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Abstract—In this paper, we introduce a new highly 
scalable interconnect called Tofu interconnect D that will be used 
in the post-K machine. This machine will officially be operational 
around 2021. The letter D represents high “density” node and 
“dynamic” packet slicing for “dual-rail” transfer. Herein we 
describe the design and the evaluation results of TofuD. Due to 
the high-density packaging, the optical link ratio of TofuD has 
decreased to 25% from the 66% optical link ratio of Tofu2. 
TofuD applies a new technique called dynamic packet slicing to 
reduce latency and to improve fault resilience. The evaluation 
results show that the one-way 8-byte Put latency is 0.49 μs. This 
is 31% lower than the latency of Tofu2. The injection rate per 
node is 38.1 GB/s which is approximately 83% of the injection 
rate of Tofu2. The link efficiency is as high as approximately 
93%. 

Keywords— high-performance computing, interconnect, high-
density packaging, fault resilience 

I. INTRODUCTION 

The Tofu interconnect family is a group of system 
interconnects for highly scalable HPC systems developed by 
Fujitsu. The Tofu Interconnect D (TofuD) is a new member to 
this family and designed for used in the post-K machine [1] 
that will be operational around 2021. Tofu stands for “torus 
fusion” that represents the designed combination of dimensions 
with an independent configuration and a routing algorithm. The 
letter D represents high “density” node and “dynamic” packet 
slicing for “dual-rail” transfer. In this paper, we describe the 
design overview, specification, and evaluation results of TofuD. 
The design overview includes the new node configuration that 
incorporates the high-density memory packaging technology, 
the optimizations for the increasing number of non-uniform 
memory access (NUMA) domains, and a new packet transfer 
technique that reduces latency and improves resilience. 

Section II explains the background of this work. Section III 
presents related work. Section IV introduces the design of 
TofuD, and Section V presents the results of performance 
evaluation. Section VI concludes this paper. 

II. BACKGROUND 

A. Tofu Interconnect 
The Tofu interconnect [2][3] was developed for the K 

computer [4] that became operational in 2012. The 6D 
mesh/torus network of Tofu achieved high scalability of 82,944 
compute nodes, and the virtual 3D torus rank mapping scheme 
provided both high availability and topology-aware 
programmability. Tofu was also used in the PRIMEHPC FX10 
system which doubled the number of processor cores per node 
to sixteen from eight of the K computer. 

A node address in the physical 6D network is represented 
by six-dimensional coordinates X, Y, Z, A, B, and C. The A 
and C coordinates can be 0 or 1, and the B coordinate can be 0, 
1, or 2. The range of the X, Y, and Z coordinates depends on 
the system size. Two nodes whose coordinates are different by 
1 in one axis and identical in the other five axes are “adjacent” 
and are connected to each other. When a certain axis is 
configured as a torus, the node with coordinate 0 in the axis 
and the node with the maximum coordinate value are 
connected to each other. The A- and C-axes are fixed to the 
mesh configuration and the B-axis is fixed to the torus 
configuration. Each node has 10 ports for the 6D mesh/torus 
network. Each of the X-, Y-, Z-, and B-axes uses two ports, 
and each of the A- and C-axes use one port. 

Each link provided 5.0 GB/s peak throughput. Each link 
had 8 lanes of high-speed differential I/O signals at a 6.25-
Gbps data rate. Tofu was implemented as an interconnect 
controller (ICC) chip with 80 lanes of signals for the network. 
All links were electric, and there was no optical link in the 
original Tofu interconnect. 

Each node had four Tofu network interfaces (TNIs) so that 
four data were simultaneously transmitted to four independent 
directions and four data were received from four independent 
directions. The injection bandwidth per node was 20 GB/s. The 
total injection bandwidth (which yields the theoretical peak 
performance of the nearest neighbor data exchange) of the K 
computer was 1.66 PB/s. The bisection bandwidth (which 
yields the theoretical peak performance of global data 
exchange) of the K computer was 46.1 TB/s for the physical 
18×2×2 mesh and the 24×16×3 torus network, or 34.6 TB/s for 
the virtual 48×36×48 torus network. In a large torus network, 
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there are performance differences of one to two orders of 
magnitude depending on the communication pattern; therefore 
topology-aware tuning of applications is important. 

The TNI provided the communication function of remote 
direct memory access (RDMA) Put/Get, system packet, and 
Tofu barrier. The system packet was used for system control 
and IP communication. The Tofu barrier handles multiple 
stages of communication for barrier synchronization with 
hardware that is unaffected by OS jitter that severely 
deteriorates the latency when software handles the 
communication. Barrier gate (BG) is a hard-wired module that 
synchronously communicates with other BGs. Specifically, 
each BG waits for signals from up to two preset BGs, and then 
transmits signals to up to two other preset BGs. There are two 
types of BG, start-and-end point and relay point. Each start-
and-end point BG is fixedly associated with an interface called 
a barrier channel (BCH). The MPI library allocates these 
communication resources at the creation of each communicator. 
The reduce-broadcast tree algorithm consumes one BCH and 
five BGs, or the recursive-doubling algorithm consumes one 
BCH and log2(n) BGs. A BG can perform the reduction 
operation so that the Tofu barrier can perform all-reduce 
collective communication that is limited to one element. In 
Tofu, the Tofu barrier was available only on TNI number 0 and 
there were 8 BCHs and 64 BGs; 8 BGs were for start-and-end 
points and 56 BGs were for relay points. Therefore, up to eight 
communicators per node could simultaneously use the Tofu 
barrier. When there were multiple processes on a node, the 
intra-node processes were synchronized by software and the 
representative process used a BCH for the inter-node 
synchronization. 

B. Tofu Interconnect 2 
The next version Tofu interconnect 2 (Tofu2) [5][6] was 

designed for the PRIMEHPC FX100 system launched in 2015. 
Each node of FX100 had eight packages of hybrid memory 
cube (HMC) that contained a stack of memory dice. In contrast, 
each node of the K computer and FX10 had eight inline 
memory modules that had been used over 30 years. This 
transition from a wide memory module to a small memory 
package reduced the node footprint of FX100. 

To reduce the node footprint further, the Tofu2 
implementation also shifted to processor chip integration from 
the independent ICC chip of Tofu. Considering the balance 
with 128 collocated signal lanes for memory on the processor 
chip, Tofu2 halved the number of signal lanes to 40 from the 
80 signal lanes of Tofu. To compensate for halving the number 
of signal lanes, Tofu2 significantly improved the data rate of 
the signals from 6.25-Gbps to 25.78125-Gbps by introducing 
optical links. The link bandwidth and the injection bandwidth 
per node were increased to 12.5 GB/s and 50 GB/s, 
respectively. 

In the communication function of Tofu2, the following 
features were extended; RDMA atomic read modify write, 
triggered communication (called session mode for non-
blocking collective communication), and RDMA for system 
use. 

In FX100, not only the number of compute cores were 
increased to 32, but the recommended number of user 
processes in a node was also increased from 1 to 2 because two 
NUMA domains called core-memory groups (CMGs) were 
introduced on a chip. Therefore, the number of RDMA 
communication resources called control queues (CQs) was 
required to be increased to allocate dedicated CQ to each user 
process. In Tofu, each TNI had three CQs and one out of the 
three CQs was fixed for system use. For one or two user 
processes per node, each process was assigned one dedicated 
CQ per TNI and the MPI communication library internally 
used four CQs simultaneously. When the number of processes 
per node exceeded two, the total number of assigned CQs for 
each process decreased. When the number of processes per 
node exceeded eight, CQs were shared by multiple processes. 
In Tofu2, the number of CQs per TNI increased from 3 to 12 to 
avoid shared CQ even if the number of processes per node was 
32. 

C. The Post-K Computer 
The post-K computer is a system developed to replace the 

K computer and will start operating around 2021. The post-K 
computer is designed to take full advantage of the assets of the 
K computer such as applications, users, tools, system 
operational knowledge, and the facility. The post-K is required 
not only to expand application domains, but also to 
significantly improve application performance, specifically up 
to 100 times or more than that on the K. Fujitsu cooperates 
with the asset holder RIKEN and develops leading edge 
technologies of FX100 to construct the post-K machine. 

III. RELATED WORK 

This section describes the system interconnects used in the 
recent world-class systems other than the Tofu interconnect 
family. All systems have the same level of bisection bandwidth 
which represents the theoretical peak performance of global 
data exchange. On the other hand, the total injection bandwidth 
significantly differs depending on the type of network topology. 
Some systems have a total injection bandwidth close or equal 
to their own bisection bandwidth and the other systems have a 
total injection bandwidth much higher than their own bisection 
bandwidth. 

A. InfiniBandTM 
InfiniBandTM (IB) [7] is a standard specification of 

interconnect defined by the InfiniBand® Trade Association. IB 
products have been widely used to build HPC clusters. The 
network interface is called host channel adapter (HCA) and an 
ordinary HCA is implemented as a discrete chip and mounted 
on an adaptor card. An ordinary IB network is constructed by 
using switch boxes. Constructing an interconnection network 
with independent components such as adapter cards and switch 
boxes is disadvantageous in terms of packaging density and 
power consumption. However, there is the advantage in the 
flexibility of configuration. For example, a node configuration 
that has an increased number of HCAs enhances injection 
bandwidth and accelerates communication intensive 
applications. In the other example, the network configuration 
called a full-bisection bandwidth fat-tree, of which the 
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bisection bandwidth is equivalent to the total injection 
bandwidth, suppresses variation in the execution time of 
applications not optimized for the network topology. 

Mellanox’s dual-rail EDR IB HCA will be used in the 
Summit system [8] which will start full operation in 2019. The 
injection bandwidth per node is 25 GB/s. The total injection or 
bisection bandwidth will be approximately 115 TB/s. The 
TaihuLight system, which started operation in 2016, also used 
Mellanox’s IB HCAs and switch chips [9]. The Sunway 
network of TaihuLight was constructed as a four-stage tapered 
fat-tree. The total injection bandwidth was 512 TB/s and the 
bisection bandwidth was approximately 70 TB/s. There was a 
rare example of IB HCA integration. Oracle’s Sonoma 
processor [10] was designed for high-density scale-out servers 
and there were two built-in HCAs on a chip. The injection 
bandwidth per node was 13.6 GB/s. 

B. Omni-Path 
Omni-Path [11] is Intel’s HPC interconnect family. In the 

first generation, the host fabric interface (HFI) is implemented 
as a discrete chip and mounted on an adaptor card or integrated 
into a CPU package. Omni-Path is considered likely to be used 
in the future Aurora system [12]. The first-generation Omni-
Path was used in the Oakforest-PACS system that became 
operational in 2016. The injection bandwidth per node was 
12.5 GB/s. The total injection or bisection bandwidth was 
102.6 TB/s. 

C. Aries Interconnect 
The Aries interconnect [13] developed by Cray is a highly 

scalable system interconnect that employs a Dragonfly-based 
topology. The network interface and the router were 
implemented together in a discrete chip. Each Aries chip had 
four network interfaces and connected four nodes. Each 
network interface had two ports to connect the internal router 
port. Each router port operated at a link throughput of 4.7 GB/s 
for global links or 5.25 GB/s in a group of 384 nodes. 
Therefore, the injection bandwidth per node was 10.5 GB/s. 
The upgraded Piz Daint system that started operation in 2016 
used Aries. The total injection bandwidth and the bisection 
bandwidth were 71 TB/s and 36 TB/s respectively. 

D. Blue Gene/Q Five-dimensional Torus 
IBM Blue Gene/Q (BG/Q) was a highly scalable 

supercomputer that had a five-dimensional torus network 
[14][15]. Each node has 10 links for the torus network and 
each link provides 2.0 GB/s peak throughput. The injection 
bandwidth per node was 20 GB/s. The Sequoia system that 
started classified operations in 2013 was a BG/Q system with 
98,304 nodes. The total injection bandwidth was 1.97 PB/s and 
the bisection bandwidth was 49.2 TB/s. The characteristics and 
performance of the BG/Q five-dimensional torus network were 
similar to those of the 6D mesh/torus network of the Tofu 
interconnect. 

 

IV. DESIGN OF TOFUD 

This section describes the design of TofuD focusing on the 
difference compared to Tofu2. 

A. Node Configuration 
Figure 1 shows a block diagram of the post-K computer 

node. The number of CMGs increased to four from two of 
Tofu2, and the number of TNIs also increased from four to six. 
The CMGs and the TNIs are connected by the network on chip 
(NOC). As the number of CMGs increases, there is a 
difference in the distance between TNIs and each CMG. Two 
CMGs are far from TNIs, and the other two CMGs are near 
TNIs. 

Figure 2 shows a prototype CMU. Two processor packages 
and three cable cages are cooled by water. One compute node 
consists of one package in which one processor chip and four 
stacks of high bandwidth memory (HBM) are integrated. As a 
trade-off with the use of the high-density memory packaging 
technology, the number of memory stacks per node has halved 
from FX100 that used eight packages of HMC. In order to 
balance with the halved number of memory stacks, the TofuD 
again halved the number of signal lanes to 20 from 40 of Tofu2. 

To reduce the hardware cost, the TofuD uses mainstream 
quad-lane active optical cables. Half of the CMUs in a shelf 
connect two optical cables of the X- and Y-axes, and the other 
half connect three optical cables of the X-, Y-, and Z-axes. 
Each active optical cable is shared by two links in the same 
direction of two compute nodes on the same CMU. Although 
the number of signals for each active optical cable is one-third 
of that of the board-mount optical assembly used in Tofu2, the 
number of optical modules on the board reduces to 2.5 from 8 
of FX100 owing to the reductions in the optical link ratio, 
number of high-speed signals per node, and number of nodes 
per board. 
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Fig. 1. Block diagram of the post-K computer node 

648



 

Fig. 2.  Prototype CPU memory unit 

B. Package Structure and Link Configuration 
In a rack of the post-K computer, each of the upper and 

lower halves of the rack houses 192 nodes with the geometry 
(X, Y, Z, A, B, C) = (2, 2, 4, 2, 3, 2). Each half rack 
accommodates four building blocks called “shelves,” two in 
the front-side and two in the rear-side. The geometry of a shelf 
is (X, Y, Z, A, B, C) = (1, 1, 4, 2, 3, 2). Figure 3 shows a 
prototype rack of the post-K computer. Each side of the rack 
stores four shelves vertically. Each shelf houses 24 CPU 
memory units (CMUs) that loads two nodes connected in C-
axis. 

All connections in a half rack use electric links and the 
connections out of a half rack use optical links. Therefore, half 
of the connections in the X- and Y-axes and one fourth of the 
connections in the Z-axis use optical links. Because of the 
high-density packaging and large structure of the half rack, the 
optical link ratio of the TofuD is as low as 25%, which has 
substantially decreased from 66% for Tofu2 that used optical 
links for connection out of a 2U chassis with the geometry (X, 
Y, Z, A, B, C) = (1, 1, 3, 2, 1, 2).  

 

Fig. 3. Prototype rack of the post-K computer 

C. Injection Rate per Node 
Table I shows the comparison of node and link 

configurations within the Tofu family. TofuD uses a high-
speed signal of 28-Gbps data rate that is approximately 9% 
faster than that of Tofu2. However, due to the reduction of the 
number of signals, TofuD reduces the link bandwidth to 6.8 
GB/s, which is approximately 54% for Tofu2. To compensate 
the reduction in the link bandwidth, TofuD increases the 
number of simultaneous communications from 4 of Tofu2 to 6. 
The injection rate of TofuD is enhanced to approximately 80% 
of that of Tofu2. There are six adjacent nodes in the virtual 3D 
torus therefore topology-aware algorithms can use six 
simultaneous communications effectively. 

The logic circuits of TofuD operate at a 425-MHz clock 
frequency, which is about 9% faster than the clock frequency 
of Tofu2. The width of the datapath decreases from 256 to 128 
bits as the number of signal lanes decreased. 

TABLE I.  DATA RATES OF SIGNAL AND INJECTION RATES 

 Tofu Tofu2 TofuD 

Number of signal lanes per node 80 40 20 

Data rate (Gbps) 6.25 25.78125 28.05 

Link bandwidth (GB/s) 5.0 12.5 6.8 

Number of TNIs per node 4 4 6 

Injection bandwidth per node (GB/s) 20 50 40.8 
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D. Communication Resources 
TABLE II shows a comparison of the number of 

communication resources within the Tofu family. Both the 
number of compute cores and the number of TNIs per node 
increased by 1.5 times from Tofu2, and the number of CQs per 
TNI remained constant at 12. In Tofu2, there was no change in 
the Tofu barrier. In TofuD, the amount of communication 
resources for the Tofu barrier has increased as the number of 
CMGs has increased. To allocate a BCH from a different TNI 
to each CMG, the Tofu barrier becomes available on all TNIs 
in TofuD, and the number of resources per node increased 
significantly for both BCH and BG. The ratio of the BCH to 
BG increased from 1:8 to 1:3 because the reduce-broadcast tree 
algorithm for the intra-node part of synchronization is assumed 
to reduce the number of BGs to be used. The buffer size of 
each BG is also expanded so that the Tofu barrier can perform 
all-reduce of eight integer or three floating point elements with 
one synchronization. 

TABLE II.  NUMA DOMAIN AND COMMUNICATION RESOURCES 

 Tofu Tofu2 TofuD 

Number of compute cores per node 8, 16 32 48 

Number of CMGs per node 1 2 4 

Number of TNIs per node 4 4 6 

Number of CQs per node 12 48 72 

Number of BCHs per node 8 8 96 

Number of BGs per node 64 64 288 

 

 

 

 

 

 

 

 

 

 

 

E. Dynamic Packet Slicing for Dual-rail Transfer 
The physical coding sublayer (PCS) of Tofu2 was 

developed based on the 100Gb Ethernet technology. The 
packet transfer latency of Tofu2 was increased to 
approximately 0.3 μs from approximately 0.1 μs for Tofu 
because of the complex transmission technology including 
encoding, symbol detection, multi-lane distribution, and lane-
to-lane deskew. In Tofu2, there was another issue in the fault-
tolerance feature as follows. Tofu2 introduced the link 
degradation feature that reduced the number of active lanes 
without losing a packet. However, once the link degraded, the 
number of lanes never recovered; therefore, there is no fault 
resilience. 

To address these issues, TofuD applies a new technique 
called dynamic packet slicing for dual-rail transfer. To address 
the latency issue, TofuD implements independent PCS for each 
signal lane and splits a packet in the data-link layer. To address 
the fault-resilience issue, TofuD duplicates a packet and 
redundantly transfers it in both lanes as opposed to reducing 
the number of active lanes. The data link layer adds 
information to the packet, indicating that the packet has been 
split or duplicated. The data link layer monitors the receiver-
side PCS’s detection frequencies of CRC and other 
transmission errors and adds the transmission quality status 
information to the packet as well. The data link layer 
determines the split mode of the packet, depending on the 
received transmission quality status information. 

Figure 4 shows the frame format that includes a routing 
header, a transport layer packet (TLP), and padding space for a 
data link layer packet (DLLP). First, the data link layer stores a 
DLLP to the frame. Next, the data link layer simultaneously 
generates two slices from the frame. The routing header is 
duplicated to the two slices, TLP and DLLP are split or 
duplicated, and the padding is removed. Finally, the two slices 
are distributed to two PCSs and each PCS adds a preamble, a 
CRC code called FCS, and inter-frame gap to the slice. 

Figure 5 shows the undivided slice format that includes a 
routing header, full TLP, full DLLP, and control codes to 
envelop the payload. Figure 6 shows the divided slice formats 
that includes a routing header, a split TLP, a split DLLP, and 
control codes to envelop the payload. The PAT field in a slice 
indicates the pattern of packet splitting, and the STAT field 
indicates the status of the observed transmission quality. The 
PAT field is defined as a 3-bit width field for future expansion 
to quad-lane.  

+0 +1 +2 +3 +4 +5 +6 +7
routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC

TLP +0 TLP +1 TLP +2 TLP +3 TLP +4 TLP +5 TLP +6 TLP +7
TLP +8 TLP +9 TLP +10 TLP +11 TLP +12 TLP +13 TLP +14 TLP +15

transport layer TLP

TLP +(32LEN+16) TLP +(32LEN+17) TLP +(32LEN+18) TLP +(32LEN+19) TLP +(32LEN+20) TLP +(32LEN+21) TLP +(32LEN+22) TLP +(32LEN+23)
TLP +(32LEN+24) TLP +(32LEN+25) TLP +(32LEN+26) TLP +(32LEN+27) TLP +(32LEN+28) TLP +(32LEN+29) TLP +(32LEN+30) TLP +(32LEN+31)

(padding)

F
F

(data link layer)

 

Fig. 4. Frame format 
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+0 +1 +2 +3 +4 +5 +6 +7

preamble 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC PAT STAT SEQ

TLP +0 TLP +1 TLP +2 TLP +3 TLP +4 TLP +5 TLP +6 TLP +7
TLP +8 TLP +9 TLP +10 TLP +11 TLP +12 TLP +13 TLP +14 TLP +15

transport layer TLP

TLP +(32LEN+16) TLP +(32LEN+17) TLP +(32LEN+18) TLP +(32LEN+19) TLP +(32LEN+20) TLP +(32LEN+21) TLP +(32LEN+22) TLP +(32LEN+23)
TLP +(32LEN+24) TLP +(32LEN+25) TLP +(32LEN+26) TLP +(32LEN+27) TLP +(32LEN+28) TLP +(32LEN+29) TLP +(32LEN+30) TLP +(32LEN+31)

DLLP +0 DLLP +1 DLLP +2 DLLP +3 other control +0 other control +1 other control +2 other control +3
DLLP +4 DLLP +5 DLLP +6 DLLP +7 other control +4 other control +5 other control +6 other control +7

F DLLP +8 DLLP +9 DLLP +10 DLLP +11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F DLLP +12 DLLP +13 DLLP +14 DLLP +15 FCS
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

inter-frame gap 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

data link layer

 

Fig. 5. Undivided slice format for the duplicate-mode 

+0 +1 +2 +3 +4 +5 +6 +7
preamble 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC PAT STAT SEQ
TLP +0 TLP +1 TLP +2 TLP +3 TLP +4 TLP +5 TLP +6 TLP +7

TLP +16 TLP +17 TLP +18 TLP +19 TLP +20 TLP +21 TLP +22 TLP +23
transport layer

TLP +(32LEN) TLP +(32LEN+1) TLP +(32LEN+2) TLP +(32LEN+3) TLP +(32LEN+4) TLP +(32LEN+5) TLP +(32LEN+6) TLP +(32LEN+7)
TLP +(32LEN+16) TLP +(32LEN+17) TLP +(32LEN+18) TLP +(32LEN+19) TLP +(32LEN+20) TLP +(32LEN+21) TLP +(32LEN+22) TLP +(32LEN+23)

DLLP +0 DLLP +1 DLLP +2 DLLP +3 other control +0 other control +1 other control +2 other control +3
F DLLP +8 DLLP +9 DLLP +10 DLLP +11 FCS
1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

inter-frame gap 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

+0 +1 +2 +3 +4 +5 +6 +7
preamble 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

routing header 1 LEN DABC1 DX DY DZ DABC2 DI B S 0 VC PAT STAT SEQ
TLP +8 TLP +9 TLP +10 TLP +11 TLP +12 TLP +13 TLP +14 TLP +15

TLP +24 TLP +25 TLP +26 TLP +27 TLP +28 TLP +29 TLP +30 TLP +31
transport layer

TLP +(32LEN+8) TLP +(32LEN+9) TLP +(32LEN+10) TLP +(32LEN+11) TLP +(32LEN+12) TLP +(32LEN+13) TLP +(32LEN+14) TLP +(32LEN+15)
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Fig. 6. Divided slice format for the split-mode 

 

V. PERFORMANCE EVALUATION 

This section gives early evaluation results of the 
fundamental performance of TofuD. 

A. Evaluation Environment 
The communication performance of TofuD was evaluated 

by system-level logic simulations. The simulation models were 
built using the Verilog RTL codes for the production, and 
included multiple nodes. The simulations were performed on 
Cadence’s hardware emulators. The simulated processor cores 
executed the test programs that used the TofuD hardware 
directly. The latency results were measured directly from the 
simulation waveforms; thus we obtained one-way latencies 
without halving average round-trip latencies. The throughput 
results were derived from the measured latency values. 

For Tofu and Tofu2, the evaluation results of latency 
breakdown were obtained from the simulation waveforms as 
well as TofuD. The other results of Tofu and Tofu2 were 
evaluated with actual machines using the low-level 
communication library. 

In these preliminary evaluations, the test programs included 
no communication software stack such as an MPI library; 
therefore, the evaluation results included no software overhead, 
and all test programs performed nearest-neighbor 
communication. 

B. Latency 
TABLE III shows the evaluated results of the latencies of 

Tofu, Tofu2, and TofuD. In each evaluation, it is assumed that 
a Put transfer is executed between the nearest neighbor nodes 
on the same board, and the time from when the initiator 
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process started the Put transfer to when the target process read 
the data was measured. 

In Tofu, the direct descriptor feature reduced the latency by 
more than 0.2 μs. In Tofu2, the cache injection feature reduced 
the latency by nearly 0.2 μs. Both these reductions in Tofu and 
Tofu2 are the result of bypassing the main memory with the 
newly introduced features of the network interface. 

In TofuD, the latency is reduced by approximately 0.2 μs 
again. Overall, the latency has been reduced by 46% from Tofu 
and 31% from Tofu2. The reduction is mainly due to the over-
hauling of the transmission technology such as the 
compensation for signal skew, and reconsideration of the 
pipeline design of data-paths. There is an additional penalty of 
approximately 0.05 μs if the initiator process runs on a far 
CMG in the initiator node and the target process also runs on a 
far CMG in the target node. Although the difference is small in 
TofuD, the increasing density and locality on the chip may 
impact the communication latency in future systems. 

Figure 7 presents the breakdowns of latency of one-way 
and one-hop Put transfer. A latency value for each component 
was obtained from the simulation waveforms. In Tofu2, the 
packet transfer latency through one link and two switches was 
increased by approximately 0.2 μs from Tofu due to the 
complex PCS derived from 100 Gb Ethernet. The packet 
transfer latency of TofuD achieved nearly the same latency as 
Tofu owing to the new dynamic packet slicing technique. In 
TofuD, the part of the one-way Put latency other than the 
packet transfer was almost the same as Tofu2. In total, 
approximately 0.2 μs of one-way Put latency has been reduced 
in TofuD compared with Tofu2. 

C. Injection Rate 
TABLE IV lists the evaluation results of injection rates and 

efficiencies of Tofu, Tofu2, and TofuD. In Tofu and Tofu2, 
four Put transfers in different directions were simultaneously 
executed and total throughputs were evaluated. In TofuD, six 
Put transfers in different directions were executed. 

The injection rate of TofuD is more than two times higher 
than that of Tofu and 17% lower than that of Tofu2. The 
efficiencies of Tofu are lower than that of a single Put transfer, 
because Tofu was not integrated in the processor chip, leading 
to a bottleneck in the bus that connects the processor chip and 
the interconnect controller chip. The relatively low efficiencies 
are mainly because of the packet size of the bus, which 
includes only one cache line of data. 

TABLE III.  ONE-WAY 8-BYTE PUT LATENCIES BETWEEN NEAREST 

NEIGHBOR NODES OF TOFU FAMILY 

 Communication settings Latency [μs] 

Tofu Descriptor on main memory 1.15 

 Direct Descriptor 0.91 

Tofu2 Cache injection OFF 0.87 

 Cache injection ON 0.71 

TofuD To/From far CMGs 0.54 

 To/From near CMGs 0.49 
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Fig. 7. Comparison of latency breakdowns of one-way Put transfer 

TABLE IV.  INJECTION RATES AND EFFICIENCIES OF SIMULTANEOUS PUT 

TRANSFERS OF TOFU FAMILY 

 Injection rate [GB/s] Efficiency [%] 

Tofu (K) 15.0 77 

Tofu (FX10) 17.6 88 

Tofu2 45.8 92 

TofuD 38.1 93 

 

Tofu2 and TofuD are integrated into the processor chips 
and the efficiencies of injection rates are almost the same as 
that of the single Put transfer presented in the next subsection. 

D. Throughput 
TABLE V shows the evaluated results of Put throughputs 

and the efficiencies of Tofu, Tofu2, and TofuD. The 
throughput of TofuD is 33% faster than that of Tofu and 45% 
slower than that of Tofu2. The efficiencies exceed 90% for all 
versions. These high efficiencies are the distinctive 
characteristics of the Tofu interconnect family, and are due to 
the rather large packet size for an HPC interconnect. Although 
a larger packet size is costly in design, it also reduces the 
software overheads of system-wide communication protocols 
such as IP over Tofu. 

 

TABLE V.  THROUGHPUTS OF PUT TRANSFER AND EFFICIENCIES OF THE 

TOFU FAMILY 

 Throughput [GB/s] Efficiency [%] 

Tofu 4.76 95 

Tofu2 11.46 92 

TofuD 6.35 93 
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The efficiency of Tofu2 is slightly lower than that of Tofu 
and TofuD. This mainly because of the overhead of data 
alignment. Tofu and TofuD were implemented in 128-bit data-
paths and the data alignment was 16 bytes. Tofu2 was 
implemented in 256-bit width and the alignment was 32 bytes. 

E. Intra-node Latency of the Tofu Barrier 
The Tofu barrier is extended for intra-node use in TofuD. 

This subsection presents the evaluated latency results of the 
intra-node Tofu barrier. First, the latency of each component 
was evaluated from the waveform of a simple test that uses 
only one BCH and two BGs connected in series. The latency 
result of a BCH and a start-and-end BG was approximately 
0.48 μs, and the latency result of a relay BG was nearly 0.13 μs. 

Next, intra-node synchronization latencies using Tofu 
barrier were evaluated using the test programs. The number of 
BCHs to be synchronized varied from 4 to 48. If the number of 
BCHs exceeds the number of TNI, multiple BCHs were used 
in a TNI. The test programs used the reduce-broadcast tree 
algorithm for intra-TNI synchronization and the recursive 
doubling algorithm for inter-TNI synchronization. The total 
number of used BGs per node and the number of 
communication stages for each test program was shown in 
TABLE VI. In these test programs, one process operated all 
BCHs; therefore, the deviation of the synchronization start time 
was small as compared with the actual usage condition in 
which each BCH is operated by a different process. 

Figure 8 shows the evaluated results and the estimated 
latencies. The minimum latencies were estimated so that the 
latency component of relay BGs increased in proportion to the 
log2 of the number of BCHs. However, as the number of 
BCHs per TNI increased beyond 1, the evaluation results 
became worse than the estimated minimum latencies. The 
waveform result showed that all BCHs and BGs were serially 
processed. The latency of the BCH and the BG at the start 
point were overlapped between BCHs for 0.19 μs out of 0.48 
μs and the remaining 0.29 μs were serialized. The estimated 
latencies of processing the BG and the BCH serially were close 
to the evaluation results. 

The evaluation results showed that there was the latency 
penalty when allocating multiple BCHs from the same TNI to 
the same communicator. The MPI library should be 
implemented using the Tofu barrier avoiding this penalty as 
follows. If the number of processes in a node does not exceed 
six, the MPI library should allocate one BCH to each process 
from different TNI. If the number of processes in a node 
exceeds six, the MPI library should allocate one BCH to each 
of six groups of processes. Each group of processes share one 
BCH and synchronize within the group via memory. 

 

 

 

 

 

TABLE VI.  CONFIGURATIONS OF THE TEST PROGRAMS OF THE TOFU 

BARRIER 

Number of start-and-end points 1 4 8 16 48 

Number of TNIs 1 4 6 6 6 

Max. number of BCHs per TNI 1 1 2 3 8 

Max. number of BGs per TNI 2 2 5 9 24 

Number of communication stages 2 2 4 6 9 
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Fig. 8. Estimated and evaluated results of the Tofu barrier test programs 

VI. CONCLUSION 

In this paper, we introduced a new and highly scalable 
interconnect called Tofu Interconnect D that will be used in the 
post-K machine, which will be operational around 2021. The 
letter D represents high “density” node and “dynamic” packet 
slicing for “dual-rail” transfer. This paper described the design 
of TofuD including the package structure of the node, the rack, 
the link configuration between nodes, the injection rate per 
node, increased communication resources and a new packet 
transfer technique. This paper also presented the evaluation 
results of TofuD. The one-way 8-byte Put latency was 0.49 μs 
that was reduced by 31% from that for Tofu2. The injection 
rate per node was 38.1 GB/s which was approximately 83% of 
the injection rate for Tofu2. The link efficiency was as high as 
approximately 93%. Additionally, the evaluation results 
showed the constraints on the in-node usage of the Tofu barrier 
to avoid performance penalty. 
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