is 
generated by taking TSB_Base field directly from the TSB Extension Register.

TSB Pointer Formation

On SPARC64 V, the number N in the following equations ranges from 0 to 15; N is 
defined to be the TSB_Size field of the TSB Base or TSB Extension Register.

SPARC64 V supports the TSB Base from TSB Extension Registers as follows when 
ASI_MCNTL.JPS1_TSBP = 1.

For a shared TSB (TSB Register split field = 0):

8K_POINTER = TSB_Extension[63:13+N]  (VA[21+N:13] ⊕  TSB_Hash)  
0000

64K_POINTER = TSB_Extension[63:13+N]  (VA[24+N:16] ⊕  TSB_Hash)  
0000

For a split TSB (TSB Register split field = 1):
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8K_POINTER = TSB_Extension[63:14+N]  0  (VA[21+N:13] ⊕  TSB_Hash) 
 0000

64K_POINTER = TSB_Extension[63:14+N]  1  (VA[24+N:16] ⊕  
TSB_Hash)  0000

Value of TSB_Hash for both a shared TSB and a split TSB

When 0 <= N <= 4,

TSB_Hash = context_register[N+8:0]

Otherwise, when 5 <= N <= 15,

TSB_Hash[ 12:0 ] = context_register[ 12:0 ]

TSB_Hash[ N+8:13 ] = 0 ( N-4 bits zero )

F.5 Faults and Traps
IMPL. DEP. #230: The cause of a data_access_exception trap is implementation 
dependent in JPS1, but there are several mandatory causes of data_access_exception 
trap.

SPARC64 V signals a data_access_exception for the causes, as defined in F.5 in 
Commonality. However, caution is needed to deal with an invalid ASI. See 
Section F.10.9 for details.

IMPL. DEP. #237: Whether the fault status and/or address (DSFSR/DSFAR) are 
captured when mem_address_not_aligned is generated during a JMPL or RETURN 
instruction is implementation dependent.

On SPARC64 V, the fault status and address (DSFSR/DSFAR) are not captured 
when a mem_address_not_aligned exception is generated during a JMPL or RETURN 
instruction.

Additional information: On SPARC64 V, the two precise traps—
instruction_access_error and data_access_error—are recorded by the MMU in addition 
to those in TABLE F-2 of Commonality. A modification (the two traps are added) of 
that table is shown below.

TABLE F-2 MMU Trap Types, Causes, and Stored State Register Update Policy

Registers Updated
(Stored State in MMU)

Ref #Trap Name Trap Cause I-SFSR

I-MMU 
Tag 
Access

D-SFSR,
SFAR

D-MMU 
Tag 
Access Trap Type

1. fast_instruction_access_MMU_miss I-TLB miss X2 X 6416–6716
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■ X1:   The contents of the context field of the D-MMU Tag Access Register are 
undefined after a data_access_exception.

■ X2:   I-SFSR is updated according to its update policy described in Section F.10.9
■ X3:   D-SFSR and D-SFAR are updated according to the update policy described 

in Section F.10.9

The traps with Ref #1~8 in TABLE F-2 conform to the specification defined in Section 
F.5 of Commonality.

The additional traps (Ref #9 and #10) are described below.

Ref 9: instruction_access_error — Signalled upon detection of at least one of the 
following errors.

■ An uncorrectable error is detected upon an instruction fetch reference.
■ A bus error response from the UPA bus is detected upon an instruction fetch 

reference.
■ mITLB (sITLB and fITLB) multiple hits are detected in a mITLB lookup for an 

instruction reference.
■ An fITLB entry parity error is detected in an fTLB lookup for an instruction 

reference.

Ref 10: data_access_error — Signalled upon the detection of at least one of the 
following errors.

■ An uncorrectable error is detected upon an instruction operand access.
■ A bus error response from the UPA bus is detected upon an operand access.
■ mDTLB (sDTLB and fDTLB) multiple hits are detected in an mDTLB lookup for 

an operand access.

2. instruction_access_exception Several (see below) X2 X 0816

3. fast_data_access_MMU_miss D-TLB miss X3 X 6816–6B16

4. data_access_exception Several (see below) X3 X1 3016

5. fast_data_access_protection Protection violation X3 X 6C16-6F16

6. privileged_action Use of privileged ASI X3 3716

7. watchpoint Watchpoint hit X3 6116–6216

8. mem_address_not_aligned, 
*_mem_address_not_aligned

Misaligned memory 
operation

(impl. 
dep 
#237)

3516, 3616,
3816, 3916

9. instruction_access_error Several (see below) X2 0A16

10 data_access_error Several (see below) X3 3216

TABLE F-2 MMU Trap Types, Causes, and Stored State Register Update Policy

Registers Updated
(Stored State in MMU)

Ref #Trap Name Trap Cause I-SFSR

I-MMU 
Tag 
Access

D-SFSR,
SFAR

D-MMU 
Tag 
Access Trap Type
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■ An fDTLB entry parity error is detected in a fDTLB lookup for an instruction 
operand access.

F.8 Reset, Disable, and RED_state Behavior
IMPL. DEP. #231: The variability of the width of physical address is implementation 
dependent in JPS1, and if variable, the initial width of the physical address after 
reset is also implementation dependent in JPS1.

See impl. dep. #224 on page 86 for the variability of the width of physical address. 
The physical address width to pass to the UPA interface is variable and is 43 bits 
or 41 bits, as designated in UPA_configuration_register.AM field.

The initial value held in the external power-on reset sequencer is set to 
UPA_configuraion_regiser.AM by the JTAG command during the power-on 
reset sequence. So, the initial value of the UPA physical address width is system 
dependent.

IMPL. DEP. #232: Whether CP and CV bits exist in the DCU Control Register is 
implementation dependent in JPS1.

On SPARC64 V, CP and CV bits do not exist in the DCU Control Register.

When DMMU is disabled, the processor behaves as if the TTE bits were set as:
■ TTE.IE ← 0
■ TTE.P ← 0
■ TTE.W ← 1
■ TTE.NFO← 0
■ TTE.CV ← 0
■ TTE.CP ← 0
■ TTE.E ← 1

IMPL. DEP. #117: Whether prefetch and nonfaulting loads always succeed when the 
MMU is disabled is implementation dependent.

On SPARC64 V, the PREFETCH instruction completes without memory access 
when the DMMU is disabled. 

A data access exception is generated at the execution of the nonfaulting load 
instruction when the DMMU is disabled, as defined in Section F.5 of 
Commonality.
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F.10 Internal Registers and ASI operations

F.10.1 Accessing MMU Registers

IMPL. DEP. #233: Whether the TSB_Hash field is implemented in I/D 
Primary/Secondary/Nucleus TSB Extension Register is implementation dependent 
in JPS1.

On SPARC64 V, the TSB_Hash field is not implemented in the I/D 
Primary/Secondary/Nucleus TSB Extension Register. See TSB Pointer Formation 
on page 88 for details.

IMPL. DEP. #239: The register(s) accessed by IMMU ASI 5516 and DMMU ASI 5D16 at 
virtual addresses 4000016 to 60FF816 are implementation dependent.

See impl. dep. #235 in I/D TLB Data In, Data Access, and Tag Read Registers on page 
93.

Additional information: The ASI_DCUCR register also affects the MMUs. 
ASI_DCUCR is described in Section 5.2.12 of Commonality. The SPARC64 V 
implementation dependency in ASI_DCUCR is described in Data Cache Unit Control 
Register (DCUCR) on page 22.

SPARC64 V also has an additional MMU internal register ASI_MCNTL (Memory 
Control Register) that is shared between the IMMU and the DMMU. The register is 
illustrated in FIGURE F-1 and described in TABLE F-3. 

ASI_MCNTL (Memory Control Register)
ASI: 4516
VA: 0816
Access Modes: Supervisor read/write

FIGURE F-1 Format of ASI_MCNTL

reserved NC_
Cache

fw_
fITLB

fw_
fDTLB

RMD 000 JPS1_TSBP 00000000

63 17 16 15 14 13 12 11 9 8 7 0
92 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



F.10.4 I/D TLB Data In, Data Access, and Tag Read 
Registers

IMPL. DEP. #234: The replacement algorithm of a TLB entry is implementation 
dependent in JPS1.

TABLE F-3 MCNTL Field Description

Bits Field Name RW Description

Data <16> NC_Cache R/W Force instruction caching. When set, the instruction lines fetched from a 
noncacheable area are cached in the instruction cache. The NC_Cache 
has no effect on operand references. If MCNTL.NC_Cache = 1, the CPU 
fetches a noncacheable line in four consecutive 16-byte fetches and stores 
the entire 64 bytes in the I-Cache. NC_Cache is provided for use by OBP, 
and OBP should clear the bit before exiting.
A write to ASI_FLUSH_L1I must be performed before 
MCNTL.NC_CACHE = 0 is set. Otherwise, noncacheable instructions may 
remain on the L1 cache.

Data <15> fw_fITLB R/W Force write to fITLB. This is the mITLB version of fTLB force write. 
When fw_fITLB = 1, a TTE write to mITLB through ITLB Data In 
Register is directed to fITLB. fw_fITLB is provided for use by OBP to 
register the TTEs that map the address translations themselves into 
fDTLB. 

Data <13:12> RMD R TLB RAM MODE. Handling of 4-Mbyte page entry is indicated on this 
fileld.

00: 4-Mbyte page entry is stored in fully associative TLB.
01: reserved.
10: 4-Mbyte page entry is stored in 1024-entry, 2-way set associative 

TLB.
11: 4-Mbyte page entry is stored in 512-entry, 2-way set associative 

TLB.
This field is read-only. Writes to this field is ignored.

Data <14> fw_fDTLB R/W Force write to fDTLB. When fw_fDTLB = 1, a TTE write to mDTLB 
through DTLB Data In Register is directed to fDTLB. fw_fDTLB is 
provided for use by OBP to register the TTEs that map the address 
translations themselves into fDTLB. 

Data <8> JPS1_TSBP R/W TSB-pointer context-hashing enable. When JPS1_TSBP =  0, SPARC64 V 
does not apply the context-ID hashing for 8-Kbyte or 64-Kbyte TSB 
pointer generation. The pointer generation strategy is compatible with 
UltraSPARC. When JPS1_TSBP =  1, SPARC64 V is in JPS1_TSBP mode, 
meaning that the CPU applies the context-ID hashing to generate an 8-
Kbyte or 64-Kbyte page TSB pointer. 
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For fTLB, SPARC64 V implements a pseudo-LRU. For sTLB, LRU is used. 

IMPL. DEP. #235: The MMU TLB data access address assignment and the purpose of 
the address are implementation dependent in JPS1.
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The MMU TLB data access address assignment and the purpose of the address on 
SPARC64 V are shown in TABLE F-4. 

TABLE F-4 MMU TLB Data Access Address Assignment

VA Bit Field Description

17:16 TLB# TLB to be accessed:  fTLB or sTLB is designated as follows.
00: fTLB (32 entries)
01: reserved
10: sTLB(2048 entries of 8-Kbyte page and 4-Mbyte page)
11: reserved

15 ER Error insertion into mTLB: When set on a write, an entry with 
parity error is inserted into a selected TLB location.
This field is ignored for a TLB entry read operation.

13:3 TLB index Index number of the TLB. Specifies an index number for the TLB 
reference. When fTLB is specified in TLB# field, the upper 6-bits of 
the specified index are ignored.
When sTLB is specified in TLB# field, and

MCNTL.RMD = 00:
Index 0-511 addresses way0 of 8K-byte page sTLB
Index 512-1023 addresses way1 of 8K-byte page sTLB

MCNTL.RMD = 01:
Reserved. On all index, 0 is returned on read and writes 
data is ignored.

MCNTL.RMD = 10:
Index 0-511 addresses way0 of 8K-byte page sTLB
Index 512-1023 addresses way1 of 8K-byte page sTLB
Index 1024-1535 addresses way0 of 4M-byte page sTLB
Index 1536-2047 addresses way1 of 4M-byte page sTLB

MCNTL.RMD = 11:
Index 0-511 addresses way0 of 8K-byte page sTLB
Index 512-1023 addresses way1 of 8K-byte page sTLB
Index 1024-1279 addresses way0 of 4M-byte page sTLB
Index 1536-1791 addresses way1 of 4M-byte page sTLB
Index 1280-1535 and 1792-2047 are reserved, 0 is returned 
on read and writes data to this index is ignored.

FIGURE F-2 deipcts the relation of index number of sTLB and the 
data to be accessed in various MCNTL.RMD.
When the entry to be written has a lock bit set and the specified 
TLB is the sTLB, the entry is written into the sTLB with its lock bit 
cleared. When the entry to be written into the fTLB, the entry is 
written without lock bit modification.

Other Reserved Ignored.
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FIGURE F-2 Index number of set associative TLBs

I/D MMU TLB Tag Access Register

On an ASI store to the TLB Data Access or Data In Register, SPARC64 V verifies the 
consistency between the Tag Access Register and the data to be written. If their 
indexes are inconsistent, the TLB entry is not updated. However, SPARC64 V does 
not verify the consistency if TTE.V = 0 for the TTE to be written. This enables 
demapping of specified TLB entries through the TLB Data Access Register. Software 
can use this feature to validate faulty TLB entries.

On verifing the consistency, the bits position and length that is interpreted as index 
against the data in Tag Access Register varies on the page size and MCNTL.RMD. In 8-
Kbyte page, bits[21:13] is conscidered as index and compared with the index field of  
TLB Data Access or Data In Register. In 4-Mbyte page, bits[30:22] when 
MCNTL.RMD=10, or bits[29:22] when MCNTL.RMD=11, is conscidered as index.

0

8-Kbyte page entry

way0

way1

511

512

1023

RMD=00

2047

1024 0

8-Kbyte page entry

way0

way1

511

512

1023

RMD=10

2047

1024

0

1023

RMD=01

2047

1024 0

8-Kbyte page entry

way0

way1

511
512

1023

RMD=11

2047

1024

reserved reserved

4-Mbyte page entry

4-Mbyte page entry

way0

way1

way0

way1

1535

1536

1280

1535
1536

1791
1792

1279

reserved

reserved
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I/D TSB Base Registers

IMPL. DEP. #236: The width of the TSB_Size field in the TSB Base Register is 
implementation dependent; the permitted range is from 2 to 6 bits. The least 
significant bit of TSB_Size is always at bit 0 of the TSB Base Register. Any bits 
unimplemented at the most significant end of TSB_Size read as 0, and writes to 
them are ignored.

On SPARC64 V, the width of the TSB_Size field in the TSB Base Register is 4 
bits. The number of entries in the TSB ranges from 512 entries at TSB_Size = 0 (8 
Kbytes for common TSB, 16 Kbytes for split TSB), to 16 million entries at 
TSB_Size = 15 (256 Mbytes for common TSB, 512 Mbytes for split TSB).

F.10.7 I/D TSB Extension Registers
IMPL DEP. in Commonality FIGURE F-13: Bits 11:3 in I/D TSB Extension Register 
are an implementation-dependent field.

On SPARC64 V, bits 11:0 in I/D TSB Extension Registers are assigned as follows.

■ Bits 11:4 — Reserved. Always read as 0, and writes to it are ignored.
■ Bits 3:0 — TSB_Size field is expanded to be a 4-bit field in SPARC64 V.

F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, 
D-SFSR)
IMPL DEP. in Commonality FIGURE F-15 and TABLE F-12: Bits 63:25 in I/D 
Synchronous Fault Status Registers (I-SFSR, D-SFSR) are an implementation-
dependent field.

The format of I/D-MMU SFSR in SPARC64 V is shown in FIGURE F-3.

FIGURE F-3 MMU I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)

TLB # reserved index reserved MK EID UE UPA reserved mTLB NC

63 62 61 60 59 49 48 47 46 45 32 31 30 29 28 27 26 25

NF ASI TM reserved FT E CT PR W OW FV

24 23 16 15 14 13 7 6 5 4 3 2 1 0
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The specification of bits 24:0 in the SPARC64 V SFSR conforms to the specification 
defined in Section F.10.9 in Commonality. Bits 63:25 in SPARC64 V SFSR are 
implementation dependent. TABLE F-5 describes the I-SFSR bits, and TABLE F-5 
describes the D-SFSR bits. 

TABLE F-5 I-SFSR Bit Description

Bits Field Name RW Description

Data<63:62 > TLB# R/W Faulty TLB# log. Recorded upon an mITLB error to identify the faulty TLB 
(fITLB: 002 or sITLB: 102). The priority of error logging for multiple error 
conditions (parity error and multiple-hit error) is as follows:

fTLB parity high
sTLB
sTLB multihit
fTLB multihit low

Data <59:49> index R/W Faulty TLB index log. Recorded upon an mITLB error and is the index 
number for the faulty TLB. The priority of error logging for multiple error 
conditions (parity error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB multihit
fTLB multihit low 

The smallest index number is selected for multiple hits. 

Data <46> MK R/W Marked UE. On SPARC64 V, all uncorrectable errors are reported as 
marked, so this bit is always set whenever ISFSR.UE = 1.
See Section P.2.4, Error Marking for Cacheable Data Error, on page 157 for 
details.

Data <45:32> EID R/W Error mark ID. Valid for a marked UE. 
See Section P.2.4, Error Marking for Cacheable Data Error, on page 157 for 
ERROR_MARK_ID.

Data <31> UE R/W Instruction error status; uncorrectable error. When UE = 1, an uncorrectable 
error in a fetched instruction word has been detected. Valid only for an 
instruction_access_error exception.

Data <30:29> UPA<1:0> R/W UPA error status. Either a bus error response (UPA<1>) or a timeout 
response (UPA<0>) has been received from an instruction fetch transaction 
from UPA. Valid only for an instruction_access_error exception.

Data <27:26> mITLB<1:0> R/W mITLB error status. Either a multiple-hit status (mITLB<1>) or a parity 
error status (mITLB<0>) has been encountered upon a mITLB lookup. Valid 
only for an instruction_access_error exception. 

Data <25> NC R/W Noncacheable reference. The reference that has invoked an exception is a 
noncacheable reference. Valid for an instruction_access_error exception 
caused by ISFSR.UE or ISFSR.UPA only. For other causes of the trap, the 
value is unknown.

Data <23:16> ASI<7:0> R/W ASI. The 8-bit address space identifier applied to the reference that has 
invoked an exception. This field is valid for the exception in which the 
ISFSR.FV bit is set. 
A recorded ASI is 8016(ASI_PRIMARY) or 0416 (ASI_NUCLEUS) depending 
on the trap level (when TL > 0, the ASI is ASI_NUCLEUS.). 
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TABLE F-6 describes the field encoding for ISFSR.FT. 

Data <15> TM R/W Translation miss. When TM = 1, it signifies an occurrence of a mITLB miss 
upon an instruction reference.

Data <13:7> FT<6:0> R/W Fault type. Saves and indicates an exact condition that caused the recorded 
exception. See TABLE F-6 for the field encoding. 
In the IMMU, FT is valid only for an instruction_access_exception. The 
ISFSR.FT always reads as 0 for a fast_instruction_access_MMU_miss and 
reads 0116 for an instruction_access_exception, since no other fault types 
apply.

Data <5:4> CT<1:0> R/W Context type; Saves the context attribute for the reference that invokes an 
exception. For nontranslating ASI or invalid ASI, ISFSR.CT = 1102.

0002: Primary
0102: Reserved
1002: Nucleus
1102: Reserved

Data <3> PR R/W Privileged. Indicates the CPU privilege status during the instruction 
reference that generates the exception. This field is valid when 
ISFSR.FV = 1. 

Data <1> OW R/W Overwritten. Set when ISFSR.FV = 1 upon the detection of a exception. 
This means that the fault valid bit is not yet cleared when another fault is 
detected.

Data <0> FV R/W Fault valid. Set when the IMMU detects an exception. The bit is not set on 
an IMMU miss. When the Fault Valid bit is not set, the values of the 
remaining fields in the ISFSR are undefined, except for an IMMU miss.

TABLE F-6 Instruction Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Error Description

0116 Privilege violation. Set when TTE.P = 1 and PSTATE.PRIV = 0 for the 
instruction reference. 

0216 Reserved

0416 Reserved

0816 Reserved

1016 Reserved

2016 Reserved, since there is no virtual hole.

4016 Reserved, since there is no virtual hole.

TABLE F-5 I-SFSR Bit Description

Bits Field Name RW Description
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ISFSR is updated either upon a occurrence of a fast_instruction_access_MMU_miss, an 
instruction_access_exception, or an instruction_access_error trap. TABLE F-7 shows the 
detailed update policy of each field, and TABLE F-8 describes the fields. 

TABLE F-7 ISFSR Update Policy

Field TLB#, index FV OW PR, CT1

1. The value of ISFSR.CT is 11 when the ASI is not a translating ASI. The value 11 is recorded in ISFSR.CT for
an illegal value in the ASI (0016–0316, 1216–1316, 1616–1716, 1A16–1B16, 1E16–2316, 2D16–2F16, and
3516–3B16).

FT TM ASI
UE, UPA,
mITLB, NC2

2. Valid only for the instruction_access_error caused by ISFSR.UE or ISFSR.UPA. 

Fresh fault or miss3

3. Types: 0 – logical 0; 1 –logical 1; V– Valid field to be updated; “—” – not a valid field

Miss MMU miss — 0 0 V — 1 — —

Exception Access exception — 1 0 V V 0 V —

Error Access error V4

4. Updated when mITLB is signified. 

1 0 V — 0 V V

Overwrite policy5

5. Types: 0 – logical 0; 1 – logical 1; K – keep; U – Update as per fault/miss

Error on exception U4 1 1 U K K U U

Exception on error K 1 1 U U K U K

Error on miss U 1 K U K 1 U U

Exception on miss K 1 K U U 1 U K

Miss on exception/error K 1 K K K 1 K K

Miss on miss K K K U K 1 K K

TABLE F-8 D-SFSR Bit Description  (1 of 3)

Bits Field Name RW Description

Data <63:62> TLB# R/W Faulty TLB# log. Recorded upon an mDTLB error to identify the faulty TLB 
(fDTLB: 002 or sDTLB: 102). The priority of error logging for multiple error 
conditions (parity error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB multihit
fTLB multihit low

Data <59:49> index R/W Faulty TLB index log. Recorded upon an mDTLB error. Index number for 
the faulty TLB. The priority of error logging for multiple error conditions 
(parity error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB-multihit
fTLB-multihit low 

The smaller index number is selected for multiple hits. 
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Data <46> MK R/W Marked UE. On SPARC64 V, all uncorrectable errors are reported as 
marked, so this bit is always set whenever DSFSR.UE = 1.
See Section P.2.4 for details.

Data <45:32> EID R/W Error-mark ID. Valid for a marked UE. 
See Section P.2.4 for details about ERROR_MARK_ID.

Data <31> UE R/W Operand access error status. Uncorrectable error. When UE = 1, it signifies 
an occurrence of an uncorrectable error in an operand fetch reference. Valid 
only for a data_access_error exception.

Data - <30:29> UPA<1:0> R/W UPA error status. Either a bus error response (UPA<1>) or a timeout 
response (UPA<0>) has been received from an operand fetch transaction 
from UPA. Valid only for a data_access_error exception. 

Data <27:26> mDTLB<1:0> R/W mDTLB error status. Either a multiple-hit status (mDTLB<1>) or a parity 
error status (mDTLB<0>) has been encountered upon a mDTLB lookup. 
Valid only for a data_access_error exception.

Data <25> NC R/W Noncacheable reference. The reference that invoked an exception is a non-
cacheable reference. This field indicates that the faulty reference is a non-
cacheable operand access. Valid only for an data_access_error exception 
caused by DSFSR.UE or DSFSR.UPA. For other causes of the trap, the 
value is unknown.

Data <24> NF R/W Nonfaulting load. The instruction which generated the exception was a 
nonfaulting load instruction. 

Data <23:16> ASI<7:0> R/W ASI. The 8-bit address space identifier applied to the reference that has 
invoked an exception. This field is valid for the exception in which the 
DSFSR.FV bit is set. When the reference does not specify an ASI, the 
reference is regarded as with an implicit ASI and a recorded ASI is as 
follows:
TL = 0, PSTATE.CLE = 0 8016 (ASI_PRIMARY)
TL = 0, PSTATE.CLE = 1 8816 (ASI_PRIMARY_LITTLE)
TL > 0, PSTATE.CLE = 0 0416 (ASI_NUCLEUS)
TL > 0, PSTATE.CLE = 1 0C16 (ASI_NUCLEUS_LITTLE)

Data <15> TM R/W Translation miss. When TM = 1, it signifies an occurrence of a mDTLB miss 
upon an operand reference.

Data <13:7> FT<6:0> R/W Fault type. Saves and indicates an exact condition that caused the recorded 
exception. The encoding of this field is described in TABLE F-9. 

Data <6> E R/W Side-effect page. Associated with faulting data access. The reference is mapped to 
the translation with an E bit set, or the ASI for the reference was either 01516 or 
01D16. Valid only for an data_access_error exception caused by DSFSR.UE 
or DSFSR.UPA. For other causes of the trap, the value is unknown.

TABLE F-8 D-SFSR Bit Description  (2 of 3)

Bits Field Name RW Description
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TABLE F-9 defines the encoding of the FT<6:0> field. 

Data CT<1:0> R/W Context type. Saves the context attribute for the reference that invokes an 
exception. For nontranslating ASI or invalid ASI, DSFSR.CT = 1102.

0002: Primary
0102: Secondary
1002: Nucleus
1102: Reserved

When a data_access_exception trap is caused by an invalid combination of 
an ASI and an opcode (e.g., atomic load quad, block load/store, block 
commit store, partial store, or short floating-point load/store instructions), 
the recording of the DSFSR.CT field is  based on the encoding of the ASI 
specified by the instruction.

Data <3> PR R/W Privileged. Indicates the CPU privilege status during the operand reference 
that generates the exception. This field is valid when DSFSR.FV = 1. 

Data <2> W R/W Write. W = 1 if the reference is for an operand write operation (a store or 
atomic load/store instruction). 

Data <1> OW R/W Overwritten. Set when DSFSR.FV = 1 upon detection of a exception. This 
means that the fault valid bit is not yet cleared when another fault is 
detected.

Data <0> FV R/W Fault valid. Set when the DMMU detects an exception. The bit is not set on 
an DMMU miss. When the FV bit is not set, the values of the remaining 
fields in the DSFSR and DSFAR are undefined, except for a DMMU miss.

TABLE F-9 MMU Synchronous Fault Status Register FT (Fault Type) Field 

FT<6:0> Error Description

0116 Privilege violation. An attempt was made to access a privileged page 
(TTE.P = 1) under nonprivileged mode (PSTATE.PRIV = 0) or through a 
*_AS_IF_USER ASI. This exception has priority over a 
fast_data_access_protection exception.

0216 Nonfaulting load instruction to page marked with the E bit. This bit is zero for 
internal ASI accesses. 

0416 An attempt was made to access a noncacheable page or an internal ASI by an 
atomic instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA) or an 
atomic quad load instruction (LDDA with ASI = 02416, 02C16, 03416, or 03C16). 

TABLE F-8 D-SFSR Bit Description  (3 of 3)

Bits Field Name RW Description
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Multiple bits of DSFSR.FT may be set by a trap as long as the cause of the trap 
matches multiply in TABLE F-9.

DSFSR is updated upon various traps, including fast_data_access_MMU_miss, 
data_access_exception, fast_data_access_protection, PA_watchpoint, VA_watchpoint, 
privileged_action, mem_address_not_aligned, and data_access_error traps. TABLE F-10 
shows the detailed update policy of each field. 

0816 An attempt was made to access an alternate address space with an illegal ASI 
value, an illegal VA, an invalid read/write attribute, or an illegally sized 
operand. If the quad load ASI is used with the other opcode than LDDA, this bit 
is set.
Note: Since an illegal ASI check is done prior to a TTE unmatch check, 
DSFSR.FT<3> = 1 causes the value of other bits of DSFSR.FT to be 
undetermined and generates a data_access_exception exception (which 
otherwise has lower priority than fast_data_access_MMU_miss).
Note, too, that a reference to an internal ASI may generate a 
mem_address_not_aligned exception.  

1016 Access other than nonfaulting load was made to a page marked NFO. This bit is 
zero for internal ASI accesses.

2016 Reserved, since there is no virtual hole.

4016 Reserved, since there is no virtual hole.

TABLE F-10 DSFSR Update Policy

Field TLB#, 
index FV OW W, PR, 

NF, CT1 FT TM ASI UE, UPA,
mDTLB, NC2, E2 DSFAR

Fresh fault or miss3

Miss MMU miss — 0 0 V — 1 — — V

Exception Access exception — 1 0 V V 0 V — V

Faults

Access protection — 1 0 V — 0 V — V

PA watchpoint — 1 0 V — 0 V — V

VA watchpoint — 1 0 V — 0 V — V

Privileged action4 — 1 0 V — 0 V — V

Access misaligned — 1 0 V — 0 V —- V

Access error V5 1 0 V — 0 V V V

Overwrite Policy6

Exception on fault K 1 1 U U K U K U

Fault on exception U4 1 1 U K K U U U

Exception on miss7 K 1 K U U 1 U K U

Fault on miss U4 1 K U K 1 U U U

TABLE F-9 MMU Synchronous Fault Status Register FT (Fault Type) Field  (Continued)

FT<6:0> Error Description
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F.11 MMU Bypass
On SPARC64 V, two additional ASIs are supported as DMMU bypass accesses: 
ASI_ATOMIC_QUAD_LDD_PHYS (ASI 3416) and 
ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE (ASI 3C16)

TABLE F-11 shows the bypass attribute bits on SPARC64 V. The first four rows 
conform to the bypass attribute bits defined in TABLE F-15 of Commonality. 

Miss on fault/exception K 1 K K K 1 K K K

Miss on miss K K K U K 1 K K K
1. The value of DSFSR.CT is 11 when the ASI is not a translating ASI. The value 11 is recorded in DSFSR.CT for

an illegal value in ASI (0016–0316, 1216–1316, 1616–1716, 1A16–1B16, 1E16–2316, 2D16–2F16, or 3516–3B16).
2. Valid only for the data_access_error caused by DSFSR.UE or DSFSR.UPA.
3. Types: 0 – logic 0; 1 – logic 1; V – Valid field to be updated; “—” – not a valid field
4. Memory reference instruction only.
5. Updated when mDTLB is signified.
6. Types: 0 – logic 0; 1 – logic 1; V– Valid field to be updated; “—” – not a valid field
7. Fault/exception on miss means the miss happened first, then a fault/exception was encountered before soft-

ware had a chance to clear the DSFSR register.

TABLE F-11 Bypass Attribute Bits on SPARC64 V

ASI ASI Attribute Bits

NAME VALUE CP IE CV E P W NFO Size

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE

1416

1C16

1 0 0 0 0 1 0 8 Kbytes

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

1516

1D16

0 0 0 1 0 1 0 8 Kbytes

ASI_ATOMIC_QUAD_LDD_PHYS

ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE

3416

3C16

0 0 1 0 0 0 0 8 Kbytes

TABLE F-10 DSFSR Update Policy

Field TLB#, 
index FV OW W, PR, 

NF, CT1 FT TM ASI UE, UPA,
mDTLB, NC2, E2 DSFAR
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F.11.10 TLB Replacement Policy

Automatic TLB Replacement Rule

On an automatic replacement write to the TLB, the MMU picks the entry to write 
according to the following rules:

1. If the following conditions are satisfied— 

■ the new entry maps to an 8-Kbyte or an 4-Mbyte unlocked page
■ and ASI_MCNTRL.fw_fITLB = 0 for IMMU automatic replacement
■ and ASI_MCNTRL.fw_fDTLB = 0 for DMMU automatic replacement

—then the replacement is directed to the sTLB (2-way TLB). Otherwise, the 
replacement occurs in the fully associative TLB (fTLB).

2. If replacement is directed to the 2-way TLB, then the replacement set index is 
generated from the TLB Tag Access Register: bits 21:13, bits 30:22 or bits 29:22 
depending on the page size and MCNTL.RMD  for both I-MMU and D-MMU.

3. If replacement is directed to the fully associative TLB (fTLB), then the following 
alternatives are evaluated:

a. The first invalid entry is replaced (measuring from entry 0). If there is no 
invalid entry, then

b. the first unused, unlocked (LRU, but clear) entry will be replaced (measuring 
from entry 0). If there is no unused unlocked entry, then

c. all used bits are reset, and the process is repeated from Step 3b.

If fTLB is the target of the automatic replacement and all entries in the fTLB have 
their lock bit set, the automatic replacement operation is ignored and the entries 
in the target fTLB remain unchanged.

Restriction of sTLB Entry Direct Replacement

On SPARC64 V, direct replacement of a specific sTLB entry requires that the stxa 
instruction to the I/D TLB Data Access Register be designated as follows. 

■ stxa ASI designation:
■ ASI 5516for sITLB
■ ASI 5D16for sDTLB

■ stxa virtual address designation:
■ VA<17:16> = 1002 : sTLB designation
■ VA<15> = 0 or 1 : Error injection designation
■ VA<13> = 0 or 1 : 8-Kbyte or 4-Mbyte page designation
■ VA<12> = 0 or 1 : sTLB way number 
■ VA<11:3> : sTLB index number
Release 1.0, 1 July 2002 F. Chapter F Memory Management Unit 105



■ sTLB entry update data:
■ New sTLB entry data is designated in stxa data.
■ New sTLB entry tag is designated in the I/D TLB Tag Access Register. 

■ Restriction between the stxa address and ASI TLB Tag Access Register contents:
■ The relation  stxa_VA<11:3> =  ASI_TAG_ACCESS_REGISTER<21:13> and 

stxa_VA<13> =  0 should be satisfied. Only if this condition is satisfied can the 
8-Kbyte sTLB entry be replaced as designated.

■ The relation  stxa_VA<11:3> =  ASI_TAG_ACCESS_REGISTER<30:22> and 
stxa_VA<13> =  1 should be satisfied. Only if this condition is satisfied can the 
4-Mbyte sTLB entry be replaced as designated.

■ Otherwise, the stxa instruction is ignored without notification to software.

The preceding restriction is SPARC64 V specific.
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F.APPENDIX G

Assembly Language Syntax

Please refer to Appendix G of Commonality.
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F.APPENDIX H

Software Considerations

Please refer to Appendix H of Commonality.
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F.APPENDIX I

Extending the SPARC V9 
Architecture

Please refer to Appendix I of Commonality.
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F.APPENDIX J

Changes from SPARC V8 to SPARC 
V9

Please refer to Appendix K of Commonality.
113



114 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



F.APPENDIX K

Programming with the Memory 
Models

Please refer to Appendix J of Commonality.
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F.APPENDIX L

Address Space Identifiers

Every load or store address in a SPARC V9 processor has an 8-bit Address Space 
Identifier (ASI) appended to the VA. The VA plus the ASI fully specifies the address. 
For instruction loads and for data loads or stores that do not use the load or store 
alternate instructions, the ASI is an implicit ASI generated by the hardware. If a load 
alternate or store alternate instruction is used, the value of the ASI can be specified 
in the %asi register or as an immediate value in the instruction. In practice, ASIs are 
not only used to differentiate address spaces but are also used for other functions, 
such as referencing registers in the MMU unit.

Please refer to Commonality for Sections L.1 and L.2.

L.3 SPARC64 V ASI Assignments
For SPARC64 V, all accesses made with ASI values in the range 0016–7F16 when 
PSTATE.PRIV = 0 cause a privileged_action exception. 

Warning – The software should follow the ASI assignments and VA assignments in 
TABLE L-1. Some illegal ASI or VA accesses will cause the machine to enter unknown 
states.

TABLE L-1 SPARC64 V ASI Assignments  (1 of 3)

Value ASI Name (Suggested Macro Syntax) Type VA Description Page

0016–3316 (JPS1)

3416 ASI_ATOMIC_QUAD_LDD_PHYS R — 54

3516–3B16 (JPS1)

3C16 ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE R — 54

3D16–4416 (JPS1)
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4516 ASI_DCU_CONTROL_REG (ASI_DCUCR) RW 00 22

4516 ASI_MEMORY_CONTROL_REG RW 08 92

4616–4916 (JPS1)

4A16 ASI_UPA_CONFIG_REGISTER R — 215

4B16 (JPS1)

4C16 ASI_ASYNC_FAULT_STATUS RW 00 174

4C16 ASI_URGENT_ERROR_STATUS 
(ASI_UGESR)

R 08 165

4C16 ASI_ERROR_CONTROL RW 10 161

4C16 ASI_STCHG_ERROR_INFO RW 18 163

4D16 ASI_ASYNC_FAULT_ADDR_D1 RW 00 177

4D16 ASI_ASYNC_FAULT_ADDR_U2 RW 08 178

4E16 (JPS1)

4F16 ASI_SCRATCH_REG0 RW 00 120

4F16 ASI_SCRATCH_REG1 RW 08 120

4F16 ASI_SCRATCH_REG2 RW 10 120

4F16 ASI_SCRATCH_REG3 RW 18 120

4F16 ASI_SCRATCH_REG4 RW 20 120

4F16 ASI_SCRATCH_REG5 RW 28 120

4F16 ASI_SCRATCH_REG6 RW 30 120

4F16 ASI_SCRATCH_REG7 RW 38 120

5016–6616 (JPS1)

6716 ASI_ALL_FLUSH_L1I W — 129

6816–6916 (JPS1)

6A16 ASI_L2_CTRL RW — 130

6B16 ASI_L2_DIAG_TAG_READ R 0016-7FFC016 130

6C16 ASI_L2_DIAG_TAG_READ_REG R TBD 130

6D16 (JPS1)

6E16 ASI_ERROR_IDENT (ASI_EIDR) RW — 161

6F16 ASI_C_LBSYR0 RW 00 122

6F16 ASI_C_LBSYR1 RW 08 122

6F16 ASI_C_BSTW0 RW 80 123

6F16 ASI_C_BSTW1 RW 88 123

TABLE L-1 SPARC64 V ASI Assignments  (2 of 3)

Value ASI Name (Suggested Macro Syntax) Type VA Description Page
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L.3.2 Special Memory Access ASIs
Please refer to Section L.3.3 in Commonality. 

In addition to the ASIs described in Commonality, SPARC64 V supports the ASIs 
described below.

ASI 5316 (ASI_SERIAL_ID)

SPARC64 V provides an identification code for each processor. In other words, this 
ID is unique for each processor chip. In conjunction with the Version Register (please 
refer to Version (VER) Register on page 20), software can attain completely unique 
chip identification code.

This register is defined as read-only; write operation is ignored. 

6F16 ASI_C_BSTWBUSY RW C0 123

7016–EE16 (JPS1)

EF16 ASI_LBSYR0 RW 00 124

EF16 ASI_LBSYR1 RW 08 124

EF16 ASI_BSTW0 RW 80 124

EF16 ASI_BSTW1 RW 88 124

F016–FF16 (JPS1)

TABLE L-1 SPARC64 V ASI Assignments  (3 of 3)

Value ASI Name (Suggested Macro Syntax) Type VA Description Page

63 0

Chip_ID<63:0>
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ASI 4F16 (ASI_SCRATCH_REGx)

SPARC64 V provides eight of 64-bit registers that can be used temporary storage for 
supervisor software.        

Block Load and Store ASIs

ASIs E016 and E116 exist only for use with STDFA instructions as Block Store with 
Commit operations (see Block Load and Store Instructions (VIS I) on page 47). Neither 
ASI E016 nor ASI E116 should be used with LDDFA; however, if either is used, the 
LDDFA behaves as follows:

1. No exception is generated based on the destination register rd (impl. dep. #255). 

2. For LDDFA with ASI E016 or E11 and a memory address aligned on a 2n-byte 
boundary, a SPARC64 V processor behaves as follows (impl. dep. #256): 

n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is 
generated, but a data_access_exception is generated (see case 3, below).
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is generated.

n ≤1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated.

3. If the memory address is correctly aligned, a data_access_exception with an 
AFSR.FTYPE = “invalid ASI” is generated.

Partial Store ASIs

ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction for Partial 
Store operations (see Partial Store (VIS I) on page 57). None of these ASIs should be 
used with LDDFA; however, if one of them is used, the LDDFA behaves as follows on 
a SPARC64 V processor (impl. dep. #257):

1. For LDDFA with C016–C516 or C816–CD16 and a memory address aligned on a 2n-
byte boundary, a SPARC64 V processor behaves as follows:

n ≥ 3 (≥ 8-byte alignment): no  exception related to memory address alignment is 
generated.

[1] Register Name: ASI_SCRATCH_REGx (x = 0–7)
[2] ASI: 4F16
[3] VA: VA<5:3> = register number

The other VA bits must be zero.
[4] RW: Supervisor read/write

Data<63:0>
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n = 2 (4-byte alignment):  LDDF_mem_address_not_aligned exception is 
generated.

n ≤ 1 (≤ 2-byte alignment):   mem_address_not_aligned exception is generated.

2. If the memory address is correctly aligned, SPARC64 V generates a 
data_access_exception with AFSR.FTYPE = “invalid ASI.”

L.4 Barrier Assist for Parallel Processing
SPARC64 V has a barrier-assist feature that works in concert with the barrier mechanism in 
the memory system to enable high-speed synchronization among CPUs in the system.

Barrier assist is highly dependent on the barrier mechanism in the memory system. 
A description of the barrier mechanism is beyond the scope of this supplement; see 
appropriate system documents for details.

L.4.1 Interface Definition
FIGURE L-4 illustrates the interface between CPU and the memory system. 

FIGURE L-4 CPU Interface of Barrier Assist

High-Speed LBSY Read Mechanism

1. The CPU has a copy of LBSY in the system. Two LBSYs exist on a system board 
(SB), SB_BPU#0 and SB_BPU#1. Each LBSY is 8 bits wide.  The copy of LBSY 
residing in the CPU is 16 bits.

2. On power-on reset, both the LBSY copy in the CPU and the LBSY copies on the SB 
are cleared.

LBSY change info

BST write info

CPU SB

Copy of SB_BPU#0 LBSY
7 0

Copy of SB_BPU#1 LBSY
07
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3. When the LBSY on the SB is changed, LBSY change information is broadcast to all 
CPUs in the SB. Each CPU receives the change information and updates its copy.

4. On a read from an application, the copy value of LBSY, which is designated by 
supervisor software, is returned.

High-Speed BST Write Mechanism

1. An application writes value, designated by supervisor software, to a BST.

2. The CPU sends BST write information to the system controller.

3. The system controller writes the BST. 

A write to BST is faster than a noncacheable store.

L.4.2 ASI Registers

LBSY Control Register (ASI_C_LBSYR0, ASI_C_LBSYR1)

The LBSY control register designates which bit in the copy of LBSY is read through 
ASI_LBSYRx.

[1] Register Name: ASI_C_LBSYR0, ASI_C_LBSYR1
[2] ASI: 6F16
[3] VA: 0016 (ASI_C_LBSYR0), 0816 (ASI_C_LBSYR1).
[4] RW Supervisor read/write

Bit Name RW Description

63 V RW Valid. When V = 0, BL_num and SB_BPU_num are ignored 
and a read to ASI_LBSYRx always returns 0. On V = 1, 
the copy value of LBSY selected by BL_num and 
SB_BPU_num is read.

3 SB_BPU_num RW SB BPU relative number on the SB.

2:0 BL_num RW BL number in the selected SB BPU.
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BSTW Control Register (ASI_C_BSTW0, ASI_C_BSTW1)

The BSTW control register designates which bit in LBSY is written through 
ASI_BSTWx. 

BSTW Busy Status Register (ASI_C_BSTWBUSY)

The BSTW busy status register indicates an update is made to LBSY in the SB and has 
not completed yet.

Programming Note – Supervisor software should not write to ASI_C_BSTWx 
while ASI_C_BSTWBUSY.BUSY = 1. Otherwise, subsequent writes are ignored or a 
write to wrong BST is sent to the SB.

[1] Register Name: ASI_C_BSTW0, ASI_C_BSTW1
[2] ASI: 6F16
[3] VA: 8016 (ASI_C_BSTW0), 8816 (ASI_C_BSTW1).
[4] RW Supervisor read/write

Bit Name RW Description

63 V RW Valid. When V = 0, BL_num and SB_BPU_num are 
ignored and a write to ASI_BSTWx is discarded. When 
V = 1, data in the ASI_BSTWx is written to the selected 
bit in SB_BPU.

6 SB_BPU_num RW SB BPU number on the SB.

5:0 BST_num RW BST bit number in the selected SB BPU.

[1] Register Name: ASI_C_LBSTWBUSY
[2] ASI: 6F16
[3] VA: C016
[4] RW Supervisor read

Bit Name RW Description

0 BUSY R BUSY = 1 is indicated when a write to ASI_C_BSTWx is made 
but LBSY on the SB has not yet been updated.
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Last Barrier Synchronization Status Read (ASI_LBSYR0, 
ASI_LBSYR1)

ASI_LBSYRx is a read interface to the copy of LBSY. A write to ASI_LBSYRx is 
ignored.

Barrier State Write (ASI_BSTW0, ASI_BSTW1)

ASI_BSTWx is a write interface to LBSY on the SB. On read, 0 is returned.

[1] Register Name: ASI_LBSYR0, ASI_LBSYR1
[2] ASI: EF16
[3] VA: 0016 (ASI_LBSYR0), 0816 (ASI_LBSYR1).
[4] RW Read (Write is ignored)

Bit Name RW Description

0 RV R Read value. The bit designated by ASI_C_LBSYRx is shown.

[1] Register Name: ASI_BSTW0, ASI_BSTW1
[2] ASI: EF16
[3] VA: 8016 (ASI_BSTW0), 8816 (ASI_BSTW1).
[4] RW Write (0 is returned on read)

Bit Name RW Description

0 WV W Write value. The bit designated by ASI_C_BSTWx is written.
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F.APPENDIX M

Cache Organization

This appendix describes SPARC64 V cache organization in the following sections:

■ Cache Types on page 125
■ Cache Coherency Protocols on page 128
■ Cache Control/Status Instructions on page 128

M.1 Cache Types 
SPARC64 V has two levels of on-chip caches, with these characteristics: 

■ Level-1 cache is split for instruction and data; level-2 cache is unified. 

■ Level-1 caches are virtually indexed, physically tagged (VIPT), and level-2 caches 
are physically indexed, physically tagged (PIPT). 

■ All caches are 64 bytes in line size. 

■ All lines in the level-1 caches are included in the level-2 cache. 

■ Between level-1 caches, or level-1 and level-2 caches, coherency is maintained by 
hardware. In other words, 
■ eviction of a cache line from a level-2 cache causes flush-and-invalidation of all 

level-1 caches, and 
■ self-modification of an instruction stream modifies a level-1 data cache with 

invalidation of a level-1 instruction cache.
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M.1.1 Level-1 Instruction Cache (L1I Cache)
TABLE M-1 shows the characteristics of a level-1 instruction cache. 

Although an L1I cache is VIPT, TTE.CV is ineffective since SPARC64 V has 
unaliasing features in hardware.

Instruction fetches bypass the L1I cache when they are noncacheable accesses. 
Noncacheable accesses occur under one of three conditions:

■ PSTATE.RED = 1
■ DCUCR.IM = 0
■ TLB.CP = 0

When MCNTL.NC_CACHE = 1, SPARC64 V treats all instructions as cacheable, 
regardless of the conditions listed above. See page 92 for details.

Programming Note – This feature is intended to be used by the OBP to facilitate 
diagnostics procedures. When the OBP uses this feature, it must clear 
MCNTL.NC_CACHE and invalidate all L1I data by ASI_FLUSH_L1I before it exits.

TABLE M-1 L1I Cache Characteristics

Feature Value

Size 128 Kbytes

Associativity 2-way

Line Size 64-byte

Indexing Virtually indexed, physically tagged (VIPT)

Tag Protection Parity and duplicate

Data Protection Parity
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M.1.2 Level-1 Data Cache (L1D Cache)
The level-1 data cache is a writeback cache. Its characteristics are shown in 
TABLE M-2.

Although L1D cache is VIPT, TTE.CV is ineffective since SPARC64 V has unaliasing 
features in hardware.

Data accesses bypass the L1D cache when they are noncacheable accesses. 
Noncacheable accesses occur under one of three conditions:

■ The ASI used for the access is either ASI_PHYS_BYPASS_EC_WITH_E_BIT (1516) 
or ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE (1D16).

■ DCUCR.DM = 0
■ TLB.CP = 0

Unlike the L1I cache, the L1D cache does not use MCNTL.NC_CACHE.

M.1.3 Level-2 Unified Cache (L2 Cache)
The level-2 unified cache is a writeback cache. Its characteristics are shown in 
TABLE M-3. 

The L2 cache is bypassed when the access is noncacheable. MCNTL.NC_CACHE is not 
used on the L2 cache.

TABLE M-2 L1D Cache Characteristics

Feature Value

Size 128 Kbytes

Associativity 2-way

Line Size 64-byte

Indexing Virtually indexed, physically tagged (VIPT)

Tag Protection Parity and duplicate

Data Protection ECC

TABLE M-3 L2 Cache Characteristics

Feature Value

Size 2 Mbytes

Associativity 2- or 4-way, in ASI_L2_CTRL(6A16)

Line Size 64-byte

Indexing Physically indexed, physically tagged (PIPT)

Tag Protection ECC

Data Protection ECC
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M.2 Cache Coherency Protocols
The CPU uses the UPA MOESI cache-coherence protocol; these letters are acronyms 
for cache line states as follows:

A subset of the MOESI protocol is used in the on-chip caches as well as the D-Tags in 
the system controller. TABLE M-4 shows the relationships between the protocols.

TABLE M-5shows the encoding of the MOESI states in the L2 Cache.

M.3 Cache Control/Status Instructions
Several ASI instructions are defined to manipulate the caches. The following 
conventions are common to all of the load and store alternate instructions defined in 
this section:

M Exclusive modified

O Shared modified (owned)

E Exclusive clean

S Shared clean

I Invalid

TABLE M-4 Relationships Between Cache Coherency Protocols

L2-Cache L1D-Cache SAT (store ownership) L1I-Cache

Invalid (I) Invalid (I) Invalid (I) Invalid (I)

Shared Clean (S)

Invalid (I) or Clean (C)
Invalid (I) Invalid (I) or 

Valid (V)

Shared Modified (O)

Exclusive Clean (E)

Exclusive Modified (M)
Invalid (I)

Exclusive Modified (M) Valid (V)

TABLE M-5 L2 Cache MOESI States

Bit 2 (Valid) Bit 1 (Exclusive) Bit 0 (Modified) State

0 — — Invalid (I)
1 0 0 Shared clean (S)
1 1 0 Exclusive clean (E)
1 0 1 Shared modified (O)
1 1 1 Exclusive modified (M)
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1. The opcode of the instructions should be ldda, ldxa, lddfa, stda, stxa, or 
stdfa. Otherwise, a data_access_exception exception with D-SFSR.FT = 0816 
(Invalid ASI) is generated. 

2. No operand address translation is performed for these instructions.

3. VA<2:0> of all of the operand address should be 0. Otherwise, a 
mem_address_not_aligned exception is generated. 

4. The don’t-care bits (designated “—” in the format) in the VA of the load or store 
alternate can be of any value. It is recommended that software use zero for these 
bits in the operand address of the instruction.

5. The don’t-care bits (designated “—” in the format) in DATA are read as zero and 
ignored on write.

6. The instruction operations are not affected by PSTATE.CLE. They are always 
treated as big-endian.

7. The instructions are all strongly ordered regardless of load or store and the 
memory model. Therefore, no speculative executions are performed.

Multiple Asynchronous Fault Address Registers are maintained in hardware, one for 
each major source of asynchronous errors. These ASIs are described in 
ASI_ASYNC_FAULT_STATUS (ASI_AFSR) on page 174. The following subsections 
describe all other cache-related ASIs in detail.

M.3.1 Flush Level-1 Instruction Cache 
(ASI_FLUSH_L1I)

ASI_FLUSH_L1I flushes and invalidates the entire level-1 instruction cache. VA can 
be any value. A write to this ASI with any VA and any data causes flushing and 
invalidation.

[1] Register Name: ASI_FLUSH_L1I

[2] ASI: 6716
[3] VA: Any
[4] RW Supervisor write
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M.3.2 Level-2 Cache Control Register (ASI_L2_CTRL)

ASI_L2_CTRL is a control register for L2 training, interface, and size configuration. 
It is illustrated below and described in TABLE M-6.

M.3.3 L2 Diagnostics Tag Read 
(ASI_L2_DIAG_TAG_READ)
This ASI instruction is a diagnostic read of L2 cache tag, as well as tag 2 of L1I and 
L1D. 

[1] Register Name: ASI_L2_CTRL

[2] ASI: 6A16
[3] VA: 1016
[4] RW Supervisor read/write
[5] Data

Reserved URGENT_ERROR_TRAP Reserved NUMINSWAY Reserved U2_FLUSH

63 25 24 23 19 18 16 15 1 0

TABLE M-6 ASI_L2_CTRL Register Bits

Bit Field RW Description

24 URGENT_ERROR_TRAP RW1C This bit is set to 1 when one of the error exceptions 
(instruction_access_error, data_access_error, or asynchronous_data_error) 
exception is generated. The bit remains set to 1 until supervisor 
software explicitly clears it by writing 1 to the bit. 

18:16 NUMINSWAY R Set associativity of L2 cache, as follows:
2 2-way mode
4: 4-way mode

0 U2_FLUSH W Flush the entire level-2 cache. The flushing takes approximately 10 
ms, Until the flushing of the level-2 cache completes, the processor 
ceases operation and does not perform further instruction 
execution.
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ASI_L2_DIAG_TAG_READ works in concert with ASI_L2_DIAG_TAG_READ_REG. 
A read to ASI_L2_DIAG_TAG_READ returns 0, with the side effect of setting the tag 
to ASI_L2_DIAG_TAG_READ_REG0-6.

M.3.4 L2 Diagnostics Tag Read Registers 
(ASI_L2_DIAG_TAG_READ_REG)
ASI_L2_DIAG_TAG_READ_REG0-6 holds the tag that is specified by the read of 
ASI_L2_DIAG_TAG_READ. 

[1] Register Name: ASI_L2_DIAG_TAG

[2] ASI: 6B16
[3] VA: VA<18:6>: Index number of the tag.

000016–7FFC016
[4] RW Supervisor read
[5] Data 0 is read.

[1] Register Name: ASI_L2_DIAG_TAG_READ_REG

[2] ASI: 6C16
[3] VA: VA<6:3> internal register number
[4] RW Supervisor Read
[5] Data TBD.
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F.APPENDIX N

Interrupt Handling

Interrupt handling in SPARC64 V is described in these sections:

■ Interrupt Dispatch on page 133
■ Interrupt Receive on page 135
■ Interrupt-Related ASR Registers on page 136

N.1 Interrupt Dispatch
When a processor wants to dispatch an interrupt to another UPA port, it first sets up 
the interrupt data registers (ASI_INTR_W data 0-7) with the outgoing interrupt 
packet data by using ASI instructions. It then performs an ASI_INTR_W (interrupt 
dispatch) write to trigger delivery of the interrupt. The interrupt packet and the 
associated data are forwarded to the target UPA by the system controller. The 
processor polls the BUSY bit in the INTR_DISPATCH_STATUS register to determine 
whether the interrupt has been dispatched successfully.

FIGURE N-1 illustrates the steps required to dispatch an interrupt.
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read ASI_INTR_DISPATCH_STATUS

Error

(begin atomic sequence) 
PSTATE.IE  ← 0

Write ASI_INTR_W (data 0)
. . .

Write ASI_INTR_W (data 7)

Write ASI_INTR_W (interrupt 

MEMBAR

Busy?
Y

N

dispatch)

read ASI_INTR_DISPATCH_STATUS

Busy?
Y

N

(end atomic sequence) 
PSTATE.IE ← 1

Nack?
Y

N

dispatch complete

FIGURE N-1 Dispatching an Interrupt
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N.2 Interrupt Receive
When an interrupt packet is received, eight interrupt data registers are updated with 
the associated incoming data and the BUSY bit in the ASI_INTR_RECEIVE register is 
set. If interrupts are enabled (PSTATE.IE = 1), then the processor takes a trap and 
the interrupt data registers are read by the software to determine the appropriate 
trap handler. The handler may reprioritize this interrupt packet to a lower priority.

FIGURE N-2 is an example of the interrupt receive flow.

read ASI_INTR_RECEIVE

Error

Read ASI_INTR_R (data 0)
. . .

Read ASI_INTR_R (data 7)

Determine Trap Handler

Busy?
Y

N

clear ASI_INTR_RECEIVE

interrupt complete

Handle Interrupt or 
reprioritize via SOFTINT

FIGURE N-2 Interrupt Receive Flow
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N.3 Interrupt Global Registers
Please refer to Section N.3. of Commonality.

N.4 Interrupt-Related ASR Registers
Please refer to Section N.4 of Commonality for details of these registers.

N.4.2 Interrupt Vector Dispatch Register
SPARC64 V ignores all 10 bits of VA<38:29> when the Interrupt Vector Dispatch 
Register is written (impl. dep. #246).

N.4.3 Interrupt Vector Dispatch Status Register
In SPARC64 V, 32 BUSY/NACK pairs are implemented in the Interrupt Vector 
Dispatch Status Register (impl. dep. #243).

N.4.5 Interrupt Vector Receive Register
SPARC64 V sets a 5-bit physical module ID (MID) value in the SID_L field of the 
Interrupt Vector Receive Register. The SID_U field always reads as zero. SPARC64 V 
obtains the interrupt source identifier SID_L from the UPA packet (impl. dep. #247).
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F.APPENDIX O

Reset, RED_state, and error_state

The appendix contains these sections:

■ Reset Types on page 137
■ RED_state and error_state on page 139
■ Processor State after Reset and in RED_state on page 141

O.1 Reset Types
This section describes the four reset types: power-on reset, watchdog reset, 
externally initiated reset, and software-initiated reset.

O.1.1 Power-on Reset (POR)
For execution of the power-on reset on SPARC64 V, an external facility must issue 
the required sequence of JTAG commands to the processor.

While the UPA_RESET_L pin is asserted (low) or the Power ready signal is 
deasserted, the processor stops and executes only the specified JTAG command. The 
processor does not change any software-visible resources in the processor except the 
change by JTAG command execution and does not change any memory system state. 

The sequence for the two types of power-on reset in SPARC64 V—hard power-on 
reset and soft power-on reset—is described below. 

1. The UPA_RESET_L pin is asserted (low). The processor stops.

2. The external facility issues the required sequence of the JTAG commands. A 
different command sequence is required for hard power-on reset and soft power-
on reset. The external facility decides the POR reset type to be executed.
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3. The UPA_RESET_L pin is deasserted. The processor enters RED_state with 
TT = 1 trap to RSTVaddr + 2016 and starts the instruction execution.

O.1.2 Watchdog Reset (WDR) 
The watchdog reset trap is generated internally in the following cases:

■ Second watchdog timeout detection while TL < MAXTL.
■ First watchdog timeout detection while TL = MAXTL
■ When a trap occurs while TL = MAXTL

When triggered by a watchdog timeout, a WDR trap has TT = 2 and control transfers 
to RSTVaddr + 4016. Otherwise, the TT of the trap is preserved, causing an entry into 
error_state.

O.1.3 Externally Initiated Reset (XIR)
The CPU has an externally initiated reset (XIR) pin named UPA_XIR_L (asserted 
low). This pin must be asserted while the power supply is at full operational voltage 
and the UPA clock is running.

The assertion of XIR generates a trap of TT = 3 and causes the processor to transfer 
execution to RSTVaddr + 6016 and enter RED_state.

O.1.4 Software-Initiated Reset (SIR)
Any processor can initiate a software-initiated reset with an SIR instruction.

If TL (Trap Level) < MAXTL (5), an SIR instruction causes a trap of TT = 4 and causes 
the processor to execute instructions from RSTVaddr + 8016 and enter RED_state.

If a processor executes an SIR instruction while TL = 5, it enters error_state and 
ultimately generates a watchdog reset trap.
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O.2 RED_state and error_state
FIGURE O-1 illustrates the processor state transition diagram.

FIGURE O-1 Processor State Diagram

exec_state RED_state error_state**

DONE/RETRY
RED = 0

TRAP@MAXTL–1
SIR@<MAXTL

TRAP

RED = 1 TRAP@MAXTL
SIR@MAXTL

TRAP@<MAXTL
SIR@<MAXTL

TRAP@MAXTL
SIR@MAXTL@<MAXTL-1

POR

WDT1* WDT2**

XIR

Any State
Including Power Off

@<MAXTL-1

WDT1@MAXTL–1
WDT1@<MAXTL

WDT1@MAXTL

WDT2*

ErrorState trans Error

CPU Fatal
Error ***

Fatal Error

Fatal Error

* WDT1 is the first watchdog timeout.
** WDT2 is the second watchdog timeout. WDT2 takes the CPU into error_state. In a normal setting,

error_state immediately generates a watchdog reset trap and brings the CPU into RED_state. Thus, the
state is transient. When OPSR (Operation Status Register) specifies the stop on error_ state, an entry into
error_state does not cause a watchdog reset and the CPU remains in the error_state.

*** CPU_fatal_error_state  signals the detection of a fatal error to the system through P_FERR signal to the sys-
tem, and the system causes a FATAL reset. Soft POR will be applied to the all CPUs in the system at the FATAL
reset.

WDR
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O.2.1 RED_state
Once the processor enters RED_state for any reason except when a power-on reset 
(POR) is performed, the software should not attempt to return to execute_state; 
if software attempts a return, then the state of the processor is unpredictable.

When the processor processes a reset or a trap that enters RED_state, it takes a trap 
at an offset relative to the RED_state trap table (RSTVaddr); in the processor this is 
at virtual address VA = FFFFFFFFF000000016 and physical address 
PA = 000007FFF000000016.

The following list further describes the processor behavior upon entry into 
RED_state, and during RED_state:

■ Whenever the processor enters RED_state, all fetch buffers are invalidated. 

■ When the processor enters RED_state because of a trap or reset, the DCUCR 
register is updated by hardware to disable several hardware features. Software 
must set these bits when required (for example, when the processor exits from 
RED_state). 

■ When the processor enters RED_state not because of a trap or reset (that is, 
when the PSTATE.RED bit has been set by WRPR), these register bits are 
unchanged—unlike the case above. The only side effect is the disabling of the 
instruction MMU.

■ When the processor is in RED_state, it behaves as if the IMMU is disabled 
(DCUCR.IM is clear), regardless of the actual values in the respective control 
register.

■ Caches continue to snoop and maintain coherence while the processor is in 
RED_state.

O.2.2 error_state
The processor enters error_state when a trap occurs and TL = MAXTL (5) or when 
the second watchdog timeout has occurred.

On the normal setting, the processor immediately generates a watchdog reset trap 
(WDR) and transitions to RED_state. Otherwise, the OPSR (Operating Status 
Register) specifies the stop on error_state, that is, the processor does not 
generate a watchdog reset after error_state transition and remains in the 
error_state.
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O.2.3 CPU Fatal Error state
The processor enters CPU fatal error state when a fatal error is detected on the 
processor. A fatal error is one that breaks the cache coherency or the system data 
integrity and is not reported as the SDC (small data corruption) error. See Appendix 
P, Error Handling, for details of the SDC error.

The processor reports the fatal error detection to the system, and the system causes 
the fatal reset. Soft POR will be applied to the all CPUs in the system at the fatal 
reset.

O.3 Processor State after Reset and in 
RED_state
TABLE O-1 shows the various processor states after resets and when entering 
RED_state.

In this table, it is assumed that RED_state entry happens as a result of resets or 
traps. If RED_state entry occurs because the WRPR instruction sets the PSTATE.RED 
bit, no processor state will be changed except the PSTATE.RED bit itself; the effects 
of this are described in RED_state on page 140.

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state 

Name POR1 WDR2 XIR SIR RED_state

Integer registers Unknown/Unchanged Unchanged

Floating Point registers Unknown/Unchanged Unchanged

RSTV value VA = FFFFFFFFF000000016
PA = 07FFF000000016 (43-bit PA mode specified by OPSR.)

PC
nPC

RSTV | 2016

RSTV | 2416

RSTV | 4016

RSTV | 4416

RSTV | 6016

RSTV | 6416

RSTV | 8016

RSTV | 8416

RSTV | A016

RSTV | A416

PSTATE AG
MG
IG
IE
PRIV
AM
PEF
RED
MM

1 (Alternate globals)
0   (MMU globals not selected)
0   (Interrupt globals not selected)
0   (Interrupt disable)
1   (Privileged mode)
0   (Full 64-bit address)
1   (FPU on)
1   (Red_state)
00 (TSO)
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 TLE
CLE

0/ Copied from CLE
0/ Unchanged

Copied from CLE
Unchanged

TBA<63:15> Unknown/Unchanged Unchanged

PIL Unknown/Unchanged Unchanged

CWP Unknown/Unchanged Unchanged 
except for 
register win-
dow traps

Unchanged Unchanged Unchanged 
except for 
register win-
dow traps

FPRS Unknown/Unchanged Unchanged

TL MAXTL min (TL + 1, MAXTL)

TPC[TL]
TNPC[TL]

Unknown/Unchanged
Unknown/Unchanged

PC
nPC

TSTATE CCR
ASI
PSTATE
CWP
PC
nPC

Unknown/Unchanged CCR
ASI
PSTATE
CWP
PC
nPC

CANSAVE Unknown/Unchanged Unchanged

CANRESTORE Unknown/Unchanged Unchanged

OTHERWIN Unknown/Unchanged Unchanged

CLEARWIN Unknown/Unchanged Unchanged

WSTATE        OTHER
                    NORMAL

Unknown/Unchanged
Unknown/Unchanged

Unchanged
Unchanged

VER MANUF
IMPL
MASK
MAXTL
MAXWIN

000416

516

Mask dependent
516

716

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when
UPA_RESET_L is asserted. Values are unchanged following soft POR.

2.The first watchdog timeout trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog timeout traps
as well as watchdog traps due to a trap @ TL = MAX_TL are taken in RED_state. See Section O.1.2, Watchdog Reset
(WDR), on page 138 for more details.

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state  (Continued)

Name POR1 WDR2 XIR SIR RED_state
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TABLE O-2 ASR State after Reset and in RED_state 

A
S
R Name POR1

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when
UPA_RESET_L is asserted. Values are unchanged following soft POR.

WDR2

2.The first watchdog timeout trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog timeout
traps as well as watchdog traps due to a trap @ TL = MAX_TL are taken in RED_state. See Section O.1.2, Watchdog
Reset (WDR), on page 138or more details

XIR SIR RED_state

0 Y Unknown/Unchanged Unchanged

2 CCR Unknown/Unchanged Unchanged

3 ASI Unknown/Unchanged Unchanged

4 TICK NPT
Counter

1
Restart at 0

Unchanged
Unchanged

Unchanged
Restart at 0

Unchanged
Unchanged

6 FSR 0 Unchanged

16 PCR UT
ST
Others

0
0
Unknown/Unchanged

Unchanged

17 PIC Unknown/Unchanged Unchanged

18 DCR Always 0

19 GSR IM
STE
Others

0
0
Unknown/Unchanged

Unchanged
Unchanged
Unchanged

22 SOFTINT Unknown/Unchanged Unchanged

23 TICK_COMPARE 
INT_DIS
TICK_CMPR

1
0

Unchanged
Unchanged

24 STICK NPT
Counter

1
Restart at 0

Unchanged
Unchanged (count)

25 STICK_COMPARE 
INT_DIS
TICK_CMPR

1
0

Unchanged
Unchanged

TABLE O-3 ASI Register State After Reset and in RED_state  (1 of 3)

A
S
I VA Name POR1 WDR2 XIR SIR RED_state

45 00 DCUCR 0 0

45 08 MCNTL 0 0

48 00 INST_BREAKPOINT 0 (off) Unchanged

49 00 INTR_RECEIVE Unknown/Unchanged Unchanged
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4A 00 UPA_CONFIG
WB_S
WRI_S
INT_S
UC_S
AM
MCAP
CLK_MODE
SCIQ1
SCIQ0
UPC_CAP2
MID
UPC_CAP

000/Unchanged
00/Unchanged
00/Unchanged
010/Unchanged
OPSR value/Unchanged
OPSR value (read-only)
Pin
000/Unchanged
0000/Unchanged
1 (Read-only)
Module ID (read-only)
01_000000_0001_11011

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

4C 00 AFSR Unknown/Unchanged Unchanged

4C 08 UGESR Unknown/Unchanged Unchanged

4C 10 ERROR_CONTROL
WEAK_ED
Others

1
Unknown/Unchanged

1
Unchanged

4C 18 STCHG_ERR_INFO Unknown/Unchanged Unchanged

4D 00 AFAR_D1 Unknown/Unchanged Unchanged

4D 08 AFAR_U2 Unknown/Unchanged Unchanged

4F -- SCRATCH_REGs Unknown/Unchanged Unchanged

50 00 IMMU_TAG_TARGET Unknown/Unchanged Unchanged

50 18 IMMU_SFSR Unknown/Unchanged Unchanged

50 28 IMMU_TSB_BASE Unknown/Unchanged Unchanged

50 30 IMMU_TAG_ACCESS Unknown/Unchanged Unchanged

50 48 IMMU_TAG_TSB_PEXT Unknown/Unchanged Unchanged

50 58 IMMU_TAG_TSB_NEXT Unknown/Unchanged Unchanged

51 — IMMU_TSB_8KB_PTR Unknown/Unchanged Unchanged

52 — IMMU_TSB_64KB_PTR Unknown/Unchanged Unchanged

53 — SERIAL_ID Constant value Constant value

54 — ITLB_DATA_IN Unknown/Unchanged Unchanged

55 — ITLB_DATA_ACCESS Unknown/Unchanged Unchanged

56 — ITLB_TAG_READ Unknown/Unchanged Unchanged

57 — ITLB_DEMAP Unknown/Unchanged Unchanged

58 00 DMMU_TAG_TARGET Unknown/Unchanged Unchanged

58 08 PRIMARY_CONTEXT Unknown/Unchanged Unchanged

58 10 SECONDARY_CONTEXT Unknown/Unchanged Unchanged

58 18 DMMU_SFSR Unknown/Unchanged Unchanged

TABLE O-3 ASI Register State After Reset and in RED_state  (2 of 3)

A
S
I VA Name POR1 WDR2 XIR SIR RED_state
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58 20 DMMU_SFAR Unknown/Unchanged Unchanged

58 28 DMMU_TSB_BASE Unknown/Unchanged Unchanged

58 30 DMMU_TAG_ACCESS Unknown/Unchanged Unchanged

58 38 DMMU_VA_WATCHPOINT Unknown/Unchanged Unchanged

58 40 DMMU_PA_WATCHPOINT Unknown/Unchanged Unchanged

58 48 DMMU_TSB_PEXT Unknown/Unchanged Unchanged

58 58 DMMU_TSB_NEXT Unknown/Unchanged Unchanged

59 — DMMU_TSB_8KB_PTR Unknown/Unchanged Unchanged

5A — DMMU_TSB_64KB_PTR Unknown/Unchanged Unchanged

5B — DMMU_TSB_DIRECT_PTR Unknown/Unchanged Unchanged

5C — DTLB_DATA_IN Unknown/Unchanged Unchanged

5D — DTLB_DATA_ACCESS Unknown/Unchanged Unchanged

5E — DTLB_TAG_READ Unknown/Unchanged Unchanged

5F — DMMU_DEMAP Unknown/Unchanged Unchanged

60 — IIU_INST_TRAP 0 Unchanged

6E — EIDR 0/Unchanged Unchanged

6F — BARRIER_SYNC_P Unknown/Unchanged Unchanged

77 40:68 INTR_DATA0:5_W Unknown/Unchanged Unchanged

77 70 INTR_DISPATCH_W Unknown/Unchanged Unchanged

77 80:88 INTR_DATA6:7_W Unknown/Unchanged Unchanged

7F 40:88 INTR_DATA0:7_R Unknown/Unchanged Unchanged

EF — BARRIER_SYNC Unknown/Unchanged Unchanged

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when
UPA_RESET_L is asserted. Values are unchanged following soft POR

2.The first watchdog timeout trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog timeout
traps as well as watchdog traps due to a trap @ TL = MAX_TL are taken in RED_state. See Section O.1.2, Watchdog
Reset (WDR), on page 138 for more details.

TABLE O-3 ASI Register State After Reset and in RED_state  (3 of 3)

A
S
I VA Name POR1 WDR2 XIR SIR RED_state
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O.3.1 Operating Status Register (OPSR)
OPSR is the control register in the CPU that is scanned in during the hardware 
power-on reset sequence before the CPU starts running. 

The value of the OPSR is specified outside of the CPU and is never changed by 
software. OPSR is set by scan-in during hardware power-on reset and by a JTAG 
command after hardware POR.

Most of OPSR setting is not visible for software. However, some OPSR values control 
the software-visible action. 

The following items are controlled by OPSR and are visible to software.

1. Initial value of the physical address mode.

The hardware POR initial value of the 41-bit PA mode or 43-bit PA mode is 
specified by OPSR and set in UPA_CONFIG.AM field. In 41-bit PA mode, all 
physical addresses issued by the CPU are masked to 41 bits. Otherwise, the CPU 
operates in 43-bit PA mode, and physical addresses issued by CPU are masked to  
43 bits.

2. The value of UPA_configuration_register.MCAP field.

OPSR can be set so that when error_state is entered, the processor remains 
halted in error_state instead of generating a watchdog_reset (impl. dep. #254).

TABLE O-4 UPA slave register State after Reset and in RED_state 

PA Name POR1(binary)

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when
UPA_RESET_L is asserted. Values are unchanged following soft POR.

WDR2

2.The first watchdog timeout trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog timeout
traps as well as watchdog traps due to a trap @ TL = MAX_TL are taken in RED_state. See Section O.1.2, Watch-
dog Reset (WDR), on page 138 for more details.

XIR SIR RED_state

00 UPA_PORTID
Cookie
SREQ_S
ECCnotValid
One_Read
PRINT_RDQ
PREQ_DQ
PREQ_RQ
UPACAP

FC16
1
0
0
01
000000
0001
11011

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
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O.3.2 Hardware Power-On Reset Sequence
To be defined later.

O.3.3 Firmware Initialization Sequence
To be defined later.
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F.APPENDIX P

Error Handling

This appendix describes processor behavior to a programmer writing operating 
system, firmware, and recovery code for SPARC64 V. Section headings differ from 
those of Appendix P of Commonality.

P.1 Error Classification
On SPARC64 V, an error is classified into one of the following four categories, 
depending on the degree to which it obstructs program execution:

■ 1. Fatal error
■ 2. Error state transition error
■ 3. Urgent error
■ 4. Restrainable error

The subsections below describe each error class.

P.1.1 Fatal Error
A fatal error is one of the following errors that damages the entire system.

a. Error breaking data integrity on the system (excluding the SDC)

All errors, except the SDC (system data corruption) error, that break cache 
coherency are in this category. 

b. Invalid system control flow is detected and therefore validity of the subsequent 
system behavior cannot be guaranteed. 
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When the CPU detects the fatal error, the CPU enters FATAL error_state and 
reports the fatal error occurrence to the system controller. The system controller 
transfers the entire system state to the FATAL state and stops the system. After the 
system stops, a FATAL reset, which is a type of power-on reset, will be issued to the 
whole system.

P.1.2 error_state Transition Error
An error_state transition error is a serious error that prevents the CPU from 
reporting the error by generating a trap. However, any damage caused by the error 
is limited to within the CPU.

When the CPU detects an error_state transition error, it enters error_state. 
The CPU exits error_state by causing a watchdog reset, entering RED_state, 
and starting instruction execution at the watchdog reset trap handler.

P.1.3 Urgent Error
An urgent error (UGE) is an error that requires immediate processing by privileged 
software, which is reported by an error trap. The types of urgent errors are listed 
below and then described in further detail.

■ Instruction-obstructing error

■ I_UGE: Instruction urgent error

■ IAE: Instruction access error

■ DAE: Data access error

■ Urgent error that is independent of the instruction execution

■ A_UGE: Autonomous urgent error

Instruction-Obstructing Error
An instruction-obstructing error is one that is detected by instruction execution and 
results in the instruction being unable to complete. 

When the instruction-obstructing error is detected while 
ASI_ERROR_CONTROL.WEAK_ED = 0 (as set by privileged software for a normal 
program execution environment), then an exception is generated to report the error. 
This trap is nonmaskable.

Otherwise, when ASI_ERROR_CONTROL.WEAK_ED = 1, as with multiple errors or a 
POST/OBP reset routine, one of the following actions occurs: 

■ Whenever possible, the CPU writes an unpredictable value to the target of the 
damaged instruction and the instruction ends.
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■ Otherwise, an error exception is generated and the damaged instruction is 
executed as when ASI_ERROR_CONTROL.WEAK_ED = 0 is set.

The three types of instruction-obstructing errors are described below.

■ I_UGE (instruction urgent error) — All of the instruction-obstructing errors except 
IAE (instruction access error) and DAE (data access error). There are two categories 
of I_UGEs.

■ An uncorrectable error in an internal program-visible register that obstructs 
instruction execution. 
An uncorrectable error in the PSTATE, PC, NPC, CCR, ASI, FSR, or GSR register 
is treated as an I_UGE that obstructs the execution of any instruction. See 
Sections P.8.1 and P.8.2 for details.
The first-time watchdog timeout is also treated as this type of I_UGE.

■ An error in the hardware unit executing the instruction, other than an error 
in a program-visible register. 
Among these errors are ALU output errors, errors in temporary registers 
during instruction execution, CPU internal data bus errors, and so forth. 

I_UGE is a preemptive error with the characteristics shown in TABLE P-2.

■ IAE (instruction access error) — The instruction_access_error exception, as specified 
in JPS1 Commonality. On SPARC64 V, only an uncorrectable error in the cache or 
main memory during instruction fetch is reported to software as an IAE. 

IAE is a precise error.

■ DAE (data access error) — The data_access_error exception, as specified in JPS1 
Commonality. On SPARC64 V, only an uncorrectable error in the cache or main 
memory during access by a load, store, or load-store instruction is reported to 
software as a DAE. 

DAE is a precise error.

Urgent Error Independent of Instruction Execution
■ A_UGE (Autonomous Urgent Error) — An error that requires immediate 

processing and that occurs independently of instruction execution. 

In normal program execution, ASI_ERROR_CONTROL.WEAK_ED = 0 is specified 
by privileged software. In this case, the A_UGE trap is suppressed only in the trap 
handler used to process UGE (that is, the async_data_error trap handler).

Otherwise, in special program execution such as the handling of the occurrence of 
multiple errors or the POST/OBP reset routine, 
ASI_ERROR_CONTROL.WEAK_ED = 1 is specified by the program. In this case, no 
A_UGE generates an exception. 

There are two categories of A_UGEs:

■ An error in an important resource that will cause a fatal error or 
error_state transition error when the resource is used. 
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When the resource with the error is used, the program cannot continue 
execution, or the error_state transition error or the fatal error is detected.

■ The error in an important resource that is expected to invoke the operating 
system “panic” process 

The operating system panic process is expected when this error is detected 
because the normal processing cannot be expected to continue when this error 
occurs.

The A_UGE is a disrupting error with the following deviations.

■ The trap for A_UGE is not masked by PSTATE.IE.

■ The instruction designated by TPC may not end precisely. The instruction end-
method is reported in the trap status register for A_UGE.

Traps for Urgent Errors

When an urgent error is detected and not masked, the error is reported to privileged 
software by the following exceptions: 

■ I_UGE, A_UGE: async_data_error exception 

■ IAE: instruction_access_error exception 

■ DAE: data_access_error exception 

P.1.4 Restrainable Error
A restrainable error is one that does not adversely affect the currently executing 
program and that does not require immediate handling by privileged software. A 
restrainable error causes a disrupting trap with low priority.

There are three types of restrainable errors.

■ Correctable Error (CE), corrected by hardware

Upon detecting the CE, the hardware uses the data corrected by hardware. So a CE 
has no deleterious effect on the CPU. 

When a CE is detected, data seen by the CPU has always already been corrected 
by hardware, but it depends on the CE type whether the original data containing 
the CE is corrected or not.

■ Uncorrectable error without direct damage to the currently executing 
instruction sequence.

An error detected in cache line writeback or copyback data is of this type.
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■ Degradation

SPARC64 V can isolate an internal hardware resource that generates frequent 
errors and continue processing without deleterious effect on software during 
program execution. However, performance is degraded by the resource isolation. 
This degradation is reported as a restrainable error.

The restrainable error can be reported to privileged software by the ECC_error trap.

When PSTATE.IE = 1 and the trap enable mask for any restrainable error is 1, the 
ECC_error exception is generated for the restrainable error.

P.2 Action and Error Control

P.2.1 Registers Related to Error Handling
The following registers are related to the error handling.

■ ASI registers: Indicate an error. All ASI registers in TABLE P-1 except ASI_EIDR 
and ASI_ERROR_CONTROL are used to specify the nature of an error to privileged 
software. 

■ ASI_ERROR_CONTROL: Controls error action. This register designates error 
detection masks and error trap enable masks.

■ ASI_EIDR: Marks errors. This register identifies the error source ID for error 
marking.

TABLE P-1 lists the registers related to error handling.

TABLE P-1 Registers Related to Error Handling

ASI VA R/W Checking Code Name Defined in

4C16 0016 RW1C None ASI_ASYNC_FAULT_STATUS P.7.1

4C16 0816 R None ASI_URGENT_ERROR_STATUS P.4.1

4C16 1016 RW Parity ASI_ERROR_CONTROL P.2.1

4C16 1816 R,W1AC None ASI_STCHG_ERROR_INFO P.3.1

4D16 0016 RW1AC Parity ASI_ASYNC_FAULT_ADDR_D1 P.7.2

4D16 0816 RW1AC Parity ASI_ASYNC_FAULT_ADDR_U2 P.7.3

5016 1816 RW None ASI_IMMU_SFSR F.10.9

5816 1816 RW None ASI_DMMU_SFSR F.10.9

5816 2016 RW Parity ASI_DMMU_SFAR F.10.10 of Commonality

6E16 0016 RW Parity ASI_EIDR P.2.5
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P.2.2 Summary of Actions Upon Error Detection
TABLE P-2 summarizes what happens when an error is detected. 

TABLE P-2 Action Upon Detection of an Error  (1 of 4)

Fatal Error (FE)
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE)

Error detection 
mask (the 
condition to 
suppress error 
detection)

None When 
ASI_ECR.WEAK_ED
= 1, the error 
detection is 
suppressed 
incompletely.

 I_UGE, IAE, DAE 
When 
ASI_ECR.WEAK_ED = 1, error 
detection is suppressed 
incompletely.

A_UGE
Error detection except the 
register usage is suppressed 
when ASI_ECR.WEAK_ED = 1 
or upon a condition unique to 
each error.
Error detection at the register 
usage is suppressed by 
conditions unique to each 
error.
Only some A_UGEs have the 
above unique conditions to 
suppress error detection; most 
do not.

None

Trap mask (the 
condition to 
suppress the 
error trap 
occurrence)

None None I_UGE, IAE, IAE
None

A_UGE
ASI_ECR.UGE_HANDLER = 1

or
ASI_ECR.WEAK_ED = 1
The A_UGE detected during 
the trap is suppressed, is kept 
pending in the hardware, and 
causes the ADE trap when the 
trap is enabled.

ASI_ECR.UGE_HANDLER = 1 
or

ASI_ECR.WEAK_ED = 1 
or 

PSTATE.IE = 0
or

ASI_ECR.RTE_xx = 0, where 
RTE_xx is the trap enable 
mask for each error group.
RTE_xx is RTE_CEDG or 
RTE_UE.
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Action upon the 
error detection

1. CPU enters 
CPU fatal 
state.

2. CPU informs 
the system of 
fatal error 
occurrence.

3. The FATAL 
reset (which is 
a form of POR 
reset) is issued 
to the whole 
system.

4. POR reset is 
caused to all 
CPUs in the 
system.

1. CPU enters 
error_state.

2. Watchdog reset 
(WDR) is caused 
on the CPU.

Detection of I_UGE
When 
ASI_ECR.UGE_HANDLER = 0, 
a single-ADE trap is caused.
Otherwise, when 
ASI_ECR.UGE_HANDLER = 1, 
a multiple-ADE trap is caused.

Detection of A_UGE
When the trap is enabled, a 
single-ADE trap is caused.
When the trap is disabled, the 
trap condition is kept pending 
in hardware.

Detection of IAE
When 
ASI_ECR.UGE_HANDLER = 0, 
an IAE trap is caused. Other-
wise, a multiple-ADE trap is 
caused.

Detection of DAE
When 
ASI_ECR.UGE_HANDLER = 0, 
a DAE trap is caused. Other-
wise, a multiple-ADE trap is 
caused.

 Ideal specification
1. The error detection is kept 

pending in one bit of 
ASI_AFSR.

2. When the trap condition 
for the pending error 
detection is enabled, the 
ECC_error exception is 
generated. 

Deviation in SPARC64 V
An ECC_error trap can occur 
even though ASI_AFSR 
does not indicate any 
detected error(s) 
corresponding to any trap-
enable bit (RTE_UE or 
RTE_CEDG) set to 1 in 
ASI_ECR, in the following 
cases:
1. A pending detected error 

is erased from ASI_ASFR 
(by writing 1 to 
ASI_AFSR) after the error 
is detected but before the 
ECC_error trap is 
generated.

2. A pending CE or DG is 
erased by writing 1 to 
ASI_AFSR after the 
ECC_error trap is caused 
by the UE error detection.

3. A pending UE is erased by 
writing 1 to ASI_AFSR 
after the ECC_error trap is 
caused by CE or DG 
detection.

Privileged software should 
ignore an ECC_error trap 
when the AFSR contains no 
errors corresponding to 
those enabled in ASI_ECR 
to cause a trap.

Priority of 
action when 
multiple types 
of errors are 
simultaneously 
detected

1 — CPU fatal 
state

2 — error_state 3 — ADE trap
4 — DAE trap
5 — IAE trap

6 — ECC_error trap

TABLE P-2 Action Upon Detection of an Error  (2 of 4)

Fatal Error (FE)
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE)
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tt (trap type) 1 (RED_state) 2 (RED_state) ADE: 4016
DAE: 3216
IAE: 0A16

6316

Trap priority 1 1 ADE — 2 
DAE — 12 
IAE — 3

32

End-method of 
trapped 
instruction

Abandoned Abandoned. ADE trap
Precise, retryable or 
nonretryable. See P.4.3.

IAE trap, DAE trap
Precise.

Precise

Relation 
between TPC 
and instruction 
that caused the 
error

None None I_UGE
For errors other than TLB 
write errors, the error was 
caused by the instruction 
pointed to by TPC or by the 
instruction subsequent in the 
control flow to the one 
indicated by TPC.

For a TLB write error, the 
instruction pointed to by TPC 
or the already executed 
instruction previous in the 
control flow to the one 
indicated by TPC wrote a TLB 
entry and the TLB write 
failed. The TLB write error is 
detected after the instruction 
execution and before any trap, 
RETRY, or DONE instruction.

A_UGE
None.

IAE, DAE
The instruction pointed to by 
TPC caused the error.

None

Register that 
indicates the 
error

ASI_STCHG_
ERROR_INFO

ASI_STCHG_
ERROR_INFO

I_UGE, A_UGE

ASI_UGESR
IAE

ASI_ISFSR
DAE

ASI_DSFSR

ASI_AFSR

TABLE P-2 Action Upon Detection of an Error  (3 of 4)

Fatal Error (FE)
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE)
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P.2.3 Extent of Automatic Source Data Correction for 
Correctable Error
Upon detection of the following correctable errors (CE), the CPU corrects the input 
data and uses the corrected data; however, the source data with the CE is not 
corrected automatically. 

■ CE in memory (DIMM)
■ CE in ASI_INTR_DATA_R

Upon detection of other correctable errors, the CPU automatically corrects the source 
data containg theCE.

For correctable errors in ASI_INTR_DATA, no special action is required by 
privileged software because the erroneous data will be overwritten when the next 
interrupt is received. For CE in memory (DIMM), it is expected that privileged 
software will correct the error in memory.

P.2.4 Error Marking for Cacheable Data Error

Error Marking for Cacheable Data

Error marking for cacheable data involves the following action:

Number of 
errors 
indicated at 
trap

All FEs are 
detected and 
accumulated in 
ASI_STCHG_
ERROR_INFO

All EEs are 
detected and 
accumulated in 
ASI_STCHG_
ERROR_INFO

Single-ADE trap

All I_UGEs and A_UGEs 
detected at trap.

Multiple-ADE trap

The multiple-ADE indication 
+ UGEs at first ADE trap.

IAE

One error
DAE

One error

All restrainable errors 
detected and accumulated 
in ASI_AFSR.

Error address 
indication 
register

None None I_UGE, A_UGE: None
IAE: TPC
DAE: ASI_DFAR

ASI_AFAR_D1

ASI_AFAR_U2

TABLE P-2 Action Upon Detection of an Error  (4 of 4)

Fatal Error (FE)
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE)
Release 1.0, 1 July 2002 F. Chapter P Error Handling 157



■ When a hardware unit first detects an uncorrected error in the cacheable data, the 
hardware unit replaces the data and ECC of the cacheable data with a special 
pattern that identifies the original error source and signifies that the data is 
already marked.

The error marking helps identify the error source and prevent multiple error reports 
by a single error even after several cache lines transfer with uncorrected data.

The following data are protected by the single-bit error correction and double-bit 
error detection ECC code attached to every doubleword:

■ Main memory (DIMM)
■ UPA packet data containing cache line data and interrupt packet data
■ U2 (unified level 2) cache data
■ D1 cache data
■ The cacheable area block held by the channel

The ECC applied to these data is the ECC specified for UPA.

When the CPU and channel (U2P) detect an uncorrected error in the above cacheable 
data that is not yet marked, the CPU and channel execute error marking for the data 
block with an UE.

Whether the data with UE is marked or not is determined by the syndrome of the 
doubleword data, as shown in TABLE P-2. 

The syndrome 7F16 indicates a 3-bit error in the specified location in the doubleword. 
The error marking replaces the original data and ECC to the data and ECC, as 
described in the following section. The probability of syndrome 7F16 occurrence 
other than the error marking is considered to be zero.

The Format of Error-Marking Data

When the raw UE is detected in the cacheable data doubleword, the erroneous 
doubleword and its ECC are replaced in the data by error marking, as listed in 
TABLE P-4.

TABLE P-3 Syndrome for Data Marked for Error

Syndrome Error Marking Status Type of Uncorrected Error

7F16 Marked Marked UE

Multibit error pattern except for 7F16 Not marked yet Raw UE

TABLE P-4 Format of Error-Marked Data

Data/ECC Bit Value

data 63 Error bit. The value is unpredictable.

62:56 0 (7 bits).

55:42 ERROR_MARK_ID (14 bits).
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The ERROR_MARK_ID (14 bits wide) identifies the error source. The hardware unit 
that detects the error provides the error source_ID and sets the ERROR_MARK_ID 
value.

The format of ERROR_MARK_ID<13:0> is defined in TABLE P-5. 

ERROR_MARK_ID Set by CPU

TABLE P-6 shows the ERROR_MARK_ID set by the CPU.

41:36 0 (6 bits).

35 Error bit. The value is unpredictable.

34:23 0 (12 bits).

22 Error bit. The value is unpredictable.

21:14 0 (8 bits).

13:0 ERROR_MARK_ID (14 bits).

ECC The pattern indicates 3-bit error in bits 63, 35, and 22, that is, the 
pattern causing the 7F16 syndrome.

TABLE P-5 ERROR_MARK_ID Bit Description

Bit Value

13:12 Module_ID: Indicates the type of error source hardware as follows:
      002: Memory system including DIMM
      012: Channel
      102: CPU
      112: Reserved

11:0 Source_ID: When Module_ID = 002, the 12-bit Source_ID field is always set to 0. 
Otherwise, the identification number of each Module type is set to Source ID.       

TABLE P-6 ERROR_MARK_ID Set by CPU

Type of data with RAW UE Module_ID value (binary) Source_ID value

Incoming data from UPA 002 (Memory system) 0

Outgoing data to UPA ASI_EIDR<13:12>. 102 (CPU) is expected. ASI_EIDR (Identifier of self CPU)

U2 cache data, D1 cache data ASI_EIDR<13:12>. 102 (CPU) is expected. ASI_EIDR (Identifier of self CPU)

TABLE P-4 Format of Error-Marked Data

Data/ECC Bit Value
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Difference Between Error Marking on SPARC64 IV and 
SPARC64 V

TABLE P-7 lists the differences between error marking on SPARC64 IV and 
SPARC64 V.

Error marking on SPARC64 IV and SPARC64 V differs in two ways: 

■ On SPARC64 V, only the doubleword with raw UE is replaced at error marking. 
On SPARC64 IV, the quadword containing the doubleword with raw UE is 
replaced with two copies of the ERROR_MARK_ID.

■ On SPARC64 V, error marking is not applied to incoming interrupt packet data. 
On SPARC64 IV, error marking is applied even for incoming interrupt packet 
data.

TABLE P-7 Error Marking on SPARC64 IV and SPARC64 V 

SPARC64 IV SPARC64 V

ECC for cacheable data ECC for UPA ECC for UPA

Trigger of error marking The detection of a raw UE The detection of a raw UE

ERROR_MARK_ID value Value specified in TABLE P-6. Value specified in TABLE P-6.

Target data of error 
marking
Note: (5) is different

(1) D1 cache data
(2) U2 cache data
(3) Incoming cacheable data from UPA
(4) Outgoing cacheable data to UPA for 
writeback or copyback
(5) Incoming interrupt packet data 
from UPA

(1)–(4) as described for SPARC IV 

(5) is not applied. For the incoming interrupt 
packet data, error marking is not applied 
and the incoming data and ECC are directly 
set to ASI_INTR_DATA 0:7_R and its ECC 
register.

The extent of replaced 
data at error marking

The quadword (16-byte data on 16-byte 
boundary) containing the doubleword 
with raw UE and its two ECCs are 
replaced.
The doubleword and ECC specified in 
TABLE P-4 are written to each of the 
two doublewords in the quadword.

Only the doubleword with the raw UE is 
replaced, as specified in TABLE P-4.
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P.2.5 ASI_EIDR

The ASI_EIDR register designates the source ID in the ERROR_MARK_ID of the CPU. 

P.2.6 Control of Error Action (ASI_ERROR_CONTROL)
Error detection masking and the action after error detection are controlled by the 
value in ASI_ERROR_CONTROL, as defined in TABLE P-9.

The ASI_ERROR_CONTROL register controls error detection masking, error trap 
occurrence masking, and the multiple-ADE trap occurrence. The register fields are 
described in TABLE P-9.

[1] Register name: ASI_EIDR
[2] ASI: 6E16

[3] VA: 0016

[4] Error checking: Parity.
[5] Format & function: See TABLE P-8.

TABLE P-8 ASI_EIDR Bit Description

Bit Name RW Description

63:14 Reserved R Always 0.

13:0 ERROR_MARK_ID RW ERROR_MARK_ID for the error caused by the CPU.

[1] Register name: ASI_ERROR_CONTROL (ASI_ECR)
[2] ASI: 4C16

[3] VA: 1016

[4] Error checking: None

[5] Format & function: See TABLE P-9.

[6] Initial value at reset: Hard POR: ASI_ERROR_CONTROL.WEAK_ED is set to 1. 
Other fields are set to 0.
Other resets: After UGE_HANDLER and WEAK_ED are copied 
into ASI_STCHG_ERROR_INFO, all fields in 
ASI_ERROR_CONTROL are set to 0.

TABLE P-9 ASI_ERROR_CONTROL Bit Description 

Bit Name RW Description

9 RTE_UE RW Restrainable Error Trap Enable submask for UE and Raw UE. The bit works as 
defined in TABLE P-2.

8 RTE_CEDG RW Restrainable Error Trap Enable submask for Corrected Error (CE) and 
Degradation (DG). The bit works as defined in TABLE P-2.
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1 WEAK_ED RW Weak Error Detection. Controls whether the detection of I_UGE and DAE is 
suppressed:

When WEAK_ED = 0, error detection is not suppressed.
When WEAK_ED = 1, error detection is suppressed if the CPU can continue 
processing.

When I_UGE or DAE is detected during instruction execution while 
WEAK_ED = 1, the value of the output register or the store target memory 
location become unpredictable.
Even if WEAK_ED = 1, I_UGE or DAE is detected and corresponding trap is 
caused when the CPU cannot continue processing by ignoring the error. 
WEAK_ED is the trap disabling mask for A_UGE and restrainable errors, as 
defined in TABLE P-2.
When a multiple-ADE trap is caused (I_UGE, IAE, or DAE detection while 
ASI_ERROR_CONTROL.UGE_HANDLER = 1), WEAK_ED is set to 1 by hardware. 

0 UGE_HANDLER RW Designates whether hardware can expect a UGE handler to run in privileged 
software (operating system) when a UGE error occurs:

0: Hardware recognizes that the privileged software UGE handler does not 
run.
1: Hardware expects that the privileged software UGE handler runs.

UGE_HANDLER is the trap disabling mask for A_UGE and restrainable errors, 
as defined in TABLE P-2.
The value of UGE_HANDLER determines whether a multiple-ADE trap is 
caused or not upon detection of I_UGE, IAE, and DAE.
When an async_data_error trap occurs, UGE_HANDLER is set to 1.
When a RETRY or DONE instruction is completed, UGE_HANDLER is set to 0.

Other Reserved R Always reads as 0.

TABLE P-9 ASI_ERROR_CONTROL Bit Description  (Continued)

Bit Name RW Description
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P.3 Fatal Error and error_state 
Transition Error

P.3.1 ASI_STCHG_ERROR_INFO

The ASI_STCHG_ERROR_INFO register stores detected FATAL error and 
error_state transition error information, for access by OBP (Open Boot PROM) 
software. 

TABLE P-10 describes the fields in the ASI_STCHG_ERROR_INFO register. 

[1] Register name: ASI_STCHG_ERROR_INFO
[2] ASI: 4C16

[3] VA: 1816

[4] Error checking: None
[5] Format & function: See TABLE P-10

[6] Initial value at reset: Hard POR: All fields are set to 0. 
Other resets: Values are unchanged.

[7] Update policy: Upon detection of each related error, the corresponding bit in 
ASI_STCHG_ERROR_INFO is set to 1. Writing 1 to bit 0 erases all 
error indications in ASI_STCHG_ERROR_INFO (sets all bits in 
the register, including bit 0, to 0).

TABLE P-10 Format of ASI_STCHG_ERROR_INFO Bit Description

Bit Name RW Description

63:34 Reserved R Always 0.

33 ECR_WEAK_ED R ASI_ERROR_CONTROL.WEAK_ED is copied into this 
field at the beginning of a POR or watchdog reset.

32 ECR_UGE_HANDLER R ASI_ERROR_CONTROL.UGE_HANDLER is copied into 
this field at the beginning of the POR or watchdog 
reset.

31:15 Reserved R Always 0.

14 Always 0 (EE_OTHER) R In the ideal case, EE_OTHER would be assigned in this 
bit, but the field is not implemented in SPARC64 V.

13 EE_TRAP_ADDR_UNCORRECTED_ERROR R Upon detection of the corresponding error, set to 1.

12 EE_OPSR R Upon detection of the corresponding error, set to 1.

11 EE_WATCH_DOG_TIMEOUT_IN_MAXTL R Upon detection of the corresponding error, set to 1.

10 EE_SECOND_WATCH_DOG_TIMEOUT R Upon detection of the corresponding error, set to 1.
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P.3.2 Fatal Error Types
■ FE_UPA_ADDR_UNCORRECTED_ERROR — An uncorrected error in the 

address received from UPA

■ FE_U2TAG_UNCORRECTED_ERROR — An uncorrected error detected in the U2 
cache tag

■ FE_OTHER — A fatal error other than those listed above

P.3.3 Types of error_state Transition Errors
■ EE_TRAP_IN_MAXTL — A trap occurred while TL = MAXTL.

■ EE_SIR_IN_MAXTL — An SIR occurred while TL = MAXTL.

■ EE_SECOND_WATCH_DOG_TIMEOUT — A second watchdog timeout was 
detected after an async_data_error exception with watchdog timeout indication 
(first watchdog timeout) was generated. 

■ EE_WATCH_DOG_TIMEOUT_IN_MAXTL — A watchdog timeout occurred 
while TL = MAXTL.

■ EE_OPSR —An uncorrectable error occurred in OPSR (Operation Status Register); 
valid CPU operation after such an error cannot be guaranteed. OPSR is the 
hardware mode-setting register. OSPR is not visible to software and is set by a 
JTAG command.

■ EE_TRAP_ADDR_UNCORRECTED_ERROR — When hardware calculated the 
trap address to cause a trap, the valid address could not be obtained because of a 
UE in ASI_TBA, a UE in %tt, or a UE in the address calculator.

■ Other error_state transition errors:

■ Current SPARC64 V implementation
When hardware detects an error_state transition error other than those 
described above, it causes a watchdog reset without setting any EE_xxxx bits in 
ASI_STCHG_ERROR_INFO.

9 EE_SIR_IN_MAXTL R Upon detection of the corresponding error, set to 1.

8 EE_TRAP_IN_MAXTL R Upon detection of the corresponding error, set to 1.

7:3 Reserved R Always 0.

2 FE_OTHER R Upon detection of the corresponding error, set to 1.

1 FE_U2TAG_UNCORRECTED_ERROR R Upon detection of the corresponding error, set to 1.

0 FE_UPA_ADDR_UNCORRECTED_ERROR RW Upon detection of the corresponding error, set to 1. 
Writing 1 to this bit sets all fields in this register to 0. 

TABLE P-10 Format of ASI_STCHG_ERROR_INFO Bit Description (Continued)

Bit Name RW Description
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■ Ideal specification (not implemented)
The EE_OTHER bit is specified in ASI_STCHG_ERROR_INFO bit 14. When 
hardware detects error_state transition errors other than those described 
above, it sets ASI_STCHG_ERROR_INFO.EE_OTHER = 1.

P.4 Urgent Error
This section presents details about urgent errors: status monitoring, actions, and 
end-methods.

P.4.1 URGENT ERROR STATUS (ASI_UGESR)

The ASI_UGESR register contains the following information when an 
async_data_error (ADE) exception is generated. 

■ Detected I_UGEs and A_UGEs, and related information
■ The type of second error to cause multiple async_data_error traps

TABLE P-11 describes the fields of the ASI_UGESR register. In the table, the prefixes in 
the name field have the following meaning:

■ IUG_  Instruction Urgent error
■ IAG_ Autonomous Urgent error
■ IAUG_ The error detected as both I_UGE and A_UGE 

[1] Register name: ASI_URGENT_ERROR_STATUS
[2] ASI: 4C16
[3] VA: 0816
[4] Error checking: None
[5] Format & function: See TABLE P-11.
[6] Initial value at reset: Hard POR: All fields are set to 0. 

Other resets: The values of all ASI_UGESR fields are 
unchanged.

TABLE P-11 ASI_UGESR Bit Description  (1 of 4)

Bit Name RW Description

Each bit in ASI_UGESR<22:8> indicates the occurrence of its corresponding error in a single-ADE trap as follows:
0: The error is not detected.
1: The error is detected.

Each bit in ASI_UGESR<22:16> indicates an error in a CPU register. The error detection conditions for these 
errors are defined in Handling of Internal Register Errors on page 181.
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22 IAUG_CRE R Uncorrectable error in any of the following:
(IA) ASI_EIDR
(IA) ASI_PA_WATCH_POINT when enabled
(IA) ASI_VA_WATCH_POINT when enabled
(I) ASI_AFAR_D1
(I) ASI_AFAR_U2
(I) ASI_INTR_R (SPARC64 V deviation from the ideal specification: the 

uncorrectable error in ASI_INTR_R at load instruction access is 
detected but reported as ASI_UGESR.COREERR instead of 
ASI_UGESR.IAUG_CRE; the reported ASI_UGESR.COREERR error is not 
erased by instruction retry)

(A) ASI_INTR_DISPATCH_W (UE at store) 
(IA) ASI_PARALLEL_BARRIER containing the barrier variable transmission 

interface error (SPARC64 V deviation from the ideal specification; the 
uncorrectable error in the barrier is detected but reported as 
ASI_UGESR.COREERR instead of ASI_UGESR.IAUG_CRE; the reported 
ASI_UGESR.COREERR error is not erased by instruction retry)

(IA) SOFTINT
(IA) STICK
(IA) STICK_COMP

21 IAUG_TSBCTXT R Uncorrectable error in any of the following:
(IA) ASI_DMMU_TSB_BASE
(IA) ASI_DMMU_TSB_PEXT
(IA) ASI_DMMU_TSB_SEXT
(IA) ASI_DMMU_TSB_NEXT
(IA) ASI_PRIMARY_CONTEXT
(IA) ASI_SECONDARY_CONTEXT
(IA) ASI_IMMU_TSB_BASE
(IA) ASI_IMMU_TSB_PEXT
(IA) ASI_IMMU_TSB_SEXT

20 IUG_TSBP R Uncorrectable error in any of the following:
(I) ASI_DMMU_TAG_TARGET
(I) ASI_DMMU_TAG_ACCESS
(I) ASI_DMMU_TSB_8KB_PTR
(I) ASI_DMMU_TSB_64KB_PTR
(I) ASI_DMMU_TSB_DIRECT_PTR
(I) ASI_IMMU_TAG_TARGET
(I) ASI_IMMU_TAG_ACCESS
(I) ASI_IMMU_TSB_8KB_PTR
(I) ASI_IMMU_TSB_64KB_PTR

19 IUG_PSTATE R Uncorrectable error in any of the following: %pstate, %pc, %npc, CWP, 
CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN, %pil, %wstate

18 IUG_TSTATE R Uncorrectable error in any of TSTATE, TPC, TNP.
17 IUG_%F R Uncorrectable error in any floating-point register or in the FPRS, FSR, or GSR 

register.

16 IUG_%R R Uncorrectable error in any general-purpose (integer) register, or in the Y, CCR, 
or ASI register.

TABLE P-11 ASI_UGESR Bit Description  (2 of 4)

Bit Name RW Description
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15 AUG_SDC R System data corruption. Indicates the occurrence of the following system data 
corruption:
Small data corruption: Data in the cacheable area with an unpredictable 
address is destroyed. The destroyed area is some number of 64-byte blocks.
Invalid physical address usage by software: On SPARC64 V, the following 
invalid physical address usage by software causes system data corruption:
• If a memory access with a physical address ≥ 200_0000_000016 is issued, 

then the 41-bit width for the UPA address is specified in the 
UPA_configuration_register.AM field.

• A cacheable access with a physical address ≥ 400_0000_000016 was issued.
Other error with data damage not limited to the CPU: In JPS1, this type of 
error is treated as a fatal error. On SPARC64 V, OPSR selects whether these 
errors cause a fatal error or an AUG_SDC error.
Some address tag errors in the SPARC64 V data buffer cause AUG_SDC.

14 IUG_WDT R Watchdog timeout first time. Indicates the first watchdog timeout. If 
IUG_WDT = 1 when a single-ADE trap occurs, the instruction pointed to by TPC 
is abandoned and its result is unpredictable.

10 IUG_DTLB R Uncorrectable error in DTLB during load, store, or demap. Indicates that one of 
the following errors was detected during a data TLB access:
• An uncorrectable error in TLB data or TLB tag was detected when an LDXA 

instruction attempted to read ASI_DTLB_DATA_ACCESS or 
ASI_DTLB_TAG_ACCESS. TPC indicates either the instruction causing the 
error or the previous instruction.

• A store to the data TLB or a demap of the data TLB failed. TPC indicates 
either the instruction causing the error or the instruction following the one 
that caused the error. 

9 IUG_ITLB R Uncorrectable error in ITLB during load, store, or demap. Indicates that one of 
the following errors was detected during an instruction TLB access:
• An uncorrectable error in TLB data or TLB tag was detected when an LDXA 

instruction attempted to read ASI_ITLB_DATA_ACCESS or 
ASI_ITLB_TAG_ACCESS. TPC indicates either the instruction causing the 
error or the previous instruction. 

• A store to the instruction TLB or a demap of the instruction TLB failed. TPC 
indicates either the instruction causing the error or the successive 
instruction.

8 IUG_COREERR R CPU core error. Indicates an uncorrectable error in a CPU internal resource 
used to execute instructions, which cannot be directly accessed by software.
When there is an uncorrectable error in a program-visible register and the 
instruction reading the register with UE is executed, the error in the register is 
always indicated. In this case, IUG_COREERR may or may not be indicated 
simultaneously with the register error.

TABLE P-11 ASI_UGESR Bit Description  (3 of 4)

Bit Name RW Description
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P.4.2 Action of async_data_error (ADE) Trap
The single-ADE trap and the multiple-ADE trap are generated upon the conditions 
defined in TABLE P-2 on page 154. The actions upon their occurrence are defined in 
more detail in this section. For convenience, the shorthand ADE is used to refer to 
async_data_error.

1. Conditions that cause ADE trap:

An ADE trap occurs when one of the following conditions is satisfied:

■ When ASI_ERROR_CONTROL.UGE_HANDLER = 0 and I_UGEs and/or A_UGEs are 
detected, a single-ADE trap is generated. 

■ When ASI_ERROR_CONTROL.UGE_HANDLER = 1 and I_UGEs, IAE, and/or DAE 
are detected, a multiple-ADE trap is generated. 

2. State change, trap target address calculation, and TL manipulation.

5:4 INSTEND R Trapped instruction end-method. Upon a single async_data_error trap 
without watchdog timeout detection, INSTEND indicates the instruction end-
method of the trapped instruction pointed to by TPC as follows:

002: Precise
012: Retryable but not precise
102: Reserved
112: Not retryable

See Section P.4.3 for the instruction end-method for the async_data_error trap. 
When a watchdog timeout is detected, the instruction end-method is 
undefined.

3 PRIV R Privileged mode. Upon a single async_data_error trap, the PRIV field is set as 
follows:
When the value of PSTATE.PRIV immediately before the single-ADE trap is 
unknown because of an uncorrectable error in PSTATE, ASI_UGESR.PRIV is 
set to 1. Otherwise, the value of PSTATE.PRIV immediately before the single-
ADE trap is copied to ASI_UGESR.PRIV.

2 MUGE_DAE R Multiple UGEs caused by DAE. Upon a single-ADE, MUGE_DAE is set to 0. Upon 
a multiple-ADE trap caused by a DAE, MUGE_DAE is set to 1. Upon a multiple-
ADE trap not caused by a DAE, MUGE_DAE is unchanged.

1 MUGE_IAE R Multiple UGEs caused by IAE. Upon a single-ADE trap, MUGE_IAE is set to 0. 
Upon a multiple-ADE trap caused by an IAE, MUGE_IAE is set to 1. Upon a 
multiple-ADE trap not caused by an IAE, MUGE_IAE is unchanged.

0 MUGE_IUGE R Multiple UGEs caused by I_UGE. Upon a single-ADE trap, MUGE_IUGE is set to 
0. Upon a multiple-ADE trap caused by an I_UGE, MUGE_IUGE is set to 1. Upon 
a multiple-ADE trap not caused by an I_UGE, MUGE_IUGE is unchanged. 

Other Reserved R Always 0.

TABLE P-11 ASI_UGESR Bit Description  (4 of 4)

Bit Name RW Description
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The following actions are executed in this order:

a. State transition

if (TL = MAXTL), the CPU enters error_state and abandons the ADE trap;

else if (CPU is in execution state && (TL = MAXTL − 1)), then the CPU enters 
RED_state.

b. Trap target address calculation

When the CPU is in execution state, trap target address is calculated by %tba, 
%tt, and %tl.

Otherwise, the CPU is in RED_state and the trap target address is set to 
RSTVaddr + A016.

c. TL is incremented: TL ← TL + 1.

3. Save the old value into TSTATE, TPC, and TNPC.

PSTATE, PC, and NPC immediately before the ADE trap are copied into TSTATE, 
TPC, and TNPC, respectively. If the copy source register contains an uncorrectable 
error, the copy target register also contains the UE.

4. Set the specific register setting:

The following three sets of registers are updated:

a. Update and validation of specific registers.

Hardware writes the registers listed in TABLE P-12.

The error(s) in a written register are removed by setting the correct value to the 
error checking (parity) code during the full write of the register. 

TABLE P-12 Registers Written for Update and Validation

Register Condition For Writing Value Written

PSTATE Always AG = 1, MG = 0, IG = 0, IE = 0, PRIV = 1, AM = 0, PEF = 1, 
RED = 0 (or 1 depending on the CPU status), MM = 00, TLE = 0, 
CLE = 0.

PC Always ADE trap address.

nPC Always ADE trap address + 4.

CCR When the register contains UE 0.

FSR, GSR When the register contains UE If either FSR or GSR contains a UE, 0 is written to that 
register. When 0 is written to FSR and/or GSR upon a single-
ADE trap, ASI_UGESR.IUG_%F is set to 1.

CWP, CANSAVE, 
CANRESTORE, 
OTHERWIN, 
CLEANWIN

When the register contains UE Any register among CWP, CANSAVE, CANRESTORE, 
OTHERWIN, and CLEANWIN that contains a UE is written to 0. 
When 0 is written to one of these registers upon a single-ADE 
trap, ASI_UGESR.IUG_PSTATE = 1 is set to 1.
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Errors in registers other than those listed above and any errors in the TLB entry 
remain.

b. Update of ASI_UGESR, as shown in TABLE P-13.

c. Update of ASI_ERROR_CONTROL

Upon a single-ADE trap, ASI_ERROR_CONTROL.UGE_HANDLER is set to 1. 
During the period after the single-ADE trap occurs and before a RETRY or DONE 
instruction is executed, UGE_HANDLER = 1 tells hardware that the urgent error 
handler is running.

Upon a multiple async_data_error trap, ASI_ERROR_CONTROL.WEAK_ED is set 
to 1 and the CPU starts running in the weak error detection state.

4. Set ASI_ERROR_CONTROL.UGE_HANDLER to 0.

Upon completion of a RETRY or DONE instruction, 
ASI_ERROR_CONTROL.UGE_HANDLER is set to 0.

P.4.3 Instruction End-Method at ADE Trap
In SPARC64 V, upon occurrence of the ADE trap, the trapped instruction referenced 
by TPC ends by using one of the following instruction end-methods:

■ Precise
■ Retryable but not precise (not included in JPS1)
■ Not retryable (not included in JPS1)

Upon a single-ADE trap, the trapped instruction end-method is indicated in 
ASI_UGESR.INSTEND.

TABLE P-13 ASI_UGESR Update for Single and Multiple-ADE Exceptions

Bit Field Update upon a Single-ADE Trap Update upon a Multiple-ADE Traps

63:6 Error indication All bits in this field are updated.
All I_UGEs and A_UGEs detected at the 
trap are indicated simultaneously.

Unchanged.

5:4 INSTEND The instruction end-method of the 
instruction referenced by TPC is set.

Unchanged.

2 MUGE_DAE[ Set to 0. If the multiple-ADE trap was caused by a 
DAE, MUGE_DAE is set to 1.
Otherwise, MUGE_DAE is unchanged.

1 MUGE_IAE Set to 0. If the multiple-ADE trap was caused by 
an IAE, MUGE_IAE is set to 1.
Otherwise, MUGE_IAE is unchanged.

0 MUGE_IUGE Set to 0. If the multiple-ADE trap was caused by 
an I_UGE, MUGE_IUGE is set to 1.
Otherwise, MUGE_IUGE is unchanged.
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TABLE P-14 defines each instruction end-method after an ADE trap.

P.4.4 Expected Software Handling of ADE Trap
The expected software handling of an ADE trap is described by the pseudo C code 
below. The main purpose of this flow is to recover from the following errors as much 
as possible:

■ An error in the CPU internal RAM or register file
■ An error in the accumulator
■ An error in the CPU internal temporary registers and data bus

TABLE P-14 Instruction End-Method After async_data_error Exception 

Precise Retryable But Not Precise Not Retryable

Instructions executed after 
the last ADE, IAE, or DAE 
trap and before the trapped 
instruction referenced by 
TPC.

Ended (Committed).
The instructions without UGE complete as defined in the architecture. The 
instruction with UGE was unpredictable value to its output (destination register or, 
in the case of a store instruction, destination memory location).

The trapped instruction 
referenced by TPC

Not executed. The output of the instruction is 
incomplete.
Part of the output may be 
changed, or the invalid value 
may be written to the instruction 
output. However, the 
modification to the invalid target 
that is not defined as instruction 
output is not executed.
The following modifications are 
not executed:
• Store to the cacheable area 

including cache.
• Store to the noncacheable area.
• Output to the source register of 

the instruction (destructive 
overlap)

The output of the instruction is 
incomplete.
Part of the output may be 
changed, or the invalid value 
may be written to the instruction 
output. However, the 
modification to the invalid target 
that is not defined as instruction 
output is not executed.
A store to an invalid address is 
not executed. (Store to a valid 
address with uncorrected data 
may be executed.)

Instructions to be executed 
after the instruction 
referenced by TPC

Not executed. Not executed. Not executed.

The possibility of resuming 
the trapped program by 
executing the RETRY 
instruction to the %tpc 
when the trapped program 
is not damaged at the 
single-ADE trap 

Possible. Possible. Impossible.
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void
expected_software_handling_of_ADE_trap()
{
/* Only %r0-%r7 can be used from here to Point#1 because the register window 

control registers may not have valid value until Point#1. It is 
recommended that only %r0-%r7 are used as general-purpose registers (GPR) 
in the whole single-ADE trap handler, if possible. */

ASI_SCRATCH_REGp ← %rX;
ASI_SCRATCH_REGq ← %rY;
%rX ← ASI_UGESR;

if ((%rX && 0x07) ≠ 0) {
      /*  multiple-ADE trap occurrence */
     invoke panic routine and take system dump as much as possible 
     with the running environment of ASI_ERROR_CONTROL.WEAK_ED == 1;
}

if (%rX.IUG_%R == 1) {
    %r1-%r31 except %rX and %rY ← %r0;
    %y ← %r0;
    %tstate.pstate ← %r0;  /* because ccr or asi field in %tstate.pstate
                              contains the error */
}
else {
    save required %r1-%r7 to the ADE trap save area, using %rX, %rY,
       ASI_SCRATCH_REGp and ASI_SCRATCH_REGq;
    /* whole %r save and restore is required to retry the context          

with PSTATE.AG == 1 */
}

if (ASI_UGESR.IUG_PSTATE == 1) {
    %tstate.pstate ← %r0;
  %tpc ← %r0;

    %pil ← %r0;
    %wstate ← %r0;
    All general-purpose registers in the register window ← %r0;
    Set the register window control registers
        (CWP, CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN) to appropriate values;
}

/*  Point#1: Program can use the general-purpose registers except %r0-%r7 
after this because the register window control registers were validated  
in the above step. */

if ((ASI_UGESR.IAUG_CRE == 1) ||( ASI_UGESR.IAUG_TSBCTXT == 1) || 
  (ASI_UGESR.IUG_TSBP == 1) || (ASI_UGESR.IUG_TSTATE == 1) ||
   (ASI_UGESR.IUG_%F==1)) {

    Write to each register with an error indication, to erase as many
        register errors as possible;
}

if (ASI_UGESR.IUG_DTLB == 1) { 
    execute demap_all for DTLB;
    /* A locked fDTLB entry with uncorrectable error is not removed by this 

operation.  A locked fDTLB entry with UE never detects its tag match or 
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causes the data_access_error trap when its tag matches at the DTLB 
reference for address translation. */

}

if (ASI_UGESR.IUG_ITLB == 1) {
    execute demap_all for ITLB;
    /* A locked fITLB entry with uncorrectable error is not removed by this

operation.  A locked fITLB entry with UE never detects its tag  match
or causes the data access error trap when its tag matches at the ITLB
reference for address translation. */

}

if ((ASI_UGESR.bits22:14 == 0) && 
 ((ASI_UGESR.INSTEND == 0) || (ASI_UGESR.INSTEND == 1))) {

    ++ADE_trap_retry_per_unit_of_time;
    if (ADE_trap_retry_per_unit_of_time < threshold)
        resume the trapped context by use of the RETRY instruction;
    else
        invoke panic routine because of too many ADE trap retries;
}
else if ((ASI_UGESR.bits22:18 == 0) && 

(ASI_UGESR.bits15:14 == 0) &&
(ASI_UGESR.PRIV == 0)) {

    ++ADE_trap_kill_user_per_unit_of_time;
    if (ADE_trap_kill_user_per_unit_of_time < threshold)
        kill one user process trapped and continue system operation;
    else
       invoke panic routine because of too may ADE trap user kill;
}
else
    invoke panic routine because of unrecoverable urgent error;
}

P.5 Instruction Access Errors
See Appendix F, Memory Management Unit, for details.

P.6 Data Access Errors
See Appendix F, Memory Management Unit, for details.
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P.7 Restrainable Errors
This section describes the registers—ASI_ASYNC_FAULT_STATUS, 
ASI_ASYNC_FAULT_ADDR_D1, and ASI_ASYNC_FAULT_ADDR_U2—that define the 
restrainable errors and explains how software handles these errors.

P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR)

The ASI_ASYNC_FAULT_STATUS register holds the detected restrainable error 
sticky bits. TABLE P-15 describes the fields of this register. In the table, the prefixes in 
the name field have the following meaning:

■ DG_  Degradation error
■ CE_  Correctable Error
■ UE_  Uncorrectable Error

Notes about the Prio_xx columns in TABLE P-15:

■ Prio_D1 column — Indicates the ASI_AFAR_D1 recording priority for each error 
shown in TABLE P-15 row as follows:

■ If the Prio_D1 column for the error shown in the table row is blank, the error is 
never recorded into ASI_AFAR_D1.

■ Otherwise, the Prio_D1 column for the error shown in the table row indicates 
the ASI_AFAR_D1 recording priority, as follows. Let P_D1 be the Prio_D1 
column value for the error E1. Then:

Upon detection of the error E1, if P_D1 > ASI_AFAR_D1.CONTENTS, the error 
E1 is recorded into ASI_AFAR_D1 and ASI_AFAR_D1.CONTENTS is set to 
P_D1.

Upon detection of the error E1, if P_D1 ≤ ASI_AFAR_D1.CONTENTS, the error 
E1 is not recorded into ASI_AFAR_D1 and ASI_AFAR_D1 is unchanged. 

■ Prio_U2 column — Indicates the ASI_AFAR_U2 recording priority for each error 
shown in the TABLE P-15 row as follows:

[1] Register name: ASI_ASYNC_FAULT_STATUS (ASI_AFSR)
[2] ASI: 4C16
[3] VA: 0016
[4] Error checking: None
[5] Format & function: See TABLE P-15
[6] Initial value at reset: Hard POR: All fields in ASI_AFSR are set to 0.

Other resets: Values in ASI_AFSR are unchanged.
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■ If the Prio_U2 column for the error shown in the table row is blank, the error is 
never recorded into ASI_AFAR_U2.

■ Otherwise, the Prio_U2 column for the error shown in the table row indicates 
the ASI_AFAR_U2 recording priority, as follows. Let P_U2 be the Prio_U2 
column value for the error E2. Then:

Upon detection of the error E2, if P_U2 > ASI_AFAR_U2.CONTENTS, the error 
E2 is recorded into ASI_AFAR_U2 and ASI_AFAR_U2.CONTENTS is set 
to P_U2.

Upon detection of the error E2, if P_U2 ≤ ASI_AFAR_U2.CONTENTS, the error 
E2 is not recorded in ASI_AFAR_U2 and ASI_AFAR_U2 is unchanged. 

TABLE P-15 ASI_ASYNC_FAULT_STATUS Bit Description 

Bit Name R/W Prio_D1 Prio_U2 Description

Bits 10:0 are restrainable error-pending “sticky” bits. Each bit in ASI_AFSR<10:0> is set to 1 when the 
corresponding error is detected. The only way each of these error sticky bits can be cleared is to write 1 to it. 
When 1 is held in a bit of ASI_AFSR and the trap disable condition specified in the TABLE P-2 is not satisfied, 
an ECC_error trap is generated. 

10 DG_L1$U2$STLB RW1C Degradation in L1$, U2$, and sTLB. This bit is set 
when automatic way reduction is applied in I1$, 
D1$, U2$, sITLB, or sDTLB. See Section P.9.5 and 
Section P.10.2 for further details about when this bit 
is set. 

9 CE_INCOMED RW1C 4016 Correctable error in incoming data from the UPA bus. 
CE is detected in the following cases:
• U2 (unified level 2) cache fill
• Data read from noncacheable area
The two cases can be separated by the physical 
address indicated in ASI_AFAR_U2. For U2 cache fill, 
normally the CE in DIMM is detected.
Programming Note: Data is transferred on the UPA 
bus in units of 16 bytes (one quadword). For data 
read from a noncacheable area, a correctable error in 
the opposite doubleword from the one that was 
accessed by the instruction may be reported as 
CE_INCOMED.
The address indicated in ASI_AFAR_U2 for 
CE_INCOMED always has doubleword resolution and 
indicates the correct error location for the incoming 
data path. However, the error reported for the 
noncacheable area read may be for the opposite 
doubleword in a quadword from the doubleword 
accessed by the instruction.
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3 UE_DST_BETO RW1C Disrupting store UPA bus error or timeout. Indicates 
that the store data is not written to memory because 
one of following errors was detected after the store 
instruction completed: 
• UPA bus error for the store instruction — Detected 

when a cacheable store to a noncacheable area is 
executed.

• UPA timeout for a store instruction — Detected 
when a cacheable store to an uninstalled cacheable 
area is executed.

2 UE_RAW_L2$FILL RW1C 8016 Raw UE in incoming data at L2 cache fill. Indicates a 
raw (unmarked) uncorrectable error in incoming data 
from UPA bus at the level 2 cache fill. The 
doubleword containing the raw UE in the L2 cache 
was marked with the ERROR_MARK_ID = 0.

1 UE_RAW_L2$INSD RW1C C016 Raw UE in L2 cache inside data. Indicates that a raw 
(unmarked) uncorrectable error in the L2 cache data 
is detected. The raw UE error should be detected in 
the following cases:
• L2 cache data is read to fill D1 cache or I1 cache.
• L2 cache data is read for copyback or writeback.
The doubleword containing the raw UE in the read 
data and the doubleword in the L2 cache data are 
marked with ERROR_MARK_ID = ASI_EIDR.
Implementation Deviation: SPARC64 V sets 
UE_RAW_L2$INSD to 1 only when a raw UE is 
detected during L2 cache writeback.

0 UE_RAW_D1$INSD RW1C 8016 Raw UE in D1 cache inside data. This bit indicates 
that a raw (not marked) uncorrectable error in the D1 
cache data has been detected in one of the following 
cases:
• D1 cache data is read during a load or store 

instruction.
• Store data is not written because of an 

uncorrectable error detected in the D1 cache after 
the store instruction completed.

• A raw UE is detected in the data during the D1 
cache writeback to level 2 cache.

The doubleword containing a raw UE in the outgoing 
data and that in D1 cache are marked with 
ERROR_MARK_ID = ASI_EIDR.

Other Reserved R Always reads as 0; writes are ignored.

TABLE P-15 ASI_ASYNC_FAULT_STATUS Bit Description  (Continued)

Bit Name R/W Prio_D1 Prio_U2 Description
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P.7.2 ASI_ASYNC_FAULT_ADDR_D1 

TABLE P-16 describes the fields of the ASI_ASYNC_FAULT_ADDR_D1 register. 

[1] Register name: ASI_ASYNC_FAULT_ADDR_D1 (ASI_AFAR_D1)
[2] ASI: 4D16
[3] VA: 0016
[4] Error checking: Parity
[5] Format & function: See TABLE P-16.
[6] Initial value at reset: Hard POR: All fields in ASI_AFAR_D1 are set to 0.

Other reset: Value in ASI_AFAR_D1 is unchanged.
[7] Update: When a new restrainable error is detected, ASI_AFAR_D1 is 

updated as defined in Section P.7.1 in the notes on the AFSR 
Prio_D1 column of TABLE P-15.
When program writes to ASI_AFAR_D1, all fields in 
ASI_AFAR_D1 are set to 0 and validated.

[8] Software access ldxa [%g0]ASI_AFAR_D1,%rN
stxa  %g0, [%g0]ASI_AFAR_D1

TABLE P-16 ASI_ASYNC_FAULT_ADDR_D1 (ASI_AFAR_D1) Bit Description 

Bit Name R/W Description

63:56 CONTENTS R Contents of ASI_AFAR_D1. This field has the following two functions:
• Indicates the type of error held in the other fields of ASI_AFAR_D1 as 

defined in TABLE P-15.
• Controls the recording of newly detected restrainable errors. Upon 

detection of a new restrainable error recordable in ASI_AFAR_D1, if the 
current ASI_AFAR_D1.CONTENTS < the AFSR Prio_D1 value of the new 
error, the new error is recorded into ASI_AFAR_D1. If the current 
ASI_AFAR_D1.CONTENTS ≥ the AFSR Prio_D1 value of the new error, the 
error is not recorded into ASI_AFAR_D1 and ASI_AFAR_D1 is unchanged.

55 WAY R D1 cache way with the error. Indicates the D1 cache way number (0 or 1) in 
which the error is detected.

50:48 VA_BIT15_13 R Indicates the virtual address bits 15:13 contained in the D1 cache index of the 
cache line that caused the error. Because the D1 cache is a VIPT cache, the D1 
cache index contains the virtual address bits 15:13.

42:6 PA_BIT42_6 R Indicates the physical address bits 42:6 for the D1 cache line that caused the 
error.

Others Reserved R Always reads as 0.

All W Any write access sets all fields in this register to 0. That is, when a program 
writes to ASI_AFAR_D1, the entire ASI_AFAR_D1 is set to 0 regardless of the 
write value; the error in ASI_AFAR_D1 is expunged. 
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P.7.3 ASI_ASYNC_FAULT_ADDR_U2

The ASI_ASYNC_FAULT_ADDR_U2 register is described in TABLE P-17. 

[1] Register name: ASI_ASYNC_FAULT_ADDR_U2 (ASI_AFAR_U2)
[2] ASI: 4D16
[3] VA: 0816
[4] Error checking: Parity
[5] Format & function: See TABLE P-17.
[6] Initial value at reset: Hard POR: All fields are set to 0.

Other reset: Values are unchanged.
[7] Update: When a new restrainable error is detected, ASI_AFAR_U2 is 

updated as defined in Section P.7.1 in the notes on the AFSR 
Prio_U2 column of TABLE P-15.
When a program writes to ASI_AFAR_U2, all fields in 
ASI_AFAR_U2 are set to 0 and validated.

[8] Software access: ldxa [%g0]ASI_AFAR_U2,%rN
stxa %g0, [%g0]ASI_AFAR_U2
Write to ASI_AFAR_U2 after read is expected.

TABLE P-17 ASI_ASYNC_FAULT_ADDR_U2 (ASI_AFAR_U2) Register Bit Description 

Bit Name R/W Description

63:56 CONTENTS R Contents of ASI_AFAR_U2. This field has the following two functions:
• Indicates the type of error held in the other fields of ASI_AFAR_U2 as 

defined in TABLE P-15. 
• Controls the recording of newly detected restrainable errors. Upon the 

detection of a new restrainable error recordable in ASI_AFAR_U2, if the 
current ASI_AFAR_U2.CONTENTS < the AFSR Prio_U2 value of the new 
error, the new error is recorded into ASI_AFAR_U2. If the current 
ASI_AFAR_U2.CONTENTS ≥ the AFSR Prio_U2 value of the new error, the 
error is not recorded in ASI_AFAR_U2 and ASI_AFAR_U2 is unchanged.

55:48 SYNDROME R Syndrome of incoming data at L2$ fill. When ASI_AFAR_U2.CONTENTS 
indicates CE_INCOMED or UE_L2$FILL, this field indicates the syndrome of 
the doubleword with error incoming from UPA bus. Otherwise, this field 
indicates the unpredictable value.
178 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



P.7.4 Expected Software Handling of Restrainable 
Errors
Error recording and information is expected for all restrainable errors.

The expected software recovery from each type of each restrainable error is 
described below.

■ ASI_AFSR.DG_L1$U2$STLB — The following status for the CPU is reported:

■ Performance is degraded by the way reduction in I1$, D1$, U2$, sITLB, or 
sDTLB.

■ CPU availability may be slightly down. If only one way facility is available 
among I1$, D1$, U2$, sITLB, and sDTLB and further way reduction is 
detected for this facility, the error_state transition error is detected.

Software stops the use of the CPU, if required.

■ ASI_AFSR.CE_INCOMED — If ASI_AFAR_U2 contains CE_INCOMED information 
and the physical address of the error indicates the cacheable area, the following 
software sequence to correct the memory block is expected:

a. Make the U2 cache line with the CE detection dirty without changing the data. 
Use the CASA instruction to write that same data to the U2 cache line.

42:3 PA_BIT42_3 R Physical address bit 42:3. Contains the value indicated by 
ASI_AFAR_U2.CONTENTS, as shown below: 

Others Reserved R Always read as 0.

All W Any write access sets all fields in this register to 0. That is, when a program 
writes to ASI_AFAR_U2, the entire ASI_AFAR_U2 is set to 0 regardless of the 
write value; any error recorded in ASI_AFAR_U2 is expunged. 

TABLE P-17 ASI_ASYNC_FAULT_ADDR_U2 (ASI_AFAR_U2) Register Bit Description  (Continued)

Bit Name R/W Description

 

ASI_AFAR_U2.CONTENTS Error Name Contents of PA_BIT42_3

4016 CE_INCOMED The physical address of the 
doubleword with the error.

8016 UE_RAW_L2$FILL The physical address of the 
doubleword with the error.

C016 UE_RAW_L2$INSD The physical address of the 
cache line (64-byte block) with 
the error. The least significant 3 
bits in the PA_BIT42_3 field 
are invalid and unpredictable.
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b. Write the U2 cache line with the CE detection to memory either by using the 
ASI_L2_CTRL.U2_FLUSH facility or by displacement flush.

c. Clear ASI_AFSR.CE_INCOMED and reload the memory block to U2 cache, 
using load instructions. Check whether the CE in memory has been corrected 
by inspecting ASI_AFSR.CE_INCOMED and ASI_AFAR_U2.

d. If the CE in memory block is not corrected, a permanent error may be detected. 
Avoid using the memory block with the permanent correctable error as much 
as possible. 

■ ASI_AFSR.UE_DST_BETO — This error is caused by either:

■ Invalid DTLB entry is specified, or

■ Invalid memory access instruction with physical address access ASI is executed 
in privileged software.

This error is always caused by a mistake in privileged software. Record the error 
and correct the erroneous privileged software.

■ ASI_AFSR.UE_RAW_L2$FILL, UE_RAW_L2$INSD, and UE_RAW_D1$INSD — Software 
handles these errors as follows:

■ Correct the cache line data containing the uncorrected error by executing a 
block store with commit instruction, if possible. Note that the original data is 
deleted by this operation.

■ For UE_RAW_L2$FILL, avoid using the memory block with the UE as much as 
possible.

■ No error indication in ASI_AFSR at ECC_error trap — Ignore the ECC_error trap. 

This situation may occur at the condition described in the TABLE P-2 on page 154 
(see the third row, last column, and “Deviation from the ideal specification”).
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P.8 Handling of Internal Register Errors
This section describes error handling for the following:

■ Most registers
■ ASR registers
■ ASI registers

P.8.1 Register Error Handling (Excluding ASRs and ASI 
Registers)
The terminology used in TABLE P-18 is defined as follows: 

TABLE P-18 shows error handling for most registers.

Column Term Meaning

Error Detect 
Condition

InstAccess The error is detected when the instruction accesses the register.

Correction W The error indication is removed when an instruction performs a 
full write to the register

ADE trap The error is removed by a full write to the register in the 
async_data_error hardware trap sequence.

TABLE P-18 Register Error Handling (Excluding ASRs and ASI Registers)

Register Name RW
Error 
Protect Error Detect Condition Error Type Correction

%rn RW Parity InstAccess IUG_%R W

%fn RW Parity InstAccess IUG_%F W

PC Parity Always IUG_PSTATE ADE trap

nPC Parity Always IUG_PSTATE ADE trap

PSTATE RW Parity Always IUG_PSTATE ADE trap

TBA RW Parity PSTATE.RED = 0 error_state W (by OBP)

PIL RW Parity PSTATE.IE = 1 
or InstAccess

IUG_PSTATE W

CWP, CANSAVE, 
CANRESTORE, 
OTHERWIN, 
CLEANWIN

RW Parity Always IUG_PSTATE ADE trap, W

TT RW None — — —

TL RW Parity PSTATE.RED = 0 error_state W (by OBP)
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P.8.2 ASR Error Handling 
The terminology used in TABLE P-19 is defined as follows: 

TABLE P-19 shows the handling of ASR errors. 

TPC RW Parity InstAccess IUG_TSTATE W

TNPC RW Parity InstAccess IUG_TSTATE W

TSTATE RW Parity InstAccess IUG_TSTATE W

WSTATE RW Parity InstAccess IUG_TSTATE W

VER R None — — —

FSR RW Parity Always IUG_%F ADE trap, W

Column Term Meaning

Error Detect 
Condition

AUG always The error is detected while 
(ASI_ERROR_CONTROL.UGE_HANDLER = 0) && 
(ASI_ERROR_CONTROL.WEAK_ED = 0)

InstAccess The error is detected when the instruction accesses the 
register.

Error Type (I)AUG_xxx The error is indicated by ASI_UGESR.IAUG_xxx = 1, and 
the error is an autonomous urgent error. 

I(A)UG_xxx The error is indicated by ASI_UGESR.IAUG_xxx = 1, and 
the error is an instruction urgent error.

Correction W The error is removed by a full write to the register by an 
instruction.

ADE trap The error is removed by a full write to the register in the 
async_data_error hardware trap sequence.

TABLE P-19 ASR Error Handling 

ASR 
Number Register Name RW Error Protect Error Detect Condition Error Type Correction

0 Y RW Parity InstAccess IUG_%R W

1 —

2 CCR RW Parity Always IUG_%R ADE trap, W

3 ASI RW Parity Always IUG_%R ADE trap, W

4 TICK RW None — — —

TABLE P-18 Register Error Handling (Excluding ASRs and ASI Registers)

Register Name RW
Error 
Protect Error Detect Condition Error Type Correction
182 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



P.8.3 ASI Register Error Handling
The terminology used in TABLE P-20 is defined as follows: 

5 PC R Parity Always IUG_PSTATE ADE trap

6 FPRS RW Parity Always IUG_%F ADE trap, W

7 —

8-15 —

16 PCR RW None — — —

17 PIC RW None — — —

18 DCR R None — — —

19 GSR RW Parity Always IUG_%F ADE trap, W

20 SET_SOFTINT W None — — —

21 CLEAR_SOFTINT W None — — —

22 SOFTINT RW Parity AUG always 
InstAccess

(I)AUG_CRE
I(A)UG_CRE

W
W

23 TICK_COMPARE RW None — — —

24 STICK RW Parity AUG always 
InstAccess

(I)AUG_CRE
I(A)UG_CRE

W
W

25 STICK_COMPARE RW Parity AUG always 
InstAccess

(I)AUG_CRE

I(A)UG_CRE

W
W

 (1 of 3)

Column Term Meaning

Error Protect Parity Parity protected.

ECC ECC (double-bit error detection, single-bit error correction) protected.

Gecc Generated ECC.

PP Parity propagation. The parity error in the input registers to calculate the 
register value is propagated.

TABLE P-19 ASR Error Handling  (Continued)

ASR 
Number Register Name RW Error Protect Error Detect Condition Error Type Correction
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Error Detect 
Condition

Always Error is always checked.

AUG always Error is checked when (ASI_ERROR_CONTROL.UGE_HANDLER = 0) && 
(ASI_ERROR_CONTROL.WEAK_ED = 0).

LDXA Error is checked when the register is read by LDXA instruction.

LDXA #I Error is checked when the register is read by LDXA instruction. 
Also, the register is used for the calculation of IMMU_TSB_8KB_PTR and 
IMMU_TSB_64KB_PTR. When the register has a UE and the register is used 
for the calculation of ASI_IMMU_TSB_PTR registers, the UE is propagated to 
the ASI_IMMU_TSB_PTR registers. Upon execution of the LDXA instruction 
to read ASI_IMMU_TSB_PTR with the propagated UE, the IUG_TSBP error is 
detected.

LDXA #D Error is checked when the register is read by LDXA instruction. 
Also, the register is used for the calculation of DMMU_TSB_8KB_PTR, 
DMMU_TSB_64KB_PTR, and DMMU_TSB_DIRECT_PTR. When the register has 
a UE and the register is used for the calculation of ASI_DMMU_TSB_PTR 
registers, the UE is propagated to the ASI_DMMU_TSB_PTR registers. Upon 
execution of the LDXA instruction to read ASI_DMMU_TSB_PTR with the 
propagated UE, the IUG_TSBP error is detected.

ITLB write Error is checked at the ITLB update timing after completion of the STXA 
instruction to write or demap an ITLB entry.

DTLB write Error is checked at the DTLB update timing after the completion of the STXA 
instruction to write or demap a DTLB entry.

Use for TLB Error is checked when the register is used for a TLB reference.

Enabled Error is checked when the facility is enabled.

intr_receive Error is checked when the UPA interrupt packet is received. When an 
uncorrectable error is detected in the received interrupt packet, the vector 
interrupt trap is caused but ASI_INTR_RECEIVE.BUSY = 0 is set. In this 
case, a new interrupt packet can be received after software writes 
ASI_INTR_RECEIVE.BUSY = 0.

BV interface Uncorrected error in the Barrier Variable transfer interface between the 
processor and the memory system is checked during the AUG_always 
period.

 (2 of 3)

Column Term Meaning
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Error Type error_state error_state transition error.

(I)AUG_xxxx The error is indicated by ASI_UGESR.IAUG_xxxx = 1, and the error class is 
autonomous urgent error.

I(A)UG_xxxx The error is indicated by ASI_UGESR.IAUG_xxxx = 1, and the error class is 
instruction urgent error.

Not detected 
(#dv)

 In SPARC64 V, the error is not detected. In the ideal specification, some 
errors should be detected but this behavior is not implemented. See 
SPARC64 V Implementation and the Ideal Specification on page 188.

COREERROR 
(#dv)

In SPARC64 V, the ASI_UGESR.IUG_COREERR is detected. In the ideal 
specification, other errors should be detected but this behavior is not 
implemented. See SPARC64 V Implementation and the Ideal Specification on 
page 188.
If an LDXA instruction is used to load an ASI register and an 
ASI_UGESR.IUG_COREERR error is detected, a trap will occur. If that happens 
and IUG_COREERR is the only error indicated in ASI_UGESR, it is expected 
that the trap handler will retry the LDXA instruction until the threshold of 
urgent errors is exceeded on the processor.

Others The name of the bit set to 1 in ASI_UGESR indicates the error type.

Correction RED trap The whole register is updated and corrected when a RED_state trap occurs.

W The whole register is updated and corrected by use of an STXA instruction to 
write the register.

W1AC The whole register is updated and corrected by use of an STXA instruction to 
write 1 to the specified bit in the register.

WotherI The register is corrected by a full update of all of the following ASI registers: 
• ASI_IMMU_TAG_ACCESS
• plus, when ASI_UGESR.IAUG_TSBCTXT = 1 is indicated in a single-ADE 

trap: ASI_IMMU_TSB_BASE, ASI_IMMU_TSB_PEXT, 
ASI_PRIMARY_CONTEXT, ASI_SECONDARY_CONTEXT 

WotherD The register is corrected by a full update of all of the following ASI registers:
• ASI_DMMU_TAG_ACCESS
• plus, when ASI_UGESR.IAUG_TSBCTXT = 1 is indicated in a single-ADE 

trap: ASI_DMMU_TSB_BASE, ASI_DMMU_TSB_PEXT, 
ASI_DMMU_TSB_SEXT, ASI_PRIMARY_CONTEXT, 
ASI_SECONDARY_CONTEXT

DemapAll The error is corrected by the demap all operation for the TLB with the error. 
Note that the demap all operation does not remove the locked TLB entry with 
uncorrectable error.

Interrupt 
receive

The register is corrected when the UPA interrupt packet is received.

 (3 of 3)

Column Term Meaning
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TABLE P-20 shows the handling of ASI register errors.

TABLE P-20 Handling of ASI Register Errors 

ASI VA
Register Name RW

Error 
Protect

Error Detect 
Condition Error Type Correction

4516 0016 DCU_CONTROL RW Parity Always error_state RED trap

0816 MEMORY_CONTROL RW Parity Always error_state RED trap

4816 0016 INTR_DISPATCH_STATUS R Gecc LDXA I(A)UG_CRE (UE)
ignored (CE)

None

4916 0016 INTR_RECEIVE RW Gecc LDXA I(A)UG_CRE (UE)
ignored (CE)

None

4A16 — UPA_CONFIGUATION R None — — —

4C16 0016 ASYNC_FAULT_STATUS RW1C None — — —

4C16 0816 URGENT_ERROR_STATUS R None — — —

4C16 1016 ERROR_CONTROL RW Parity Always error_state RED trap

4C16 1816 STCHG_ERROR_INFO R,W1AC None — — —

4D16 0016 AFAR_D1 R,W1AC Parity LDXA I(A)UG_CRE W1AC

4D16 0816 AFAR_U2 R,W1AC Parity LDXA I(A)UG_CRE W1AC

5016 0016 IMMU_TAG_TARGET R Parity LDXA #I IUG_TSBP WotherI

5016 1816 IMMU_SFSR RW None — — —

5016 2816 IMMU_TSB_BASE RW Parity LDXA #I I(A)UG_TSBCTXT W

5016 3016 IMMU_TAG_ACCESS RW Parity LDXA #I IUG_TSBP W (WotherI)

5016 4816 IMMU_TSB_PEXT RW Parity = ITSB_BASE IAUG_TSBCTXT W

5016 5816 IMMU_TSB_NEXT R Parity = ITSB_BASE IAUG_TSBCTXT W

5116 — IMMU_TSB_8KB_PTR R PP LDXA IUG_TSBP WotherI

5216 — IMMU_TSB_64KB_PTR R PP LDXA IUG_TSBP WotherI

5316 — SERIAL_ID R None — — —

5416 — ITLB_DATA_IN W Parity ITLB write IUG_ITLB DemapAll

5516 — ITLB_DATA_ACCESS RW Parity LDXA

ITLB write

IUG_ITLB
IUG_ITLB

DemapAll
DemapAll

5616 — ITLB_TAG_READ R Parity LDXA IUG_ITLB DemapAll

5716 — IMMU_DEMAP W Parity ITLB write IUG_ITLB DemapAll

5816 0016 DMMU_TAG_TARGET R Parity LDXA #D IUG_TSBP WotherD

5816 0816 PRIMARY_CONTEXT RW Parity LDXA #I, 
LDXA #D
Use for TLB
AUG always

I(A)UG_TSBCTXT 

I(A)UG_TSBCTXT 

(I)AUG_TSBCTXT 

W

W
W

5816 1016 SECONDARY_CONTEXT RW Parity = P_CONTEXT IAUG_TSBCTXT W

5816 1816 DMMU_SFSR RW None — — —

5816 2016 DMMU_SFAR RW Parity LDXA IAUG_CRE W

5816 2816 DMMU_TSB_BASE RW Parity LDXA #D I(A)UG_TSBCTXT W
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5816 3016 DMMU_TAG_ACCESS RW Parity LDXA #D IUG_TSBP W (WotherD)

5816 3816 DMMU_VA_WATCHPOINT RW Parity Enabled
LDXA

(I)AUG_CRE
I(A)UG_CRE

W
W

5816 4016 DMMU_PA_WATCHPOINT RW Parity Enabled
LDXA

(I)AUG_CRE
I(A)UG_CRE

W
W

5816 4816 DMMU_TSB_PEXT RW Parity = DTSB_BASE I(A)UG_TSBCTXT W

5816 5016 DMMU_TSB_SEXT RW Parity = DTSB_BASE I(A)UG_TSBCTXT W

5816 5816 DMMU_TSB_NEXT R Parity = DTSB_BASE I(A)UG_TSBCTXT None

5916 — DMMU_TSB_8KB_PTR R PP LDXA IUG_TSBP WotherD

5A16 — DMMU_TSB_64KB_PTR R PP LDXA IUG_TSBP WotherD

5B16 — DMMU_TSB_DIRECT_PTR R PP LDXA IUG_TSBP WotherD

5C16 — DTLB_DATA_IN W Parity DTLB write IUG_DTLB DemapAll

5D16 — DTLB_DATA_ACCESS RW Parity LDXA

DTLB write

IUG_DTLB
IUG_DTLB

DemapAll
DemapAll

5E16 — DTLB_TAG_READ R Parity LDXA IUG_DTLB DemapAll

5F16 — DMMU_DEMAP W Parity DTLB write IUG_DTLB DemapAll

6016 — IIU_INST_TRAP RW Parity LDXA No match at error W

6E16 0016 EIDR RW Parity Always IAUG_CRE W

6F16 — parallel barrier assist RW Parity AUG always
LDXA

BV interface

Not detected (#dv)
COREERROR (#dv)
(I)AUG_CRE

W
W
None

7716 4016–
8816

INTR_DATA0:7_W

INTR_DISPATCH_W

W
W

Gecc
Gecc

None
store

—
(I)AUG_CRE

W
W

7F16 4016–
8816

INTR_DATA0:7_R R ECC LDXA

intr_receive
COREERROR (#dv)
BUSY = 0

Interrupt 
Receive

EF16 — Parallel barrier assist RW Parity AUG always
LDXA

BV interface

Not detected (#dv)
COREERROR (#dv)
(I)AUG_CRE

W
W
None

TABLE P-20 Handling of ASI Register Errors  (Continued)

ASI VA
Register Name RW

Error 
Protect

Error Detect 
Condition Error Type Correction
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SPARC64 V Implementation and the Ideal Specification

In the table on page 183 (defining terminology in TABLE P-20), the rows (ASIs 6F16, 
7F16, and EF16) with error type of “Not detected (#dv)” or “COREERROR (#dv)” 
indicate that the SPARC64 V implementation deviates from the ideal specification, 
which is described in TABLE P-21 but is not implemented in SPARC64 V.

P.9 Cache Error Handling
In this section, handling of cache errors of the following types is specified:

■ Cache tag errors
■ Cache data errors in I1, D1, and U2 caches

This section concludes with the specification of automatic way reduction in the I1, 
D1, and U2 caches.

P.9.1 Handling of a Cache Tag Error

Error in D1 Cache Tag and I1 Cache Tag

Both the D1 cache (Data level 1) and the I1 cache (Instruction level 1) maintain a 
copy of their cache tags in the U2 (unified level 2) cache. The D1 cache tags, the D1 
cache tags copy, the I1 cache tags, and the I1 cache tags copy are each protected by 
parity.

TABLE P-21 Ideal Handling of ASI Register Errors (not implemented in SPARC64 V)

ASI VA
Register name RW

Error 
Protect

Error Detect 
Condition Error Type Correction

6F16 — Parallel barrier assist RW Parity AUG always
LDXA

BV interface

(I)AUG_CRE
I(A)UG_CRE
(I)AUG_CRE

W
W
None

7F16 4016-8816 INTR_DATA0:7_R R ECC LDXA

intr_receive

I(A)UG_CRE

BUSY is set to 0
Interrupt 
Receive

EF16 — Parallel barrier assist RW Parity AUG always
LDXA

BV interface

(I)AUG_CRE
I(A)UG_CRE
(I)AUG_CRE

W
W
None
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When a parity error is detected in a D1 cache tag entry or in a D1 cache tag copy 
entry, hardware automatically corrects the error by copying the correct tag entry 
from the other copy of the tag entry. If the error can be corrected in this way, 
program execution is unaffected.

Similarly, when a parity error is detected in an I1 cache tag entry or in a I1 cache tag 
copy entry, hardware automatically corrects the error by copying the correct tag 
entry from the other copy of the tag entry. If the error can be corrected in this way, 
program execution is unaffected.

When the error in the level-1 cache tag or tag copy is not corrected by the tag 
copying operation, the tag copying is repeated. If the error is permanent, a watchdog 
timeout or a FATAL error is then detected.

Error in U2 (Unified Level 2) Cache Tag

The U2 cache tag is protected by double-bit error detection and single-bit error 
correction ECC code.

When a correctable error is detected in a U2 cache tag, hardware automatically 
corrects the error by rewriting the corrected data into the U2 cache tag entry. The 
error is not reported to software.

When an uncorrectable error is detected in a U2 cache tag, one of following actions 
is taken, depending on the setting of OPSR (internal mode register set by the JTAG 
command):

1. A fatal error is detected and the CPU enters the CPU fatal error state.

2. The U2 cache tag uncorrectable error is treated as follows; however, in some cases, 
the fatal error is still detected.

a. When ASI_ERROR_CONTROL.WEAK_ED = 0:

The AUG_SDC is recognized during U2 cache tag error detection. 

If ASI_ERROR_CONTROL.UGE_HANDLER = 0, the AUG_SDC immediately 
generates an async_data_error trap with ASI_UGESR.AUG_SDC = 1. 

Otherwise:, if ASI_ERROR_CONTROL.UGE_HANDLER = 1, the AUG_SDC remains 
pending in hardware. At the point when 
ASI_ERROR_CONTROL.UGE_HANDLER is set to 0, an async_data_error exception 
is generated, with ASI_UGESR.AUG_SDC = 1.

b. When ASI_ERROR_CONTROL.WEAK_ED = 1:

Hardware ignores the U2 cache tag error if possible. However, the AUG_SDC or 
fatal error may still be detected. 
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P.9.2 Handling of an I1 Cache Data Error
I1 cache data is protected by parity attached to every doubleword.

When a parity error is detected in I1 cache data during an instruction fetch, 
hardware executes the following sequence:

1. Reread the I1 cache line containing the parity error from the U2 cache.

The read data from U2 cache must contain only the doubleword without error or 
the doubleword with the marked UE, because error marking is applied to U2 
cache outgoing data.

2. For each doubleword read from U2 cache:

a. When the doubleword does not have a UE, save the correct data in the I1 cache 
doubleword without parity error and supply the data for instruction fetch if 
required.

There is no direct report to software for an I1 cache error corrected by refilling 
data.

b. When the doubleword has a marked UE, set the parity bit in the I1 cache 
doubleword to indicate a parity error and supply the parity error data for the 
instruction fetch if required. 

3. Treat a fetched instruction with an error as follows:

When the instruction with a parity error is fetched but not executed in any way 
visible to software, the fetched instruction with the error is discarded.

Otherwise, fetch and execute the instruction with the indicated parity error. 
When the execution of the instruction is complete, an instruction_access_error 
exception will be generated (precise trap), and the marked UE detection and its 
ERROR_MARK_ID will be indicated in ASI_ISFSR. 

P.9.3 Handling of a D1 Cache Data Error
D1 cache data is protected by 2-bit error detection and 1-bit error correction ECC, 
attached to every doubleword. 

Correctable Error in D1 Cache Data

When a correctable error is detected in D1 cache data, the data is corrected 
automatically by hardware. There is no direct report to software for a D1 cache 
correctable error.
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Marked Uncorrectable Error in D1 Cache Data

When a marked uncorrectable error (UE) in D1 cache data is detected during the D1 
cache line writeback to the U2 cache, the D1 cache data and its ECC are written to 
the target U2 cache data and its ECC without modification. That is, a marked UE in 
D1 cache is propagated into the U2 cache. Such an error is not reported to software.

When a marked UE in D1 cache data is detected during access by a load or store 
(excluding doubleword store) instruction, the data access error is detected. The 
data_access_error exception is generated precisely and the marked UE detection and 
its ERROR_MARK_ID are indicated in ASI_DSFSR.

Raw Uncorrectable Error in D1 Cache Data During D1 Cache 
Line Writeback

When a raw (unmarked) UE is detected in D1 cache data during the D1 cache line 
writeback to the U2 cache, error marking is applied to the doubleword containing 
the raw UE with ERROR_MARK_ID = ASI_EIDR. Only the correct doubleword or the 
doubleword with marked UE is written into the target U2 cache line.

The restrainable error ASI_AFSR.UE_RAW_D1$INSD is detected.

Raw Uncorrectable Error in D1 Cache Data on Access by Load 
or Store Instruction

When a raw (unmarked) UE is detected in D1 cache data during access by a load or 
store instruction, hardware executes the following sequence:

1. Hardware writes back the D1 cache line and refills it from U2 cache. The D1 cache 
line containing the raw UE, whether it is clean or dirty, is always written back to 
the U2 cache. During this D1 cache line writeback to U2 cache, error marking is 
applied for the doubleword containing the raw UE with 
ERROR_MARK_ID = ASI_EIDR. The D1 cache line is refilled from the U2 cache 
and the restrainable error ASI_AFSR.UE_RAW_D1$INSD is detected.

2. Normally, hardware changes the raw UE in the D1 cache data to a marked UE. 
However, yet another error may introduce a raw UE into the same doubleword 
again. When a raw UE is detected again, step 1 is repeated until the D1 cache way 
reduction is applied.

3. At this point, hardware changes the raw UE in the D1 cache data to a marked UE. 
The load or store instruction accesses the doubleword with the marked UE. The 
marked UE is detected during execution of the load or store instruction, as 
described in Raw Uncorrectable Error in D1 Cache Data During D1 Cache Line 
Writeback, above.
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P.9.4 Handling of a U2 Cache Data Error
U2 cache data is protected by 2-bit error detection and 1-bit error correction ECC, 
attached to every doubleword.

 Correctable Error in U2 Cache Data

When a correctable error is detected in the incoming U2 cache fill data from UPA, the 
data is corrected by hardware, stored into U2 cache, and the restrainable error 
ASI_AFSR.CE_INCOMED is detected.

When a correctable error is detected in the data from U2 cache for I1 cache fill, D1 
cache fill, copyback to UPA, or writeback to UPA, both the transfer data and source 
data in U2 cache are corrected by hardware. The error is not reported to software.

Marked Uncorrectable Error in U2 Cache Data

For U2 cache data, a doubleword with marked UE is treated the same as a correct 
doubleword. No error is reported when the marked UE in U2 cache data is detected.

When a marked uncorrectable error (UE) is detected in incoming U2 cache fill data 
from UPA, the doubleword with the marked UE is stored without modification in 
the target U2 cache line.

When a marked uncorrectable error is detected in incoming data from the D1 cache 
to writeback D1 cache line, the doubleword with the marked UE is stored without 
modification in the target U2 cache line. Note that there is no raw UE in D1 writeback 
data because error marking is applied for D1 writeback data, as described in 
Handling of a D1 Cache Data Error on page 190.

When a marked UE is detected in the data read from the U2 cache for an I1 cache fill, 
D1 cache fill, copyback to UPA, or writeback to UPA, the doubleword with the 
marked UE is transferred without modification.

Raw Uncorrectable Error in U2 Cache Data

When a raw (unmarked) UE is detected in incoming U2 cache fill data from UPA, 
error marking is applied for the doubleword with the raw UE, using 
ERROR_MARK_ID = 0. The doubleword and its ECC are changed to the marked UE 
data, the changed data is stored into target U2 cache line, and the restrainable error 
ASI_AFSR.UE_RAW_L2$FILL is detected.

When a raw UE is detected in data read from U2 cache, such as for I1 cache fill, D1 
cache fill, copyback to UPA, or writeback to UPA, then error marking is applied for 
the doubleword with the raw UE, using ERROR_MARK_ID = ASI_EIDR. Both the 
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doubleword and its ECC in the read data and those in the source U2 cache line are 
changed to marked UE data. The restrainable error ASI_AFSR.UE_RAW_L2$INSD is 
detected.

Implementation Note – SPARC64 V detects ASI_AFSR.UE_FAW_L2$INSD only on 
writeback.

P.9.5 Automatic Way Reduction of I1 Cache, D1 Cache, and 
U2 Cache

When frequent errors occur in the I1, D1, or U2 cache, hardware automatically 
detects that condition and reduces the way, maintaining cache consistency.

Way Reduction Condition

Hardware counts the sum of the following error occurrences for each way of each 
cache: 

■ For each way of the I1 cache:
■ Parity error in I1 cache tag or I1 cache tag copy
■ I1 cache data parity error

■ For each way of the D1 cache:
■ Parity error in D1 cache tag or D1 cache tag copy
■ Correctable error in D1 cache data
■ Raw UE in D1 cache data

■ For each way of U2 cache:
■ Correctable error and uncorrectable error in U2 cache tag
■ Correctable error in U2 cache data
■ Raw UE in U2 cache data

If an error count per unit of time for one way of a cache exceeds a predefined 
threshold, hardware recognizes a cache way reduction condition and takes the 
actions described below.

I1 Cache Way Reduction

When way reduction condition is recognized for the I1 cache way W (W = 0 or 1), the 
following way reduction procedure is executed:

1. When only one way in I1 cache is active because of previous way reduction:

■ The CPU enters error_state.
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2. Otherwise:

■ All entries in I1 cache way W are invalidated and the way W will never be 
refilled.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

D1 Cache Way Reduction

When a way reduction condition is recognized for the D1 cache way W (W = 0 or 1), 
the following way reduction procedure is executed:

1. When only one way in D1 cache is active because of previous way reduction:

■ The CPU enters error_state.

2. Otherwise:

■ All entries in D1 cache way W are invalidated and the way W will never be 
refilled. On invalidation of each dirty D1 cache entry, the D1 cache line is 
written back to its corresponding U2 cache line.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

U2 Cache Way Reduction

When a way reduction condition is recognized for a U2 cache way, the U2 cache way 
reduction procedure is executed as follows:

1. When ASI_L2CTL.WEAK_SPCA = 0,

the U2 cache way reduction procedure (below) is started immediately.

2. Otherwise, when ASI_L2CTL.WEAK_SPCA = 1 is set,

the U2 cache way reduction procedure (below) becomes pending until 
ASI_L2CTL.WEAK_SPCA is changed to 0. When ASI_L2CTL.WEAK_SPCA is 
changed to 0, the U2 cache way reduction procedure will be started.

The U2 cache way W (W=0, 1, 2, or 3) reduction procedure:

1. When only one way in U2 cache is active because of previous way reductions:

■ All entries in U2 cache way W are at once invalidated (that is, all active U2 
cache entries are invalidated) and U2 cache way W remains as the only 
available U2 cache way. The U2 cache data is invalidated to retain system 
consistency.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software, even 
though the available U2 cache configuration is not changed as a result of the 
error.
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2. Otherwise:

■ All entries in available U2 cache ways, including way W, are invalidated to 
retain system consistency.

■ Way W becomes unavailable and is never refilled.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

P.10 TLB Error Handling
This section describes how TLB entry errors and sTLB way reduction are handled.

P.10.1 Handling of TLB Entry Errors
Error protection and error detection in TLB entries are described in 
TABLE P-22. 

Errors can occur during the following events:

■ Access by LDXA instruction
■ Virtual address translation (sTLB)
■ Virtual address translation (fTLB)

Error in TLB Entry Detected on LDXA Instruction Access

If a parity error is detected in a DTLB entry when an LDXA instruction attempts to 
read ASI_DTLB_DATA_ACCESS or ASI_DTLB_TAG_ACCESS, hardware 
automatically demaps the entry and an instruction urgent error is indicated in 
ASI_UGESR.IUG_DTLB.

TABLE P-22 Error Protection and Detection of TLB Entries 

TLB type Field Error Protection Detectable Error

sITLB and sDTLB tag Parity Parity error (Uncorrectable)

sITLB and sDTLB data Parity Parity error (Uncorrectable)

fITLB and fDTLB lock bit Triplicated None; the value is determined by majority

fITLB and fDTLB tag except lock bit Parity Parity error (Uncorrectable)

fITLB and fDTLB data Parity Parity error
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When a parity error is detected in an ITLB entry when an LDXA instruction attempts 
to read ASI_ITLB_DATA_ACCESS or ASI_ITLB_TAG_ACCESS, hardware 
automatically demaps the entry and an instruction urgent error is indicated in 
ASI_UGESR.IUG_ITLB.

Error in sTLB Entry Detected During Virtual Address 
Translation

When a parity error is detected in the sTLB entry during a virtual address 
translation, hardware automatically demaps the entry and does not report the error 
to software.

Error in fTLB Entry Detected During Virtual Address 
Translation

When an fTLB tag has a parity error, the fTLB entry never matches any virtual 
address. An fTLB tag error in a locked entry causes a TLB miss for the virtual 
address already registered as the locked TLB entry.

A parity error in fTLB entry data is detected only when the tag of the fTLB entry 
matches a virtual address.

When a parity error in the fITLB is detected at the time of an instruction fetch, a 
precise instruction_access_error exception is generated. The parity error in the fITLB 
entry and the fITLB entry index is indicated in ASI_IFSR.

When a parity error in fDTLB is detected for the memory access of a load or store 
instruction, a precise data_access_error exception is generated. The parity error in the 
fDTLB entry and the fDTLB entry index is indicated in ASI_DFSR.

P.10.2 Automatic Way Reduction of sTLB
When frequent errors occur in sITLB and sDTLB, hardware automatically detects 
that condition and reduces the way, with no adverse effects on software.

Way Reduction Condition

Hardware counts TLB entry parity error occurrences for each sITLB way and sDTLB 
way. If the error count per unit of time exceeds a predefined threshold, hardware 
recognizes an sTLB way reduction condition.
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sTLB Way Reduction

When a way reduction condition is recognized for the sTLB way W (W = 0 or 1), 
hardware executes the following way reduction procedures:

1. When only one way in sTLB is active because of previous way reductions:

■ The previously reduced way is reactivated.

2. Regardless of how many ways were previously active, way reduction occurs:

■ Hardware reduces the way and invalidates all entries in sTLB way W. Way W 
will never be refilled.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

P.11 Handling of Extended UPA Bus Interface 
Error
This section specifies how SPARC64 V handles UPA address and data bus errors.

P.11.1 Handling of Extended UPA Address Bus Error
The extended UPA address bus is protected by a parity bit attached to every 8 bits.

When the SPARC64 V processor detects a parity error in the extended UPA address 
bus, the processor takes one of the following actions, depending on the OPSR setting:

1. Upon detection of the error, the processor enters the CPU fatal error state.

2. Upon detection of the autonomous urgent error ASI_UGESR.AUG_SDC, the 
processor tries to continue running. However, in some situations, the processor 
detects a fatal error and enters the CPU fatal error state.

P.11.2 Handling of Extended UPA Data Bus Error
The extended UPA data bus is protected by a single-bit error correction and double-
bit error detection ECC code attached to every doubleword.

Error marking is applied to the data transmitted through the extended UPA data 
bus. The SPARC64 V processor will detect the following three types of errors at the 
extended UPA data bus interface:

■ Correctable error (1-bit error)
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■ Raw (unmarked) uncorrectable error (multibit error)
■ Marked uncorrectable error

Correctable Error on Extended UPA Data Bus

When the SPARC64 V processor detects a correctable error in the extended UPA 
incoming data, the processor corrects the data and uses it. The restrainable error 
ASI_AFSR.CE_INCOMED is indicated.

When the processor detects a correctable error in the outgoing data to the extended 
UPA data bus before the data transfer occurs, it corrects the error and sends the 
corrected data to the extended UPA data bus. If the correctable error is also detected 
in the data in the U2 cache, the processor corrects the source data in the U2 cache, 
too. The error is not reported to software.

Uncorrectable Error in Incoming Data from Extended UPA 
Data Bus 

At the time data is received, the SPARC64 V processor handles UEs in data coming 
from the extended UPA data bus, as follows:

■ Marked UE in incoming data from the extended UPA data bus. When the 
processor detects a marked UE in such data, the processor transfers that data to 
the destination register or cache without modification. The error is not reported to 
software when the marked UE is received at the extended UPA data bus interface. 

■ Raw UE in incoming data from the extended UPA data bus. When the processor 
detects a raw UE in such data, the processor applies error marking to that data. 
The processor changes the data to marked UE with ERROR_MARK_ID = 0, 
indicating a memory system error, and then transfers the marked UE data to the 
destination register or cache. 

If the error marking is applied to incoming cacheable data, the restrainable error 
ASI_AFSR.UE_RAW_L2$FILL is indicated. If the error marking is applied to incoming 
noncacheable data, the error is not reported to software at the time of error 
marking.

Note – The destination register or cache always receives the marked UE data for 
both marked UE and raw UE in the data sent via the extended UPA data bus, as 
described above.

Finally, the treatment of an uncorrectable error (UE) coming from the extended UPA 
bus depends on whether the access was to cacheable or noncacheable data and 
whether the access was an instruction fetch, load, or store instruction, as follows:
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■ Incoming noncacheable data fetched by an instruction fetch. When a UE is 
detected in such data, an instruction_access_error with marked UE is detected at the 
time the fetched instruction is executed. 

■ Incoming noncacheable data loaded by a load instruction. When the UE is 
detected in such data, a data_access_error with marked UE is detected at the time 
the load instruction is executed. 

■ Incoming cacheable data fetched by an instruction fetch. When the UE is 
detected in such data, the target U2 cache line is filled with the marked UE data 
and the target I1 cache line is filled with the parity error data. The 
instruction_access_error is detected when the fetched instruction is executed, as 
described in Handling of an I1 Cache Data Error on page 190.

■ Incoming cacheable data accessed by a load or store instruction. When the UE is 
detected in such data, the target U2 cache line and the target D1 cache line are 
filled with the marked UE data. The data_access_error is detected when the load or 
store instruction (excluding doubleword store) is executed, as described in Marked 
Uncorrectable Error in D1 Cache Data on page 191.

UE in Outgoing Data to Extended UPA Data Bus
At the time data is sent to the extended UPA bus, a SPARC64 V processor handles a 
UE in data outgoing data, as follows:

■ Marked UE in outgoing data to the extended UPA data bus. When the processor 
detects such data, the processor transfers the data without modification and does 
not report the error to software on the processor. 

■ Raw UE in outgoing data to the extended UPA data bus. When the processor 
detects such data, the processor applies error marking to the outgoing data. The 
data is changed to marked UE with ERROR_MARK_ID = ASI_EIDR, indicating the 
processor causing error. The marked UE data is then transferred to the destination. 

Note – The destination always receives marked UE data for both marked UE and raw 
UE in outgoing data from the processor to the extended UPA data bus, as described 
above.

Finally, the treatment of an uncorrectable error (UE) in outgoing data to the extended 
UPA bus depends on whether the access was to cacheable or noncacheable data, as 
follows:

■ Outgoing noncacheable data with UE detected. When a UE is detected in such 
data, no error is reported on the source processor but error reporting from the 
destination UPA port is expected.

■ Outgoing cacheable data with UE detected. When a UE is detected in such data, 
the processor transfers the marked UE data to the destination memory or cache. 
When the marked UE data is used by a processor or a channel, the error will be 
reported to software.
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F.APPENDIX Q

Performance Instrumentation

This appendix describes and specifies performance monitors that have been 
implemented in the SPARC64 V processor. The appendix contains these sections:

■ Performance Monitor Overview on page 201
■ Performance Monitor Description on page 203

■ Instruction Statistics on page 204
■ Trap-Related Statistics on page 206
■ MMU Event Counters on page 207
■ Cache Event Counters on page 208
■ UPA Event Counters on page 210
■ Miscellaneous Counters on page 211

Q.1 Performance Monitor Overview
For the definitions of performance counter registers, please refer to Performance 
Control Register (PCR) (ASR16) and Performance Instrumentation Counter (PIC) Register 
(ASI 17) in Chapter 5 of Commonality. 

Q.1.1 Sample Pseudocodes 

Counter Clear/Set

The PICs are read/write registers (see Performance Instrumentation Counter (PIC) 
Register (ASR 17) on page 22). Writing zero will clear the counter; writing any other 
value will set that value. The following pseudocode procedure clears all PICs 
(assuming privileged access): 
201



/* clear pics without altering sl/su values */
pic_init = 0x0;
pcr = rd_pcr();
pcr.ulro = 0x1; /* don’t change su/sl on write */
pcr.ovf = 0x0; /* clear overflow bits also */
pcr.ut = 0x0;
pcr.st = 0x0; /* disable counts for good measure */

for (i=0; i<=pcr.nc; i++) {
/* select the pic to be written */
pcr.sc = i;
wr_pcr(pcr);
wr_pic(pic_init);/* clear pic i */

}

Counter Event Selection and Start

Counter events are selected through PCR.SC and PCR.SU/PCR.SL fields. The 
following pseudocode selects events and enables counters (assuming privileged 
access): 

pcr.ut = 0x0; /* initially disable user counts */
pcr.st = 0x0; /* initially disable system counts */
pcr.ulro = 0x0; /* make sure read-only disabled */
pcr.ovro = 0x1; /* do not modify overflow bits */
/* select the events without enabling counters */
for(i=0; i<=pcr.nc; i++) {

pcr.sc = i;
pcr.sl = select an event;
pcr.su = select an event;
wr_pcr(pcr);

}
/* start counting */
pcr.ut = 0x1;
pcr.st = 0x1;
pcr.ulro = 0x1; /* for not changing the last su/sl */
/* resetting of overflow bits can be done here */
wr_pcr(pcr);

Counter Stop and Read

 The following pseudocode disables and reads counters (assuming privileged 
access): 

pcr.ut = 0x0; /* disable counts */
pcr.st = 0x0; /* disable counts */
pcr.ulro = 0x1; /* enable sl/su read-only */
pcr.ovro = 0x1; /* do not modify overflow bits */
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for(i=0; i<=pcr.nc; i++) {
/* assume rest of pcr data has been preserved */
pcr.sc = i;
wr_pcr(pcr);
pic = rd_pic();
picl[i] = pic.picl;
picu[i] = pic.picu;

}

Q.2 Performance Monitor Description
The performance monitors can be divided into the following groups:

1. Instruction statistics 
2. Trap statistics
3. MMU event counters
4. Cache event counters
5. UPA transaction event counters
6. Miscellaneous counters

Events in Group 1 are counted on commit of the instructions. The instructions 
executed speculatively are not counted. Events in groups 2 through 5 are counted 
when they occur. All event counters implemented in SPARC64 V are listed in 
TABLE Q-1. 

TABLE Q-1 Events and Encoding of Performance Monitor 

Encoding
Counter

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3

000000 cycle_counts

000001 instruction_counts

000010 Reserved

000011 Reserved

000100 Reserved

000101 Reserved

000110 Reserved

000111 Reserved

001000 load_store_instructions

001001 branch_instructions

001010 floating_instructions

001011 impdep2_instructions

001100 prefetch_instructions
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Q.2.1 Instruction Statistics
Instruction statistics counters can be monitored by any SU or SL of any PIC.

● Performance Monitor Cycle Count (cycle_counts)

Counts the cycles when the performance monitor is enabled. This counter is 
similar to the %tick register but can separate user cycles from system cycles, 
based on PCR.UT and PCR.ST selection.

001101 Reserved

001110 Reserved

001111 Reserved

010000 Reserved

010001 Reserved

010010 Reserved

010011 Reserved

010100 Reserved

010101 Reserved

010110 trap_all trap_int_vector trap_int_level trap_spill trap_fill trap_trap_inst trap_IMMU
_miss

trap_DMMU
_miss

010111 Reserved

100000 Reserved write_if_uTLB write_op_uTLB if_r_iu_req_mi
_go

op_r_iu_req
_mi_go

if_wait_all op_wait_all

100001 Reserved

100010 Reserved

100011 Reserved

110000 sx_miss
_wait_dm

sx_miss_wait
_pf

sx_miss_count
_dm

sx_miss_count_
pf

sx_read_count
_dm

sx_read_count
_pf

dvp_count_dm dvp_count_pf

110001 sreq_bi
_count

sreq_cpi_count sreq_cpb
_count

sreq_cpd_count upa_abus_busy upa_data_busy asi_rd_bar asi_wr_bar

110010 Reserved

110011 Reserved

111111 Disabled

Counter Any

Encoding 0000002

TABLE Q-1 Events and Encoding of Performance Monitor  (Continued)

Encoding
Counter

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3
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● Instruction Count (instruction_counts)

Counts the number of committed instructions. For user or system mode counts, 
this counter is exact. Combined with the cycle_counts, it provides instructions per 
cycle. 

IPC = instruction_counts / cycle_counts

If Instruction_counts and cycle_counts are both collected for user or system mode, 
IPC in user or system mode can be derived.

● Load/Store Instruction Count (load_store_instructions)

Counts the committed load/store instructions. Also counts atomic load-store 
instructions.

● Branch Instruction Count (branch_instructions)

Counts the committed branch instructions. Also counts CALL, JMPL, and 
RETURN instructions. 

● Floating Point Instruction Count (floating_instructions)

Counts the committed floating-point operations (FPop1 and FPop2). Does not 
count Floating-Point Multiply-and-Add instructions.

● Impdep2 Instruction Count (impdep2_instructions)

Counts the committed Floating Multiply-and-Add instructions. 

Counter Any

Encoding 0000012

Counter Any

Encoding 0010002

Counter Any

Encoding 0010012

Counter Any

Encoding 0010102

Counter Any

Encoding 0010112
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● Prefetch Instruction Count (prefetch_instructions)

Counts the committed prefetch instructions. 

Q.2.2 Trap-Related Statistics

● All Traps Count (trap_all)

Counts all trap events. The value is equivalent to the sum of type-specific traps 
counters.

● Interrupt Vector Trap Count (trap_int_vector)

Counts the occurrences of interrupt_vector_trap.

● Level Interrupt Trap Count (trap_int_level)

Counts the occurrences of interrupt_level_n.

● Spill Trap Count (trap_spill)

Counts the occurrences of spill_n_normal, spill_n_other.

● Fill Trap Count (trap_fill)

Count the occurrences of fill_n_normal, fill_n_other.

Counter Any

Encoding 0011002

Counter picu0

Encoding 0101102

Counter picl0

Encoding 0101102

Counter picu1

Encoding 0101102

Counter picl1

Encoding 0101102

Counter picu2

Encoding 0101102
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● Software Instruction Trap (trap_trap_inst)

Counts the occurrences of Tcc instructions.

● Instruction MMU Miss Trap (trap_IMMU_miss)

Counts the occurrences of fast_instruction_access_MMU_miss.

● Data MMU Miss Trap (trap_DMMU_miss)

Counts the occurrences of fast_data_instruction_access_MMU_miss.

Q.2.3 MMU Event Counters

● Instruction uTLB Miss (write_if_uTLB)

Counts the occurrences of instruction uTLB misses.

● Data uTLB Miss (write_op_uTLB)

Counts the occurrences of data uTLB misses.

Note – Occurrences of main TLB misses are counted by trap_IMMU_miss/
trap_DMMU_miss.

Counter picl2

Encoding 0101102

Counter picu3

Encoding 0101102

Counter picl3

Encoding 0101102

Counter picu1

Encoding 1000002

Counter picl1

Encoding 1000002
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Q.2.4 Cache Event Counters

● I1 Cache Miss Count (if_r_iu_req_mi_go)

Counts the occurrences of I1 cache misses.

● D1 Cache Miss Count (op_r_iu_req_mi_go)

Counts the occurrences of D1 cache misses.

● I1 Cache Miss Latency (if_wait_all)

Counts the total latency of I1 cache misses.

● D1 Cache Miss Latency (op_wait_all)

Counts the total latency of D1 cache misses.

● L2 Cache Miss Wait Cycle by Demand Access 
(sx_miss_wait_dm)

Counts the number of cycles from the occurrence of an L2 cache miss to data 
returned, caused by demand access.

● L2 Cache Miss Wait Cycle by Prefetch (sx_miss_wait_pf)

Counts the number of cycles from the occurrence of an L2 cache miss to data 
returned, caused by both software prefetch and hardware prefetch access.

Counter picu2

Encoding 1000002

Counter picl2

Encoding 1000002

Counter picu3

Encoding 1000002

Counter picl3

Encoding 1000002

Counter picu0

Encoding 1100002

Counter picl0

Encoding 1100002
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● L2 Cache Miss Count by Demand Access (sx_miss_count_dm)

Counts the occurrences of L2 cache miss by demand access.

● L2 Cache Miss Count by Prefetch (sx_miss_count_pf)

Counts the occurrences of L2 cache miss by both software prefetch and 
hardware prefetch access.

● L2 Cache Reference by Demand Access (sx_read_count_dm)

Counts L2 cache references by demand read access.

● L2 Cache Reference by Prefetch (sx_read_count_pf)

Counts L2 cache references by both software prefetch and hardware prefetch 
access.

● DVP Count by Demand Miss (dvp_count_dm)

Counts the occurrences of L2 cache miss by demand, with writeback request.

● DVP Count by Prefetch Miss (dvp_count_pf)

Counts the occurrences of L2 cache miss by both software prefetch and 
hardware prefetch, with writeback request.

Counter picu1

Encoding 1100002

Counter picl1

Encoding 1100002

Counter picu2

Encoding 1100002

Counter picl2

Encoding 1100002

Counter picu3

Encoding 1100002

Counter picl3

Encoding 1100002
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Q.2.5 UPA Event Counters
UPA event counters count the number of S_REQ_xxx requests received by a CPU in 
a given time.

● INV Receive Count (sreq_bi_count)

Counts the number of S_INV_REQ packets received.

● CPI Receive Count (sreq_cpi_count)

Counts the number of S_CPI_REQ packets received.

● CPB Receive Count (sreq_cpb_count)

Counts the number of S_CPB_REQ packets received.

● CPD Receive Count (sreq_cpd_count)

Counts the number of S_CPD_REQ packets received.

● UPA Address Bus Busy Cycle (upa_abus_busy)

Counts the number of bus-busy cycles of the UPA address bus, in units of UPA 
bus clocks, not in units of CPU clocks.

● UPA Data Bus Busy Cycle (upa_data_busy)

Counts the number of bus-busy cycles of the UPA data bus, in units of UPA bus 
clocks, not in units of CPU clocks.

Counter picu0

Encoding 1100012

Counter picl0

Encoding 1100012

Counter picu1

Encoding 1100012

Counter picl1

Encoding 1100012

Counter picu2

Encoding 1100012

Counter picl2

Encoding 1100012
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Q.2.6 Miscellaneous Counters

● Barrier-Assist ASI Read Count (asi_rd_bar)

Counts the number of read accesses to the barrier-assist ASI registers.

● Barrier-Assist ASI Write Count (asi_wr_bar)

Counts the number of write accesses to the barrier-assist ASI registers.

Counter picu3

Encoding 1100012

Counter picl3

Encoding 1100012
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F.APPENDIX R

UPA Programmer ’s Model

This chapter describes the programmers model of the UPA interface of the 
SPARC64 V. The registers for the UPA interface and the access method for those 
registers are described. The appendix contains the following sections:

■ Mapping of the CPU’s UPA Port Slave Area on page 213
■ UPA PortID Register on page 214
■ UPA Config Register on page 215

R.1 Mapping of the CPU’s UPA Port Slave 
Area
TABLE R-1 shows the mapping of the CPU’s UPA port slave area.

TABLE R-1 CPU’s UPA Port Slave Area Mapping

Relative Address 
(Hex) Length Possible Access Contents

0 0000 0000 8 Slave read from other 
UPA port

UPA PortID Register; defined in 
Section R.2.

0 0000 0008
~ 1 FFFF FFFF

-- None Nothing. Write is ignored and 
undefined value is read.
213



R.2 UPA PortID Register
The UPA PortID Register is a standard read-only register that accessible by a slave 
read from another UPA port. This register is located at word address 0016 in the slave 
physical address of the UPA port. This register cannot be read or written by ASI 
instructions.

The UPA PortID Register is illustrated below and described in TABLE R-2.

FC16 Reserved SREQ_S ECC Not
Valid

ONE_READ PINT_RDQ PREQ_DQ PREQ_RQ UPACAP Reserved

63 56 55 36 35 34 33 32 31 30 25 24 21 20 16 15 0

TABLE R-2 UPA PortID Register Fields 

Bit Field Description

63:56 FC16 Value = FC16

55:36 — Reserved. Read as 0.

35 SREQ_S Encodes the SREQ outstanding size as a unit of four. Set to 1, 
indicating maximum of four outstanding SREQs.

34 ECC ECCNotValid. Signifies that this UPA port does not support ECC. 
Set to 0.

33 ONE ONE_READ. Signifies that this UPA port supports only one 
outstanding slave read P_REQ transaction at a time. Set to 0.

32:31 PINT_RDQ PINT_RDQ<1:0>. Encodes the size of the PINT_RQ and PINT_DQ 
queues. Specifies the number of incoming P_INT_REQ requests 
that the slave port can receive. Specifies the number of 64-byte 
interrupt datums the UPA slave port can receive. Set to 1 since only 
one interrupt transaction can be outstanding to UPC at a time.

30:25 PREQ_DQ PREQ_DQ<5:0>. Encodes the size of PREQ_DQ queue. Specifies the 
number of incoming quadwords the UPA slave port can receive in 
its P_REQ write data queue. Set to 0, since incoming slave data 
writes are not supported by UPC.

24:21 PREQ_RQ PREQ_RQ<3:0>. Encodes the size of PREQ_RQ queue. Specifies the 
number of incoming P_REQ transaction request packets the UPA 
slave can receive. Set to 1, since only one incoming P_REQ to the 
UPC can be outstanding at a time.
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R.3 UPA Config Register
The UPA Config Register is an implementation-specific ASI read-only register. This 
register is accessible in the ASI 4A16 space from the host processor and cannot be 
accessed for a UPA slave read. 

Bits 16:0 and bit 22 are connected to bits 32:16 and bit 35 of the UPA_PortId register, 
respectively. Bits 21:17 are connected to the P_UPA_PORT_ID 4:0 external pins. The 
UPA Config Register is illustrated below and described in TABLE R-3. 

 

20:16 UPACAP UPACAP<4:0>. Indicates the UPA module capability type, as 
follows:

 UPACAP<4> Set; CPU is an interrupt handler.
 UPACAP<3> Set; CPU is an interrupter.
 UPACAP<2> Clear; CPU does not use UPA Slave_Int_L signal.
 UPACAP<1> Set; CPU is a cache master.
 UPACAP<0> Set;  CPU has a master interface.

[1] Register Name: ASI_UPA_CONFIGURATION_REGISTER

[2] ASI: 4A16
[3] VA: 0
[4] RW Supervisor read, a write is ignored.
[5] Data

Reserved WB_S WRI_
S

INT_S Reserved UC_S Reserved AM MCAP Reserved CLK_MODE PCON UPC_
CAP2

MID UPC_CAP

63 62 61 59 58 57 56 55 54 46 45 43 42 41 40 39 38 35 34 33 30 29 23 22 21 17 16 0

TABLE R-3 UPA Config Register Description 

Bits Field Description

63:62 — Reserved. Read as 0.

61:59 WB_S Specify the size of maximum outstanding writeback (RDx with DVP) as follows.
0002: 1
0012: 2
0102: 4
0112: 8
1002 – 1112: 8 but should not be specified for the extension.

TABLE R-2 UPA PortID Register Fields  (Continued)

Bit Field Description
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58:57 WRI_S Specify the size of maximum outstanding WRI packet as follows.
002: 1
012: 2
102: 4
112: 8

56:55 INT_S Specify the size of maximum outstanding INT packet as follows.
002: 1
012: 8
102 – 112: 8, but should not be specified for the extension.

54:46 — Reserved. Read as 0.

45:43 UC_S U2 cache size: 

0102: 2 MB

42:41 — Reserved. Read as 0.

40:39 AM Address Mode. Specifies the physical address size of UPA address field.
002: 41 bits
012: 43 bits
102 – 112: Reserved

38:35 MCAP The value set by OPSR is indicated. Consult the system document for the meaning and 
encoding of this field.

34 — Reserved. Read as 0.

33:30 CLK_MODE Specify the ratio between CPU clock and UPA’ clock.
00002 – 00112: Reserved
01002: 4:1
01012: 5:1
01102: 6:1
01112: 7:1
10002: 8:1
10012: 9:1
10102: 10:1
10112: 11:1
11002: 12:1
11012: 13:1
11102: 14:1
11112: 15:1

TABLE R-3 UPA Config Register Description  (Continued)

Bits Field Description
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29:23 PCON Processor Configuration. Separated into PCON<6:4> and PCON<3:0>.
PCON<6:4> (UPA_CONFIG<29:27>) represents the size of class 1 request queue in the 
System Controller (SC).

0002: 1
0012 – 0102: 1, but should not be specified for the extension
0112: 4
1002 – 1102: 4, but should not be specified for the extension
1112: 8

PCON<3:0> (UPA_CONFIG<26:23> represents the size of class 0 request queue in the 
System Controller (SC).

00002: 1
00012 – 00102: 1, but should not be specified for the extension
00112: 4
01002 – 11102: 4, but should not be specified for the extension
11112: 16

22 UPC_CAP2 This field is connected to the UPA’ Port ID register bit 35, SREQ_S field

21:17 MID Module (Processor) ID register. Identifies the unique processor ID. This value is loaded 
from the UPA_MasterID<4:0> pins.

16:0 UPC_CAP This field is a composite of the following fields in the UPA’ Port ID register.
16:15 PINT_RDQ
14:9 PREQ_DQ
8:5 PREQ_RQ
4:0 UPA_CAP

TABLE R-3 UPA Config Register Description  (Continued)

Bits Field Description
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F.APPENDIX S

Summary of Differences between 
SPARC64 V and UltraSPARC-III

The following table summarizes differences between SPARC64 V and UltraSPARC-III 
ISAs. This list is a summary, not an exhaustive list.

TABLE T-1 SPARC64 V and UltraSPARC-III Differences  (1 of 3)

Feature SPARC64 V
SPARC64 V 
Page UltraSPARC-III

UltraSPARC-
III Section

MMU 
architecture

SPARC64 V supports an 
UltraSPARC II-based MMU model. 
TLBs are split between instruction 
and data. Each side has a 2-level 
TLB hierarchy.

85 UltraSPARC-III implements a flat 
extended version of UltraSPARC 
II’s MMU architecture.

F-1

TTE format SPARC64 V supports a 43-bit 
physical address. In addition, the 
CV bit is ignored and unaliasing is 
maintained by hardware.

86 UltraSPARC-III supports a 43-bit 
physical address. Millennium 
will support a 47-bit PA.

F-2

TLB locking 
mechanism

Lock entries are supported in both 
fully-associative ITLB (fITLB) and 
fully-associative DTLB (fDTLB), 32-
entry each.

86 Lock entries supported only in 
the 16-entry fully-associative 
TLBs.

F-1, F-2

TSB hashing 
algorithm

Direct hashing with contents of the 
Context-ID register (13-bit). Has a 
UltraSPARC I/II compatibility 
mode.

88 Hash field in pointer extension is 
used for hashing address. Setting 
0 in the field maintains 
compatibility with UltraSPARC 
I/II.

F. 10.7

Floating-point 
Multiply-ADD

SPARC64 V implements these 
instructions in IMPDEP2.

50 Does not support FMA 
instructions.

—
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Floating-point 
subnormal 
handling

In general, SPARC64 V does not 
handle most subnormal operands 
and results in hardware. However, 
its handling differs from that of 
UltraSPARC-III.

65 In general, UltraSPARC-III does 
not handle most subnormal 
operands and results in 
hardware. However, its handling 
differs from that of SPARC64 V.

B.6.1

Block LD/ST 
implementation

SPARC64 V maintains register 
dependency between block load/
store and other instructions, but 
hardware memory order constraint 
is less than TSO.

47 UltraSPARC-III does not 
necessarily preserve memory or 
register dependency ordering in 
block load/store operations.

A.4

PREFETCH(A) 
implementation

Prefetch-invalidate is not 
implemented—SPARC64 V does 
not implement a P-cache.
Prefetch with fcn = 20-23 causes a 
trap on mDTLB miss.

57 Implements prefetch-invalidate 
(fcn = 16).
fcn = 20-23 does not cause a 
trap. Equivalent to fcn = 0-3.

A.49.1

Data cache 
flushing

Because SPARC64 V supports 
unaliasing by hardware, a flush of 
data cache is not needed.

— Because the data cache uses one 
virtual address bit for indexing, a 
displacement flushing algorithm 
or a cache diagnostic write is 
required when a virtual address 
alias is created.

1.4.4, M.2

TPC/TNPC state 
after power-on 
reset

Both TPC and TNPC values are 
undefined after a power-on reset.

141 TPC<5:0> is zero after any reset 
trap. TNPC will be equal to 
TNPC+4.

C.2.5

W-cache SPARC64 V does not support a W-
cache.

117 ASIs 3816–3B16 provide 
diagnostic access to the W-cache.

L.3.2

P-cache SPARC64 V does not support a 
P-cache.

117 ASIs 3016–3316 provide diagnostic 
access to the P-cache.

L.3.2

UPA 
Configuration 
ASI

SPARC64 V uses ASI 4A16 as the 
UPA configuration register.

215 UltraSPARC-III does not support 
UPA. Fireplane configuration 
register is assigned in ASI 4A16.

R.2

SRAM test init Not supported. — ASI 4016: not defined in manual. —

D-cache Not supported. — ASIs 4216 through 4716 support 
data cache diagnostic access.

L.3.2

E-cache ASIs 6B16 and 6C16 support E-
cache diagnostic access.

130 ASIs 4B16, 4E16, 7416, 7516, 7616, 
and 7E16 support control over the 
E-cache.

L.3.2

ASI_AFSR Many differences. 174 Many differences. P.4.2

TABLE T-1 SPARC64 V and UltraSPARC-III Differences  (2 of 3)

Feature SPARC64 V
SPARC64 V 
Page UltraSPARC-III

UltraSPARC-
III Section
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Error status ASI 4C16/0816 (ASI_UGESR): 
SPARC64 V implements an error 
status register to indicate where an 
error was detected.

165 Not implemented. —

Error Control 
Register

ASI 4C16/1016(ASI_ECR): 
SPARC64 V implements a control 
register to signal/suppress a trap 
when an error was detected.

161 Not implemented. —

ASI_AFAR Multiple registers (VA addressed) 
for L1D, L2. 43-bit PA.

177 Single register, multiple use. 
43-bit PA.

P.4.2

ASI device and 
serial ID

ASI 5316: provides an identification 
code for each processor.

119 ASI 5316: ASI_SERIAL_ID ?

I/D SFSR Many differences. 97 Many differences. Chapter 8

Error 
Identification 
Register (EIDR)

ASI 6E16: SPARC64 V implements 
an error ID register. Used to encode 
CPU-ID into error marking when 
an unrecoverable ECC error occurs.

161 Not implemented. —

I-cache and 
Branch 
Prediction Array

Not supported. — ASIs 6616 through 6816 and ASI 
6F16 support instruction cache 
and branch prediction array 
diagnostic access.

V.4, V.5

MCU Control 
Register

SPARC64 V does not have an 
MCU.

— ASI 7216: MCU Control Register. App. U

Module ID bits Implements 5-bit IDs. 136 Implements 10-bit IDs. R.2

Performance 
counters

SPARC64 V implements a different 
set of performance counters than 
those of UltraSPARC-III.

203 UltraSPARC-III implements a 
different set of performance 
counters than those of 
SPARC64 V.

App. Q

Dispatch 
Control Register 
(DCR)

SPARC64 V does not have the DCR. 22 UltraSPARC-III defines the DCR. 5.2.11

Version Register 
(VER)

For SPARC64 V:
manuf = 000416,
impl = 5, 
mask = <mask revision number>, 
maxtl = 5, 
maxwin = 7.

20 For UltraSPARC-III:
manuf = 001716, 
impl = 001416, 
mask = <mask revision number>, 
maxtl = 5, 
maxwin = 7.

C.3.4

Watchdog reset 
trap

Supports watchdog_reset trap. By 
setting OPSR, watchdog_reset trap 
is not signalled and CPU stays in 
error_state.

140 Supports watchdog_reset trap. O.1

TABLE T-1 SPARC64 V and UltraSPARC-III Differences  (3 of 3)

Feature SPARC64 V
SPARC64 V 
Page UltraSPARC-III

UltraSPARC-
III Section
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ASI_IMMU_TSB_64KB_PTR166
ASI_IMMU_TSB_8KB_PTR166
ASI_IMMU_TSB_BASE166
ASI_IMMU_TSB_PEXT166
ASI_IMMU_TSB_SEXT166
ASI_INT_ERROR_CONTROL118
ASI_INT_ERROR_RECOVERY118
ASI_INT_ERROR_STATUS118
ASI_INTR_DISPATCH_STATUS134
ASI_INTR_DISPATCH_W166
ASI_INTR_R135, 166
ASI_INTR_RECEIVE135
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ASI_INTR_W133, 134
ASI_ITLB_DATA_ACCESS196
ASI_ITLB_TAG_ACCESS196
ASI_L2_CTRL130
ASI_L2_DIAG_TAG131
ASI_L2_DIAG_TAG_READ_REG131
ASI_L3_DIAG_DATA0_REG118
ASI_L3_DIAG_DATA1_REG118
ASI_LBSYR0124
ASI_LBSYR1124
ASI_MCNTL92

JPS1_TSBP88
ASI_MEMORY_CONTROL_REG118
ASI_NUCLEUS57, 98, 101
ASI_NUCLEUS_LITTLE57, 101
ASI_PA_WATCH_POINT166
ASI_PARALLEL_BARRIER166
ASI_PHYS_BYPASS_EC_WITH_E_BIT127
ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE127
ASI_PHYS_BYPASS_WITH_EBIT26
ASI_PRIMARY57, 98, 101
ASI_PRIMARY_AS_IF_USER57
ASI_PRIMARY_AS_IF_USER_LITTLE57
ASI_PRIMARY_CONTEXT166
ASI_PRIMARY_LITTLE57, 101
ASI_SCRATCH120
ASI_SECONDARY57
ASI_SECONDARY_AS_IF_USER57
ASI_SECONDARY_AS_IF_USER_LITTLE57
ASI_SECONDARY_CONTEXT166
ASI_SECONDARY_LITTLE57
ASI_SERIAL_ID119
ASI_STCHG_ERROR_INFO153, 164
ASI_UGESR165

IUG_DTLB195
ASI_UPA_CONFIGURATION_REGISTER118
ASI_URGENT_ERROR_STATUS153, 165
ASI_VA_WATCH_POINT166
ASRs20
async_data_error exception25, 38, 46, 151, 152, 168
ASYNC_FAULT_STATUS register186
asynchronous error17
atomic

load quadword54
load-store instructions
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compare and swap37

B
barrier assist121

ASI read/write accesses, counting211
parallel187, 188

block
block store with commit120
load instructions120, 220
store instructions120, 220

blocked instructions10
branch history buffer2
branch instructions24
BSTW busy status register123
BSTW control register123
bus-busy cycle count210
bypass attribute bits104

C
cache

coherence128, 140
data

cache tag error handling188–189
characteristics127
data error detection190
description7
flushing220
modification125
protection190
uncorrectable data error191
way reduction194

error protection3
event counting208–209
instruction

characteristics126
data protection190
description7
error handling190
fetched9
flushing/invalidation129
invalidation125
way reduction193

level-1
characteristics125
tag 2 read130
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level-2
characteristics125
control register130
tag read130
unified127
use2

snooping140
synchronizing42
unified

characteristics127
description8

CALL instruction24, 29, 30, 53
CANRESTORE register166
CANSAVE register166
CASA instruction37, 102
CASXA instruction37, 102
catastrophic_error exception37
CE

correction157
counting in D1 cache data193
in D1 cache data190
detection175, 197
effect on CPU152
permanent180
in U2 cache tag189

CLEANWIN register75, 166
CLEAR_SOFTINT register183
cmask field56
committed, definition9
compare and swap instructions37
completed, definition9
context ID hashing93
counter

disabling/reading202
enabling202
instruction statistics204
overflow (in PIC)22
trap-related statistics206

CPopn instructions (SPARC V8)49
current exception (cexc) field of FSR register18
CWP register75, 166

D
DAE

error detection action155, 162
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error detection mask154
reporting151

data
cacheable

doubleword error marking158
error marking157
error protection158

corruption167
prefetch25

data_access_error exception55, 90, 101, 103, 130, 152, 199
data_access_exception exception54, 90, 102, 103, 120, 129
data_access_MMU_miss exception46
data_access_protection exception46, 55
data_breakpoint exception72
DCR

differences from UltraSPARC III221
error handling183
nonprivileged access22

DCU_CONTROL register186
DCUCR

access data format23
CP (cacheability) field23
CV (cacheability) field23
data watchpoint masks57
DC (data cache enable) field24
DM (DMMU enable) field23
field setting after POR23
IC (instruction cache enable) field24
IM field126, 140
IMI (IMMU enable) field23
PM (PA data watchpoint mask) field23
PR/PW (PA watchpoint enable) fields23
updating140
VM (VA data watchpoint mask) field23
VR/VW (VA data watchpoint enable) fields23
WEAK_SPCA field23

deferred trap37
deferred-trap queue

floating-point (FQ)17, 24
integer unit (IU)11, 17, 24, 71

denormal
operands18
results18

DG_L1$L2$STLB error194
DG_L1$U2$STLB error195
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dispatch (instruction)9
disrupting traps17, 37
distribution

nonspeculative10
speculative11

DMMU
access bypassing104
disabled91
internal register (ASI_MCNTL)92
registers accessed92
Synchronous Fault Status Register97
Tag Access Register90

DMMU_DEMAP register187
DMMU_PA_WATCHPOINT register187
DMMU_SFAR register186
DMMU_SFSR register186
DMMU_TAG_ACCESS register187
DMMU_TAG_TARGET register186
DMMU_TSB_64KB_PTR register187
DMMU_TSB_8KB_PTR register187
DMMU_TSB_BASE register186
DMMU_TSB_DIRECT_PTR register187
DMMU_TSB_NEXT register187
DMMU_TSB_PEXT register187
DMMU_TSB_SEXT register187
DMMU_VA_WATCHPOINT register187
DSFAR

on JMPL instruction error53
update during MMU trap90

DSFSR
bit description100
differences from UltraSPARC III221
format97
FT field102, 103, 129
on JMPL instruction error53
UE field101
update during MMU trap90
update policy103

DTLB_DATA_ACCESS register187
DTLB_DATA_IN register187
DTLB_TAG_READ register187

E
E bit of PTE26
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ECC_error exception46, 153, 155, 180
ee_opsr164
ee_second_watch_dog_timeout164
ee_sir_in_maxtl164
ee_trap_addr_uncorrected_error164
ee_trap_in_maxtl164
ee_watch_dog_timeout_in_maxtl164
error

asynchronous17
categories149
classification3
correctable152, 189
correction, for single-bit errors3
D1 cache data190
error_state transition164
fatal149
handling

ASI errors186
ASR errors182
most registers181

isolation3
marking differences between SPARC64 IV and SPARC64 V160
restrainable152
source identification159
transition150
U2 cache tag189
uncorrectable189

D1 cache data191
without direct damage152

urgent150
ERROR_CONTROL register186
ERROR_MARK_ID158, 159, 191
error_state36, 72, 138, 140, 155, 169
error_state transition error164
exceptions

catastrophic37
data_access_error55
data_access_protection55
data_breakpoint72
fp_exception_ieee_75453, 65
fp_exception_other62, 79
illegal_instruction30, 53, 57, 70, 71, 74
LDDF_mem_address_not_aligned80, 120
mem_address_not_aligned80, 120
persistence38
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privileged_action79
statistics monitoring206–207
unfinished_FPop62, 65

execute_state140
executed, definition9
execution

EU (execution unit)6
out-of-order25
speculative25

externally_initiated_reset (XIR)138

F
fast_data_access_MMU_miss exception90
fast_data_access_protection exception90, 102
fast_data_instruction_access_MMU_miss exception207
fast_instruction_access_MMU_miss exception46, 89, 99, 100, 207
fatal error

behavior of CPU150
cache tag189
definition149
detection163
types164
U2 cache tag189

fDTLB77, 85, 90, 91
fe_other164
fe_u2tag_uncorrected_error164
fe_upa_addr_uncorrected_error164
fetched, definition9
fill_n_normal exception206
fill_n_other exception206
finished, definition9
fITLB77, 85, 90
floating-point

deferred-trap queue (FQ)17, 24
denormal operands18
denormal results18
operate (FPop) instructions18
trap types

fp_disabled48, 53, 57, 74
unimplemented_FPop70

FLUSH instruction70, 73
flushing data caches220
FMADD instruction30, 45
FMADDd instruction50
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FMADDs instruction50
FMSUB instruction30, 45
FMSUBd instruction50
FMSUBs instruction50
FNMADD instruction45
FNMADDd instruction50
FNMADDs instruction50
FNMSUB instruction45
FNMSUBd instruction50
FNMSUBs instruction50
formats, instruction28
fp_disabled exception30, 48, 53, 57, 74
fp_exception_ieee_754 exception53, 65
fp_exception_other exception46, 62, 79
FQ17, 24
FSR

aexc field19
cexc field18, 19
conformance19
NS field62
TEM field19
VER field18

fTLB78, 87, 94

G
GSR register183

H
high-speed synchronization121

I
I_UGE

definition151
error detection action155, 162
error detection mask154
type150

IAE
error detection action155
error detection mask154
reporting151

IEEE Std 754-198518, 61
IIU_INST_TRAP register46, 187
illegal_instruction exception24, 30, 53, 57, 70, 71, 74
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IMMU
internal register (ASI_MCNTL)92
registers accessed92
Synchronous Fault Status Register97

IMMU_DEMAP register186
IMMU_SFSR register186
IMMU_TAG_ACCESS register186
IMMU_TAG_TARGET register186
IMMU_TSB_64KB_PTR register186
IMMU_TSB_8KB_PTR register186
IMMU_TSB_BASE register186
IMMU_TSB_NEXT register186
IMMU_TSB_PEXT register186
IMPDEP1 instruction30, 49
IMPDEP2 instruction30, 49, 53, 74, 83
IMPDEP2B instruction28, 50
IMPDEPn instructions49, 50
impl field of VER register18
implementation number (impl) field of VER register71
initiated, definition9
instruction

execution25
formats28
prefetch26

instruction fields, reserved45
instruction_access_error exception46, 90, 98, 100, 130, 152, 196, 199
instruction_access_exception exception46, 90, 99, 100
instruction_access_MMU_miss exception46
instructions

atomic load-store37
blocked10
cache manipulation128–131
cacheable126
committed, definition9
compare and swap37
completed, definition9
control unit (IU)6
count, committed instructions205–206
executed, definition9
fetched, definition9
fetched, with error190
finished, definition9
floating-point operate (FPop)18
FLUSH73
IMPDEP274
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implementation-dependent (IMPDEP2)30
implementation-dependent (IMPDEPn)49, 50
initiated, definition9
issued, definition9
LDDFA80
prefetch91
reserved fields45
stall10
statistics counters204
timing46

integer unit (IU) deferred-trap queue11, 17, 24, 71
internal ASI, reference to103
interrupt

causing trap17
dispatch133
level 1522

Interrupt Vector Dispatch Register136
Interrupt Vector Receive Register136
interrupt_level_n exception206
interrupt_vector_trap exception38, 206
INTR_DATA0:7_R register, error handling187
INTR_DATA0:7_W register, error handling187
INTR_DISPATCH_STATUS register133, 186
INTR_DISPATCH_W register187
INTR_RECEIVE register186
I-SFSR

update during MMU trap90
ISFSR

bit description98
differences from UltraSPARC III221
format97
FT field99
update policy100

issue unit9
issued (instruction)9
issue-stalling instruction

instructions
issue-stalling10

ITLB_DATA_ACCESS register186
ITLB_DATA_IN register186
ITLB_TAG_READ register186

J
JEDEC manufacturer code20
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JMPL instruction29, 53
JPS1_TSBP mode93
JTAG command91, 164, 189

L
LBSY control register122
LDD instruction37
LDDA instruction37, 54, 102, 103
LDDF_mem_address_not_aligned exception80, 120
LDDFA instruction80, 120
LDQF_mem_address_not_aligned exception46
LDSTUB instruction37, 102
LDSTUBA instruction102
LDXA instruction178, 185, 195
load quadword atomic54
LoadLoad MEMBAR relationship56
load-store instructions

compare and swap37
D1 cache data errors191
memory model47

LoadStore MEMBAR relationship56
Lookaside MEMBAR relationship56

M
machine sync10
MAXTL36, 73, 138, 140
MCNTL.NC_CACHE126, 127
mem_address_not_aligned exception54, 80, 90, 103, 120, 129
MEMBAR

#LoadLoad56
#LoadStore56
#Lookaside56
#MemIssue56
#StoreLoad56
#Sync56
functions56
in interrupt dispatch134
instruction56
partial ordering enforcement56

membar_mask field56
memory model

PSO41
RMO41
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store order (STO)75
TSO41, 42

MEMORY_CONTROL register186
mmask field56
MMU

disabled91
event counting207
exceptions recorded89
Memory Control Register92
physical address width86
registers accessed92
TLB data access address assignment94
TLB organization85

MOESI cache-coherence protocol128
Multiply Add/Subtract instructions53

N
noncacheable access54, 126
nonleaf routine53
nonspeculative distribution10
nonstandard floating-point (NS) field of FSR register18, 71
nonstandard floating-point mode18, 62

O
OBP

facilitating diagnostics126
notification of error163
resetting WEAK_ED150
validating register error handling181
with urgent error151

Operating Status Register (OPSR)37, 140, 216, 221
OTHERWIN register75, 166
out-of-order execution25

P
panic process152
parallel barrier assist187, 188
parity error

counting in D1 cache193
D1 cache tag189
fDTLB lookup91
I1 cache data190
I1 cache tag189
238 SPARC JPS1 Implementation Supplement: Fujitsu SPARC64 V • Release 1.0, 1 July 2002



partial ordering, specification56
partial store instruction

UPA transaction57
watchpoint exceptions57

partial store instructions120
partial store order (PSO) memory model41
PC register169
PCR

accessibility20
counter events, selection202
error handling183
NC field21
OVF field21
OVRO field21
PRIV field20, 58, 59
SC field21, 202
SL field202
ST field204
SU field202
UT field204

performance monitor
events/encoding203
groups203

pessimistic overflow65
pessimistic zero64
PIC register

clearing201
counter overflow22
error handling183
nonprivileged access22
OVF field22

PIL register38
POR reset155, 161, 163, 174

resets
POR178

power-on reset (POR)
DCUCR settings23
implementation dependency72
RED_state140

precise traps17, 37
prefetch

data25
instruction26, 91, 220
variants58

prefetcha instruction57
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PRIMARY_CONTEXT register186
privileged registers19
privileged_action exception20, 79, 90, 103, 117

PCR access58, 59
privileged_opcode exception22
processor states

after reset141
error_state36, 72, 140
execute_state140
RED_state36, 140

program counter (PC) register75
program order26
PSTATE register

AM field29, 49, 53, 75
IE field134, 135
MM field42
PRIV field20, 58, 59
RED field20, 126, 140, 141

PTE
E field26

Q
quadword-load ASI54
queues11

R
RDPCR instruction20, 58
RDTICK instruction19
reclaimed status10
RED_state156, 169

entry after failure/reset36
entry after SIR138
entry after WDR140
entry after XIR138
entry trap17
processor states140, 141
restricted environment36
setting of PSTATE.RED20
trap vector36
trap vector address (RSTVaddr)74

registers
BSTW busy status123
BSTW control123
clean windows (CLEANWIN)75
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clock-tick (TICK)73
current window pointer (CWP)75
Data Cache Unit Control (DCUCR)23
LBSY control122
other windows (OTHERWIN)75
privileged19
renaming10
restorable windows (CANRESTORE)75
savable windows (CANSAVE)75

relaxed memory order (RMO) memory model41
reservation station11
reserved fields in instructions45
reset

externally_initiated_reset (XIR)138
power_on_reset (POR)72
software_initiated_reset (SIR)138
WDR146

resets
POR155, 161, 163, 174
WDR155, 163

restorable windows (CANRESTORE) register75
restrainable error

definitions152
handling

ASI_AFSR.CE_INCOMED179
ASI_AFSR.UE_DST_BETO180
ASI_AFSR.UE_RAW_L2$FILL180
UE_RAW_D1$INSD180
UE_RAW_L2$INSD180

software handling179
types152

Return Address Stack
use in JMPL instruction53
with CALL and JMP instructions30

return prediction hardware30
rs3 field of instructions28
RSTVaddr36, 74, 138, 140

S
S_CPB_REQ packets received count210
S_CPD_REQ packets received count210
S_CPI_REQ packets received count210
S_INV_REQ packets received count210
savable windows (CANSAVE) register75
SAVE instruction53
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scan
definition11
ring11

sDTLB77, 85, 90
SECONDARY_CONTEXT register186
SERIAL_ID register186
SET_SOFTINT register183
SHUTDOWN instruction58
SIR instruction138
sITLB77, 85, 90
size field of instructions28
SOFTINT register38, 135, 166, 183
speculative

distribution11
execution25

spill_n_normal exception206
spill_n_other exception206
stall (instruction)10
STBAR instruction59
STCHG_ERROR_INFO register186
STD instruction37
STDA instruction37
STDFA instruction120
STICK register166, 183
STICK_COMP register166
STICK_COMPARE register183
sTLB78, 87, 94
store order (STO) memory model75
store queue7
StoreLoad MEMBAR relationship56
StoreStore MEMBAR relationship56
STQF_mem_address_not_aligned exception46
STXA instruction

ASI read method178
stxa instruction

ASI designation105
virtual address designation105

superscalar11, 25
SWAP instruction37, 102
SWAPA instruction102
sync (machine)11
Sync MEMBAR relationship56
synchronizing caches42
syncing instruction11
system controller122
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T
Tag Access Register96
Tcc instruction, counting207
TICK register19, 73
TICK_COMPARE register183
TL register138, 140
TLB

CP field126
data

characteristics77
in TLB organization85

data access address95
Data Access/Data In Register96
index95
instruction

characteristics77
in TLB organization85

main10, 36
multiple hit detection86
replacement algorithm93

TNP register166
total store order (TSO) memory model41, 42
TPC register166
transition error150
traps

deferred37
disrupting17, 37
precise17

TSB
Base Register97
Extension Register97
size97

TSTATE register
CWP field19
error bit in ASI_UCESR register166

TTE
CV field126
differences from UltraSPARC III219

U
U2 cache

error handling179, 180
operation control (SXU)8
tag error protection189
uncorrectable data error192
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way reduction194
uDTLB10, 85, 90
UE_RAW_D1$INSD error191
UE_RAW_L2$FILL error192
uITLB10, 85, 90
uncorrectable error152, 167
unfinished_FPop exception62, 65
unimplemented_FPop floating-point trap type70
unimplemented_LDD exception46
unimplemented_STD exception46
UPA

bus error176
Config Register215
port slave area213
PortID register214
UPA_CONFIGUATION register error handling186

UPA_XIR_L pin138
urgent error

definition150
types

A_UGE150
DAE150
IAE150
instruction-obstructing150

URGENT_ERROR_STATUS register186
uTLB10, 36, 86

V
VA_watchpoint exception103
var field of instructions28
VER register20, 119, 221
version (ver) field of FSR register71

W
watchdog timeout164, 167, 189
watchdog_reset (WDR)37, 80, 140, 146, 221
watchpoint exception

on block load-store48
on partial store instructions57
quad-load physical instruction55

WDR reset155, 163
writeback cache127
WRPCR instruction20, 59
WRPR instruction140, 141
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