

SPARC64™ VIIIfx Extensions

Fujitsu Limited

Ver 15, 26 Apr. 2010

Fujitsu Limited

4-1-1 Kamikodanaka

Nakahara-ku, Kawasaki, 211-8588

Japan

Copyright© 2007-2010 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan.

All rights reserved.

This product and related documentation are protected by copyright and distributed under licenses restricting

their use, copying, distribution, and decompilation. No part of this product or related documentation may be

reproduced in any form by any means without prior written authorization of Fujitsu Limited and its licen­

sors, if any.

The product(s) described in this book may be protected by one or more U.S. patents, foreign patents, or

pending applications.

TRADEMARKS

SPARC® is a registered trademark of SPARC International, Inc. Products bearing SPARC trademarks are
based on an architecture developed by Sun Microsystems, Inc.

SPARC64™ is a registered trademark of SPARC International, Inc., licensed exclusively to Fujitsu Limited.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Sun, Sun Microsystems, the Sun logo, Solaris, and all Solaris-related trademarks and logos are registered

trademarks of Sun Microsystems, Inc.

Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited.

This publication is provided “as is” without warranty of any kind, either express or implied, includ­
ing, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or
noninfringement. This publication could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein; these changes will be incorporated in

new editions of the publication. Fujitsu Limited may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

History

2009/09/08 Ver 14 released.

2009/11/06 Added Comaptibility Note for SXAR1 instruction with non-zero s_* fields. 133

2009/11/06 Fixed typographical error in the description of exception conditions.
Changed “cexc” to “aexc”.

74

2010/01/20 Fixed wrong description of SIMD load. A SIMD load does not update the
basic or extended destination registers when a data_access_error occurs in
the extended load.

82, 86,
149,
181

2010/04/13 Clarified that an XFILL instruction does not signal a data_access_error
when the L1/L2 cache line contains an UE.

135

2010/04/21 Updated cache size to 6M/12way. 12,
231,
328

2009/04/26 Ver. 15 released.

Ver 15, 26 Apr. 2010 i

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 ii

Contents

1. Overview 1

1.1 Navigating the SPARC64™ VIIIfx Extensions 1

1.2 Fonts and Notational Conventions 1

2. Definitions 3

3. Architectural Overview 7

3.1 The SPARC64 VIIIfx processor 7

3.1.1 Core Overview 9

3.1.2 Instruction Control Unit (IU) 10

3.1.3 Execution Unit (EU) 11

3.1.4 Storage Unit (SU) 12

3.1.5 Secondary Cache and External Access Unit (SXU) 12

3.2 Processor Pipeline 13

3.2.1 Instruction Fetch Stages 13

3.2.2 Issue Stages 13

3.2.3 Execution Stages 15

3.2.4 Commit Stage 16

4. Data Formats 17

5. Registers 19

5.1 Nonprivileged Registers 20

5.1.1 General-Purpose r Registers 20

5.1.4 Floating-Point Registers 20

Ver 15, 26 Apr. 2010 Contents i

5.1.7 Floating-Point State Register (FSR) 23

5.1.9 Tick (TICK) Register 25

5.2 Privileged Registers 26

5.2.6 Trap State (TSTATE) Register 26

5.2.9 Version (VER) Register 26

5.2.11 Ancillary State Registers (ASRs) 26

5.2.12 Registers Referenced Through ASIs 34

5.2.13 Floating-Point Deferred-Trap Queue (FQ) 38

5.2.14 IU Deferred-Trap Queue 38

6. Instructions 39

6.1 Instruction Execution 39

6.1.1 Data Prefetch 39

6.1.2 Instruction Prefetch 40

6.1.3 Syncing Instructions 40

6.2 Instruction Formats and Fields 41

6.3 Instruction Categories 42

6.3.3 Control-Transfer Instructions (CTIs) 42

6.3.7 Floating-Point Operate (FPop) Instructions 42

6.3.8 Implementation-Dependent Instructions 42

7. Traps 45

7.1 Processor States, Normal and Special Traps 45

7.1.1 RED_state 45

7.1.2 error_state 46

7.2 Trap Categories 46

7.2.2 Deferred Traps 46

7.2.4 Reset Traps 46

7.2.5 Uses of the Trap Categories 47

7.3 Trap Control 47

7.3.1 PIL Control 47

7.4 Trap-Table Entry Addresses 47

7.4.2 Trap Type (TT) 47

7.4.3 Trap Priorities 51

7.5 Trap Processing 51

7.6 Exception and Interrupt Descriptions 52

SPARC64™ VIIIfx Extensions Ver 15, 26 Apr. 2010 ii

7.6.1	 Traps Defined by SPARC V9 As Mandatory 52

7.6.2	 SPARC V9 Optional Traps That Are Mandatory in SPARC JPS1 52

7.6.4	 SPARC V9 Implementation-Dependent, Optional Traps That Are

Mandatory in SPARC JPS1 53

7.6.5	 SPARC JPS1 Implementation-Dependent Traps 53

8. Memory Models 55

8.1 Overview 56

8.4 SPARC V9 Memory Model 56

8.4.5	 Mode Control 56

8.4.7	 Synchronizing Instruction and Data Memory 56

A. Instruction Definitions 59

A.4 Block Load and Store Instructions (VIS I) 68

A.9 Call and Link 70

A.24 Implementation-Dependent Instructions 71

A.24.1	 Floating-Point Multiply-Add/Subtract 72

A.24.2	 Suspend 78

A.24.3	 Sleep 79

A.24.4	 Integer Multiply-Add 80

A.25 Jump and Link 81

A.26 Load Floating-Point 82

A.27 Load Floating-Point from Alternate Space 86

A.30 Load Quadword, Atomic [Physical] 89

A.35 Memory Barrier 91

A.41 No Operation 93

A.42 Partial Store (VIS I) 94

A.48 Population Count 95

A.49 Prefetch Data 96

A.51 Read State Register 98

A.59 SHUTDOWN (VIS I) 100

A.61 Store Floating-Point 101

A.62 Store Floating-Point into Alternate Space 105

A.68 Trap on Integer Condition Codes (Tcc) 108

A.69 Write Privileged Register 109

A.70 Write State Register 112

Ver 15, 26 Apr. 2010	 Contents iii

A.71	 Deprecated Instructions 115

A.71.10 Store Barrier 115

A.72	 Floating-Point Conditional Compare to Register 116

A.73	 Floating-Point Minimum and Maximum 118

A.74	 Floating-Point Reciprocal Approximation 120

A.75	 Move Selected Floating-Point Register on Floating-Point Register's Condition

124

A.76	 Floating-Point Trigonometric Functions 125

A.77	 Store Floating-Point Register on Register Condition 130

A.78	 Set XAR (SXAR) 133

A.79	 Cache Line Fill with Undetermined Values 135

B. IEEE Std. 754-1985 Requirements for SPARC-V9 141

B.1	 Traps Inhibiting Results 141

B.6	 Floating-Point Nonstandard Mode 142

B.6.1 fp_exception_other Exception (ftt=unfinished_FPop) 142

B.6.2 Behavior when FSR.NS = 1 145

C. Implementation Dependencies 149

C.4	 List of Implementation Dependencies 149

D. Formal Specification of the Memory Models 161

E. Opcode Maps 163

F. Memory Management Unit 175

F.1	 Virtual Address Translation 175

F.2	 Translation Table Entry (TTE) 176

F.4	 Hardware Support for TSB Access 179

F.5	 Faults and Traps 179

F.5.1 Trap Conditions for SIMD Load/Store 181

F.5.2 Behavior on TLB Error 182

F.8	 Reset, Disable, and RED_state Behavior 183

F.10	 Internal Registers and ASI Operations 184

F.10.1 Accessing MMU Registers 184

F.10.2 Context Registers 187

F.10.3 Instruction/Data MMU TLB Tag Access Registers 191

SPARC64™ VIIIfx Extensions Ver 15, 26 Apr. 2010 iv

F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers 192

F.10.6 I/D TSB Base Registers 194

F.10.7 I/D TSB Extension Registers 194

F.10.8 I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct Pointer Registers 195

F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR) 195

F.10.10 Synchronous Fault Addresses 201

F.10.11 I/D MMU Demap 201

F.10.12 Synchronous Fault Physical Addresses 202

F.11 MMU Bypass 202

F.12 Translation Lookaside Buffer Hardware 203

F.12.2 TLB Replacement Policy 203

G. Assembly Language Syntax 205

G.1 Notation Used 205

G.1.5 Other Operand Syntax 205

G.4 HPC-ACE Notation 206

G.4.1 Suffixes for HPC-ACE Extensions 206

H. Software Considerations 209

I. Extending the SPARC V9 Architecture 210

J. Changes from SPARC V8 to SPARC V9 211

K. Programming with the Memory Models 212

L. Address Space Identifiers 213

L.2 ASI Values 213

L.3 SPARC64 VIIIfx ASI Assignments 214

L.3.1 Supported ASIs 214

L.3.2 Special Memory Access ASIs 219

L.3.3 Trap Priority for ASI and Instruction Combinations 221

L.3.4 Timing for Writes to Internal Registers 222

L.4 Hardware Barrier 222

L.4.1 Initialization and Status of Barrier Resources 224

L.4.2 Assignment of Barrier Resources 226

L.4.3 Window ASI for Barrier Resources 227

Ver 15, 26 Apr. 2010 Contents v

M. Cache Organization 229

M.1 Cache Types 229

M.1.1 Level-1 Instruction Cache (L1I Cache) 230

M.1.2 Level-1 Data Cache (L1D Cache) 231

M.1.3 Level-2 Unified Cache (L2 Cache) 231

M.2 Cache Coherency Protocols 232

M.3 Cache Control/Status Instructions 233

M.3.1 Flush Level-1 Instruction Cache L1 (ASI_FLUSH_L1I) 233

M.3.2 Cache invalidation (ASI_CACHE_INV) 233

M.3.3 Sector Cache Configuration Register (SCCR) 234

M.4 Hardware Prefetch 237

N. Interrupt Handling 239

N.1 Interrupt Vector Dispatch 239

N.2 Interrupt Vector Receive 241

N.4 Interrupt ASI Registers 242

N.4.1 Outgoing Interrupt Vector Data<7:0> Register 242

N.4.2 Interrupt Vector Dispatch Register 242

N.4.3 Interrupt Vector Dispatch Status Register 242

N.4.4 Incoming Interrupt Vector Data Registers 242

N.4.5 Interrupt Vector Receive Register 243

N.6 Identifying an Interrupt Target 243

O. Reset, RED_state, and error_state 245

O.1 Reset Types 245

O.1.1 Power-on Reset (POR) 245

O.1.2 Watchdog Reset (WDR) 246

O.1.3 Externally Initiated Reset (XIR) 246

O.1.4 Software-Initiated Reset (SIR) 246

O.2 RED_state and error_state 247

O.2.1 RED_state 248

O.2.2 error_state 248

O.2.3 CPU Fatal Error state 248

O.3 Processor State after Reset and in RED_state 249

O.3.1 Operating Status Register (OPSR) 253

vi SPARC64™ VIIIfx Extensions Ver 15, 26 Apr. 2010

P. Error Handling 255

P.1 Error Types 255

P.1.1 Fatal Errors 256

P.1.2 Error State Transition Errors 256

P.1.3 Urgent Errors 257

P.1.4 Restrainable Errors 260

P.1.5 instruction_access_error 261

P.1.6 data_access_error 261

P.2 Error Handling and Error Control 261

P.2.1 Registers Used for Error Handling 261

P.2.2 Summary of Behavior During Error Detection 262

P.2.3 Limits to Automatic Correction of Correctable Errors 266

P.2.4 Error Marking for Cacheable Data 267

P.2.5 ASI_EIDR 270

P.2.6 Error Detection Control (ASI_ERROR_CONTROL) 270

P.3 Fatal Errors and error_state Transition Errors 272

P.3.1 ASI_STCHG_ERROR_INFO 272

P.3.2 Error_state Transition Error in Suspended Thread 274

P.4 Urgent Error 274

P.4.1 URGENT ERROR STATUS (ASI_UGESR) 275

P.4.2 Processing for async_data_error (ADE) Traps 278

P.4.3 Instruction Execution when an ADE Trap Occurs 280

P.4.4 Expected Software Handling of ADE Traps 281

P.5 Instruction Access Errors 284

P.6 Data Access Errors 284

P.7 Restrainable Errors 285

P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR) 285

P.7.2 Expected Software Handling for Restrainable Errors 286

P.8 Internal Register Error Handling 286

P.8.1 Nonprivileged and Privileged Register Error Handling 287

P.8.2 ASR Error Handling 288

P.8.3 ASI Register Error Handling 289

P.9 Cache Error Handling 292

P.9.1 Error Handling for Cache Tag Errors 293

P.9.2 Error Handling for I1 Cache Data Errors 293

P.9.3 Error Handling for D1 Cache Data Errors 294

Ver 15, 26 Apr. 2010 Contents vii

P.9.4 Error Handling for U2 Cache Data Errors 295

P.9.5 Automatic I1, D1, and U2 Cache Way Reduction 296

P.10 TLB Error Handling 298

P.10.1 Error Processing for TLB Entries 298

Q. Performance Instrumentation 301

Q.1 PA Overview 301

Q.1.1 Sample Pseudo-codes 301

Q.2 Description of PA Events 303

Q.2.1 Instruction and Trap Statistics 306

Q.2.2 MMU and L1 cache Events 313

Q.2.3 L2 cache Events 315

Q.3 Cycle Accounting 319

R. System Programmer’s Model 323

R.1 System Config Register 323

R.2 STICK Control Register 324

S. Summary of Specification Differences 327

viii SPARC64™ VIIIfx Extensions Ver 15, 26 Apr. 2010

F.CH AP TE R 1

Overview

1.1	 Navigating the SPARC64™ VIIIfx
Extensions
The SPARC64 VIIIfx processor implements the instruction set architecture conforming to
SPARC JPS1. The SPARC JPS1 book is organized in major sections: Commonality, which
contains information common to all implementations, and various Implementation
Extensions. This document defines the SPARC64 VIIIfx implementation of JPS1. As a
general rule, this document does not reproduce information specified in Commonality.

Chapter and section headings generally match those in JPS1 Commonality; they describe
implementation-dependent features, undefined features, or features that have been changed in
SPARC64 VIIIfx. Any chapter or section not found in JPS1 Commonality describes
additional features specific to SPARC64 VIIIfx. This document assumes the definitions
provided in JPS1 Commonality. Please refer to the “SPARC Joint Programming
Specification 1 (JPS1): Commonality” (JPS1 Commonality) as needed.

1.2	 Fonts and Notational Conventions
This document conforms to the notational conventions specified in JPS1 Commonality.

Reserved Fields

Unused bits in instruction words and registers are reserved for future use. These fields are
called reserved fields and are indicated by either the word “reserved” or an em dash (—).

Ver 15, 26 Apr. 2010	 F. Chapter 1 Overview 1

Chapter 2 of JPS1 Commonality defines the following behavior for reserved fields.

■	 Reserved instruction fields shall read as 0. Behavior is undefined for nonzero values
(Chapter 2).

■	 Reserved register fields should always be written by software with values of those fields
previously read from that register or with zeroes; they should read as zero in hardware.

Reserved instruction fields are described in greater detail in Section 6.3.9 and Appendix I.2
of JPS1 Commonality.

SPARC64 VIIIfx handles reserved fields in the following manner.

■	 Reserved instruction fields behave as specified in this document. When behavior is not
clearly specified for nonzero values, the reserved fields are ignored during instruction
execution.

■	 Reserved register fields behave as specified in this document. When values and behavior
are not specified, writes to the fields are ignored, and reads return undefined values. The
behavior of writes with unspecified side effects is undefined.

Register Field Read-Write Attributes

The read-write attributes of register fields are defined below.

TABLE 1-1 Register Field Read-Write Attributes

Type Description

Reads return an undefined value; writes are ignored. Corresponds to a reserved register
field whose value is not specified.

R Reads to the field return the stored value; writes are ignored.

W Reads return an undefined value; values can be written to the field.

RW Reads to the field return the stored value; values can be written to the field.

RW1C Reads to the field return the stored value; writing a value of 1 causes 0 to be written to
the field.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 2

F.CH AP TE R 2

Definitions

This chapter defines concepts and terminology specific to SPARC64 VIIIfx. For the definition
of terms common to all implementations of JPS1, please refer to Chapter 2 of JPS1
Commonality.

basic floating-point
registers Additional floating-point registers defined by HPC-ACE that can be used for SIMD

basic operations. Registers f[0] − f[254].

committed An instruction is said to be committed when all instructions executed prior to the
instruction have committed normally and the result of the instruction is definitively
known. The instruction commits and the result is reflected in software-visible
resources; the previous state is discarded.

completed An instruction is said to be completed when execution is completed and the issue unit
is notified that execution completed normally. The result of a completed instruction is
temporarily reflected in the machine state; however, until the instruction commits the
state is not permanent and the previous state can be recovered.

core A hardware structure that contains the processor pipeline and execution resources
(functional units, L1 cache, etc). While a core may support one or more threads,
SPARC64 VIIIfx cores are single-threaded.

cycle accounting A method for analyzing the factors that are inhibiting performance.

execute To send an instruction to the execution unit and to perform the specified operation. An
instruction is executing as long as it is in a functional unit.

execution completion Execution is completed when the result appears on the output bus. The result on the
output bus is sent to the register file as well as the other functional units.

extended floating-point
registers Additional floating-point registers defined by HPC-ACE that can be used for SIMD

extended operations. Registers f[256] − f[512].

functional unit A resource that performs arithmetic operations.

Ver 15, 26 Apr. 2010 F. Chapter 2 Definitions 3

HPC-ACE High Performance Computing - Arithmetic Computational Extensions. This is the
general term for the set of SPARC64 VIIIfx extensions; these include the expanded
register set, HPC instruction extensions, floating-point SIMD extensions, etc.

instruction dispatch To send an instruction to the execution unit. All resources required for execution of the
instruction must be available.

instruction fetch To read an instruction from the instruction cache or instruction buffer and to send it to
the issue unit.

instruction issue To send an instruction to a reservation station.

Memory Management
Unit The address translation hardware in the processor core that translates 64-bit virtual

addresses to physical addresses. The MMU includes the mITLB, mDTLB, uITLB,
uDTLB, and ASI registers used to manage address translation.

mTLB Main TLB. The mTLB is split; the structures supporting instruction (I) and data (D)
accesses are called the mITLB and mDTLB, respectively. These supply the uITLB and
uDTLB with address translations. When an address translation is not found in the
uITLB or uDTLB, the mTLB is searched for the missing translation. If the requested
translation is found, the mTLB sends the translation to the corresponding uTLB.
Otherwise, an exception occurs and causes a trap. Software loads the translation into
the mTLB, and hardware re-executes the instruction.

out-of-order execution A microarchitecture that supports the execution of instructions out of program order.
An instruction with available operands will execute ahead of an earlier instruction that
is still waiting for operands.

processor module A single, physical module for processing information. A processor module is
composed of one or more cores sharing an external bus.

renaming registers A buffer where execution results are temporarily stored until instructions commit and
their results are written to the register file. Users cannot directly manipulate the
renaming registers.

reservation station A queue (or buffer) where issued instructions are stored before being sent to the
execution unit. When possible, instructions with available operands are dispatched
from reservation stations to available functional units. Reservation stations control
out-of-order execution.

(resource) release An execution resource assigned to an instruction is said to be released when it can be
assigned to a subsequent instruction.

scan A method for reading and writing latches and registers inside the CPU chip. Scannable
latches and registers can be read and written through a scan ring.

(SIMD) basic operation One of two operations executed by a SIMD instruction. The basic operation uses the
registers indicated by the register number fields of the instruction.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 4

(SIMD) extended
operation One of two operations executed by a SIMD instruction. The extended operation uses

the registers indicated by the register number fields of the instruction +256.

speculative execution Execution is said to be speculative if an instruction is executed while the direction of
an older conditional branch is unknown, or while it is unknown whether an older
instruction will cause an interrupt or trap to occur. An instruction that is executed
using the result of a speculatively-executed instruction is also said to be speculatively
executed.

stalled An instruction is said to be stalled when it is unable to issue. Depending on resource
availability and program constraints, it may not be possible to issue instructions every
cycle.

strong prefetch A data prefetch instruction that guarantees eventual execution. The instruction is re-
executed if there are insufficient processor resources, instead of being discarded.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

suspended A state where execution of a thread is temporarily stopped. In a suspended state no
instructions are executed, but cache coherency is maintained. Suspended differs from
sleeping; for execution of the suspended thread to resume, an interrupt or the timer
must cause a trap.

syncing instruction An instruction that causes a machine sync. A syncing instruction issues in program
order; all prior instructions must be committed before the syncing instruction issues.
Furthermore, the following instruction does not issue until the syncing instruction has
been committed. That is, a syncing instruction is an instruction that issues, executes,
and commits by itself.

thread The unit of hardware required for execution of a software instruction sequence. A
thread includes software-visible resources (PC, registers, etc) and any non-visible
microarchitectural resources required for instruction execution.

uTLB Micro TLB. The uTLB is split; the structures supporting instruction (I) and data (D)
accesses are called the uITLB and uDTLB, respectively. Hardware performs address
translation using the address translations in the uTLB. When a required translation is
not found, the uTLB obtains the translation from the mTLB.

XAR-eligible
instruction An instruction that is executed using the registers specified by the combination of the

bits in the XAR and the bits from the register number fields.

Ver 15, 26 Apr. 2010 F. Chapter 2 Definitions 5

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 6

F.CH AP TE R 3

Architectural Overview

This chapter provides an overview of the SPARC64 VIIIfx processor. The section headings
do not match those in JPS1 Commonality.

3.1 The SPARC64 VIIIfx processor
The multi-core SPARC64 VIIIfx processor integrates 8 cores, L2 cache, and memory
controllers (MAC) on a single CPU chip. The processor architecture conforms to SPARC V9
but includes extensions that enhance server performance and reliability and that significantly
boost performance on HPC workloads.

A High Performance Microarchitecture

SPARC64 VIIIfx is an an out-of-order, superscalar processor. Each core issues up to four
instructions per cycle; the instruction fetch unit predicts the execution path, fetches
instructions, and issues the instructions in-order to reservation stations. Instructions are
stored in the reservation stations until they are ready to be executed. Ready instructions are
dispatched to the execution unit and executed out of order. Instructions that have completed
execution are committed in the original order; that is, an instruction does not commit until all
prior instructions have committed. Committed instructions update the register file and/or
memory, and the execution result becomes visible to the program. Out-of-order execution
contributes greatly to the high performance of SPARC64 VIIIfx.

The SPARC64 VIIIfx core has a branch history buffer for predicting the execution path of
branch instructions. This buffer is large enough to sustain high hit rates for large programs
like DBMS and to support SPARC64 VIIIfx’s sophisticated instruction fetch mechanism. The
fetch mechanism minimizes the performance penalty of instruction cache misses by using the
branch history buffer to predict the direction of multiple conditional branches and fetching
the instructions in the predicted execution path.

Ver 15, 26 Apr. 2010 F. Chapter 3 Architectural Overview 7

SPARC64 VIIIfx processor incorporates many useful features for HPC (High Performance
Computing), which include the HPC-ACE extensions to SPARC V9 and a hardware barrier
for high-speed synchronization of on-chip cores. HPC-ACE expands the number of registers
to 192 general-purpose and 256 floating-point registers per core, defines 7 new floating-point
instructions, and supports 2-way SIMD (Single Instruction Multiple Data) execution of
floating-point instructions. With SIMD execution, up to 8 floating-point operations can be
executed per cycle per core. This realizes high performance on HPC workloads.

Highly-Integrated Functionality

The lowest level of the SPARC64 VIIIfx cache hierarchy is the on-chip L2 cache.
Instruction and data accesses are unified, and the L2 cache is shared by all 8 cores. Having
the L2 cache on chip decreases the cache access time and allows for a high associativity
cache to be designed. Futhermore, it increases reliability by eliminating the need for external
connections to the L2 cache.

SPARC64 VIIIfx also includes on-chip memory controllers. DIMMs are connected directly
to the CPU, which significantly decreases memory access latencies.

The hardware barrier is an important feature for ensuring good performance on HPC
workloads. The SPARC64 VIIIfx hardware barrier enables high-speed processing of multi-
threaded jobs by minimizing thread synchronization latencies; it supports barrier
synchronization of multiple cores and provides post/wait synchronization primitives for
implementing the master/worker model.

High Reliability

SPARC64 VIIIfx implements the following advanced RAS features:

1. Cache RAS features

■	 Robust protection against cache errors
■	 D1 (data level-1) cache data, U2 (unified level-2) cache data, and U2 cache tags are

ECC protected.
■	 I1 (instruction level-1) cache data are parity protected.
■	 I1 cache tags and D1 cache tags are parity protected and duplicated.

■	 Automatic correction for all types of single-bit errors
■	 Single-bit errors in ECC-protected data are automatically corrected.
■	 I1 cache data parity errors cause I1 cache data to be invalidated and re-read.
■	 I1 cache tag and D1 cache tag parity errors cause the tags to be replaced with the

duplicated cache tags.

■	 Dynamic way reduction while maintaining cache consistency

■	 Marking uncorrectable errors in cacheable data
■	 Hardware that first detects the uncorrectable error marks the error with a particular

pattern.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 8

■	 The hardware that detected the error is identified from the pattern and isolated to
prevent the same error from being reported multiple times.

2. RAS features for the core

■	 Robust error protection
■	 All data paths are parity protected.
■	 Almost all software-visible registers, internal registers, and temporary registers are

parity protected.
■	 Execution results are checked by parity prediction or residue checks.

■	 Hardware instruction retry

■	 Support for software instruction retry (if hardware instruction retry fails)

■	 Error isolation for software recovery
■ The register that caused the error (suspected register) is indicated.
■ Indicates whether the instruction that caused the error can be retried.
■ Different traps are used depending on the severity of the error.

3. Enhanced software interface

■	 Error classification based on how severely program execution is affected
■	 Urgent error (nonmaskable): Unable to continue execution without OS intervention;

reported by a trap.
■	 Restrainable error (maskable): OS controls whether the error is reported by a trap. The

error does not directly affect program execution.

■ Displaying identified errors to help determine their effect on software

■ Asynchronous data error (ADE) exception for indicating additional errors
■	 The exception halts execution and indicates the completion method for the instruction

that signalled the exception. The completion method depends on the detected error.
■	 ADE exceptions may be deferred but retryable.
■	 To correctly perform error isolation and instruction retry, all simulatenously occurring

errors are displayed.

3.1.1 Core Overview

The SPARC64 VIIIfx block diagram is shown in FIGURE 3-1. SPARC64 VIIIfx has 8 cores,
on-chip memory controllers, and an integrated bus interface. Each core has the following
components:

■	 Instruction control unit (IU)
■	 Execution unit (EU)
■	 Storage unit (SU)

The following component is shared by all cores:

■	 Secondary cache and external access unit (SXU)

Ver 15, 26 Apr. 2010	 F. Chapter 3 Architectural Overview 9

L2 Cache L2 Cache

Core 0 Core 1 Core 4 Core 5

Core 2 Core 3 Core 6 Core 7

M
A

C
M

A
C

M
A

C
M

A
C

DIMM DIMM

Bus Interface

FIGURE 3-1 SPARC64 VIIIfx Block Diagram

3.1.2 Instruction Control Unit (IU)

The IU predicts the instruction execution path, fetches the predicted instructions, delivers the
fetched instructions to the appropriate reservation stations, and dispatches instructions to the
execution unit. Dispatched instructions are executed out of order, and the completed
instructions are committed in order. The major blocks are described in TABLE 3-1.

TABLE 3-1 Major Blocks in the Instruction Control Unit

Name Description

Instruction fetch pipeline 5-stage instruction fetch: fetch address generation, iTLB and L1 I-cache
access, iTLB and L1 I-cache tag match, write to the instruction buffer,
and store the result.

Branch history A table for predicting branch target and direction.

Instruction buffer A buffer for holding fetched instructions.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 10

TABLE 3-1 Major Blocks in the Instruction Control Unit

Name	 Description

Reservation stations 	 A buffer for holding instructions until they can execute. There are 5
reservation stations: RSBR for branch and other control-transfer
instructions, RSA for load/store instructions, RSE for integer arithmetic
instructions, and RSFA and RSFB for floating-point arithmetic
instructions.

Commit stack entries 	 A buffer for holding information about in-flight instructions (issued but
not committed).

PC, nPC, CCR, FSR	 Program-visible registers for instruction execution control.

3.1.3 Execution Unit (EU)

The EU executes all integer arithmetic/logical/shift instructions, as well as all floating-point
instructions and VIS instructions. TABLE 3-2 describes the major blocks in the EU.

TABLE 3-2 Major Blocks in the Execution Unit

Name	 Description

GUB General-purpose register (gr) renaming register file.

GPR Gr architectural register file.

FUB Floating-point registers (fr) renaming register file.

FPR Fr architectural register file.

EU control logic Controls the stages of instruction execution: instruction selection,

register read, and execution.

Interface registers Input/output registers to other units.

Two integer functional units 64-bit ALU and shifters.
(EXA, EXB)

Two floating-point functional units Each floating-point functional unit can execute floating-point
(FLA, FLB) multiply, add/subtract, multiply-add/subtract, divide/sqrt, and

graphics operations.

Two load/store functional units 64-bit adders for load/store virtual address generation.
(EAGA, EAGB)

Ver 15, 26 Apr. 2010	 F. Chapter 3 Architectural Overview 11

3.1.4 Storage Unit (SU)

The SU handles all read and write data for load/store instructions. Data is read from a data
source and written to a data sink. TABLE 3-3 describes the major blocks in the SU.

TABLE 3-3 Major Blocks in the Storage Unit

Name	 Description

Instruction level-1 cache 	 32-Kbyte, 2-way associative, 128-byte line. Low-latency instruction
source.

Data level-1 cache 	 32-Kbyte, 2-way associative, 128-byte line. Low-latency load/store data
source and sink.

Instruction Translation Buffer	 256 entries, 2-way associative TLB (sITLB).

16 entries, fully associative TLB (fITLB).

Data Translation Buffer	 512 entries, 2-way associative TLB (sDTLB).

16 entries, fully associative TLB (fDTLB).

Store Buffer and Write Buffer 	 Decouple store latency and the processor pipeline. Allow the pipeline to

continue to operate without stalling for stores that are waiting for data.
Data is eventually written into the data level-1 cache.

3.1.5 Secondary Cache and External Access Unit (SXU)

The SXU controls the operation of the unified level-2 cache and the external data access
interface. TABLE 3-4 describes the major blocks in the SXU.

TABLE 3-4 Secondary Cache and External Access Unit Major Blocks

Name Description

Unified level-2 cache 6-Mbyte, 12-way associative, 128-byte line. Write-back cache.

Move-in buffer Caches data that is returned by the memory system in response to a
cache-line read request.

Move-out buffer Holds data for write-back to memory.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 12

3.2 Processor Pipeline

SPARC64 VIIIfx has a 16-stage pipeline, which is shown in FIGURE 3-2 and the pipeline
diagram in FIGURE 3-3.

IA IT IM IB IR

E PD D P B X U C W

Ps Ts Ms Bs Rs

FIGURE 3-2 SPARC64 VIIIfx pipeline stages

3.2.1 Instruction Fetch Stages
■ IA: Instruction address generation
■ IT: Instruction TLB, instruction cache tag access
■ IM: Instruction cache tag comparison
■ IB: Instruction cache read to buffer
■ IR: Instruction fetch result

Stages IA through IR work in concert with the cache access unit (SU) to read instructions
and supply them to subsequent pipeline stages. Instructions fetched from memory or cache
are stored in the Instruction Buffer (I-buffer).

SPARC64 VIIIfx has branch prediction resources called BRHIS (BRanch HIStory) and RAS
(Return Address Stack). Instruction fetch stages use these resources to determine fetch
addresses.

Instruction fetch stages are designed to work independently of subsequent stages as much as
possible and can fetch instructions even when the execution stages stall. Instruction fetch
continues until the I-Buffer is full, at which point the instruction fetch unit can send prefetch
requests to move instructions into the L1 cache.

3.2.2 Issue Stages
■ E: Entry
■ PD: Pre-decode
■ D: Decode

SPARC64 VIIIfx is an out-of-order processor. Each core has 6 functional units (two integer
arithmetic/logical units, two floating-point units, and two load/store units). There are 2
reservation stations for floating-point instructions, 1 for integer arithmetic/logical

Ver 15, 26 Apr. 2010 F. Chapter 3 Architectural Overview 13

BRHIS iTLB L1I

IF EAG

Instruction Buffer

PIWR

RSBR

CSE

PC nPC ccr fsr

E

PD

IWR

RSFA RSFB RSA

dTLB L1D

FLA EXA FLB EXB EAGA EAGB

GUB

GPR

FUB

FPR

LB

LRRRRRRRRR

RSE

Ps

Ts

Ms

Bs

Rs

D

P

B

X

U

C

W

IA

IT

IM

IB

IR

FIGURE 3-3 SPARC64 VIIIfx Pipeline Diagram

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 14

instructions, and 1 for load/store instructions. Stages E, PD, and D decode and issue
instructions to the appropriate reservation station. SPARC64 VIIIfx issues up to four
instructions per cycle per core.

The following resources are required for instruction execution and are assigned in the issue
stages:

■ Commit stack entries (CSE)
■ Integer and floating-point renaming registers (GUB and FUB, respectively)
■ Reservations station entries
■ Memory access ports

Depending on the instruction, additional resources may be needed for execution, but all
resources must be assigned in these stages. During normal execution, assigned resources are
released at the last stage of the pipeline, the W-stage.1 Instructions between the E-stage and
W-stage are considered to be in flight. When an exception is signalled, all in-flight
instructions and the resources assigned to them are released immediately. This allows the
decoder to start issuing new instructions as quickly as possible.

3.2.3 Execution Stages
■ P: Priority
■ B: Buffer read
■ X: Execute
■ U: Update

Instructions waiting in reservation stations will be sent to fuctional units when all execution
conditions are met. These conditions include knowing the values of all source data, the
availability of functional units, etc. Execution latency varies from one cycle to multiple
cycles, depending on the instruction.

Execution Stages for Cache Access

Memory access requests are passed to the cache access unit after the target address is
calculated. Cache access stages work the same way as instruction fetch stages, except for the
handling of branch prediction. See Section 3.2.1 for details. The instruction fetch stages
corresponding to the cache access stages are shown below.

Instruction Fetch Stages Cache Access

IA Ps

IT Ts

1. A reservation station entry is released at the X-stage.

Ver 15, 26 Apr. 2010 F. Chapter 3 Architectural Overview 15

IM Ms

IB Bs

IR Rs

When an exception is signalled, memory access resources are released. The cache access
pipeline continues to work to complete outgoing memory accesses. When the data is
returned, it is stored in the cache.

3.2.4 Commit Stage
■ W: Write

In the commit stage, instructions that were executed out of order are committed in program
order. Exception handling is performed in this stage. That is, exceptions occurring in the
execution stages are not handled immediately but are signalled after all prior instructions
have committed.1

1. A RAS-related exception may be signalled before the commit stage.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 16

F.CH AP TE R 4

Data Formats

Please refer to Chapter 4 of JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Chapter 4 Data Formats 17

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 18

F.CH AP TE R 5

Registers

Chapter 5 of JPS1 Commonality defines three types of registers: general-purpose, ASR, and
ASI registers. This chapter is divided into a section on nonprivileged registers and a section
on privileged registers. While ASR and ASI registers are treated as privileged registers, this
is not entirely consistent as some registers allow nonprivileged accesses. Futhermore, not all
ASI registers are defined in this chapter; there are additional ASI registers defined in the
Appendices.

Because the SPARC64™ VIIIfx Extensions conform to the chapter and section headings of
JPS1 Commonality where possible, this chapter describes the implementation-dependent
behavior of registers defined in Chapter 5 of JPS1 Commonality. For convenience,
information concerning both privileged and nonprivileged ASR and ASI registers is located
in Section 5.2, “Privileged Registers”.

Please refer to the following sections for information on additional ASI registers.

■ Appendix F.10, “Internal Registers and ASI Operations”
■ Appendix L.3.2, “Special Memory Access ASIs”
■ Appendix L.4, “Hardware Barrier”
■ Appendix M.3, “Cache Control/Status Instructions”
■ Appendix N.4, “Interrupt ASI Registers”
■ Appendix P.2.5, “ASI_EIDR”
■ Appendix P.2.6, “Error Detection Control (ASI_ERROR_CONTROL)”
■ Appendix P.3.1, “ASI_STCHG_ERROR_INFO”
■ Appendix P.4.1, “URGENT ERROR STATUS (ASI_UGESR)”
■ Appendix P.7.1, “ASI_ASYNC_FAULT_STATUS (ASI_AFSR)”
■ Appendix R.1, “System Config Register”
■ Appendix R.2, “STICK Control Register”

Appendix O.3, “Processor State after Reset and in RED_state”, describes register values
after power-on and reset. Appendix P.8, “Internal Register Error Handling”, discusses
register error signalling and recovery.

Ver 15, 26 Apr. 2010 F. Chapter 5 Registers 19

5.1 Nonprivileged Registers

5.1.1 General-Purpose r Registers

Registers r[32] − r[63] (xg[0] − xg[31]) are added.

There are not enough bits in the existing instruction fields to encode the new register
numbers, so an additional 3 bits are stored in the XAR.urs1, XAR.urs2, XAR.urs3, and
XAR.urd fields. See “Extended Arithmetic Register (XAR) (ASR 29)”. Since there are 32
additional registers, bits <2:1> shall be 0 for all fields. A nonzero value in bits <2:1> causes
an illegal_action exception.

Most instructions can use the additional integer registers added by HPC-ACE. If an
instruction that cannot use the HPC-ACE integer registers is executed while XAR.v = 1, an
illegal_action exception is signalled.

Registers xg[0] − xg[31] are always visible regardless of the value of PSTATE.AG,
PSTATE.MG, and PSTATE.IG.

A write to an HPC-ACE register sets XASR.xgd = 1.

Programming Note – When a context switch occurs, software should determine whether
the HPC-ACE integer registers need to be saved.

5.1.4 Floating-Point Registers

New floating-point registers are added; all 256 double-precision floating-point registers can
be used. The additional registers are numbered f[64] − f[510] (even numbers only). The
XASR is also added; it displays the state of the additional registers. See “Extended Arithmetic
Register Status Register (XASR) (ASR 30)” (page 33) for details.

Registers f[0] − f[254] are called the Basic Floating-Point Registers, and registers
f[256] − f[510] are called the Extended Floating-Point Registers. Registers f[0] −
f[62] are also called the V9 Floating-Point Registers.

Floating-Point Register Number Encoding

Double-precision register number encoding is defined in JPS1 Commonality under the same
section heading.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 20

b<4> b<3> b<2> b<1> b<5>

0b<5> b<4> b<3> b<2> b<1> u<0> u<1> u<2>

0b<5> b<4> b<3> b<2> b<1>

Encoded Register Number

Decoded Register Number

Decoded HPC-ACE Register Number

⎫ ⎬⎭

from XAR

FIGURE 5-1 Double-Precision Floating-Point Register Number Encoding

There are not enough bits in the 5-bit instruction fields to specify the 256 double-precision
registers defined by HPC-ACE. Instead, the upper bits of the register number are stored in
the XAR, and at execution time these bits are combined. That is, the register number cannot
be identified from the instruction word alone. See “Extended Arithmetic Register (XAR)
(ASR 29)”.

A decoded HPC-ACE register number is a 9-bit number. As shown in FIGURE 5-1, the upper
3 bits from the XAR are concatenated with the decoded 6-bit register number. Since the least
significant bit is always 0, all 256 even-numbered registers in f[0] − f[510] can be
specified.

Using double-precision registers for single-precision operations

In SPARC64 VIIIfx, double-precision registers can be used to perform single-precision
operations. This applies not only to the registers added in SPARC64 VIIIfx but also to the
double-precision registers defined in SPARC V9. To use a double-precision register for a
single-precision operation, it is sufficient to set XAR.v = 1 at execution time. Thus, a SIMD
single-precision operation always uses double-precision registers.

When using a double-precision register for a single-precision operation, the following
behavior differs from the SPARC V9 specification:

■	 The encoding of the instruction field is the same as for a double-precision register
operand in TABLE 5-5 of JPS1 Commonality. Consequently, only even-numbered register
can be used. f[2n] (n = 0–255)

■	 The upper 4 bytes of the register (the <63:32> operand field) are treated as a single-
precision value, and the lower 4 bytes (the <31:0> operand field) are ignored.

■	 Execution results and load data are written in the upper 4 bytes, and zeroes are written in
the lower 4 bytes.

Ver 15, 26 Apr. 2010	 F. Chapter 5 Registers 21

Programming Note – When XAR.v = 1 and XAR.urs1 = 0, the SPARC V9 double-
precision register specified by rs1 is used to perform a single-precision operation. There are
similar cases for rs2, rs3, and rd. In these situations, the <31:0> operand field of the
register overlaps an odd-numbered register, which will be written over with zeroes.

Endian conversion is done for each single-precision word; that is, endian conversion is done
in 4-byte units.

Specifying registers for SIMD instructions

When XAR.V = 1 and XAR.SIMD = 1, the majority of instructions that use the floating-point
registers become SIMD instructions. One SIMD instruction executes two floating-point
operations. Registers used for SIMD instructions must be register pairs of the form f[2n]
and f[2n+256] (n = 0–127). The f[2n] register number is specified by the instruction.
An illegal_action exception is signalled when an unusable register is specified.

The SIMD FMADD instruction is special; f[2n+256] registers can be specified for rs1 and
rs2. See Appendix A.24.1, “Floating-Point Multiply-Add/Subtract”, for details.

Programming Note – Single-precision floating-point instructions support SIMD
execution; however, double-precision registers must be used. See “Using double-precision
registers for single-precision operations” (page 21) for details.

Of the existing floating-point instructions, the following instructions do not support SIMD
execution. See TABLE A-2 for the list of instructions that do support SIMD execution.

■	 FDIV(S,D), FSQRT(S,D)

■	 VIS instructions that are not logical operations

■	 Instructions that reference and/or update fcc, icc, xcc
(FBfcc, FBPfcc, FCMP, FCMPE, FMOVcc, etc.)

■	 FMOVr

The floating-point operation that stores its result in f[2n] is called the basic operation. The
floating-point operation that stores its result in f[2n+256] is called the extended operation.

Endian conversion is performed separately for the basic and extended floating-point
registers.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 22

5.1.7 Floating-Point State Register (FSR)

FSR_nonstandard_fp (NS)

SPARC V9 defines the FSR.NS bit. When set to 1, this bit causes a SPARC V9 FPU to
produce implementation-defined results that may not correspond to IEEE Std 754-1985.
SPARC64 VIIIfx implements FSR.NS.

When FSR.NS = 1, a subnormal source operand or subnormal result does not cause an
fp_exception_other exception with ftt = unfinished_FPop. Instead, the subnormal value is
replaced with a floating-point zero value of the same sign and an fp_exception_ieee_754
exception with fsr.cexc.nxc = 1 is signalled (maskable by FSR.TEM.NXM). See
Section B.6, “Floating-Point Nonstandard Mode” (page 142) for details.

When FSR.NS = 0, the behavior of the FPU conforms to IEEE Std 754-1985.

FSR_version (ver)

For each SPARC V9 IU implementation (as identified by its VER.impl field), there may be
one or more FPU implementations, or none. This field identifies the particular FPU
implementation present. In the initial version of SPARC64 VIIIfx, FSR.ver = 0 (impl. dep.
#19). FSR.ver may have different values in future versions. Consult the SPARC64 VIIIfx
Data Sheet for details.

FSR_floating-point_trap_type (ftt)

In SPARC64 VIIIfx, the conditions under which an fp_exception_other exception with
FSR.ftt = unfinished_FPop can occur are described in Appendix B.6.1,
“fp_exception_other Exception (ftt=unfinished_FPop)” (impl. dep. #248).

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception
causes the corresponding bit to be cleared.

The following pseudocode shows how SPARC64 VIIIfx sets the cexc bits:
if (<LDFSR or LDXFSR commits>)

<update using data from LDFSR or LDXFSR>;
else if (<FPop commits with ftt = 0>)

<update using value from FPU>
else if (<FPop commits with IEEE_754_exception>)

<set one bit1 in the CEXC field as supplied by FPU>;
else if (<FPop commits with unfinished_FPop error>)

<no change>;

Ver 15, 26 Apr. 2010 F. Chapter 5 Registers 23

else if (<FPop commits with unimplemented_FPop error>)

<no change>;

else

<no change>;

FSR Conformance

SPARC V9 allows the TEM, cexc, and aexc fields to be implemented in hardware in either
of two ways (both of which comply with IEEE Std 754-1985). SPARC64 VIIIfx chooses
implementation method (1), which implements all three fields conformant to IEEE Std 754­
1985. See Section 5.1.7 of JPS1 Commonality for the other implementation method.

Updates to cexc, aexc by SIMD Instructions

Basic and extended operations are performed simultaneously. However, because the source
operands are different, either operation could cause an exception or both could cause
exceptions.

When only one operation causes an exception, the same action is taken as for a non-SIMD
instruction. When both operations cause exceptions, the following exceptions may be
signalled by SPARC64 VIIIfx SIMD instructions; cexc and aexc are updated as shown
below.

1. fp_exception_ieee_754 exceptions are detected for both basic and extended operations.

For the purposes of illustration, the exception caused by the basic operation is indicated in
the hypothetical basic.cexc field. The exception caused by the extended operation is
indicated in the hypothetical extend.cexc field. Each has bits for uf/of/dz/nx/nv.

a. Both exceptions are masked and no exception is signalled.

The logical OR of basic.cexc and extend.cexc is displayed in FSR.cexc.
The logical OR of basic.cexc and extend.cexc is accumulated in FSR.aexc.

FSR.cexc ← basic.cexc | extend.cexc
FSR.aexc ← fsr.aexc | basic.cexc | extend.cexc

b. Either the basic or extended operations signals an exception.

The logical OR of basic.cexc and extend.cexc is displayed in FSR.cexc.
FSR.aexc is left unchanged.

FSR.cexc ← basic.cexc | extend.cexc

c. Both basic and extended operations signal exceptions.

1. For non-SIMD, 1 bit is set. Multiple bits may be set for SIMD.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 24

The logical OR of basic.cexc and extend.cexc is displayed in FSR.cexc.
FSR.aexc is left unchanged.

FSR.cexc ← basic.cexc | extend.cexc

2. An fp_exception_ieee_754 is detected for one operation and an fp_exception_other
exception is detected for the other operation.

The lower-priority fp_exception_other exception is signalled with

ftt = unfinished_FPop. Both FSR.aexc and FSR.cexc are left unchanged.

Programming Note – When an fp_exception_other exceptions occurs, it is impossible
for hardware to determine whether an fp_exception_ieee_754 exception occurs
simultaneously. System software must run an emulation routine to detect the second
exception and update the necessary registers.

3. fp_exception_other exceptions are detected for both basic and extended operations.

An fp_exception_other exception with ftt = unfinished_FPop is signalled. Both
FSR.aexc and FSR.cexc are left unchanged.

Note – For a non-SIMD instruction that causes an fp_exception_ieee_754 exception,
fsr.cexc displays only one floating-point exception condition. For a SIMD instruction,
the logical OR of the basic and extended floating-point exception conditions is displayed;
that is, either one or two floating-point exception conditions may be displayed.

5.1.9 Tick (TICK) Register

SPARC64 VIIIfx implements a TICK.counter register with 63 bits (impl. dep. #105).

Implementation Note – In SPARC64 VIIIfx, a read of the TICK register returns the
value displayed in counter when the RDTICK instruction executes, not the value when the
instruction commits (SPARC64 VIIIfx implements out-of-order execution, so the two are
clearly different). When TICK is read a second time, the difference between the values read
from counter reflects the the number of processor cycles between the execution of the first
and second RDTICK instructions. If the number of intervening instructions is large, any
discrepancies between when reads were executed versus committed becomes small.

Ver 15, 26 Apr. 2010 F. Chapter 5 Registers 25

5.2 Privileged Registers

5.2.6 Trap State (TSTATE) Register

SPARC64 VIIIfx only implements bits 2:0 of the TSTATE.CWP field. Bits 4 and 3 read as
zero, and writes to these bits are ignored.

Note – Software should not set PSTATE.RED = 1, as this causes an entry to RED_state
without the required trap-related changes in the machine state.

5.2.9 Version (VER) Register

TABLE 5-1 shows the values of the VER register fields in SPARC64 VIIIfx.

TABLE 5-1 VER Register Encoding

Bits Field Description

63:48 manuf 000416 (Impl. Dep. #104)

47:32 impl 8

31:24 mask n (The value of n depends on the version of the processor chip.)

15:8 maxtl 5

4:0 maxwin 7

The manuf field displays Fujitsu’s 8-bit JEDEC code; the upper 8 bits are zeroes. The
values of the manuf, impl, and mask fields may change in future processors. The value of
the mask field generally increases numerically with successive releases of the processor but
does not necessarily increase by one for consecutive releases.

5.2.11 Ancillary State Registers (ASRs)

Please refer to Section 5.2.11 of JPS1 Commonality for details on the ASRs.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 26

Performance Control Register (PCR) (ASR 16)

The SPARC64 VIIIfx specification of the PCR differs slightly from JPS1 Commonality.
FIGURE 5-2 and TABLE 5-2 describe the SPARC64 VIIIfx implementations of JPS1
Commonality impl. dep. #207 and #250, as well as changes to the JPS1 Commonality
specification of PCR.SU and PCR.SL. Bits in PCR<2:1> conform to JPS1 Commonality.

See Appendix Q for details on the PA Event Counters.

0 OVF 0 OVRO 0 NC 0 SC SU SL ULRO UT ST PRIV

63 48 47 32 31	 27 26 25 24 22 21 20 18 17 11 10 4 3 2 1

FIGURE 5-2 SPARC64 VIIIfx Performance Control Register (PCR) (ASR 16)

TABLE 5-2 PCR Bit Description

Bits Field Description

47:32	 OVF Overflow Clear/Set/Status. A read by RDPCR returns the overflow status of the
counters, and a write by WRPCR clears or sets the overflow status bits. PCR.OVF
is a SPARC64 VIIIfx implementation-dependent field (impl. dep. #207).

The following figure shows the counters corresponding to the OVF bits. A write
of 0 to an OVF bit clears the overflow status of the corresponding counter.

0 U3 L3 U2 L2 U1 L1 U0 L0

15	 7 6 5 4 3 2 1 0

Writing a 1 via software does not cause an overflow exception.

26 OVRO	 Overflow Read-Only. A write to the PCR register with write data containing a
value of OVRO = 0 updates the PCR.OVF field with the OVF write data. If the
write data contains a value of OVRO = 1, the OVF write data is ignored and the
PCR.OVF field is not updated. Reads of the PCR.OVO field return 0.

The PCR.OVRO field allows PCR to be updated without changing the overflow
status. Hardware maintains the most recent state in PCR.OVF such that a
subsequent read of the PCR returns the current overflow status. PCR.OVRO is a
SPARC64 VIIIfx implementation-dependent field (impl. dep. #207).

24:22	 NC This read-only field indicates the number of counter pairs. In SPARC64 VIIIfx,
NC has a value of 3 (indicating 4 counter pairs).

20:18	 SC PIC Pair Selection. A write updates which PIC counter pair is selected, and a
read returns the current selection.

0

Ver 15, 26 Apr. 2010	 F. Chapter 5 Registers 27

TABLE 5-2 PCR Bit Description

Bits Field	 Description

17:11	 SU This field selects the event counted by PIC<63:32>. A write updates the setting,
and a read returns the current setting. The field specified in JPS1 Commonality is
extended by 1 bit to create a 7-bit field.

10:4	 SL This field selects the event counted by PIC<63:32>. A write updates the setting,
and a read returns the current setting. The field specified in JPS1 Commonality is
extended by 1 bit to create a 7-bit field.

3 ULRO SU/SL Read-Only. A write to the PCR register with write data containing a value
of ULRO = 0 updates the PCR.SU and PCR.SL fields with the SU/SL write data.
If the write data contains a value of ULRO = 1, the SU/SL write data is ignored
and the PCR.SU and PCR.SL fields are not updated. Reads of the PCR.ULRO
field return 0.

The PCR.ULRO field allows the PIC pair selection field to be updated without
changing the PCR.SU and PCR.SL settings. PCR.ULRO is a SPARC64 VIIIfx
implementation-dependent field (impl. dep. #207).

2 UT	 User Mode. When PSTATE.PRIV = 0, events are counted.

1 ST	 System Mode. When PSTATE.PRIV = 1, events are counted.

If both PCR.UT and PCR.ST are 1, all events are counted. If both PCR.UT and
PCR.ST are 0, counting is disabled.

PCR.UT and PCR.ST are global fields; that is, they apply to all PICs.

0 PRIV	 Privileged. If PCR.PRIV = 1, executing a RDPCR, WRPCR, RDPIC, or WRPIC
instruction in non-privileged mode (PSTATE.PRIV = 0) causes a
privileged_action exception.

If PCR.PRIV = 0, a non-privileged (PSTATE.PRIV = 0) attempt to update
PCR.PRIV (write a value of 1) via a WRPCR instruction causes a
privileged_action exception (impl. dep. #250).

Performance Instrumentation Counter (PIC) Register (ASR 17)

The PIC registers conform to JPS1 Commonality.

SPARC64 VIIIfx implements 4 PIC registers. Each is accessed by way of ASR 17, using
PCR.SC as the PIC pair selection field. Read/write access to the PIC will access the PICU/
PICL counter pair selected by PCR. See Appendix Q for PICU/PICL encodings of specific
event counters.

On overflow, the counter wraps to 0, SOFTINT register bit 15 is set to 1, and an interrupt
level-15 exception is generated. The counter overflow trap is triggered on the transition from
value FFFF FFFF16 to value 0. If multiple overflows occur simultaneously, multiple
overflow status bits will be set. An overflow status bit that is already set to 1 remains
unchanged.

Software clears the overflow status bits by writing zeroes to the PCR.OVF field. Software
may also write ones to the overflow status bits; however, this does not cause an overflow
trap.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 28

Dispatch Control Register (DCR) (ASR 18)

SPARC64 VIIIfx does not implement the DCR register. Reads return 0, and writes are
ignored. The DCR is a privileged register; an attempted access by nonprivileged (user) code
generates a privileged_opcode exception.

Extended Arithmetic Register (XAR) (ASR 29)

The XAR is a new, non-privileged register that extends the instruction fields. It holds the
upper 3 bits of an instruction’s register number fields (rs1, rs2, rs3, rd) and indicates
whether or not the instruction is a SIMD instruction.

The register contains fields for 2 separate instructions. There are V (valid) bits for the first
and second instructions; all other fields for the given instruction are valid only when v = 1.
There is no distinction made between integer and floating-point registers. The XAR can be
used with either type of register.

When a trap occurs, the contents of the XAR are saved to the TXAR[TL] and all fields in the
XAR are set to 0. The saved value thus corresponds to the value of the XAR just before the
instruction that caused the trap was executed.

Note – If a Tcc instruction initiates a trap, the contents of the XAR just before the Tcc
instruction was executed are saved.

0 f_v 0 f_simd f_urd f_urs1 f_urs2 f_urs3 s_v 0 s_simd s_urd s_urs1 s_urs2 s_urs3

63 32 31 30 29 28 27 25 24 22 21 19 18 16 15 14 13 12 11 9 8 6 5 3 2 0

Ver 15, 26 Apr. 2010 F. Chapter 5 Registers 29

TABLE 5-3 XAR Fields

Bits Field	 Description

63:32	 — Reserved. An attempt to write a nonzero value to this field will cause an
illegal_instruction exception.

31	 f_v This fields indicates whether the contents of fields beginning with f_ are valid.
If f_v = 1, the contents of the f_ fields are applied to the instruction that
executes first. After the 1st instruction completes, all f_ fields are cleared.

30:29	 — Reserved. An attempt to write a nonzero value to this field will cause an
illegal_instruction exception.

28	 f_simd If f_simd = 1, the 1st instruction is executed as a SIMD instruction. If
f_simd = 0, execution is non-SIMD.

27:25 f_urd	 Extends the rd field of the 1st instruction.

24:22 f_urs1	 Extends the rs1 field of the 1st instruction.

21:19 f_urs2	 Extends the rs2 field of the 1st instruction.

18:16 f_urs3 Extends the rs3 field of the 1st instruction.

15 s_v This fields indicates whether the contents of fields beginning with s_ are valid.

If s_v = 1, the contents of the s_ fields are applied to the instruction that
executes second. After the 2nd instruction completes, all s_ fields are cleared.

14:13	 — Reserved. An attempt to write a nonzero value to this field will cause an
illegal_instruction exception.

12	 s_simd If s_simd = 1, the 2nd instruction is executed as a SIMD instruction. If
s_simd = 0, execution is non-SIMD.

11:9 s_urd	 Extends the rd field of the 2nd instruction.

8:6 s_urs1	 Extends the rs1 field of the 2nd instruction.

5:3 s_urs2	 Extends the rs2 field of the 2nd instruction.

2:0 s_urs3	 Extends the rs3 field of the 2nd instruction.

How XAR is referred to in this specification.

The fields described in Table 5-3 have the following aliases.

■ For memory access:

Alias Field

XAR.f_dis_hw_pf XAR.f_urs3<1>

XAR.s_dis_hw_pf XAR.s_urs3<1>

XAR.f_sector XAR.f_urs3<0>

XAR.s_sector XAR.s_urs3<0>

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 30

■ For SIMD FMA:

Alias	 Field

XAR.f_negate_mul XAR.f_urd<2>

XAR.s_negate_mul XAR.s_urd<2>

XAR.f_rs1_copy XAR.f_urs3<2>

XAR.s_rs1_copy XAR.s_urs3<2>

■	 Others
If the notation does not distinguish between the f_ and s_ fields, the values of XAR.f_v
and XAR.s_v determine which field is being referenced.

Field Notation When XAR.f_v = 1 When XAR.f_v = 0 and XAR.s_v = 1

XAR.v XAR.f_v XAR.s_v

XAR.urd XAR.f_urd XAR.s_urd

XAR.urs1 XAR.f_urs1 XAR.s_urs1

XAR.urs2 XAR.f_urs2 XAR.s_urs2

XAR.urs3 XAR.f_urs3 XAR.s_urs3

XAR.dis_hw_pf XAR.f_dis_hw_pf XAR.s_dis_hw_pf

XAR.sector XAR.f_sector XAR.s_sector

XAR.negate_mul XAR.f_negate_mul XAR.s_negate_mul

XAR.rs1_copy XAR.f_rs1_copy XAR.s_rs1_copy

XAR operation

Some instructions can reference the XAR, and some cannot.

In this document, instructions that can reference XAR are called “XAR-eligible instructions”.
Refer to TABLE A-2, “Instruction Set” (page 61) for details on which instructions are XAR
eligible.

■	 An attempt to execute an instruction that is not XAR-eligible while XAR.v = 1 causes an
illegal_action exception.

■	 XAR-eligible instructions have the following behavior.

■	 If XAR.v = 1, the XAR.urs1, XAR.urs2, XAR.urs3, and XAR.urd fields are
concatenated with the instruction fields rs1, rs2, rs3, and rd respectively.

Ver 15, 26 Apr. 2010	 F. Chapter 5 Registers 31

Integer registers are referenced by 8-bit register numbers; the XAR fields specify the
upper 3 bits, and the instruction fields specify the lower 5 bits.

Floating-point registers are referenced by 9-bit register numbers; the XAR fields
specify the upper 3 bits. The double-precision encoding of the 5-bit instruction fields is
decoded to generate the lower 6 bits of the register number. See “Floating-Point
Register Number Encoding” (page 20) for details.

■	 If XAR.f_v = 1, the XAR.f_urs1, XAR.f_urs2, XAR.f_urs3, and

XAR.f_urd fields are used.

■	 If XAR.f_v = 0 and XAR.s_v = 1, the XAR.s_urs1, XAR.s_urs2,

XAR.s_urs3, and XAR.s_urd fields are used.

■	 The value of the f_ or s_ fields are only valid once. After the instruction referencing the
XAR completes, the referenced fields are set to 0.

■	 XAR-eligible instructions cause illegal_action exceptions in the following cases.

■	 An integer register number greater than or equal to xg[32] is specified.

■	 urs1 ≠ 0 is specified for an instruction that does not use rs1.
There are similar cases for rs2, rs3, rd.
Specifying urs2 ≠ 0 for an instruction whose rs2 field holds an immediate value
(such as simm13 or fcn) also causes an illegal_action exception.

■	 A register number greater than or equal to f[256] is specified for the rd field of an
FDIV(S,D) or FSQRT(S,D) instruction.

■	 XAR.simd = 1 for an instruction that does not support SIMD execution.

■	 XAR.simd = 1, and a register number greater than or equal to f[256] is specified.
rs1 and rs2 of an FMADD instruction are exceptions to this rule; register numbers
greater than or equal to f[256] can be specified.
For FMADD, the XAR.urs3<2> and XAR.urd<2> bits can have values of 1. This has
a different effect than specifying register numbers greater than or equal to f[256].
See “SIMD Execution of FMA Instructions” (page 75) for details.

■	 XAR.urs3<2> ≠ 0 for a ld/st/atomic instruction.

When the XAR specifies register numbers for only one instruction, either the f_ or s_ fields
can be used.

Programming Note – If WRXAR is used, either XAR.f_v or XAR.s_v can be set to 1.
The sxar1 instruction sets XAR.f_v to 1.

If XAR.f_v = 0, the f_simd, f_urs1, f_urs2, f_urs3, and f_urd fields are ignored
even when the fields contain nonzero values. The value of each field after instruction
execution is undefined. If XAR.s_v = 0, the s_simd, s_urs1, s_urs2, s_urs3, and
s_urd fields are ignored even when the fields contain nonzero values. The value of each
field after instruction execution is undefined.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 32

Extended Arithmetic Register Status Register (XASR) (ASR 30)

The XASR is new, nonprivileged register.

0 xgd xfd<7:0>

63 9 8 7 0

Bits Field Access Description

63:9 — R Reserved.

8 xgd RW Updating one of the xg[0] − xg[31] registers sets xgd = 1.

7:0 xfd<7:0> RW Updating a floating-point register sets the appropriate bit to 1.

This register is used to determine whether any of the registers added by HPC-ACE need to be
saved during a context switch. Updating an HPC-ACE register sets the appropriate bit to 1.

■	 There is no flag indicating an update to a V9 integer register.
■	 Updating one of the xg[0] − xg[31] registers sets XASR.xgd = 1.
■	 Updating a floating-point register sets the appropriate XASR.xfd<i> = 1. The floating-

point registers and corresponding xfd bits are shown below.

Floating-Point Registers Corresponding XASR Bits

f[0] − f[62] xfd<0>

f[64] − f[126] xfd<1>

f[128] − f[190] xfd<2>

f[192] − f[254] xfd<3>

f[256] − f[318] xfd<4>

f[320] − f[382] xfd<5>

f[384] − f[446] xfd<6>

f[448] − f[510] xfd<7>

Programming Note – Updating a V9 floating-point register sets the xfd[0] bit of the
XASR, and also updates the V9 FPRS. For example, updating f[15] sets both
FPRS.dl = 1 and XASR.xfd<0> = 1.

Ver 15, 26 Apr. 2010	 F. Chapter 5 Registers 33

Implementation Note – When MOVr, MOVcc, FMOVr, or FMOVcc is executed and a
condition for moving data is not met, setting a bit to 1 in XASR is implementation
dependent.

Trap XAR Registers (TXAR) (ASR 31)

The TXAR are new, privileged registers with the same fields as the XAR.

The TXAR are registers that store the value of the XAR when a trap occurs. The register field
definitions are the same as for the XAR. Registers TXAR[1] − TXAR[MAXTL] are defined.
When TL > 0, TXAR[TL] is visible. If TL is changed, the TXAR[TL] corresponding to the
new TL can be read/written on the following instruction.

An attempt to read/write the TXAR while TL = 0 causes an illegal_instruction exception.
Writing a nonzero value to a reserved field also causes an illegal_instruction exception.

5.2.12 Registers Referenced Through ASIs

This section only describes ASI registers defined in 5.2.12 of JPS1 Commonality. Refer to
Appendix L for information on additional ASI registers.

Data Cache Unit Control Register (DCUCR)

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 0016.

The DCUCR contains fields that control several memory-related hardware functions. The
functions include instruction, prefetch, write and data caches, MMUs, and watchpoint
setting. The SPARC64 VIIIfx implements most of the DCUCR functions described in JPS1
Commonality.

The DCUCR is illustrated in FIGURE 5-3 and described in TABLE 5-4.

— 0 0 0 WEAK_SPCA — VM PR PW VR VW — DM IM 0 0

63 50 49 48 47 42 41 40 33 32 25 24 23 22 21 20 4 3 2 1 0

FIGURE 5-3 DCUCR (ASI 4516)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 34

TABLE 5-4 DCUCR Fields

Bits Field Access	 Description

63:50 —	 Reserved

49:48	 CP, CV R Not implemented in SPARC64 VIIIfx (impl. dep. #232).
These bits read as 0, and writes to them are ignored.

47:42 impl. dep. R These bits read as 0, and writes to them are ignored.

41 WEAK_SPCA RW Disable Speculative Memory Access (impl. dep. #240). When
WEAK_SPCA = 1, branch prediction is disabled; that is, the
processor prefetches instructions as if branches are always
predicted not taken. Loads and stores downstream of a branch
are not executed until the branch direction is known. The
hardware prefetch mechanism is turned off, and all prefetch
instructions including strong prefetches are invalidated.

Because the maximum number of bytes that can be prefetched
is determined by internal CPU resources, the address to be
accessed can be determined by setting weak_spca = 1.

40:33 PM<7:0>	 Reserved.

32:25	 VM<7:0> RW This field specifies the Data Watchpoint Register Mask. In
SPARC64 VIIIfx, the Data Watchpoint Register is shared by
the physical and virtual addresses.

24, 23 PR, PW RW	 When the value of the Data Watchpoint Register is interpreted
as a physical address, a read or write access to the range of
addresses specified by the VM field causes a PA_watchpoint
exception.

22, 21	 VR, VW RW When the value of the Data Watchpoint Register is interpreted
as a virtual address, a read or write access to the range of
addresses specified by the VM field causes a VA_watchpoint
exception.

20:4 — Reserved.

3 DM RW Data MMU Enable. If DM = 0, address translation for data
accesses is disabled, and the virtual address is used directly as
a physical address.

2 IM RW Instruction MMU Enable. If IM = 0, address translation for
data accesses is disabled, and the virtual address is used
directly as a physical address.

1 DC R Not implemented in SPARC64 VIIIfx (impl. dep. #253). This
bit reads as 0, and writes to it are ignored.

0	 IC R Not implemented in SPARC64 VIIIfx (impl. dep. #253). This
bit reads as 0, and writes to it are ignored.

Implementation Note – When DCUCR.WEAK_SPCA = 1 and instructions downstream of a

CTI instruction are prefetched, the maximum number of bytes that can be prefetched is 1KB.

Ver 15, 26 Apr. 2010	 F. Chapter 5 Registers 35

Programming Note – To ensure that all speculative memory accesses are inhibited,
system software should issue a membar #Sync immediately after setting
DCUCR.WEAK_SPCA = 1.

Programming Note – When the IM (IMMU enable) and DM (DMMU Enable) bits are
modified in SPARC64 VIIIfx, the following instruction sequences must be executed.

DCUCR.IM update

stxa DCUCR

flush

DCUDR.DM update

stxa DCUCR

membar #sync

Data Watchpoint Registers

Register Name ASI_WATCHPOINT

ASI 5816

VA 3816

Access Type Supervisor Read/Write

DB —

63 3 2 0

Bits Field Access Description

63:3 DB RW Watchpoint Address (VA or PA)

TABLE 5-18 in JPS1 Commonality defines the ASIs affected by watchpoint traps; these are
classifed as either translating or bypass ASIs. As defined, some implementation-dependent or
undefined ASIs are affected by watchpoint traps. SPARC64 VIIIfx fixes this by redefining
the translating, bypass, and nontranslating ASIs. See TABLE L-1 (page 214). The ASIs
affected by watchpoint traps are the translating and bypass ASIs listed in this table.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 36

In JPS1 Commonality, separate virtual and physical addresses can be set for watchpoints. In
SPARC64 VIIIfx, this specification is changed. Only one address is set, and matches are
monitored depending on whether the address is interpreted as a virtual or physical address.
ASI_VA_WATCHPOINT (ASI = 5816, VA = 3816) in JPS1 Commonality is renamed to
ASI_WATCHPOINT, and ASI_PA_WATCHPOINT (ASI = 5816, VA = 4016) is deleted.

Compatibility Note – This change is not compatible with SPARC JPS1.

The method of enabling and disabling watchpoints by setting DCUCR.VR, DCUCR.VW,
DCUCR.PR, and DCUCR.PW conforms to SPARC JPS1. If either DCUCR.VR or DCUCR.VW
is 1, the virtual addresses of all data references are compared against the DB field, and a
match causes a VA_watchpoint exception. If either DCUCR.PR or DCUCR.PW is 1, the
physical addresses of all data references are compared against the DB field, and a match
causes a PA_watchpoint exception. If a match occurs for both virtual and physical addresses,
a VA_watchpoint exception is signalled.

Unimplemented ASIs defined as bypass or translating in TABLE 5-18 of JPS1 Commonality
are not bypass or translating ASIs in SPARC64 VIIIfx and are not affected by watchpoint
traps. That is, attempts to access these ASIs cause data_access_exception exceptions; the
addresses are not compared against the contents of the watchpoint register.

When comparing the DB field and a physical address, bits DB<63:41> are ignored.

For SIMD load and SIMD store instructions, the address of both basic and extended
operations are compared against the contents of the watchpoint register. If the watchpoint
address and mask match the address and access length of the basic operation, the basic
operation signals a VA_watchpoint or PA_watchpoint exception. If the watchpoint address
and mask match the address and access length of the extended operation, the extended
operation signals a VA_watchpoint or PA_watchpoint exception.

No implementation-dependent feature of SPARC64 VIIIfx reduces the reliability of data
watchpoints (impl. dep. #244).

The following instructions are special cases. Refer to each instruction for details on setting
watchpoints and comparing the access address against the contents of the watchpoint register.

■ Appendix A.4, “Block Load and Store Instructions (VIS I)”
■ Appendix A.30, “Load Quadword, Atomic [Physical]”
■ Appendix A.42, “Partial Store (VIS I)”
■ Appendix A.77, “Store Floating-Point Register on Register Condition”
■ Appendix A.79, “Cache Line Fill with Undetermined Values”
■ Appendix F.5.1, “Trap Conditions for SIMD Load/Store”

Instruction Trap Register

SPARC64 VIIIfx implements the Instruction Trap Register (impl. dep. #205).

Ver 15, 26 Apr. 2010 F. Chapter 5 Registers 37

In SPARC64 VIIIfx, the encoding of the least significant 11 bits of the displacement field of
CALL and branch (BPcc, FBPfcc, Bicc, BPr) instructions in the instruction cache are the
same as their architectural encoding (which appears in main memory) (impl. dep. #245).

5.2.13 Floating-Point Deferred-Trap Queue (FQ)

SPARC64 VIIIfx does not implement a Floating-Point Deferred-trap Queue (impl. dep. #24).
An attempt to read FQ with an RDPR instruction will cause an illegal_instruction exception
(impl. dep. #25).

5.2.14 IU Deferred-Trap Queue

SPARC64 VIIIfx does not implement an IU deferred-trap queue (impl. dep. #16)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 38

F.CH AP TE R 6

Instructions

This chapter describes instructions specific to SPARC64 VIIIfx:

■ Instruction Execution on page 39
■ Instruction Formats and Fields on page 41
■ Instruction Categories on page 42

For convenience, we follow the organization of Chapter 6 in JPS1 Commonality. Please
refer to JPS1 Commonality as necessary.

6.1 Instruction Execution
SPARC64 VIIIfx is an advanced, superscalar implementation of a SPARC V9 processor.
Multiple instructions can be issued and executed in a single cycle. Because SPARC64 VIIIfx
provides serial execution semantics, the topics described in this section are not visible to
software; however, these topics are important for writing correct and efficient software.

6.1.1 Data Prefetch

The out-of-order SPARC64 VIIIfx processor speculatively executes instructions. When
speculation is incorrect, the results of speculative instruction execution can be invalidated,
but speculative memory accesses cannot be invalidated. Therefore, SPARC64 VIIIfx
implements the following policy for speculative memory accesses.

1. When a memory operation x resolves to a volatile memory address (location[x]),
SPARC64 VIIIfx does not prefetch location[x]. The memory address is fetched once it is
certain that x will be executed, i.e. once x is committable.

2. When a memory operation x resolves to a nonvolatile memory address (location[x]),
SPARC64 VIIIfx may prefetch location[x], subject to the following rules:

Ver 15, 26 Apr. 2010 F. Chapter 6 Instructions 39

a.	 When operation x has store semantics and accesses a cacheable location, exclusive
ownership of location[x] is obtained. Operations without store semantics are
prefetched even if they are noncacheable.

b. Atomic operations (CAS(X)A, LDSTUB, SWAP) are never prefetched.

SPARC64 VIIIfx provides two mechanisms for preventing execution of speculative loads:

1. Speculative accesses to a memory page or I/O location can be disabled by setting the E
(side-effect) bit in the corresponding PTE. Accesses to pages that have the E bit set are
forced to wait until they are no longer speculative. See Appendix F for details.

2.	 Loads with ASI_PHYS_BYPASS_WITH_EBIT[_L] (ASI = 1516, 1D16) are forced to
execute in program order. These loads are not speculatively executed.

6.1.2 Instruction Prefetch

SPARC64 VIIIfx prefetches instructions to minimize the number of instances where
instruction execution is stalled waiting for instructions to be delivered. Depending on the
results of branch prediction, some prefetched instructions are not actually executed. In other
cases, speculatively-executed instructions may access memory. Exceptions caused by
instruction prefetch or speculative memory accesses are not signalled until all prior
instructions have committed.1

6.1.3 Syncing Instructions

Executing a syncing instruction stalls the pipeline for a certain number of cycles. There are
two types of syncing instructions: pre-sync and post-sync. A pre-sync instruction commits by
itself after all prior instructions have committed; subsequent instructions are not executed
until after the pre-sync instruction commits. A post-sync instruction prevents subsequent
instructions from issuing until the post-sync instruction has committed. Some instructions
have both pre-sync and post-sync effects.

In SPARC64 VIIIfx, all instructions except for stores commit in program order. Store
instructions commit before their results become globally visible; that is, stores commit once
the store result is written to the write-back buffer.

1. Hardware errors and other asynchronous errors may generate a trap even if the instruction that caused the trap is never
committed.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 40

6.2 Instruction Formats and Fields
SPARC64 VIIIfx instructions are encoded in five major 32-bit formats and several minor
formats. Please refer to Section 6.2 of JPS1 Commonality for descriptions of four of the five
major formats. FIGURE 6-1 shows Format 5, which is specific to SPARC64 VIIIfx.

Format 5 (op = 2, op3 = 3716): FMADD, FPMADDX, FSELMOV, and FTRIMADD

(in place of IMPDEP2A and IMPDEP2B)

op rd op3 rs1 rs3 var size rs2

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

op rd op3 rs1 index var size rs2

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

FIGURE 6-1 Summary of Instruction Formats: Format 5

Pleaser refer to Section 6.2 of JPS1 Commonality for a description of the instruction fields.
Format 5 includes 4 additional fields, which are described in TABLE 6-1.

TABLE 6-1 Instruction Field Interpretation for Format 5

Field Description

rs3	 This 5-bit field specifies a floating-point register for the third source operand
of a 3-operand floating-point instruction.

var	 This 2-bit field is used to indicate the type of floating-point multiply-add/
subtract instructions and to select other instructions implemented in the
Impdep2 opcode space.

size	 This 2-bit field is used to indicate the size of the operands for floating-point
multiply-add/subtract instructions and to select other instructions implemented
in the Impdep2 opcode space.

index	 This field is used to indicate an entry in the FTRIMADDd coefficient table.

Ver 15, 26 Apr. 2010	 F. Chapter 6 Instructions 41

6.3 Instruction Categories

6.3.3 Control-Transfer Instructions (CTIs)

These are the basic control-transfer instruction types:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)

The SPARC64™ VIIIfx Extensions describe the CALL and JMPL instructions. Refer to JPS1
Commonality for the descriptions of the other control-transfer instructions.

CALL and JMPL Instructions

When PSTATE.AM = 0, all 64 bits of the PC are written into the destination register. When
PSTATE.AM = 1, the lower 32 bits of the PC are written into the lower 32 bits of the
destination register. Zeroes are written to the upper 32 bits (impl. dep. #125).

6.3.7 Floating-Point Operate (FPop) Instructions

The precise conditions under which an FPop causes an fp_exception_other exception with
FSR.ftt = unfinished_FPop are defined in Appendix B.6, “Floating-Point Nonstandard
Mode”.

6.3.8 Implementation-Dependent Instructions

SPARC64 VIIIfx defines floating-point instructions in the IMPDEP1 and IMPDEP2 opcode
spaces. Because JPS1 Commonality defines the term “FPop” to refer “to those instructions
encoded by FPop1 and FPop2 opcodes”, IMPDEP instructions are not FPops.

Of the floating-point multiply-add/subtract instructions defined in IMPDEP2, quad-precision
versions are defined for FMADD, FMSUB, and FNMSUB. Because SPARC64 VIIIfx does not
support quad-precision operations, attempts to execute these instructions cause
illegal_instruction exceptions. Only FNMADD does not have a quad-precision version. Quad-
precision multiply-add/subtract instructions are not required SPARC V9 instructions, and
system sofware is not required to emulate these operations.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 42

Of the instructions defined in IMPDEP1 and IMPDEP2 by SPARC64 VIIIfx, the following
instructions use the floating-point registers and generate fp_disabled exceptions if executed
when PSTATE.PEF = 0 or FPRS.FEF = 0.

FCMP(GT,LE,EQ,NE,GE,LE)E(s,d), FCMP(EQ,NE)(s,d), FMAX(s,d), FMIN(s,d),
FRCPA(s,d), FRSQRTA(s,d), FTRISSELd, FTRISMULd, FTRIMADDd,
FSELMOV(s,d), F{N}M(ADD,SUB)(s,d), FPMADDX{HI}, ST{D}FR

Because these instructions are not FPops, an attempt to execute a reserved opcode causes an
illegal_instruction exception as defined in JPS1 Commonality 6.3.9. However, other than the
FPMADDX{HI} and ST{D}FR instructions, these instructions have the same FSR update
behavior as all FPop instructions, as defined in JPS1 Commonality 6.3.7. The FTRISSELd
and FSELMOV(s,d) instructions cannot generate a fp_exception_ieee_754 exception, so
they clear FSR.cexc and leaved FSR.aexc unchanged when they complete.

Ver 15, 26 Apr. 2010 F. Chapter 6 Instructions 43

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 44

F.CH AP TE R 7

Traps

7.1 Processor States, Normal and Special Traps
In JPS1 Commonality, this section defines the CPU states and the transitions between those
states. The SPARC64™ VIIIfx Extensions define these in Appendix O.1, “Reset Types”
(page 245).

7.1.1 RED_state

See Appendix O.2.1, “RED_state” (page 248).

RED_state Trap Table

The RED_state trap vector is located at an implementation-dependent address referred to
as RSTVaddr. The value of RSTVaddr is a constant within each implementation. In
SPARC64 VIIIfx, the virtual address is FFFF FFFF F000 000016, which translates to the
physical address 0000 01FF F000 000016 (impl. dep. #114).

RED_state Execution Environment

In RED_state, the processor is forced to execute in a restricted environment by overriding
the values of some processor controls and state registers.

Note – The values are overridden, not set, allowing them to be switched atomically.

SPARC64 VIIIfx has the following implementation-dependent behavior in RED_state
(impl. dep. #115):

Ver 15, 26 Apr. 2010 F. Chapter 7 Traps 45

■	 While in RED_state, all address translation functions that use the ITLB are disabled.
Translations that use the DTLB are disabled on entry but can be re-enabled by software
while in RED_state. The TLBs can be accessed via the ASI registers.

■	 While the TLB (MMU) is disabled, all memory accesses are treated as noncacheable,
strongly-ordered accesses.

■	 XIR resets are not masked and can cause exceptions.

Note – When RED_state is entered because of component failures, the handler should
attempt to recover from potentially catastrophic error conditions or to disable the failing
components. When RED_state is entered after a reset, the software should create the
environment necessary to restore the system to a running state.

7.1.2 error_state

The processor enters error_state when a trap occurs while the processor is already at its
maximum supported trap level, that is, when TL = MAXTL (impl. dep. #39).

The CPU, upon entering error_state, automatically generates a watchdog_reset (WDR)
to exit error_state; however, the OPSR register can be configured to suppress the WDR
and allow the CPU to remain in error_state (impl. dep #40, #254).

7.2 Trap Categories

7.2.2 Deferred Traps

In SPARC64 VIIIfx, certain error conditions are signalled by a deferred trap (impl. dep. #32).
Please refer to Appendix P.2.2, “Summary of Behavior During Error Detection”, as well as
Appendix P.4.3, “Instruction Execution when an ADE Trap Occurs”.

7.2.4 Reset Traps

When a SPARC64 VIIIfx core does not commit any instructions for a period of 6.7 seconds,
a watchdog reset (WDR) occurs.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 46

7.2.5 Uses of the Trap Categories

In SPARC64 VIIIfx, all exceptions that occur as the result of program execution are precise
(impl. dep. #33).

An exception caused after the initial access of a multiple-access load or store instruction
(LDD(A), STD(A), LDSTUB, CASA, CASXA, or SWAP) that causes a catastrophic error is
precise.

7.3 Trap Control

7.3.1 PIL Control

When a SPARC64 VIIIfx core receives an interrupt request from the system, an
interrupt_vector_trap (TT = 6016) is generated. The trap handler reads the interrupt data and
schedules SPARC V9 interrupts for processing. SPARC V9 interrupts are scheduled by
writing the SOFTINT register. Please refer to Section 5.2.11 of JPS1 Commonality for
details.

The PIL register is checked when SPARC V9 interrupts are received. If the interrupt request
is not masked by the PIL, SPARC64 VIIIfx stops issuing new instructions, cancels all
uncommitted instructions, and traps to privileged software. This action is not taken if there is
a higher-priority trap that is being executed.

SPARC64 VIIIfx treats an interrupt request as a disrupting trap.

7.4 Trap-Table Entry Addresses

7.4.2 Trap Type (TT)

SPARC64 VIIIfx implements all mandatory SPARC V9 and SPARC JPS1 exceptions, as
described in Chapter 7 of JPS1 Commonality, plus the following SPARC64 VIIIfx
implementation-dependent exceptions (impl. dep. #35; impl. dep. #36).

■ async_data_error
■ illegal_action
■ SIMD_load_across_pages

Ver 15, 26 Apr. 2010 F. Chapter 7 Traps 47

Traps defined in JPS1 Commonality are shown in TABLE 7-1 and TABLE 7-2. Shaded sections
in TABLE 7-1 indicate traps that do not occur in SPARC64 VIIIfx.

TABLE 7-1 Exception and Interrupt Requests, by TT Value (1 of 2)

SPARC V9 JPS1 Global Register
M/O M/O Exception or Interrupt Request TT Set Priority

● ● Reserved 00016 -NA­ -NA­

● ● power_on_reset 00116 AG 0

❍ ● watchdog_reset 00216 AG 1

❍ ● externally_initiated_reset 00316 AG 1

● ● software_initiated_reset 00416 AG 1

● ● RED_state_exception 00516 AG 1

● ● Reserved 00616–00716 -NA­ -NA­

●

❍

❍

●

❍

●

instruction_access_exception

instruction_access_MMU_miss

instruction_access_error

00816

00916

00A16

MG

MG(impl. dep.)

AG

5

2

3

● ● Reserved 00B16–00F16 -NA­ -NA­

● ● illegal_instruction 01016 AG 7

● ● privileged_opcode 01116 AG 6

❍ ❍ unimplemented_LDD 01216 AG 6

❍ ❍ unimplemented_STD 01316 AG 6

● ● Reserved 01416–01F16 -NA­ -NA­

● ● fp_disabled 02016 AG 8

❍ ● fp_exception_ieee_754 02116 AG 11

❍ ● fp_exception_other 02216 AG 11

(when ftt = unimplemented_FPop) 02216 AG 8.2

● ● tag_overflow 02316 AG 14

❍ ● clean_window 02416–02716 AG 10

● ● division_by_zero 02816 AG 15

❍ ❍ internal_processor_error 02916 impl. dep. impl. dep

● ● Reserved 02A16–02F16 -NA­ -NA­

● ● data_access_exception 03016 MG 12

❍ ❍ data_access_MMU_miss 03116 MG(impl. dep.) 12

❍ ● data_access_error 03216 AG 12

❍ ❍ data_access_protection 03316 MG(impl. dep.) 12

● ● mem_address_not_aligned 03416 AG 10

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 48

TABLE 7-1 Exception and Interrupt Requests, by TT Value (2 of 2)

SPARC V9 JPS1 Global Register
M/O M/O Exception or Interrupt Request TT Set Priority

❍ ● LDDF_mem_address_not_aligned (impl. dep. #109) 03516 AG 10

❍ ● STDF_mem_address_not_aligned (impl. dep. #110) 03616 AG 10

● ● privileged_action 03716 AG 11

❍ ❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 AG 10

❍ ❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 AG 10

● ● Reserved 03A16–03F16 -NA­ -NA­

❍ ❍ async_data_error 04016 AG 2

● ● interrupt_level_n (n = 1–15) 04116–04F16 AG 32-n

● ● Reserved 05016–05F16 -NA­ -NA­

❍ ● interrupt_vector 06016 IG 16

❍ ● PA_watchpoint 06116 AG 12

❍ ● VA_watchpoint 06216 AG 11

❍ ● ECC_error 06316 AG 33

❍ ● fast_instruction_access_MMU_miss 06416–06716 MG 2

❍ ● fast_data_access_MMU_miss 06816–06B16 MG 12

❍ ● fast_data_access_protection 06C16–06F16 MG 12

❍ ❍ implementation_dependent_exception_n (impl. dep. #35) 07016–072 impl. dep. impl. dep.

❍ ❍ illegal_action 07316 AG 8.5

❍ ❍ implementation_dependent_exception_n (impl. dep. #35) 07416–076 impl. dep. impl. dep.

❍ ❍ SIMD_load_across_pages 07716 AG 12

❍ ❍ implementation_dependent_exception_n (impl. dep. #35) 07816–07F impl. dep. impl. dep.

● ● spill_n_normal (n = 0–7) 08016–09F16 AG 9

● ● spill_n_other (n = 0–7) 0A016–0BF16 AG 9

● ● fill_n_normal (n = 0–7) 0C016–0DF16 AG 9

● ● fill_n_other (n = 0–7) 0E016–0FF16 AG 9

● ● trap_instruction 10016–17F16 AG 16

● ● Reserved 18016–1FF16 -NA­ -NA-

Ver 15, 26 Apr. 2010 F. Chapter 7 Traps 49

TABLE 7-2 Exception and Interrupt Requests, by Priority (0 = Highest; larger number = lower priority) (1
of 2)

SPARC V9 JPS1 Global Register
M/O M/O Exception or Interrupt Request TT Set Priority

● ● power_on_reset (POR) 00116 AG 0

❍ ● externally_initiated_reset (XIR) 00316 AG 1

❍ ● watchdog_reset (WDR) 00216 AG 1

● ● software_initiated_reset (SIR) 00416 AG 1

● ● RED_state_exception 00516 AG 1

❍ ❍ async_data_error 04016 AG. 2

❍ ● fast_instruction_access_MMU_miss 06416–06716 MG 2

❍ ● instruction_access_error 00A16 AG 3

● ● instruction_access_exception 00816 MG 5

● ● privileged_opcode 01116 AG 6

● ● illegal_instruction 01016 AG 7

● ● fp_disabled 02016 AG 8

❍ ● fp_exception_other (when ftt = unimplemented_FPop) 02216 AG 8.2

❍ ❍ illegal_action 07316 AG 8.5

● ● spill_n_normal (n = 0–7) 08016–09F16 AG 9

● ● spill_n_other (n = 0–7) 0A016–0BF16 AG 9

● ● fill_n_normal (n = 0–7) 0C016–0DF16 AG 9

● ● fill_n_other (n = 0–7) 0E016–0FF16 AG 9

❍ ● clean_window 02416–02716 AG 10

❍ ● LDDF_mem_address_not_aligned (impl. dep. #109) 03516 AG 10

❍ ● STDF_mem_address_not_aligned (impl. dep. #110) 03616 AG 10

● ● mem_address_not_aligned 03416 AG 10

❍ ● fp_exception_ieee_754 02116 AG 11

❍ ● fp_exception_other (not ftt = unimplemented_FPop) 02216 AG 11

● ● privileged_action 03716 AG 11

❍ ● VA_watchpoint 06216 AG 11

● ● data_access_exception 03016 MG 12

❍ ● fast_data_access_MMU_miss 06816–06B16 MG 12

❍ ● data_access_error 03216 AG 12

❍ ● PA_watchpoint 06116 AG 12

❍ ● fast_data_access_protection 06C16–06F16 MG 12

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 50

TABLE 7-2 Exception and Interrupt Requests, by Priority (0 = Highest; larger number = lower priority) (2
of 2)

SPARC V9 JPS1 Global Register
M/O M/O Exception or Interrupt Request TT Set Priority

❍ ❍ SIMD_load_across_pages	 07716 AG 12

● ● tag_overflow	 02316 AG 14

● ● division_by_zero	 02816 AG 15

● ● trap_instruction 10016–17F16 AG 16

❍ ● interrupt_vector 06016 IG 16

● ● interrupt_level_n (n = 1–15) 04116–04F16 AG 32-n

❍ ● ECC_error 06316 AG 33

7.4.3 Trap Priorities

In SPARC64 VIIIfx, the priority level of some traps have been changed from those defined in
JPS1 Commonality.

■	 fp_exception_other has a priority of 11 as in JPS1 Commonality, but when
FSR.ftt = 3 (unimplemented_FPop) the priority is 8.2 in SPARC64 VIIIfx.

■	 VA_watchpoint has a priority of 11, but a level-12 trap for a SIMD load or store
instruction may take precedence depending on the situation. See Appendix F.5.1 for
details.

■	 illegal_action is a SPARC64 VIIIfx-defined trap with a priority of 8.5. There are cases
where it take precedence over a level-7 illegal_instruction trap. See Chapter 7.6.1 for
details.

■	 Detecting a multiple hit in the TLB does not cause a TTE-dependent exception. See
Appendix F.5.2, “Behavior on TLB Error” (page 182) for details

■	 data_access_error caused by a bus errror or timeout has the lowest priority among level­
12 traps. See Appendix F.5 for details.

7.5 Trap Processing
In JPS1 Commonality, state changes during trap processing are described for various cases.
Newly-added registers in SPARC64 VIIIfx always have the same behavior during trap
processing; this behavior is explained below.

During trap processing, the values of the following registers are changed:

Ver 15, 26 Apr. 2010	 F. Chapter 7 Traps 51

■	 The HPC-ACE state is preserved, and the trap handler begins executing from the first
instruction that does not use any of the features added by HPC-ACE.

TXAR[TL] ← XAR

XAR ← 0

When an XAR-eligible instruction signals an exception, the value of XAR is saved to
TXAR[TL] and XAR is set to 0 . In the case of a taken Tcc instruction, the value of XAR
before the execution of Tcc is saved to TXAR[TL].

Register changes for DONE, RETRY are described below.

XAR ← TXAR[TL]

TXAR[TL] not updated

Programming Note – When an emulation routine emulates an HPC-ACE instruction,
TXAR[TL] should be cleared before executing a DONE instruction. This emulates the single-
use behavior of the XAR.

7.6	 Exception and Interrupt Descriptions

7.6.1	 Traps Defined by SPARC V9 As Mandatory
■	 illegal_instruction [tt = 01016] (Precise) — Takes priority over an illegal_action

exception, but there are cases where a WRXAR, WRTXAR, or WRPR %pstate causes an
illegal_action exception. See the instruction definitions for details.

7.6.2	 SPARC V9 Optional Traps That Are Mandatory in
SPARC JPS1
■	 fp_exception_other [tt = 02216] (Precise) — In SPARC64 VIIIfx, has a priority level of

8.5 when an attempt to execute an unimplemented FPop causes an exception
(FSR.ftt = 3, unimplemented_FPop).

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 52

7.6.4	 SPARC V9 Implementation-Dependent, Optional Traps
That Are Mandatory in SPARC JPS1

SPARC64 VIIIfx implements all six traps that are implementation dependent in SPARC V9
but mandatory in JPS1 (impl. dep. #35).

7.6.5 SPARC JPS1 Implementation-Dependent Traps

SPARC64 VIIIfx implements the following traps that are implementation dependent (impl.
dep. #35).

■	 async_data_error [tt = 04016] (Preemptive or disrupting) (impl. dep. #218) —
SPARC64 VIIIfx implements the async_data_error exception for signalling an urgent
error. Refer to Appendix P.4, “Urgent Error”, for details.

■	 illegal_action [tt = 07316] (Precise) — Generated when executing an instruction that is
not XAR-eligible while XAR.v = 1, or when executing an XAR-eligible instruction while
XAR is set incorrectly. If XAR is set by SXAR, the exception occurs when the following
instruction is executed. A WRXAR, WRTXAR, or WRPR %pstate generates an
illegal_action exception instead of the higher-priority illegal_instruction exception. Refer
to the instruction definitions for details.

■	 SIMD_load_across_pages [tt = 07716] (Precise) — Generated when a SIMD load
accesses multiple pages and the extended operation misses in the TLB.
When hardware generates this exception and system software emulates the SIMD load,
the basic and extended loads should be processed separately.

Note – If SIMD_load_across_pages updates the TLB, an infinite loop may occur if the
basic and extended translations are alternately evicted from the TLB.

Ver 15, 26 Apr. 2010	 F. Chapter 7 Traps 53

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 54

F.CH AP TE R 8

Memory Models

The SPARC V9 architecture is a model that specifies the behavior observable by software on
SPARC V9 systems. Therefore, access to memory can be implemented in any manner, as
long as the behavior observed by software conforms to that of the models described in
Chapter 8 of JPS1 Commonality and defined in Appendix D, “Formal Specification of the
Memory Models”, also in JPS1 Commonality.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC V9
processors must provide Total Store Order (or a more strongly ordered model, for example,
Sequential Consistency) to ensure SPARC V8 compatibility.

Whether the PSO or RMO models are supported by SPARC V9 systems is implementation
dependent. SPARC64 VIIIfx has the same specified behavior under all memory models.

Ver 15, 26 Apr. 2010 F. Chapter 8 Memory Models 55

8.1 Overview

Note – In the following section, the “hardware memory model” is distinguished from the
“SPARC V9 memory model”. The SPARC V9 memory model is the memory model selected
by PSTATE.MM.

SPARC64 VIIIfx only implements one hardware memory model, which supports all three
SPARC V9 memory models (impl. dep. #113):

■	 Total Store Order — All loads are ordered with respect to earlier loads, and all stores are
ordered with respect to earlier loads and stores. This behavior supports the TSO, PSO, and
RMO memory models defined in SPARC V9. When PSTATE.MM selects PSO or RMO,
SPARC64 VIIIfx uses this memory model. Since programs written for PSO or RMO will
always work in Total Store Order, this behavior is safe but does not take advantage of the
reduced restrictions in PSO or RMO.

8.4 SPARC V9 Memory Model

8.4.5 Mode Control

SPARC64 VIIIfx operates under TSO for all PSTATE.MM settings. Setting PSTATE.MM to
112 also selects TSO (impl. dep. #119). However, the encoding 112 may be assigned to a
different memory model in future versions of SPARC64 VIIIfx and should not be used.

8.4.7 Synchronizing Instruction and Data Memory

SPARC64 VIIIfx guarantees data coherency between all caches in a core. Writes to the data
cache invalidate any corresponding data in the instruction cache. If there is updated data in
the data cache, reads of the instruction cache by the instruction fetch mechanism return the
updated data.

This behavior does not mean that FLUSH instructions are never needed in SPARC64 VIIIfx.
FLUSH instructions are needed if coherency between cache data and data in the pipeline is
required.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 56

SPARC64 VIIIfx does not support coherency between multiple processors, and the latency of
a multiprocessor FLUSH instruction is undefined. The latency of a FLUSH instruction
between on-chip cores depends on the CPU state; the minimum latency is 30 cycles (impl.
dep. #122).

Ver 15, 26 Apr. 2010 F. Chapter 8 Memory Models 57

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 58

F.AP PE ND IX A

Instruction Definitions

This appendix describes SPARC64 VIIIfx implementation-dependent instructions, as well as
instructions specific to SPARC64 VIIIfx. Instructions that conform to JPS1 Commonality
are not described in this appendix; please refer to JPS1 Commonality. The section numbers
in this appendix match those in JPS1 Commonality.

Instructions specific to SPARC64 VIIIfx are described in Section A.24 and Section A.72. All
other sections describe instructions specified in JPS1 Commonality.

Definitions of implementation-dependent instructions contain only the required information.
Definitions of SPARC64 VIIIfx-specific instructions contain the following information:

1. A table of the opcodes defined in the subsection. This contains information on the values
of the field(s) that is unique to that instruction(s) and whether the instruction(s) can be
used with certain HPC-ACE features.

2. An illustration of the applicable instruction format(s). In these illustrations a dash (—)
indicates that the field is reserved for future versions of the processor and shall be 0 in
any instance of the instruction. If a conforming SPARC V9 implementation encounters
nonzero values in these fields, its behavior is undefined. See Section 1.2 for the behavior
of reserved fields in SPARC64 VIIIfx.

3. A list of the suggested assembly language syntax; the syntax notation is described in
Appendix G.

4. A description of the features, restrictions, and exception-causing conditions.

5. A list of exceptions that can occur as a consequence of attempting to execute the
instruction(s). The following cases are not included in these lists:

a. Exceptions due to an instruction_access_error, instruction_access_exception,
fast_instruction_access_MMU_miss, async_data_error, ECC_error, and interrupts
are not listed because they can occur on any instruction.

a. An instruction that is not implemented in hardware generates an illegal_instruction
exception (a floating-point instruction generates an fp_exception_other exception with
ftt = unimplemented_FPop).

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 59

a.	 An instruction specified by IIU_INST_TRAP (ASI = 6016, VA = 0) causes an
illegal_instruction exception.

When specifying conditions that cause illegal_action exceptions, the notation for XAR
fields does not distinguish between the f_ and s_ fields.

The following exceptions do not occur in SPARC64 VIIIfx:

■	 instruction_access_MMU_miss
■	 data_access_MMU_miss
■	 data_access_protection
■	 unimplemented_LDD
■	 unimplemented_STD
■	 LDQF_mem_address_not_aligned
■	 STQF_mem_address_not_aligned
■	 internal_processor_error
■	 fp_exception_other (ftt = invalid_fp_register)

This appendix does not contain any timing information (in either cycles or clock time).

TABLE A-2 summarizes all SPARC JPS1 instructions and SPARC64 VIIIfx-specific
instructions. Within TABLE A-2 and in Appendix E, certain opcodes are marked with
mnemonic superscripts. The superscripts and their meanings are defined in TABLE A-1. .

TABLE A-1 Opcode Superscripts

Superscript Meaning

D Deprecated instruction

P Privileged opcode

PASI Privileged action if bit 7 of the referenced ASI is 0

PASR Privileged opcode if the referenced ASR register is privileged

PNPT Privileged action if PSTATE.PRIV = 0 and (S)TICK.NPT = 1

PPIC Privileged action if PCR.PRIV = 1

PPCR Privileged access to PCR.PRIV = 1

In TABLE A-2 and in the opcode tables of instruction definitions, the HPC-ACE columns
indicate whether an instruction can be used with the indicated HPC-ACE feature.

■	 Inst. Instructions specific to SPARC64 VIIIfx (not defined in JPS1 Commonality).
■	 Regs. XAR-eligible instruction. The instruction can specify the HPC-ACE floating-point

and integer registers; furthermore, a memory access instruction can specify the
cache sector.
For instructions with a ✩ in this column, rd must specify a basic floating-point
register.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 60

■	 SIMD Instruction can be specified as SIMD instructions.
The quad-precision version of instructions with a ✟ in this column cannot be
specified as a SIMD instruction.

Instructions without a ✓ in any of these three columns is not XAR-eligible. Please refer to
“XAR operation” (page 31) for more details on instructions that are not XAR-eligible.

TABLE A-2 Instruction Set (1 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

ADD (ADDcc) Add (and modify condition codes) ✓ —

ADDC (ADDCcc) Add with carry (and modify condition codes) ✓ —

ALIGNADDRESS{_LITTLE} Calculate address for misaligned data —

AND (ANDcc) And (and modify condition codes) ✓ —

ANDN (ANDNcc) And not (and modify condition codes) ✓ —

ARRAY(8,16,32) 3-D array addressing instructions —

BPcc Branch on integer condition codes with prediction —

BiccD Branch on integer condition codes —

BMASK Set the GSR.MASK field —

BPr Branch on contents of integer register with prediction —

BSHUFFLE Permute bytes as specified by GSR.MASK —

CALL Call and link 70

CASAPASI Compare and swap word in alternate space ✓ —

CASXAPASI Compare and swap doubleword in alternate space ✓ —

DONEP Return from trap —

EDGE(8,16,32){L} Edge handling instructions —

FABS(s,d,q) Floating-point absolute value ✓ ✟ —

FADD(s,d,q) Floating-point add ✓ ✟ —

FALIGNDATA Perform data alignment for misaligned data —

FAND{S} Logical AND operation ✓ ✓ —

FANDNOT(1,2){S} Logical AND operation with one inverted source ✓ ✓ —

FBfccD Branch on floating-point condition codes —

FBPfcc Branch on floating-point condition codes with prediction —

FCMP(s,d,q) Floating-point compare ✓ —

FCMPE(s,d,q) Floating-point compare (exception if unordered) ✓ —

FCMP(GT,LE,NE,EQ)(16,32) Pixel compare operations —

FCMP(EQ,NE)(s,d) Floating-point conditional compare to register ✓ ✓ ✓ 116

FCMP(GT,LT,EQ,NE,GE,LE)E(s,d) Floating-point conditional compare (exception if unordered) ✓ ✓ ✓ 116

FDIV(s,d,q) Floating-point divide ✩ —

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 61

TABLE A-2 Instruction Set (2 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

FdMULq Floating-point multiply double to quad ✓ —

FEXPAND Pixel expansion —

FiTO(s,d,q) Convert integer to floating-point ✓ ✟ —

FLUSH Flush instruction memory ✓ —

FLUSHW Flush register windows —

FMADD(s,d) Foating-point Multiply-and-Add ✓ ✓ ✓ 72

FMAX(s,d) Floating-point maximum ✓ ✓ ✓ 118

FMIN(s,d) Floating-point minimum ✓ ✓ ✓ 118

FMSUB(s,d) Foating-point Multiply-and-Subtract ✓ ✓ ✓ 72

FMOV(s,d,q) Floating-point move ✓ ✟ —

FMOV(s,d,q)cc Move floating-point register if condition is satisfied —

FMOV(s,d,q)r Move f-p reg. if integer reg. contents satisfy condition —

FMUL(s,d,q) Floating-point multiply ✓ ✟ —

FMUL8x16 8x16 partitioned product —

FMUL8x16(AU,AL) 8x16 upper/lower α partitioned product —

FMUL8(SU,UL)x16 8x16 upper/lower partitioned product —

FMULD8(SU,UL)x16 8x16 upper/lower partitioned product —

FNAND{S} Logical NAND operation ✓ ✓ —

FNEG(s,d,q) Floating-point negate ✓ ✟ —

FNMADD(s,d) Foating-point Multiply-and-Add and negate ✓ ✓ ✓ 72

FNMSUB(s,d) Foating-point Multiply-and-Subtract and negate ✓ ✓ ✓ 72

FNOR{S} Logical NOR operation ✓ ✓ —

FNOT(1,2){S} Copy negated source ✓ ✓ —

FPACK(16,32, FIX) Pixel packing —

FPADD(16,32){S} Pixel add (single) 16- or 32-bit —

FPMADDX{HI} Integer Multiply-and-Add ✓ ✓ ✓ 80

FPMERGE Pixel merge —

FRCPA(s,d) Floating-point reciprocal approximation ✓ ✓ ✓ 120

FRSQRTA(s,d) Floating-point reciprocal square root approximation ✓ ✓ ✓ 120

FONE{S} One fill ✓ ✓ —

FOR{S} Logical OR operation ✓ ✓ —

FORNOT(1,2){S} Logical OR operation with one inverted source ✓ ✓ —

FPSUB(16,32){S} Pixel subtract (single) 16- or 32-bit —

FsMULd Floating-point multiply single to double ✓ ✓ —

FSQRT(s,d,q) Floating-point square root ✩ —

FSRC(1,2){S} Copy source ✓ ✓ —

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 62

TABLE A-2 Instruction Set (3 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

FSELMOV(s,d) Move selected floating-point register ✓ ✓ ✓ 124

F(s,d,q)TOi Convert floating point to integer ✓ ✟ —

F(s,d,q)TO(s,d,q) Convert between floating-point formats ✓ ✟ —

F(s,d,q)TOx Convert floating point to 64-bit integer ✓ ✟ —

FSUB(s,d,q) Floating-point subtract ✓ ✟ —

FTRIMADDd Floating-point trigonometric function ✓ ✓ ✓ 125

FTRIS(MUL,SEL)d Floating-point trigonometric functions ✓ ✓ ✓ 125

FXNOR{S} Logical XNOR operation ✓ ✓ —

FXOR{S} Logical XOR operation ✓ ✓ —

FxTO(s,d,q) Convert 64-bit integer to floating-point ✓ ✟ —

FZERO{S} Zero fill ✓ ✓ —

ILLTRAP Illegal instruction —

JMPL Jump and link 81

LDDD Load integer doubleword ✓ —

LDDAD, PASI Load integer doubleword from alternate space ✓ —

LDDA ASI_NUCLEUS_QUAD* Load integer quadword, atomic ✓ —

LDDA ASI_QUAD_PHYS* Load integer quadword, atomic (physical address) ✓ 89

LDDF Load double floating-point ✓ ✓ 82

LDDFAPASI Load double floating-point from alternate space ✓ ✓ 86

LDDFA ASI_BLK* Block loads ✓ 68

LDDFA ASI_FL* Short floating point loads —

LDF Load floating-point ✓ ✓ 82

LDFAPASI Load floating-point from alternate space ✓ ✓ 86

LDFSRD Load floating-point state register lower ✓ 82

LDQF Load quad floating-point ✓ 82

LDQFAPASI Load quad floating-point from alternate space ✓ 86

LDSB Load signed byte ✓ —

LDSBAPASI Load signed byte from alternate space ✓ —

LDSH Load signed halfword ✓ —

LDSHAPASI Load signed halfword from alternate space ✓ —

LDSTUB Load-store unsigned byte ✓ —

LDSTUBAPASI Load-store unsigned byte in alternate space ✓ —

LDSW Load signed word ✓ —

LDSWAPASI Load signed word from alternate space ✓ —

LDUB Load unsigned byte ✓ —

LDUBAPASI Load unsigned byte from alternate space ✓ —

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 63

TABLE A-2 Instruction Set (4 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

LDUH Load unsigned halfword ✓ —

LDUHAPASI Load unsigned halfword from alternate space ✓ —

LDUW Load unsigned word ✓ —

LDUWAPASI Load unsigned word from alternate space ✓ —

LDX Load extended ✓ —

LDXAPASI Load extended from alternate space ✓ —

LDXFSR Load floating-point state register ✓ 82

MOVcc Move integer register if condition is satisfied ✓ —

MOVr Move integer register on contents of integer register ✓ —

MULSccD Multiply step (and modify condition codes) ✓ —

MULX Multiply 64-bit integers ✓ —

OR (ORcc) Inclusive-or (and modify condition codes) ✓ —

ORN (ORNcc) Inclusive-or not (and modify condition codes) ✓ —

PDIST Pixel component distance —

RDPRP Read privileged register ✓ —

MEMBAR Memory barrier 91

NOP No operation ✓ 93

POPC Population count ✓ 95

PREFETCH Prefetch data ✓ 96

PREFETCHAPASI Prefetch data from alternate space ✓ 96

RDASI Read ASI register ✓ 98

RDASRPASR Read ancillary state register ✓ 98

RDCCR Read condition codes register ✓ 98

RDDCRP Read dispatch control register ✓ 98

RDFPRS Read floating-point registers state register ✓ 98

RDGSR Read graphic status register ✓ 98

RDPC Read program counter ✓ 98

RDPCRPPCR Read performance control register ✓ 98

RDPICPPIC Read performance instrumentation counters ✓ 98

RDSOFTINTP Read per-processor soft interrupt register ✓ 98

RDSTICKPNPT Read system TICK register ✓ 98

RDSTICK_CMPRP Read system TICK compare register ✓ 98

RDTICKPNPT Read TICK register ✓ 98

RDTICK_CMPRP Read TICK compare register ✓ 98

RDTXARP Read TXAR register ✓ ✓ 98

RDXASR Read XASR register ✓ ✓ 98

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 64

TABLE A-2 Instruction Set (5 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

RDYD Read Y register ✓ 98

RESTORE Restore caller’s window ✓ —

RESTOREDP Window has been restored —

RETRYP Return from trap and retry —

RETURN Return —

SAVE Save caller’s window ✓ —

SAVEDP Window has been saved —

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) ✓ —

SDIVX 64-bit signed integer divide ✓ —

SETHI Set high 22 bits of low word of integer register ✓ —

SHUTDOWN Shut down the processor 100

SIAM Set Interval Arithmetic Mode —

SIR Software-initiated reset —

SLEEP Sleep this thread 79

SLL Shift left logical ✓ —

SLLX Shift left logical, extended ✓ —

SMULD (SMULccD) Signed integer multiply (and modify condition codes) ✓ —

SRA Shift right arithmetic ✓ —

SRAX Shift right arithmetic, extended ✓ —

SRL Shift right logical ✓ —

SRLX Shift right logical, extended ✓ —

STB Store byte ✓ —

STBAPASI Store byte into alternate space ✓ —

STBARD Store barrier 115

STDD Store doubleword ✓ —

STDAD, PASI Store doubleword into alternate space ✓ —

ST(D,DF,X)A ASI_XFILL* Cache line fill ✓ ✓ 135

STDF Store double floating-point ✓ ✓ 101

STDFAPASI Store double floating-point into alternate space ✓ ✓ 105

STDFA ASI_BLK* Block stores ✓ 68

STDFA ASI_FL* Short floating point stores —

STDFA ASI_PST* Partial Store instructions 94

STDFR Store double floating-point on register’s condition ✓ ✓ ✓ 130

STF Store floating-point ✓ ✓ 101

STFAPASI Store floating-point into alternate space ✓ ✓ 105

STFR Store floating-point on register condition ✓ ✓ ✓ 130

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 65

TABLE A-2 Instruction Set (6 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

STFSRD Store floating-point state register ✓ 101

STH Store halfword ✓ —

STHAPASI Store halfword into alternate space ✓ —

STQF Store quad floating-point ✓ 101

STQFAPASI Store quad floating-point into alternate space ✓ 105

STW Store word ✓ —

STWAPASI Store word into alternate space ✓ —

STX Store extended ✓ —

STXAPASI Store extended into alternate space ✓ —

STXFSR Store extended floating-point state register ✓ 101

SUB (SUBcc) Subtract (and modify condition codes) ✓ —

SUBC (SUBCcc) Subtract with carry (and modify condition codes) ✓ —

SUSPENDP Suspend this thread 78

SWAPD Swap integer register with memory ✓ —

SWAPAD, PASI Swap integer register with memory in alternate space ✓ —

SXAR(1,2) Set XAR ✓ 133

TADDcc (TADDccTVD) Tagged add and modify condition codes (trap on overflow) ✓ —

Tcc Trap on integer condition codes 108

TSUBcc (TSUBccTVD) Tagged subtract and modify condition codes (trap on overflow) ✓ —

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) ✓ —

UDIVX 64-bit unsigned integer divide ✓ —

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) ✓ —

WRASI Write ASI register ✓ 112

WRASRPASR Write ancillary state register ✓ 112

WRCCR Write condition codes register ✓ 112

WRDCRP Write dispatch control register ✓ 112

WRFPRS Write floating-point registers state register ✓ 112

WRGSR Write graphic status register ✓ 112

WRPCRPPCR Write performance control register ✓ 112

WRPICPPIC Write performance instrumentation counters register ✓ 112

WRPRP Write privileged register ✓ 109

WRSOFTINTP Write per-processor soft interrupt register ✓ 112

WRSOFTINT_CLRP Clear bits of per-processor soft interrupt register ✓ 112

WRSOFTINT_SETP Set bits of per-processor soft interrupt register ✓ 112

WRTICK_CMPRP Write TICK compare register ✓ 112

WRSTICKP Write System TICK register ✓ 112

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 66

TABLE A-2 Instruction Set (7 of 7)

HPC-ACE Ext.

Operation Name Inst. Regs. SIMD Page

WRSTICK_CMPRP Write System TICK compare register ✓ 112

XNOR (XNORcc) Exclusive-nor (and modify condition codes) ✓ —

XOR (XORcc) Exclusive-or (and modify condition codes) ✓ —

WRTXARP Write TXAR register ✓ ✓ 112

WRXAR Write XAR register ✓ ✓ 112

WRXASR Write XASR register ✓ ✓ 112

WRYD Write Y register ✓ 112

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 67

A.4 Block Load and Store Instructions (VIS I)

Deprecated – In SPARC64 VIIIfx, block load/store instructions are provided for
backwards compatibility only. It is recommended that new programs avoid using these
instructions. For high-speed copying of data from memory, see Section A.79, “Cache Line
Fill with Undetermined Values”.

The SPARC64 VIIIfx specification of block load/store differs from the specification used in
SPARC64 V through SPARC64 VII. The new specification has stronger restrictions, and part
of the new specification is incompatible with the previous specification. The differences are
described below:

1. Block load/store memory accesses are not atomic; they are split into separate 8-byte load/
store accesses in internal hardware. Each load/store obeys all ordering constraints
imposed by MEMBAR instructions and atomic instructions.

2.	 The block load/store instructions adhere to TSO. That is, the ordering between the
separate load/store accesses of a block load/store and between other load/store/atomic
instructions conforms to TSO.

Compatibility Note – In the previous specification, the memory order did not conform
to the SPARC V9 memory model; the separate 8-byte accesses were performed in RMO.

3. The order of register accesses is preserved in the same manner as for other instructions.
That is, read-after-write and write-after-write register accesses by a block load/store and
another instruction are performed in program order.

4. The cache behavior of a block load/store is the same as a normal load/store. A block load
reads data from the L1 cache; if the data is not in the L1 cache, the L1 cache is updated
with data from memory before being read. A block stores writes data to the L1 cache; if
the data is not in the L1 cache, the L1 cache is updated with data from memory before
being written.

Compatibility Note – The cache side effects of a block load/store have changed
greatly. In the previous specification, a block load reads data from the cache; if the data is
not in the cache, behavior is undefined. A block store writes data to a cache containing a
dirty copy of the data; at the same time, copies in all higher-level caches (caches closer to
the pipeline) are invalidated. If no cache contains a dirty copy or the data is not in the
cache, the block store writes the data to memory.

5. In SPARC64 VIIIfx, block stores and block stores with commit have the same behavior.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 68

Compatibility Note – The cache side effects of a block store with commit have
changed greatly. In the previous specification, a block store with commit forces the data
to be written to memory and invalidates copies in all caches.

6.	 For a block load/store instruction to a page with TTE.E = 0, any of the 8-byte load/store
accesses may cause a fast_data_access_MMU_miss exception. When the exception is
signalled for a block load, register values may or may not have been updated by the block
load. When the exception is signalled for a block store, the memory state prior to the
block store is preserved.

Programming Note – Block stores to certain noncacheable address spaces appear to
complete normally, but no actual store is performed. Refer to the system specification for
details.

Note – As defined in JPS1 Commonality, block load/store instructions do not cause
LDDF_mem_address_not_aligned or STDF_mem_address_not_aligned exceptions (see
Appendix L.3.3). However, a LDDFA instruction that specifies ASI_BLK_COMMIT_{P,S} is
not a block load/store instruction, and an access aligned on a 4-byte boundary causes a
LDDF_mem_address_not_aligned exception. See “Block Load and Store ASIs” (page 220).

Exceptions illegal_instruction (misaligned rd)
fp_disabled
illegal_action (XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0);

XAR.v = 1 and XAR.simd = 1)
mem_address_not_aligned (see “Block Load and Store ASIs” (page 220))
LDDF_mem_address_not_aligned (see “Block Load and Store ASIs” (page 220))
VA_watchpoint (only detected on the first 8 bytes of a transfer)
fast_data_access_MMU_miss
data_access_exception (see “Block Load and Store ASIs” (page 220))
fast_data_access_protection
PA_watchpoint (only detected on the first 8 bytes of a transfer)
data_access_error

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 69

A.9 Call and Link

SPARC64 VIIIfx clears the more significant 32 bits of the PC value stored in r[15] when
PSTATE.AM = 1 (impl. dep. #125). The updated value in r[15] is visible to the delay slot
instruction.

Exceptions illegal_action (XAR.v = 1)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 70

A.24 Implementation-Dependent Instructions

Opcode op3 Operation

IMPDEP1 11 0110 Implementation-Dependent Instruction 1

IMPDEP2 11 0111 Implementation-Dependent Instruction 2

The IMPDEP1 and IMPDEP2 instructions are completely implementation dependent.
Implementation-dependent aspects include their operation, the interpretation of bits <29:25>
and <18:0> in their encodings, and which (if any) exceptions they may cause.

SPARC64 VIIIfx uses IMPDEP1 to encode the VIS, SUSPEND, SLEEP, FCMPcond{d,s},
FMIN{d,s}, FMAX{d,s}, FRCPA{d,s}, FRSQRTA{d,s}, FTRISSELd, and FTRISMULd
instructions (impl. dep. #106). IMPDEP2A is used to encode the Integer Multiply-Add
instructions (FPMADDX and FPMADDXHI), FTRIMADDd, and FSELMOV{d,s}; IMPDEP2B is
used to encode the Floating-Point Multiply-Add/Subtract instructions (impl. dep. #106).

For information on adding new instructions to the SPARC V9 architecture using the
implementation-dependent instructions, see Section I.1.2, “Implementation-Dependent and
Reserved Opcodes”, in JPS1 Commonality.

Compatibility Note – These instructions replace the CPopn instructions in SPARC V8.

New IMPDEP1 and IMPDEP2 instructions added in SPARC64 VIIIfx are not described in
Section A.24; instead, these instructions are located after Section A.71 with the other new
instructions.

Exceptions Implementation-dependent.

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 71

A.24.1 Floating-Point Multiply-Add/Subtract

SPARC64 VIIIfx uses the IMPDEP2B opcode space to implement the Floating-Point
Multiply-Add/Subtract (FMA) instructions. FMA instructions support SIMD execution,
which is an HPC-ACE feature. This section first describes the behavior of non-SIMD FMA
instructions, then explains the use of FMA instructions with HPC-ACE features.

HPC-ACE Ext.

Regs. SIMD Opcode Var Size1 2 Operation

✓ ✓ FMADDs 00 01 Multiply-Add Single

✓ ✓ FMADDd 00 10 Multiply-Add Double

✓ ✓ FMSUBs 01 01 Multiply-Subtract Single

✓ ✓ FMSUBd 01 10 Multiply-Subtract Double

✓ ✓ FNMSUBs 10 01 Negative Multiply-Subtract Single

✓ ✓ FNMSUBd 10 10 Negative Multiply-Subtract Double

✓ ✓ FNMADDs 11 01 Negative Multiply-Add Single

✓ ✓ FNMADDd 11 10 Negative Multiply-Add Double

1.See Section A.24.4, Section A.75, and Section A.76 for instructions with
size = 00.

2.size = 11 is reserved for quad precision instructions. However, this encoding is
partly used in Section A.75, “Move Selected Floating-Point Register on
Floating-Point Register's Condition”.

Format (5)

10 rd 110111 rs1 rs3 var size rs2

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Operation 処理 Implementation 演算

Multiply-add rd ← rs1 × rs2 + rs3

Multiply-Subtract rd ← rs1 × rs2 − rs3

Negative multiply-subtract rd ← − rs1 × rs2 + rs3

Negative multiply-add rd ← − rs1 × rs2 − rs3

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 72

 Assembly Language Syntax

fmadds fregrs1, fregrs2, fregrs3, fregrd

fmaddd fregrs1, fregrs2, fregrs3, fregrd

fmsubs fregrs1, fregrs2, fregrs3, fregrd

fmsubd fregrs1, fregrs2, fregrs3, fregrd

fnmadds fregrs1, fregrs2, fregrs3, fregrd

fnmaddd fregrs1, fregrs2, fregrs3, fregrd

fnmsubs fregrs1, fregrs2, fregrs3, fregrd

fnmsubd fregrs1, fregrs2, fregrs3, fregrd

Description	 The FMADD instruction multiplies the floating-point registers specified by rs1 and rs2,
adds the product to the floating-point register specified by rs3, and writes the result into the
floating-point register specified by rd.

The FMSUB instruction multiplies the floating-point registers specified by rs1 and rs2,
subtracts the product from the floating-point register specified by rs3, and writes the result
into the floating-point register specified by rd.

The FNMADD instruction multiplies the floating-point registers specified by rs1 and rs2,
negates the product, subtracts this value from the floating-point register specified by rs3,
and writes the result into the floating-point register specified by rd.

The FNMSUB instruction multiplies the floating-point registers specified by rs1 and rs2,
negates the product, adds this value from the floating-point register specified by rs3, and
writes the result into the floating-point register specified by rd.

An FMA instruction is processed as a fused multiply-add/subtract operation. That is, the
result of the multiply operation is not rounded and has infinite precision; the add/subtract
operation is performed with a rounding step. Thus, at most one rounding error can occur.

In SPARC64 V, multiply and add/subtract were performed as separate operations. That is, the
result of the multiply operation was rounded (as if it were a separate multiply operation). The
add/subtract operation then performed a second rounding step. Thus, up to two rounding
errors could occur.
Additionally, the behavior of FNMADD and FNMSUB differs when rs1 or rs2 is a NaN
operand. SPARC64 VIIIfx outputs one of the NaN operands as the result; SPARC64 V
inverts the sign bit of one of the NaN operands before outputting that value as the result.
TABLE A-3 summarizes how SPARC64 VIIIfx handles traps caused by FMA instructions. If
the multiply causes an invalid (NV) exception that traps, or a denormal source operand is
detected while FSR.NS = 1, execution is halted and the instruction generates a trap. The
exception condition is indicated in FSR.cexc, and FSR.aexc is not updated. The add/
subtract is only executed when the multiply does not cause an invalid exception that traps.

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 73

If the add/subtract generates a IEEE754 exception condition tha traps, FSR.cexc only
indicates the trapping exception condition, and FSR.aexc is not updated. If there are no
trapping IEEE754 exception conditions, FSR.cexc indicates the nontrapping exception
conditions. FSR.aexc is updated with the logical OR of FSR.cexc and FSR.aexc. The
unfinished_FPop exception conditions for rs1 and rs2 (multiply) are the same as for
FMUL; the conditions for the product and rs3 (add/subtract) are the same as for FADD.

TABLE A-3 IEEE754 Exceptions for Floating-Point Multiply-Add/Subtract Instructions

FMUL IEEE754 trap (NV or NX only) No trap No trap

FADD — IEEE754 trap No trap

Exception condition for FMUL Exception condition for FADD Nontrapping exception conditions for
cexc FADD

aexc Not updated Not updated Logical OR of cexc (above) and aexc

The values indicated in aexc depend on the exception conditions, which are summarized in
TABLE A-4 and TABLE A-5. The following terminology is used for nontrapping IEEE
exception conditions: uf, of, nv, and nx. These correspond to underflow (uf), overflow (of),
invalid (nv), and inexact (nx) exception conditions.

TABLE A-4 Values of aexc for Nontrapping Exception Conditions, FSR.NS = 0

FADD

none nx of nx nv

none none nx of nx nv
FMUL

nv nv — — nv

TABLE A-5 Values of aexc for Nontrapping Exception Conditions, FSR.NS = 1

FADD

none nx of nx uf nx nv

none none nx of nx uf nx nv

FMUL nv nv — — — nv

nx nx nx of nx uf nx nv nx

In these tables, cases indicated by an “—” do not exist.

Programming Note – The Floating-Point Multiply-Add/Subtract instructions are
implemented using the SPARC V9 IMPDEP2 opcode space. These instructions are specific
to SPARC64 VIIIfx and cannot be used in any programs that will be executed on another
SPARC V9 processor.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 74

SIMD Execution of FMA Instructions

In SPARC64 VIIIfx, the basic and extended operations of a SIMD instruction are executed
independently. Because the basic operation uses registers in the range f[0] − f[254], the
operation always sets the most significant bit of rs1, rs2, rs3, and rd to 0 (page 22). This
restriction is relaxed for SIMD FMA instructions, such that operations between basic and
extended registers can be executed.

Note – The above limitation for SIMD instructions only applies when XAR.simd = 1.
When XAR.simd = 0, rs1, rs2, rs3, and rd can use any of the floating point registers.

For a SIMD FMA instruction, rs1 and rs2 can specify any of the floating-point registers
f[2n] (n=0–255). When the basic operation specifies an extended register, the extended
operation uses the corresponding basic register. That is, the basic operation uses registers
f[2n] (n=0…255), and the extended operation uses f[(2n+256) mod 512] (n=0…255).

On the other hand, the limitations for rs3 and rd are the same as for other SIMD
instructions. The basic operation must use registers f[0] − f[254], and the extended
operation must use f[256] − f[510]. That is, urs3<2> and urd<2> are never used to
specify registers. SIMD FMA instructions use these bits to specify additional execution
options; these bits should be 0 for all other SIMD instructions. When urs3<2> = 1, the
register specified by rs1 is used for both basic and extended operations. When urd<2> = 1,
the sign of the product for the extended operation is reversed.

The meanings of XAR.urs1, XAR.urs2, XAR.urs3, and XAR.urd for a SIMD FMA
instruction is summarized below:

■ XAR.urs1<2>	 rs1<8> for the basic operation, ¬rs1<8> for the extended operation
■ XAR.urs2<2>	 rs2<8> for the basic operation, ¬rs2<8> for the extended operation
■ XAR.urs3<2>	 specifies whether the extended operation uses rs1<8> or ¬rs1<8>
■	 XAR.urd<2> specifies whether the sign of the product is reversed for the extended

operation

The rs1<8> bit described above is a bit in the decoded HPC-ACE register number for a
double precision register. See FIGURE 5-1 (page 21) for details.

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 75

frs1: urs1<2:0>, rs1<5:0> frs1i: ¬urs1<2>, urs1<1:0>, rs1<5:0>

frs2: urs2<2:0>, rs2<5:0> frs2i: ¬urs2<2>, urs2<1:0>, rs2<5:0>

frs3b: 1’b0, urs3<1:0>, rs3<5:0> frs3e: 1’b1, urs3<1:0>, rs3<5:0>

frdb: 1’b0, urd<1:0>, rd<5:0> frs1i: 1’b1, urd<1:0>, rd<5:0>

c: urs3<2>

n: urd<2>

Instruction Basic operation Extended operation

fmadd frdb ← frs1 × frs2 + frs3b frde ← (-1)n × (c ? frs1 : frs1i) × frs2i + frs3e

fmsub frdb ← frs1 × frs2 − frs3b frde ← (-1)n × (c ? frs1 : frs1i) × frs2i − frs3e

fnmsub frdb ← − frs1 × frs2 + frs3b frde ← − (-1)n × (c ? frs1 : frs1i) × frs2i + frs3e

fnmadd frdb ← − frs1 × frs2 − frs3b frde ← − (-1)n × (c ? frs1 : frs1i) × frs2i − frs3e

Example 1: Multiplication of complex numbers

(a1 + ib1) (a2 + ib2) = (a1a2 - b1b2) + i(a1b2 + a2b1)
/*

 * X: location of source complex number

 * Y: location of source complex number

 * Z: location for destination complex number

 */

/* setup registers */

sxar2

ldd,s [X], %f0 /* %f0: a1, %f256: b1 */

ldd,s [Y], %f2 /* %f2: a2, %f258: b2 */

sxar1

fzero,s %f4 /* clear destination registers */

/* perform calculations */

sxar2

fnmaddd,snc %f256, %f258, %f4, %f4

/* %f4 := -%f256 * %f258 - %f4 */

/* %f260 := %f256 * %f2 - %f260 */

fmaddd,sc %f0, %f2, %f4, %f4

/* %f4 := %f0 * %f2 + %f4 */

/* %f260 := %f0 * %f258 + %f260 */

/* store results */

sxar1

std,s %f4, [Z]

Example 2: 2x2 matrix multiplication

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 76

/*

 * A: location of source matrix: a11, a12, a21, a22

 * B: location of source matrix: b11, b12, b21, b22

 * C: location for destination matrix: c11, c12, c21, c22

 */

/* setup registers */

sxar2

ldd,s [A], %f0 /* %f0: a11, %f256: a12 */

ldd,s [A+16], %f2/* %f2: a21, %f258: a22 */

sxar2

ldd,s [B], %f4 /* %f4: b11, %f260: b12 */

ldd,s [B+16], %f6/* %f6: b21, %f262: b22 */

sxar2

fzero,s %f8 /* %f8: c11, %f264: c12 */

fzero,s %f10 /* %f10: c21, %f266: c22 */

/* perform calculations */

sxar2

fmaddd,sc %f0, %f4, %f8, %f8

/* %f8 := %f0 * %f4 + %f8 */

/* %f264 := %f0 * %f260 + %f264 */

fmaddd,sc %f256, %f6, %f8, %f8

/* %f8 := %f256 * %f6 + %f8 */

/* %f264 := %f256 * %f262 + %f264 */

sxar2

fmaddd,sc %f2, %f4, %f10, %f10

/* %f10 := %f2 * %f4 + %f10 */

/* %f266 := %f2 * %f260 + %f266 */

fmaddd,sc %f258, %f6, %f10, %f10

/* %f10 := %f258 * %f6 + %f10 */

/* %f266 := %f258 * %f262 + %f266 */

/* store results */

sxar2

std,s %f8, [Z]

std,s %f10, [Z+16]

 Exceptions illegal_instruction (size = 112 and var ≠ 112)
(in this case, fp_disabled is not checked)

fp_disabled

fp_exception_ieee_754 (NV, NX, OF, UF)

fp_exception_other (FSR.ftt = unfinished_FPop)

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 77

A.24.2 Suspend

HPC-ACE Ext.

Regs. SIMD opcode opf operation

SUSPENDP 0 1000 0010 Suspend the thread

Format (3)

10 — 110110 — opf —

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

suspend

Description	 The SUSPEND instruction sets PSTATE.IE = 1 and causes the hardware thread that
executed the instruction to enter SUSPENDED state. The following conditions cause the
thread to exit SUSPENDED state and return to execute state:

■ POR, WDR, XIR
■ interrupt_vector
■ interrupt_level_n

Exceptions	 privileged_opcode
illegal_action (XAR.v = 1)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 78

A.24.3 Sleep

HPC-ACE Ext.

Regs. SIMD opcode opf operation

SLEEP 0 1000 0011 Put the thread to sleep

Format (3)

10 — 110110 — opf —

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

sleep

Description	 The SLEEP instruction puts the hardware thread that executed the instruction to sleep. The
following conditions wake the thread:

■	 POR, WDR, XIR
■	 interrupt_vector
■	 interrupt_level_n
■	 A specified period of time, which is implementation dependent.

In SPARC64 VIIIfx, this is about 1.6 microseconds and is counted by STICK.
■	 An update of a LBSY that is assigned to one of the window ASIs.

An update of a LBSY that is not assigned to a window ASI does not wake the thread.

Note – If the SLEEP instruction is executed while PSTATE.IE = 0, then an interrupt does
not wake the thread.

Programming Note – If a LBSY used by the thread is updated while the thread is not
sleeping, then the next SLEEP instruction may not put the thread to sleep.

Exceptions illegal_action (XAR.v = 1)

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 79

A.24.4	 Integer Multiply-Add

SPARC64 VIIIfx uses the IMPDEP2A opcode space to implement the Integer Multiply-Add
instructions.

HPC-ACE Ext.

Regs. SIMD Opcode Var1 Size Operation

✓ ✓ FPMADDX 00 00 Lower 8 bytes of unsigned integer multiply-add

✓ ✓ FPMADDXHI 01 00 Upper 8 bytes of unsigned integer multiply-add

1.Refer to Section A.76 for var = 10 and Section A.75 for var = 11.

Format (5)

10 rd 110111 rs1 rs3 var size rs2

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Assembly Language Syntax

fpmaddx fregrs1, fregrs2, fregrs3, fregrd

fpmaddxhi fregrs1, fregrs2, fregrs3, fregrd

Description	 The Integer Multiply-Add instruction performs a fused multiply-add operation on the
unsigned 8-byte integer data stored in the floating-point registers.

FPMADDX multiplies the double-precision registers specified by rs1 and rs2, adds the
product to the double-precision register specified by rs3, and writes the lower 8-bytes of the
result into the double-precision register specified rd. The floating-point registers specified
by rs1, rs2, and rs3 are treated as unsigned 8-byte integer data.

FPMADDXHI multiplies the double-precision registers specified by rs1 and rs2, adds the
product to the double-precision register specified by rs3, and writes the upper 8 bytes of the
result into the double-precision register specified by rd. The floating-point registers
specified by rs1, rs2, and rs3 are treated as unsigned 8-byte integer data.

FPMADDX and FPMADDXHI do not update any bits in the FSR.

Exceptions fp_disabled
illegal_action (XAR.v = 1 and XAR.simd = 1 and

(XAR.urs1<2> ≠ 0 or XAR.urs2<2> ≠ 0
or XAR.urs3<2> ≠ 0 or XAR.urd<2> ≠ 0))

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 80

A.25 Jump and Link
SPARC64 VIIIfx clears the more significant 32 bits of the PC value stored in r[rd] when
PSTATE.AM = 1 (impl. dep. #125). The updated value in r[rd] is visible to the delay slot
instruction.

When either of the 2 lowest bits of the target address is not 0, a mem_address_not_aligned
exception occurs. DSFSR and DSFAR are not updated (impl. dep. #237).

Exceptions illegal_action (XAR.v = 1)

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 81

A.26 Load Floating-Point

HPC-ACE Ext.

Regs. SIMD Opcode op3 rd urd Operation

LDF 10 0000 0–31 —¶ Load Floating-Point Register

✓ ✓ LDF 10 0000 † 0-7 Load Floating-Point Register

✓ ✓ LDDF 10 0011 † 0-7 Load Double Floating-Point Register

✓ LDQF 10 0010 † 0-7 Load Quad Floating-Point Register

✓ LDFSRD 10 0001 0 — (see A.71.4 of JPS1 Commonality)

✓ LDXFSR 10 0001 1 — Load Floating-Point State Register

— 10 0001 2–31 — Reserved

† Encoded floating-point register value, as described in Section 5.1.4 of JPS1 Commonality.
¶ When XAR.v = 0.

Format (3)

11 rd op3 rs1 i=0 — rs2

11 rd op3 rs1 i=1 simm13

31 30 29 25 24 19 18 14 13 12	 5 4 0

Assembly Language Syntax

ld [address], fregrd

ldd [address], fregrd

ldq [address], fregrd

ldx [address], %fsr

Description	 First, non-SIMD behavior is explained.

The load single floating-point instruction (LDF) copies a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) copied a word-aligned doubleword
from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from

memory into a quad-precision floating-point register.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 82

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions
that have not finished execution to complete and then loads a doubleword from memory into
the FSR.

Load floating-point instructions access the primary address space (ASI = 8016). The effective
address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

LDF causes a mem_address_not_aligned exception if the effective memory address is not
word aligned. LDXFSR causes a mem_address_not_aligned exception if the address is not
doubleword aligned. If the floating-point unit is not enabled (per FPRS.FEF and
PSTATE.PEF), then a load floating-point instruction causes an fp_disabled exception.

In SPARC64 VIIIfx, a non-SIMD LDDF address that is aligned on a 4-byte boundary but not
an 8-byte boundary causes an LDDF_mem_address_not_aligned exception. System
software must emulate the instruction (impl.dep. #109(1)).

Because SPARC64 VIIIfx does not implement LDQF, an attempt to execute the instruction
causes a illegal_instruction exception. fp_disabled is not detected. System software must
emulate LDQF (impl.dep. #111(1)).

Programming Note – In SPARC V8, some compilers issued sequences of single-
precision loads when they could not determine that doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned loads is expected to be fast,
we recommend that compilers issue sets of single-precision loads only when they can
determine that doubleword or quadword operands are not properly aligned.

In SPARC64 VIIIfx, when there is an access error for a non-SIMD floating-point load, the
destination register remains unchanged (impl.dep. #44(1)). See the following subsection for
SIMD behavior.

Programming Note – When the address fields (rs1, rs2) of the single-precision
floating-point load instruction LDF specify any of the integer registers added by HPC-ACE,
the destination register must be a double-precision register. This restriction is a consequence
of how rd is decoded when XAR.v = 1 (page 21). A SPARC V9 single-precision register
(odd-numbered register) cannot be specified for rd if rs1 or rs2 specifies a HPC-ACE
integer register.

SIMD	 In SPARC64 VIIIfx, a floating-point load instruction can be executed as a SIMD instruction.
A SIMD load instruction simultaneously executes basic and extended loads from the
effective address, for either single-precision or double-precision data. See “Specifying
registers for SIMD instructions” (page 22) for details on how to specify the registers.

A single-precision SIMD load instruction loads 2 single-precision data aligned on a 4-byte
boundary. Misaligned accesses cause a mem_address_not_aligned exception.

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 83

A double-precision SIMD load instruction loads 2 double-precision data aligned on an 8-byte
boundary. Misaligned accesses cause a mem_address_not_aligned exception.

Note – A double-precision SIMD load that accesses data aligned on a 4-byte boundary but
not an 8-byte boundary does not cause an LDDF_mem_address_not_aligned exception.

For both single-precision and double-precision SIMD loads, data for the basic and extended
loads may be located on different memory pages. If the TLB search for the basic load
succeeds and the TLB search for the extended load fails, then SPARC64 VIIIfx generates a
SIMD_load_across_pages exception.

A SIMD load can only be used to access cacheable address spaces. An attempt to access a
noncacheable address space or a nontranslating ASI using a SIMD load causes a
data_access_exception exception. The bypass ASIs that can be accessed using a SIMD load
instruction are ASI_PHYS_USE_EC{_LITTTLE}; a page size of 8 KB is assumed. See
Appendix F.11, “MMU Bypass”, for details.

Like non-SIMD load instructions, memory access semantics for SIMD load instructions
adhere to TSO. A SIMD load simultaneously executes basic and extended loads; however,
the ordering between the basic and extended loads conforms to TSO.

In SPARC64 VIIIfx, when there is an access error for a SIMD floating-point load, the
destination registers are not changed (impl.dep. #44(1)).

For a SIMD load instruction, endian conversion is done separately for the basic and extended
loads. When the basic and extended data are located on different pages with different
endianness, conversion is only done for one of the loads.

A watchpoint can be detected in both the basic and extended loads of a SIMD load.

Note – When PSTATE.AM = 1, the extended load of a single-precision SIMD load to
VA = FFFF FFFF FFFF FFFC16 or a double-precision SIMD load to
VA = FFFF FFFF FFFF FFF816 accesses VA = 016.

For information on trap conditions and trap priorities for SIMD load exceptions, refer to
Appendix F.5.1, “Trap Conditions for SIMD Load/Store” (page 181).

Exceptions illegal_instruction (LDQF;
LDXFSR with rd = 2–31)

fp_disabled
illegal_action (LDF, LDDF with XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0);

LDF, LDDF with XAR.v = 1 and XAR.simd = 1 and XAR.urd<2> ≠ 0;

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 84

LDXFSR with XAR.v = 1 and (XAR.urs1 > 1 or
(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0 or
XAR.urd ≠ 0 or
XAR.simd = 1))

LDDF_mem_address_not_aligned (LDDF and (XAR.v = 0 or XAR.simd = 0))
mem_address_not_aligned
VA_watchpoint
fast_data_access_MMU_miss
SIMD_load_across_pages
data_access_exception
PA_watchpoint
data_access_error
fast_data_access_protection

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 85

A.27 Load Floating-Point from Alternate Space

HPC-ACE Ext.

Regs. SIMD Opcode op3 rd urd Operation

LDFAPASI 11 0000 0–31 —¶ Load Floating-Point Register from
Alternate Space

✓ ✓ LDFA 11 0000 † 0-7 Load Floating-Point Register from
Alternate Space

✓ ✓ LDDFAPASI 11 0011 † 0-7 Load Double Floating-Point Register
from Alternate Space

✓ LDQFAPASI 11 0010 † 0-7 Load Quad Floating-Point Register from
Alternate Space

† Encoded floating-point register value, as described in Section 5.1.4 of JPS1 Commonality.
¶ When XAR.v = 0.

Format (3)

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

lda [regaddr] imm_asi, fregrd

lda [reg_plus_imm] %asi, fregrd

ldda [regaddr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

ldqa [regaddr] imm_asi, fregrd

ldqa [reg_plus_imm] %asi, fregrd

Description First, non-SIMD behavior is explained.

The load single floating-point from alternate space instruction (LDFA) copies a word from
memory into f[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a word-
aligned doubleword from memory into a double-precision floating-point register.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 86

The load quad floating-point from alternate space instruction (LDQFA) copies a word-aligned
quadword from memory into a quad-precision floating-point register.

Load floating-point from alternate space instructions contain the address space identifier
(ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1.
The access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective
address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not
aligned on a 4-byte boundary. If the floating-point unit is not enabled (per FPRS.FEF and
PSTATE.PEF), then load floating-point from alternate space instructions cause an
fp_disabled exception.

In SPARC64 VIIIfx, a non-SIMD LDDFA address that is aligned on a 4-byte boundary but
not an 8-byte boundary causes a LDDF_mem_address_not_aligned exception. System
software must emulate the instruction (impl.dep. #109(2)). Because SPARC64 VIIIfx does
not implement LDQFA, an attempt to execute the instruction causes a illegal_instruction
exception. fp_disabled is not detected. System software must emulate LDQFA (impl.dep.
#111(2).

Depending on the ASI number, memory accesses that are not 8-byte accesses are defined.
Refer to other sections in Appendix A.

Implementation Note – LDFA and LDDFA cause a privileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is 0.

Programming Note – In SPARC V8, some compilers issued sequences of single-
precision loads when they could not determine that doubleword or quadword operands were
properly aligned. For SPARC V9, since emulation of misaligned loads is expected to be fast,
compilers should issue sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

In SPARC64 VIIIfx, when a non-SIMD floating-point load causes an access error, the
destination register is not changed (impl. dep. #44(2)).

Programming Note – When the address fields (rs1, rs2) of the single-precision
floating-point load instruction LDFA reference any of the integer registers added by HPC­
ACE, the destination register must be a double-precision register. This restriction is a
consequence of how rd is decoded when XAR.v = 1 (page 21). A SPARC V9 single-
precision register (odd-numbered register) cannot be specified for rd if rs1 or rs2
specifies a HPC-ACE integer register.

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 87

SIMD	 Refer to the SIMD subsection of Section A.26, “Load Floating-Point”.

Exceptions	 illegal_instruction (LDQFA only)
fp_disabled
illegal_action (LDFA, LDDFA with XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0);

LDFA, LDDFA with XAR.v = 1 and XAR.simd = 1 and XAR.urd<2> ≠ 0)
LDDF_mem_address_not_aligned (LDDFA and (XAR.v = 0 or XAR.simd = 0))
mem_address_not_aligned
privileged_action
VA_watchpoint
fast_data_access_MMU_miss
SIMD_load_across_pages
data_access_exception
fast_data_access_protection
PA_watchpoint
data_access_error

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 88

A.30 Load Quadword, Atomic [Physical]
The Load Quadword ASIs in this section are specific to SPARC64 VIIIfx.

HPC-ACE Ext.

Regs. SIMD Opcode imm_asi ASI value Operation

✓ LDDA ASI_QUAD_LDD_PHYS 3416	 128-bit atomic load,
physically addressed

✓ LDDA ASI_QUAD_LDD_PHYS_L 3C16	 128-bit atomic load, little­
endian, physically addressed

Format (3) LDDA

11 rd 010011 rs1 i=0 imm_asi rs2

11 rd 010011 rs1 i=1 simm_13

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

ldda [reg_addr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

Description	 ASIs 3416 and 3C16 are used with the LDDA instruction to atomically read a 128-bit data,
physically-addressed data item. The data are placed in an even/odd pair of 64-bit registers.
The lower-addressed 64 bits are placed in the even-numbered register; the higher-addressed
64 bits are placed in the odd-numbered register.

ASIs 3416 and 3C16 are specific to SPARC64 VIIIfx. These ASIs are for physically-addressed
data; the ASIs for virtually-addressed data are ASIs 2416 and 2C16. An access that is not
aligned on a 16-byte boundary causes a mem_address_not_aligned exception.

A memory access using ASI_QUAD_LDD_PHYS{_L} behaves as if TTE bits were set to
the following:

■ TTE.NFO = 0
■ TTE.CP = 1
■ TTE.CV = 0
■ TTE.E = 0
■ TTE.P = 1
■ TTE.W = 0

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 89

Note – The value of TTE.IE depends on the endianness of the ASI. TTE.IE = 0 for ASI
03416, and TTE.IE = 1 for ASI 03C16.

For this reason, these ASIs can only be used with accesses to cacheable address spaces.
Semantically, ASI_QUAD_LDD_PHYS{_L}is equivalent to the combination of
ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC.

Endian translation is performed separately for the upper-addressed 64 bits and and lower-
addressed 64 bits before writing the destination registers.

Exceptions illegal_instruction (misaligned rd)
illegal_action (XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0
XAR.urd > 1);

XAR.v = 1 and XAR.simd = 1)
privileged_action
mem_address_not_aligned
fast_data_access_MMU_miss
data_access_exception
fast_data_access_protection
PA_watchpoint (recognized on only the first 8 bytes of a transfer)
data_access_error

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 90

A.35	 Memory Barrier

Format (3)

10 0 op3 0 1111 i=1 — cmask mmask

31 30 29 25 24 19 18 14 13 12 7 6 4 3 0

Assembly Language Syntax

membar membar_mask

Description	 The memory barrier instruction, MEMBAR, has two complementary functions: to express
order constraints between memory references and to provide explicit control of memory-
reference completion. The membar_mask field in the suggested assembly language is the
concatenation of the cmask and mmask instruction fields.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-6 specifies the
order constraint that each bit of mmask (selected when set to 1) imposes on memory
references appearing before and after the MEMBAR. From zero to four mask bits can be
selected in the mmask field.

TABLE A-6 Ordering Constraints Specified by mmask Bits

Mask Bit Name Description

mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction must be visible to
all processors before the effect of any stores following the MEMBAR. Equivalent to the
deprecated STBAR instruction. In SPARC64 VIIIfx, this bit has no effect because all
stores are performed in program order.

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been performed before
the effects of any stores following the MEMBAR are visible to any other processor. In
SPARC64 VIIIfx, all stores are performed in program order, and the ordering between
a load and a store is guaranteed. This bit has no effect.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction must be visible to
all processors before loads following the MEMBAR may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been performed before
any loads following the MEMBAR may be performed. In SPARC64 VIIIfx, this bit has
no effect because all loads are performed in program order.

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 91

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,
described in TABLE A-7, specify additional constraints on the order of memory references and
the processing of instructions. If cmask is zero, then MEMBAR enforces the partial ordering
specified by the mmask field; if cmask is nonzero, then completion and partial order
constraints are applied.

TABLE A-7 cmask Bits

Mask Bit Function Name Description

cmask<2> Synchronization
barrier

#Sync All operations (including nonmemory reference operations)
appearing prior to the MEMBAR must have been performed and the
effects of any exceptions become visible before any instruction after
the MEMBAR may be initiated.

cmask<1> Memory issue
barrier

#MemIssue All memory reference operations appearing prior to the MEMBAR
must have been performed before any memory operation after the
MEMBAR may be initiated. Equivalent to #Sync in SPARC64 VIIIfx.

cmask<0> Lookaside
barrier

#Lookaside A store appearing before the MEMBAR must complete before any load
following the MEMBAR referencing the same address can be initiated.
Equivalent to #Sync in SPARC64 VIIIfx.

Exceptions illegal_action (XAR.v = 1)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 92

A.41 No Operation

HPC-ACE Ext.

Regs. SIMD

✓

Opcode

NOP

op2

100

Operation

No Operation

Format (2)

31 24 02530 29 22 21

00 op2 0

Assembly Language Syntax

nop

Description NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

The NOP instruction changes no program-visible state, except that of the PC and nPC
registers. However, a NOP that is executed while xar.urd = 1 is interpreted as a SETHI
instruction whose rd specifies r[32], which is updated.

Exceptions illegal_action (XAR.v = 1 and
(XAR.simd = 1 or XAR.urs1 ≠ 0 or XAR.urs2 ≠ 0 or
XAR.urs3 ≠ 0 or XAR.urd > 1))

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 93

A.42	 Partial Store (VIS I)
Watchpoint detection for partial store instructions is conservative in SPARC64 VIIIfx. The
DCUCR Data Watchpoint masks are only checked for a nonzero value (watchpoint enabled).
The byte store mask in r[rs2] of the partial store instruction is ignored, and a watchpoint
exception can occur even if the mask is zero (that is, when no store occurs) (impl. dep.
#249).

Implementation Note – When the byte store mask for a partial store instruction to a
noncacheable address space is 0, SPARC64 VIIIfx generates a bus transaction with a zero-
byte mask.

Exceptions	 illegal_instruction (i = 1)
fp_disabled
illegal_action (XAR.v = 1)
LDDF_mem_address_not_aligned (see “Partial Store ASIs” (page 221))
mem_address_not_aligned (see “Partial Store ASIs” (page 221))
VA_watchpoint
fast_data_access_MMU_miss
data_access_exception (see “Partial Store ASIs” (page 221))
fast_data_access_protection
PA_watchpoint
data_access_error

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 94

A.48 Population Count

HPC-ACE Ext.

Regs. SIMD

✓

Opcode

POPC

op3

10 1110

Operation

Population Count

Format (3)

10 rd op3 0 0000 i=0 — rs2

10 rd op3 0 0000 i=1 simm13

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

popc reg_or_imm, regrd

Description	 POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not modify
the condition codes.

Note – Unlike SPARC64 V, SPARC64 VIIIfx implements this instruction in hardware.

Exceptions illegal_instruction (instruction<18:14> ≠ 0)
illegal_action (XAR.v = 1 and (XAR.urs1 ≠ 0 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3 ≠ 0 or
XAR.urd > 1 or
XAR.simd = 1)

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 95

A.49 Prefetch Data

In SPARC64 VIIIfx, the PREFETCHA instruction is valid for the following ASIs:

■	 ASI_PRIMARY (08016), ASI_PRIMARY_LITTLE (08816)
■	 ASI_SECONDARY (08116), ASI_SECONDARY_LITTLE (08916)
■	 ASI_NUCLEUS (0416), ASI_NUCLEUS_LITTLE (0C16)
■	 ASI_PRIMARY_AS_IF_USER (01016), ASI_PRIMARY_AS_IF_USER_LITTLE

(01816)
■	 ASI_SECONDARY_AS_IF_USER (01116),

ASI_SECONDARY_AS_IF_USER_LITTLE (01916)

If any other ASI is specified, PREFETCHA executes as a NOP.

In SPARC64 VIIIfx, the size of a data block is 128 bytes and the alignment is a 128-byte
boundary (impl. dep. #103(3)). For the PREFETCH/PREFETCHA instructions, specifying any
address in a data block causes the entire data block to be prefetched. There are no alignment
restrictions on the address specified.

Address spaces with TTE.CP = 0 are nonprefetchable, and a prefetch to these address spaces
executes as a NOP.

TABLE A-8 describes the prefetch variants implemented in SPARC64 VIIIfx.

TABLE A-8 Prefetch Variants

Which cache to
fcn move data to Cache state Description

0 L1D S,E

1 L2 S,E

2 L1D M,E

3 L2 M,E

4 — — NOP

5-15 reserved (SPARC V9) illegal_instruction exception is signalled

16-19 implementation dependent NOP

20 L1D S,E Strong Prefetch

21 L2 S,E Strong Prefetch

22 L1D M,E Strong Prefetch

23 L2 M,E Strong Prefetch

24-31 implementation dependent NOP

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 96

Strong Prefetch

A prefetch instruction with fcn = 20, 21, 22 or 23 is a Strong Prefetch. In SPARC64 VIIIfx, a
strong prefetch is guaranteed to execute, except when a TLB miss occurs and
DCUCR.weak_spca = 1.

Programming Note – If there is a lack of CPU resources, prefetches may not be
executed; however, a strong prefetch will execute. This may negatively affect the execution
of subsequent loads and stores; unnecessary use of strong prefetched should be avoided.

SPARC64 VIIIfx does not cause a fast_data_access_MMU_miss exception when fcn = 20,
21, 22, or 23 (impl. dep. #103(2)).

Hardware Prefetch

Enabling/disabling hardware prefetch does not affect the execution of PREFETCH and
PREFETCHA instructions. The value of XAR.dis_hw_pf is ignored.

Exceptions illegal_instruction (fcn = 5–15)
illegal_action (XAR.v = 1 and (XAR.simd = 1 or

XAR.urs1 > 1 or
(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0 or
XAR.urd ≠ 0))

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 97

A.51 Read State Register

HPC-ACE Ext.

Regs. SIMD Opcode op3 rs1 Operation

RDASR 10 1000 16-31 Read non-SPARC V9 ASRs

✓ RDPCRPPCR 16 Read Performance Control Registers (PCR)

✓ RDPICPPIC 17 Read Performance Instrumentation Counters
(PIC)

✓ RDDCRP 18 Read Dispatch Control Register (DCR)

✓ RDGSR 19 Read Graphic Status Register (GSR)

— 20–21 Implementation dependent (impl. dep. #8, 9)

✓ RDSOFTINTP 22 Read per-processor Soft Interrupt Register

✓ RDTICK_CMPRP 23 Read Tick Compare Register

✓ RDSTICKPNPT 24 Read System TICK Register

✓ RDSTICK_CMPRP 25 Read System TICK Compare Register

— 26-29 Reserved

✓ RDXASR 30 Read XASR

✓ RDTXARP 31 Read TXAR

✓ RDYD 10 1000 0 Read Y Register; deprecated (see A.71.9 in JPS1
Commonality)

— 10 1000 1 Reserved

✓ RDCCR 10 1000 2 Read Condition Codes Register

✓ RDASI 10 1000 3 Read ASI Register

✓ RDTICKPNPT 10 1000 4 Read Tick Register

✓ RDPC 10 1000 5 Read Program Counter

✓ RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

 — 10 1000 7 − 14 Reserved

See text 10 1000 15 STBAR, MEMBAR, or Reserved; see Appendix
A.51, “Read State Register”, in JPS1
Commonality

For more information about the shaded areas in the table above, see Section A.51, “Read
State Register”, in JPS1 Commonality.

In SPARC64 VIIIfx, if PSTATE.PRIV = 0 and PCR.PRIV = 1, a read of the PCR register
by the RDPCR instruction causes a privileged_action exception. If PSTATE.PRIV = 0 and
PCR.PRIV = 0, a read of the PCR register by the RDPCR instruction does not cause an
exception (impl. dep. #250).

When PSTATE.PRIV = 0, a RDTXAR causes a privileged_opcode exception.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 98

Exceptions privileged_opcode (RDDCR, RDSOFTINT, RDTICK_CMPR, RDSTICK, RDSTICK_CMPR,
and RDTXAR)

illegal_instruction (RDASR with rs1 = 1 or 7–14;
RDASR with rs1 = 15 and rd ≠ 0;
RDASR with rs1 = 20–21, 26–29;
RDTXAR with TL = 0)

fp_disabled (RDGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)
illegal_action (XAR.v = 1 and

(XAR.simd = 1 or XAR.urs1 ≠ 0 or XAR.urs2 ≠ 0 or
XAR.urs3 ≠ 0 or XAR.urd > 1))

privileged_action (RDTICK with PSTATE.PRIV = 0 and TICK.NPT = 1;
RDPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1;
RDSTICK with PSTATE.PRIV = 0 and STICK.NPT = 1;
RDPCR with PSTATE.PRIV = 0 and PCR.PRIV = 1)

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 99

A.59 SHUTDOWN (VIS I)
In SPARC64 VIIIfx, SHUTDOWN acts as NOP in privileged mode (impl. dep. #206).

Exceptions privileged_opcode
illegal_action (XAR.v = 1)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 100

A.61 Store Floating-Point

HPC-ACE Ext.

Regs. SIMD

✓ ✓

✓ ✓

✓

✓

✓

Opcode

STF

STF

STDF

STQF

STFSRD

STXFSR

—

op3

10 0100

10 0100

10 0111

10 0110

10 0101

10 0101

10 0101

rd

0–31
†

†

†

0

1

2–31

urd

—¶

0-7

0-7

0-7

—

—

0

Operation

Store Floating-Point Register

Store Floating-Point Register

Store Double Floating-Point Register

Store Quad Floating-Point Register

(see A.71.11 in JPS1 Commonality)

Store Floating-Point State Register

Reserved

† Encoded floating-point register value, as describe in Section 5.1.4 of JPS1 Commonality.
¶ When XAR.v = 0.

Format (3)

11 rd op3 rs1 i=0 — rs2

11 rd op3 rs1 i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

st fregrd, [address]

std fregrd, [address]

stq fregrd, [address]

stx %fsr, [address]

Description First, non-SIMD behavior is described.

The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double
floating-point register into a word-aligned doubleword in memory.

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 101

The store quad floating-point instruction (STQF) copies the contents of a quad floating-point
register into a word-aligned quadword in memory.

The store floating-point state register instruction (STXFSR) waits for any currently executing
FPop instructions to complete, and then it writes all 64 bits of the FSR into memory.

STXFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the store
will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

STF causes a mem_address_not_aligned exception if the effective memory address is not
word aligned. STXFSR causes a mem_address_not_aligned exception if the address is not
doubleword aligned. If the floating-point unit is not enabled for the source register rd (per
FPRS.FEF and PSTATE.PEF), then a store floating-point instruction causes an
fp_disabled exception.

In SPARC64 VIIIfx, a non-SIMD STDF address that is aligned on a 4-byte boundary but not
an 8-byte boundary causes an STDF_mem_address_not_aligned exception. System
software must emulate the instruction (impl.dep. #110(1)).

Because SPARC64 VIIIfx does not implement STQF, an attempt to execute the instruction
causes a illegal_instruction exception. fp_disabled is not detected. System software must
emulate STQF (impl.dep. #112(1)).

Programming Note – In SPARC V8, some compilers issued sets of single-precision
stores when they could not determine that double- or quadword operands were properly
aligned. For SPARC V9, since emulation of misaligned stores is expected to be fast, it is
recommended that compilers issue sets of single-precision stores only when they can
determine that double- or quadword operands are not properly aligned.

Programming Note – When the address fields (rs1, rs2) of the single-precision
floating-point store instruction STF reference any of the integer registers added by HPC­
ACE, the destination register must be a double-precision register. This restriction is a
consequence of how rd is decoded when XAR.v = 1 (page 21). A SPARC V9 single-
precision register (odd-numbered register) cannot be specified for rd if rs1 or rs2
specifies an HPC-ACE integer register.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 102

SIMD	 In SPARC64 VIIIfx, a floating-point store instruction can be executed as a SIMD instruction.
A SIMD store instruction simultaneously executes basic and extended stores to the effective
address, for either single-precision or double-precision data. See “Specifying registers for
SIMD instructions” (page 22) for details on specifying the registers.

A single-precision SIMD store instruction stores 2 single-precision data aligned on an 8-byte
boundary. Misaligned accesses cause a mem_address_not_aligned exception.

A double-precision SIMD store instruction stores 2 double-precision data aligned on a 16­
byte boundary. Misaligned accesses cause a mem_address_not_aligned exception.

Note – A double-precision SIMD store that accesses data aligned on a 4-byte boundary but
not an 8-byte boundary does not cause a STDF_mem_address_not_aligned exception.
Unlike a double-precision SIMD load, a double-precision SIMD store aligned on an 8-byte
boundary causes a mem_address_not_aligned exception.

A SIMD store can only be used to access cacheable address spaces. An attempt to access a
noncacheable address space or a nontranslating ASI using a SIMD store causes a
data_access_exception. The bypass ASIs that can be accessed using a SIMD load
instruction are ASI_PHYS_USE_EC{_LITTTLE}.

Like non-SIMD store instructions, memory access semantics for SIMD load instructions
adhere to TSO. A SIMD store simultaneously executes basic and extended stores; however,
the ordering between the basic and extended stores conforms to TSO.

A watchpoint can be detected in both the basic and extended stores of a SIMD store.

For more information regarding SIMD store exception conditions and instruction priority, see
Appendix F.5.1, “Trap Conditions for SIMD Load/Store” (page 181).

Exceptions illegal_instruction (STXFSR with rd = 2–31)
fp_disabled
illegal_action (STF, STDF with XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0);

STF, STDF with XAR.v = 1 and XAR.simd = 1 and XAR.urd<2> ≠ 0;
STXFSR with XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0 or
XAR.urd ≠ 0 or
XAR.simd = 1))

mem_address_not_aligned
STDF_mem_address_not_aligned (STDF and (XAR.v = 0 or XAR.simd = 0))
VA_watchpoint

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 103

fast_data_access_MMU_miss
data_access_exception
fast_data_access_protection
PA_watchpoint
data_access_error

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 104

A.62 Store Floating-Point into Alternate Space

HPC-ACE Ext.

Regs. SIMD Opcode op3 rd urd Operation

STFAPASI 11 0100 0–31 —¶ Store Floating-Point Register to Alternate
Space

✓ ✓ STFAPASI 11 0100 † 0-7 Store Floating-Point Register to Alternate
Space

✓ ✓ STDFAPASI 11 0111 † 0-7 Store Double Floating-Point Register to
Alternate Space

✓ STQFAPASI 11 0110 † — Store Quad Floating-Point Register to
Alternate Space

† Encoded floating-point register value, as described in Section 5.1.4 of JPS1 Commonality.
¶ When XAR.v = 0.

Format (3)

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

sta fregrd, [regaddr] imm_asi

sta fregrd, [reg_plus_imm] %asi

stda fregrd, [regaddr] imm_asi

stda fregrd, [reg_plus_imm] %asi

stqa fregrd, [regaddr] imm_asi

stqa fregrd, [reg_plus_imm] %asi

Description First, non-SIMD behavior is explained.

The store single floating-point into alternate space instruction (STFA) copies f[rd] into
memory.

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 105

The store double floating-point into alternate space instruction (STDFA) copies a doubleword
from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the contents of
a quad floating-point register into a word-aligned quadword in memory.

Store floating-point into alternate space instructions contain the address space identifier
(ASI) to be used for the store in the imm_asi field if i = 0 or in the ASI register if i = 1.
The access is privileged if bit 7 of the ASI is 0; otherwise, it is not privileged. The effective
address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“r[rs1] + sign_ext(simm13)” if i = 1.

STFA causes a mem_address_not_aligned exception if the effective memory address is not
word aligned. If the floating-point unit is not enabled for the source register rd (per
FPRS.FEF and PSTATE.PEF), store floating-point into alternate space instructions cause
an fp_disabled exception.

Implementation Note – STFA and STDFA cause a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is 0. This check is not performed for STQFA.

Depending on the ASI, memory accesses that are not 8-byte accesses are defined. Refer to
other sections in Appendix A.

In SPARC64 VIIIfx, a non-SIMD STDFA address that is aligned on a 4-byte boundary but
not an 8-byte boundary causes an STDF_mem_address_not_aligned exception. System
software must emulate the instruction (impl.dep. #110(2)).

Because SPARC64 VIIIfx does not implement STQFA, an attempt to execute the instruction
causes a illegal_instruction exception. fp_disabled is not detected. System software must
emulate STQFA (impl.dep. #112(2)).

Programming Note – In SPARC V8, some compilers issued sets of single-precision
stores when they could not determine that double- or quadword operands were properly
aligned. For SPARC V9, since emulation of misaligned stores is expected to be fast, it is
recommended that compilers issue sets of single-precision stores only when they can
determine that double- or quadword operands are not properly aligned.

Programming Note – When the address fields (rs1, rs2) of the single-precision
floating-point store instruction STFA reference any of the integer registers added by HPC­
ACE, the destination register must be a double-precision register. This restriction is a
consequence of how rd is decoded when XAR.v = 1 (page 21). A SPARC V9 single-
precision register (odd-numbered register) cannot be specified for rd if rs1 or rs2
specifies a HPC-ACE integer register.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 106

SIMD Refer to the SIMD subsection in Section A.61, “Store Floating-Point”.

Exceptions fp_disabled
illegal_action (STFA, STDFA with XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0);

STFA, STDFA with XAR.v = 1 and XAR.simd = 1 and XAR.urd<2> ≠ 0)
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA and (XAR.v = 0 or XAR.simd = 0))
privileged_action
VA_watchpoint
fast_data_access_MMU_miss
data_access_exception
fast_data_access_protection
PA_watchpoint
data_access_error

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 107

A.68 Trap on Integer Condition Codes (Tcc)

The Tcc instruction does not depend on the value of XAR and behaves as defined in JPS1
Commonality. An illegal_action exception does not occur.

When an exception occurs and trap_instruction is signalled, the contents of the XAR
immediately prior to the execution of the Tcc instruction are copied to the TXAR. When an
exception does not occur, if XAR.f_v = 1 then the contents of XAR.f_* are set to 0, and if
XAR.f_v = 0 and XAR.s_v = 1 then the contents of XAR.s_* are set to 0. See “XAR
operation” (page 31) for details.

Programming Note – Because Tcc always ignores the value of XAR, the Tcc instruction
can be inserted at any location. This is useful for implementing breakpoints for a debugger.

Exceptions illegal_instruction (cc1 cc0 = 012 or 112, or reserved fields nonzero)
trap_instruction

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 108

A.69 Write Privileged Register

HPC-ACE Ext.

Regs. SIMD Opcode op3 Operation

✓ WRPRP 11 0010 Write Privileged Register

Format (3)

10 rd op3 rs1 i=0 — rs2

10 rd op3 rs1 i=1 simm13

31 30 29 24 25 19 18 14 13 12 5 4 0

rd Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15– 31 Reserved

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 109

 Assembly Language Syntax

wrpr regrs1, reg_or_imm, %tpc

wrpr regrs1, reg_or_imm, %tnpc

wrpr regrs1, reg_or_imm, %tstate

wrpr regrs1, reg_or_imm, %tt

wrpr regrs1, reg_or_imm, %tick

wrpr regrs1, reg_or_imm, %tba

wrpr regrs1, reg_or_imm, %pstate

wrpr regrs1, reg_or_imm, %tl

wrpr regrs1, reg_or_imm, %pil

wrpr regrs1, reg_or_imm, %cwp

wrpr regrs1, reg_or_imm, %cansave

wrpr regrs1, reg_or_imm, %canrestore

wrpr regrs1, reg_or_imm, %cleanwin

wrpr regrs1, reg_or_imm, %otherwin

wrpr regrs1, reg_or_imm, %wstate

Description	 This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1 to the writable fields of the specified privileged state
register. Note: The operation is exclusive-or.

The rd field in the instruction determines the privileged register that is written.
There are at least four copies of the TPC, TNPC, TT, and TSTATE registers, one for
each trap level. A write to one of these registers sets the register indexed by the
current value in the trap-level register (TL). A write to TPC, TNPC, TT, and TSTATE
when the trap level is zero (TL = 0) causes an illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other
machine state.

Programming Note – A WRPR of TL can be used to read the values of TPC, TNPC,
TT, and TSTATE for any trap level; however, take care that traps do not occur while
the TL register is modified.

The WRPR instruction is a non-delayed-write instruction. The instruction immediately
following the WRPR observes any changes made to processor state made by the WRPR.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 110

WRPR instructions with rd in the range 15–31 are reserved for future versions of the
architecture; executing a WRPR instruction with rd in that range causes an
illegal_instruction exception.

A WRPR to PSTATE that specifies a reserved combination of AG, IG, and MG bits causes an
illegal_instruction exception; however, this exception has a lower priority than a
llegal_action exception.

Exceptions privileged_opcode
illegal_instruction ((rd = 15–31) or ((rd ≤ 3) and (TL = 0));

(rd = 6 and reserved combination of AG, IG, and MG))
illegal_action (XAR.v = 1 and (XAR.simd = 1 or

XAR.urs1 > 1 or
(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3 ≠ 0 or
XAR.urd ≠ 0))

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 111

A.70 Write State Register

HPC-ACE Ext.

Regs. SIMD Opcode op3 rd Operation

✓ WRYD 11 0000 0 Write Y register; deprecated (see A.71.18 of JPS1
Commonality)

— 11 0000 1 Reserved

✓ WRCCR 11 0000 2 Write Condition Codes Register

✓ WRASI 11 0000 3 Write ASI Register

 — 11 0000 4, 5 Reserved

✓ WRFPRS 11 0000 6 Write Floating-Point Registers Status Register

 — 11 0000 7 –14 Reserved

 — 11 0000 15 Software-initiated reset (see A.60 of JPS1
Commonality)

WRASR 11 0000 16–31 Write non-SPARC V9 ASRs

✓ WRPCRPPCR 16 Write Performance Control Registers (PCR)

✓ WRPICPPIC 17 Write Performance Instrumentation Counters (PIC)

✓ WRDCRP 18 Write Dispatch Control Register (DCR)

✓ WRGSR 19 Write Graphic Status Register (GSR)

✓ WRSOFTINT_SETP 20 Set bits of per-processor Soft Interrupt Register

✓ WRSOFTINT_CLRP 21 Clear bits of per-processor Soft Interrupt Register

✓ WRSOFTINTP 22 Write per-processor Soft Interrupt Register

✓ WRTICK_CMPRP 23 Write Tick Compare Register

✓ WRSTICKP 24 Write System TICK Register

✓ WRSTICK_CMPRP 25 Write System TICK Compare Register

— 26-28 Reserved

✓ WRXAR 29 Write XAR

✓ WRXASR 30 Write XASR

✓ WRTXARP 31 Write TXAR

For more information about the shaded areas in the table above, see Section A.70, “Write
State Register”, in JPS1 Commonality.

In SPARC64 VIIIfx, if PSTATE.PRIV = 0 and PCR.PRIV = 1, a read of the PCR register
by the WRPCR instruction causes a privileged_action exception. If PSTATE.PRIV = 0 and
PCR.PRIV = 0, a read of the PCR register by the WRPCR instruction does not cause an
exception. (impl. dep. #250).

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 112

A WRXAR or WRTXAR that attempts to write a nonzero value to a reserved field in the XAR
causes an illegal_instruction exception. However, if both illegal_instruction and
illegal_action exceptions are generated, the illegal_action exception takes priority and is
signalled.

Note – Executing a WRTXAR instruction while TL = 0 causes an illegal_instruction
exception, regardless of the value of the XAR.

When WRXAR writes XAR.v = 0 or WRTXAR writes TXAR.v = 0, the value of the
corresopnding fields are undefined, regardless of the values written to them. That is,

■	 When XAR.f_v = 0 is written, the values of XAR.f_urs1, XAR.f_urs2,
XAR.f_urs3, XAR.f_urd, and XAR.f_simd are undefined, regardless of the values
written to them.

■	 When XAR.s_v = 0 is written, the values of XAR.s_urs1, XAR.s_urs2,
XAR.s_urs3, XAR.s_urd, and XAR.s_simd are undefined, regardless of the values
written to them.

■	 When TXAR.f_v = 0 is written, the values of TXAR.f_urs1, TXAR.f_urs2,
TXAR.f_urs3, TXAR.f_urd, and TXAR.f_simd are undefined, regardless of the
values written to them.

■	 When TXAR.s_v = 0 is written, the values of TXAR.s_urs1, TXAR.s_urs2,
TXAR.s_urs3, TXAR.s_urd, and TXAR.s_simd are undefined, regardless of the
values written to them.

Implementation Note – When XAR.v = 0 is written, an implemention can choose to set
the corresponding fields to 0.

Exceptions software_initiated_reset (rd = 15, rs1 = 0, and i = 1 only)
privileged_opcode (WRDCR, WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT,

WRTICK_CMPR, WRSTICK, WRSTICK_CMPR, and WRTXAR)
illegal_instruction (WRASR with rd = 1, 4, 5, 7–14, 26-28;

WRASR with rd = 15 and rs1 ≠ 0 or i ≠ 1,
WRTXAR with TL = 0;
WRXAR with reserved fields to nonzero)

fp_disabled (WRGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)
illegal_action (XAR.v = 1 and (XAR.simd = 1 or

XAR.urs1 > 1 or
(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3 ≠ 0 or
XAR.urd ≠ 0))

privileged_action (WRPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1,

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 113

WRPCR with PSTATE.PRIV = 0 and PCR.PRIV = 1;
WRPCR to modify PCR.PRIV

with PSTATE.PRIV = 0 and PCR.PRIV = 0)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 114

A.71 Deprecated Instructions

The deprecated instructions in Appendix A.71 of JPS1 Commonality are provided only for
compatibility with previous versions of the architecture. They should not be used in new
software.

A.71.10 Store Barrier

In SPARC64 VIIIfx, STBAR behaves as NOP since the hardware memory model always
enforces the semantics of this instruction for all memory accesses.

Exceptions illegal_action (XAR.v = 1)

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 115

A.72 Floating-Point Conditional Compare to
Register

HPC-ACE Ext.

Regs. SIMD Opcode op3 opf Operation Register Contents Test

✓ ✓ FCMPEQd 11 0110 1 0110 0000 Compare Double Equal f[rs1] = f[rs2]

✓ ✓ FCMPEQEd 11 0110 1 0110 0010 Compare Double Equal, Exception if f[rs1] = f[rs2]
Unordered

✓ ✓ FCMPLEEd 11 0110 1 0110 0100 Compare Double Less Than or f[rs1] ≤ f[rs2]
Equal, Exception if Unordered

✓ ✓ FCMPLTEd 11 0110 1 0110 0110 Compare Double Less Than, f[rs1] < f[rs2]
Exception if Unordered

✓ ✓ FCMPNEd 11 0110 1 0110 1000 Compare Double Not Equal f[rs1] ≠ f[rs2]

✓ ✓ FCMPNEEd 11 0110 1 0110 1010 Compare Double Not Equal, f[rs1] ≠ f[rs2]
Exception if Unordered

✓ ✓ FCMPGTEd 11 0110 1 0110 1100 Compare Double Greater Than, f[rs1] > f[rs2]
Exception if Unordered

✓ ✓ FCMPGEEd 11 0110 1 0110 1110 Compare Double Greater Than or f[rs1] ≥ f[rs2]
Equal, Exception if Unordered

✓ ✓ FCMPEQs 11 0110 1 0110 0001 Compare Single Equal f[rs1] = f[rs2]

✓ ✓ FCMPEQEs 11 0110 1 0110 0011 Compare Single Equal, Exception if f[rs1] = f[rs2]
Unordered

✓ ✓ FCMPLEEs 11 0110 1 0110 0101 Compare Single Less Than or Equal, f[rs1] ≤ f[rs2]
Exception if Unordered

✓ ✓ FCMPLTEs 11 0110 1 0110 0111 Compare Single Less Than, f[rs1] < f[rs2]
Exception if Unordered

✓ ✓ FCMPNEs 11 0110 1 0110 1001 Compare Single Not Equal f[rs1] ≠ f[rs2]

✓ ✓ FCMPNEEs 11 0110 1 0110 1011 Compare Single Not Equal, f[rs1] ≠ f[rs2]
Exception if Unordered

✓ ✓ FCMPGTEs 11 0110 1 0110 1101 Compare Single Greater Than, f[rs1] > f[rs2]
Exception if Unordered

✓ ✓ FCMPGEEs 11 0110 1 0110 1111 Compare Single Greater Than or f[rs1] ≥ f[rs2]
Equal, Exception if Unordered

Format (3)

10 rd
op3

11 0110 rs1
opf

1 0110 ???? rs2

31 30 29 25 24 19 18 14 13 5 4 0

116 SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010

Assembly Language Syntax

fcmpgte{s,d} fregrs1, fregrs2, fregrd

fcmplte{s,d} fregrs1, fregrs2, fregrd

fcmpeqe{s,d} fregrs1, fregrs2, fregrd

fcmpnee{s,d} fregrs1, fregrs2, fregrd

fcmpgee{s,d} fregrs1, fregrs2, fregrd

fcmplee{s,d} fregrs1, fregrs2, fregrd

fcmpeq{s,d} fregrs1, fregrs2, fregrd

fcmpne{s,d} fregrs1, fregrs2, fregrd

Description	 The above instructions compare the values in the floating-point registers specified by rs1
and rs2. If the condition specified by the instruction is met, then the floating-point register
specified by rd is written entirely with ones. If the condition is not met, then rd is written
entirely with zeroes.

When the source operands are SNaN or QNaN, generated exceptions and instruction results
are described below. The “exception” column indicates the value set in FSR.cexc when an
fp_exception_ieee_754 exception occurs. The “rd” column indicates the value stored in rd
when no exception occurs.

Instructions

SNan

Exception rd

QNan

Exception rd

FCMPGTE{s,d}, FCMPLTE{s,d},
FCMPGEE{s,d}, FCMPLEE{s,d}

FCMPEQE{s,d}

FCMPNEE{s,d}

FCMPEQ{s,d}

FCMPNE{s,d}

NV

NV

NV

NV

NV

all0

all0

all1

all0

all1

NV

NV

NV

—

—

all0

all0

all1

all0

all1

Programming Note – These instruction can be efficiently used with FSELMOV{s,d},
STFR, STDFR, and the VIS logical instructions.

Exceptions fp_disabled
illegal_action (XAR.v = 1 and XAR.urs3 ≠ 0;

XAR.v = 1 and XAR.simd = 1 and
(XAR.urs1<2> ≠ 0 or XAR.urs2<2> ≠ 0 or XAR.urd<2> ≠ 0))

fp_exception_ieee_754 (NV if unordered)

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 117

A.73 Floating-Point Minimum and Maximum

HPC-ACE Ext.

Regs. SIMD Opcode op3 opf Operation

✓ ✓ FMAXd 11 0110 1 0111 0000 Select Maximum Double

✓ ✓ FMAXs 11 0110 1 0111 0001 Select Maximum Single

✓ ✓ FMINd 11 0110 1 0111 0010 Select Minimum Double

✓ ✓ FMINs 11 0110 1 0111 0011 Select Minimum Single

Format (3)

10 rd
op3

11 0110 rs1 opf
1 0111 00?? rs2

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

fmax{s,d} fregrs1, fregrs2, fregrd

fmin{s,d} fregrs1, fregrs2, fregrd

Description	 FMAX{s, d} compares the values in the floating-point registers specified by rs1 and rs2. If
f[rs1] > f[rs2], then rs1 is written to the floating-point register specified by rd.
Otherwise, rs2 is written to rd.

FMIN{s, d} compares the values in the floating-point registers specified by rs1 and rs2. If
f[rs1] < f[rs2], then rs1 is written to the floating-point register specified by rd.
Otherwise, rs2 is written to rd.

FMIN and FMAX ignore the sign of a zero value. When the value of f[rs1] is +0 or -0 and
the value of f[rs2]is +0, -0, the value of f[rs2] is written to the destination register.

When one of the source operand is QNaN and the other operand is neither QNaN nor SNaN,
the value of the source that is not QNaN is written to the destination register. Unlike other
instructions, FMIN and FMAX do not propagate QNaN. When one of the source operand is

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 118

SNaN, or both operands are QNaN, the value defined by TABLE B-1 of JPS1 Commonality is
stored in rd. Furthermore, when one of the source operand is QNaN or SNaN,
SPARC64 VIIIfx detects an fp_exception_ieee_754 exception.

TABLE A-9 Operands and the result of FMIN and FMAX

rs1 rs2 rd Exception

not NaN not NaN min(rs1, rs2), or
max(rs1, rs2)

—

not NaN QNaN rs1 NV

not NaN SNaN QSNaN2 NV

QNaN not NaN rs2 NV

QNaN QNaN rs2 (QNaN) NV

QNaN SNaN QSNaN2 NV

SNaN not NaN QSNaN1 NV

SNaN QNaN QSNaN1 NV

SNaN SNaN QSNaN2 NV

Exceptions fp_disabled
illegal_action (XAR.v = 1 and XAR.urs3 ≠ 0;

XAR.v = 1 and XAR.simd = 1 and
(XAR.urs1<2> ≠ 0 or XAR.urs2<2> ≠ 0 or XAR.urd<2> ≠ 0))

fp_exception_ieee_754 (NV if unordered)

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 119

--

A.74 Floating-Point Reciprocal Approximation

HPC-ACE Ext.

Regs. SIMD Opcode op3 opf Operation

✓ ✓ FRCPAd 11 0110 1 0111 0100 Reciprocal Approximation Double

✓ ✓ FRCPAs 11 0110 1 0111 0101 Reciprocal Approximation Single

✓ ✓ FRSQRTAd 11 0110 1 0111 0110 Reciprocal Approximation of
Square Root, Double

✓ ✓ FRSQRTAs 11 0110 1 0111 0111 Reciprocal Approximation of
Square Root, Single

Format (3)

10 rd
op3

11 0110 0 0000
opf

1 0111 01?? rs2

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

frcpa{s,d} fregrs2, fregrd

frsqrta{s,d} fregrs2, fregrd

Description	 FRCPA{s,d} calculates the reciprocal approximation of the value in the floating-point
register specified by rs2 and stores the result in the floating-point register specified by rd.
Although the result is approximate, the calculation ignores FSR.RD. The resulting rounding
error is less than 1/256. In other words,

frcpa x – ⁄ x() 1
1 ⁄ x

1< --------­
256

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 120

Results and exception conditions for FRCPA{s,d} are shown in TABLE A-10. The upper row
in each entry indicates the type(s) of exception if an exception is signalled, and the lower
row in each entry indicates the result when an exception is not signalled. For more
information on the causes of a fp_exception_ieee_754 exception, refer to Appendix B in this
document and in JPS1 Commonality.

TABLE A-10 FRCPA{s,d} Results

op2

Exceptions and Results

FSR.NS = 0 FSR.NS = 1

+∞

+N (N ≥ 2126 for single,
N ≥ 21022 for double)

+N (+Nmin ≤ N < 2126 for single,
+Nmin ≤ N < 21022 for double)

+D

+0

-0

-D

-N (+Nmin ≤ N < 2126 for single,
+Nmin ≤ N < 21022 for double)

-N (N ≥ 2126 for single,
N ≥ 21022 for double)

−∞

SNaN

QNaN

—
0

UF
approximation of +1/N
(denormalized)1

—
approximation of +1/N

unfinished_FPop
—

DZ
+∞

DZ

−∞

unfinished_FPop
—

—
approximation of -1/N

UF
approximation of -1/N
(denormalized)1

—
-0

NV
QSNaN2

—
op2

—
0

UF, NX
+0

—
approximation of +1/N

DZ
+∞

DZ
+∞

DZ

−∞

DZ

−∞

—
approximation of -1/N

UF, NX
-0

—
-0

NV
QSNaN2

—
op2

1.When the result is denormal, the rounding error may be larger than 1/256.

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 121

--

N Positive normalized number (not zero, NaN, infinity)

D Positive denormalized number.

Nmin Minimum value when rounding a normalized number.

dNaN Sign of QNaN is 0 and all bits of the exponent and significand are 1.

QSNaN2 See TABLE B-1 in JPS1 Commonality.

FRSQRTA{s, d} calculates the reciprocal approximation of the square root of the value in
the floating-point register specified by rs2 and stores the result in the floating-point register
specified by rd. Although the result is approximate, the calculation ignores FSR.RD. The
resulting rounding error is less than 1/256. In other words,

frsqrta x – 1 ⁄() (x)
1 ⁄ (x)

1< --------­
256

Results and exception conditions for FRSQRTA{s, d} are shown in TABLE A-11. The upper
row in each entry indicates the type(s) of exception if an exception is signalled, and the
lower row in each entry indicates the result when an exception is not signalled. For more
information on the causes of a fp_exception_ieee_754 exception, refer to Appendix B in this
document and in JPS1 Commonality.

TABLE A-11 FRSQRTA{s,d} Results

op2

Exceptions and Results

FSR.NS = 0 FSR.NS = 1

+∞ —
0

—
0

+N —
1 N()⁄+

—
1 N()⁄+

+D unfinished_FPop
—

DZ

+0

+0 DZ

+0
DZ

+0

-0 DZ

+0
DZ

+0

-D NV
dNaN

NV
dNaN

-N NV
dNaN

NV
dNaN

−∞ NV
dNaN

NV
dNaN

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 122

TABLE A-11 FRSQRTA{s,d} Results

op2

Exceptions and Results

FSR.NS = 0 FSR.NS = 1

SNaN

QNaN

NV
QSNaN2

—
op2

NV
QSNaN2

—
op2

Exceptions	 illegal_instruction (instruction<18:14> ≠ 0)
fp_disabled
illegal_action (XAR.v = 1 and (XAR.urs1 ≠ 0 or XAR.urs3 ≠ 0);

XAR.v = 1 and XAR.simd = 1 and
(XAR.urs2<2> ≠ 0 or XAR.urd<2> ≠ 0))

fp_exception_ieee_754 (NV, DZ, UF, NX for FRCPA{s, d};
NV, DZ for FRSQRTA{s, d})

fp_exception_other (ftt = unfinished_FPop)

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 123

A.75 Move Selected Floating-Point Register on
Floating-Point Register's Condition

HPC-ACE Ext.

Regs. SIMD Opcode op3 var size Operation

✓ ✓ FSELMOVd 11 0111 11 00 Select and Move Double

✓ ✓ FSELMOVs 11 0111 11 11 Select and Move Single

Format (5)

10 rd
op3

11 0111 rs1 rs3
var
11

size
?? rs2

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Assembly Language Syntax

fselmov{s,d} fregrs1, fregrs2, fregrs3, fregrd

Description FSELMOV{s, d} selects rs1 or rs2 according to the most significant bit of the floating-
point register specified by rs3. The value of the selected register is then stored in the
floating-point register specified by rd. If bit 63 of the register specified by rs3 is 1, then
rs1 is selected. If the bit is 0, then rs2 is selected.

Exceptions fp_disabled
illegal_action (XAR.v = 1 and XAR.simd = 1 and

(XAR.urs1<2> ≠ 0 or XAR.urs2<2> ≠ 0 or
XAR.urs3<2> ≠ 0 or XAR.urd<2> ≠ 0))

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 124

A.76 Floating-Point Trigonometric Functions

HPC-ACE Ext.

Regs. SIMD Opcode op3 opf Operation

✓ ✓ FTRIMADDd 11 0111 —	 Trigonometric Multiply-Add Double

✓ ✓ FTRISMULd 11 0110 1 0111 1010	 Calculate starting value for
FTRIMADDd

✓ ✓ FTRISSELd 11 0110 1 0111 1000	 Select coefficient for final calculation
in Taylor series approximation

Format (5 and 3)

10 rd
op3

11 0111
rs1 index

var
10

size
00 rs2

10 rd
op3

11 0110
rs1

opf
1 0111 10?0 rs2

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Assembly Language Syntax

ftrimaddd fregrs1, fregrs2, index, fregrd

ftrismuld fregrs1, fregrs2, fregrd

ftrisseld fregrs1, fregrs2, fregrd

Operation Implementation

FTRIMADDd rd ← rs1 × abs(rs2) + T[rs2<63>][index]

FTRISMULd rd ← (rs2<0> << 63) ^ (rs1 × rs1)

FTRISSELd rd ← (rs2<1> << 63) ^ (rs2<0> ? 1.0 : rs1)

Description	 These instructions accelerate the calculation of the Taylor series approximation of the sine
function; that is, sin(x) can be calculated for any arbitrary value using the FTRIMADDd,
FTRISMULd, and FTRISSELd instructions. All three instructions are defined as double-
precision instructions only. FTRIMADDd calculates series terms for either sin(x) or cos(x),
where the argument is adjusted to be in the range -π/4 < x ≤ π/4. These series terms are used

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 125

1 1 1 1 1 1 1
3 5 7 9 11 13 15sin x ≅ x – -----x + -----x – -----x + -----x – --------x + --------x – --------x

3! 5! 7! 9! 11! 13! 15!

1 1 1 1 1 1 1⎛ 2 4 6 8 10 12 14⎞

⎝ 3! 5! 7! 9! 11! 13! 15! ⎠
 = x 1–-----x	 + -----x – -----x + -----x – --------x + --------x – --------x

1 1 1 1 1 1 1⎛⎛⎛⎛⎛⎛⎛⎛	 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞= x ⋅ 0 ⋅ x – -------- x + -------- x – -------- x + ----- x – ----- x + ----- x – ----- x + 1
⎝⎝⎝⎝⎝⎝⎝⎝ 15!⎠ 13!⎠ 11!⎠ 9!⎠ 7!⎠ 5!⎠ 3!⎠ ⎠

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

FTRIMADDd

1 1 1 1 1 1 1
2 4 6 8 10 12 14cos x ≅ 1 – -----x + -----x – -----x + -----x – --------x + --------x – --------x

2! 4! 6! 8! 10! 12! 14!

1 1 1 1 1 1 1⎛⎛⎛⎛⎛⎛⎛⎛	 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞ 2 ⎞= 1 ⋅ 0 ⋅ x – -------- x + -------- x – -------- x + ----- x – ----- x + ----- x – ----- x + 1
⎝⎝⎝⎝⎝⎝⎝⎝ 14!⎠ 12!⎠ 10!⎠ 8!⎠ 6!⎠ 4!⎠ 2!⎠ ⎠

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

FTRIMADDd

FIGURE A-1	 Supporting Operations Performed by SPARC64 VIIIfx Trignometric
Functions

to perform the supporting operations shown in FIGURE A-1. See the example at the end of
this section for a full description of how sin(x) can be calculated for an arbitrary “x” using
these support operations.

FTRIMADDd multiplies the values in the double-precision registers specified by rs1 and
rs2 and adds the product to the double-precision number obtained from a table built into the
functional unit. This double-precision number is specified by the index field. The result is
stored in the double-precision register specified by rd. FTRIMADDd is used to calculate
series terms in the Taylor series of sin(x) or cos(x), where -π/4 < x ≤ π/4.

FTRISMULd squares the value in the double-precision register specified by rs1. The sign of
the squared value is selected according to bit 0 of the double-precision register specified by
rs2. The result is written to the double-precision register specified by rd. FTRISMULd is
used to calculate the starting value of FTRIMADDd.

FTRISSELd checks bit 0 of the double-precision register specified by rs2. Based on this
bit, either the double-precision register specified by rs1 or the value 1.0 is selected. Bit 1 of
rs2 indicates the sign; the exclusive OR of this bit and the selected value is written to the
double-precision register specified by rd. FTRISSELd is used to select the coefficient for
calculating the last step in the Taylor series approximation.

To calculate the series terms of sin(x) and cos(x), the initial source operands of FTRIMADDd
are zero for f[rs1] and x2 for f[rs2], where -π/4 < x ≤ π/4. FTRIMADDd is executed 8
times; this calculates the sum of 8 series terms, which gives the resulting number sufficient
precision for a double-precision floating-point number. As show in TABLE A-5, the
coefficients of the series terms are different for sin(x) and cos(x). FTRIMADDd uses the sign
of rs2 to determine which set of coefficients to use.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 126

■ When f[rs2]<63> = 0, the coefficient table for sin(R) is used.

■ When f[rs2]<63> = 1, the coefficient table of cos(R) is used.

The expected usage for FTRIMADDd is shown in the example below. Coefficients are chosen
to minimize the loss of precision; these differ slightly from the exact mathematical values.
TABLE A-12 and TABLE A-13 show the coefficient tables for FTRIMADDd.

TABLE A-12 Coefficient Table for sin(x) (f[rs2]<63> = 0)

Exact value of the
Coefficient used for the operation coefficient

Index Hexadecimal representation Decimal representation

0 3ff0 0000 0000 000016 1.0 = 1/1!

1 bfc5 5555 5555 554316 -0.1666666666666661 > -1/3!

2 3f81 1111 1110 f30c16 0.8333333333320002e-02 < 1/5!

3 bf2a 01a0 19b9 2fc616 -0.1984126982840213e-03 > -1/7!

4 3ec7 1de3 51f3 d22b16 0.2755731329901505e-05 < 1/9!

5 be5a e5e2 b60f 7b9116 -0.2505070584637887e-07 > -1/11!

6 3de5 d840 8868 552f16 0.1589413637195215e-09 < 1/13!

7 0000 0000 0000 000016 0 > -1/15!

TABLE A-13 Coefficient Table for cos(x) (f[rs2]<63> = 1)

Exact value of the
Coefficient used for the operation coefficient

Index Hexadecimal representation Decimal representation

0 3ff0 0000 0000 000016 1.0 = 1/0!

1 bfe0 0000 0000 000016 -0.5000000000000000 = -1/2!

2 3fa5 5555 5555 553616 0.4166666666666645e-01 < 1/4!

3 bf56 c16c 16c1 3a0b16 -0.1388888888886111e-02 > -1/6!

4 3efa 01a0 19b1 e8d816 0.2480158728388683e-04 < 1/8!

5 be92 7e4f 7282 f46816 -0.2755731309913950e-06 > -1/10!

6 3e21 ee96 d264 1b1316 0.2087558253975872e-08 < 1/12!

7 bda8 f763 80fb b40116 -0.1135338700720054e-10 > -1/14!

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 127

The initial value in f[rs2] of FTRIMADDd is calculated using FTRISMULd, which is
executed with f[rs1] set to x, where -π/4 < x ≤ π/4, and f[rs2] set to Q, as defined in
FIGURE A-2. FTRISMULd returns x2 as the result, where the sign bit specifies which set of
coefficients to use to calculate the series terms. Q is an integer, not a floating-point number.
f[rs2]<63:1> are not used. An exception is not detected if f[rs2] is NaN.

The final step in the calculation of the Taylor series is the multiplication of the FTRIMADDd
result and the coefficient selected by FTRISSELd. This coefficient is selected by executing
FTRISSELd with f[rs1] set to x, where -π/4 < x ≤ π/4, and f[rs2] set to Q, as defined
in FIGURE A-2; either x or 1.0 is selected, and the appropriate sign is affixed to the result. Q
is an integer, not a floating-point number. f[rs2]<63:2> are not used. An exception is not
detected if f[rs2] is NaN.

π π q: (2q – 1) ⋅ --- < x ≤ (2q + 1) ⋅ --­
4 4

Q: q mod 4
π π π

R: x q ⋅ --- –--- < ≤ --­–
2 ⎝

⎛
4

R
4⎠
⎞

Q = 1

x = Rsin () cos ()
π3 ------π
44

Q = 0Q = 2
x = Rsin () sin()x = Rsin() –sin()

3 π–---π –--­
4 4

Q = 3

x = Rsin () –cos ()

FIGURE A-2 Relationships for Calculating sin(x)

Example: calculating sin(x)
/*

 * Input value: x
 * q: where (2q-1)*π/4 < x <= (2q+1)*π/4
 * Q: q%4
 * R: x - q * π/2

 */

ftrismuld R, Q, M

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 128

ftrisseld R, Q, N

/*

 * M ← R2[63]=table_type, R2[62:0]=R2

 * Because R2 is always positive, the sign bit (bit <63>) is always 0.
 * This sign bit is used to indicate the table_type for ftrimaddd.
 * N ← coefficient used in the final step; the value is (1.0 or R) * sign.
 * S ← 0

 */

ftrimaddd S, M, 7, S

ftrimaddd S, M, 6, S

ftrimaddd S, M, 5, S

ftrimaddd S, M, 4, S

ftrimaddd S, M, 3, S

ftrimaddd S, M, 2, S

ftrimaddd S, M, 1, S

ftrimaddd S, M, 0, S

fmuld S, N, S

/*

 * S ← Result

*/

Exceptions illegal_instruction (FTRIMADDd with index > 7)
fp_disabled
illegal_action (XAR.v = 1 and XAR.urs3 ≠ 0;

XAR.v = 1 and XAR.simd = 1 and
(XAR.urs1<2> ≠ 0 or XAR.urs2<2> ≠ 0 or XAR.urd<2> ≠ 0))

fp_exception_ieee_754 (FTRIMADDd with NV, NX, OF, UF;
FTRISMULd with NX, OF, UF;
FTRISMULd with NV (rs1 only))

fp_exception_other (FTRIMADDd, FTRISMULd with ftt = unfinished_FPop)

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 129

A.77 Store Floating-Point Register on Register
Condition

HPC-ACE Ext.

Regs. SIMD Opcode op3 rd urd Operation

STFR 10 1100 0–31 ¶ Store Floating-Point Register on Register
Condition

✓ ✓ STFR 10 1100 † 0-7 Store Floating-Point Register on Register
Condition

✓ ✓ STDFR 10 1111 † 0-7 Store Double Floating-Point Register on Register
Condition

† Encoded floating-point register value, as described in Floating-Point Register Number En­
coding in Section 5.1.4 of JPS1 Commonality.

¶ When XAR.v = 0.

Format (3)

11 rd op3 rs1 i = 1 simm8 rs2

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

stfr fregrd, fregrs2, [address]

stdfr fregrd, fregrs2, [address]

Description	 When the most significant bit of f[rs2] is 1, STFR writes the contents of the single-
precision floating-point register f[rd] to the write address, which must be aligned on a 4­
byte boundary.

When the most significant bit of f[rs2] is 1, STDFR writes the contents of the double-
precision floating-point register f[rd] to the write address, which must be aligned on an 8­
byte boundary.

The write address is calculated as “r[rs1] + sign_ext(simm8 << 2)”.

STFR causes a mem_address_not_aligned exception when the access address is not aligned
on a 4-byte boundary.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 130

STDFR causes a mem_address_not_aligned exception when the access address is not
aligned on an 8-byte boundary.

A non-SIMD STDFR that is aligned on a 4-byte boundary but not an 8-byte boundary causes
a STDF_mem_address_not_aligned exception.

STFR and STDFR cause fp_disabled exceptions when the floating-point unit cannot be used,
which depends on the setting of FPRS.FEF and PSTATE.PEF.

When a watchpoint is detected for a STFR or STDFR instruction, an exception is generated
regardless of whether the store is actually performed.

Programming Note – When the address fields (rs1, rs2) of the single-precision
floating-point store instruction STFR reference any of the integer registers added by HPC­
ACE, the destination register must be a double-precision register. This restriction is a
consequence of how rd is decoded when XAR.v = 1 (page 21). A SPARC V9 single-
precision register (odd-numbered register) cannot be specified for rd if rs1 or rs2
specifies a HPC-ACE integer register.

SIMD	 In SPARC64 VIIIfx, STFR and STDFR can be executed as SIMD instruction. A SIMD STFR
or SIMD STDFR instruction simultaneously executes basic and extended stores to the
effective address, for either single-precision or double-precision data. See “Specifying
registers for SIMD instructions” (page 22) for details on specifying the registers.

A SIMD STFR instruction stores two single-precision data aligned on an 8-byte boundary.
Misaligned accesses cause a mem_address_not_aligned exception.

A SIMD STDFR instruction stores two double-precision data aligned on a 16-byte boundary.
Misaligned accesses cause a mem_address_not_aligned exception. A SIMD STDFR that is
aligned on a 4-byte boundary does not cause a STDF_mem_address_not_aligned exception.

SIMD STFR and SIMD STDFR can only be used to access cacheable address spaces. An
attempt to access a noncacheable address space using a SIMD STFR or SIMD STDFR causes
a data_access_exception exception. The bypass ASIs that can be accessed using a SIMD
store are ASI_PHYS_USE_EC{_LITTTLE}.

Like non-SIMD store instructions, memory access semantics for SIMD STFR and SIMD
STDFR instructions adhere to TSO. SIMD STFR and SIMD STDFR instructions
simultaneously executes basic and extended loads; however, the ordering between the basic
and extended loads conforms to TSO.

A watchpoint can be detected in both the basic and extended stores of a SIMD STFR or
SIMD STDFR.

For more information regarding SIMD STFR and SIMD STDFR exception conditions and
instruction priority, see Appendix F.5.1, “Trap Conditions for SIMD Load/Store” (page 181).

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 131

Exceptions	 illegal_instruction (i = 0)
fp_disabled
illegal_action (XAR.v = 1 and (XAR.urs1 > 1 or

XAR.urs3<2> ≠ 0);
XAR.v = 1 and XAR.simd = 1 and

 (XAR.urs2<2> ≠ 0 or XAR.urd<2> ≠ 0))
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFR and (XAR.v = 0 or XAR.simd = 0))
VA_watchpoint
fast_data_access_MMU_miss
data_access_exception
fast_data_access_protection
PA_watchpoint
data_access_error

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 132

A.78 Set XAR (SXAR)

HPC-ACE Ext.

Regs. SIMD Opcode op2 cmb Operation

SXAR1 111 0 Set XAR for the following instruction

SXAR2 111 1 Set XAR for the following two instructions

Format (2)

00 cmb f_simd f_urd
op2
111 f_urs1 f_urs2 f_urs3 s_simd s_urd s_urs1 s_urs2 s_urs3

31 30 29 28 27 25 24 22 21 19 18 16 15 13 12 11 9 8 6 5 3 2 0

Assembly Language Syntax

sxar1

sxar2

Description	 The SXAR instructions update the XAR. The XAR holds value for up to 2 instructions. SXAR1
sets values for 1 instruction, and SXAR2 sets values for 2 instructions. Fields that start with
f_ are used by the instruction that immediately follows SXAR, and fields that start with
s_are used by the second instruction that follows SXAR. For SXAR1, the s_* fields are
ignored.

Compatibility Note – Although an illegal_instruction exception is not signalled for an
SXAR1 with non-zero s_* fileds, use of such an SXAR1 instruction is strongly discouraged
for compatibility reasons.

SXAR instructions are used when up to 2 instructions that follow an SXAR instruction specify
the integer or floating-point registers added in SPARC64 VIIIfx, or when SIMD instructions
are specified.

Implementation Note – Hardware may be implemented to enable high-speed execution
of consecutive instructions.

When an SXAR instruction and the following instruction are not consecutive in memory, such
as when an SXAR instruction is placed in a delay slot, a Tcc instruction is inserted between
the two instructions. This may cause a decrease in performance.

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 133

There are cases where IIU_INST_TRAP cannot be detected during SXAR execution.The
SXAR instruction itself is not an XAR-eligible instruction, and an attempt to execute SXAR
while XAR.v = 1 causes an illegal_action exception.

Compatibility Note – op = 002 and op2 = 1112 are reserved in SPARC V9, but SPARC
V8 defines the FBcc instruction in these opcodes. When running a SPARC V8 application
on SPARC64 VIIIfx, there is the possibility of different behavior.

Programming Note – The SXAR instruction word contains the value to be set in XAR,
but this value is not shown by the assembly syntax. HPC-ACE behavior is indicated by
mnenomic suffixes appended to the following instruction(s), and the assembler sets this
information in the SXAR instruction word.

sxar1

faddd,s %f0, %f2, %f4 /* SIMD */

Exceptions illegal_action (XAR.v = 1)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 134

A.79 Cache Line Fill with Undetermined Values

HPC-ACE Ext.

Regs. SIMD Opcode imm_asi ASI Value Operation

✓ STXA
STDAD

STDFA

ASI_XFILL_AIUP 7216 Accesses the cache at the specified
address in the primary ASI and fills
the cache line with undetermined
values.

✓ STXA
STDAD

STDFA

ASI_XFILL_AIUS 7316 Accesses the cache at the specified
address in the secondary ASI and fills
the cache line with undetermined
values.

✓ STXA
STDAD

STDFA

ASI_XFILL_P f216 Accesses the cache at the specified
address in the primary ASI and fills
the cache line with undetermined
values.

✓ STXA
STDAD

STDFA

ASI_XFILL_S f316 Accesses the cache at the specified
address in the secondary ASI and fills
the cache line with undetermined
values.

Description	 When STXA, STDA, and STDFA instructions specify the any of the above ASIs, the cache
line corresponding to the specified address is secured for a write to the cache, and the cache
line is filled with undetermined values. Data is not transferred to the CPU from memory. As
long as the address specified by the instruction is a virtual address aligned on an 8-byte
boundary, any address in the cache line can be specified.

A STXA or STDA address that is not aligned on an 8-byte boundary causes a
mem_address_not_aligned exception.

A STDFA address that is aligned on a 4-byte boundary but not an 8-byte boundary causes a
STDF_mem_address_not_aligned exception. An address that is not aligned on an 8-byte
boundary nor a 4-byte boundary causes a mem_address_not_aligned exception.

The XFILL_{AIUP,AIUS,S,P} ASIs are not affected by the hardware prefetch setting. The
value of XAR.dis_hw_pf is ignored.

The ordering between XFILL_{AIUP,AIUS,S,P} and the following memory access
conforms to TSO.

An attempt to access a page with TTE.CP = 0 using XFILL_{AIUP,AIUS,S,P} is detected
as a watchpoint, alignment, or protection violation, and the cache line fill is not performed.

Ver 15, 26 Apr. 2010	 F. Appendix A Instruction Definitions 135

An ECC_error exception caused by a bus error or bus timeout is not signalled for
XFILL_{AIUP,AIUS,S,P}. Also, a data_access_error is not signalled when the address
specified by the instruction exists in the L1 or L2 caches and there is an UE in that cache
line.

A watchpoint is detected if all 128 bytes of XFILL_{AIUP,AIUS,S,P} are matched.

If a subsequent access to the same cache line occurs while the cache line is being filled, the
access is delayed until the cache line fill commits.

Programming Notes – A MEMBAR is not needed between XFILL and the following
access.

Because the following access is delayed, performance can be negatively affected. When
performance is required, it is important to execute XFILL well ahead of the actual store. The
time required to commit XFILL depends on the system; thus, there may be cases where
XFILL is executed sufficiently early on one system, but not sufficiently early for a future
version of the processor.

The XFILL_{AIUP,AIUS,S,P} ASIs were implemented to accelerate the memset() and
memcpy() functions. Sample code for memset()/memcpy() is shown below. HPC-ACE
mnenomic suffixes are used. See Appendix G.4, “HPC-ACE Notation” (page 206) for details

Note that both pieces of sample code assume that infrequently reused data is stored in sector
0. The actual usage of sector 0 and sector 1 depends on the application; thus, if sector 1 is
used to cache frequently reused data, using the following sample code “as is” may cause a
reduction in performance.

[memset(0) pseudo-code]

 /*

 * %i0: dst

*/

 ahead = 4 * 128;! adjust as needed

for (i = 0 ; i < size; i += 128) {

 stxa %g0, [%i0+ahead] #ASI_XFILL

 sxar2

 stx,d %g0, [%i0]

 stx,d %g0, [%i0+8]

 sxar2

 stx,d %g0, [%i0+16]

 stx,d %g0, [%i0+24]

 sxar2

 stx,d %g0, [%i0+32]

 stx,d %g0, [%i0+40]

 sxar2

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 136

 stx,d %g0, [%i0+48]

 stx,d %g0, [%i0+56]

 sxar2

 stx,d %g0, [%i0+64]

 stx,d %g0, [%i0+72]

 sxar2

 stx,d %g0, [%i0+80]

 stx,d %g0, [%i0+88]

 sxar2

 stx,d %g0, [%i0+96]

 stx,d %g0, [%i0+104]

 sxar2

 stx,d %g0, [%i0+112]

 stx,d %g0, [%i0+120]

 add %i0, 128, %i0

 }

 [memcpy() pseudo-code]

 /*

* %i0: dst

* %i1: src

*/

 ahead = 4 * 128;! adjust as needed
 for (i = 0 ; i < size; i += 128) {

 prefetch [%i1+128], #n_reads

 ldx [%i1], %l2

 ldx [%i1+8], %l3

 ldx [%i1+16], %l4

 ldx [%i1+24], %l5

 ldx [%i1+32], %l6

 ldx [%i1+40], %l7

 ldx [%i1+48], %o0

 ldx [%i1+56], %o1

 ldx [%i1+64], %o2

 ldx [%i1+72], %o3

 ldx [%i1+80], %o4

 ldx [%i1+88], %o5

 ldx [%i1+96], %o6

 ldx [%i1+104], %o7

 ldx [%i1+112], %i6

 ldx [%i1+120], %i7

 stxa %g0, [%i0+ahead] #ASI_XFILL

 prefetch [%i0+128], #n_writes

 sxar2

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 137

 stx,d %l2, [%i0]

 stx,d %l3, [%i0+8]

 sxar2

 stx,d %l4, [%i0+16]

 stx,d %l5, [%i0+24]

 sxar2

 stx,d %l6, [%i0+32]

 stx,d %l7, [%i0+40]

 sxar2

 stx,d %o0, [%i0+48]

 stx,d %o1, [%i0+56]

 sxar2

 stx,d %o2, [%i0+64]

 stx,d %o3, [%i0+72]

 sxar2

 stx,d %o4, [%i0+80]

 stx,d %o5, [%i0+88]

 sxar2

 stx,d %o6, [%i0+96]

 stx,d %o7, [%i0+104]

 sxar2

 stx,d %i6, [%i0+112]

 stx,d %i7, [%i0+120]

 add %i1, 128, %i1

 add %i0, 128, %i0

 }

Exceptions fp_disabled (STDFA)
illegal_action (STXA, STDA with XAR.v = 1 and (XAR.urs1 > 1 or

(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0 or
XAR.urd > 1);

STDFA with XAR.v = 1 and(XAR.urs1 > 1 or
(i = 0 and XAR.urs2 > 1) or
(i = 1 and XAR.urs2 ≠ 0) or
XAR.urs3<2> ≠ 0);

XAR.v = 1 and XAR.simd = 1)
mem_address_not_aligned
STDF_mem_address_not_aligned
privileged_action (ASI_XFILL_AIUP, ASI_XFILL_AIUS)
VA_watchpoint
fast_data_access_MMU_miss
data_access_exception
fast_data_access_protection

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010138

PA_watchpoint
data_access_error

Ver 15, 26 Apr. 2010 F. Appendix A Instruction Definitions 139

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 140

F.AP PE ND IX B

IEEE Std. 754-1985 Requirements for
SPARC-V9

The IEEE Std. 754-1985 floating-point standard contains a number of implementation
dependencies. Appendix B of JPS1 Commonality specifies choices for these implementation
dependencies, to ensure that SPARC V9 implementations are as consistent as possible. Please
refer to JPS1 Commonality for details.

This appendix describes the following:

■ Conditions under which an unfinished_FPop can occur
■ Floating-Point Nonstandard Mode on page 142

The first item describes the implementation dependencies defined in the subsection
“FSR_floating-point_trap_type (ftt)” of Section 5.1.7 in JPS1 Commonality. For
convenience, this document describes that information in this appendix.

B.1 Traps Inhibiting Results
Please refer to Section B.1 in JPS1 Commonality.

The SPARC64 VIIIfx hardware, in conjunction with system software, produces the results
described in this section.

Ver 15, 26 Apr. 2010 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 141

B.6 Floating-Point Nonstandard Mode
This section descibes the behavior of SPARC64 VIIIfx in nonstandard mode, which deviates
from IEEE 754-1985. For the reader’s convenience, this section also describes the conditions
under which an fp_exception_other exception with FSR.ftt = unfinished_FPop can occur,
even though this exception only occurs in standard mode (FSR.NS = 0).

SPARC64 VIIIfx floating-point hardware only handles numbers in a specific range. If the
values of the source operands or the intermediate result predict that the final result will not
be in the specified range, SPARC64 VIIIfx generates an fp_exception_other exception with
FSR.ftt = 0216 (unfinished_FPop). Subsequent processing is handled by software; an
emulation routine completes the operation in accordance with IEEE 754-1985 (impl. dep.
#3)。

SPARC64 VIIIfx implements a nonstandard mode, which is enabled when FSR.NS = 1. See
“FSR_nonstandard_fp (NS)” (page 23). The floating-point behavior of SPARC64 VIIIfx
depends on the value of FSR.NS.

B.6.1 fp_exception_other Exception (ftt=unfinished_FPop)

Almost all SPARC64 VIIIfx floating-point arithmetic operations can cause an
fp_exception_other exception with FSR.ftt = unfinished_FPop (see specific instruction
definitions for details). Conditions under which this exception occurs are described below.

1. When one operand is denormal and all other operands are normal (not zero, infinity,
NaN), an fp_exception_other exception with unfinished_FPop occurs. The exception
does not occur when the result is a zero or an overflow.

2. When all operands are denormal and the result is not a zero or an overflow, an
fp_exception_other exception with unfinished_FPop occurs.

3. When all operands are normal, the result before rounding is denormal, TEM.UFM = 0, and
the result is not a zero, an fp_exception_other exception with unfinished_FPop occurs.

When the result is expected to be a constant, such as zero or infinity, and the calculation is
simple enough for hardware, SPARC64 VIIIfx performs the operation. An unfinished_FPop
does not occur.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 142

Implementation Note – To detect these conditions precisely requires a large amount of
hardware. To avoid this hardware cost, SPARC64 VIIIfx detects approximate conditions by
calculating the exponent of the intermediate result (that is, the exponent before rounding)
from the source operands. Since detection is approximate and conservative, an
unfinished_FPop may be generated even when the actual result is a zero or an overflow.

TABLE B-1 describes the formulae used to estimate the result exponent for detecting
unfinished_FPop conditions. Here, Er is an approximation of the biased result exponent
before the significand is aligned and before rounding; it is calculated using only the source
exponents (esrc1, esrc2).

TABLE B-1 Result Exponent Approximation for Detecting unfinished_FPop Exceptions

Operation Formula

fmuls Er = esrc1 + esrc2 − 126

fmuld Er = esrc1 + esrc2 − 1022

fdivs Er = esrc1 - esrc2 + 126

fdivd Er = esrc1 - esrc2 + 1022

esrc1 and esrc2 are the biased exponents of the source operands. When an source operand is
a denormalized number, the corresponding exponent is 0.

Once Er is calculated, eres can be obtained. eres is the biased result exponent after the
significand is aligned and before rounding. That is, the significand is left-shifted or right-
shifted so that an implicit 1 is immediately to the left of the binary point. eres is the value
obtained from adding or subtracting the amount shifted to Er.

TABLE B-2 describes the conditions under which each floating-point instruction generates an
unfinished_FPop exception.

TABLE B-2 unfinished_FPop Detection Conditions

Operation Detection Condition

FdTOs −25 < eres < 1 and TEM.UFM = 0.

FsTOd The second operand (rs2) is denormal.

FADDs, FSUBs, 1. One operand is denormal, and the other operand is normal (not zero,
FADDd, FSUBd infinity, NaN). 1

2.	 Both operands are denormal.
3.	 Both operands are normal (not zero, infinity, NaN), eres < 1, and

TEM.UFM = 0.

Ver 15, 26 Apr. 2010	 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 143

TABLE B-2 unfinished_FPop Detection Conditions (Continued) (Continued)

Operation Detection Condition

FMULs, FMULd 1.	 One operands is denormal, the other operand is normal (not zero, infinity,
NaN), and

single precision: -25 < Er
double precision: -54 < Er

2.	 Both operands are normal (not zero, infinity, NaN), TEM.UFM = 0, and
single precision: −25 < eres < 1
double precision: −54 < eres < 1

FsMULd 1.	 One operand is denormal, and the other operand is normal (not zero,
infinity, NaN).

2.	 Both operands are denormal.

FDIVs, FDIVd 1.	 The dividend (rs1) is normal (not zero, infinity, NaN), the divisor (rs2)
is denormal, and

single precision: Er < 255
double precision: Er < 2047

2.	 The dividend (rs1) is denormal, the divisor (rs2) is normal (not zero,
infinity, NaN), and

single precision: −25 < Er
double precision: −54 < Er

3.	 Both operands are denormal.
4.	 Both operands are normal (not zero, infinity, NaN), TEM.UFM = 0, and

single precision: −25 < eres < 1
double precision: −54 < eres < 1

FSQRTs, FSQRTd The source operand (rs2) is positive, nonzero, and denormal.

FMADD{s,d}, Same conditions as FMUL{s,d} for the multiplication, and same conditions
FMSUB{s,d}, as FADD{s,d} for the add.
FNMADD{s,d},
FNMSUB{s,d}

FTRIMADDd Same conditions as FMUL{s,d} for the multiplication. An add does not occur.

FTRISMULd 1. When rs1 is normal (not zero, infinity, NaN) and TEM.UFM = 0, and
double-precision: −54 < eres < 1

FRCPA{s,d} When the operands are denormal.

FRSQRTA{s,d} When the operands are positive, nonzero, and denormal.

1.When the source operand is zero and denormal, the generated result conforms to IEEE754-1985.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 144

Conditions for a Zero Result

When a condition listed in TABLE B-3 is true, SPARC64 VIIIfx generates a zero result; that
is, the result is a denormalized minimum or a zero, depending on the rounding mode
(FSR.RD).

TABLE B-3 Conditions for a Zero Result

Operations

Conditions

One operand is denormal1 Both are denormal Both are normal2

FdTOs always — eres ≤ -25

FMULs,

FMULd

single precision: Er ≤ −25
double precision: Er ≤ −54

always single precision:
double precision:

eres ≤ −25
eres ≤ −54

FDIVs,

FDIVd

single precision: Er ≤ −25
double precision: Er ≤ −54

never single precision:
double precision:

eres ≤ −25
eres ≤ −54

1.Except when both operands are zero, NaN, or infinity.

2.And when neither operand is NaN or infinity. If both operands are zero, eres is never less than zero.

Conditions for an Overflow Result

If a condition listed in TABLE B-4 is true, SPARC64 VIIIfx assumes the operation causes an
overflow.

TABLE B-4 Conditions for an Overflow Result

Operations Conditions

FDIVs The divisor (rs2) is denormal and Er ≥ 255.

FDIVd The divisor (rs2) is denormal and Er ≥ 2047.

B.6.2 Behavior when FSR.NS = 1

When FSR.NS = 1 (nonstandard mode), SPARC64 VIIIfx replaces all denormal source
operands and denormal results with zeroes. This behavior is described below in greater
detail:

■	 When one operand is denormal and none of the operands is zero, infinity, or NaN, the
denormal operand is replaced with a zero of the same sign, and the operation is
performed. After the operation, cexc.nxc is set to 1 unless one of the following
conditions occurs; in which case, cexc.nxc = 0.

■	 A division_by_zero or an invalid_operation is detected for a FDIV{s,d}.
■	 An invalid_operation is detected for a FSQRT{s,d}.
■	 The operation is a FRPCA{s,d} or a FRSQRTA{s,d}.

When cexc.nxc = 1 and TEM.NXM = 1 in FSR, a fp_exception_ieee_754 exception
occurs.

Ver 15, 26 Apr. 2010	 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 145

■	 When the result before rounding is denormal, the result is replaced with a zero of the
same sign.

If TEM.UFM = 1 in FSR, then cexc.ufc = 1; if TEM.UFM = 0 and TEM.NXM = 1, then
cexc.nxc = 1. In both cases, a fp_exception_ieee_754 exception occurs. When
TEM.UFM = 0 and TEM.NXM = 0, both cexc.nxc and cexc.ufc are set to 1.

When FSR.NS = 1, SPARC64 VIIIfx does not generate unfinished_FPop exceptions or
return denormalized numbers as results.

TABLE B-5 summarizes the exceptions generated by the floating-point arithmetic instructions1

listed in TABLE B-2. All possible exceptions and masked exceptions are listed in the “Result”
column. The generated exception depends on the value of FSR.NS, the source operand type,
the result type, and the value of FSR.TEM; it can be found by tracing the conditions from
left to right. If FSR.NS = 1 and the source operands are denormal, refer to TABLE B-6. In
TABLE B-5, the shaded areas in the “Result” column conform to IEEE754-1985.

Note – In Table B-5 and TABLE B-6, lowercase exceptional conditions (nx, uf, of, dv, nv) do
not signal IEEE 754 exceptions. Uppercase exceptional conditions (NX, UF, OF, DZ, NV) do
signal IEEE 754 exceptions.

TABLE B-5 Floating-Point Exception Conditions and Results (1 of 2)

FSR.NS
Source
Denormal1

Result
Denormal2

Zero
Result

Overflow
Result UFM OFM NXM Result

1 — — UF

Yes —
1 NX

No
Yes

0 —
0

uf + nx, a signed zero, or a signed
Dmin3

No —
1 — — UF

0 — — unfinished_FPop4

No — — — — — Conforms to IEEE754-1985

0

Yes —

Yes —

1 — — UF

0 —

1 NX

0
uf + nx, a signed zero, or a signed
Dmin

No
Yes

— 1 — OF

— 0

1 NX

0
of + nx, a signed infinity, or a signed
Nmax5

No — — — unfinished_FPop

1. rs2 for FTRISmuld is not a floating-point number and cannot be denormal.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 146

TABLE B-5 Floating-Point Exception Conditions and Results (Continued) (2 of 2)

FSR.NS
Source
Denormal1

Result
Denormal2

Zero
Result

Overflow
Result UFM OFM NXM Result

1 — — UF

No
Yes — —

0 —
1 NX

1 0 uf + nx, a signed zero

No — — — — — Conforms to IEEE754-1985

Yes — — — — — — TABLE B-6

1.One operand is denormal, and the other operands are normal (not zero, infinity, NaN) or denormal.

2.The result before rounding turns out to be denormal.

3.Dmin = denormalized minimum.

4.If the operation is FADD{s,d} or FSUB{s,d} and the source operands are zero and denormal, SPARC64 VIIIfx does not

generate an unfinished_FPop; instead, the operation is performed conformant to IEEE754-1985.

5.Nmax = normalized maximum.

TABLE B-6 describes SPARC64 VIIIfx behavior when FSR.NS = 1 (nonstandard mode).
Shaded areas in the “Result” column conform to IEEE754-1985.

TABLE B-6 Operations with Denormal Source Operands when FSR.NS = 1 (1 of 2)

Instruction

Source Operand FSR.TEM

Result op1 op2 op3 UFM NXM DVM NVM

FsTOd
— — —

1 — — NX
Denorm

0 — — nx, a signed zero

FdTOs 1 — — — UF

— Denorm —
0

1 — — NX

0 — — uf + nx, a signed zero

FADD{s,d}
Denorm Normal —

1 — — NX
FSUB{s,d} 0 — — nx, op2

Normal Denorm — —
1 — — NX

0 — — nx, op1

Denorm Denorm —
1 — — NX

0 — — nx, a signed zero

FMUL{s,d}
Denorm — —

1 — — NX

FsMULd
—

0 — — nx, a signed zero

— Denorm —
1 — — NX

0 — — nx, a signed zero

Ver 15, 26 Apr. 2010 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 147

TABLE B-6 Operations with Denormal Source Operands when FSR.NS = 1 (2 of 2)

Instruction

Source Operand FSR.TEM

Result op1 op2 op3 UFM NXM DVM NVM

FDIV{s,d}
Denorm Normal —

1 — — NX

0 — — nx, a signed zero

Normal Denorm — — —
1 — DZ

0 — dz, a signed infinity

Denorm Denorm — — —
1 NV

0 nv, dNaN1

FSQRT{s,d} Denorm and
—

1 — — NX

op2 > 0 0 — — nx, zero
—

Denorm and
—

—

— —
1 NV

op2 < 0 0 nv, dNaN1

FMADD{s,d}
Normal —

1 — — NX
FMSUB{s,d}
FNMADD{s,d}
FNMSUB{s,d}
FTRIMADDd2

Denorm —

0 — — nx, op3

Denorm —

1 — — NX

0 — —
nx, zero with same sign as the
result before rounding

Normal —
1 — — NX

0 — — nx, op3

— Denorm 1 — — NX

Denorm —
0 — —

nx, zero with same sign as the
result before rounding

Normal Normal Denorm —
1 — — NX

0 — — nx, op1 × op23

FTRISMULd
Denorm — — —

1 — — NX

0 — — nx, zero whose sign bit is op2<0>

FRCPA{s,d} 1 — DZ

— Denorm — — —
0 —

dz, infinity with same sign as the
result before rounding

FRSQRTA{s,d}

— Denorm — — —

1 — DZ

0 —
dz, infinity with same sign as the
result before rounding

1.A single-precision dNaN is 7FFF.FFFF16, and a double-precision dNaN is 7FFF.FFFF.FFFF.FFFF16.

2.op3 is obtained from a table in the functional unit and is always normal.

3.When op1 × op2 is denormal, op1 × op2 becomes a zero with the same sign.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 148

F.AP PE ND IX C

Implementation Dependencies

This appendix summarizes how implementation dependencies defined in JPS1 Commonality
are implemented in SPARC64 VIIIfx. In SPARC V9 and SPARC JPS1, the notation “IMPL.
DEP. #nn:” identifies the definition of an implementation dependency; the notation “(impl.
dep. #nn)” identifies a reference to an implementation dependency. These dependencies are
described by their number nn in TABLE C-1.

Note – SPARC International maintains a document, Implementation Characteristics of
Current SPARC-V9-based Products, Revision 9.x, that describes the implementation-
dependent design features of all SPARC V9-compliant implementations. Contact SPARC
International for this document at:

home page: www.sparc.org
email: info@sparc.org

C.4 List of Implementation Dependencies
TABLE C-1 summaries how JPS1 implementation dependencies are implemented in
SPARC64 VIIIfx.

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (1 of 11)

Nbr SPARC64 VIIIfx Implementation Notes Page

1 Software emulation of instructions
The operating system emulates all quad-precision instructions that generate an
illegal_instruction or unimplemented_FPop exception.

—

Ver 15, 26 Apr. 2010 F. Appendix C Implementation Dependencies 149

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (2 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

2	 Number of IU registers —
SPARC64 VIIIfx supports eight register windows (NWINDOWS = 8).

SPARC64 VIIIfx also supports two additional global register sets (Interrupt globals

and MMU globals) and registers added by HPC-ACE. There are a total of 160

integer registers.

3	 Incorrect IEEE Std. 754-1985 results 142
See Section B.6, “Floating-Point Nonstandard Mode”, for details.

4–5	 Reserved.

6	 I/O registers privileged status —
This item is out of the scope of this document. Refer to the SPARC64 VIIIfx
System Specification.

7	 I/O register definitions —
This item is out of the scope of this document. Refer to the SPARC64 VIIIfx
System Specification.

8	 RDASR/WRASR target registers 98, 112
In SPARC64 VIIIfx, the XAR, XASR, and TXAR can be read by RDASR, and the
XASR and TXAR can be written by WRASR.

9	 RDASR/WRASR privileged status 98, 112
In SPARC64 VIIIfx, the TXAR is a privileged register.

10–12 Reserved.

13 VER.impl 26
VER.impl = 8 for the SPARC64 VIIIfx processor.

14–15 Reserved. —

16	 IU deferred-trap queue 38
SPARC64 VIIIfx does not implement an IU deferred-trap queue.

17	 Reserved. —

18	 Nonstandard IEEE 754-1985 results 142
When FSR.NS = 1, a denormal result is replaced with zeroes in SPARC64 VIIIfx.
See Section B.6, “Floating-Point Nonstandard Mode”, for details.

19	 FPU version, FSR.ver 23
FSR.ver = 0 in SPARC64 VIIIfx.

20–21	 Reserved.

22	 FPU TEM, cexc, and aexc 23
SPARC64 VIIIfx hardware implements all bits in the TEM, cexc, and aexc fields.

23	 Floating-point traps 38
In SPARC64 VIIIfx, floating-point traps are always precise. A FQ is not needed.

24	 FPU deferred-trap queue (FQ) 38
SPARC64 VIIIfx does not implement a floating-point deferred-trap queue.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 150

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (3 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

25	 RDPR of FQ with nonexistent FQ 38
Attempting to execute an RDPR of the FQ causes an illegal_instruction exception.

26–28	 Reserved. —

29	 Address space identifier (ASI) definitions 213
The ASIs that are supported by SPARC64 VIIIfx are defined in Appendix L.

30	 ASI address decoding —
SPARC64 VIIIfx decodes all 8 bits of the ASI specifier.

31	 Catastrophic error exceptions 246
SPARC64 VIIIfx implements a watchdog timer. If no instructions are committed for
a specified number of cycles, the CPU tries to cause an async_data_error trap.
After 6.7 seconds, the processor enters error_state. The processor can be
configured to recover from error_state by generating a WDR on entry to
error_state.

32	 Deferred traps 46, 255
In SPARC64 VIIIfx, severe errors are reported by deferred traps. SPARC64 VIIIfx
does not implement a deferred trap queue.

33	 Trap precision 46
The only deferred traps are traps that report severe errors. In SPARC64 VIIIfx, all
traps that occur as the result of instruction execution are precise.

34	 Interrupt clearing 239
See Appendix N for details on interrupt handling.

35	 Implementation-dependent traps 53
SPARC64 VIIIfx supports the following implementation-dependent traps:
• interrupt_vector_trap (tt = 06016)
• PA_watchpoint (tt = 06116)
• VA_watchpoint (tt = 06216)
• ECC_error (tt = 06316)
• fast_instruction_access_MMU_miss (tt = 06416–06716)
• fast_data_access_MMU_miss (tt = 06816–06B16)
• fast_data_access_protection (tt = 06C16–06F16)
• async_data_error (tt = 04016)

36	 Trap priorities 51
SPARC64 VIIIfx implementation-dependent traps have the following priorities:
• interrupt_vector_trap (priority =16)
• PA_watchpoint (priority =12)
• VA_watchpoint (priority=1)
• ECC_error (priority =33)
• fast_instruction_access_MMU_miss (priority = 2)
• fast_data_access_MMU_miss (priority = 12)
• fast_data_access_protection (priority = 12)
• async_data_error (priority = 2)

37	 Reset trap 46
SPARC64 VIIIfx implements power-on resets (POR) and the watchdog reset.

Ver 15, 26 Apr. 2010	 F. Appendix C Implementation Dependencies 151

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (4 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

38	 Effect of reset trap on implementation-dependent registers See Section O.2, 247
“RED_state and error_state”.

39	 Entering error_state on implementation-dependent errors 46
The processor enters error_state after 6.7 seconds have elapsed in a watchdog
timeout, or when a normal trap or SIR occurs while TL = MAXTL.

40	 Error_state processor state 46
After entering error_state, SPARC64 VIIIfx can generate a watchdog reset.
The states of almost all error-logging registers are preserved (also see impl. dep.
#254).

41	 Reserved.

42	 FLUSH instruction —
SPARC64 VIIIfx implements the FLUSH instruction in hardware.

43	 Reserved.

44	 Data access FPU trap 82
The destination register(s) are unchanged if an access error occurs.

45–46	 Reserved.

47	 RDASR 98
The XAR, XASR, and TXAR can be read in SPARC64 VIIIfx using rd = 29–31. At
this time,
•	 Bits <18:0> of the instruction field are handled in the same way as for other
RDASR. That is, <18:14> is rs1 and <13> is i. When i=0, <12:5> is reserved
and <4:0> is rs2. When i=1, <12:0> is simm13.

• Only TXAR is a privileged register.

A nonzero reserved field does not cause an illegal_instruction exception.

48	 WRASR 112
The XAR, XASR, and TXAR can be written in SPARC64 VIIIfx using rd = 29–31.
At this time,
•	 Bits <18:0> of the instruction field are handled in the same way as for other
WRASR. That is, <18:14> is rs1 and <13> is i. When i=0, <12:5> is reserved
and <4:0> is rs2. When i=1, <12:0> is simm13.

•	 The operation rs1 xor rs2 or rs1 xor simm13 is performed.

• Only TXAR is a privileged register.

A nonzero reserved field does not cause an illegal_instruction exception.

49–54	 Reserved.

55	 Floating-point underflow detection —
As specified in JPS1, SPARC64 VIIIfx detects underflow conditions before
rounding.

56–100	 Reserved.

101	 Maximum trap level 26
MAXTL = 5.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 152

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (5 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

102	 Clean windows trap —
SPARC64 VIIIfx generates a clean_window traps; register windows are cleaned by
software.

103	 Prefetch instructions 96
SPARC64 VIIIfx implements PREFETCH fcn 0–3 and 20–23 with the following
implementation-dependent behavior:
• The PREFETCH instruction has observable effects in privileged mode.
• The PREFETCH instruction never causes a fast_data_access_MMU_miss trap.
•	 The block of memory prefetched is one 128-byte cache line; that is, its size is 128

bytes and its alignment is 128 bytes.
•	 See Section A.49, “Prefetch Data”, for descriptions of the prefetch variants and

their characteristics.
•	 Prefetches to the following ASIs are valid: ASI_PRIMARY, ASI_SECONDARY,

or ASI_NUCLEUS, ASI_PRIMARY_AS_IF_USER,
ASI_SECONDARY_AS_IF_USER, and the corresponding little-endian ASIs.

104	 VER.manuf 26
VER.manuf = 000416. The lower 8 bits display Fujitsu’s JEDEC manufacturing
code.

105	 TICK register 25
SPARC64 VIIIfx implements all 63 bits in TICK.counter; the counter is
incremented every clock cycle.

106	 IMPDEPn instructions 71
In addition to VIS1 and VIS2 instructions, SPARC64 VIIIfx implements a large
number of SPARC64 VIIIfx-specific instructions.

107	 Unimplemented LDD trap —
SPARC64 VIIIfx implements LDD in hardware.

108	 Unimplemented STD trap —
SPARC64 VIIIfx implements STD in hardware.

109	 LDDF_mem_address_not_aligned 82, 86
In SPARC64 VIIIfx, a non-SIMD LDDF address that is aligned on a 4-byte
boundary but not an 8-byte boundary causes a LDDF_mem_address_not_aligned
exception. System software emulates the instruction. A SIMD LDDF, however,
causes a mem_address_not_aligned exception instead.

110	 STDF_mem_address_not_aligned 101,
In SPARC64 VIIIfx, a non-SIMD STDF address that is aligned on a 4-byte 105

boundary but not an 8-byte boundary causes a STDF_mem_address_not_aligned
exception. System software emulates the instruction. A SIMD STDF, however,
causes a mem_address_not_aligned exception instead.

111	 LDQF_mem_address_not_aligned 82, 86
SPARC64 VIIIfx does not implement LDQF, and an attempt to execute LDQF
causes an illegal_instruction exception. The processor does not check fp_disabled.
System software emulates LDQF.

Ver 15, 26 Apr. 2010	 F. Appendix C Implementation Dependencies 153

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (6 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

112	 STQF_mem_address_not_aligned 101,
SPARC64 VIIIfx does not implement STQF, and an attempt to execute STQF 105
causes an illegal_instruction exception. The processor does not detected an
fp_disabled exception. System software emulates STQF.

113	 Implemented memory models 55
SPARC64 VIIIfx implements Total Store Order (TSO) for all memory models
specified in PSTATE.MM. See Chapter 8 for details.

114 RED_state trap vector address (RSTVaddr) 45
RSTVaddr is a constant in SPARC64 VIIIfx, with the following value:

VA= FFFF FFFF F000 000016

PA= 01FF F000 000016

115	 RED_state processor state 45
See Section 7.1.1 for details on behavior while in RED_state.

116	 SIR_enable control flag —
As specified in JPS1, the SIR_enable control flag does not exist in
SPARC64 VIIIfx. The SIR instruction behaves like a NOP in nonprivileged mode.

117	 MMU disabled prefetch behavior 183
In SPARC64 VIIIfx, PREFETCH commits without accessing memory when the
DMMU is disabled. As specified in Section F.5 of JPS1 Commonality, a
nonfaulting load causes a data_access_exception exception.

118	 Identifying I/O locations —
TThis item is out of the scope of this document. Refer to the SPARC64 VIIIfx
System Specification.

119	 Unimplemented values for PSTATE.MM 56
Writing 112 into PSTATE.MM causes the machine to use the TSO memory model.
However, the encoding 112 should not be used because future versions of
SPARC64 VIIIfx may assign this encoding to a different memory model.

120	 Coherence and atomicity of memory operations —
This item is out of the scope of this document. Refer to the SPARC64 VIIIfx
System Specification.

121	 Implementation-dependent memory model —
Accesses to a page with the E bit set (that is, to a volatile page) are processed in
program order.

122	 FLUSH latency 56
Since the FLUSH instruction synchronizes cache states between all on-chip cores,
the execution latency depends on the processor state. Assuming that all prior
instructions have committed, the latency of a FLUSH is 30 processor cycles.

123	 Input /output (I/O) semantics —
This item is out of the scope of this document. Refer to the SPARC64 VIIIfx
System Specification.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 154

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (7 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

124	 Implicit ASI when TL > 0 —
As specified in JPS1, when TL > 0, ASI_NUCLEUS or ASI_NUCLEUS_LITTLE
are used depending on the value of PSTATE.CLE.

125	 Address masking 42, 70,
When PSTATE.AM = 1, SPARC64 VIIIfx masks the high-order 32 bits of the PC 81
transmitted to the specified destination register(s).

126	 Register Windows State Registers width —
In SPARC64 VIIIfx, NWINDOWS is 8. Thus, only 3 bits in the CWP, CANSAVE,
CANRESTORE, and OTHERWIN registers are valid. On an attempt to write a value
greater than NWINDOWS − 1 to any of these registers, only the lower 3 bits are
written; the upper bits are ignored. The CLEANWIN register contains 3 bits.

127–201 Reserved.

202	 fast_ECC_error trap —
SPARC64 VIIIfx does not implement the fast_ECC_error trap.

203	 Dispatch Control Register bits 13:6 and 1 29
SPARC64 VIIIfx does not implement DCR.

204	 DCR bits 5:3 and 0 29
SPARC64 VIIIfx does not implement DCR.

205	 Instruction Trap Register 37
SPARC64 VIIIfx implements the Instruction Trap Register as defined in JPS1.

206	 SHUTDOWN instruction 100
In privileged mode, SPARC64 VIIIfx executes the SHUTDOWN instruction as a NOP.

207	 PCR register bits 47:32, 26:17, and bit 3 27
SPARC64 VIIIfx uses these bits to implement the following features:
• Bits 47:32 – set/clear/show overflow status (OVF)
• Bit 26 – set OVF field read-only (OVRO)
• Bits 24:22 – indicate the number of counter pairs (NC)
• Bits 20:18 – select the counter pair (SC)
• Bit 3 – set SU/SL field read-only (ULRO)

Other implementation-dependent bits are read as 0 and writes to these bits are
ignored.

208	 Ordering of errors captured in instruction execution 255
SPARC64 VIIIfx signals errors in program order.

209	 Software intervention after instruction-induced error —
In SPARC64 VIIIfx, an error synchronous to instruction execution is signalled as a
precise exception.

210	 ERROR output signal —
This item is beyond the scope of this document. Refer to the SPARC64 VIIIfx
System Specification.

Ver 15, 26 Apr. 2010	 F. Appendix C Implementation Dependencies 155

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (8 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

211	 Error logging registers’ information 272
In SPARC64 VIIIfx, the cause of a fatal error is not displayed in the
ASI_STCHG_ERR_INFO register.

212	 Trap with fatal error 272
In SPARC64 VIIIfx, a fatal error does not cause a trap.

213	 AFSR.PRIV 285
SPARC64 VIIIfx does not implement the AFSR.PRIV bit.

214	 Enable/disable control for deferred traps —
SPARC64 VIIIfx does not provide an enable/disable control feature for deferred
traps.

215	 Error barrier —
—

216	 data_access_error trap precision —
In SPARC64 VIIIfx, a data_access_error trap is always precise.

217	 instruction_access_error trap precision —
In SPARC64 VIIIfx, an instruction_access_error trap is always precise.

218	 async_data_error 47, 255
SPARC64 VIIIfx generates the async_data_error trap with TT = 4016.

219	 Asynchronous Fault Address Register (AFAR) allocation —
SPARC64 VIIIfx does not implement the AFAR.

220	 Addition of logging and control registers for error handling 255
SPARC64 VIIIfx implements various RAS features for ensuring high reliability. See
Appendix P for details.

221	 Special/signalling ECCs —
—

222	 TLB organization 175
SPARC64 VIIIfx has the following TLB organization:
•	 Level-1 micro ITLB (uITLB), fully associative
•	 Level-1 micro DTLB (uDTLB), fully associative
•	 Level-2 IMMU-TLB, which consists of the sITLB (set-associative Instruction

TLB) and fITLB (fully-associative Instruction TLB).
•	 Level-2 DMMU-TLB, which consists of the sDTLB (set-associative Data TLB)

and fDTLB (fully-associative Data TLB).

223	 TLB multiple-hit detection 176
In SPARC64 VIIIfx, a multiple hit is detected only when the fTLB is accessed on a
micro-TLB miss.

224	 MMU physical address width 178
In SPARC64 VIIIfx, the MMU supports a physical address width of 41 bits. The PA
field of the TTE holds a 41-bit physical address. Bits <46:41> always read as 0,
and writes to these bits are ignored.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 156

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (9 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

225	 TLB locking of entries 178
When a TTE with the lock bit set is written into the TLB via the Data In register,
SPARC64 VIIIfx writes this entry to the appropriate fTLB and locks the entry.
Otherwise, the TTE is written into the appropriate sTLB or fTLB, depending on the
page size.

226	 TTE support for CV bit 178
SPARC64 VIIIfx does not support the CV bit in TTE. Since I1 and D1 are virtually
indexed caches, SPARC64 VIIIfx supports hardware unaliasing. Also see impl. dep.
#232.

227	 TSB number of entries —
The SPARC64 VIIIfx specification does not support a TSB; this implementation
dependency is not applicable.

228	 TSB_Hash supplied from TSB or context-ID register —
The SPARC64 VIIIfx specification does not support a TSB; this implementation
dependency is not applicable.

229	 TSB_Base address generation —
The SPARC64 VIIIfx specification does not support a TSB; this implementation
dependency is not applicable.

230	 data_access_exception trap 179
SPARC64 VIIIfx generates a data_access_exception only for the causes listed in
Appendix F.5 of JPS1 Commonality.

231	 MMU physical address variability 183
In SPARC64 VIIIfx, the width of the physical address is 41 bits.

232	 DCU Control Register CP and CV bits 34, 183
SPARC64 VIIIfx does not implement the CP and CV bits in the DCU Control
Register. Also see impl. dep. #226.

233	 TSB_Hash field 184
The SPARC64 VIIIfx specification does not support a TSB; this implementation
dependency is not applicable.

234	 TLB replacement algorithm 192
fTLB is pseudo-LRU. sTLB is LRU.

235	 TLB data access address assignment 192
See Appendix F.10.4.

236	 TSB_Size field width 194
In SPARC64 VIIIfx, TSB_Size is the 4-bit field in bits <3:0>. The value written
in TSB_Size is returned on a read. SPARC64 VIIIfx preserves this value, but does
not use it.

237	 DSFAR/DSFSR for JMPL/RETURN mem_address_not_aligned 81,
A mem_address_not_aligned exception that occurs during a JMPL or RETURN 180,
instruction does not update either the D-SFAR or D-SFSR. 195

Ver 15, 26 Apr. 2010	 F. Appendix C Implementation Dependencies 157

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (10 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

238	 TLB page offset for large page sizes 178
In SPARC64 VIIIfx, page offset data is discarded on a TLB write, and undefined
data is returned on a read.

239	 Register access by ASIs 5516 and 5D16 184
In SPARC64 VIIIfx, VA<63:18> of IMMU ASI 5516 and DMMU ASI 5D16 are
ignored.

240	 DCU Control Register bits 47:41 34
SPARC64 VIIIfx uses bit <41> to implement WEAK_SPCA, which enables/disables
speculative memory access.

241	 Address Masking and DSFAR ?
When PSTATE.AM = 1, SPARC64 VIIIfx writes zeroes to the more-significant 32
bits of DSFAR.

242	 TLB lock bit In SPARC64 VIIIfx, only the fITLB and the fDTLB support the lock 178
bit. In sITLB and sDTLB, the lock bit is read as 0 and writes to the bit are ignored.

243	 Interrupt Vector Dispatch Status Register BUSY/NACK pairs 242
In SPARC64 VIIIfx, 8 BUSY/NACK bit pairs are implemented.

244	 Data Watchpoint Reliability 36
No implementation-dependent feature in SPARC64 VIIIfx reduces the reliability of
data watchpoints.

245	 Call/Branch displacement encoding in I-Cache ?
In SPARC64 VIIIfx, the least significant 11 bits (bits 10:0) of a CALL or branch
(BPcc, FBPfcc, Bicc, BPr) instruction in an instruction cache are identical to the
architectural encoding (which appears in main memory).

246	 VA<38:29> for Interrupt Vector Dispatch Register Access SPARC64 VIIIfx 242
ignores all 10 bits of VA<38:29> when the Interrupt Vector Dispatch Register is
written.

247	 Interrupt Vector Receive Register SID fields 243
SID_H and SID_L values are undefined.

248	 Conditions for fp_exception_other with unfinished_FPop SPARC64 VIIIfx 23
generates a fp_exception_other with floating-point trap type of unfinished_FPop
for the conditions described in Section 5.1.7 of JPS1 Commonality.

249	 Data watchpoint for Partial Store instruction 94
In SPARC64 VIIIfx, watchpoint detection is conservative for a Partial Store
instruction. The DCUCR Data Watchpoint masks are only checked for a nonzero
value (watchpoint enabled). The byte store mask in r[rs2] of the Partial Store
instruction is ignored, and a watchpoint exception can occur even if the mask is
zero (that is, when no store occurs).

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 158

TABLE C-1 SPARC64 VIIIfx Implementation of JPS1 Implementation Dependencies (11 of 11)

Nbr SPARC64 VIIIfx Implementation Notes	 Page

250	 PCR accessibility when PSTATE.PRIV = 0 27, 28,
In SPARC64 VIIIfx, the accessibility of the PCR when PSTATE.PRIV = 0 is 98
determined by PCR.PRIV. When PSTATE.PRIV = 0 and PCR.PRIV = 1, an
attempt to execute either RDPCR or WRPCR will cause a privileged_action
exception. When PSTATE.PRIV = 0 and PCR.PRIV = 0, RDPCR is executed
normally, and WRPCR only generates a privileged_action exception when an attempt
is made to change (that is, write a 1 to) PCR.PRIV.

251	 Reserved. —

252	 DCUCR.DC (Data Cache Enable) 34
SPARC64 VIIIfx does not implement DCUCR.DC.

253	 DCUCR.IC (Instruction Cache Enable) 34
SPARC64 VIIIfx does not implement DCUCR.IC.

254	 Means of exiting error_state 46, 253
Normally, the SPARC64 VIIIfx processor, upon entering error_state, generates
a watchdog_reset (WDR) and resets itself. However, OPSR can be set so that an
entry to error_state does not generate a watchdog_reset and the processor
remains halted in error_state.

255	 LDDFA with ASI E016 or E116 and misaligned destination register number 220
A misaligned destination register number does not cause an exception.

256	 LDDFA with ASI E016 or E116 and misaligned memory address 220
SPARC64 VIIIfx has the following behavior:
•	 If aligned on an 8-byte boundary, causes a data_access_exception exception.

Does not cause an address alignment exception.
•	 If aligned on a 4-byte boundary, causes a LDDF_mem_address_not_aligned

exception.
•	 Otherwise, causes a mem_address_not_aligned exception.

257	 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address 220
SPARC64 VIIIfx has the following behavior:
•	 If aligned on an 8-byte boundary, causes a data_access_exception exception.

Does not cause an address alignment exception.
•	 If aligned on a 4-byte boundary, causes a LDDF_mem_address_not_aligned

exception.
•	 Otherwise, causes a mem_address_not_aligned exception.

258	 ASI_SERIAL_ID 220
SPARC64 VIIIfx provides an identification code for each processor.

Ver 15, 26 Apr. 2010	 F. Appendix C Implementation Dependencies 159

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 160

F.AP PE ND IX D

Formal Specification of the Memory
Models

Please refer to Appendix D in JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Appendix D Formal Specification of the Memory Models 161

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 162

F.AP PE ND IX E

Opcode Maps

Appendix E contains the instruction opcode maps for all SPARC JPS1 instructions and
instructions added by HPC-ACE.

Opcodes marked with a dash (—) are reserved; an attempt to execute a reserved opcode shall
cause a trap unless the opcode is an implementation-specific extension to the instruction set.
See Section 6.3.9, Reserved Opcodes and Instruction Fields, in JPS1 Commonality for more
information.

In this appendix and in Appendix A, certain opcodes are marked with mnemonic
superscripts. These superscripts and their meanings are defined in TABLE A-1 (page 60). For
deprecated opcodes, see Section A.71, Deprecated Instructions, in JPS1 Commonality.

In the tables in this appendix, reserved (—) and shaded entries indicate opcodes that are not
implemented in SPARC64 VIIIfx processors.

TABLE E-1 op<1:0>

op <1:0>

0 1 2 3

Branches and SETHI
See TABLE E-2.

CALL Arithmetic & Miscellaneous
See TABLE E-3.

Loads/Stores
See TABLE E-4.

TABLE E-2 op2<2:0> (op = 0)

op2 <2:0>

0 1 2 3 4 5 6 7

ILLTRAP BPcc – See BiccD– See BPr – See SETHI FBPfcc – See FBfccD– See SXAR
TABLE E-7 TABLE E-7 TABLE E-8 NOP† TABLE E-7 TABLE E-7

Ver 15, 26 Apr. 2010 F. Appendix E Opcode Maps 163

†rd = 0, imm22 = 0

The ILLTRAP encoding generates an illegal_instruction trap.

TABLE E-3 op3<5:0> (op = 2)

op3<3:0>

op3 <5:4>

0 1 2 3

0

ADD ADDcc TADDcc WRYD (rd = 0)
— (rd = 1)
WRCCR (rd = 2)
WRASI (rd = 3)
— (rd = 4, 5)
WRFPRS (rd = 6)
WRPCRPPCR (rd = 16)
WRPICPPIC (rd = 17)
WRDCRP (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 20)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICKP (rd = 24)
WRSTICK_CMPRP (rd = 25)
WRXAR (rd = 29)
WRXASR (rd = 30)
WRTXARP (rd = 31)
SIR (rd = 15, rs1 = 1, i = 1)

1 AND ANDcc TSUBcc SAVEDP (fcn = 0)
RESTOREDP (fcn = 1)

2 OR ORcc TADDccTVD WRPRP

3 XOR XORcc TSUBccTVD —

4 SUB SUBcc MULSccD FPop1 – See TABLE E-5

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 – See TABLE E-6

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (VIS) – See TABLE E-12
and TABLE E-13

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2 (FMADD/SUB, etc.) – See
TABLE E-14

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 164

 TABLE E-3 op3<5:0> (op = 2)

op3<3:0>

op3 <5:4>

0 1 2 3

8

ADDC ADDCcc RDYD (rs1 = 0)
— (rs1 = 1)
RDCCR (rs1 = 2)
RDASI (rs1 = 3)
RDTICKPNPT (rs1 = 4)
RDPC (rs1 = 5)
RDFPRS (rs1 = 6)
RDPCRPPCR (rs1 = 16)
RDPICPPIC (rs1 = 17)
RDDCRP (rs1 = 18)
RDGSR (rs1 = 19)
RDSOFTINTP (rs1 = 22)
RDTICK_CMPRP (rs1 = 23)
RDSTICKPNPT (rs1 = 24)
RDSTICK_CMPRP (rs1 = 25)
RDXASR (rs1 = 30)
RDTXARP (rs1 = 31)
MEMBAR (rs1 = 15, rd = 0, i = 1)
STBARD (rs1 = 15, rd = 0, i = 0)

JMPL

9 MULX — — RETURN

A UMULD UMULccD RDPRP Tcc – See TABLE E-7

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc SAVE

D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1 = 0)
— (rs1 > 0)

DONEP (fcn = 0)
RETRYP (fcn = 1)

F SDIVD SDIVccD MOVr
See TABLE E-8

—

TABLE E-4 op3<5:0> (op = 3)

op3<3:0>

op3 <5:4>

0 1 2 3

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD , LDXFSR —

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD LDDAD, PASI LDDF LDDFAPASI

Ver 15, 26 Apr. 2010 F. Appendix E Opcode Maps 165

 TABLE E-4 op3<5:0> (op = 3) (Continued)

op3<3:0>

op3 <5:4>

0 1 2 3

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD , STXFSR —

6 STH STHAPASI STQF STQFAPASI

7 STDD STDAPASI STDF STDFAPASI

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — STFR CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI STDFR —

LDQF, LDQFA, STQF, STQFA, and the reserved (—) opcodes cause an illegal_instruction trap
on a SPARC64 VIIIfx processor.

TABLE E-5 opf<8:0> (op = 2,op3 = 3416 = FPop1)

opf<8:3>

opf<2:0>

0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — FABSs FABSd FABSq — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — — — — — — — —

0516 — FSQRTs FSQRTd FSQRTq — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0916 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 166

TABLE E-5 opf<8:0> (op = 2,op3 = 3416 = FPop1) (Continued)

opf<8:3>

opf<2:0>

0 1 2 3 4 5 6 7

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — — — — —

0D16 — FsMULd — — — — FdMULq —

0E16 — — — — — — — —

0F16 — — — — — — — —

1016 — FsTOx FdTOx FqTOx FxTOs — — —

1116 FxTOd — — — FxTOq — — —

1216 — — — — — — — —

1316 — — — — — — — —

1416 — — — — — — — —

1516 — — — — — — — —

1616 — — — — — — — —

1716 — — — — — — — —

1816 — — — — FiTOs — FdTOs FqTOs

1916 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

1A16 — FsTOi FdTOi FqTOi — — — —

1B16–3F16 — — — — — — — —

 Shaded and reserved (—) opcodes cause an fp_exception_other trap with
ftt = unimplemented_FPop on a SPARC64 VIIIfx processor.

TABLE E-6 opf<8:0> (op = 2, op3 = 3516 = FPop2)

opf<8:4>

opf<3:0>

0 1 2 3 4 5 6 7 8–F

0016 — FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0) — † † † —

0116 — — — — — — — — —

0216 — — — — — FMOVsZ FMOVdZ FMOVqZ —

0316 — — — — — — — — —

0416 — FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1) — FMOVsLEZ FMOVdLEZ FMOVqLEZ —

Ver 15, 26 Apr. 2010 F. Appendix E Opcode Maps 167

TABLE E-6 opf<8:0> (op = 2, op3 = 3516 = FPop2) (Continued)

opf<8:4>

opf<3:0>

0 1 2 3 4 5 6 7 8–F

0516 — FCMPs FCMPd FCMPq — FCMPEs FCMPEd FCMPEq —

0616 — — — — — FMOVsLZ FMOVdLZ FMOVqLZ —

0716 — — — — — — — — —

0816 — FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2) — † † † —

0916 — — — — — — — — —

0A16 — — — — — FMOVsNZ FMOVdNZ FMOVqNZ —

0B16 — — — — — — — — —

0C16 — FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3) — FMOVsGZ FMOVdGZ FMOVqGZ —

0D16 — — — — — — — — —

0E16 — — — — — FMOVsGEZ FMOVdGEZ FMOVqGEZ —

0F16 — — — — — — — — —

1016 — FMOVs (icc) FMOVd (icc) FMOVq (icc) — — — — —

1116–1716 — — — — — — — — —

1816 — FMOVs (xcc) FMOVd (xcc) FMOVq (xcc) — — — — —

1916–1F16 — — — — — — — — —

†Reserved variation of FMOVR

Shaded and reserved (—) opcodes cause an fp_exception_other trap with
ftt = unimplemented_FPop on a SPARC64 VIIIfx processor.

TABLE E-7 cond<3:0>

cond<3:0>

BPcc BiccD FBPfcc FBfccD Tcc

op = 0
op2 = 1

op = 0
op2 = 2

op = 0
op2 = 5

op = 0
op2 = 6 op = 2

op3 = 3A16

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 168

TABLE E-7 cond<3:0>

cond<3:0>

BPcc BiccD FBPfcc FBfccD Tcc

op = 0
op2 = 1

op = 0
op2 = 2

op = 0
op2 = 5

op = 0
op2 = 6 op = 2

op3 = 3A16

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

Ver 15, 26 Apr. 2010 F. Appendix E Opcode Maps 169

TABLE E-8 Encoding of rcond<2:0> Instruction Field

BPr MOVr FMOVr

op = 0
op2 = 3

op = 2
op3 = 2F16

op = 2
op3 = 3516

rcond
<2:0>

0 — — —

1 BRZ MOVRZ FMOVRZ

2 BRLEZ MOVRLEZ FMOVRLEZ

3 BRLZ MOVRLZ FMOVRLZ

4 — — —

5 BRNZ MOVRNZ FMOVRNZ

6 BRGZ MOVRGZ FMOVRGZ

7 BRGEZ MOVRGEZ FMOVRGEZ

TABLE E-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition Code
Selected cc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 170

TABLE E-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0 Condition Code
Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE E-11 cc Fields (BPcc and Tcc)

cc1 cc0 Condition Code
Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —

TABLE E-12 IMPDEP1: opf<8:0> for VIS opcodes (op = 2, op3 = 3616), where 0 ≤ opf<8:4> ≤ 7

opf<3:0>

opf<8:4>

0016 0116 0216 0316 0416 0516 0616 0716

016 EDGE8 ARRAY8 FCMPLE16 — — FPADD16 FZERO FAND

116
EDGE8N — — FMUL

8x16
— FPADD16S FZEROS FANDS

216 EDGE8L ARRAY16 FCMPNE16 — — FPADD32 FNOR FXNOR

316
EDGE8LN — — FMUL

8x16AU
— FPADD32S FNORS FXNORS

416 EDGE16 ARRAY32 FCMPLE32 — — FPSUB16 FANDNOT2 FSRC1

516
EDGE16N — — FMUL

8x16AL
— FPSUB16S FANDNOT2S FSRC1S

616
EDGE16L — FCMPNE32 FMUL

8SUx16
— FPSUB32 FNOT2 FORNOT2

716
EDGE16LN — — FMUL

8ULx16
— FPSUB32S FNOT2S FORNOT2S

Ver 15, 26 Apr. 2010 F. Appendix E Opcode Maps 171

 TABLE E-12 IMPDEP1: opf<8:0> for VIS opcodes (op = 2, op3 = 3616), where 0 ≤ opf<8:4> ≤ 7

opf<3:0>

opf<8:4>

0016 0116 0216 0316 0416 0516 0616 0716

816
EDGE32 ALIGN

ADDRESS
FCMPGT16 FMULD

8SUx16
FALIGNDATA — FANDNOT1 FSRC2

916
EDGE32N BMASK — FMULD

8ULx16
— — FANDNOT1S FSRC2S

EDGE32L ALIGN FCMPEQ16 FPACK32 — — FNOT1 FORNOT1
A16 ADDRESS

_LITTLE

B16 EDGE32LN — — FPACK16 FPMERGE — FNOT1S FORNOR1S

C16 — — FCMPGT32 — BSHUFFLE — FXOR FOR

D16 — — — FPACKFIX FEXPAND — FXORS FORS

E16 — — FCMPEQ32 PDIST — — FNAND FONE

F16 — — — — — — FNANDS FONES

TABLE E-13 IMPDEP1: opf<8:0> for VIS opcodes (op = 2, op3 = 3616), where
0816 ≤ opf<8:4> ≤ 1F16

opf<3:0>

opf<8:4>

0816 0916–1516 1616 1716 1816–1F16

016 SHUTDOWN — FCMPEQd FMAXd —

116 SIAM — FCMPEQs FMAXs —

216 SUSPENDP — FCMPEQEd FMINd —

316 SLEEP — FCMPEQEs FMINs —

416 — — FCMPLEEd FRCPAd —

516 — — FCMPLEEs FRCPAs —

616 — — FCMPLTEd FRSQRTAd —

716 — — FCMPLTEs FRSQRTAs —

816 — — FCMPNEd FTRISSELd —

916 — — FCMPNEs — —

A16 — — FCMPNEEd FTRISMULd —

B16 — — FCMPNEEs — —

C16 — — FCMPGTEd — —

D16 — — FCMPGTEs — —

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 172

 TABLE E-13 IMPDEP1: opf<8:0> for VIS opcodes (op = 2, op3 = 3616), where
0816 ≤ opf<8:4> ≤ 1F16

opf<3:0>

opf<8:4>

0816 0916–1516 1616 1716 1816–1F16

E16 — — FCMPGEEd — —

F16 — — FCMPGEEs — —

TABLE E-14 IMPDEP2 (op = 2, op3 = 3716)

size

var

0002 0102 1002 1102

0002 FPMADDX FPMADDXHI FTRIMADDd FSELMOVd

0102 FMADDs FMSUBs FNMSUBs FNMADDs

1002 FMADDd FMSUBd FNMSUBd FNMADDd

1102 (reserved for quad operations) FSELMOVs

Ver 15, 26 Apr. 2010 F. Appendix E Opcode Maps 173

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 174

F.AP PE ND IX F

Memory Management Unit

This appendix defines the implementation-dependent features of the SPARC64 VIIIfx MMU
and also describes features added in SPARC64 VIIIfx. Parts of the SPARC64 VIIIfx MMU
are not JPS1-compatible. Refer to the following sections for details:

■	 Section F.4, “Hardware Support for TSB Access”
■	 Section F.10, “Internal Registers and ASI Operations”

F.1 Virtual Address Translation
IMPL. DEP. #222: TLB organization is JPS1 implementation dependent.

SPARC64 VIIIfx has the following 2-level TLB organization:

■	 Level-1 micro-ITLB (uITLB), fully associative

■	 Level-1 micro-DTLB (uDTLB), fully associative

■	 Level-2 IMMU-TLB, whichy consists of the sITLB (set-associative Instruction TLB)
and fITLB (fully-associative Instruction TLB).

■	 Level-2 DMMU-TLB, which consists of the sDTLB (set-associative Data TLB) and
fDTLB (fully-associative Data TLB).

TABLE F-1 describes the structure of SPARC64 VIIIfx TLBs.

The micro-ITLB and micro-DTLB are used as temporary memory by the corresponding
main TLBs, that is, the IMMU-TLB and DMMU-TLB. The contents of the micro-TLBs
are a subset of the contents of the main TLBs, and hardware maintains coherency between
the micro-TLBs and main TLBs.

Ver 15, 26 Apr. 2010	 F. Appendix F Memory Management Unit 175

The micro-TLBs cannot be managed directly by software and do not affect the behavior
of software, except in the case of TLB multiple-hit detection. This behavior is described
below; micro-TLBs are not discussed further in this document.

TABLE F-1 Structure of SPARC64 VIIIfx TLBs

Feature sITLB and sDTLB fITLB and fDTLB

Entries 256 (sITLB), 512 (sDTLB) 16

Associativity 2-way set associative Fully associative

Locked entries Not supported Supported

Page size 2 page sizes All page sizes

IMPL. DEP. #223: Whether TLB multiple-hit detection is supported in a JPS1 processor is
implementation dependent.

The SPARC64 VIIIfx MMU supports TLB multiple-hit detection when a multiple hit
occur in the fTLB of a main TLB. A multiple hit in an fTLB is not detected if a hit occurs
in the corresponding micro-TLB. See Appendix F.5.2 for details.

F.2 Translation Table Entry (TTE)
The Translation Table Entry (TTE) holds the virtual-to-physical mapping for a single page,
as well as the attributes of that page. The TTE is divided into two 64-bit data representing
the tag and data of the translation. When the translation tag is matched, the translation data is
used to perform the address translation.

In SPARC JPS1, a TTE is an entry of the TSB. Additionally, both the TLB Data In Register
and Data Out Register use the TTE format. SPARC64 VIIIfx does not provide hardware
support for TSB access but does use the TTE format for TLB entries. The JPS1 definitions of
the TTE are shown in FIGURE F-1 and TABLE F-2.

G — Context — VA_tag<63:22> Tag

63 62 61 60 48 47 42 41 0

V Size NFO IE Soft2 Reserved Size2 Reserved PA<40:13> Soft L CP CV E P W G Data

63 62 61 60 59 58 50 49 48 47 41 40 13 12 7 6 5 4 3 2 1 0

FIGURE F-1 Translation Table Entry (TTE)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 176

TABLE F-2 TTE Bit Description (１ of ３)

Bits Field	 Description

Tag – 63 G	 Global. If the Global bit is set, the Context field of the TLB entry is
ignored during hit detection. This behavior allows any page to be
shared among all (user or supervisor) contexts running in the same
processor. The Global bit is duplicated in the TTE tag and data to
optimize the software miss handler.

Tag – 60:48 Context	 The 13-bit context identifier associated with the TTE.

Tag – 41:0 VA_tag	 Virtual Address Tag. The virtual page number.

Data – 63 V	 Valid. If the Valid bit is set, then the remaining fields of the TTE are
meaningful. Note that the explicit Valid bit is redundant with the
software convention of encoding an invalid TTE with an unused
context. The encoding of the context field is necessary to cause a
failure in the TTE tag comparison, and the explicit Valid bit in the
TTE data simplifies the TLB miss handler.

Data – 62:61 Size	 The 3-bit value formed by the concatenation of size2 and size
encodes the page size.

Size2 Size<1:0> Page Size
0002 8 Kbyte
0012 64 Kbyte
0102 512 Kbyte
0112 4 Mbyte
1002 32 Mbyte
1012 256 Mbyte
1102 2 Gbyte

Data – 60 NFO	 No Fault Only. If the no-fault-only bit is set, loads with
ASI_PRIMARY_NO_FAULT, ASI_SECONDARY_NO_FAULT, and
their *_LITTLE variations are translated. Any other access will trap
with a data_access_exception trap (FT = 1016). The NFO bit in the
IMMU is read as 0 and ignored when written. The ITLB-miss handler
should generate an error if this bit is set before the TTE is loaded into
the TLB.

Data – 59 IE	 Invert Endianness. If this bit is set for a page, accesses to the page are
processed with inverse endianness from that specified by the
instruction (big for little, little for big). See Section F.7 of JPS1
Commonality for details. The IE bit in the IMMU is read as 0 and
ignored when written.

Note: This bit is intended to be set primarily for noncacheable
accesses. The performance of cacheable accesses will be degraded as
if the access missed the D-cache.

Data - 58:50 Soft2	 Software-defined field, provided for use by the operating system.
Hardware is not required to maintain this field in the TLB, so when it
is read from the TLB, it may read as zero.

Data – 49 Reserved	 Reserved, read as 0.

Data – 48 Size2	 See the description of the size field.

Ver 15, 26 Apr. 2010	 F. Appendix F Memory Management Unit 177

TABLE F-2 TTE Bit Description (２ of ３)

Bits Field	 Description

Data – 47:41 Reserved	 Reserved, read as 0.

Data – 40:13 PA	 The physical page number. Page offset bits for larger page sizes
(such as PA<15:13>, PA<18:13>, and PA<21:13> for 64-Kbyte,
512-Kbyte, and 4-Mbyte pages, respectively) are ignored during
normal translation.
SPARC64 VIIIfx supports a physical address width of 41 bits. This
differs from JPS1 Commonality.(impl.dep.#224)

When an entry is read from the TLB, the value returned for the PA

page offset bits is undefined. The value returned for the VA page offset

bits is undefined for pages larger than 8KB. (impl.dep.#238)

Data – 12:7 Soft	 Software-defined field, provided for use by the operating system.
Hardware is not required to maintain this field in the TLB, so when it
is read from the TLB, it may read as zero.

Data – 6 L	 Lock. If the lock bit is set, then the TTE entry will be “locked down”
when it is loaded into the TLB; that is, if this entry is valid, it will not
be replaced by the automatic replacement algorithm invoked by an
ASI store to the Data In Register. The lock bit has no meaning for an
invalid entry. Software must ensure that at least one entry is not locked
when replacing a TLB entry.

When a write occurs via TLB Data In, SPARC64 VIIIfx automatically
determines whether the entry is locked. If TTE.L = 1, the fTLB is
written. If TTE.L = 0, either the fTLB or the sTLB is written
depending on the page size. (impl.dep.#225)In SPARC64 VIIIfx, both
the fITLB and fDTLB implement the lock bit. The sITLB and sDTLB
do not implement the lock bit; writes to the field are ignored, and
reads return 0. (impl.dep.#242)

Data – 5 CP,	 The cacheable-in-physically-indexed-cache and cacheable-in-virtually-
Data – 4 CV	 indexed-cache bits indicate whether the page is cacheable. When

CP = 1, data is cached in the I1, D1, and U2 caches.

None of the SPARC64 VIIIfx TLBs implement the CV bit.
SPARC64 VIIIfx supports hardware unaliasing for the caches. Writes
to the CV bit are ignored, and reads return 0. (impl.dep.#226)

Data – 3 E	 Side effect. If the side-effect bit is set, nonfaulting loads will trap
for addresses within the page, noncacheable memory accesses
other than block loads and stores are strongly ordered against
other E-bit accesses, and noncacheable stores are not merged.
This bit should be set for pages that map I/O devices having
side effects. The E bit in the IMMU is read as 0 and ignored
when written.
Note: The E bit does not force a noncacheable access. It is
expected, but not required, that the CP bit will be set to 0 when
the E bit is set. If both the CP bit and the E bit are set to 1, the
result is undefined.
Note: The E bit and the NFO bit are mutually exclusive; both bits
should never be set.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 178

TABLE F-2 TTE Bit Description (３ of ３)

Bits Field Description

Data – 2 P Privileged. If the P bit is set, only the supervisor can access the
page mapped by the TTE. If the P bit is set and an access to the
page is attempted when PSTATE.PRIV = 0, then the MMU
signals an instruction_access_exception or data_access_exception
trap. ISFSR.FT or DSFSR.FT is set to 116.

Data – 1 W Writable. If the W bit is set, the page mapped by this TTE has
write permission granted. Otherwise, write permission is not
granted, and the MMU causes a fast_data_access_protection trap
if a write is attempted. The W bit in the IMMU is read as 0 and
ignored when written.

Data – 0 G Global. This bit must be identical to the Global bit in the TTE
tag. Like the Valid bit, the Global bit in the TTE tag is necessary
for the TSB hit comparison, and the Global bit in the TTE data
facilitates the loading of a TLB entry.

F.4 Hardware Support for TSB Access
In JPS1 Commonality, the TSB is managed by software. On a TLB miss, hardware
computes the pointer to the TSB entry that is thought to contain the missing VA. However,
the formation of TSB Pointers can be easily performed using simple integer instructions.
Furthermore, JPS1 Commonality only provides TSB hardware support for 8KB and 64KB
pages; no support is provided for larger page sizes. For these reasons, SPARC64 VIIIfx does
not implement hardware support for TSB access.

SPARC64 VIIIfx does implement the TSB Base Register. On a TLB miss, system software
can obtain the base address of the TSB from the TSB Base Register instead of from memory.
Thus, the only overhead on a TLB miss are the few instructions required to compute the TSB
pointer; performance should be relatively unchanged compared to previous processors. Refer
to Section F.10.6 for details on the TSB Base Register.

F.5 Faults and Traps
IMPL. DEP. #230: The cause of a data_access_exception trap is implementation dependent
in JPS1, but there are several mandatory causes of a data_access_exception trap.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 179

SPARC64 VIIIfx signals a data_access_exception for the conditions defined in Section
F.5 of JPS1 Commonality. However, caution is needed when dealing with an invalid ASI.
See Section F.10.9, “I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)”, for
details.

IMPL. DEP. #237: Whether the fault status and/or address (DSFSR/DSFAR) are captured
when mem_address_not_aligned is generated during a JMPL or RETURN instruction is
implementation dependent.

On SPARC64 VIIIfx, the fault status and address (DSFSR/DSFAR) are not captured when
a mem_address_not_aligned exception is generated during a JMPL or RETURN
instruction.

In SPARC64 VIIIfx, additional traps are recorded by the MMU: instruction_access_error,
data_access_error, and SIMD_load_across_pages. TABLE F-3 reproduces TABLE F-2 of
JPS1 Commonality and adds information on these additional MMU traps.

TABLE F-3 MMU Trap Types, Causes, and Stored State Register Update Policy

Registers Updated
(Stored State in MMU)

I-MMU D-MMU
Tag D-SFSR, Tag

Ref # Trap Name Trap Cause I-SFSR Access SFAR Access1 Trap Type

1. fast_instruction_access_MMU_miss I-TLB miss X2 X 6416–6716

2. instruction_access_exception Several (see below) X2 X 0816

3. fast_data_access_MMU_miss D-TLB miss X3 X 6816–6B16

4. data_access_exception Several (see below) X3 X4 3016

5. fast_data_access_protection Protection violation X3 X 6C16-6F16

6. privileged_action Use of privileged ASI X3 3716

7. watchpoint Watchpoint hit X3 6116–6216

8. mem_address_not_aligned, Misaligned memory (impl. 3516, 3616,

*_mem_address_not_aligned operation dep 3816, 3916
#237)

9. instruction_access_error Several (see below) X2 0A16

10 data_access_error Several (see below) X3 3216

11 SIMD_load_across_pages D-TLB miss on X3 7716
extended portion of
SIMD load

1.Includes TAG_ACCESS_EXT_REG.

2.See Section F.10.9 for deatils on I-SFSR.

3.See Section F.10.9 for details on D-SFSR and D-SFAR

4.After a data_access_exception is signalled, the context field of the D-MMU Tag Access Register is undefined.

A data_access_error trap caused by a bus error or bus timeout has the lowest priority of all
level-12 traps.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 180

Ref #1~8 in TABLE F-3 conform to the definitions in Section F.5 of JPS1 Commonality. Ref
#9, #10, and #11 are described below.

Ref 9: instruction_access_error — Signalled upon detection of at least one of the following
exceptional conditions.

■ An uncorrectable error is detected on an instruction fetch.
■ A bus error is generated by an instruction fetch memory reference.
■ A fITLB multiple hit is detected.

Ref 10: data_access_error — Signalled upon the detection of at least one of the following
exceptional conditions.

■ An uncorrectable error is detected on a data access.
■ A bus timeout is generated by a data access memory reference.
■ A fDTLB multiple hit is detected.

Note – SPARC64 VIIIfx implements a store buffer, so there are cases where a
data_access_error is not signalled for a read from a given address. See Section P.7.1 for
details.

Ref 11: SIMD_load_across_pages — Signalled when the extended operation of a SIMD
load causes a TLB miss. The DSFAR displays the address of the extended operation.

Programming Note – When SIMD_load_across_pages is signalled, system software
should emulate the operation instead of updating the TLB. Because the TLB does not need to
be updated, the TAG_ACCESS_REG is not updated. See Section 7.6.5.

F.5.1 Trap Conditions for SIMD Load/Store

The priority of SIMD load/store exceptions are specified in TABLE 7-2. Priorities are assigned
such that when exceptions are signalled, it appears as if the basic operation is processed
before the extended operation. The DSFSR and DSFAR display information on whichever
operation caused the exception.

Note – The SIMD_load_across_pages exception is caused by the extended operation.

In some cases, a VA_watchpoint exception caused by the extended operation takes priority
over any level-12 exceptions (fast_data_MMU_miss, data_access_exception,
fast_data_access_protection, data_access_error, data_access_protection) caused by the
basic operation.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 181

F.5.2 Behavior on TLB Error

SPARC64 VIIIfx signals a data_access_error exception when a multiple hit is detected in
the fTLB. Software is not notified of a multiple hit in the sTLB; instead, the entries are
invalidated. When a parity error is discovered while the TLB is being searched, the entry is
invalidated (sTLB) or automatically corrected (fTLB); software is not notified. All traps
must occur in program order, but invalidation and automatic correction occur when the error
is detected; that is, these actions are also performed when errors are detected during
speculative execution of memory accesses.

TABLE F-4 shows the behavior of SPARC64 VIIIfx when a parity error or multiple hit occurs
in the TLB.

TABLE F-4 Behavior on Detection of a Parity Error or a Multiple Hit

Parity Error Multiple Hit

Behavior sTLB fTLB sTLB fTLB

✓ Entry is invalidated, and a fast_instruction_access_MMU_miss or
fast_data_access_MMU_miss is signalled.

✓ Automatic correction.1 Not visible to software.

✓ ✓ The fTLB entry is automatically corrected1, and the sTLB entry
is invalidated.

✓ Entries are invalidated, and a fast_instruction_access_MMU_miss
or fast_data_access_MMU_miss is signalled.

✓ An instruction_access_error or data_access_error is signalled.2

✓ ✓ The multiple hit is not detected and the contents of the sTLB are
used.3

✓ ✓ All entries where a multiple hit or parity error occur are
invalidated.

✓ ✓ The fTLB entry is automatically corrected,1 and the sTLB
entries are invalidated.

✓ ✓ The sTLB entry is invalidated, and the multiple hit2 in the fTLB
causes an instruction_access_error or data_access_error.

✓ ✓ The entry containing the parity error is automatically corrected,
and the multiple hit causes a instruction_access_error or
data_access_error.

1.The fTLB is duplicated, so the error is correctable. If it cannot be corrected, the error is fatal.

2.There are cases where a multiple hit in the fTLB is not detected.

3.When a multiple hit occurs between the sTLB and fTLB.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 182

When a parity error or multiple hit occurs for a sTLB entry, the entry is invalidated. Software
is not notified of this action. For a SIMD load, however, the sTLB entry needed by the
extended load may be invalidated during the search of the TLB by the basic load due to a
parity error or multiple hit. In this case, an exception of the form SIMD_load_across_pages
is signalled.

A parity error or multiple hit can be detected at the same time as any of the exceptions listed
in TABLE F-3; invalidating a TLB entry does not affect whether other exceptions are detected.
That is, when a parity error or multiple hit caused by speculative execution is detected, that
entry is invalidated.

Note – When a multiple hit is detected, it is impossible determine which TTE is the correct
one. No TTE-dependent exceptions (data_access_exception, PA_watchpoint,
fast_data_access_protection, SIMD_load_across_pages) are detected.

F.8 Reset, Disable, and RED_state Behavior
IMPL. DEP. #231: The variability of the width of physical address is implementation
dependent in JPS1, and if variable, the initial width of the physical address after reset is also
implementation dependent in JPS1.

See the description of the PA field in the Data section of TABLE F-2. The width of physical
address in SPARC64 VIIIfx is 41 bits.

IMPL. DEP. #232: Whether CP and CV bits exist in the DCU Control Register is
implementation dependent in JPS1.

SPARC64 VIIIfx does not implement the DCU Control Register. CP and CV bits do not
exist.

When the DMMU is disabled, the MMU behaves as if TTE bits were set to the following:

■ TTE.IE ← 0
■ TTE.P ← 0
■ TTE.W ← 1
■ TTE.NFO ← 0
■ TTE.CV ← 0
■ TTE.CP ← 0
■ TTE.E ← 1

IMPL. DEP. #117: Whether prefetch and nonfaulting loads always succeed when the MMU
is disabled is implementation dependent.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 183

When the DMMU is disabled in SPARC64 VIIIfx, the PREFETCH instruction completes
without performing a memory access; a nonfaulting load causes a
data_access_exception exception, as defined in Section F.5 of JPS1 Commonality.

F.10 Internal Registers and ASI Operations
The SPARC64 VIIIfx specification does not implement TSB hardware support. For this
reason, the following registers that are defined in JPS1 Commonality are not implemented in
SPARC64 VIIIfx.

TABLE F-5 Invalid MMU Registers in SPARC64 VIIIfx

IMMU ASI DMMU ASI VA Register Name

5016 5816 4816 Instruction/Data TSB Primary Extension Registers

— 5816 5016 DATA TSB Secondary Extension Register

5016 5816 5816 I/D TSB Nucleus Extension Registers

5116 5916 0016 I/D TSB 8KB Pointer Registers

5216 5A16 0016 I/D TSB 64KB Pointer Registers

— 5B16 0016 DATA TSB Direct Pointer Register

Accesses to these ASIs and VAs cause data_access_exception exceptions.

F.10.1 Accessing MMU Registers

IMPL. DEP. #233: Whether the TSB_Hash field is implemented in I/D Primary/Secondary/
Nucleus TSB Extension Register is implementation dependent in JPS1.

Since SPARC64 VIIIfx does not define the TSB Extension register, the above
implementation dependency has no meaning.

IMPL. DEP. #239: The register(s) accessed by IMMU ASI 5516 and DMMU ASI 5D16 at
virtual addresses 4000016 to 60FF816 are implementation dependent.

See Impl. Dep. #235 in “I/D TLB Data In, Data Access, and Tag Read Registers” (page
192).

In addition to the registers listed in TABLE F-9 of JPS1 Commonality, SPARC64 VIIIfx
assigns MMU functions to ASI_DCUCR (page 34) and ASI_MCNTL (page 184)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 184

ASI_MCNTL (Memory Control Register)

Register Name ASI_MCNTL

ASI 4516

VA 0816

Access Type Supervisor read/write

Bit Field Access Description

63:20 Reserved

19 RW

18:17 hpf RW Sets the hardware prefetch mode.
002: Hardware prefetch generates strong prefetches.
012: Hardware prefetches are not generated.
102: Hardware prefetch generates weak prefetches.
112: reserved

When 112is set, the behavior of hardware prefetch is
undefined.

16 NC_Cache RW Force instruction caching for instructions in noncacheable
address spaces. If NC_Cache is set to 1, the CPU
performs a 16-byte noncacheable access 8 times, which
writes a total of 128 bytes to the I1 cache. This does not
affect the behavior of data accesses.

NC_Cache is provided to improve the execution speed of
OBP functions, and OBP should set NC_Cache to 0
when turning over control to the OS. Otherwise,
noncacheable instructions may be left in the I1 cache.

15 fw_fITLB RW Force write to fITLB on an ITLB update. If fw_fITLB is
set to 1, a TLB write using the ITLB Data In Register
always writes fITLB. fw_fITLB is provided for use by
OBP functions.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 185

 Bit Field Access Description

14 fw_fDTLB RW Force write to fDTLB on a DTLB update. If fw_fDTLB
is set to 1, a TLB write using the DTLB Data In Register
always writes fDTLB. fw_fDTLB is provided for use by
OBP functions.

13:12 RMD R The value of this field is always 2. This field is read-only,
and writes to this field are ignored.

11:8 Reserved

7 mpg_sITLB1 RW This bit enables the multiple page size function in the
sITLB. If mpg_sITLB is set to 1, the sITLB can store
TTEs of a different page size per context. If mpg_sITLB
is set to 0, the page size information in the context
register and IMMU_TAG_ACCESS_EXT are ignored, and
the default page sizes (8K for the 1st sITLB, 4M for the
2nd sITLB) are used.

6 mpg_sDTLB1 RW This bit enables the multiple page size function in the
sDTLB. If mpg_sDTLB is set to 1, the sDTLB can store
TTEs of a different page size per context. If mpg_sDTLB
is set to 0, the page size information in the context
register and DMMU_TAG_ACCESS_EXT are ignored, and
the default page sizes (8K for the 1st sDTLB, 4M for the
2nd sDTLB) are used.

5:0 Reserved

1.Setting mpg_sITLB = 1 and mpg_sDTLB = 0 is not allowed. The behavior of SPARC64 VIIIfx
is undefined for this combination.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 186

F.10.2 Context Registers

sTLBs are composed of two separate 2-way set-associative TLBs. The 1st and 2nd sTLBs in
the sITLB hold 128 entries each, and the sTLBs in the sDTLB hold 256 entries each. By
default, the 1st sTLB only stores 8-KB page TTEs and the 2nd sTLB only stores 4-MB page
TTEs. By setting MCNTL.mpg_sITLB and MCNTL.mpg_sDTLB to 1, TTEs of any one
page size (8 KB, 64 KB, 512 KB, 4 MB, 32MB, 256MB, 2GB) can be stored for each
context. The page sizes for the 1st and 2nd sTLBs can be set separately; both sTLBs can also
be set to the same page size settings.

Page sizes are set by the fields of the Context Registers. ASI_PRIMARY_CONTEXT_REG
fields set the page sizes for the sITLB and sDTLB; sDTLB page sizes can also be set by the
ASI_SECONDARY_CONTEXT_REG fields. If the 1st and 2nd sTLBs have the same page
size settings, the entire sTLB behaves like a single 4-way set-associative TLB.

Page sizes have the following encoding:

■	 00002 = 8 KB
■	 00102 = 64 KB
■	 01002 = 512 KB
■	 01102 = 4 MB
■	 10002 = 32 MB
■	 10102 = 256 MB
■	 11002 = 2 GB

Note – When the encoding 11102 is specified, SPARC64 VIIIfx behavior is undefined.

In addition to the Context Registers defined in JPS1 Commonality, SPARC64 VIIIfx defines
the Shared Context Register. The shared context is a virtual address space shared by two or
more processes and can be used to hold instructions or shared data. Like the secondary
context, the shared context enables access to another context from the current context, with
the following differences:

■	 To access the secondary context address space, an explicit ASI load/store instruction must
be used. The shared context address space can be accessed implicitly, like an access to the
primary context address space.

■	 The secondary context can only be used for data access; the shared context can be used
for both instruction fetch and data access.

In the following descriptions, the term “effective context” is used. Because there are multiple
context registers, the instruction and processor state determine which context register is
being used; the context identifier of that context register is called the effective context.

■	 The effective context of an access with TL = 0 by instruction fetch or an implicit ASI
load/store instruction is the value of ASI_PRIMARY_CONTEXT.

■	 The effective context of an access with TL > 0 by instruction fetch or an implicit ASI
load/store instruction is the value of ASI_NUCLEUS_CONTEXT.

■	 The effective context of an explicit ASI load/store instruction is determined from the ASI.

Ver 15, 26 Apr. 2010	 F. Appendix F Memory Management Unit 187

ASI_PRIMARY_CONTEXT

Register Name ASI_PRIMARY_CONTEXT

ASI 5816

VA 0816

Access Type Supervisor read/write

N_pgsz0 N_pgsz1 — N_Ipgsz0 N_Ipgsz1 — P_Ipgsz1 P_Ipgsz0 — P_pgsz1 P_pgsz0 — PContext

63 61 60 58 57 56 55 53 52 50 49 30 29 27 26 24 23 22 21 19 18 16 15 13 12 0

Bit Field Access Description

63:61 N_pgsz0 RW Nucleus context, page size of the 1st sDTLB.

60:58 N_pgsz1 RW Nucleus context, page size of the 2nd sDTLB.

55:53 N_Ipgsz0 RW Nucleus context, page size of the 1st sITLB.

52:50 N_Ipgsz1 RW Nucleus context, page size of the 2nd sITLB.

29:27 P_Ipgsz1 RW Primary context, page size of the 2nd sITLB.

26:24 P_Ipgsz0 RW Primary context, page size of the 1st sITLB.

21:19 P_pgsz1 RW Primary context, page size of the 2nd sDTLB.

18:16 P_pgsz0 RW Primary context, page size of the 1st sDTLB.

12:0 PContext RW Primary context identifier.

Values written to the page size fields can always be read, regardless of the settings of
ASI_MCNTL.mpg_sITLB and ASI_MCNTL.mpg_sDTLB.

ASI_SECONDARY_CONTEXT

Register Name ASI_SECONDARY_CONTEXT

ASI 5816

VA 1016

Access Type Supervisor read/write

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 188

0

— S_pgsz1 S_pgsz0 — SContext

63 21 19 18 16 15 13 12

Bit Field Access Description

21:19 S_pgsz1 RW Secondary context, page size of the 2nd sDTLB.

18:16 S_pgsz0 RW Secondary context, page size of the 1st sDTLB.

12:0 SContext RW Secondary context identifier.

Values written to the page size fields can always be read, regardless of the settings of
ASI_MCNTL.mpg_sITLB and ASI_MCNTL.mpg_sDTLB.

ASI_SHARED_CONTEXT

Register Name ASI_SHARED_CONTEXT

ASI 5816

VA 6816

Access Type Supervisor read/write

— IV — Ishared_Context — DV — Dshared_Context

63 48 47 46 45 44 32 31 16 15 14 13 12 0

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 189

Bit Field Access Description

47 IV RW Ishared_Context Valid. When IV = 1 and
Ishared_Context is not 0, the values of both the
effective context and Ishared_Context are used in
MMU translation of instruction fetches. When IV = 0 or
Ishared_Context is 0, only the effective context is
used.

44:32 Ishared_Context RW Context identifier used for instruction fetches to the
shared context.

15 DV RW Dshared_Context Valid. When DV = 1 and
Dshared_Context is not 0, the values of both the
effective context and Dshared_Context are used in
MMU translation of data accesses. When DV = 0 or
Dshared_Context is 0, only the effective context is
used.

12:0 Dshared_Context RW Context identifier used for data accesses to the shared
context.

The ASI_SHARED_CONTEXT register indicates whether an MMU translation should be
performed using both the effective context and the shared context; that is, whether the TLB
is searched for entries that match either the shared context or effective context. The register
also indicates the current context identifier for the shared context. When IV or DV is set to 1
and the context identifier is not 0, the register is valid. When the effective context is 0, the
shared context is not used, regardless of the setting of IV or DV. For example, a load
instruction to ASI_AS_IF_USER_SECONDARY while TL > 0 has an effective context of
SContext. Thus, whether the shared context is used or not depends on whether or not
SContext is 0.

The shared context has the same features as the effective context, except for page size
settings. SPARC64 VIIIfx has two sITLBs and two sDTLBs; TTE page size settings can be
set for each sTLB and for each context. However, the shared context does not have its own
page size settings; page size settings for the effective context are used. When
ASI_MCNTL.mpg_sI/DTLB = 0, the page size setting is 8 KB for the 1st sTLB and 4 MB
for the 2nd sTLB. When ASI_MCNTL.mpg_sI/DTLB = 1, the page size setting is
P_pgsz0/S_pgsz0/P_Ipgsz0 for the 1st sTLB and P_pgsz0/S_pgsz0/P_Ipgsz0
for the 2nd sTLB.

Note – N_pgsz0/1 are never used because the shared context is not valid when the
effective context is 0.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 190

Programming Note – To efficiently use the sTLBs with the shared context, set
P_pgsz(0,1)/P_Ipgsz(0,1)/S_pgsz(0,1)to the same page size settings for all
contexts that are used with the shared context.

F.10.3 Instruction/Data MMU TLB Tag Access Registers

When a MMU miss or access violation causes an exception and the shared context is valid,
the I/D TLB Tag Access Registers display the context ID of the effective context.

Programming Note – To store a shared context TTE in the TLB, the context ID of the
shared context needs to be set in the I/D TLB Tag Access Registers before writing the I/D
TLB Data In/Data Access Registers.

ASI_I/DMMU_TAG_ACCESS_EXT

Register Name ASI_IMMU_TAG_ACCESS_EXT, ASI_DMMU_TAG_ACCESS_EXT

ASI 5016 (IMMU), 5816 (IMMU)

VA 6016

Access Type Supervisor read/write

— pgsz1 pgsz0 —

63 21 19 18 16 15 0

When a MMU exception causes a trap, hardware saves the VA and context that caused the
exception to the Tag Access Registers (ASI_I/DMMU_TAG_ACCESS), depending on the
trap type. See TABLE F-3 (page 180) for details. To simplify the calculation of the sTLB index
when a TTE is written to the TLB using the I/DTLB Data In Registers, SPARC64 VIIIfx
saves the page size information (for the effective context) that is missing from the Tag
Access Registers to the ASI_I/DMMU_TAG_ACCESS_EXT registers.

Note – When the page size of the TTE being written is different than the value of ASI_I/
DMMU_TAG_ACCESS_EXT.pgsz0/1, the TTE is written into the fTLB instead of the
sTLB.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 191

When instruction_access_exception and data_access_exception exceptions are generated,
the ASI_I/DMMU_TAG_ACCESS_EXT registers are not valid and the values are undefined.
Also, when ASI_MCNTL.mpg_sITLB = 0, ASI_I/DMMU_TAG_ACCESS_EXT is not
valid and the value is undefined. When ASI_MCNTL.mpg_sDTLB = 0, ASI_I/
DMMU_TAG_ACCESS_EXT is not valid and the value is undefined

F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers

IMPL. DEP. #234: The replacement algorithm of a TLB entry is implementation dependent
in JPS1.

The replacement algorithm is pseudo-LRU for the fTLB and LRU for the sTLB.

IMPL. DEP. #235: The MMU TLB data access address assignment and the purpose of the
address are implementation dependent in JPS1.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 192

The MMU TLB data access address assignment and the purpose of the address in
SPARC64 VIIIfx are shown in TABLE F-6.

TABLE F-6 MMU TLB Data Access Address Assignment

Bit Field Access Description

17:16	 TLB# RW Specifies the accessed TLB.
0002: fTLB (16 entries)
0102: reserved
1002: sTLB(256 entries for IMMU, 512 for DMMU)
1102: reserved

15 Reserved

13:3 TLB index RW TLB index number.
•	 For the fTLB, the lower 4 bits are the index number and the

upper 7 bits are ignored. The relationship between the value of
the lower 4 bits and the TLB index is as follows:

0-15: fTLB index number

•	 For the sITLB, bits <13:12> indicate the way and bits <8:3>
indicate the index. Bits <11:9> are ignored. The relationships
between the value of the field and the TLB index is as follows:

0-63: 1st sITLB, way 0 index number
512-575: 1st sITLB, way 1 index number
1024-1087: 2nd sITLB, way 0 index number
1536-1599: 2nd sITLB, way 1 index number

•	 For the sDTLB, bits <13:12> indicate the way and bits <9:3>
indicate the index. Bits <11:10> are ignored. The relationships
between the value of the field and the TLB index is as follows:

0-127: 1st sDTLB, way 0 index number
512-639: 1st sDTLB, way 1 index number
1024-1151: 2nd sDTLB, way 0 index number
1536-1663: 2nd sDTLB, way 1 index number

Note – For a TLB write using the I/D Data In Registers, entries with TTE.G = 1 are always
written to the fTLB.

I/D MMU TLB Tag Read Register

IMPL. DEP. #238: When read, an implementation will return either 0 or the value previously
written to them.

See the description of the PA field in TABLE F-2 (page 177).

Ver 15, 26 Apr. 2010	 F. Appendix F Memory Management Unit 193

The VA format for the TLB Tag Read Registers is the same as the VA format for the TLB
Data Access Registers. See TABLE F-6 for details.

I/D MMU TLB Tag Access Register

When a TTE is written to the TLB using the I/D TLB Data Access Registers or I/D TLB
Data In Registers, hardware checks that the information in the I/D TLB Tag Access Register
is consistent. If the information is not consistent, the TLB is not updated.

However, when an entry with TTE.V = 0 is written using the I/D TLB Data Access
Registers, the entry is written without checking for consistency. This allows specific TLB
entires to be removed. This feature can be used to erase errors in TLB entries caused by
software.

Implementation Note – Reading an entry with TTE.V = 0 returns all zeroes.

F.10.6 I/D TSB Base Registers

TSB_Base<63:13> Reserved TSB_size

63 13 12 4 3 0

SPARC64 VIIIfx does not provide hardware support for the TSB. However, the TSB Base
registers, which can be managed by system software, are implemented. JPS1 Commonality
defines the following fields in the TSB Base Registers:

■ TSB_Base
■ Split
■ TSB_Size

The SPARC64 VIIIfx TSB Base Registers implement the TSB_Base and TSB_Size fields;
the Split field is reserved.

TSB_Size is a 4-bit field in bits <3:0> (impl.dep. #236). Values written in TSB_Size are
returned on reads. Hardware preserves this value and but does not use it.

F.10.7 I/D TSB Extension Registers

SPARC64 VIIIfx does not support the TSB Extension Registers. An attempt to read or write
these registers causes a data_access_exception exception.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 194

F.10.8	 I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct
Pointer Registers

SPARC64 VIIIfx does not support these registers. Attempts to read or write these registers
cause data_access_exception exceptions.

F.10.9	 I/D Synchronous Fault Status Registers (I-SFSR, D­
SFSR)

IMPL. DEP. (FIGURE F-15, TABLE F-12 in Commonality): Bits <63:25> in the I/D
Synchronous Fault Status Registers (I-SFSR, D-SFSR) are implementation-dependent.

The SPARC64 VIIIfx implementation of I/D-SFSR is shown in FIGURE F-2.

TLB # reserved index reserved MK EID UE BERR
BRTO

reserved mTLB NC

63 62 61 60 59 49 48 47 46 45	 32 31 30 29 28 27 26 25

NF ASI TM reserved FT E CT PR W OW FV

24 23	 16 15 14 13 7 6 5 4 3 2 1 0

FIGURE F-2 MMU I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)

Bits <24:0> conform to JPS1 Commonality. The I-SFSR bits are described in TABLE F-7
and the D-SFSR bits are described in TABLE F-10.

TABLE F-7 I-SFSR Bit Description (1 of 2)

Bit Field Access Description

63:62	 TLB# RW Indicates that an error occured in the mITLB. In SPARC64 VIIIfx, the field always
displays the value 0002.

59:49	 index RW Indicates the index number when an error occurs in the mITLB. When multiple errors
occur, only one of the index numbers is shown.

46	 MK RW Marked Uncorrectable Error. In SPARC64 VIIIfx, all uncorrectable errors are marked
before being reported. When ISFSR.UE = 1, MK is always set to 1. See Appendix P.2.4
for details.

45:32 EID RW Error Marking ID. This field is valid when MK is 1. See Appendix P.2.4 for details.

31 UE RW Uncorrectable Error (UE). Setting UE = 1 indicates that there is an uncorrectable error in
instruction fetch data. This bit is only valid for instruction_access_error exceptions.

30	 BERR RW Indicates that the instruction fetch returned a memory bus error. This bit is only valid for
instruction_access_error exceptions.

Ver 15, 26 Apr. 2010	 F. Appendix F Memory Management Unit 195

TABLE F-7 I-SFSR Bit Description (2 of 2)

Bit Field Access	 Description

29 BRTO RW	 Indicates that the instruction fetch returned a bus timeout. This bit is only valid for
instruction_access_error exceptions.

27:26	 mITLB<1:0> RW mITLB Error Status. When a multiple hit is detected during a search of the mITLB,
mITLB<1> is set to 1. mITLB<0> is always 0. This field is only valid for
instruction_access_error exceptions.

25	 NC RW Indicates that a noncacheable address space is referenced. This bit is only valid for
instruction_access_error exceptions caused by an uncorrectable error, bus error, or bus
timeout. Otherwise, the value of this bit is undefined.

23:16 ASI<7:0> RW	 Indicates the ASI number used by the access that caused the exception. This field is only
valid when ISFSR.FV is set to 1.

When TL = 0, the ASI displayed in this field is 8016(ASI_PRIMARY). When TL > 0, the

ASI is 0416 (ASI_NUCLEUS).

15 TM RW	 Indicates that a TLB miss occurred during the instruction fetch.

13:7 FT<6:0> RW	 Specifies the exact condition that caused the exception. See TABLE F-8 for the encoding
of this field.

This field is only valid for instruction_access_exception exceptions. It always reads as

0 for fast_instruction_access_MMU_miss exceptions and reads as 0116 for

instruction_access_exception exceptions.

5:4 CT<1:0> RW Indicates the Context Register selection of the instruction fetch that caused the exception,
as described below. The context is set to 1102 when the access ASI is not a translating
ASI, or is an invalid ASI.

0002: Primary
0102: Reserved
1002: Nucleus
1102: Reserved

Note that an encoding for the Shared Context is not defined. When a multiple hit
involving a shared context is detected, information on the effective context is displayed.

3 PR RW	 Indicates that the faulting instruction fetch occurred while in privileged mode. This field
is only valid when ISFSR.FV = 1.

1 OW RW	 Indicates that the exception was detected while ISFSR.FV= 1. This bit is set to 1 when
ISFSR.FV = 1 and 0 when ISFSR.FV = 0.

0	 FV RW Fault Valid. This bit is set to 1 when an exception other than a TLB miss exception
occurs in the IMMU. When this bit is 0, the values of the other fields in the ISFSR have
no meaning, except in the case of a MMU miss.

TABLE F-8 describes the encoding of the ISFSR.FT field.

TABLE F-8 Instruction Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Fault Type

0116 Privilege violation. Indicates that TTE.P = 1 and PSTATE.PRIV = 0 for the
instruction fetch. A privilege violation is signalled by an
instruction_access_exception exception.

0216 Reserved

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 196

TABLE F-8 Instruction Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Fault Type

0416 Reserved

0816 Reserved

1016 Reserved

2016 Reserved

4016 Reserved

I-SFSR is updated when a fast_instruction_access_MMU_miss,
instruction_access_exception, or instruction_access_error exception occurs. TABLE F-9
shows which fields are updated by each exception.

TABLE F-9 I-SFSR Update Policy

UE,
BERR,
BRTO,

Field
TLB#,
 index FV OW

PR,
CT1 FT TM ASI

mITLB,
NC2

When I-SFSR.OW = 0,
0: 0 is set.
1: 1 is set.
V: A valid value is set.
—: Invalid field.

Miss: fast_instruction_access_MMU_miss — 0 0 V — 1 — —

Exception: instruction_access_exception — 1 0 V V 0 V —

Error: instruction_access_error V3 1 0 V — 0 V V

When I-SFSR.OW = 1,
0: 0 is set.
1: 1 is set.
K: Original value is preserved.
U: Updated.

Error on exception U3 1 1 U K K U U

Exception on error K 1 1 U U K U K

Error on miss U3 1 K U K 1 U U

Exception on miss K 1 K U U 1 U K

Miss on exception/error K 1 K K K 1 K K

Miss on miss K K K U K 1 K K

1.The value of ISFSR.CT is 1102 when the ASI is not a translating ASI, or is an invalid ASI.

2.Only valid for an instruction_access_error caused by an uncorrectable error, a bus error, or a bus timeout.

3.Only when there is a multiple hit in the TLB.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 197

TABLE F-10 D-SFSR Bit Description (1 of 2)

Bit Field Access Description

63:62 TLB# RW Indicates that an error occured in the mDTLB. In SPARC64 VIIIfx, the field
always displays the value 0002.

59:49 index RW Indicates the index number when an error occurs in the mDTLB. When multiple
errors occur, only one of the index numbers is shown.

46 MK RW Marked Uncorrectable Error. In SPARC64 VIIIfx, all uncorrectable errors are
marked before being reported. When DSFSR.UE = 1, MK is always set to 1. See
Appendix P.2.4 for details.

45:32 EID RW Error Marking ID. This field is valid when MK is 1. See Appendix P.2.4 for
details.

31 UE RW Uncorrectable Error (UE). Setting UE = 1 indicates that there is an uncorrectable
error in the access data. This bit i only valid for data_access_error exceptions.

30 BERR RW Indicates that the data access returned a memory bus error. This bit is only valid
for data_access_error exceptions.

29 BRTO RW Indicates that the data access returned a bus timeout. This bit is only valid for
data_access_error exceptions.

27:26 mDTLB<1:0> RW mDTLB Error Status. When a multiple hit is detected during a search of the
mDTLB, mDTLB<1> is set to 1. mDTLB<0> is always 0. This field is only
valid for data_access_error exceptions.

25 NC RW Indicates that a noncacheable address space is referenced. This bit is only valid
for data_access_error exceptions caused by an uncorrectable error, bus error, or
bus timeout. Otherwise, the value of this bit is undefined.

24 NF RW Indicates that a nonfaulting load instruction caused the exception.

23:16 ASI<7:0> RW Indicates the ASI number used by the access that caused the exception. This
field is only valid when DSFSR.FV is set to 1. If the data access does not
explicitly specify the ASI used, an implicit ASIs is used; this field is set to one
of the following values:

TL = 0, PSTATE.CLE = 0 8016 (ASI_PRIMARY)
TL = 0, PSTATE.CLE = 1 8816 (ASI_PRIMARY_LITTLE)
TL > 0, PSTATE.CLE = 0 0416 (ASI_NUCLEUS)
TL > 0, PSTATE.CLE = 1 0C16 (ASI_NUCLEUS_LITTLE)

15 TM RW Indicates that a TLB miss occurred during the data access.

13:7 FT<6:0> RW Specifies the exact condition that caused the exception. See TABLE F-11 for the
encoding of this field.

6 E RW Indicates an access to a page with side effects. E is set to 1 when an exception is
caused by an access to a page with TTE.E = 1 or by an access to ASI 1516 or
1D16. This bit is only valid for data_access_error exceptions caused by an
uncorrectable error, bus error, or bus timeout. Otherwise, the value of this bit is
undefined.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 198

TABLE F-10 D-SFSR Bit Description (2 of 2)

Bit Field Access Description

5:4 CT<1:0> RW Indicates the Context Register selection of the data access that caused the
exception, as described below. The context is set to 1102 when the access ASI
is not a translating ASI, or is an invalid ASI. 0002:Primary
0102: Secondary
1002: Nucleus
1102: Reserved

When a data_access_exception trap is caused by an invalid ASI and instruction
combination (i.e., atomic quad load, block load/store, block commit store, partial
store, short floating-point load/store, and xfill ASIs that can only be used with
specified memory access instructions), CT indicates the context of the ASI
specified by the instruction. Note that an encoding for the Shared Context is not
defined. When a multiple hit involving a shared context is detected, information
on the effective context is displayed.

3 PR RW Indicates the faulting data access occurred while in privileged mode. This field is
only valid when FV = 1.

2 W RW Indicates that a write instruction (store or atomic load/store instruction) caused
the exception.

1 OW RW Indicates that the exception was detected while DSFSR.FV = 1. This bit is set to
1 when DSFSR.FV = 1 and 0 when DSFSR.FV = 0.

0 FV RW Fault Valid. This is set when an exception other than a TLB miss occurs in the
DMMU. When this bits is 0, the values of the other fields in the DSFSR have no
meaning, except in the case of a MMU miss.

TABLE F-11 defines the encoding of the DSFSR.FT field.

TABLE F-11 MMU Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Fault Type

0116 Privilege violation. Indicates an attempt to access a page with TTE.P = 1 while
PSTATE.PRIV = 0 or using ASI_PRIMARY/
SECONDARY_AS_IF_USER{_LITTLE}. A privilege violation is signalled by a
data_access_exception exception.

0216 FT<1> is set to 1 when a nonfaulting load accesses a page with TTE.E = 1.

0416 FT<2> is set to 1 when an atomic instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB,
LDSTUBA), an atomic quad load instruction (LDDA with ASI = 02416, 02C16, 03416, or
03C16), or a SIMD load/store accesses a page with TTE.CP = 0.

0816 FT<3> is set to 1 when an access specifies an invalid ASI, an invalid VA, or an
improper access type (read/write). An invalid ASI check is performed prior to the
search of the TLB for the TTE; if any of the above conditions hold true, a
data_access_exception exception is signalled. That is, when FT<3> = 1, the values of
the other bits in FT are undefined because the conditions that set those bits require
information in the TTE. An instruction that specifies an access of invalid length causes
the appropriate mem_address_not_aligned or *_mem_address_not_aligned
exception; the value of FT is undefined. See Appendix L.3.3 for details.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 199

TABLE F-11 MMU Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Fault Type

1016 FT<4> is set to 1 when a data access other than a nonfaulting load accesses a page with
TTE.NFO = 1.

2016 Reserved.

4016 Reserved.

If multiple conditions caused the exception, multiple bits in the DSFSR.FT field may be set.

D-SFSR is updated when a fast_data_access_MMU_miss, data_access_exception,
fast_data_access_protection, VA_watchpoint, PA_watchpoint, privileged_action,
mem_address_not_aligned, or data_access_error exception occurs. TABLE F-12 shows
which fields are updated by each field.

TABLE F-12 D-SFSR Update Policy

UE, BERR,
BRTO,

Field
TLB#,
index FV OW

W, PR,
NF, CT1 FT TM ASI

mDTLB,
NC2 , E2 DSFAR

When D-SFSR.OW = 0,
0: 0 is set.
1: 1 is set.
V: A valid value is set.
—: Invalid field.

Miss: fast_data_access_MMU_miss — 0 0 V — 1 — — V

Exception: data_access_exception — 1 0 V V 0 V — V

Faults:

fast_data_access_protection — 1 0 V — 0 V — V

PA_watchpoint — 1 0 V — 0 V — V

VA watchpoint — 1 0 V — 0 V — V

privileged_action3 — 1 0 V — 0 V — V

mem_address_not_aligned,
*_mem_address_not_aligned

— 1 0 V — 0 V — V

data_access_error V4 1 0 V — 0 V V V

SIMD_load_across_pages — 1 0 V — 0 V — V

When D-SFSR.OW = 1,
0: 0 is set.
1: 1 is set.
K: Original value is preserved.
U: Updated.

Fault on exception U4 1 1 U K K U U U

Exception on fault K 1 1 U U K U K U

Fault on miss5 U4 1 K U K 1 U U U

Exception on miss5 K 1 K U U 1 U K U

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 200

TABLE F-12 D-SFSR Update Policy

Field
TLB#,
index FV OW

W, PR,
NF, CT1 FT TM ASI

UE, BERR,
BRTO,
mDTLB,
NC2 , E2 DSFAR

Miss on fault/exception K 1 K K K 1 K K K

Miss on miss K K K U K 1 K K K

1.The value of DSFSR.CT is 1102 when the ASI is not a translating ASI, or is an invalid ASI.

2.Only valid for a data_access_error exception caused by an uncorrectable error, bus error, or bus timeout.

3.Memory access instruction only.

4.Only when there is a multiple hit in the TLB.

5.Fault/exception on miss describes the state where a miss occurs, then a fault/exception occurs before software can clear the

DSFSR.

F.10.10 Synchronous Fault Addresses

When a VA_watchpoint or PA_watchpoint exception occurs, D-SFAR displays the address
specified by the instruction that caused the exception.

For a SIMD load/store instruction, however, the address of the extended operation is
displayed when a watchpoint exception is detected for the extended operation only. That is,
the displayed address is the address of the instruction plus 4 for a single-precision operation,
or the address of the instruction plus 8 for a double-precision operation.

F.10.11 I/D MMU Demap

When Demap is used to remove an entry from a sTLB, the page size used to calculate the
index is derived from the context field of the ASI_I/DMMU_DEMAP access address in
the same way as a normal TLB access. That is, when ASI_MCNTL.mpg_sI/DTLB are 0,
the page size setting is 8 KB for the 1st sTLB and 4 MB for the 2nd sTLB. When
ASI_MCNTL.mpg_sI/DTLB are 1, the page size settings of the Context Register specified
by the context field are used.

The page size is also used to select TTEs removed by a Demap Page or Demap Context
operation. That is, if the page size does not match the page size of a TLB entry, that entry is
not removed.

Note – A Demap Page or Demap Context operation should specify a valid context ID.
When 012 or 112 is specified for the IMMU or 112 is specified for the DMMU, unrelated
sTLB entries may be removed.

All sTLB entries are removed by a Demap All operation, regardless of the page size.

Ver 15, 26 Apr. 2010 F. Appendix F Memory Management Unit 201

The shared context cannot be specified for a demap operation.

Programming Note – Shared context TTEs can be removed by temporarily changing the
entries to specify the secondary context register.

F.10.12 Synchronous Fault Physical Addresses

JPS1 Commonality defines registers that store the virtual address when a IMMU or DMMU
exception occurs. In addition to these registers, SPARC64 VIIIfx defines the IMMU and
DMMU Synchronous Fault Physical Address Registers (I/D-SFPAR), which store the
physical addresses.

Register Name ASI_IMMU_SFPAR, ASI_DMMU_SFPAR

ASI 5016 (IMMU), 5816 (DMMU)

VA 7816

Access Type Supervisor read/write

— Fault Address (PA<40:3>) —

63 41 40 3 2 0

The I/D-SFPAR display the physical address of the memory access that caused the
exception. When instruction/data_access_error exceptions occur and one or more of the MK,
UE, BERR, and BRTO fields of the I/D-SFSR are set to 1, these registers are updated.

F.11 MMU Bypass
In SPARC64 VIIIfx, the following two DMMU Bypass ASIs are defined:

■ ASI_ATOMIC_QUAD_LDD_PHYS (ASI 3416)

■ ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE (ASI 3C16)

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 202

The physical page attribute bits are set as shown in TABLE F-13. The first four rows are the
same as the page attribute bits defined in TABLE F-15 of JPS1 Commonality.

TABLE F-13 Bypass Attribute Bits in SPARC64 VIIIfx

ASI ASI

Name Value

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

ASI_ATOMIC_QUAD_LDD_PHYS

ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE

1416

1C16

1516

1D16

3416

3C16

Attribute Bits

CP IE CV E P W NFO Size

1 0 0 0 0 1 0 8 Kbytes

0 0 0 1 0 1 0 8 Kbytes

1 0 0 0 0 0 0 8 Kbytes

F.12 Translation Lookaside Buffer Hardware

F.12.2 TLB Replacement Policy

Automatic TLB Replacement

On a write to the TLB via the I/D MMU Data In Registers, hardware selects which entry in
which TLB to replace. Replacement occurs according to the following rules:

1. If all of the following conditions are satisfied, then the replacement occurs in the sTLB.
Otherwise, the replacement occurs in the fTLB.

■	 Entry to be written is TTE.L = 0 and TTE.G = 0.
■	 When ASI_MCNTL.mpg_sITLB/mpg_sDTLB = 0, page size is either 8KB or 4MB.

When ASI_MCNTL.mpg_sITLB/mpg_sDTLB = 1, page size matches the page size
of the I/DTLB_TAG_ACCESS_EXT context register.

■	 ASI_MCNTL.fw_fITLB/fDTLB = 0.

2. When the sTLB is selected, the virtual page number corresponding to the page size is
obtained from the VA of the TLB Tag Access and used as the index. The replacement
policy for entries at this index is LRU.

3. When the fTLB is selected, the entry to be replaced is determined using the following
procedure:

a.	 Starting from entry 0, the first entry found that is empty is replaced. If there are no
empty entries, then

Ver 15, 26 Apr. 2010	 F. Appendix F Memory Management Unit 203

b.	 starting from entry 0, the first entry that is unlocked and whose used1 bit is 0 is
replaced. If there are no unused, unlocked entries, then

c.	 all used bits are set to 0, and step b is repeated.

If all entries are locked, then the TLB is not written and no exception is signalled.

4. Writes to the fTLB are checked for a multiple hit; that is, the TTE already in the fTLB is
compared with the TTE that is to be written. When a multiple hit occurs, the new TTE is
not written.

Restrictions on Direct Replacement of sTLB Entries

There are no restrictions for a TTE being written to the sTLB via the I/D MMU Data Access
Registers. SPARC64 VIIIfx does not check that the TTE page size and sTLB page size
match.

1. Internal TLB flag. Not visible to software.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 204

F.AP PE ND IX G

Assembly Language Syntax

G.1 Notation Used

G.1.5 Other Operand Syntax

The syntax for software traps has been changed from JPS1 Commonality. The updated
syntax is shown below.

software_trap_number
Can be any of the following:

regrs1 (equivalent to regrs1 + %g0)

regrs1 + imm7

regrs1 – imm7

imm7 (equivalent to %g0 + imm7)

imm7 + regrs1 (equivalent to regrs1 + imm7)

regrs1 + regrs2

Here, imm7 is an unsigned immediate constant that can be represented in 7 bits. The resulting
operand value (software trap number) must be in the range 0–127, inclusive.

Ver 15, 26 Apr. 2010 F. Appendix G Assembly Language Syntax 205

G.4 HPC-ACE Notation

When an instruction is executed, the value of the XAR determines whether the instruction
uses any of the features added by the HPC-ACE extensions. Generally, these features are
specified by combining an arithmetic instruction with SXAR. This section defines the
assembly language syntax for specifying HPC-ACE features.

HPC-ACE extends the instruction definitions to support the use of HPC-ACE registers,
SIMD execution, sector cache, and hardware prefetch enable/disable. While SXAR fully
specifies these features, the following notation is defined to facilitate easy reading of the
assembly language:

1. SXAR is written as sxar1 or sxar2. These instructions have no arguments.

2. The HPC-ACE registers are indicated directly in the arguments of the instruction.

3. Other HPC-ACE features are indicated by appending suffixes to the instruction
mnemonic.

4. The features for an instruction are always specified by the closest SXAR that precedes the
instruction. SXARs in instruction sequences that branch to a point between the
corresponding SXAR and the instruction never specify features for that instruction.

A SXAR must be placed 1 or 2 instructions prior to any instruction that uses the notation
described in items 2 and 3. There are cases where the assembler cannot automatically
determine that a SXAR needs to be inserted; thus, SXAR cannot be ommitted.

Whether a label can be inserted between the corresponding SXAR and the instruction is not
defined, as item 4 clearly defines which SXAR specifies the HPC-ACE feature(s).

G.4.1 Suffixes for HPC-ACE Extensions

A comma (,) is placed after the instruction mnemonic, and the alphanumeric character(s) that
immediately follow the comma specify various HPC-ACE features. These suffixes are shown
in TABLE G-1.

TABLE G-1 Suffixes for HPC-ACE Extensions

XAR Notation Suffix Remarks

XAR.simd s

XAR.dis_hw_pf d

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 206

TABLE G-1 Suffixes for HPC-ACE Extensions

XAR Notation Suffix Remarks

XAR.sector 1 ‘0’ indicates sector 0 (default sector)

XAR.negate_mul n

XAR.rs1_copy c

Suffixes are not case-sensitive. When two or more suffixes are specified, the suffixes may be
specified in any order.

Example 1: SIMD instruction, using HPC-ACE registers
sxar2

fmaddd %f0, %f2, %f510 /*HPC-ACE register used, non-SIMD */
fmaddd,s %f0, %f2, %f4 /*SIMD, extended operation uses HPC-ACE

 registers */

Example 2: SIMD load from sector 1
sxar1

ldd,s1 [%xg24], %f0 /* Suffix ‘ls’ is also acceptable */

Ver 15, 26 Apr. 2010 F. Appendix G Assembly Language Syntax 207

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 208

F.AP PE ND IX H

Software Considerations

Please refer to Appendix H in JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Appendix H Software Considerations 209

F.AP PE ND IX I

Extending the SPARC V9 Architecture

Please refer to Appendix I in JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Appendix I Extending the SPARC V9 Architecture 210

F.AP PE ND IX J

Changes from SPARC V8 to SPARC V9

Please refer to Appendix J in JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Appendix J Changes from SPARC V8 to SPARC V9 211

F.AP PE ND IX K

Programming with the Memory Models

Please refer to Appendix K in JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Appendix K Programming with the Memory Models 212

F.AP PE ND IX L

Address Space Identifiers

This appendix lists all ASIs supported by SPARC64 VIIIfx and describes the ASIs specific to
SPARC64 VIIIfx.

L.2 ASI Values
The SPARC V9 address space identifier (ASI) is evenly divided into restricted and
unrestricted halves. ASIs in the range 0016–7F16 are restricted. ASIs in the range 8016–FF16
are unrestricted. An attempt by nonprivileged software to access a restricted ASI causes a
privileged_action trap.

ASIs are also divided into translating, bypass, and nontranslating types. Translating ASIs are
translated by the MMU. Bypass ASIs are not translated by the MMU; instead, they pass
through their virtual addresses as physical addresses. Nontranslating ASIs access internal
CPU resources. TABLE L-1 shows the ASI types as defined in SPARC64 VIIIfx.

Compatibility Note – In JPS1 Commonality, the 3 ASI types include implementation-
dependent and undefined ASIs. SPARC64 VIIIfx redefines the 3 ASI types to only include
defined ASIs.

Ver 15, 26 Apr. 2010 F. Appendix L Address Space Identifiers 213

TABLE L-1 SPARC64 VIIIfx ASI Types

ASI Type ASI Range

Translating ASIs Restricted
0416, 0C16, 1016, 1116, 1816, 1916, 2416, 2C16, 7016–7316, 7816, 7916

Unrestricted
8016–8316, 8816–8B16, C016–C516, C816–CD16, D016–D316, D816–DB16,
E016, E116, F016–F316, F816, F916

Bypass ASIs Restricted 1416, 1516, 1C16, 1D16, 3416, 3C16

Nontranslating ASIs Restricted
4516, 4816–4C16, 4F16, 5016, 5316–5816, 5C16–6016, 6716, 6D16–6F16,
7416, 7716, 7F16
Unrestricted E716, EF16

The ASI types are related to data watchpoints. Refer to “Data Watchpoint Registers” in this
document, as well as in JPS1 Commonality.

L.3 SPARC64 VIIIfx ASI Assignments
Every load or store address in a SPARC V9 processor has an 8-bit Address Space Identifier
(ASI) appended to the virtual address (VA). Together, the VA and the ASI fully specify the
address. For instruction fetches and memory access instructions that do not specify the ASI,
an implicit ASI generated by the hardware is used. When a load from alternate space or store
into alternate space instruction is used, the value of the ASI can be specified in the %asi
register or as an immediate value in the instruction. In practice, ASIs are used not only to
access address spaces but also to access internal registers, such as MMU and hardware
barrier registers.

Section L.3.1 includes information on all ASIs defined in JPS1 Commonality, as well as the
ASIs added in SPARC64 VIIIfx.

L.3.1 Supported ASIs

TABLE L-2 lists the SPARC V9 architecture-defined ASIs, ASIs that were not defined in
SPARC V9 but are required for JPS1 processors, and ASIs defined by SPARC64 VIIIfx. The
shaded portions indicate ASIs that were defined in SPARC V9 or JPS1 but are not defined in
SPARC64 VIIIfx.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 214

ASIs marked with a closed bullet (●) are SPARC V9 architecture-defined ASIs. All operand
sizes are supported when accessing one of these ASIs.

ASIs marked with an open bullet (❍) were not defined in SPARC V9 but are required to be
implemented in all JPS1 processors. These ASIs can be used only with LDXA, STXA, LDDFA,
or STDFA instructions, unless otherwise noted.

ASIs marked with a star (★) are ASIs defined by SPARC64 VIIIfx. These ASIs can be used
only with LDXA, STXA, LDDFA, or STDFA instructions, unless otherwise noted.

The “VA”, “Effective Bits”, and “Aligment” columns in TABLE L-2 specify which virtual
addresses are valid for the ASIs.

■	 The “VA” column indicates the virtual address. An “—” indicates that any address can be
specified. If “encode” is shown, refer to the description of that ASI.

■	 The “Effective Bits” column indicates which bits in the VA are valid. Invalid bits are
ignored.

■	 “full” indicates all 64 bits are valid.
■	 “physical” indicates bits up to the physical address width are valid.
■	 bit<a:b> indicates that bits in the range a to b are valid

■	 The “Aligment” column indicates memory alignment restrictions, if any. An “—”
indicates that there are no alignment restrictions. Refer to the descriptions of individual
ASIs for information on the exceptions generated by improperly aligned addresses.

See Appendix L.3.3 for information on the exceptions generated by an access to an
undefined ASI or an invalid combination of an ASI and a memory access instruction.

TABLE L-2 SPARC64 VIIIfx ASIs (1 of 5)

ASI VA

● 0416 —

● 0C16 —

● 1016 —

● 1116 —

❍ 1416 —

❍ 1516 —

● 1816 —

● 1916 —

❍ 1C16 —

❍ 1D16 —

❍ 2416 —

Effective bits Alignment ASI Name (and Abbreviation) Access Page

full — ASI_NUCLEUS (ASI_N) RW

full — ASI_NUCLEUS_LITTLE (ASI_NL) RW

full — ASI_AS_IF_USER_PRIMARY (ASI_AIUP) RW

full — ASI_AS_IF_USER_SECONDARY (ASI_AIUS) RW

physical — ASI_PHYS_USE_EC RW

physical — ASI_PHYS_BYPASS_EC_WITH_EBIT RW

full — ASI_AS_IF_USER_PRIMARY_LITTLE
(ASI_AIUPL)

RW

full — ASI_AS_IF_USER_SECONDARY_LITTLE
(ASI_AIUSL)

RW

physical — ASI_PHYS_USE_EC_LITTLE

(ASI_PHYS_USE_EC_L)

RW

physical — ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

(ASI_PHYS_BYPASS_EC_WITH_EBIT_L)

RW

full 16byte ASI_NUCLEUS_QUAD_LDD R

Ver 15, 26 Apr. 2010 F. Appendix L Address Space Identifiers 215

TABLE L-2 SPARC64 VIIIfx ASIs (2 of 5)

ASI VA Effective bits Alignment ASI Name (and Abbreviation) Access Page

❍ 2C16 — full 16byte ASI_NUCLEUS_QUAD_LDD_LITTLE R
(ASI_NUCLEUS_QUAD_LDD_L)

★ 3416 — physical 16byte ASI_ATOMIC_QUAD_LDD_PHYS R 89

★ 3C16 — physical 16byte ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE R 89

❍ 4516 0016 bit<7:0> 8byte ASI_DCU_CONTROL_REGISTER (ASI_DCUCR) RW 34

❍ 4516 0816 bit<7:0> 8byte ASI_MEMORY_CONTROL_REG (ASI_MCNTL) RW 185

★ 4616 0016 bit<7:0> 8byte R

★ 4716 0016 bit<7:0> 8byte R

❍ 4816 0016 bit<7:0> 8byte ASI_INTR_DISPATCH_STATUS R 242
(ASI_MONDO_SEND_CTRL)

❍ 4916 0016 bit<7:0> 8byte ASI_INTR_RECEIVE RW 243
(ASI_MONDO_RECEIVE_CTRL)

★ 4A16 — bit<7:0> 8byte ASI_SYS_CONFIG R 323

★ 4B16 0016 bit<7:0> 8byte ASI_STICK_CNTL RW 324

❍ 4C16 0016 bit<7:0> 8byte ASI_ASYNC_FAULT_STATUS (ASI_AFSR) RW 285

★ 4C16 0816 bit<7:0> 8byte ASI_URGENT_ERROR_STATUS (ASI_UGESR) R 275

★ 4C16 1016 bit<7:0> 8byte ASI_ERROR_CONTROL (ASI_ECR) RW 270

★ 4C16 1816 bit<7:0> 8byte ASI_STATE_CHANGE_ERROR_INFO RW 272
(ASI_STCHG_ERR_INFO)

❍ 4D16 0016 ASI_ASYNC_FAULT_ADDR (ASI_AFAR) R

★ 4F16 0016 bit<7:0> 8byte ASI_SCRATCH_REG0 RW 220

★ 4F16 0816 bit<7:0> 8byte ASI_SCRATCH_REG1 RW 220

★ 4F16 1016 bit<7:0> 8byte ASI_SCRATCH_REG2 RW 220

★ 4F16 1816 bit<7:0> 8byte ASI_SCRATCH_REG3 RW 220

★ 4F16 2016 bit<7:0> 8byte ASI_SCRATCH_REG4 RW 220

★ 4F16 2816 bit<7:0> 8byte ASI_SCRATCH_REG5 RW 220

★ 4F16 3016 bit<7:0> 8byte ASI_SCRATCH_REG6 RW 220

★ 4F16 3816 bit<7:0> 8byte ASI_SCRATCH_REG7 RW 220

❍ 5016 0016 bit<7:0> 8byte ASI_IMMU_TAG_TARGET R

❍ 5016 1816 bit<7:0> 8byte ASI_IMMU_SFSR RW 195

❍ 5016 2816 bit<7:0> 8byte ASI_IMMU_TSB_BASE RW 194

❍ 5016 3016 bit<7:0> 8byte ASI_IMMU_TAG_ACCESS RW 194

❍ 5016 4816 ASI_IMMU_TSB_PEXT_REG RW

❍ 5016 5816 ASI_IMMU_TSB_NEXT_REG RW

★ 5016 6016 bit<7:0> 8byte ASI_IMMU_TAG_ACCESS_EXT RW 191

★ 5016 7816 bit<7:0> 8byte ASI_IMMU_SFPAR RW 202

❍ 5116 0016 ASI_IMMU_TSB_8KB_PTR_REG R

❍ 5216 0016 ASI_IMMU_TSB_64KB_PTR_REG R

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 216

TABLE L-2 SPARC64 VIIIfx ASIs

ASI VA Effective bits

★ 5316 — bit<7:0>

❍ 5416 — bit<7:0>

❍ 5516 encode bit<17:0>

❍ 5616 encode bit<17:0>

❍ 5716 encode full

❍ 5816 0016 bit<7:0>

❍ 5816 0816 bit<7:0>

❍ 5816 1016 bit<7:0>

❍ 5816 1816 bit<7:0>

❍ 5816 2016 bit<7:0>

❍ 5816 2816 bit<7:0>

❍ 5816 3016 bit<7:0>

❍ 5816 3816 bit<7:0>

❍ 5816 4016

❍ 5816 4816

❍ 5816 5016

❍ 5816 5816

★ 5816 6016 bit<7:0>

★ 5816 6816 bit<7:0>

★ 5816 7816 bit<7:0>

❍ 5916 0016

❍ 5A16 0016

❍ 5B16 0016

❍ 5C16 — bit<7:0>

❍ 5D16 encode bit<17:0>

❍ 5E16 encode bit<17:0>

❍ 5F16 encode full

❍ 6016 — bit<7:0>

★ 6716 — bit<7:0>

★ 6D16 0016–5816 bit<7:0>

★ 6E16 0016 bit<7:0>

★ 6F16 0016–5816 bit<7:0>

❍ 7016 — full

❍ 7116 — full

★ 7216 — full

★ 7316 — full

 (3 of 5)

Alignment

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

8byte

64byte

64byte

8byte

8byte

ASI Name (and Abbreviation) Access

ASI_SERIAL_ID R

ASI_ITLB_DATA_IN_REG W

ASI_ITLB_DATA_ACCESS_REG RW

ASI_ITLB_TAG_READ_REG R

ASI_IMMU_DEMAP W

ASI_DMMU_TAG_TARGET_REG R

ASI_PRIMARY_CONTEXT_REG RW

ASI_SECONDARY_CONTEXT_REG RW

ASI_DMMU_SFSR RW

ASI_DMMU_SFAR RW

ASI_DMMU_TSB_BASE RW

ASI_DMMU_TAG_ACCESS RW

ASI_DMMU_WATCHPOINT_REG RW

ASI_DMMU_PA_WATCHPOINT_REG RW

ASI_DMMU_TSB_PEXT_REG RW

ASI_DMMU_TSB_SEXT_REG RW

ASI_DMMU_TSB_NEXT_REG RW

ASI_DMMU_TAG_ACCESS_EXT RW

ASI_SHARED_CONTEXT_REG RW

ASI_DMMU_SFPAR RW

ASI_DMMU_TSB_8KB_PTR_REG R

ASI_DMMU_TSB_64KB_PTR_REG R

ASI_DMMU_TSB_DIRECT_PTR_REG R

ASI_DTLB_DATA_IN_REG W

ASI_DTLB_DATA_ACCESS_REG RW

ASI_DTLB_TAG_READ_REG R

ASI_DMMU_DEMAP W

ASI_IIU_INST_TRAP RW

ASI_FLUSH_L1I W

ASI_BARRIER_INIT RW

ASI_ERROR_IDENT (ASI_EIDR) RW

ASI_BARRIER_ASSIGN RW

ASI_BLOCK_AS_IF_USER_PRIMARY
(ASI_BLK_AIUP)

RW

ASI_BLOCK_AS_IF_USER_SECONDARY
(ASI_BLK_AIUS)

RW

ASI_XFILL_AIUP W

ASI_XFILL_AIUS W

Page

220

192

192

193

201

188

188

195

194

194

36

191

189

202

192

192

193

201

37

233

224

270

226

135

135

Ver 15, 26 Apr. 2010 F. Appendix L Address Space Identifiers 217

TABLE L-2 SPARC64 VIIIfx ASIs (4 of 5)

ASI VA Effective bits Alignment ASI Name (and Abbreviation) Access Page

★ 7416 — physical 8byte ASI_CACHE_INV W 233

❍ 7716 4016 bit<7:0> 8byte ASI_INTR_DATA0_W W 242

❍ 7716 4816 bit<7:0> 8byte ASI_INTR_DATA1_W W 242

❍ 7716 5016 bit<7:0> 8byte ASI_INTR_DATA2_W W 242

❍ 7716 5816 ASI_INTR_DATA3_W W

❍ 7716 6016 ASI_INTR_DATA4_W W

❍ 7716 6816 ASI_INTR_DATA5_W W

❍ 7716 8016 ASI_INTR_DATA6_W W

❍ 7716 8816 ASI_INTR_DATA7_W W

❍ 7716 encode|7016 bit<26:24>, 8byte ASI_INTR_DISPATCH_W W 242
bit<16:14>,
bit<13:0>

❍ 7816 — full 64byte ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE RW
(ASI_BLK_AIUPL)

❍ 7916 — full 64byte ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE RW
(ASI_BLK_AIUSL)

❍ 7F16 4016 bit<7:0> 8byte ASI_INTR_DATA0_R R 242

❍ 7F16 4816 bit<7:0> 8byte ASI_INTR_DATA1_R R 242

❍ 7F16 5016 bit<7:0> 8byte ASI_INTR_DATA2_R R 242

❍ 7F16 5816 ASI_INTR_DATA3_R R

❍ 7F16 6016 ASI_INTR_DATA4_R R

❍ 7F16 6816 ASI_INTR_DATA5_R R

❍ 7F16 8016 ASI_INTR_DATA6_R R

❍ 7F16 8816 ASI_INTR_DATA7_R R

● 8016 — full — ASI_PRIMARY (ASI_P) RW

● 8116 — full — ASI_SECONDARY (ASI_S) RW

● 8216 — full — ASI_PRIMARY_NO_FAULT (ASI_PNF) R

● 8316 — full — ASI_SECONDARY_NO_FAULT (ASI_SNF) R

● 8816 — full — ASI_PRIMARY_LITTLE (ASI_PL) RW

● 8916 — full — ASI_SECONDARY_LITTLE (ASI_SL) RW

● 8A16 — full — ASI_PRIMARY_NO_FAULT_LITTLE R
(ASI_PNFL)

● 8B16 — full — ASI_SECONDARY_NO_FAULT_LITTLE R
(ASI_SNFL)

❍ C016 — full — ASI_PST8_PRIMARY (ASI_PST8_P) W 221

❍ C116 — full — ASI_PST8_SECONDARY (ASI_PST8_S) W 221

❍ C216 — full — ASI_PST16_PRIMARY (ASI_PST16_P) W 221

❍ C316 — full — ASI_PST16_SECONDARY (ASI_PST16_S) W 221

❍ C416 — full — ASI_PST32_PRIMARY (ASI_PST32_P) W 221

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 218

TABLE L-2 SPARC64 VIIIfx ASIs (5 of 5)

ASI VA Effective bits Alignment ASI Name (and Abbreviation) Access Page

❍ C516 — full — ASI_PST32_SECONDARY (ASI_PST32_S) W 221

❍ C816 — full — ASI_PST8_PRIMARY_LITTLE (ASI_PST8_PL) W 221

❍ C916 — full — ASI_PST8_SECONDARY_LITTLE W 221
(ASI_PST8_SL)

❍ CA16 — full — ASI_PST16_PRIMARY_LITTLE W 221
(ASI_PST16_PL)

❍ CB16 — full — ASI_PST16_SECONDARY_LITTLE W 221
(ASI_PST16_SL)

❍ CC16 — full — ASI_PST32_PRIMARY_LITTLE W 221
(ASI_PST32_PL)

❍ CD16 — full — ASI_PST32_SECONDARY_LITTLE W 221
(ASI_PST32_SL)

❍ D016 — full — ASI_FL8_PRIMARY (ASI_FL8_P) RW

❍ D116 — full — ASI_FL8_SECONDARY (ASI_FL8_S) RW

❍ D216 — full — ASI_FL16_PRIMARY (ASI_FL16_P) RW

❍ D316 — full — ASI_FL16_SECONDARY (ASI_FL16_S) RW

❍ D816 — full — ASI_FL8_PRIMARY_LITTLE (ASI_FL8_PL) RW

❍ D916 — full — ASI_FL8_SECONDARY_LITTLE (ASI_FL8_SL) RW

❍ DA16 — full — ASI_FL16_PRIMARY_LITTLE (ASI_FL16_PL) RW

❍ DB16 — full — ASI_FL16_SECONDARY_LITTLE RW
(ASI_FL16_SL)

❍ E016 — full — ASI_BLOCK_COMMIT_PRIMARY W 220
(ASI_BLK_COMMIT_P)

❍ E116 — full — ASI_BLOCK_COMMIT_SECONDARY W 220
(ASI_BLK_COMMIT_S)

★ E716 0016 bit<7:0> 8byte ASI_SCCR RW 234

★ EF16 0016–5816 bit<7:0> 8byte ASI_LBSY, ASI_BST RW 227

❍ F016 — full 64byte ASI_BLOCK_PRIMARY (ASI_BLK_P) RW

❍ F116 — full 64byte ASI_BLOCK_SECONDARY (ASI_BLK_S) RW

★ F216 — full 8byte ASI_XFILL_P W 135

★ F316 — full 8byte ASI_XFILL_S W 135

❍ F816 — full 64byte ASI_BLOCK_PRIMARY_LITTLE (ASI_BLK_PL) RW

❍ F916 — full 64byte ASI_BLOCK_SECONDARY_LITTLE RW
(ASI_BLK_SL)

L.3.2 Special Memory Access ASIs

Please refer to Section L.3.2 in JPS1 Commonality.

Ver 15, 26 Apr. 2010 F. Appendix L Address Space Identifiers 219

In addition to the ASIs described in JPS1 Commonality, SPARC64 VIIIfx supports the ASIs
described below.

ASI 5316 (ASI_SERIAL_ID)

SPARC64 VIIIfx provides an unique ID code for each CPU chip. Using this ID code and the
information in the Version Register (page 26), a completely unique CPU ID can be
generated.

This register is read-only. A write to this register causes a data_access_error exception.

Chip_ID<63:0>

63	 0

ASI 4F16 (ASI_SCRATCH_REGx)

SPARC64 VIIIfx provides eight 64-bit registers that can be used by supervisor software.

Data<63:0>

63	 0

Register Name ASI_SCRATCH_REGx (x = 0–7)

ASI 4F16

VA VA<5:3> = register number

The other VA bits must be zero.

Access Type Supervisor read/write

Block Load and Store ASIs

As describe in the definition of the Block Store with Commit instruction (see “Block Load
and Store Instructions (VIS I)” (page 68)), ASIs E016 and E116 can only be used with STDFA
instructions. These ASIs cannot be used with LDDFA. If either ASI is specified, LDDFA has
the following behavior:

1. No exception is generated due to a misaligned rd (impl. dep. #255).

2. Depending on the memory address alignment, the following exceptions are generated
(impl. dep. #256).

■	 If aligned on an 8-byte boundary, causes a data_access_exception exception with
DSFSR.FTYPE = 0816 (invalid ASI).

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 220

■	 If aligned on an 4-byte boundary, causes a LDDF_mem_address_not_aligned
exception.

■	 Otherwise, causes a mem_address_not_aligned exception.

Partial Store ASIs

As described in the definition of the Partial Store instruction (see “Partial Store (VIS I)”
(page 94)), ASIs C016–C516 and C816–CD16 can only be used with STDFA instructions. These
ASIs cannot be used with LDDFA. If either ASI is specified, LDDFA has the following
behavior:

■	 Depending on the memory address alignment, the following exceptions are generated
(impl. dep. #257).

■	 If aligned on an 8-byte boundary, causes a data_access_exception exception with
DSFSR.FTYPE = 0816 (invalid ASI).

■	 If aligned on an 4-byte boundary, causes a LDDF_mem_address_not_aligned
exception.

■	 Otherwise, causes a mem_address_not_aligned exception.

L.3.3 Trap Priority for ASI and Instruction Combinations

In SPARC64 VIIIfx, the behavior of exceptions generated by an undefined ASI or an invalid
instruction and ASI combination differs slightly from JPS1 Commonality. This section
describes these exceptions as defined in SPARC64 VIIIfx, listed in order of priority.

1. There are cases where a Block Load/Store or Partial Store instructions causes an
illegal_instruction exception. See the description of the specific instruction for details. If
the rd field of LDDA or STDA specifies an odd-number register, an illegal_instruction
exception is signalled.

2. The memory alignment restriction specified for the instruction is checked; an improperly
aligned address causes a mem_address_not_aligned or *_mem_address_not_aligned
exception.

a.	 Data for block load/store instructions must be aligned on 64-byte boundaries. An
improperly aligned address causes a mem_address_not_aligned exception.
LDDF_mem_address_not_aligned and STDF_mem_address_not_aligned
exceptions are not signalled.

A LDDFA instructions that specifies a block store with commit ASI is not a block load/
store instruction. This specification does not apply.

b. Data for 16-bit short load/store instructions must be aligned on 2-byte boundaries. An
improperly aligned address causes a mem_address_not_aligned exception.
LDDF_mem_address_not_aligned and STDF_mem_address_not_aligned
exceptions are not signalled.

Ver 15, 26 Apr. 2010	 F. Appendix L Address Space Identifiers 221

c.	 Data for 8-bit short load/store instructions must be aligned on 1-byte boundaries; the
address is never improperly aligned.

d. Data for partial store instructions must be aligned on 8-byte boundaries. An improperly
aligned address causes a mem_address_not_aligned exception.
LDDF_mem_address_not_aligned and STDF_mem_address_not_aligned
exceptions are not signalled.

A LDDFA instructions that specifies a partial store ASI is not a partial store instruction.
This specification does not apply.

e.	 For LDDFA and STDFA instructions used with any ASI that is not specified above,
accesses aligned on 4-byte boundaries cause LDDF_mem_address_not_aligned and
STDF_mem_address_not_aligned exceptions, respectively.

f.	 Any improperly aligned address that is not described above causes a
mem_address_not_aligned exception.

For items e and f, whether the ASI access is defined or undefined takes priority over
whether the ASI and instruction combination is valid. A data_access_exception
(FT = 0816) exception is not signalled.

3. If the ASI and instruction combination is not valid, a data_access_exception exception
is signalled.

However, PREFETCHA does not cause a data_access_exception exception; the
instruction is processed as a nop.

L.3.4 Timing for Writes to Internal Registers

In SPARC64 VIIIfx, almost all nontranslating ASIs map to CPU internal registers. Most of
these internal registers, which include MMU and hardware barrier registers, have side
effects; however, the ordering of nontranslating ASI accesses is not guaranteed. Software
should perform an explicit membar #Sync after updating an internal register in order to
guarantee that the results (side-effects) are visible to subsequent instructions.

L.4 Hardware Barrier
SPARC64 VIIIfx provides a hardware barrier mechanism that facilitates high speed
synchronization in a CPU chip. The on-chip barrier mechanism is shared by all of the cores.
FIGURE L-1 shows the barrier resources.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 222

Barrier Blade #0 Barrier Blade #1 Barrier Blade #3

BST_mask

LBSY

BST
BST_mask

LBSY

BST
BST_mask

LBSY

BST

Barrier Blade #4 Barrier Blade #5 Barrier Blade #6 Barrier Blade #11

BST BST BST BST

LBSY LBSY LBSY LBSY

FIGURE L-1 SPARC64 VIIIfx Barrier Resources

SPARC64 VIIIfx has twelve Barrier Blades, which are the primary barrier resources. Each
Barrier Blade contains a number of BST (Barrier Status) bits and a mask that selects bits in
the BST, as well as a LBSY (Last Barrier Synchronization) bit that stores the synchronization
value last used in that Barrier Blade. Four of the Barrier Blades have 8-bit BSTs and
BST_masks, which correspond to the on-chip cores. The other eight Barrier Blades have 1­
bit BSTs and no BST_masks. The first four are intended to be used for implementing barrier
synchronization of multiple threads, and the other eight for implementing post-wait
synchronization of thread pairs.

Barrier synchronization is established once all BST bits selected by the BST_mask are set to
the same value, either 0 or 1. This synchronization value (0 or 1) is then copied to the LBSY.
Update of the LBSY is done atomically, such that a read before modifying the BST always
returns the old value and a read after modifying the BST always returns the new value.

Consequently, when a software thread reaches the barrier, the thread reads the LBSY, writes
the appropriate BST bit, then waits for the value of LBSY to be updated; this update
indicates to the thread that synchronization has been established. The value of LBSY after
each BST update can be checked using a spin loop; however, because multiple cores/threads
share certain resources, spin loops are inefficient and cause contention with other cores/
threads. In SPARC64 VIIIfx, the SLEEP instruction can be used to put waiting cores/threads
to sleep. An update to LBSY wakes these sleeping cores/threads and returns them to execute
state. This achieves high-speed synchronization and efficient use of CPU resources.

Ver 15, 26 Apr. 2010 F. Appendix L Address Space Identifiers 223

Since the LBSY stores the last synchronization value used in the Barrier Blade, software can
easily determine the value that should be used to set BST bits when the Barrier Blade is next
used. That is, if a read of the LSBY returns 0, then a software thread should write a 1 to the
appropriate BST bit. Similarly, if LBSY is 1, then a 0 should be written.

Each core/thread has 12 window ASIs that correspond to the 12 Barrier Blades. User
software should access barrier resources through window ASIs; barrier resources should not
be accessed directly. The use of window ASIs simplifies hardware barrier operation, hides
the actual BST bits, and minimizes the possibility of corrupting the current barrier status.

The memory model for barrier resources conforms to TSO, as defined in Section 8 of JPS1
Commonality. That is, accesses to Barrier Blades and memory are performed in program
order, except when a store is followed by a load. When a store to a window ASI is followed
by a load or a LBSY read, a membar #storeload must be inserted between the two
accesses.

Note – SPARC64 VIIIfx does not support barrier synchronization between CPU chips.

L.4.1 Initialization and Status of Barrier Resources

Register Name ASI_BARRIER_INIT

ASI 6D16

VA 0016, 0816, 1016, 1816, 2016, 2816,
3016, 3816, 4016, 4816, 5016, 5816

Access Type Supervisor read/write

— LBSY BST_mask BST_value

63 17 16 15 8 7 0

ASI_BARRIER_INIT is used to initialize the Barrier Blade specified by the VA, as well as to
obtain the current status. Reads return the current status, and writes set new values.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 224

The BST_mask and BST_value fields indicate the barrier group and the barrier status,
respectively. Each bit in these fields corresponds to a core. For BST_mask, a 1 indicates that
the corresponding core uses the Barrier Blade. A 0 indicates that the core does not use the
Barrier Blade.

Bit Field 	 Access Description

63:17 reserved

16 LBSY RW Last BST synchronization value.

15:8 BST_mask RW BST mask. Each bit corresponds to an on-chip core:

•	 BB#0–BB#3

BST_mask<0> core 0
BST_mask<1> core 1
BST_mask<2> core 2
BST_mask<3> core 3
BST_mask<4> core 4
BST_mask<5> core 5
BST_mask<6> core 6
BST_mask<7> core 7

• The BST_mask field does not exist in BB#4–BB#11.

7:0 BST_value RW BST value. Each bit corresponds to an on-chip core:
•	 BB#0–BB#3

BST_value<0> core 0
BST_value<1> core 1
BST_value<2> core 2
BST_value<3> core 3
BST_value<4> core 4
BST_value<5> core 5
BST_value<6> core 6
BST_value<7> core 7

•	 BB#4–BB#11
BST_value<0> core 0–7

On a read, the values of the BST_value, BST_mask, and LBSY fields of the Barrier
Blade specified by the VA are returned.

For BB#0–#3, each bit in the BST_mask and BST_value fields corresponds to a
specific core. If a BST_mask bit is 0, the value that is read from the corresponding
BST_value bit is undefined.

For post/wait Barrier Blades, only the LBSY and BST_value<0> bits are meaningful.
The other bits read as 0.

On a write, the BST_value, BST_mask, and LBSY fields of the Barrier Blade specified
by the VA are updated.For BB#0–#3, each bit in the BST_mask and BST_value fields
corresponds to a specific core. If a BST_mask bit is 0, whether or not an attempt to write
a 1 in the corresponding BST_value bit succeeds is undefined.

For post/wait Barrier Blades, only the LBSY and BST_value<0> bits are meaningful.
Writes to other bits are ignored.

Ver 15, 26 Apr. 2010	 F. Appendix L Address Space Identifiers 225

After a write is completed, hardware checks whether synchronization has been established,
then updates the LBSY field accordingly. For example, when BST_value and BST_mask
are all ones and LBSY is zero, LBSY is immediately updated to 1.

When BST_mask = 0, the current value of LBSY is preserved. Hardware does not check
whether synchronization has been established.

L.4.2 Assignment of Barrier Resources

Register Name ASI_BARRIER_ASSIGN

ASI 6F16

VA 0016, 0816, 1016, 1816, 2016, 2816,
3016, 3816, 4016, 4816, 5016, 5816

Access Type Supervisor read/write

Valid reserved BB_num —

63 62 9 8 5 4 0

ASI_BARRIER_ASSIGN is used to obtain the current assignment of the window ASI
(ASI_BST/ASI_LBSY) specified by the VA, as well as to change this assignment. BB_num
specifies the Barrier Blade that is assigned to the window ASI specified by the VA.

Bit Field Access Description

63 Valid RW

62:9 reserved

8:5 BB_num RW Indicates the Barrier Blade assigned to the window ASI.

4:0 reserved

■	 A read returns the Barrier Blade assignment. When the window ASI specified by the VA
is assigned to a Barrier Blade, valid = 1 and the assignment is indicated in BB_num.
When the window ASI specified by the VA is not assigned to a Barrier Blade, valid = 0
and the value of BB_num is undefined.

■	 On a write,

■	 When valid = 1, LBSY and BST of the Barrier Blade indicated by BB_num are
assigned to the window ASI specified by the VA. After the write completes, user
software can write BST using ASI_BST and read LBSY using ASI_LBSY.

■	 When valid = 0, the assignment is released. After the write completes, a write to
ASI_BST is ignored, and a read of ASI_LBSY returns an undefined value.

■	 The value of BB_num is valid for the range 0–11. Writes that attempt to specify a
value of 12 or greater are ignored.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 226

When settings for ASI_BARRIER_INIT and ASI_BARRIER_ASSIGN are inconsistent,
behavior is undefined. Hardware does not detect these inconsistencies; software is
responsible for ensuring these situations do not occur. Synchronization is not guaranteed for
cases where a write to ASI_BARRIER_INIT occurs while a Barrier Blade is in use, a
BST<i> is assigned to a window ASI while BST_mask<i> = 0, etc.

Programming Note – System software should only assign a Barrier Blade after it has
been initialized. Assignment of a non-initialized Barrier Blade may cause unexpected results.

L.4.3 Window ASI for Barrier Resources

Register Name ASI_LBSY (read), ASI_BST (write)

ASI EF16

VA 0016, 0816, 1016, 1816, 2016, 2816,

3016, 3816, 4016, 4816, 5016, 5816

Access Type Read/Write

— value

63 1 0

ASI_LBSY/ASI_BST are window ASIs through which user programs can access barrier
resources. There are 12 window ASIs, which are specified by the VA.

Bit Field Access Description

63:1 reserved

0 Value RW A read returns LBSY of the Barrier Blade assigned to
the window ASI. A write updates the BST bit.

A read to an unassigned window ASI returns an undefined value. A write to an unassigned
window is ignored; no exception is generated.

Sample Code for Barrier Synchronization

/*

 * %r1: VA of a window ASI

 * %r2, %r3: work registers

 */

Ver 15, 26 Apr. 2010 F. Appendix L Address Space Identifiers 227

ldxa [%r1]ASI_LBSY, %r2 ! read current LBSY
not %r2 ! flip LBSY bit
and %r2, 1, %r2 ! mask reserved bits
stxa %r2, [%r1]ASI_BST ! update BST
membar #storeload ! wait for stxa to complete

loop:
ldxa [%r1]ASI_LBSY, %r3 ! read LBSY
and %r3, 1, %r3 ! mask reserved bits
subcc %r3, %r2, %g0 ! check if status changed
bne,a loop
sleep ! if not changed, sleep for a while

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 228

F.AP PE ND IX M

Cache Organization

M.1 Cache Types
SPARC64 VIIIfx has two levels of on-chip cache, with the following characteristics:

■	 Split level-1 instruction and data caches; the level-2 cache is unified.
■	 Level-1 caches are virtually indexed, physically tagged (VIPT); the level-2 cache is

physically indexed, physically tagged (PIPT).
■	 Cache line size for both level-1 and level-2 caches is 128 bytes.
■	 All lines in the level-1 caches are included in the level-2 cache.
■	 Hardware maintains cache coherency between level-1 caches and between level-1 caches

and the level-2 cache. That is,
■	 When a cache line in the level-2 cache is invalidated and that data is present in level-1

cache(s), those cache line(s) are also invalidated.
■	 When a self-modifying instruction stream updates data in a level-1 data cache, the

corresponding instruction sequence in the level-1 instruction cache is invalidated.

■ The level-2 cache is shared by all the cores in a processor module.

Ver 15, 26 Apr. 2010	 F. Appendix M Cache Organization 229

M.1.1 Level-1 Instruction Cache (L1I Cache)

The characteristics of a level-1 instruction cache are shown below.

Feature Value

Size 32 Kbytes

Associativity 2-way

Line Size 128-byte

Indexing Virtually indexed, physically tagged (VIPT)

Tag Protection Parity and duplication

Data Protection Parity

Misc. Features —

Although L1I caches are VIPT, the TTE.CV bit is meaningless because SPARC64 VIIIfx
implements hardware unaliasing.

Instructions fetched from noncacheable address spaces are not cached in L1I caches.
Noncacheable accesses occur in the following 3 cases:

■ PSTATE.RED = 1
■ DCUCR.IM = 0
■ TTE.CP = 0

When MCNTL.NC_CACHE = 1, SPARC64 VIIIfx treats all instructions as instructions in
cacheable address spaces, regardless of the conditions listed above. See “ASI_MCNTL
(Memory Control Register)” (page 185) for details.

Programming Note – This feature is intended to be used by the OBP to facilitate
diagnostics procedures. When the OBP uses this feature, it must clear MCNTL.NC_CACHE
and invalidate all L1I data via ASI_FLUSH_L1I before exiting.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 230

M.1.2 Level-1 Data Cache (L1D Cache)

Level-1 data caches are writeback caches. Their characteristics are shown below.

Feature	 Value

Size 32 Kbytes

Associativity 2-way

Line Size 128-byte

Indexing Virtually indexed, physically tagged (VIPT)

Tag Protection Parity and duplication

Data Protection ECC

Misc. Features Sector Cache

Although L1D caches are VIPT, the TTE.CV bit is meaningless because SPARC64 VIIIfx
implements hardware unaliasing.

Data accessed from noncacheable address spaces are not cached in L1D caches.
Noncacheable accesses occur in the following 3 cases:

■	 Accesses via ASI_PHYS_BYPASS_EC_WITH_E_BIT (1516) or
ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE (1D16).

■	 DCUCR.DM = 0
■	 TTE.CP = 0

Data in noncacheable address spaces are not cached in L1D caches, regardless of the value of
MCNTL.NC_CACHE.

M.1.3 Level-2 Unified Cache (L2 Cache)

The level-2 unified cache is a writeback cache. Its characteristics are shown below.

Feature Value

Size 6Mbytes

Associativity 12-way

Line Size 128-byte

Indexing Physically indexed, physically tagged (PIPT)

Tag Protection ECC

Data Protection ECC

Misc. Features Index Hash, Sector Cache

Data in noncacheable address spaces are not cached in the L2 cache, regardless of the value
of MCNTL.NC_CACHE.

Ver 15, 26 Apr. 2010	 F. Appendix M Cache Organization 231

Index Hash

In SPARC64 VIIIfx, L2 cache indexes are generated using the following hash function:

■	 index<11:9> = PA<33:31> xor PA<30:28> xor PA<27:25> xor PA<24:22> xor
PA<21:19> xor PA<18:16>

■ index<8:0> = PA<15:7>

M.2 Cache Coherency Protocols

Note – SPARC64 VIIIfx does not support multiprocessor configurations. This section has
been deleted.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 232

M.3	 Cache Control/Status Instructions

M.3.1	 Flush Level-1 Instruction Cache L1
(ASI_FLUSH_L1I)

Register Name ASI_FLUSH_L1I

ASI 6716

VA Any 8-byte aligned VA

Access Type Supervisor write only

ASI_FLUSH_L1I invalidates all contents of the level-1 instruction cache in the core that
executed the ASI store. A write to this ASI with any 8-byte aligned VA and any data
invalidates the L1I cache.

ASI_FLUSH_L1I is write-only. An attempt to read the register causes a
data_access_exception exception.

M.3.2	 Cache invalidation (ASI_CACHE_INV)

Register Name ASI_CACHE_INV

ASI 7416

VA Physical Address

Access Type Supervisor write only

ASI_CACHE_INV writes the specified cache line to memory, then invalidates the copies in
the L1 caches of all on-chip cores and in the L2 cache. Cache lines are specified by the
physical address indicated in the VA field.

ASI_CACHE_INV is write-only. An attempt to read the register causes a
data_access_exception exception.

Note – If DCUCR.WEAK_SPCA = 0, cache lines invalidated by ASI_CACHE_INV may
immediately reenter the cache due to speculative execution and/or hardware prefetches. To
guarantee that the cache does not contain the specified data, DCUCR.WEAK_SPCA should be
set to 1 before executing ASI_CACHE_INV.

Ver 15, 26 Apr. 2010	 F. Appendix M Cache Organization 233

M.3.3 Sector Cache Configuration Register (SCCR)

Register Name ASI_SCCR

ASI E716

VA 0016

Access Type User read/write (with restrictions)

The ASI_SCCR controls the settings for the sector cache. There is only one SCCR for the
entire CPU; it is shared by all of the cores.

63 62 20 19 16 15 12 11 8 7 6 5 4 3 2 1 0

NPT — L2_sector0_max — L2_sector1_max — L1_sector0_max — L1_sector1_max

Bit Field	 Access Description

63 NPT RW	 Privileged access. When NPT = 1 and
PSTATE.priv = 0, an attempted access to the SCCR
causes a privileged_action exception. When NPT = 0,
user software can set NPT to 1.

62: —	 reserved.

19:16	 L2_sector0_max RW Maximum number of ways in the L2 cache that can be
used by sector 0.

15:12 —	 reserved.

11:8	 L2_sector1_max RW Maximum number of ways in the L2 cache that can be
used by sector 1.

7:6 —	 reserved.

5:4 L1_sector0_max RW	 Maximum number of ways in the L1 cache that can be
used by sector 0.

If one core updates this field, the L1 cache settings for

all cores are updated.

3:2 —	 reserved.

1:0 L1_sector1_max RW	 Maximum number of ways in the L1 cache that can be
used by sector 1.

If one core updates this field, the L1 cache settings for

all cores are updated.

Warning – Because the entire chip shares the SCCR, if a core is currently using the sector
cache and another core sets SCCR.NPT to 1, the first core can no longer access the SCCR.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 234

SPARC64 VIIIfx introduces a mechanism for splitting caches into two “sectors” that can be
managed separately. This organization is called a sector cache. Sectors are specified by
memory access instructions; the accessed data is stored in the specified sector. In
SPARC64 VIIIfx, sector caches are implemented for both the L1 and L2 caches. L1 and L2
sector cache mechanisms can be enabled and disabled independently.

The size of a sector specifies the maximum number of cache ways per index that can be used
by a sector. In a set-associative cache, a single index corresponds to multiple ways; for a
given index, the sector sizes specify the maximum number of ways used by sector 0 and the
maximum number of ways used by sector 1. All indexes have the same sector sizes; that is,
sector sizes cannot be specified individually for each index.

For the sector cache to be valid, the sector sizes for sectors 0 and 1 must be at least 1 cache
way. If a sector size larger than the number of cache ways is specified, the sector size is
assumed to be the number of ways. The sum of the sector sizes does not need to equal the
number of ways in the cache. When the number of ways of either sector is 0, the sector cache
is not valid.

The sector cache mechanism affects the replacement of cache data. When the sector cache is
not valid, evicted entries are selected from all cache ways. When the sector cache is valid,
evicted entries are selected such that each sector does not exceed its specified sector size.
That is, if the number of entries at that index for that sector is less than the sector size, the
evicted entry is selected from cache ways that are not part of the sector. If the number of
entries at that index is greater than or equal to the sector size, the evicted entry is selected
from that sector.

Regardless of whether the sector cache is valid or whether there is an access to data in the
cache, software can always access data in all cache ways. If an access specifies a different
sector than the sector of the data being accessed, the sector of the data being accessed is
updated.

Notes – Sector information is updated for data reads and prefetches.

Sector information is specified for each cache line. Accesses to different data in a cache line

may specify different sectors, but the sector specified for the entire cache line is the sector

specified by the last access.

Memory access instructions (load/store/atomic/prefetch) specify the cache sector using
XAR.sector (XAR.urs3<0>). If XAR.sector = 0, then sector 0 is specified; if
XAR.sector = 1, then sector 1 is specified.

Sector information and the sector cache mechanism are distinct concepts. Sector information
describes an attribute of the data; the sector cache mechanism describes the cache
replacement policy. Even if the sector cache mechanism is disabled, sector information is
always preserved. For example, if the L1 sector cache mechanism is disabled while the L2
sector cache mechanism is enabled, L1 write-back data is updated in the the L2 cache based
on the sector information of that data.

Ver 15, 26 Apr. 2010 F. Appendix M Cache Organization 235

Implementation Note – The method and timing for communicating changes in the sector
information of an L1 cache to the L2 cache is implementation dependent.

The maximum number of ways for each sector is used to determine how cache data should
be updated. When these numbers are set, however, the number of ways currently allocated to
a sector may exceed the new maximum; these cache ways are not forcefully invalidated. For
example, when sector 0 uses 5 ways and the maximum number of ways for sector 0 is set to
2, SPARC64 VIIIfx does not instantly invalidate 3 of these ways. It could be said that the
maximum number of ways is in fact the target number of ways that should be allocated to a
given cache sector.

This document does not specify how each sector should be used.

The algorithm for sector cache operation is explained below. Because this algorithm is the
same for the L1 and L2 caches, the L1_ and L2_ prefixes are dropped in the following
subsections. The number of ways in the cache is written as nway .

Setting the SCCR value
■	 When sector0_max > 0 and sector1_max > 0, the sector cache is valid.
■	 When sector0_max = 0 or sector1_max = 0, the sector cache is not valid.
■	 It is not necessary that sector0_max + sector1_max = nway.

Managing the Sector Cache

The number of cache ways used by sector 0 is described by sector0_use, and the number
of ways used by sector 1 is described by sector1_use. The following are always true:

sector0_use + sector1_use ≤ nway
0 ≤ sector0_use ≤ nway, 0 ≤ sector1_use ≤ nway

Behavior when a memory access to sector number S is requested:

■	 When a cache hit occurs in a way that is assigned to a different sector than S, the number
of ways used by each sector is adjusted.

sectorS_use++, sectorT_use-- (where sector T is the other sector)

This may cause sectorS_use > sectorS_max (when sectorS_max < nway).

■	 When there is a cache miss

■	 If there is an empty way, that way is assigned to sector S.

sectorS_use++

This may cause the value of sectorS_use to be larger than the value of
sectorS_max.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 236

■	 If sectorS_use < min(nway, sectorS_max), the oldest way in sector T is

replaced and assigned to sector S.

sectorS_use++, sectorT_use-­

■	 If sectorS_use ≥ min(nway, sectorS_max), the oldest way in sector S is

replaced and assigned to sector S.

sectorS_use and sectorT_use are unchanged

Even if sectorS_use > min(nway, sectorS_max), the value of sectorS_use
does not decrease. It is necessary to access sector T to move the value of
sectorS_use closer to the value of min(nway, sectorS_max).

Behavior when the Sector Cache is Not Valid
■	 When a cache miss occurs and all cache ways are occupied, the oldest way is selected to

be replaced. sectorS_use and sectorT_use are not used.

Even when the sector cache is not valid, sector information is preserved.

Note – Because SPARC64 VIIIfx processes memory accesses out of order, sector
information may not be updated according to the intentions of the user program.

XAR.sector can be specified for all XAR-eligible memory access instructions, but this is
only meaningful when the access is to an address space with TTE.CP = 1. When the access
is to an address space with TTE.CP = 0 or to a nontranslating ASI, the value of XAR.sccs
is ignored; no exception is signalled.

M.4 Hardware Prefetch
SPARC64 VIIIfx implements hardware that detects memory accesses to consecutive,
cacheable addresses and generates prefetches.1 The hardware prefetch mechanism monitors
load and store instructions to cacheable address spaces; the PREFETCH, PREFETCHA,
LDSTUB, LDSTUBA, SWAP, SWAPA, CASA, CASXA, block load/store, partial store, short
load/store, and xfill instructions are not monitored.

The behavior of the hardware prefetch mechanism is described below:

1. When a ld/st instruction misses in the L1 cache (at address A), hardware starts monitoring
the adjacent cache lines (A+128, A-128).

1. Here, consecutive addresses means addresses that are in consecutive cache lines (128 bytes).

Ver 15, 26 Apr. 2010	 F. Appendix M Cache Organization 237

2. If there is an access to a monitored address (for example, A+128), a prefetch is generated
for the adjacent cache line (A+256). A the same time, that cache line (A+256) is
monitored for ld/st accesses.

3. A ld/st access to A+256 generates a prefetch to A+384.

A cache miss triggers monitoring for cache accesses; a cache access to a monitored address,
regardless if it hits or misses, causes a consecutive access.

Thus, if there are a large number of such consecutive accesses, distant addresses may be
prefetched and/or data may be prefetched into the L1 cache (initially, data is only prefetched
into the L2 cache).

Software can control the hardware prefetch mechanism in two ways:

1.	 ASI_MCNTL.hpf turns the entire hardware prefetch mechanism on/off.
See“ASI_MCNTL (Memory Control Register)” (page 185) for details.

2.	 XAR.dis_hw_pf turns hardware prefetch on/off for individual instructions.
When XAR.dis_hw_pf = 1 and a ld/st instruction misses in the L1 cache, adjacent
addresses are not monitored for cache misses. When XAR.dis_hw_pf = 0 and a ld/st
instruction misses in the L1 cache, adjacent addresses are monitored for cache misses (if
ASI_MCNTL.hpf = 1).

Note – The SPARC64 VIIIfx specification does not define the type of prefetches generated
by the hardware prefetch mechanism.

The XAR.dis_hw_pf bit can be set for all XAR-eligible memory access instructions, but
this is only meaningful for load and store instructions to address spaces with TTE.CP = 1.
The value of XAR.dis_hw_pf is ignored for accesses to address spaces with TTE.CP = 0,
accesses to nontranslating ASIs, and accesses by the PREFETCH, PREFETCHA, LDSTUB,
LDSTUBA, SWAP, SWAPA, CASA, CASXA, block load/store, short load/store, and xfill
instructions. No exception is signalled.1

1. Because the partial store instruction is not XAR-eligible, the hardware prefetch bit cannot be set.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 238

F.AP PE ND IX N

Interrupt Handling

N.1 Interrupt Vector Dispatch
When a processor1 dispatches an interrupt to another processor, software first writes the
interrupt data to ASI_INTR_DATA_[0-2]W. A subsequent write to
ASI_INTR_DISPATCH_W triggers the interrupt delivery. The processor polls
INTR_DISPATCH_STATUS’s BUSY and BUSY bits to determine whether the interrupt has
been successfully delivered. FIGURE N-1 illustrates the steps for interrupt dispatch.

1. Here, a processor is the unit of hardware that executes instructions. It is equivalent to a SPARC64 VIIIfx core.

Ver 15, 26 Apr. 2010 F. Appendix N Interrupt Handling 239

read ASI_INTR_DISPATCH_STATUS

Error

PSTATE.IE ← 0

Busy?
Y

N

(begin atomic sequence)

Write ASI_INTR_W (data 0)
. . .

Write ASI_INTR_W (data 2)

Write ASI_INTR_W (interrupt

MEMBAR
dispatch)

read ASI_INTR_DISPATCH_STATUS

Busy?
Y

N

PSTATE.IE ← 1
(end atomic sequence)

Nack?
Y

N

dispatch complete

FIGURE N-1 Dispatching an Interrupt

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 240

N.2 Interrupt Vector Receive

When an interrupt packet is received, ASI_INTR_DATA_[0-2]R are updated with the
incoming data in conjunction with the setting of the BUSY bit in the ASI_INTR_RECEIVE
register. If interrupts are enabled (PSTATE.IE = 1), then an interrupt trap is generated.
Software reads the data to determine the entry point of the appropriate trap handler. The
handler may reprioritize the trap as a lower-priority interrupt in the software handler.

If an error is detected in an incoming packet, the BUSY bit in the ASI_INTR_RECEIVE
register is not set. In this case, ASI_INTR_DATA_[0-2]R may also contain errors and
should not be read. See Section P.8.3, “ASI Register Error Handling” (page 289) for details.

FIGURE N-2 illustrates the steps for interrupt receive.

read ASI_INTR_RECEIVE

N

Y

Read ASI_INTR_R (data 0)

Busy?

clear ASI_INTR_RECEIVE
. . .

Read ASI_INTR_R (data 2)

Error

Determine Trap Handler

Handle Interrupt or
re-prioritize via SOFTINT

clear ASI_INTR_RECEIVE

interrupt complete

FIGURE N-2 Receiving an Interrupt

Ver 15, 26 Apr. 2010 F. Appendix N Interrupt Handling 241

N.4 Interrupt ASI Registers

N.4.1 Outgoing Interrupt Vector Data<7:0> Register

Although JPS1 Commonality defines eight Outgoing Interrupt Vector Data Registers,
SPARC64 VIIIfx only implements three of these registers. An attempt to write
ASI_INTR_DATA_[3–7]W causes an undefined ASI exception.

Compatibility Note – This change is not compatible with SPARC JPS1.

N.4.2 Interrupt Vector Dispatch Register

In SPARC64 VIIIfx, all 10 VA<38:29> bits are ignored when the Interrupt Vector Dispatch
Register is written (impl. dep. #246).

SPARC64 VIIIfx implements 8 BUSY/NACK bit pairs. When the
ASI_INTR_DISPATCH_W register is written, bits BN<4:3> (= VA<28:27>) are disregarded.

In SPARC64 VIIIfx, bits ITID<9:3> (= VA<23:17>) are ignored.

N.4.3 Interrupt Vector Dispatch Status Register

In SPARC64 VIIIfx, 8 BUSY/NACK bit pairs are implemented. Up to 8 interrupts may be
outstanding at one time.

Reads to bits <63:16> return 0.

N.4.4 Incoming Interrupt Vector Data Registers

Although JPS1 Commonality defines eight Incoming Interrupt Vector Data Registers,
SPARC64 VIIIfx only implements three of these registers. An attempt to write
ASI_INTR_DATA_[3–7]R causes an undefined ASI exception.

Compatibility Note – This change is not compatible with SPARC JPS1.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 242

N.4.5 Interrupt Vector Receive Register

SPARC64 VIIIfx displays a 10-bit value in the SID_H and SID_L fields of the Interrupt
Vector Receive Register, but the value displayed is undefined. (impl. dep. #247).

N.6 Identifying an Interrupt Target
SPARC64 VIIIfx has multiple cores in a single processor module. Thus, SPARC64 VIIIfx
needs a mechanism for identifying which core should receive the interrupt. The two methods
of identification are ASI_SYS_CONFIG.ITID and ASI_EIDR. Firmware intializes
ASI_EIDR, which is then used to identify the thread that receives the interrupt.

For correct delivery of interrupt packets, the ASI_EIDR of each core should be initialized
with a unique ASI_EIDR<2:0> value. If this value is not unique, it cannot be guaranteed
that interrupt packets will be sent to the correct target.

Ver 15, 26 Apr. 2010 F. Appendix N Interrupt Handling 243

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 244

F.AP PE ND IX O

Reset, RED_state, and error_state

This appendix describes behavior after power-on and reset. In JPS1 Commonality, reset
behavior is described in Chapter 7.1. However, reset behavior is strongly dependent on the
hardware implementation; the SPARC64™ VIIIfx Extensions describes that information in
this appendix. See Chapter 7.1 for information on software-observable behavior, such as the
values of registers on entry into RED_state and the RED_state trap vector.

This appendix describes the following items:

■ Reset Types on page 245
■ RED_state and error_state on page 247
■ Processor State after Reset and in RED_state on page 249

The sections in this appendix do not match those in JPS1 Commonality.

O.1 Reset Types
This section describes the four reset types: power-on resets (POR), externally initiated reset
(XIR), watchdog reset (WDR), and software-initiated reset (SIR).

POR and XIR affect all the cores in a processor module. In other words, all the cores process
the same trap. On the other hand, WDR and SIR only affect the core that caused the reset.
Other cores are unaffected and continue to run.

O.1.1 Power-on Reset (POR)

For a POR to occur in SPARC64 VIIIfx, a sequence of JTAG commands must be issued to
the processor by an external facility.

Ver 15, 26 Apr. 2010 F. Appendix O Reset, RED_state, and error_state 245

When the reset pin is asserted or the Power Ready signal is de-asserted, the processor halts
and enters a state where only JTAG commands can be executed. Except for changes caused
by the execution of JTAG commands, the processor does not update any software-visible
resources and does not change the state of the memory system.

When a POR is received, the processor enters RED_state, causes a power_on_reset trap
(TT = 1), and begins executing instructions at RSTVaddr + 2016.

O.1.2 Watchdog Reset (WDR)

A watchdog reset (WDR) is also generated in the following cases:

■ TL < MAXTL, and a second watchdog timeout is detected.
■ TL = MAXTL, and a watchdog timeout is detected.
■ TL = MAXTL, and a trap occurs.

When a watchdog timeout is detected while TL < MAXTL, the processor causes a
watchdog_reset exception (TT = 2) and begins executing instructions at RSTVaddr + 4016.
In the other two cases, the CPU enters error_state without updating TT.

O.1.3 Externally Initiated Reset (XIR)

When an XIR request from the system is received, the processor enters RED_state, causes
an externally_initiated_reset trap (TT = 3) and begins executing instructions at
RSTVaddr + 6016.

O.1.4 Software-Initiated Reset (SIR)

Any core in the CPU chip can initiate a software-initiated reset using an SIR instruction.

If an SIR instruction is executed while TL < MAXTL (5), the processor enters RED_state,
causes software_initiated_reset trap (TT = 4), and begins executing instructions at
RSTVaddr + 8016.

If an SIR instruction is executed while TL = 5, the processor enters error_state and
eventually generates a watchdog reset trap.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 246

O.2 RED_state and error_state

In addition to the processor states defined in JPS1 Commonality, the CPU Fatal Error and
suspended states are also defined.

exec_state RED_state error_state**

DONE/RETRY
RED = 0

TRAP@MAXTL–1
SIR@<MAXTL

TRAP

RED = 1 TRAP@MAXTL
SIR@MAXTL

TRAP@<MAXTL
SIR@<MAXTL

TRAP@MAXTL
SIR@MAXTL @<MAXTL-1

POR

WDT1* WDT2**

XIR
Any State

Including Power Off

@<MAXTL-1

WDT1@MAXTL–1
WDT1@<MAXTL

WDT1@MAXTL

WDT2**

ErrorState trans Error

CPU Fatal
Error ***

Fatal Error

Fatal Error

WDR

suspended
@exec

SUSPEND

interrupt_level_n
interrupt_vector ****

suspended
@RED

SUSPEND

@<MAXTL-1

****@MAXTL

****@<MAXTL

****@MAXTL-1

* WDT1 is the initial watchdog timeout.

** WDT2 is the second watchdog timeout. WDT2 causes the CPU to enter error_state. Normally, error_state imme­
diately generates a watchdog reset trap, and the CPU enters RED_state; thus, error_state is transient. The OPSR (Op­
eration Status Register) can be set so that entry into error_state does not cause a watchdog reset, and the CPU remains
in error_state.

***In CPU_fatal_error_state, P_FERR indicates that a fatal error has been detected in the CPU, and the system causes
a FATAL reset. A soft POR of the CPU is initiated.

FIGURE O-1 Processor State Diagram

Ver 15, 26 Apr. 2010 F. Appendix O Reset, RED_state, and error_state 247

O.2.1 RED_state

Also see Section 7.1.1.

Once the processor enters RED_state for any reason except a power-on reset (POR),
software should not attempt to return to execute_state. If software attempts a return, the
state of the processor is unpredictable.

When a reset or trap causes the processor to enter RED_state, instructions are executed
starting from the appropriate offset in the RED_state trap vector, which is located at
RSTVaddr. In SPARC64 VIIIfx, RSTVaddr is VA = FFFF FFFF F000 000016, which is
equivalent to PA = 0000 01FF F000 000016.

Setting PSTATE.RED = 1 also causes the processor to enter RED_state. In this case, the
processor does not branch to the RED_state trap vector.

The following list further describes processor behavior on entry to RED_state, and
behavior while in RED_state:

■	 When a reset or trap causes the processor to enter RED_state, hardware invalidates a
number of features, and the ASI_DCUCR is updated. If needed, software should reset the
values of this register.

■	 When a condition other than a reset or trap causes the processor to enter RED_state
(such as when a WRPR sets PSTATE.RED to 1), DCUCR bits are not updated. The only
effect is that the IMMU is disabled.

■	 While the processor is in RED_state, the IMMU is disabled. That is, the value of
DCUCR.IM is ignored.

■	 Caches coherence is preserved while the processor is in RED_state.

O.2.2 error_state

The processor enters error_state when a trap occurs while TL = MAXTL (5) or when a second
watchdog time-out occurs.

Normally, the processor immediately generates a watchdog reset trap (WDR) and enters
RED_state. The OPSR (Operating Status Register) can be set such that a watchdog reset is
not generated on entry to error_state, and the processor remains in error_state.

O.2.3 CPU Fatal Error state

When the processor detects a fatal error, the processor enters the CPU Fatal Error state. The
processor reports the fatal error to the system and halts.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 248

O.3 Processor State after Reset and in RED_state
TABLE O-1, TABLE O-2, and TABLE O-3 show the processor states after various resets and
while in RED_state.

Programming Note – To return from error_state, SPARC64 VIIIfx may cause a
WDR. In this case, software observes that the cause of the WDR was an entry to
error_state; that is, the WDR corresponds to 2 transitions of the hardware state. The
WDR column in TABLE O-1, TABLE O-2 and TABLE O-3 shows the state of registers before and
after the WDR. This does not include the changes to the register state caused by the entry to
error_state.

TABLE O-1 shows the values of the privileged and nonprivileged registers after a trap or reset
causes the processor to enter RED_state. If RED_state is entered because a WRPR
instruction sets the PSTATE.RED bit, the privileged and nonprivileged registers are not
changed, except for the PSTATE.RED bit.

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state (1 of 2)

Name POR1 WDR2 XIR SIR RED_state

Integer registers Unknown/Unchanged Unchanged

Floating-point registers Unknown/Unchanged Unchanged

RSTV value VA = FFFF FFFF F000 000016

PA = 01FF F000 000016

PC RSTV | 2016 RSTV |4016 RSTV | 6016 RSTV | 8016 RSTV | A016

nPC RSTV | 2416 RSTV | 4416 RSTV | 6416 RSTV | 8416 RSTV | A416

PSTATE
AG 1 (Alternate globals)
MG 0 (MMU globals not selected)
IG 0 (Interrupt globals not selected)
IE 0 (Interrupt disable)
PRIV 1 (Privileged mode)
AM 0 (Full 64-bit address)
PEF 1 (FPU on)
RED 1 (Red_state)
MM 002 (TSO)

TLE 0 Unchanged
CLE 0 Copied from TLE

TBA<63:15> Unknown/Unchanged Unchanged

Y Unknown/Unchanged Unchanged

PIL Unknown/Unchanged Unchanged

Ver 15, 26 Apr. 2010 F. Appendix O Reset, RED_state, and error_state 249

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state (2 of 2)

Name POR1 WDR2 XIR SIR RED_state

CWP Unknown/Unchanged Unchanged
except for
register-
window traps

Unchanged Unchanged Unchanged
except for
register-
window traps

TT[TL] 1 trap type or 2 3 4 trap type

CCR Unknown/Unchanged Unchanged

ASI Unknown/Unchanged Unchanged

TL MAXTL min (TL + 1, MAXTL)

TPC[TL]

TNPC[TL]

Unknown/Unchanged

Unknown/Unchanged

PC

nPC

TSTATE
CCR
ASI
PSTATE
CWP
PC
nPC

Unknown/Unchanged CCR
ASI
PSTATE
CWP
PC
nPC

TICK
NPT
Counter

1
Restart at 0

Unchanged
Count

Unchanged
Restart at 0

Unchanged
Count

CANSAVE Unknown/Unchanged Unchanged

CANRESTORE Unknown/Unchanged Unchanged

OTHERWIN Unknown/Unchanged Unchanged

CLEARWIN Unknown/Unchanged Unchanged

WSTATE
OTHER
NORMAL

Unknown/Unchanged
Unknown/Unchanged

Unchanged
Unchanged

VER
MANUF
IMPL
MASK
MAXTL
MAXWIN

000416
8
Mask dependent
516
716

FSR 0 Unchanged

FPRS Unknown/Unchanged Unchanged

1.A hard POR occurs during power-on. Soft POR occurs when the reset signal is asserted.

2.The first watchdog timeout is taken in execute_state (PSTATE.RED = 0). The following watchdog timeout or a watchdog
timeout while TL = MAXTL causes the processor to enter RED_state. See Appendix O.1.2 for details.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 250

TABLE O-2 shows the values of the ASR registers after a trap or reset causes the processor to
enter RED_state. Setting PSTATE.RED with a WRPR instruction does not change the ASR
registers.

TABLE O-2 ASR State after Reset and in RED_state

ASR Name POR1 WDR2 XIR SIR RED_state

16 PCR
UT

ST
Others

0
0
Unknown/Unchanged

Unchanged

17 PIC Unknown/Unchanged Unchanged

18 DCR Always 0

19 GSR
IM

IRND
Others

0
0
Unknown/Unchanged

Unchanged
Unchanged
Unchanged

22 SOFTINT Unknown/Unchanged Unchanged

23 TICK_COMPARE
INT_DIS
TICK_CMPR

1
0

Unchanged
Unchanged

24 STICK
NPT
Counter

1
Restart at 0

Unchanged
Count

25 STICK_COMPARE
INT_DIS
TICK_CMPR

1
0

Unchanged
Unchanged

29 XAR 0 0

30 XASR Unknown/Unchanged Unchanged

31 TXAR[TL] Unknown/Unchanged XAR

1.A hard POR occurs during power-on. Soft POR occurs when the reset signal is asserted.

2.The first watchdog timeout is taken in execute_state (PSTATE.RED = 0). The following watchdog timeout or a
watchdog timeout while TL = MAXTL causes the processor to enter RED_state. See Appendix O.1.2 for details.

Ver 15, 26 Apr. 2010 F. Appendix O Reset, RED_state, and error_state 251

TABLE O-3 shows the values of the ASI registers after a trap or reset causes the processor to
enter RED_state. Setting PSTATE.RED with a WRPR instruction does not change the ASI
registers.

TABLE O-3 ASI Register State after Reset and in RED_state (1 of 2)

ASI VA Name POR1 WDR2 XIR SIR RED_state

4516 0016 DCUCR 0 0

4516 0816 MCNTL
RMD
Others

2
0

2
0

4816 0016 INTR_DISPATCH_STATUS 0 Unchanged

4916 0016 INTR_RECEIVE 0 Unchanged

4A16 — SYS_CONFIG
ITID System-Defined Value/

Unchanged
Unchanged

4B16 0016 STICK_CNTL 0 Unchanged

4C16 0016 AFSR Unknown/Unchanged Unchanged

4C16 0816 UGESR Unknown/Unchanged Unchanged

4C16 1016 ERROR_CONTROL
WEAK_ED
Others

1
Unknown/Unchanged

1
Unchanged

4C16 1816 STCHG_ERR_INFO Unknown/Unchanged Unchanged

4F16 0016–3816 SCRATCH_REGs Unknown/Unchanged Unchanged

5016 0016 IMMU_TAG_TARGET Unknown/Unchanged Unchanged

5016 1816 IMMU_SFSR Unknown/Unchanged Unchanged

5016 2816 IMMU_TSB_BASE Unknown/Unchanged Unchanged

5016 3016 IMMU_TAG_ACCESS Unknown/Unchanged Unchanged

5016 6016 IMMU_TAG_ACCESS_EXT Unknown/Unchanged Unchanged

5016 7816 IMMU_SFPAR Unknown/Unchanged Unchanged

5316 — SERIAL_ID Constant value Constant value

5416 — ITLB_DATA_IN Unknown/Unchanged Unchanged

5516 — ITLB_DATA_ACCESS Unknown/Unchanged Unchanged

5616 — ITLB_TAG_READ Unknown/Unchanged Unchanged

5716 — ITLB_DEMAP Unknown/Unchanged Unchanged

5816 0016 DMMU_TAG_TARGET Unknown/Unchanged Unchanged

5816 0816 PRIMARY_CONTEXT Unknown/Unchanged Unchanged

5816 1016 SECONDARY_CONTEXT Unknown/Unchanged Unchanged

5816 1816 DMMU_SFSR Unknown/Unchanged Unchanged

5816 2016 DMMU_SFAR Unknown/Unchanged Unchanged

5816 2816 DMMU_TSB_BASE Unknown/Unchanged Unchanged

5816 3016 DMMU_TAG_ACCESS Unknown/Unchanged Unchanged

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 252

 TABLE O-3 ASI Register State after Reset and in RED_state (2 of 2)

ASI VA Name POR1 WDR2 XIR SIR RED_state

5816 3816 DMMU_WATCHPOINT Unknown/Unchanged Unchanged

5816 6016 DMMU_TAG_ACCESS_EXT Unknown/Unchanged Unchanged

5816 6816 SHARED_CONTEXT Unknown/Unchanged Unchanged

5816 7816 DMMU_SFPAR Unknown/Unchanged Unchanged

5C16 — DTLB_DATA_IN Unknown/Unchanged Unchanged

5D16 — DTLB_DATA_ACCESS Unknown/Unchanged Unchanged

5E16 — DTLB_TAG_READ Unknown/Unchanged Unchanged

5F16 — DMMU_DEMAP Unknown/Unchanged Unchanged

6016 — IIU_INST_TRAP 0 Unchanged

6D16 0016–5816 BARRIER_INIT 0 Unchanged

6E16 0016 EIDR 0/Unchanged Unchanged

6F16 0016-5816 BARRIER_ASSIGN 0 Unchanged

7716 4016–5016 INTR_DATA0:2_W Unknown/Unchanged Unchanged

7716 7016 INTR_DISPATCH_W Unknown/Unchanged Unchanged

7F16 4016–5016 INTR_DATA0:2_R Unknown/Unchanged Unchanged

E716 0016 SCCR
NPT
Others

1
0

Unchanged

EF16 0016-5816 LBSY, BST 0 Unchanged

1.A hard POR occurs during power-on. Soft POR occurs when the reset signal is asserted.

2.The first watchdog timeout is taken in execute_state (PSTATE.RED = 0). The following watchdog timeout or a watchdog
timeout while TL = MAXTL causes the processor to enter RED_state. See Appendix O.1.2 for details.

O.3.1 Operating Status Register (OPSR)

The OPSR is the control register for the CPU chip. The value of the OPSR is specified
externally and cannot be changed by software. This value is set during the hardware power-
on/reset sequence before the CPU starts running and can be changed later using a JTAG
command.

Most of the OPSR settings are not visible to software.

Ver 15, 26 Apr. 2010 F. Appendix O Reset, RED_state, and error_state 253

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 254

F.AP PE ND IX P

Error Handling

This appendix describes the behavior of SPARC64 VIIIfx when an error occurs, as well as
information on error recovery for operating system and firmware programmers. Section
headings differ from those of Appendix P in JPS1 Commonality.

P.1 Error Types
In SPARC64 VIIIfx, errors are divided into the following 4 types:

■ Fatal Errors
■ Error State Transition Errors
■ Urgent Errors
■ Restrainable Errors

The SPARC64 VIIIfx processor has eight cores per processor module (cores are single-
threaded). The method for identifying which core caused an error depends on the error type.

An error that is caused by instruction execution or that occurs in a thread-specific resource is
called an error synchronous to thread execution. These errors are reported to the thread that
caused the error. The instruction_access_error and data_access_error exceptions are
belong to this group of errors.

An error that is not caused by instruction execution or that occurs in a resource shared by
multiple threads is called an error asynchronous to thread execution. These errors are
reported to all threads associated with the resource that caused the error.

Error marking is essentially asynchronous to thread execution. When an unmarked,
uncorrectable error (unmarked UE) is detected in the L1$ or L2$, the error is marked by the
valid core with the smallest EIDR. A valid core is a core that has not been degraded.

Another issue is how to log and report errors when the thread that caused the error is
suspended. Except for fatal errors, the error is not reported until the thread exits the
suspended state.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 255

P.1.1 Fatal Errors

A fatal error is an error that affects the error system.

a. Data coherency of the system cannot be preserved

All errors that destroy cache coherency belong in this category.

b. Invalid system control flow is detected; validity of subsequent system behavior
cannot be guaranteed

When a fatal error is detected, the CPU enters CPU Fatal Error state, reports the occurrence
of the fatal error to the system, and halts. After the system receives the report of the fatal
error, the system halts.

All fatal errors are asynchronous to thread execution. If a fatal error is detected in a given
thread, all threads within the processor module signal a Power On Reset (POR), regardless of
whether any threads are suspended.

P.1.2 Error State Transition Errors

An error_state transition error (EE) is a serious error that prevents the CPU from
reporting the error with a trap. However, any damage caused by the error is limited to within
the CPU.

When an error_state transition error is detected, the CPU enters error_state. The
CPU exits error_state by causing a watchdog reset, enters RED_state, and begins
executing the watchdog reset trap handler.

EE asynchronous to thread execution

The following error_state transition errors are asynchronous to thread execution. If an
EE asynchronous to thread execution is detected in a thread, error information is stored in the
ASI_STCHG_ERROR_INFO registers of all threads in the core. WDR exceptions are
signalled (unless a thread is suspended). Threads in other cores are not affected.

■ EE_TRAP_ADR_UE
■ EE_OTHER

EE synchronous to thread execution

The following error_state transition errors are synchronous to thread execution. If an
EE synchronous to thread execution is detected in a thread, error information is stored in the
ASI_STCHG_ERROR_INFO register of that thread, and a WDR exception occurs. Other
threads are not affected.

■ EE_SIR_IN_MAXTL

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 256

■ EE_TRAP_IN_MAXTL
■ EE_WDT_IN_MAXTL
■	 EE_SECOND_WDT

Note – SPARC64 VIIIfx cores are not multi-threaded. The ASI_STCHG_ERROR_INFO of
the given core stores error information for both error_state transition errors
synchronous to thread execution and asynchronous to thread execution.

P.1.3 Urgent Errors

An urgent error (UGE) is an error that requires immediate intervention by system software.
There are the following types of urgent errors:

■	 Errors that affect instruction excution

■	 I_UGE: Instruction urgent error
■	 IAE: Instruction access error
■	 DAE: Data access errors

■	 Errors that are independent of instruction execution

■	 A_UGE: Autonomous urgent error

Errors that affects instruction execution

An error that inhibits instruction execution is detected during instruction execution and
prevents futher execution.

When the error is detected while ASI_ERROR_CONTROL.WEAK_ED = 0 (as set by
privileged software for a normal program execution environment), an exception is generated.
This error is nonmaskable.

When ASI_ERROR_CONTROL.WEAK_ED = 1 (multiple error or during POST/OBP reset
processing), one of the following occurs:

■	 Whenever possible, the CPU writes an indeterminate value to the destination register of
the inhibited instruction, and the instruction commits.

■	 Otherwise, an exception is generated. The inhibited instruction is executed in the same
manner as when ASI_ERROR_CONTROL.WEAK_ED = 0.

There are three types of errors inhibit instruction execution:

■	 I_UGE (instruction urgent error) — Errors other than IAE (instruction access error) and
DAE (data access error). I_UGEs are divided into two groups.

■	 An uncorrectable error in an internal software-visible register that inhibits
instruction execution

Ver 15, 26 Apr. 2010	 F. Appendix P Error Handling 257

An uncorrectable error in the PSTATE, PC, NPC, CCR, ASI, FSR, or GSR register
belongs to this group of errors. The first watchdog timeout also belongs to this group
of I_UGEs.

■	 An error in the execution unit

Errors in the execution unit, errors in the temporary registers, and internal bus errors
belong to this group of errors.

I_UGE is equivalent to a preemptive error, which is described in Appendix P.2.2.

■	 IAE (instruction access error) — The instruction_access_error exception, as defined in
JPS1 Commonality. In SPARC64 VIIIfx, when an UE is detected in the cache or main
memory during instruction fetch, an IAE is generated.

IAE is a precise exception.

■	 DAE (data access error) — The data_access_error exception, as defined in JPS1
Commonality. In SPARC64 VIIIfx, when an UE is detected in the cache or main memory
during a data access, a DAE is generated.

DAE is a precise exception.

Urgent Error Independent of Instruction Execution
■	 A_UGE (Autonomous Urgent Error) — An error that occurs independent of instruction

execution and requires immediate processing.

During normal program execution, ASI_ERROR_CONTROL.WEAK_ED = 0. In this case,
an A_UGE exception is suppressed during processing of the UGE (that is, in the
async_data_error trap handler).

Otherwise, in cases such as a multiple error or during POST/OBP reset processing,
ASI_ERROR_CONTROL.WEAK_ED = 1 is set by software. In this case, an A_UGE
exception is not generated.

There are two types of A_UGE:

■	 An error that occurs in an important resource and that causes a fatal error or

error_state transition error is when the resouce is used.

■	 An error that occurs in an important resource and that causes an OS panic.

OS panic occurs when the resource containing the error is used and execution cannot
be continued.

A_UGE is a disrupting error, with the following differences from SPARC V9:

■	 PSTATE.IE = 0 does not mask an A_UGE trap.

■	 There are cases where the instruction pointed to by TPC cannot complete precisely.
The completion method for the instruction is displayed in the trap status register.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 258

Exception Signalling for Urgent Errors

When an urgent error is detected and not masked, the error is reported to system software by
one of the following exceptions:

■ I_UGE, A_UGE: async_data_error exception

■ IAE: instruction_access_error exception

■ DAE: data_access_error exception

Urgent error asynchronous to thread execution

The following errors are asynchronous to thread execution. If these errors occur in a thread,
the ASI_UGESR registers of all threads in the core record the error, and async_data_error
exceptions are signalled. Suspended threads do not signal the exception. Other threads are
not affected.

■ IAUG_CRE
■ IAUG_TSBCTXT
■ IUG_TSBP
■ IUG_PSTATE
■ IUG_TSTATE
■ IUG_%F (excluding f[n] parity errors)
■ IUR_%R (excluding r[n] or Y parity errors)
■ IUG_WDT
■ IUG_DTLB
■ IUG_ITLB
■ IUG_COREERR

Urgent error synchronous to thread execution

The following errors are synchronous to thread execution. If these errors occur in a thread,
only the ASI_UGESR register of that thread records the error. An async_data_error
exceptionis signalled, unless the thread is suspended. Other threads are not affected.

■ IUG_%F (f[n] parity error only)
■ IUR_%R (r[n] or Y parity error only)

Note – SPARC64 VIIIfx cores are not multi-threaded. The ASI_UGESR of the given core
records error information for both urgent errors synchronous to thread execution and
asynchronous to thread execution.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 259

P.1.4 Restrainable Errors

A restrainable error is an error that does not require immediate handling by system software
because it does not seriously affect the currently executing program. A restrainable error
causes a disrupting trap with low priority.

There are two types of restrainable errors:

■	 Uncorrectable errors that do not affect the currently executing instruction sequence.

An error detected during a cache line writeback or copyback data belongs to this group.

■	 Degrade Error

When errors occur frequently, a resource that can be isolated without seriously affecting
instruction execution is degraded; that is, the resource is no longer used. Some
performance is sacrificed.

Compatibility Note – When SPARC64 VIIIfx detects a correctable error (CE), the error
is automatically corrected. Software is not notified.

A restrainable error is reported by the ECC_error trap. This trap only occurs when a
restrainable error can be signalled and PSTATE.IE = 1.

DG_U2$, UE_RAW_L2$INSD

These errors are asynchronous to thread execution. When these errors are detected, the
ASI_AFSR registers of all threads in the processor module record the error, and ECC_error
exceptions are signalled. Suspended threads do not signal the exception.

DG_D1$sTLB, UE_RAW_D1$INSD

These errors are asynchronous to thread execution. When these errors are detected, the
ASI_AFSR registers of all threads in the core record the error, and ECC_error exceptions are
signalled. Suspended threads do not signal the exception.

Threads in other cores are not affected.

UE_DST_BETO

This error is synchronous to thread execution. When this error is detected, the ASI_AFSR
register of the thread that caused the error records the error. An ECC_error exception is
signalled, unless the thread is suspended. Other threads are not affected.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 260

P.1.5 instruction_access_error

This error is synchronous to thread execution. When this error is detected, the ASI_ISFSR,
TPC, and ASI_ISFPAR registers of the thread that caused the error record the error. An
instruction_access_error exception is signalled. Other threads are not affected.

P.1.6 data_access_error

This error is synchronous to thread execution. When this error is detected, the ASI_DSFSR,
ASI_DSFAR, and ASI_DSFPAR registers of the thread that caused the error record the
error. A data_access_error exception is signalled. Other threads are not affected.

P.2 Error Handling and Error Control

P.2.1 Registers Used for Error Handling

TABLE P-1 lists the registers used for error handling. The ASI_ERROR_CONTROL register
controls whether an exception is signalled when an error is detected, and ASI_EIDR stores
the ID used for error marking. The other registers display information on the error.

TABLE P-1 Registers Used for Error Handling

ASI VA Name Location of Description

4C16 0016 ASI_ASYNC_FAULT_STATUS P.7.1

4C16 0816 ASI_URGENT_ERROR_STATUS P.4.1

4C16 1016 ASI_ERROR_CONTROL P.2.6

4C16 1816 ASI_STCHG_ERROR_INFO P.3.1

5016 1816 ASI_IMMU_SFSR F.10.9

5016 7816 ASI_IMMU_SFPAR F.10.12

5816 1816 ASI_DMMU_SFSR F.10.9

5816 2016 ASI_DMMU_SFAR F.10.10 of JPS1 Commonality

5816 7816 ASI_DMMU_SFPAR F.10.12

6E16 0016 ASI_EIDR P.2.5

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 261

P.2.2 Summary of Behavior During Error Detection

Behavior during error detection is described below.

Conditions that Inhibit Error Detection

Error Type	 Conditions Inhibiting Detection

Fatal error	 None (always detected).

error_state transistion When ASI_ECR.WEAK_ED = 1, most errors are not
error detected.

Urgent error	 I_UGE, IAE, DAE:
•	 When ASI_ECR.WEAK_ED = 1 or in a suspended state,

most errors are not detected.

A_UGE:
•	 In a suspended state, most errors are not detected.
•	 Errors that are not associated with register use are

restrained when ASI_ECR.WEAK_ED = 1, or for
individual error conditions.
Errors that are associated with register use are restrained

for individual error conditions.

(There are few individual error conditions.)

Restrainable error None.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 262

Conditions that Inhibit Exception Signalling when an Error is
Detected

Error Type	 Conditions Inhibiting Signalling

Fatal error	 None (always detected).

error_state transistion None (always detected).
error

Urgent error	 I_UGE, IAE, DAE:
•	 In a suspended state.

A_UGE:
•	 When ASI_ECR.UGE_HANLDER = 1.
•	 When ASI_ECR.WEAK_ED = 1.

If the exception is masked when detected, the trap is
delayed. Once the exception is no longer masked,
async_data_error is signalled.

•	 In a suspended state.

Restrainable error • When ASI_ECR.UGE_HANLDER = 1.
•	 When ASI_ECR.WEAK_ED = 1.
•	 When PSTATE.IE = 1.
•	 When the error is masked.

The fields ASI_ECR.RTE_DG and ASI_ECR.RTE_UE
mask different types of errors.

•	 In a suspended state.

Behavior During Error Detection

Error Type	 Behavior

Fatal error	 1. CPU enters the CPU Fatal Error state.
2.	 CPU notifies the system that a fatal error has occurred.
3. The system halts.

error_state transistion error 1. CPU enters error_state.
2.	 A WDR is signalled by the CPU.

Ver 15, 26 Apr. 2010	 F. Appendix P Error Handling 263

Error Type	 Behavior

Urgent error	 I_UGE:
•	 When ASI_ECR.UGE_HANLDER = 0, a single-ADE trap

occurs.
• When ASI_ECR.UGE_HANLDER = 1, a multiple-ADE trap

occurs.

A_UGE:
•	 When exception signalling is not masked, a single-ADE trap

occurs.
•	 When exception signalling is masked, notification of the

exception is pending.

IAE:
•	 When ASI_ECR.UGE_HANLDER = 0, an IAE exception is

signalled.
• When ASI_ECR.UGE_HANLDER = 1, a multiple-ADE trap

occurs.

DAE:
•	 When ASI_ECR.UGE_HANLDER = 0, a DAE exception is

signalled.
• When ASI_ECR.UGE_HANLDER = 1, a multiple-ADE trap

occurs.

Restrainable error	 When exception signalling is not masked, an ECC_error
exception may be signalled even though ASI_AFSR does not
display any error information.
1.	 When error notification is pending and a write to

ASI_AFSR occurs, the error information is overwritten.
2.	 When an UE is detected and an ECC_error is signalled, a

write to ASI_AFSR erases a pending DG.
3.	 When a DG is detected and an ECC_error is signalled, a

write to ASI_AFSR erases a pending UE.

When such exceptions are signalled, system software should
ignore the exception and continue processing.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 264

Relationship between TPC and the Instruction that Caused the Error

Error Type	 Behavior

Fatal error	 No relationship.

error_state transistion No relationship.
error

Urgent error	 I_UGE:
•	 For TLB write errors, TPC points to the instruction that

attempted to update the TLB; TPC may also point to the
instruction that immediately preceded the instruction that
attempted to update the TLB. A TLB write error is detected
when a subsequent DONE/RETRY instruction is executed,
or an exception is signalled.

•	 For all other errors, TPC points to the instruction that
follows the instruction causing the error.

A_UGE:
•	 No relationship.

IAE, DAE
•	 TPC points to the instruction that caused the error.

Restrainable error No relationship.

Other

Priority when Multiple Types of Errors are Detected Simultaneously

error_state transition
Fatal Error error Urgent Error Restrainable Error

1.	 Enter fatal error 2. Enter 3. ADE (TT = 4016) 6. ECC_error_trap
state error_state 4. DAE (TT = 3216) (TT = 6316)
(TT = 1) (TT = 2) 5. IAE (TT = 0A16)

Completion Method for an Interrupt Instruction

error_state transition
Fatal Error error Urgent Error Restrainable Error

Cannot commit.	 Cannot commit. ADE: Conforms to the JPS1
•	 See P.4.3. definition for a

precise exception.
IAE, DAE:
•	 Conforms to the

JPS1 definition for a
precise exception.

Ver 15, 26 Apr. 2010	 F. Appendix P Error Handling 265

Error Display Registers

error_state transition
Fatal Error error Urgent Error Restrainable Error

ASI_STCHG_ I_UGE, A_UGE: ASI_AFSR
 ERROR_INFO • ASI_UGESR

IAE:
• ASI_ISFSR

DAE:
• ASI_DSFSR

Number of Errors Signalled by One Exception

Fatal Error
error_state transition
error Urgent Error Restrainable Error

All fatal errors are
detected.

All error_state
transition errors are

Single ADE:
• All I_UGE and

All restrainable errors
are detected and

detected and displayed
in ASI_STCHG_
 ERROR_INFO.

A_UGE are detected.

Multiple ADE:
• If a multiple ADE

trap occurs, the first
ADE is displayed in
ASI_UGESR.

displayed in
ASI_AFSR.

IAE:
• Only one is shown.

DAE:
• Only one is shown.

P.2.3 Limits to Automatic Correction of Correctable Errors

When a correctable error (CE) is detected, the CPU corrects the input data and proceeds with
the operation; however, there are limits to whether the source data can be corrected
automatically. The following data cannot be corrected automatically:

■ CE in memory
■ CE in received interrupt data (ASI_INTR_DATA_R)

When other correctable errors are detected, the CPU can automatically correct the source
data containing the CE.

For a CE in ASI_INTR_DATA, no special action is required by the OS because the error
data will be overwritten when the next interrupt is received. For a CE in memory, it is
expected that the OS will correct the error.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 266

P.2.4 Error Marking for Cacheable Data

Error Marking for Cacheable Data

When hardware first detects an uncorrectable error (UE) in cacheable data, the data and ECC
are replaced with a particular pattern. Using this pattern, the presence of an error can be
identified, and the source of the error can be determined. This is called error marking. Error
marking specifies the source of the error and prevents a single error from being reported
multiple times.

The following data in the system are ECC protected:

■ Main memory
■ Data bus between memory and ICC
■ U2 cache data
■ D1 cache data

When the CPU detects an unmarked UE, error marking is performed.

Whether data containing an UE has been marked or not is determined from the ECC
syndrome of each doubleword, as shown in TABLE P-2.

TABLE P-2 Syndrome for Marked Data

Syndrome Error Marking Status Type of UE

7F16 Marked Marked UE

Multi-bit error pattern other than 7F16 Not marked yet Unmarked UE (Raw UE)

The syndrome 7F16 indicates that a 3-bit error occurred in the doubleword. Error marking
introduces the ECC syndrome in the doubleword when the original data and ECC are
replaced, as explained in the following section. The probability of syndrome 7F16 occurring
when the data does not contain a marked UE is considered to be zero.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 267

Format for Error-Marking Data

When an unmarked UE is detected in cacheable data, the doubleword containing the error
and the corresponding ECC are replaced with error-marking data, which has the format
described in TABLE P-3.

TABLE P-3 Format for Error-Marking Data

Data/ECC Bits Value

data 63 Error bit. The value is indeterminate.

62:56 0 (7 bits).

55:42 ERROR_MARK_ID (14 bits).

41:36 0 (6 bits).

35 Error bit. The value is indeterminate.

34:23 0 (12 bits).

22 Error bit. The value is indeterminate.

21:14 0 (8 bits).

13:0 ERROR_MARK_ID (14 bits).

ECC This pattern indicates a 3-bit error in bits 63, 35, and 22. That is, this
pattern is set so that a syndrome of 7F16 is detected.

The ERROR_MARK_ID (14 bits) indicates the source of the error. The hardware that detected

sets this value.

The format of ERROR_MARK_ID is described in TABLE P-4.

TABLE P-4 ERROR_MARK_ID Bit Description

Bits Value

13:12 Module_ID. Indicates the hardware where the error occurred.
002:
012:
102:
112:

Memory system (including DIMM)
Channel
CPU
Reserved

11:0 Source_ID. When Module_ID = 002, the 12-bit Source_ID field is always 0. Otherwise,
the Source ID is set to the ID of the hardware that detected the error.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 268

ERROR_MARK_ID Set by CPU

TABLE P-5 shows the ERROR_MARK_ID set by the CPU.

TABLE P-5 ERROR_MARK_ID Set by CPU

Type of unmarked UE Module_ID Source_ID

Incoming data from memory 002 (Memory system) 0

Outgoing data to memory 102 (CPU) 1 0000 00002 0002

U2 cache data 102 (CPU) 1 0000 00002 0002

D1 cache data 102 (CPU) 0 0000 00002 ASI_EIDR<2:0>

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 269

P.2.5 ASI_EIDR

The ASI_EIDR register stores information needed to form the Source_ID of the
ERROR_MARK_ID. This information is also used for identifying the interrupt target (see
Appendix N.6).

Register name ASI_EIDR

ASI 6E16

VA 0016

Error Detection Parity

Format See TABLE P-6

TABLE P-6 ASI_EIDR Bit Description

Bit Field Access Description

63:3 Reserved R 	 Always 0.

2:0	 ERROR_MARK_ID RW When an error occurs in the CPU, this field is copied to the
ERROR_MARK_ID of the error data.

Compatibility Note – In SPARC64 VII, software was required to set the value 102 into
ASI_EIDR<13:12>. In SPARC64 VIIIfx, software no longer needs to set
ASI_EIDR<13:12>, as the value of Module_ID_Value is fixed in hardware.

P.2.6 Error Detection Control (ASI_ERROR_CONTROL)

The ASI_ERROR_CONTROL register sets which errors are masked, as well as the behavior
during error detection.

Register name ASI_ERROR_CONTROL (ASI_ECR)

ASI 4C16

VA 1016

Error detection None

Format See TABLE P-7.

Initial value after reset After a hard POR, ASI_ERROR_CONTROL.WEAK_ED is set
to 1. All other fields are set to 0.

For other rests, the values of UGE_HANDLER and WEAK_ED

are copied to ASI_STCHG_ERROR_INFO and all fields are

set to 0.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 270

The ASI_ERROR_CONTROL register controls how errors are detected, how exceptions are
signalled, and how multiple-ADE traps are processed. Registers fields are described below in
TABLE P-7.

TABLE P-7 ASI_ERROR_CONTROL Bit Description

Bit Field Access Description

9 RTE_UE RW Specifies whether certain restrainable errors (UE, unmarked
UE) are signalled. Behavior is described in Appendix P.2.2.

8 RTE_DG RW Specifies whether certain restrainable errors (degrade error)
are signalled. Behavior is described in Appendix P.2.2.

1 WEAK_ED RW Weak Error Detection. Controls whether detection of I_UGE
and DAE is inhibited:

When WEAK_ED = 0, error detection is not inhibited.
When WEAK_ED = 1, error detection is inhibited if the CPU
can continue processing.

When an I_UGE or DAE is detected during instruction
execution while WEAK_ED = 1, the value of the result (in
register or memory) is indeterminate.

If WEAK_ED = 1 but the CPU cannot ignored an I_UGE or
DAE and continue processing, the error is signalled.

WEAK_ED masks exception signalling for A_UGE and
restrainable errors, as described in Appendix P.2.2.

When a multiple-ADE trap occurs, WEAK_ED is set to 1 by
hardware.

0 UGE_HANDLER RW When a UGE occurs, this bit is used by hardware to determine
whether the OS is processing the UGE.

0: Hardware recognizes that the OS is not processing the
UGE.

1: Hardware recognizes that the OS is processing the UGE.

UGE_HANDLER masks exception signalling for A_UGE and
restrainable errors, as described in Appendix P.2.2.

The value of UGE_HANDLER is used to determine whether a
multiple-ADE trap is caused when I_UGE, IAE, and DAE occur.

When an ADE occurs, UGE_HANDLER = 1. A RETRY/DONE
resets UGE_HANDLER to 0.

Other Reserved R Always reads as 0.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 271

P.3	 Fatal Errors and error_state Transition
Errors

P.3.1	 ASI_STCHG_ERROR_INFO

The ASI_STCHG_ERROR_INFO register indicates information for detected
error_state transition errors. This information is primarily intended for use by OBP
(Open Boot PROM) software.

Compatibility Note – In SPARC64 VIIIfx, information on a fatal error is not displayed in
ASI_STCHG_ERROR_INFO. That is, system software cannot know the details of a fatal
error.

Register name ASI_STCHG_ERROR_INFO

ASI 4C16

VA 1816

Error Detection None

Format See TABLE P-8

Initial value after reset After a hard POR, all fields are set to 0.

For other resets, values are unchanged.

Update policy When an error is detected, the corresponding bit is set to 1.
Writing 1 to bit 0 sets all bits in the register to 0.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 272

TABLE P-8 describes the fields in the ASI_STCHG_ERROR_INFO register. Once a “sticky”
bit is set to 1, that value is not modified by hardware.

TABLE P-8 ASI_STCHG_ERROR_INFO bit description (１ of ２)

Bit Field Access Description

63:34 Reserved R Always 0.

33 ECR_WEAK_ED R ASI_ERROR_CONTROL.WEAK_ED is copied into
this field on a POR or watchdog reset.

32 ECR_UGE_HANDLER R ASI_ERROR_CONTROL.UGE_HANDLER is copied
into this field on a POR or watchdog reset.

31:24 Reserved R Always 0.

23 EE_MODULE RW Indicates a request to degrade the CPU module due
to an error state transition error. Sticky.

22 EE_CORE RW Indicates a request to degrade the core due to an
error state transition error. Sticky.

21 EE_THREAD RW Indicates a request to degrade the thread due to an
error state transition error. Sticky. Hardware does
not set this bit to 1.

20 UGE_MODULE RW Indicates a request to degrade the CPU module due
to an urgent error. Sticky.

19 UGE_CORE RW Indicates a request to degrade the core due to an
urgent error. Sticky.

18 UGE_THREAD RW Indicates a request to degrade the thread due to an
urgent error. Sticky.

Hardware does not set this bit to 1.

17 rawUE_MODULE RW Indicates that an unmarked UE was detected in L2$.
Sticky.

16 rawUE_CORE RW Indicates that an unmarked UE was detected in L1$.
Sticky.

15 EE_DCUCR_MCNTL_ECR R Indicates that an UE was detected in one of the
following registers:

(A) ASI_DCUCR
(A) ASI_MCNTL
(A) ASI_ECR

14 EE_OTHER R Set to 1 when an error occurs for a case not listed is
this table. This bit is always 0 in SPARC64 VIIIfx.

13 EE_TRAP_ADR_UE R Indicates that the trap address could not be
calculated because a UE occurred in the TBA, TT, or
address calculation logic.

12 Reserved R Always 0.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 273

TABLE P-8 ASI_STCHG_ERROR_INFO bit description (２ of ２)

Bit Field	 Access Description

11 EE_WDT_IN_MAXTL R	 Indicates that a watchdog timeout occurred while
TL = MAXTL.

10 EE_SECOND_WDT R	 Indicats that a second watchdog timeout was
detected after an async_data_error exception
occurred. (async_data_error was the first
watchdog timeout.)

9 EE_SIR_IN_MAXTL R Indicates that an SIR occurred while TL = MAXTL.

8 EE_TRAP_IN_MAXTL R Indicates that a trap occurred while TL = MAXTL.

7:1 Reserved R Always 0.

0 clear_all W Writing 1 to this bit sets all fields in this register to

0.

P.3.2 Error_state Transition Error in Suspended Thread

SPARC64 VIIIfx enters the suspend state using a suspend instruction. Only POR, WDR,
XDR, interrupt_vector and interrupt_level_n exceptions can return it back to the running
state. If an error occurred in the resources related to those exceptions, the thread stays
suspended forever. To prevent this situation, an urgent error regarding the following registers
is reported as error_state transition error in suspended state.

■ ASI_EIDR
■ STICK, STICK_CMPR
■ TICK, TICK_CMPR

In this case, ASI_STCHG_ERROR_INFO.UGE_CORE, along with corresponding bit of
ASI_UGESR is set to 1.

P.4 Urgent Error
This section explains the details of urgent errors, such as status monitoring and completion
methods for instructions that are forced to complete.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 274

P.4.1 URGENT ERROR STATUS (ASI_UGESR)

Register name ASI_URGENT_ERROR_STATUS

ASI 4C16

VA 0816

Error detection None

Format See TABLE P-9

Initial value after reset After a hard POR, all fields are set to 0.

For other resets, the values are unchanged.

The ASI_UGESR displays error information when an async_data_error (ADE) occurs, as
well as error information for the second error when a multiple ADE occurs.

TABLE P-9 describes the fields of the UGESR. In the table, the prefixes for each field have the
following meanings:

■ IUG_ Instruction Urgent error
■ IAG_ Autonomous Urgent error
■ IAUG_ Both I_UGE and A_UGE

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 275

TABLE P-9 ASI_UGESR Bit Description (１ of ２)

Bit Field Access	 Description

Setting a bit in ASI_UGESR<22:8> to 1 indicates that the corresponding error caused the single-ADE
trap. Each bit in ASI_UGESR<22:16> indicates an error in an internal CPU register. The error
detection conditions for these errors are defined in “Internal Register Error Handling” (page 286).

22 IAUG_CRE R Uncorrectable error in any of the following registers:
(IA) ASI_EIDR
(IA) ASI_WATCHPOINT (when enabled)
(I) ASI_INTR_R
(A) ASI_INTR_DISPATCH_W (UE during write)
(IA) STICK
(IA) STICK_CMPR

21 IAUG_TSBCTXT R Uncorrectable error in any of the following registers:
(IA) ASI_DMMU_TSB_BASE
(IA) ASI_PRIMARY_CONTEXT
(IA) ASI_SECONDARY_CONTEXT
(IA) ASI_SHARED_CONTEXT
(IA) ASI_IMMU_TSB_BASE

20 IUG_TSBP R	 Uncorrectable error in any of the following registers:
(I) ASI_DMMU_TAG_TARGET
(I) ASI_DMMU_TAG_ACCESS
(I) ASI_IMMU_TAG_TARGET
(I) ASI_IMMU_TAG_ACCESS

19 IUG_PSTATE R Uncorrectable error in any of the following registers:
PSTATE, PC, NPC, CWP, CANSAVE, CANRESTORE,
OTHERWIN, CLEANWIN, PIL, WSTATE

18 IUG_TSTATE R Uncorrectable error in any of the following registers:
TSTATE, TPC, TNPC, TXAR

17 IUG_%F R	 Uncorrectable error in the floating-point registers (including
the added registers), FPRS register, FSR, or GSR.

16 IUG_%R R	 Uncorrectable error in the general-purpose integer registers
(including the added registers), Y register, CCR, or ASI
registers.

14 IUG_WDT R	 First watchdog timeout. A single-ADE trap sets IUG_WDT = 1
and halts execution of the instruction pointed to by TPC; the
result of the instruction result is indeterminate.

10 IUG_DTLB R	 When an uncorrectable error occurs in the DTLB during a load,
store, or demap, this bit is set to1. Indicates the following:
•	 On a DTLB read via ASI_DTLB_DATA_ACCESS and
ASI_DTLB_TAG_ACCESS, an UE occurred in DTLB data
or DTLB tag.

•	 A write to the DTLB or a demap failed. TPC indicates either
the instruction that caused the error or the following
instruction.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 276

TABLE P-9 ASI_UGESR Bit Description (２ of ２)

Bit Field Access	 Description

9 IUG_ITLB R	 When an uncorrectable error occurs in the ITLB during a load,
store, or demap, this bit is set to1. Indicates the following:
•	 On a ITLB read via ASI_ITLB_DATA_ACCESS and
ASI_ITLB_TAG_ACCESS, an UE occurred in ITLB data or
ITLB tag.

•	 A write to the ITLB or a demap failed. TPC indicates either
the instruction that caused the error or the following
instruction.

8 IUG_COREERR R	 Indicates an error occurred in the CPU core. When an error
occurs in an execution resource or a resource that is not
software-visible, this bit is set to 1.

When an error occurs in a program-visible register and an
instruction that reads the register is executed, the error bit
corresponding to that register is always set; IUG_COREERR
may or may not also be set.

5:4	 INSTEND R Completion method for trapped instruction. When a watchdog
timeout is not detected for a single-ADE trap, INSTEND
indicates the completion method for instruction pointed to by
TPC.

002: Precise
012: Retryable but not precise
102: Reserved
112: Not retryable

See P.4.3 for details. When a watchdog timeout occurs, the
completion method is undefined.

3 PRIV R	 Privileged mode. The value of PSTATE.PRIV immediately
before the single-ADE trap is copied.

When this value is unknown because a UE occurred in the
PSTATE register, ASI_UGESR.PRIV is set to 1.

2 MUGE_DAE R Indicates that a DAE caused multiple UGEs. For a single-ADE
trap, MUGE_DAE is set to 0. For a multiple-ADE trap caused by
a DAE, MUGE_DAE is set to 1. A multiple-ADE trap not caused
by a DAE does not change MUGE_DAE.

1 MUGE_IAE R Indicates that a IAE caused multiple UGEs. For a single-ADE
trap, MUGE_IAE is set to 0. For a multiple-ADE trap caused by
an IAE, MUGE_IAE is set to 1. A multiple-ADE trap not caused
by an IAE does not change MUGE_IAE.

0 MUGE_IUGE R Indicates that a I_UGE caused multiple UGEs. For a single-
ADE trap, MUGE_IUGE is set to 0. For a multiple-ADE trap
caused by an I_UGE, MUGE_IUGE is set to 1. A multiple-ADE
trap not caused by an I_UGE does not change MUGE_IUGE.

Other Reserved R Always 0.

Ver 15, 26 Apr. 2010	 F. Appendix P Error Handling 277

P.4.2 Processing for async_data_error (ADE) Traps

Single-ADE traps and multiple-ADE traps are generated by the conditions defined in P.2.2.
This section describes trap processing for these traps in more detail.

1. The following conditions cause ADE traps:

■	 When ASI_ERROR_CONTROL.UGE_HANDLER = 0 and I_UGEs and/or A_UGEs are
detected, a single-ADE trap is generated.

■	 When ASI_ERROR_CONTROL.UGE_HANDLER = 1 and I_UGEs, IAE, and/or DAE are
detected, a multiple-ADE trap is generated.

2. State transition, trap target address calculation, and TL processing are performed in the
following order:

a.	 Perform state transition

When TL = MAXTL, the CPU enters error_state and abandons the ADE trap.

When the CPU is in execute state with TL = MAXTL − 1, the CPU enters RED_state.

b. Calculate trap target address

When the CPU is in execute state, the address is calculated from TBA, TT, and TL.

Otherwise, the CPU is in RED_state and the address is set to RSTVaddr + A016.

c.	 TL is incremented by 1.

3. Update TSTATE, TPC, TNPC, and TXAR

The values of PSTATE, PC, NPC, and XAR immediately before the ADE trap occurred are
copied to TSTATE, TPC, TNPC, and TXAR respectively. If the original register contained
an UE, the UE is also copied.

4. Update values of other registers

The following 3 groups of registers are updated:

a.	 Automatically verified registers

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 278

Hardware updates the following registers.

Register Update Condition Updated Value

PSTATE Always AG = 1, MG = 0, IG = 0, IE = 0,
PRIV = 1, AM = 0, PEF = 1, RED = 0
(or 1 depending on the CPU status),
MM = 00, TLE = 0, CLE = 0.

PC Always ADE trap address.

nPC Always ADE trap address + 4.

CCR When the register contains an UE 0.

FSR, GSR When the register contains an UE A 0 is written to all registers that
contain an UE. For a single-ADE
trap, ASI_UGESR.IUG_%F is set to
1.

CWP, CANSAVE, When the register contains an UE A 0 is written to all registers that
CANRESTORE, contain an UE. For a single-ADE
OTHERWIN, trap, ASI_UGESR.IUG_PSTATE is
CLEANWIN set to 1.

TICK When the register contains an UE NPT = 1, Counter = 0.

TICK_COMPARE When the register contains an UE INT_DIS = 1, TICK_CMPR = 0.

XAR Always 0

XASR When the register contains an UE 0

Updating these register removes any errors in these registers.

Errors in registers other than those listed above and errors in TLB entires are not
removed.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 279

b. ASI_UGESR

Bits Field Update on a Single-ADE Trap Update on a Multiple-ADE Traps

63:6 Error All bits in this field are Unchanged.
Description updated.

Displays all I_UGEs and
A_UGEs detected.

5:4 INSTEND Indicates the completion Unchanged.
method for the instruction
pointed to be TPC.

2 MUGE_DAE Set to 0. If a DAE caused the multiple-ADE trap,
MUGE_DAE is set to 1.
Otherwise, MUGE_DAE is unchanged.

1 MUGE_IAE Set to 0. If an IAE caused the multiple-ADE trap,
MUGE_IAE is set to 1.
Otherwise, MUGE_IAE is unchanged.

0 MUGE_IUGE Set to 0. If an I_UGE caused the multiple-ADE
trap, MUGE_IUGE is set to 1.
Otherwise, MUGE_IUGE is unchanged.

c. ASI_ERROR_CONTROL

On a single-ADE trap, ASI_ERROR_CONTROL.UGE_HANDLER is set to 1.
UGE_HANDLER is set to 1 until a RETRY or DONE instruction is executed; this informs
hardware that the error is being processed.

On a multiple-ADE trap, ASI_ERROR_CONTROL.WEAK_ED is set to 1, and the CPU
runs in weak error detection mode.

5. Set ASI_ERROR_CONTROL.UGE_HANDLER to 0.

When a RETRY or DONE instruction is committed, UGE_HANDLER is set to 0.

P.4.3 Instruction Execution when an ADE Trap Occurs

In SPARC64 VIIIfx, an instruction forced to complete by an async_data_error exception
completes in one of 3 ways. That is, the instruction pointed to by the TPC is one of 3 types:

■ Precise
■ Retryable but not precise (not defined in JPS1)
■ Not retryable (not defined in JPS1)

For a single-ADE trap, the completion method for the instruction pointed to by the TPC is
indicated in ASI_UGESR.INSTEND.

TABLE P-10 describes the difference between each completion method.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 280

TABLE P-10 Instruction Execution when an async_data_error Trap Occurs

Precise Retryable But Not Precise Not Retryable

Instructions executed after the
last ADE, IAE, or DAE trap but
before the instruction pointed
to by TPC.

Committed.

Instructions that do not cause an UGE complete as specified. The results of instructions that
cause an UGE are undefined; that is, an undefined value is written to the destination register
or memory.

Instruction pointed to by TPC Not executed. The result of the instruction is
incomplete.

Only part of the result is written,
and there are cases where the result
is corrupted.

Registers and memory not
associated with the instruction are
not affected.

The following behavior does not
occur:
• A store to a cacheable address

space (both memory and cache).
• A store to a noncacheable address

space.
• An update of the result register

when the register is also a source
operand register.

The result of the instruction is
incomplete.

Only part of the result is written,
and there are cases where the result
is corrupted.

Registers and memory not
associated with the instruction are
not affected.

A store to an invalid address is not
performed (a store to a valid
address may be performed).

Instructions to be executed
after the instruction pointed to
by TPC

Not executed. Not executed. Not executed.

The possibility of resuming
the program that signalled the
exception when the error was
reported by a single-ADE trap
and did not cause any damage.

Possible. Possible. Impossible.

P.4.4 Expected Software Handling of ADE Traps

Expected software handling of an ADE trap is described by the pseudo C code below. The
purpose of this code is to recover from the following errors:

■ An error in the CPU internal RAM or registers
■ An error in the accumulator
■ An error in the CPU internal temporary registers or data bus

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 281

void

expected_software_handling_of_ADE_trap()

{

/*

 * From here to Point#1, only %r0-%r7 are used because

 * register window control registers may be invalid.

* In a single-ADE trap handler, it is recommendeded that

 * only %r0-%r7 be used, if possible.

 */

ASI_SCRATCH_REGp ← %rX;
ASI_SCRATCH_REGq ← %rY;
%rX ← ASI_UGESR;

/* working register 1 */
/* working register 2 */

if ((%rX && 0x07) ≠ 0) {
/* multiple-ADE trap */

invoke panic routine and generate largest possible

system dump with ASI_ERROR_CONTROL.WEAK_ED == 1;

}

if (%rX.IUG_%R == 1) {

%r1-%r63 ← %r0 (except for %rX and %rY);
%y ← %r0;
%tstate.pstate ← %r0;
/* the asi field in %tstate.pstate may contain the

error */

}

else {

%rX, %rY, ASI_SCRATCH_REGp and ASI_SCRATCH_REGq are

used to save needed registers. %r1-%r7 are saved to

%rX, %rY, ASI_SCRATCH_REGp and ASI_SCRATCH_REGq;

/*

* When the processor recovers from an error that

 * occurred in a context with PSTATE.AG == 1,

 * all %r registers must be saved and restored to

 * their original values.

 */

}

if (ASI_UGESR.IUG_PSTATE == 1) {

%tstate.pstate ← %r0;
%tpc ← %r0;
%pil ← %r0;
%wstate ← %r0;
all registers in the the register window ← %r0;

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 282

set appropriate values for register window control

 registers (CWP, CANSAVE, CANRESTORE, OTHERWIN,

CLEANWIN);

}

/*

 * Point#1

 * After this point, the program can use all windowed %r

 * registers except for %r0-%r7 because the register

 * window control registers were verified in the previous

 * step.

 */

if (ASI_UGESR.IAUG_CRE == 1

 || ASI_UGESR.IAUG_TSBCTXT == 1

 || ASI_UGESR.IUG_TSBP == 1

 || ASI_UGESR.IUG_TSTATE == 1

 || ASI_UGESR.IUG_%F==1) {

verify all registers in which these errors may occur;

}

if (ASI_UGESR.IUG_DTLB == 1) {

execute demap_all for DTLB;

/*

 * A locked fDTLB entry is not removed by this

 * operation.

 */

}

if (ASI_UGESR.IUG_ITLB == 1) {

execute demap_all for ITLB;

/*

 * A locked fITLB entry is not removed by this

 * operation.

 */

}

if (ASI_UGESR.bits<22:14> == 0 &&

 ASI_UGESR.INSTEND == 0 || ASI_UGESR.INSTEND == 1) {

++ADE_trap_retry_per_unit_of_time;

if (ADE_trap_retry_per_unit_of_time < threshold)

use RETRY to return to the context prior to the

trap;

else

halt OS because too many ADE trap retries;

} else if (ASI_UGESR.bits<22:18> == 0 &&

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 283

 ASI_UGESR.bits<15:14> == 0 &&

 ASI_UGESR.PRIV == 0) {

++ADE_trap_kill_user_per_unit_of_time;

if (ADE_trap_kill_user_per_unit_of_time

< threshold) {

kill one user process and continue OS processing;

} else {

halt OS because too many user processes killed

by ADE traps;

}

} else {

halt OS because of unrecoverable, urgent error.

}

}

P.5 Instruction Access Errors
See Appendix F.5, “Faults and Traps”, for details.

P.6 Data Access Errors
See Appendix F.5, “Faults and Traps”, for details.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010284

P.7 Restrainable Errors

P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR)

Register name ASI_ASYNC_FAULT_STATUS (ASI_AFSR)

ASI 4C16

VA 0016

Error Detection None

Format See TABLE P-11

Initial value after reset After a hard POR, all fields in ASI_AFSR are set to 0.

For other resets, values are unchanged.

The ASI_ASYNC_FAULT_STATUS register indicates restrainable errors that have occurred.
Once a bit is set to 1, that value is preserved until system software overwrites the bit.
TABLE P-11 describes the fields of the AFSR. In the table, the prefixes for each field indicate
the type of restrainable error:

■ DG_ Degradation error
■ UE_ Uncorrectable Error

TABLE P-11 ASI_ASYNC_FAULT_STATUS Bit Description

Bit Field Access Description

12 Reserved

11 DG_U2$ RW1C When a way in the U2 cache of the CPU is removed, this
bit is set to 1.

10 DG_D1$sTLB RW1C When a way in the I1/D1 cache or the sITLB/sDTLB is
removed, this bit is set to 1.

9 Reserved R Always reads as 0; writes are ignored.

3 UE_DST_BETO RW1C When a write to memory returns a bus error, this bit is set
to 1.

2 Reserved R Always reads as 0; writes are ignored.

1 UE_RAW_L2$INSD RW1C When an unmarked UE is detected in L2 cache data, this
bit is set to 1.

0 UE_RAW_D1$INSD RW1C When an unmarked UE is detected in D1 cache data, this
bit is set to 1.

Other Reserved R Always reads as 0; writes are ignored.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 285

Note – A disrupting bus error or timeout is reported by one of the following fields:
AFSR.UE_DST_BETO, DSFSR.BERR, or DSFSR.RTO.

Note – When a write to an address space that sets AFSR.UE_DST_BETO is immediately
followed by a read from the same address, the data is returned from the store buffer and a
data_access_error may not occur. AFSR.UE_DST_BETO is set after the write is executed.

P.7.2 Expected Software Handling for Restrainable Errors

It is recommended that all restrainable errors be recorded. Expected software handling for
each restrainable error is described below.

■	 DG_L1$, DG_U2$ — The following CPU states are reported:

■	 Indicates that a way in the I1 cache, D1 cache, U2 cache, sITLB, or sDTLB has been
removed; there is the possibility that this will cause a decrease in performance.

■	 Indicates that there is the possibility of a decrease in CPU availability. When only one
way can be used in the I1 cache, D1 cache, U2 cache, sITLB, or sDTLB and errors
are detected in the remaining way, a error_state transition error occurs.

If necessary, software can stop the use of the CPU that contains the errors.

■	 UE_DST_BETO — This error occurs in the following cases:

■	 There is an incorrect entry in the DTLB.
■	 An invalid address space is accessed using a physical address access ASI.

In both cases, the error is caused by a bug in system software. Using the recorded error
information, the system software should be corrected.

■	 UE_RAW_L2$INSD, and UE_RAW_D1$INSD — These errors handled as follows:

■	 If possible, the error in the cache line containing the UE is removed. Note that this
causes the data in the cache line to be lost.

■	 When ECC_error exception is generated but the error is not indicated in ASI_AFSR —
the ECC_error exception is ignored.

See “Summary of Behavior During Error Detection” (page 262) for details.

P.8 Internal Register Error Handling

This section describes error handling for errors that occur in the following registers:

■	 Nonprivileged and Privileged registers

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 286

■ ASR registers
■ ASI registers

P.8.1 Nonprivileged and Privileged Register Error Handling

The terms used in TABLE P-12 are defined as follows:

Column Term Meaning

Condition for Error InstrAccess The error is detected when the register is accessed during instruction
Detection execution.

Error Correction W The error is corrected when a write to the entire register is
performed.

ADE trap Hardware removes the error by performing a write to the entire
register during trap processing of the async_data_error exception.

TABLE P-12 describes error handling for errors that occur in nonprivileged and privileged
registers. When an urgent error occurs in the PC, nPC, PSTATE, CWP, ASI, or an XAR
register, the async_data_error trap handler is entered. When registers are copied to the TPC,
TNPC, TSTATE, and TXAR, any errors in these registers are also copied.

TABLE P-12 Nonprivileged and Privileged Register Error Handling (１ of ２)

Error Condition for Error
Register Name RW Protection Detection Error Type Error Correction

%rn1 RW Parity InstrAccess IUG_%R W

%fn1 RW Parity InstrAccess IUG_%F W

PC R Parity Always IUG_PSTATE ADE trap

nPC R Parity Always IUG_PSTATE ADE trap

PSTATE RW Parity Always IUG_PSTATE ADE trap, W

TBA RW Parity PSTATE.RED = 0 error_state W (by OBP)

PIL RW Parity PSTATE.IE = 1 IUG_PSTATE W

InstrAccess

CWP, CANSAVE, RW Parity Always IUG_PSTATE ADE trap, W
CANRESTORE,
OTHERWIN,
CLEANWIN

TT RW None — — —

TL RW Parity PSTATE.RED = 0 error_state W (by OBP)

TPC RW Parity InstrAccess IUG_TSTATE W

TNPC RW Parity InstrAccess IUG_TSTATE W

TSTATE RW Parity InstrAccess IUG_TSTATE W

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 287

TABLE P-12 Nonprivileged and Privileged Register Error Handling (２ of ２)

Error Condition for Error
Register Name RW Protection Detection Error Type Error Correction

WSTATE RW Parity Always IUG_PSTATE ADE trap, W

VER R None — — —

FSR RW Parity Always IUG_%F ADE trap, W

Y RW Parity InstrAccess IUG_%R W

CCR RW Parity Always IUG_%R ADE trap, W

ASI RW Parity Always IUG_%R ADE trap, W

TICK RW Parity AUG Always2 IUG_COREERR ADE trap3 , W

FPRS RW Parity Always IUG_%F ADE trap, W

1.Includes the registers added by HPC-ACE.

2.A suspended thread signals an error_state transition error.

3.Set to 0x8000_0000_0000_0000 for correction.

P.8.2 ASR Error Handling

The terms used in TABLE P-13 are defined as follows:

Column Term Meaning

Condition for
Error Detection

AUG always The error is detected when
ASI_ERROR_CONTROL.UGE_HANDLER = 0 and
ASI_ERROR_CONTROL.WEAK_ED = 0.

InstrAccess The error is detected when the register is accessed during
instruction execution.

Error Type (I)AUG_xxx Autonomous urgent error. ASI_UGESR.IAUG_xxx = 1.

I(A)UG_xxx Instruction urgent error. ASI_UGESR.IAUG_xxx = 1.

Error Correction W The error is corrected when a write to the entire register is
performed.

ADE trap Hardware removes the error by performing a write to the entire
register during trap processing of the async_data_error
exception.

TABLE P-13 describes error handling for ASR errors.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 288

TABLE P-13 ASR Error Handling

ASR Error
Number Register Name RW Protection Condition for Error Detection Error Type Error Correction

16 PCR RW None — — —

17 PIC RW None — — —

18 DCR R None — — —

19 GSR RW Parity Always IUG_%F ADE trap, W

20 SET_SOFTINT W None — — —

21 CLEAR_SOFTINT W None — — —

22 SOFTINT RW None — — —

23 TICK_COMPARE RW Parity AUG always1 IUG_COREERR ADE trap, W

24 STICK RW Parity AUG always1 (I)AUG_CRE W

InstrAccess I(A)UG_CRE W

25 STICK_COMPARE RW Parity AUG always1 (I)AUG_CRE W

InstrAccess I(A)UG_CRE W

29 XAR RW Parity Always IUG_COREERR ADE trap, W

30 XASR RW Parity Always IUG_COREERR ADE trap, W

29 TXAR RW Parity InstrAccess IUG_TSTATE W

1.A suspended thread signals an error_state transition error.

STICK Behavior on Error

When an error occurs in the STICK register, countup is stopped regardless of the condition
for error detection described in TABLE P-13.

P.8.3 ASI Register Error Handling

The terms used in TABLE P-14 are defined as follows:

Column Term Meaning

Error Protection Parity

Triple

Parity protected.

Register is triplicated.

ECC ECC protected (double-bit error detection, single-bit error
correction).

Gecc Generated ECC.

None Not protected.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 289

 Column Term Meaning

Condition for Always Error is always detected.
Error Detection AUG always Error is detected when

ASI_ERROR_CONTROL.UGE_HANDLER = 0 and
ASI_ERROR_CONTROL.WEAK_ED = 0.

LDXA Error is detected when the register is read by an instruction.

ITLB write Error is detected on a write to the ITLB or when a demap
operation updates the ITLB.

DTLB write Error is detected on a write to the DTLB or when a demap
operation updates the DTLB.

Used by TLB Error is detected when the register is referenced during a search
of the TLB.

Enabled Error is detected when the function is enabled.

intr_receive Error is detected when an interrupt packet is received. When
there is an UE in the interrupt packet, a vector_interrupt
exception is generated and ASI_INTR_RECEIVE.BUSY is set
to 0. Setting ASI_INTR_RECEIVE.BUSY allows a new
interrupt packet to be received.

Error Type error_stat error_state transition error.
e

(I)AUG_xxxx Autonomous urgent error. ASI_UGESR.IAUG_xxxx = 1.

I(A)UG_xxxx Instruction urgent error. ASI_UGESR.IAUG_xxxx = 1.

Other Bit in ASI_UGESR that corresponds to the error is set to 1.

Error Correction RED trap When a RED_state trap occurs, the value of the register is
updated and the error is corrected.

W A write to the ASI register corrects the error.

W_other_I Error is corrected by updating all of the following registers:
• ASI_IMMU_TAG_ACCESS
• When ASI_UGESR.IAUG_TSBCTXT = 1 for a single-ADE

trap,
ASI_IMMU_TSB_BASE, ASI_PRIMARY_CONTEXT,
ASI_SECONDARY_CONTEXT, ASI_SHARED_CONTEXT

W_other_D Error is corrected by updating all of the following registers:
• ASI_DMMU_TAG_ACCESS
• When ASI_UGESR.IAUG_TSBCTXT = 1 for a single-ADE

trap,
ASI_DMMU_TSB_BASE, ASI_PRIMARY_CONTEXT,
ASI_SECONDARY_CONTEXT, ASI_SHARED_CONTEXT

Interrupt Error is corrected when the interrupt packet is received.
receive

TABLE P-14 describes error handling for ASI register errors.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 290

TABLE P-14 Handling of ASI Register Errors (1 of 2)

ASI VA Register Name RW
Error
Protect

Error Detect
Condition Error Type Correction

4516 0016 DCU_CONTROL RW Parity Always error_state RED trap

0816 MEMORY_CONTROL RW Parity Always error_state RED trap

4816 0016 INTR_DISPATCH_STATUS R Parity LDXA or register
update

I(A)UG_CRE (UE) None

4916 0016 INTR_RECEIVE RW Parity LDXA I(A)UG_CRE (UE) None

4A16 — SYS_CONFIG R None — — —

4B16 0016 STICK_CNTL RW Triple Always — Always

4C16 0016 ASYNC_FAULT_STATUS RW1C None — — —

4C16 0816 URGENT_ERROR_STATUS R None — — —

4C16 1016 ERROR_CONTROL RW Parity Always error_state RED trap

4C16 1816 STCHG_ERROR_INFO R,
W1AC

None — — —

4F16 0016–3816 SCRATCH_REGs RW Parity LDXA IUG_COREERR W

5016 0016 IMMU_TAG_TARGET R Parity LDXA IUG_TSBP W_other_I

5016 1816 IMMU_SFSR RW None — — —

5016 2816 IMMU_TSB_BASE RW Parity LDXA I(A)UG_TSBCTXT W

5016 3016 IMMU_TAG_ACCESS RW Parity LDXA IUG_TSBP W
(W_other_I)

5016 6016 IMMU_TAG_ACCESS_EXT RW Parity LDXA IUG_TSBP W

5016 7816 IMMU_SFPAR RW Parity LDXA I(A)UG_CRE W

5316 — SERIAL_ID R None — — —

5416 — ITLB_DATA_IN W Parity ITLB write IUG_ITLB DemapAll

5516 — ITLB_DATA_ACCESS RW Parity LDXA

ITLB write

IUG_ITLB

IUG_ITLB

DemapAll

DemapAll

5616 — ITLB_TAG_READ R Parity LDXA IUG_ITLB DemapAll

5716 — IMMU_DEMAP W Parity ITLB write IUG_ITLB DemapAll

5816 0016 DMMU_TAG_TARGET R Parity LDXA IUG_TSBP W_other_D

5816 0816 PRIMARY_CONTEXT RW Parity LDXA

Used by TLB

AUG always

I(A)UG_TSBCTXT

I(A)UG_TSBCTXT

(I)AUG_TSBCTXT

W

W

W

5816 1016 SECONDARY_CONTEXT RW Parity = P_CONTEXT IAUG_TSBCTXT W

5816 1816 DMMU_SFSR RW None — — —

5816 2016 DMMU_SFAR RW Parity LDXA IAUG_CRE W

5816 2816 DMMU_TSB_BASE RW Parity LDXA I(A)UG_TSBCTXT W

5816 3016 DMMU_TAG_ACCESS RW Parity LDXA IUG_TSBP W
(W_other_D)

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 291

TABLE P-14 Handling of ASI Register Errors (2 of 2)

Error Error Detect
ASI VA Register Name RW Protect Condition Error Type Correction

5816 3816 DMMU_WATCHPOINT RW Parity Enabled (I)AUG_CRE W

LDXA I(A)UG_CRE W

5816 6016 DMMU_TAG_ACCCESS_EXT RW Parity LDXA IUG_TSBP W

5816 6816 SHARED_CONTEXT RW Parity = P_CONTEXT (I)AUG_TSBCTXT W

5816 7816 DMMU_SFPAR RW Parity LDXA I(A)UG_CRE W

5C16 — DTLB_DATA_IN W Parity DTLB write IUG_DTLB DemapAll

5D16 — DTLB_DATA_ACCESS RW Parity LDXA IUG_DTLB DemapAll

DTLB write IUG_DTLB DemapAll

5E16 — DTLB_TAG_READ R Parity LDXA IUG_DTLB DemapAll

5F16 — DMMU_DEMAP W Parity DTLB write IUG_DTLB DemapAll

6016 — IIU_INST_TRAP RW Parity LDXA No match at error W

6716 — FLUSH_L1I W None — — —

6D16 0016- 5816 BARRIER_INIT RW Parity Always if Fatal Error —
assigned
or LDXA

6E16 0016 EIDR RW Parity Always1 IAUG_CRE W

6F16 0016- 5816 BARRIER_ASSIGN RW Parity Always if Fatal Error —
assigned

7416 addr CACHE_INV W None — — —

7716 4016–5016 INTR_DATA0:2_W W Gecc None — W

7716 7016 INTR_DISPATCH_W W Gecc store (I)AUG_CRE W

7F16 4016–5016 INTR_DATA0:2_R R ECC LDXA IAUG_CRE Interrupt

intr_receive BUSY = 0 Receive

E716 0016 SCCR RW Parity Always IUG_COREERR W

FE16 0016- 5816 LBSY, BST RW Parity Always if Fatal Error —
assigned

1.Notified as error_state transition error in suspended state.

P.9 Cache Error Handling
This section describes error handling for cache tag errors and cache data errors.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 292

P.9.1 Error Handling for Cache Tag Errors

D1 Cache Tag Errors and I1 Cache Tag Errors

The D1 (Data level-1) and the I1 (Instruction level-1) cache tags are duplicated in the U2
(Unified level-2) cache. The D1 cache tags, the I1 cache tags, and the duplicated cache tags
in the U2 cache are all parity protected.

When a parity error is detected in a D1 cache tag or a duplicate D1 cache tag, hardware
copies the other cache tag to the tag containing the error. If this action corrects the error,
program execution is not affected.

Similarly, when a parity error is detected in an I1 cache tag or a duplicate I1 cache tag,
hardware copies the other cache tag to the tag containing the error. If this action corrects the
error, program execution is not affected.

If copying the cache tag does not correct the error, the action is repeated. When the error is
permanent, a watchdog timeout or a FATAL error is eventually detected.

U2 Cache Tag Errors

The U2 cache tags are ECC protected. Single-bit errors are corrected, and double-bit errors
are detected.

When a correctable error is detected in a U2 cache tag, hardware corrects the error by writing
the corrected data to the U2 cache tag. The error is not reported to system software.

When an uncorrectable error is detected in a U2 cache tag, a fatal error is signalled and the
CPU enters CPU Fatal Error state.

P.9.2 Error Handling for I1 Cache Data Errors

Each doubleword in I1 cache data is parity protected.

When a parity error is detected in I1 cache data during instruction fetch, hardware performs
the following sequence of actions:

1. Reread the I1 cache line containing the parity error from the U2 cache.

Any UE in the data read from the U2 cache is marked, since error marking is performed
for all outgoing data, that is, data leaving the U2 cache.

2. For each doubleword read from the U2 cache,

a.	 When the doubleword does not contain an UE, the data is saved to the I1 cache. This
data is supplied to the instruction fetch unit when needed.

Ver 15, 26 Apr. 2010	 F. Appendix P Error Handling 293

An I1 cache error that is corrected by refilling the I1 cache is not reported to system
software.

b. When the doubleword contains a marked UE, the parity bit for the corresponding
doubleword in I1 cache data is set. This data is supplied to the instruction fetch unit
when needed.

3. The instruction fetch unit handles an instruction containing an error in the following way.

The instruction is discarded when the instruction containing the parity error is fetched
but is not executed and does not update the software-visible state.

When the fetched instruction executes and commits, an instruction_access_error
exception is generated. ASI_ISFSR indicates that a marked UE was detected and
displays the corresponding ERROR_MARK_ID.

P.9.3 Error Handling for D1 Cache Data Errors

Each doubleword in D1 cache data is ECC protected. Single-bit errors are corrected, and
double-bit errors are detected.

Correctable Errors in D1 Cache Data

When a correctable error is detected in D1 cache data, the data is corrected automatically by
hardware. A correctable error is not reported to system software.

Marked Uncorrectable Errors in D1 Cache Data

When a marked uncorrectable error (UE) is detected in D1 cache data during a cache line
writeback to the U2 cache, the D1 cache data and ECC are written to the U2 cache without
any changes. That is, a marked UE in D1 cache data is written back to the U2 cache; this is
not reported to system software.

When a marked UE is detected in D1 cache data during an access by a load/store instruction
(except for doubleword stores), a data_access_error exception is generated. This exception
is precise, and ASI_DSFSR displays the ERROR_MARK_ID of the marked UE.

Unmarked UE in D1 Cache Data During Cache Line Writeback

When an unmarked UE is detected in D1 cache data during a cache line writeback to the U2
cache, error marking of the doubleword containing the error is performed. The value in
ASI_EIDR is used for the ERROR_MARK_ID. Only corrected data or data containing
marked a UE is written back to the U2 cache.

Marking the UE sets ASI_AFSR.UE_RAW_D1$INSD to 1.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 294

Unmarked UE in D1 Cache Data on a Read by a Memory Access
Instruction

When an unmarked UE is detected in D1 cache data during a read by a memory access
instruction, hardware performs the following sequence of actions:

1. Hardware writes back the D1 cache line and refills the data from the U2 cache.

The D1 cache line is written back to the U2 cache, regardless of whether the U2 data is
the same or has been updated. Error marking is performed during writeback. The value in
ASI_EIDR is used for the ERROR_MARK_ID. The D1 cache line is refilled from the U2
cache, and ASI_AFSR.UE_RAW_D1$INSD is set to 1.

2. Normally, step 1 performs error marking for unmarked errors; during this processing,
however, a new UE may be introduced in the same doubleword. In this case, step 1 is
repeated until the doubleword contains no unmarked errors, or until D1 cache way
reduction occurs.

3. At this point, all unmarked UEs in D1 cache data have been marked. The load or store
instruction accesses the doubleword with the marked UE. The memory access instruction
then accesses the data containing the marked UE. Subsequent behavior is described in the
subsection “Marked Uncorrectable Errors in D1 Cache Data” (page 294).

P.9.4 Error Handling for U2 Cache Data Errors

Each doubleword in U2 cache data is ECC protected. Single-bit errors are corrected, and
double-bit errors are detected.

Correctable Errors in U2 Cache Data

When a correctable error is detected in incoming U2 cache fill data from memory, the error
is automatically corrected by hardware. No exception is signalled.

When a correctable error is detected in U2 cache data requested by the I1/D1 cache or that is
being written to memory or another cache, the error is automatically corrected by hardware.
The error is not reported to system software.

Marked Uncorrectable Errors in U2 Cache Data

For U2 cache data, a doubleword containing a marked UE is handled in the same manner as
a corrected doubleword. No error is reported when a marked UE is detected in U2 cache data.

When a marked UE is detected in U2 cache fill data from memory, the doubleword
containing the marked UE is stored without any changes in the U2 cache.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 295

When a marked UE is detected in D1 cache data being written back to the U2 cache, the
doubleword containing the marked UE is stored without any changes in the U2 cache. Data
containing an unmarked UE is not written back. See Appendix P.9.3, “Error Handling for D1
Cache Data Errors” (page 294).

When a marked UE is detected in U2 cache data requested by the I1/D1 cache or that is being
written to memory or another cache, the doubleword containing the marked UE is sent
without any changes.

Unmarked UE in U2 Cache Data

When an unmarked UE is detected in U2 cache fill data from memory, error marking is
performed for the doubleword containing the unmarked UE. The value used for
ERROR_MARK_ID is 0. The doubleword and associated ECC are replaced with the marked
data, and the updated data is stored in the U2 cache. No exception is signalled.

When an unmarked UE is detected in data read from the U2 cache (I1 cache fill, D1 cache
fill, write to memory or another cache), error marking is performed for the doubleword
containing the unmarked UE. The value in ASI_EIDR is used for ERROR_MARK_ID, and
ASI_AFSR.UE_RAW_L2$INSD is set to 1.

P.9.5 Automatic I1, D1, and U2 Cache Way Reduction

When errors occur frequently in the I1, D1, or U2 cache, hardware degrades the appropriate
cache way, while maintaining cache coherency. This is called way reduction.

Conditions for Cache Way Reduction

Hardware counts the number of errors that occur in each cache way for each cache. The
following errors are counted:

■ For each I1 cache way,
■ Parity errors in I1 cache tags and duplicate I1 cache tags
■ Parity errors in I1 cache data

■ For each D1 cache way,
■ Parity errors in D1 cache tags and duplicate D1 cache tags
■ Correctable errors in D1 cache data
■ Unmarked UEs in D1 cache data

■ For each U2 cache way,
■ Correctable errors and UEs in U2 cache tags
■ Correctable errors in U2 cache data
■ Unmarked UEs in U2 cache data

If the counter for a cache way exceeds the specified threshold value within a set amount of
time, that cache way is degraded. The procedure for way reduction is described below.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 296

I1 Cache Way Reduction

Procedure for degrading way w of the I1 cache:

1. When one cache way has already been degraded, the entry containing the error is
invalidated.

2. Otherwise,

■	 All entries in way w are invalidated, and way w is never refilled.
■	 ASI_AFSR.DG_L1STLB is set to 1, and a restrainable error is signalled.

D1 Cache Way Reduction

Procedure for degrading way w of the I1 cache:

1. When one cache way has already been degraded, the entry containing the error is written
back to the U2 cache and invalidated.

2. Otherwise,

■	 All entries in way w are invalidated, and way w is never refilled. Data that has been
updated in the D1 cache but not the U2 cache is written back to the U2 cache before
the entry is invalidated.

■	 ASI_AFSR.DG_L1$STLB is set to 1, and a restrainable error is signalled.

U2 Cache Way Reduction

U2 cache way reduction is performed when DCUCR.WEAK_SPCA = 0. When
DCUCR.WEAK_SPCA = 1, way reduction is pending; U2 cache way reduction is started once
DCUCR.WEAK_SPCA = 0.

Procedure for removing way w of the U2 cache:

1. When all cache ways have already been degraded, and only one cache way remains,

■	 All entries in way w are invalidated (that is, all active entries are invalidated), but
cache way w can still be used. U2 cache data is invalidated to preserve data coherency
for the entire system.

■	 ASI_AFSR.DG_U2 is set to 1, and a restrainable error is signalled even though the
U2 cache configuration has not been changed.

2. Otherwise,

■	 All entries in all cache ways, including way w, are invalidated to preserve data

coherency for the entire system.

■	 Way w can no longer be used.

■	 ASI_AFSR.DG_U2 is set to 1, and a restrainable error is signalled.

Ver 15, 26 Apr. 2010	 F. Appendix P Error Handling 297

P.10 TLB Error Handling
This section describes error processing for TLB entries, as well as sTLB way reduction.

P.10.1 Error Processing for TLB Entries

TABLE P-15 describes the error protection implemented for each SPARC64 VIIIfx TLB.

TABLE P-15 Error Protection and Error Detection for TLB Entries

TLB type Field Error protection Errors that can be detected

sITLB, sDTLB
tag

data

Parity

Parity

Parity error (Uncorrectable)

Parity error (Uncorrectable)

lock bit Triplication None; the value is determined by majority

fITLB, fDTLB tag, except lock bit Parity Parity error (Uncorrectable)

data Parity Parity error (Uncorrectable)

TLB errors are detected during address translation for memory accesses and when TLB
entries are accessed directly via the ASI registers.

TLB Error Detected on Access Via ASI Register

When an error is detected in a DTLB entry on an access via the ASI_DTLB_DATA_ACCESS
or ASI_DTLB_TAG_ACCESS register, ASI_UGESR.IUG_DTLB is set to 1 and an
instruction urgent error is signalled.

When an error is detected in a ITLB entry on an access via the ASI_ITLB_DATA_ACCESS
or ASI_ITLB_TAG_ACCESS register, ASI_UGESR.IUG_ITLB is set to 1 and an
instruction urgent error is signalled.

sTLB Error Detected During Address Translation

When an error is discovered in a sTLB entry during address translation, that entry is
invalidated. The error is not reported to system software.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 298

fTLB Error Detected During Address Translation

Both fTLB tags and data are duplicated. When an fTLB parity error is detected during
address translation, the error can be corrected automatically by replacing the copy containing
the parity error with the duplicated tag or data. The error is not reported to system software.
If parity errors are detected in both copies, a fatal error is signalled.

Ver 15, 26 Apr. 2010 F. Appendix P Error Handling 299

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 300

F.AP PE ND IX Q

Performance Instrumentation

This appendix describes the SPARC64 VIIIfx performance counters (PA). Please see the
following sections:

■ PA Overview on page 301
■ Description of PA Events on page 303

■ Instruction and Trap Statistics on page 306
■ MMU and L1 cache Events on page 313
■ L2 cache Events on page 315

Q.1 PA Overview
For information on the performance counter registers, please refer to “Performance Control
Register (PCR) (ASR 16)” (page 27) and “Performance Instrumentation Counter (PIC)
Register (ASR 17)” (page 28).

Q.1.1 Sample Pseudo-codes

Counter Clear/Set

The PICs are read/write registers. Writing zero will clear the counter; writing any other value
will set the counter. The following pseudocode procedure clears all PICs (assuming
privileged access):

/* Clear PICs without updating SL/SU values */

pic_init = 0x0;

pcr = rd_pcr();

pcr.ulro = 0x1; /* don’t update SU/SL on write */

pcr.ovf = 0x0; /* clear overflow bits */

Ver 15, 26 Apr. 2010 F. Appendix Q Performance Instrumentation 301

pcr.ut = 0x0;

pcr.st = 0x0; /* disable counts */

for (i=0; i<=pcr.nc; i++) {

/* select the PIC to be written */

pcr.sc = i;

wr_pcr(pcr);

wr_pic(pic_init);/* clear PIC[i] */

}

Counter Event Selection and Start

Counter events are selected through the PCR.SC and PCR.SU/PCR.SL fields. The
following pseudocode selects events and enables counters (assuming privileged access):

pcr.ut = 0x0; /* Disable user counts */

pcr.st = 0x0; /* Disable system counts also */

pcr.ulro = 0x0; /* Make SU/SL writeable */

pcr.ovro = 0x1; /* Overflow is read-only */

/* Select events without enabling counters */

for(i=0; i<=pcr.nc; i++) {

pcr.sc = i;

pcr.sl = select an event;

pcr.su = select an event;

wr_pcr(pcr);

}

/* Start counting */

pcr.ut = 0x1;

pcr.st = 0x1;

pcr.ulro = 0x1; /* SU/SL is read-only */

/* Clear overflow bits here if needed */

wr_pcr(pcr);

Counter Stop and Read

The following pseudocode disables and reads counters (assuming privileged access):

pcr.ut = 0x0; /* Disable user counts */

pcr.st = 0x0; /* Disable system counts, too */

pcr.ulro = 0x1; /* Make SU/SL read-only */

pcr.ovro = 0x1; /* Overflow is read-only */

for(i=0; i<=pcr.nc; i++) {

pcr.sc = i;

wr_pcr(pcr);

pic = rd_pic();

picl[i] = pic.picl;

picu[i] = pic.picu;

}

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 302

Q.2 Description of PA Events

The performance counter (PA) events can be classified into the following groups:

1. Instruction and trap statistics

2. MMU and L1 cache events

3. L2 cache events

4. Bus transaction events

There are 2 types of PA events that can be measured in SPARC64 VIIIfx, standard and
supplemental events.

Standard events in SPARC64 VIIIfx have been verified for correct behavior; they are
guaranteed to be compatibile1 with future processors.

Supplemental events are primarily intended to be used for debugging the hardware.

a.	 The behavior of supplemental events may not be fully verified. There is a possibility
that some of these events may not behave as specified in this document.

b. The definition of these events may be changed without notice. Compatibility with
future processors is not guaranteed.

All PA events defined in SPARC64 VIIIfx are shown in TABLE Q-1. Shaded events are
supplemental events. For details on each event, refer to the descriptions in the following
sections. Unless otherwise indicated, speculative instructions are also counted by the PA
events.

1. Provided that a feature is not removed due to design changes.

Ver 15, 26 Apr. 2010	 F. Appendix Q Performance Instrumentation 303

TA

B
L

E
 Q

-1

PA
 E

ve
nt

s
an

d
E

nc
od

in
gs

E
nc

od
in

g

C
ou

nt
er

p
ic

u
0

p
ic

l0

p
ic

u1

pi
cl

1
pi

cu
2

pi
cl

2
pi

cu
3

pi
cl

3

00
00

00
0

cy
cl

e_
co

un
ts

00
00

00
1

in
st

ru
ct

io
n_

co
un

ts

00
00

01
0

in
st

ru
ct

io
n_

flo
w

_c
ou

nt
s

R
es

er
ve

d
in

st
ru

ct
io

n_
flo

w
_c

ou
nt

s
R

es
er

ve
d

xm
a_

in
st

00
00

01
1

iw
r_

em
pt

y
R

es
er

ve
d

iw
r_

e
m

pt
y

R
es

er
ve

d

00
00

10
0

R
es

er
ve

d

00
00

10
1

op
_s

tv
_w

ai
t

00
00

11
0

ef
fe

ct
iv

e_
in

st
ru

ct
io

n_
co

un
ts

00
00

11
1

S
IM

D
_l

oa
d_

st
or

e_
in

st
ru

ct
io

ns

S
IM

D
_f

lo
at

in
g_

i
ns

tr
uc

tio
ns

S

IM
D

_f
m

a_
in

st
r

uc
tio

ns

sx
ar

1_
in

st
ru

ct
io

ns

sx
ar

2
_i

ns
tr

uc
tio

ns

un
pa

ck
_s

xa
r1

un

pa
ck

_s
xa

r2

R
es

er
ve

d

00
01

00
0

lo
ad

_s
to

re
_i

ns
tr

uc
tio

ns

00
01

00
1

br
an

ch
_i

ns
tr

uc
tio

ns

00
01

01
0

flo
at

in
g_

in
st

ru
ct

io
ns

00
01

01
1

fm
a_

in
st

ru
ct

io
ns

00
01

10
0

pr
ef

et
ch

_
in

st
ru

ct
io

ns

00
01

10
1

R
es

er
ve

d
ex

_l
oa

d_
in

st
ru

ct
io

ns

ex
_s

to
re

_i
ns

tr
u

ct
io

n
s

fl_
lo

ad
_i

ns
tr

uc
ti

on
s

fl_
st

or
e_

in
st

ru
ct

i
on

s
S

IM
D

_f
l_

lo
ad

_i
n

st
ru

ct
io

ns

S
IM

D
_f

l_
st

or
e_

i
ns

tr
uc

tio
ns

R

es
er

ve
d

00
01

11
0

R
es

er
ve

d

00
01

11
1

R
es

er
ve

d

00
10

00
0

R
es

er
ve

d

00
10

00
1

R
es

er
ve

d

00
10

01
0

rs
1

flu
sh

_r
s

R
es

er
ve

d

00
10

01
1

1i
id

_u
se

2i

id
_u

se

3i
id

_u
se

4i

id
_u

se

R
es

er
ve

d
sy

nc
_i

nt
lk

re

gw
in

_i
nt

lk

R
es

er
ve

d

00
10

10
0

R
es

er
ve

d

00
10

10
1

R
es

er
ve

d
to

q_
rs

br
_p

ha
nt

o
m

R

es
er

ve
d

flu
sh

_r
s

R
es

er
ve

d
rs

1

R
es

er
ve

d

00
10

11
0

tr
ap

_a
ll

tr
ap

_i
nt

_v
ec

to
r

tr
ap

_i
nt

_l
ev

el

tr
ap

_
sp

ill

tr
ap

_f
ill

tr

ap
_t

ra
p_

in
st

tr

ap
_I

M
M

U
_m

is
s

tr
ap

_D
M

M
U

_m
i

ss

00
10

11
1

R
es

er
ve

d
tr

ap
_S

IM
D

_l
oa

d
_a

cr
os

s_
pa

ge
s

R
es

er
ve

d

00
11

00
0

R
es

er
ve

d

00
11

00
1

R
es

er
ve

d

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 304

TA

B
L

E
 Q

-1

PA
 E

ve
nt

s
an

d
E

nc
od

in
gs

(C

on
ti

nu
ed

)

E
nc

od
in

g

C
ou

nt
er

p
ic

u
0

p
ic

l0

p
ic

u1

pi
cl

1
pi

cu
2

pi
cl

2
pi

cu
3

pi
cl

3

00
11

01
0

R
es

er
ve

d
si

ng
le

_s
xa

r_
co

m
m

it
R

es
er

ve
d

su
sp

en
d_

cy
cl

e

00
11

01
1

rs
f_

pm
m

i
R

es
er

ve
d

0i
id

_u
se

flu

sh
_r

s
R

es
er

ve
d

de
ca

ll_
in

tlk

00
11

10
0

R
es

er
ve

d

00
11

10
1

op
_s

tv
_w

ai
t_

pf
p

_b
us

y_
ex

op

_s
tv

_w
ai

t_
sx

m
is

s
op

_s
tv

_w
ai

t_
sx

m
is

s_
ex

op

_s
tv

_w
a

it_
nc

_p
en

d
cs

e_
w

in
do

w
_e

m
pt

y_
sp

_
fu

ll
op

_s
tv

_w
ai

t_
pf

p
_b

us
y

R
es

er
ve

d

00
11

11
0

cs
e_

w
in

do
w

_e
m

pt
y

eu
_c

om
p_

w
ai

t
br

an
ch

_c
om

p_
w

ai
t

0e
nd

op

op
_s

tv
_w

ai
t_

ex

fl_
co

m
p_

w
ai

t
1e

n
do

p
2e

nd
op

00
11

11
1

in
h_

cm
it_

gp
r_

2
w

rit
e

R
es

er
ve

d
3e

nd
op

R

es
er

ve
d

sl
ee

p_
cy

cl
e

op
_s

tv
_w

ai
t_

sw
pf

01
00

00
0

uI
T

LB
_m

is
s2

uD

T
L

B
_m

is
s2

uI

T
LB

_m
is

s
uD

T
L

B
_m

is
s

L1
I_

m
is

s
L1

D
_m

is
s

L1
I_

w
ai

t_
al

l
L1

D
_w

a
it_

al
l

01
00

00
1

R
es

er
ve

d

01
00

01
0

R
es

er
ve

d

01
00

01
1

L1
I_

th
ra

sh
in

g
L1

D
_t

hr
as

hi
ng

R

es
er

ve
d

01
00

10
0

sw
pf

_s
uc

ce
ss

_a
ll

sw
pf

_f
ai

l_
al

l
R

es
er

ve
d

sw
pf

_l
bs

_h
it

R
es

er
ve

d

01
00

10
1

R
es

er
ve

d

01
00

11
0

R
es

er
ve

d

01
00

11
1

R
es

er
ve

d

01
10

00
0

R
es

er
ve

d
L2

_m
is

s_
dm

L2

_m
is

s_
pf

L2

_r
ea

d_
dm

L2

_r
ea

d_
pf

L2

_
w

b_
dm

L2

_w
b_

pf

01
10

00
1

bi
_c

ou
nt

R

es
er

ve
d

cp
d_

co
un

t
cp

u_
m

em
_r

ea
d

_c
ou

nt

cp
u_

m
em

_w
ri

te
_c

ou
n

t
IO

_
m

em
_r

e
ad

_
co

u
nt

IO

_m
em

_w
ri

te
_

co
un

t

01
10

01
0

L2
_m

is
s_

w
ai

t_
d

m
_b

an
k0

L2

_m
is

s_
w

ai
t_

p
f_

ba
nk

0
L2

_m
is

s_
co

un
t_

dm
_b

an
k0

L2

_m
is

s_
co

un
t_

pf
_b

an
k0

L2

_m
is

s_
w

a
it_

d
m

_b
an

k1

L2
_m

is
s_

w
ai

t_
p

f_
ba

nk
1

L2
_

m
is

s_
co

un
t_

dm
_b

an
k1

L2

_m
is

s_
co

un
t_

pf
_b

an
k1

01
10

01
1

L2
_m

is
s_

co
un

t_
dm

_b
an

k2

L2
_m

is
s_

co
un

t_
pf

_b
an

k2

L2
_m

is
s_

w
ai

t_
d

m
_b

an
k2

L2

_m
is

s_
w

ai
t_

p
f_

ba
nk

2
L2

_m
is

s_
co

un
t_

dm
_b

an
k3

L2

_m
is

s_
co

un
t_

pf
_b

an
k3

L2

_
m

is
s_

w
ai

t_
d

m
_b

an
k3

L2

_m
is

s_
w

ai
t_

p
f_

ba
nk

3

01
10

10
0

lo
st

_p
f_

pf
p_

fu
ll

lo
st

_p
f_

by
_a

bo
r

t
IO

_p
st

_c
ou

nt

R
es

er
ve

d

01
10

10
1

R
es

er
ve

d

01
10

11
0

R
es

er
ve

d

01
11

11
1

D
is

ab
le

d
(N

o
P

IC
 i

s
co

un
te

d
up

)

11
11

11
1

D
is

ab
le

d
(N

o
P

IC
 i

s
co

un
te

d
up

)

Ver 15, 26 Apr. 2010 F. Appendix Q Performance Instrumentation 305

Q.2.1 Instruction and Trap Statistics

Standard PA Events

1	 cycle_counts
Counts the number of cycles when the performance counter is enabled. This counter is
similar to the TICK register but can count user cycles and system cycles separately,
based on the settings of PCR.UT and PCR.ST.

2	 instruction_counts (Non-Speculative)
Counts the number of committed instructions, including SXAR1 and SXAR2.

SPARC64 VIIIfx commits up to 4 instructions per cycle; however, this number normally
does not include SXAR1 and SXAR2. Thus, there are cases where instruction_counts /
cycle_counts is a value larger than 4.

3	 effective_instruction_counts (Non-Speculative)
Counts the number of committed instructions. SXAR1 and SXAR2 are not included.

Instructions per cycle (IPC) can be derived by combining this event with cycle_counts.

IPC = effective_instruction_counts / cycle_counts

If effective_Instruction_counts and cycle_counts are collected for both user and
system modes, the IPC in either user or system mode can be derived.

4	 load_store_instructions (Non-Speculative)
Counts the number of committed load/store instructions. Also counts atomic load-store
instructions. SIMD load/store instructions are counted separately by a different event.

5	 branch_instructions (Non-Speculative)
Counts the number of committed branch instructions. Also counts the CALL, JMPL, and
RETURN instructions.

6	 floating_instructions (Non-Speculative)
Counts the number of committed 2-operand floating-point instructions. The counted
instructions are FPop1 (TABLE E-5), FPop2 (TABLE E-6), and IMPDEP1 with
opf<8:4> = 1616 or 1716. SIMD versions of these instructions are not counted.

Compatibility Note – In CPUs up to and including SPARC64 VII, this event only counted
FPop1 and FPop2 instructions.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 306

7	 fma_instructions (Non-Speculative)
Counts the number of committed 3-operand floating-point instructions. The counted
instructions are FM{ADD,SUB}{s,d}, FNM{ADD,SUB}{s,d}, and FTRIMADDd. SIMD
versions of these instructions are not counted.

Compatibility Note – In CPUs up to and including SPARC64 VII, this event was called
impdep2_instructions and only counted floating-point multiply-add/subtract instructions.

Two operations are executed per instruction; the number of operations is obtained by
multiplying by 2.

8	 prefetch_instructions (Non-Speculative)
Counts the number of committed prefetch instructions.

9	 SIMD_load_store_instructions (Non-Speculative)
Counts the number of committed SIMD load/store instructions.

10	 SIMD_floating_instructions (Non-Speculative)
Counts the number of committed 2-operand SIMD floating-point instructions. The
counted instructions are the same as floating_instructions.

Two operations are executed per instruction; the number of operations is obtained by
multiplying by 2.

11	 SIMD_fma_instructions (Non-Speculative)
Counts the number of committed 3-operand SIMD floating-point instructions. The
counted instructions are the same as fma_instructions.

Four operations are executed per instruction; the number of operations is obtained by
multiplying by 4.

12	 sxar1_instructions (Non-Speculative)
Counts the number of committed SXAR1 instructions.

13	 sxar2_instructions (Non-Speculative)
Counts the number of committed SXAR2 instructions.

14	 trap_all (Non-Speculative)
Counts the occurrences of all trap events. The number of occurrences counted equals the
sum of the occurrences counted by all trap PA events.

Ver 15, 26 Apr. 2010	 F. Appendix Q Performance Instrumentation 307

15	 trap_int_vector (Non-Speculative)
Counts the occurrences of interrupt_vector_trap.

16	 trap_int_level (Non-Speculative)
Counts the occurrences of interrupt_level_n.

17	 trap_spill (Non-Speculative)
Counts the occurrences of spill_n_normal and spill_n_other.

18	 trap_fill (Non-Speculative)
Count the occurrences of fill_n_normal and fill_n_other.

19	 trap_trap_inst (Non-Speculative)
Counts the occurrences of trap_instruction.

20	 trap_IMMU_miss (Non-Speculative)
Counts the occurrences of fast_instruction_access_MMU_miss.

21	 trap_DMMU_miss (Non-Speculative)
Counts the occurrences of fast_data_instruction_access_MMU_miss.

22	 trap_SIMD_load_across_pages (Non-Speculative)
Counts the occurrences of SIMD_load_across_pages.

Supplemental PA Events

23	 xma_inst (Non-Speculative)
Counts the number of committed FPMADDX and FPMADDXHI instructions.

24	 unpack_sxar1 (Non-Speculative)
Counts the number of unpacked SXAR1 instructions that are committed.

25	 unpack_sxar2 (Non-Speculative)
Counts the number of unpacked SXAR2 instructions that are committed.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 308

26 instruction_flow_counts (Non-Speculative)

Counts the number of committed instruction flows. In SPARC64 VIIIfx, there are
instructions that are processed internally as several separate instructions, called instruction
flows. This event does not count packed SXAR1 and SXAR2 instructions.

27 ex_load_instructions (Non-Speculative)
Counts the number of committed integer-load instructions. Counts the LD(S,U)B{A},
LD(S,U)H{A}, LD(S,U)W{A}, LDD{A}, and LDX{A} instructions.

28 ex_store_instructions (Non-Speculative)
Counts the number of committed integer-store and atomic instructions. Counts the
STB{A}, STH{A}, STW{A}, STD{A}, STX{A}, LDSTUB{A}, SWAP{A}, and CAS{X}A
instructions.

29 fl_load_instructions (Non-Speculative)
Counts the number of committed floating-point load instructions. Counts the LDF{A},

LDDF{A}, and LD{X}FSR instructions.

This event does not count SIMD load instructions or LDQF{A}

30 fl_store_instructions (Non-Speculative)
Counts the number of committed floating-point store instructions. Counts the STF{A},

STDF{A}, STFR, STDFR, and ST{X}FSR instructions.

This event does not count SIMD store instructions or STQF{A}.

31 SIMD_fl_load_instructions (Non-Speculative)
Counts the number of committed floating-point SIMD load instructions. Counted
instructions are the SIMD versions of LDF{A} and LDDF{A}.

32 SIMD_fl_store_instructions (Non-Speculative)
Counts the number of committed floating-point SIMD store instructions. Counted
instructions are the SIMD versions of STF{A}, STDF{A}, STFR, and STDFR.

33 iwr_empty

Counts the number of cycles that the IWR (Issue Word Register) is empty. IWR is a four-
entry register that holds instructions during instruction decode; the IWR may be empty if
an instruction cache miss prevents instruction fetch.

Ver 15, 26 Apr. 2010 F. Appendix Q Performance Instrumentation 309

34 rs1 (Non-Speculative)

Counts the number of cycles in which normal execution is halted due to the following:

■ a trap or interrupt
■ to update privileged registers
■ to guarantee memory order
■ RAS-initiated hardware retry

35 flush_rs (Non-Speculative)

Counts the number of pipeline flushes due to misprediction. Since SPARC64 VIIIfx
supports speculative execution, instructions that should not have been executed may be
executed due to misprediction. When it is determined that the predicted path is incorrect,
these instructions are cancelled. A pipeline flush occurrs at this time.

 misprediction rate = flush_rs / branch_instructions

36 0iid_use

Counts the number of cycles where no instruction is issued. SPARC64 VIIIfx issues up to
four instructions per cycle; when no instruction is issued, 0iid_use is incremented.

In SPARC64 VIIIfx, there are instructions that are processed internally as several separate
instructions, called instruction flows. Each of these instruction flows is counted. SXAR
instructions are also counted.

37 1iid_use

Counts the number of cycles where one instruction is issued.

38 2iid_use

Counts the number of cycles where two instructions are issued.

39 3iid_use

Counts the number of cycles where three instructions are issued.

40 4iid_use

Counts the number of cycles where four instructions are issued.

41 sync_intlk

Counts the number of cycles where instruction issue is inhibited by a pipeline sync.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 310

42 regwin_intlk

Counts the number of cycles where instruction issue is inhibited by a register window
switch.

43 decall_intlk

Counts the number of cycles where instruction issue is inhibited by a static interlock
condition at the decode stage. decall_intlk includes sync_intlk and regwin_intlk; stall
cycles due to dynamic conditions (such as reservation station full) are not counted.

44 rsf_pmmi (Non-Speculative)

Counts the number of cycles where mixing single-precision and double-precision floating-
point operations prevents instructions from issuing.

45 toq_rsbr_phantom

Counts the number of instructions that are predicted taken but are not actually branch
instructions. Branch prediction in SPARC64 VIIIfx is done prior to instruction decode;
branch prediction occurs whether the instruction is a branch instruction or not.
Instructions that are not branch instructions may be incorrectly predicted as taken
branches.

46 op_stv_wait (Non-Speculative)

Counts the number of cycles where no instructions are committed because the oldest,
uncommitted instruction is a memory access waiting for data. op_stv_wait does not count
cycles where a store instruction is waiting for data (atomic instructions are counted).

Note that op_stv_wait does not measure the cache miss latency, since any cycles prior to
becoming the oldest, uncommitted instruction are not counted.

47 op_stv_wait_nc_pend (Non-Speculative)

Counts op_stv_wait for noncacheable accesses.

48 op_stv_wait_ex (Non-Speculative)

Counts op_stv_wait for integer memory access instructions. Does not distinguish

between the L1 cache and L2 cache.

49 op_stv_wait_sxmiss (Non-Speculative)

Counts op_stv_wait caused by an L2$ miss. Does not distinguish between integer and
floating-point loads.

Ver 15, 26 Apr. 2010 F. Appendix Q Performance Instrumentation 311

50 op_stv_wait_sxmiss_ex (Non-Speculative)

Counts op_stv_wait caused by an integer-load L2$ miss.

51 op_stv_wait_pfp_busy (Non-Speculative)

Counts op_stv_wait caused by a memory access instruction that cannot be executed due
to the lack of an available prefetch port.

52 op_stv_wait_pfp_busy_ex (Non-Speculative)

Counts op_stv_wait caused by an integer memory access instruction that cannot be
executed due to the lack of an available prefetch port.

53 op_stv_wait_swpf (Non-Speculative)

Counts op_stv_wait caused by a prefetch instruction that cannot be executed due to the
lack of an available prefetch port.

54 cse_window_empty_sp_full (Non-Speculative)

Counts the number of cycles where no instructions are committed because the CSE is
empty and the store ports are full.

55 cse_window_empty (Non-Speculative)

Counts the number of cycles where no instructions are committed because the CSE is
empty.

56 branch_comp_wait (Non-Speculative)

Counts the number of cycles where no instructions are committed and the oldest,
uncommitted instruction is a branch instruction. Measuring branch_comp_wait has a
lower priority than measuring eu_comp_wait.

57 eu_comp_wait (Non-Speculative)

Counts the number of cycles where no instructions are committed and the oldest,

uncommitted instruction is an integer or floating-point instruction. Measuring

eu_comp_wait has a higher priority than measuring branch_comp_wait.

58 fl_comp_wait (Non-Speculative)

Counts the number of cycles where no instructions are committed and the oldest,

uncommitted instruction is a floating-point instruction.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 312

59	 0endop (Non-Speculative)

Counts the number of cycles where no instructions are committed. 0endop also counts
cycles where the only instruction that commits is an SXAR instruction.

60 1endop (Non-Speculative)

Counts the number of cycles where one instruction is committed.

61 2endop (Non-Speculative)

Counts the number of cycles where two instructions are committed.

62 3endop (Non-Speculative)

Counts the number of cycles where three instructions are committed.

63 inh_cmit_gpr_2write (Non-Speculative)

Counts the number of cycles where fewer than four instructions are committed due to a
lack of GPR write ports (only 2 integer registers can be updated each cycle).

64 suspend_cycle (Non-Speculative)

Counts the number of cycles where the instruction unit is halted by a SUSPEND or SLEEP
instruction.

65 sleep_cycle (Non-Speculative)

Counts the number of cycles where the instruction unit is halted by a SLEEP instruction

66 single_sxar_commit (Non-Speculative)

Counts the number of cycles where the only instruction committed is an unpacked SXAR
instruction. These cycles are also counted by 0endop.

Q.2.2	 MMU and L1 cache Events

Standard PA Events

1	 uITLB_miss
Counts the occurrences of instruction uTLB misses.

Ver 15, 26 Apr. 2010	 F. Appendix Q Performance Instrumentation 313

2 uDTLB_miss

Counts the occurrences of data uTLB misses.

Note – Main TLB misses are counted by trap_IMMU_miss and trap_DMMU_miss.

3	 L1I_miss
Counts the occurrences of I1 cache misses.

4	 L1D_miss
Counts the occurrences of D1 cache misses.

5	 L1I_wait_all
Counts the total time spent processing L1 instruction cache misses, i.e. the total miss
latency. In SPARC64 VIIIfx, the L1 cache is a non-blocking cache that can process
multiple cache misses in parallel; L1I_wait_all only counts the miss latency for one of
these misses. That is, the overlapped miss latencies are not counted.

6	 L1D_wait_all
Counts the total time spent processing L1 data cache misses, i.e. the total miss latency.
In SPARC64 VIIIfx, the L1 cache is a non-blocking cache that can process multiple
cache misses in parallel; L1D_wait_all only counts the miss latency for one of these
misses. That is, the overlapped miss latencies are not counted.

Supplemental PA Events

7	 uITLB_miss2
Counts the number of reads from the fITLB caused by an instruction fetch uTLB miss.

8	 uDTLB_miss2
Counts the number of reads from the fDTLB caused by a data access uTLB miss.

9 swpf_success_all

Counts the number of PREFETCH instructions not lost in the SU and sent to the SX .

10 swpf_fail_all

Counts the number of prefetch instructions lost in the SU.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 314

11 swpf_lbs_hit

Counts the number of prefetch instructions that hit in the L1 cache.

The number of prefetch instructions sent to the SU
= swpf_success_all + swpf_fail_all + swpf_lbs_hit

12 L1I_thrashing

Counts the occurrences of an L2 read request being issued twice in the period between
acquiring and releasing a store port. When instruction fetch causes an L1 instruction cache
miss, the requested data is updated in the L1I$. This counter is incremented if the updated
data is evicted before it can be read.

13 L1D_thrashing

Counts the occurrences of an L2 read request being issued twice in the period between
acquiring and releasing a store port. When a memory access instruction causes an L1 data
cache miss, the requested data is updated in the L1D$. This counter is incremented if the
updated data is evicted before it can be read.

Q.2.3 L2 cache Events

L2 cache events may be due to the actions of a CPU core or external requests. Events caused
by a CPU core are counted separately for each core; those caused by external requests are
counted for all cores.

Most L2 cache events are categorized as either demand (dm) or prefetch (pf) events, but
these events do not necessarily correspond to load/store/atomic instructions and prefetch
instructions. This is because:

■	 When a load/store instruction cannot be executed due to a lack of resources needed to
move data into the L1 cache, data is first moved into the L2 cache. Once L1 cache
resources become available, the load/store instruction is executed. That is, only the
request to move data into the L2 cache is processed as a prefetch request.

■	 The hardware prefetch mechanisms generates prefetch requests.
■	 L1 cache prefetch instructions are processed as demand requests.

It follows that the demand and prefetch L2 cache events correspond to the following:

■	 A demand (dm) request to the L2 cache is an instruction fetch, load/store instruction, or
L1 prefetch instruction that was able to acquire the resources needed to access memory.

■	 A prefetch (pf) request to the L2 cache is an instruction fetch, load/store instruction, or L1
prefetch instruction that could not acquire the resources needed to access memory; a
hardware prefetch is also a prefetch access.

Ver 15, 26 Apr. 2010	 F. Appendix Q Performance Instrumentation 315

Standard PA Events

1	 L2_read_dm
Counts the number of L2 cache references by demand requests. A single block load/

store instruction is counted as 8 cache references.

External cache-reference requests are not counted.

2	 L2_read_pf
Counts L2 cache references by prefetch requests. A single block load/store instruction is
counted as 8 cache references.

3	 L2_miss_dm
Counts the number of L2 cache misses caused by demand requests.

This counter is the sum of the L2_miss_count_dm_bank{0,1,2,3}.

4	 L2_miss_pf
Counts the number of L2 cache misses caused by prefetch requests.

This counter is the sum of the L2_miss_count_pf_bank{0,1,2,3}.

5	 L2_miss_count_dm_bank{0,1,2,3}
Counts the number of L2 cache misses for each bank caused by demand requests.

Note – Consider the case where a prefetch to an address misses in the L2 cache, which
issues a memory access request. If the corresponding demand request arrives before the data
is returned, the resulting L2 cache demand miss is not counted.

6	 L2_miss_count_pf_bank{0,1,2,3}
Counts the number of L2 cache misses for each bank caused by prefetch requests.

7	 L2_miss_wait_dm_bank{0,1,2,3}
Counts the total time spent processing L2 cache misses for each bank caused by demand
requests, i.e. the total miss latency for each bank. The latency of each memory access
request is counted.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 316

Note – Consider the case where a prefetch to an address misses in the L2 cache, which
issues a memory access request. If the corresponding demand request arrives before the data
is returned, L2_miss_wait_dm_bank{0,1,2,3} counts the cycles after the demand request
arrives and before the data is returned.

8	 L2_miss_wait_pf_bank{0,1,2,3}
Counts the total time spent processing L2 cache misses for each bank caused by prefetch
requests, i.e. the total miss latency for each bank. The latency of each memory access
request is counted.

The L2 cache miss latency can be derived by dividing L2_miss_wait_* by

L2_miss_count_*.

Note – The L2 cache miss latency can be obtained from L2_miss_count_* and
L2_miss_wait_*. Consider the case where a demand request arrives while a prefetch request
is being processed; because of the way these events are defined, measuring the prefetch and
demand latencies separately may overestimate the demand latency and underestimate the
prefetch latency.

9	 L2_wb_dm
Counts the occurrences of writeback by demand L2-cache misses.

10	 L2_wb_pf
Counts the occurrences of writeback by prefetch L2-cache misses.

Supplemental PA Events

11 lost_pf_pfp_full

Counts the number of prefetch requests lost due to PF port full.

12 lost_pf_by_abort

Counts the number of prefetch requests lost due to SX pipe abort.

Bus Transaction EventsStandard PA Events

1	 cpu_mem_read_count
Counts the number of memory read requests issued by the CPU.

Ver 15, 26 Apr. 2010	 F. Appendix Q Performance Instrumentation 317

2	 cpu_mem_write_count
Counts the number of memory write requests issued by the CPU.

3	 IO_mem_read_count
Counts the number of memory read requests issued by I/O.

4	 IO_mem_write_count
Counts the number of memory write requests issued by I/O.

Only ICC-FST is counted by this event. ICC-PST can be counted using IO_pst_count.

5	 bi_count
Counts the number of external cache-invalidate requests received by the CPU chip.

These requests that do not check the cache data before invalidating.

For this event, the same value is counted by all cores.

6	 cpi_count
Counts the number of external cache-copy-and-invalidate requests received by the CPU
chip. These requests copy updated cache data to memory before invalidating; cache data
that is consistent with memory does not need to be copied and is invalidated.

For this event, the same value is counted by all cores.

Implementation Note – This PA event does not exist in SPARC64 VIIIfx; compatibility,
however, is preserved.

7	 cpb_count
Counts the number of external cache-copyback requests received by the CPU chip.

These request copy updated cache data to memory.

For this event, the same value is counted by all cores.

Implementation Note – This PA event does not exist in SPARC64 VIIIfx; compatibility,
however, is preserved.

8	 cpd_count
Counts the number of external cache-read requests received by the CPU chip. These
requests, such as a DMA read request, read the updated data in the cache without writing
the data to memory.

For this event, the same value is counted by all cores.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 318

Supplemental PA Events

9 IO_pst_count

Counts the number of memory write requests (ICC-PST) issued by I/O.

Q.3 Cycle Accounting
Cycle accounting can be generally defined as a method for analyzing the factors contributing
to performance bottlenecks. The total time (number of CPU cycles) required to execute an
instruction sequence can be classified as time spent in various CPU execution states
(executing instructions, waiting for a memory access, waiting for execution to complete, etc).
This can provide a good grasp of the performance bottlenecks involved and allow
performance to be analyzed and improved. In fact, SPARC64 VIIIfx defines a large number
of PA events that record detailed information about CPU execution states; this enables
efficient analysis of bottlenecks and is useful for performance tuning.

In this document, however, cycle accounting is specifically defined as the analysis of
instructions as they are committed in order. SPARC64 VIIIfx is an out-of-order execution
CPU with multiple execution units; the CPU is generally in a state where executing
instructions and waiting instructions are thoroughly mixed together. One instruction may be
waiting for data from memory, another executing a floating-point multiply, and yet another
waiting for confirmation of the branch direction. Simply analyzing the reasons why
individual instructions are waiting is not useful. Cycle accounting classifies cycles by the
number of instructions committed; when a cycle commits no instructions, the conditions that
prevented instructions from committing are analyzed.

SPARC64 VIIIfx commits up to 4 instructions per cycle. The more cycles that commit the
maximum number of instructions, the better the execution efficiency. Cycles that do not
commit any instructions have an extremely negative effect on performance, and it is
important to perform a detailed analysis. The main causes are:

■ Waiting for a memory access to return data.
■ Waiting for instruction execution to complete.
■ Instruction fetch is unable to supply the pipeline with instructions.

The chart in TABLE Q-2 lists useful PA events for cycle accounting, as well as how those PA
events can be used to analyze execution efficiency.

The diagram in FIGURE Q-1 shows the relationship between the various op_stv_wait_*
events. The PA events marked with a † in the chart and diagram are synthetic events; that is,
they are calculated from other PA events.

Ver 15, 26 Apr. 2010 F. Appendix Q Performance Instrumentation 319

op_stv_wait_sxmiss_ex

op_stv_wait_sxhit_ex†

op_stv_wait_pfp_busy_ex

op_stv_wait_sxmiss_fl†

op_stv_wait_sxhit_fl†

op_stv_wait_pfp_busy_fl†

op_stv_wait_swpf

op_stv_wait_nc_pend

{ op_stv_wait_pfp_busy op_stv_wait_fl†

op_stv_wait

{ op_stv_wait_sxmiss
op_stv_wait_ex

FIGURE Q-1 Breakdown of op_stv_wait

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 320

TABLE Q-2 Useful Performance Events for Cycle Accounting

Instructions
Committed
per Cycle Cycles Remarks

4 cycle_counts
- 3endop - 2endop
- 1endop - 0endop

N/A (Four instructions are committed in a
cycle)

3 3endop inh_cmit_gpr_2write measures one of the
conditions that can prevent subsequent
instruction(s) from committing.

2 2endop

1 1endop

0 Execution:
eu_comp_wait

+ branch_comp_wait

eu_comp_wait
= ex_comp_wait†+ fl_comp_wait

Instruction Fetch:
cse_window_empy

cse_window_empty
= cse_window_empty_sp_full

+ sleep_state + misc.†

L1D cache miss:
op_stv_wait

- L2 cache miss (see below)

L2 cache miss:
op_stv_wait_sxmiss

+ op_stv_wait_nc_pend

Others:
0endop

- op_stv_wait
- cse_window_empy
- eu_comp_wait
- branch_comp_wait
-(instruction_flow_counts

- instruction_counts)

Ver 15, 26 Apr. 2010 F. Appendix Q Performance Instrumentation 321

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 322

F.AP PE ND IX R

System Programmer’s Model

This appendix describes CPU components that have not been discussed elsewhere.

Information about how to control the CPU via the service processor is out of the scope of
this document and is not discussed.

R.1 System Config Register

Register Name ASI_SYS_CONFIG

ASI 4A16

VA —

Access Type Supervisor read/write (write is ignored)

Reserved ITID

63 10 9 0

Bit Field Access Description

63:10 TBD TBD TBD

9:0 ITID R Thread ITID (Interrupt Target ID)。

Ver 15, 26 Apr. 2010 F. Appendix R System Programmer’s Model 323

R.2 STICK Control Register

Register Name ASI_STICK_CNTL

ASI 4B16

VA 0016

Access Type Supervisor read/write

Reserved stop

63 1 0

Bit Field Access Description

63:1 —

0 stop RW When stop is 1, STICK count-up is halted. When
stop is 0, STICK count-up is restarted.

The STICK_CNTL register is used to enable/disable STICK count-up and is shared by all
cores. If any core sets STICK_CNTL, the STICK counters of all cores are enabled/disabled
at the same time.

STICK count-up is halted while STICK.stop = 1. This has the following effects:

■ Setting the STICK_CMPR does not post an interrupt, as the value is never reached.

Of course, if STICK.stop = 1 and

■ STICK_CMPR.INT_DIS = 0
■ STICK_CMPR.STICK_CMPR = STICK.counter

the value is already reached, and SOFTINT.SM is set. A level-14 interrupt is posted when
PSTATE.IE = 1 and PIL < 14.

■ Cores executing the SLEEP instruction do not wake up.

When multiple cores attempt to write STICK_CNTL at the same time, the requests are
processed one at a time. The order in which they are processed is dependent on the hardware
implementation.

Programming Note – The STICK_CNTL register is managed via a core.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 324

After a write to STICK_CNTL, a read/write of the STICK register does not execute until the
the write commits and a FLUSH instruction is executed. The time required for the write to
commit is undefined. The core that wrote STICK_CNTL reads STICK_CNTL to check that
the write has committed. When a read/write of the STICK register is performed before the
write commits, the value written to/read from STICK is not preserved.

Ver 15, 26 Apr. 2010 F. Appendix R System Programmer’s Model 325

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 326

F.AP PE ND IX S

Summary of Specification Differences

This appendix summarizes the differences between the SPARC64 VIIIfx specification and
the SPARC V9, SPARC JPS1, and SPARC64 VII specifications. This appendix is provided
for the convenience of the reader and is not a formal specification. Please refer to the other
chapters in this document for formal definitions of specific items.

TABLE S-1 lists the differences between the SPARC64 VIIIfx specification and the
SPARC V9, SPARC JPS1, and SPARC64 VII specifications. The “Binary Compatibility”
column indicates whether software that conforms to the specification for SPARC V9, SPARC
JPS1, or SPARC64 VII will run on the SPARC64 VIIIfx CPU.1

1. Software that uses aspects of the architecture that are reserved by the SPARC V9, SPARC JPS1, or SPARC64 VII
specification is not compatible. TABLE S-1 does not list reserved items.

Ver 15, 26 Apr. 2010 F. Appendix S Summary of Specification Differences 327

Page

10

20

20

26

178,
183

45

12,
12,
230,
231

—

175,
193

177

179,
185,
194

TABLE S-1 Summary of Specification Differences (1 of 4)

Item Specification Binary Compatibility

V9 JPS1 SPARC64 VII SPARC64 VIIIfx V9 JPS1
SPARC64

VII

Architecture

Core,
thread

undef 4 cores, 2 threads per core 8 cores, 1 thread per core no

Integer
registers

160 registers 192 registers

Floating-
point
register

32 single-precision registers
32 double-precision registers

32 single-precision registers
256 double-precision registers

Double-precision registers can be
used for single-precision
operations.

ASR undef %pcr, %pic, %dcr, %gsr, %softint,
%tick_cmpr, %sys_tick,
%sys_tick_cmpr

%pcr, %pic, %dcr, %gsr,
%softint, %tick_cmpr,
%sys_tick,
%sys_tick_cmpr, %xar,
%xasr, %txar

Physical
address

undef at least 43 bits 47 bits 41 bits no

RSTVaddr undef impl-dep PA = 7fff f000 000016 PA = 1ff f000 000016 no

Cache undef • L1: 64KB/2way(I), 64KB/
2way(D),
64byte line

• L2: 6MB/12way,
256byte line/4sublines

• L1: 32KB/2way(I), 32KB/
2way(D),
128byte line
Sector cache.

• L2: 6MB/12way,
128byte line
Index hashing, sector cache.

no
(index
hash)

SXflush undef yes no no

TLB undef 32(fTLB)+2048/4way(sTLB),
I,D TLBs.

fTLB is the victim cache for the
sTLB.

16(fTLB)+256/4way(sITLB),
512/4way(sDTLB)

No victim cache functionality.

Error injection function deleted.

no

Page size undef 8KB, 64KB,
512KB, 4MB

8KB, 64KB, 512KB, 4MB,
32MB, 256MB

8KB, 64KB, 512KB, 4MB,
32MB, 256MB, 2GB

TSB undef On a TLB miss, hardware computes pointers
into the TSB.

No hardware support.

Deleted ASIs:
• I/D TSB Primary Extension
• D TSB Secondary Extension
• I/D TSB Nuclues Extension
• I/D TSB 8KB ptr
• I/D TSB 64KB ptr
• D TSB Direct ptr

The split field in TSB Base is
deleted.

no

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 328

Item

Hardwa
Barrier

Hardwa
Prefetc

Interrup
Registe

impdep

impdep

load/sto

Other

SIMD

block lo
block s
(bld/bst
behavio

rd upd
on a lo
excepti

TABLE S-1 Summary of Specification Differences (2 of 4)

 Specification Binary Compatibility Page

V9 JPS1 SPARC64 VII SPARC64 VIIIfx V9 JPS1
SPARC64

VII

re

undef BPU 2, BB 12/BPU, BST 24bit/
BPU

No BPU, BB 12, BST 8bit/BB no 222

re
h

undef Yes. Cannot be managed by
software, so it is not described in
the specification.

Yes. Can be managed by
software.

237

t
rs

undef 8 registers 3 registers no 242

Instructions

1 undef VIS VIS, SLEEP, SUSPEND SLEEP, SUSPEND,
FCMP(EQ,LE,LT,NE,GT,GE)E(s,d
), FCMP(EQ,NE)(s,d),
FMAX(s,d), FMIN(s,d),
FRCPA(s,d), FRSQRTA(s,d),
FTRISSELd, FTRISMULd

78,
79,
116,
118,
120,
125

2 undef undef F{N}M(ADD,SUB)(s,d),
FPMADDX{HI}

F{N}M(ADD,SUB)(s,d),
FPMADDX{HI}, FTRIMADDd,
FSELMOV(s,d)

72,
80,
124

re QUAD_LDD_PHYS QUAD_LDD_PHYS, ST{D}FR,

XFILL

89,
124,
135

POPC POPC, SXAR V81 95,
133

no yes

ad,
tore
)
r

undef • Data in the
cache is
invalidated,
and bst
commit is
written to
memory.

• Register
dependency
is ignored.

• Data in the cache is
invalidated, and bst commit is
written to memory.

• Register dependency is
detected.

• Internally, memory model for
bld/bst is RMO. Ordering
between preceding and
succeeding instructions does
not conform to V9.

• If the TTE is invalidated
during a bld/bst, a
fast_data_access_MMU_miss
occurs.

• bst commit is stored in the
cache.

• Conforms to TSO.

no 68

ate
ad
on

impdep. #44 Not updated. Not updated for non-SIMD.

There are cases where rd is
updated for SIMD.

82,
86

Ver 15, 26 Apr. 2010 F. Appendix S Summary of Specification Differences 329

Page

82,
86,
101,
105

29

53

50

51

26

24

27,
304

36

—

270

 TABLE S-1 Summary of Specification Differences (3 of 4)

Item Specification Binary Compatibility

V9 JPS1 SPARC64 VII SPARC64 VIIIfx V9 JPS1
SPARC64

VII

LDDF/
STDF_me
m_addres
s_not_alig
ned

impdep. #109, #110 Exception signalled. Exception signalled for non-
SIMD.

Exception not signalled for
SIMD.

Instruction
attributes

no Can specify SIMD, cache sector,
and disable hardware prefetch.

Traps

Types async_data_error async_data_error, illegal_action,

SIMD_load_across_pages
Priority async_data_error is priority 2. async_data_error is priority 2,

illegal_action is priority 8.5,
SIMD_load_across_pages is
priority 12, and
fp_exception_other
(ftt = unimplemented_FPop) is
priority 8.2.

When fp_exception_ieee754 and
fp_exception_other
(ftt = unfinished_FPop) occur
simultaneously for a SIMD
operation, fp_exception_other
takes priority.

The behavior of

fp_exception_o
ther differs, but
compatbility is
unaffected.

Registers
saved

For these added registers,、
• on a trap

TXAR[TL] ← XAR

XAR ← 0
• on a DONE/RETRY

XAR ← TXAR[TL]

TXAR[TL] is unchanged
Register Functions

%ver.im
pl

7 8 no

%fsr.ce
xc update

At most 1 bit is set. There are cases where a SIMD
operation sets 2 bits.

PA Event
types

6 bits 7 bits

watchpoint VA, PA can be specified separately. VA, PA share a register. no

AFAR optional Fixed value of 0. Readable. Deleted. no

EIDR bits <13:0> are valid.

Software sets the value 1002 in
bits <13:12>. Used as the error
mark ID.

bits <2:0> are valid.

bits <13:12> have a fixed value
of 1002 in hardware.

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 330

Item

SYS_C
FIG

Display
cause o
fatal er

STICK
start/sto

TABLE S-1 Summary of Specification Differences (4 of 4)

 Specification Binary Compatibility Page

V9 JPS1 SPARC64 VII SPARC64 VIIIfx V9 JPS1
SPARC64

VII

ON JB_CONFIG_REGISTER

UC_S, UC_SW, CLK_MODE,
ITID fields are defined.

SYS_CONFIG

Only the ITID field is defined.

no 323

Other

 Cause can be identified from Cause of fatal error is not no 272
f STCHG_ERROR_INFO. displayed.
ror

p

No (controlled by SC). Yes. no 324

1.SXAR is not V8-compatible.

Ver 15, 26 Apr. 2010 F. Appendix S Summary of Specification Differences 331

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 332

 Index

SYMBOLS
(instruction) commit

store write-back, 40

(instruction)commit

completion method for an instruction that detected an

error, 257

watchdog_reset detection condition, 46

(instruction)complete

FSR update, 43

A
A_UGE

categories, 258

specification of, 258

address mask (AM) field of PSTATE register, 70

address space identifier (ASI)

bit 7 setting for privileged_action exception, 106

complete list, 214

load floating-point instructions, 83

address space identifier (ASI) register

load floating-point from alternate space

instructions, 87

store floating-point into alternate space

instructions, 106

ADE

conditions causing, 278

software handling, 281

state transition, 278

see also async_data_error

ASI

Bypass, 214

Nontranslating, 214

Translating, 214

ASI_AFAR, 216

ASI_AFSR, 216

ASI_AFSR, see ASI_ASYNC_FAULT_STATUS

ASI_AFSR.DG_U2, 297

ASI_AIUP, 215

ASI_AIUPL, 215

ASI_AIUS, 215

ASI_AIUSL, 215

ASI_AS_IF_USER_PRIMARY, 215

ASI_AS_IF_USER_PRIMARY_LITTLE, 215

ASI_AS_IF_USER_SECONDARY, 215

ASI_AS_IF_USER_SECONDARY_LITTLE, 215

ASI_ASYNC_FAULT_ADDR, 216

ASI_ASYNC_FAULT_STATUS, 216, 261, 285, 285,

291

ASI_ATOMIC_QUAD_LDD_PHYS, 89, 202, 216

ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE, 89, 202,

216

ASI_BARRIER_ASSIGN, 217

ASI_BARRIER_INIT, 217

ASI_BLK_AIUP, 217

ASI_BLK_AIUPL, 218

ASI_BLK_AIUS, 217

ASI_BLK_AIUSL, 218

ASI_BLK_COMMIT_P, 219

ASI_BLK_COMMIT_S, 219

ASI_BLK_P, 219

ASI_BLK_PL, 219

ASI_BLK_S, 219

ASI_BLK_SL, 219

ASI_BLOCK_AS_IF_USER_PRIMARY, 217

ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE, 218

ASI_BLOCK_AS_IF_USER_SECONDARY, 217

Ver 15, 26 Apr. 2010 Index
 i

218
ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE,

ASI_BLOCK_COMMIT_PRIMARY, 219

ASI_BLOCK_COMMIT_SECONDARY, 219

ASI_BLOCK_PRIMARY, 219

ASI_BLOCK_PRIMARY_LITTLE, 219

ASI_BLOCK_SECONDARY, 219

ASI_BLOCK_SECONDARY_LITTLE, 219

ASI_BST, 219

ASI_CACHE_INV, 218

ASI_DCU_CONTROL_REGISTER, 216

ASI_DCUCR, 216, 248

ASI_DMMU_DEMAP, 217

ASI_DMMU_PA_WATCHPOINT_REG, 217

ASI_DMMU_SFAR, 217, 261

ASI_DMMU_SFPAR, 217

ASI_DMMU_SFSR, 217, 261

ASI_DMMU_TAG_ACCESS, 217, 276

ASI_DMMU_TAG_ACCESS_EXT, 217

ASI_DMMU_TAG_TARGET, 276

ASI_DMMU_TAG_TARGET_REG, 217

ASI_DMMU_TSB_64KB_PTR_REG, 217

ASI_DMMU_TSB_8KB_PTR_REG, 217

ASI_DMMU_TSB_BASE, 217, 276

ASI_DMMU_TSB_DIRECT_PTR_REG, 217

ASI_DMMU_TSB_NEXT_REG, 217

ASI_DMMU_TSB_PEXT_REG, 217

ASI_DMMU_TSB_SEXT_REG, 217

ASI_DMMU_VA_WATCHPOINT_REG, 217

ASI_DMMU_WATCHPOINT_REG, 217

ASI_DTLB_DATA_ACCESS, 298

ASI_DTLB_DATA_ACCESS_REG, 217

ASI_DTLB_DATA_IN_REG, 217

ASI_DTLB_TAG_ACCESS, 298

ASI_DTLB_TAG_READ_REG, 217

ASI_ECR, 216, 270

ASI_EIDR, 217, 261, 270, 273, 276, 292, 294, 295

ASI_ERROR_CONTROL, 216, 261, 270

UGE_HANDLER, 278

update after ADE, 280
WEAK_ED, 257

ASI_ERROR_IDENT, 217

ASI_FL16_P, 219

ASI_FL16_PL, 219

ASI_FL16_PRIMARY, 219

ASI_FL16_PRIMARY_LITTLE, 219

ASI_FL16_S, 219

ASI_FL16_SECONDARY, 219

ASI_FL16_SECONDARY_LITTLE, 219

ASI_FL16_SL, 219

ASI_FL8_P, 219

ASI_FL8_PL, 219

ASI_FL8_PRIMARY, 219

ASI_FL8_PRIMARY_LITTLE, 219

ASI_FL8_S, 219

ASI_FL8_SECONDARY, 219

ASI_FL8_SECONDARY_LITTLE, 219

ASI_FL8_SL, 219

ASI_FLUSH_L1I, 217, 230, 292

ASI_IIU_INST_TRAP, 217

ASI_IMMU_DEMAP, 217

ASI_IMMU_SFSR, 216, 261

ASI_IMMU_TAG_ACCESS, 276

ASI_IMMU_TAG_TARGET, 216, 276

ASI_IMMU_TSB_64KB_PTR_REG, 216

ASI_IMMU_TSB_BASE, 276

ASI_INTR_DATA0_R, 218

ASI_INTR_DATA0_W, 218

ASI_INTR_DATA1_R, 218

ASI_INTR_DATA1_W, 218

ASI_INTR_DATA2_R, 218

ASI_INTR_DATA2_W, 218

ASI_INTR_DATA3_R, 218

ASI_INTR_DATA3_W, 218

ASI_INTR_DATA4_R, 218

ASI_INTR_DATA4_W, 218

ASI_INTR_DATA5_R, 218

ASI_INTR_DATA5_W, 218

ASI_INTR_DATA6_R, 218

ASI_INTR_DATA6_W, 218

ASI_INTR_DATA7_R, 218

ASI_INTR_DATA7_W, 218

ASI_INTR_DISPATCH_STATUS, 240

ASI_INTR_DISPATCH_W, 276

ASI_INTR_R, 241, 276

ASI_INTR_RECEIVE, 216, 241

ASI_INTR_W, 239, 240, 241

ASI_ITLB_DATA_ACCESS, 298

ASI_ITLB_DATA_ACCESS_REG, 217

ASI_ITLB_DATA_IN_REG, 217

ASI_ITLB_TAG_ACCESS, 298

ASI_ITLB_TAG_READ_REG, 217

ASI_L2_CTRL, 185, 188, 189, 191, 202, 224, 226, 227,

233, 234, 324

ASI_LBSY, 219

ASI_MCNTL, 184, 216

ASI_MEMORY_CONTROL_REG, 216

ASI_MONDO_RECEIVE_CTRL, 216

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010
 ii

ASI_MONDO_SEND_CTRL, 216

ASI_N, 215

ASI_NL, 215

ASI_NUCLEUS, 96, 196, 215

ASI_NUCLEUS_LITTLE, 96, 215

ASI_NUCLEUS_QUAD_LDD_L, 216

ASI_NUCLEUS_QUAD_LDD_LITTLE, 216

ASI_P, 218

ASI_PA_WATCH_POINT, 273

ASI_PHYS_BYPASS_EC_WITH_E_BIT, 231

ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE, 23

1

ASI_PHYS_BYPASS_EC_WITH_EBIT, 215

ASI_PHYS_BYPASS_EC_WITH_EBIT_L, 215

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 215

ASI_PHYS_BYPASS_WITH_EBIT, 40

ASI_PHYS_USE_EC, 215

ASI_PHYS_USE_EC_L, 215

ASI_PHYS_USE_EC_LITTLE, 215

ASI_PL, 218

ASI_PNF, 218

ASI_PNFL, 218

ASI_PRIMARY, 96, 196, 198, 218

ASI_PRIMARY_AS_IF_USER, 96

ASI_PRIMARY_AS_IF_USER_LITTLE, 96

ASI_PRIMARY_CONTEXT, 276

ASI_PRIMARY_CONTEXT_REG, 217

ASI_PRIMARY_LITTLE, 96, 218

ASI_PRIMARY_NO_FAULT, 218

ASI_PRIMARY_NO_FAULT_LITTLE, 218

ASI_PST16_P, 218

ASI_PST16_PL, 219

ASI_PST16_PRIMARY, 218

ASI_PST16_PRIMARY_LITTLE, 219

ASI_PST16_S, 218

ASI_PST16_SECONDARY, 218

ASI_PST16_SECONDARY_LITTLE, 219

ASI_PST32_P, 218

ASI_PST32_PL, 219

ASI_PST32_PRIMARY, 218

ASI_PST32_PRIMARY_LITTLE, 219

ASI_PST32_S, 219

ASI_PST32_SECONDARY, 219

ASI_PST32_SECONDARY_LITTLE, 219

ASI_PST32_SL, 219

ASI_PST8_P, 218

ASI_PST8_PL, 219

ASI_PST8_PRIMARY, 218

ASI_PST8_PRIMARY_LITTLE, 219

ASI_PST8_S, 218

ASI_PST8_SECONDARY, 218

ASI_PST8_SECONDARY_LITTLE, 219

ASI_PST8_SL, 219

ASI_S, 218

ASI_SCCR, 219, 292

ASI_SCRATCH, 220

ASI_SCRATCH_REG, 216

ASI_SCRATCH_REGs, 291

ASI_SECONDARY, 96, 218

ASI_SECONDARY_AS_IF_USER, 96

ASI_SECONDARY_AS_IF_USER_LITTLE, 96

ASI_SECONDARY_CONTEXT, 276

ASI_SECONDARY_CONTEXT_REG, 217

ASI_SECONDARY_LITTLE, 96, 218

ASI_SECONDARY_NO_FAULT, 218

ASI_SECONDARY_NO_FAULT_LITTLE, 218

ASI_SERIAL_ID, 217, 220

ASI_SHARED_CONTEXT_REG, 217

ASI_SL, 218

ASI_SNF, 218

ASI_SNFL, 218

ASI_STATE_CHANGE_ERROR_INFO, 216

ASI_STCHG_ERR_INFO, 216

ASI_STCHG_ERROR_INFO, 261

ASI_STICK_CNTL, 216, 291

ASI_SU_PA_MODE, 291, 292

ASI_SYS_CONFIG, 36, 216, 323

ASI_SYS_CONFIG_REGISTER, 291

ASI_UGESR, 216, 276

IUG_DTLB, 298

IUG_ITLB, 298

ASI_URGENT_ERROR_STATUS, 216, 261, 275

ASI_VA_WATCH_POINT, 273, 276

ASI_XFILL_P, 217, 219

ASI_XFILL_S, 217, 219

ASRs, 26

async_data_error exception, 47, 53, 53, 59, 60, 84,

151, 156, 258, 259, 271, 274, 275, 277, 278, 278

atomic

load quadword, 89

load-store instructions

compare and swap, 47

B
BA instruction, 169

BCC instruction, 169

BCS instruction, 169

Ver 15, 26 Apr. 2010 Index iii

BE instruction, 169

BG instruction, 169

BGE instruction, 169

BGU instruction, 169

Bicc instructions, 163, 168

BL instruction, 169

BLE instruction, 169

BLEU instruction, 169

block

block store with commit, 220

load instructions, 220

store instructions, 220

BN instruction, 169

BNE instruction, 169

BNEG instruction, 169

BP instructions, 170

BPA instruction, 169

BPCC instruction, 169

BPcc instructions, 171

BPCS instruction, 169

BPE instruction, 168

BPG instruction, 169

BPGE instruction, 169

BPGU instruction, 169

BPL instruction, 168

BPLE instruction, 168

BPLEU instruction, 169

BPN instruction, 168

BPNE instruction, 169

BPNEG instruction, 169

BPOS instruction, 169

BPPOS instruction, 169

BPr instructions, 168

BPVC instruction, 169

BPVS instruction, 169

branch history buffer, 7, 10, 13

branch instructions, 38

BRHIS, see branch history buffer, 13
BVC instruction, 169

BVS instruction, 169

bypass attribute bits, 203

cache

coherence, 248

data

cache tag error handling, 293

characteristics, 231

data error detection, 294

description, 12

modification, 229

protection, 294

uncorrectable data error, 294

error protection, 8

instruction

characteristics, 230

data protection, 293

description, 12

error handling, 293

flushing/invalidation, 233

invalidation, 229

level-1

characteristics, 229

level-2

characteristics, 229

unified, 231

use, 8

synchronizing, 56

unified

characteristics, 231

description, 12

CALL instruction, 38

CANRESTORE register, 276

CANSAVE register, 276

CASA instruction, 40, 47, 199

CASXA instruction, 40, 47, 199

catastrophic_error exception, 47

cc0 field of instructions, 170

cc1 field of instructions, 170

cc2 field of instructions, 170

CE

correction, 266

counting in D1 cache data, 296

in D1 cache data, 294

in U2 cache tag, 293

clean windows (CLEANWIN) register, 109

CLEANWIN register, 155, 276

CLEAR_SOFTINT register, 289

clock-tick register (TICK), 109

cmask field, 92

commit, 3

XFILL, following access to cache line, 136

Commit Stack Entry, 11, 15

compare and swap instructions, 47

context

unused, 177

Context field of TTE, 177

C

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010
 iv

core, 3, 9, 57, 315, 328

BST, BST_mask, 223, 225

reset, 245

shared hardware barrier, 222

shared L2 cache, 229

shared SCCR, 234

cores, 324

counter

disabling/reading, 302

enabling, 302

overflow (in PIC), 28

CPopn instructions (SPARC V8), 71

current exception (cexc) field of FSR register, 23

current window pointer (CWP) register

writing CWP with WRPR instruction, 109

CWP register, 155, 276

cycle accounting, 3

D
D superscript on instruction name, 60

DAE

error detection action, 271

reporting, 258

data
cacheable

doubleword error marking, 268

error marking, 267

error protection, 267

data_access_error exception, 85, 90, 104, 107, 132,

180, 181, 200, 259

data_access_exception exception, 85, 88, 104, 107,

132, 179, 180, 199, 200

data_access_MMU_miss exception, 60

data_access_protection exception, 60, 90

data_breakpoint exception, 151

DCR

error handling, 289

nonprivileged access, 29

DCU_CONTROL register, 291

DCUCR

CP (cacheability) field, 35

CV (cacheability) field, 35

data watchpoint masks, 94

DC (data cache enable) field, 35

DM (DMMU enable) field, 35

DM field, 231

IC (instruction cache enable) field, 35

IM field, 230, 248

IMI (IMMU enable) field, 35

PM (PA data watchpoint mask) field, 35

PR/PW (PA watchpoint enable) fields, 35

updating, 248

VM (VA data watchpoint mask) field, 35

VR/VW (VA data watchpoint enable) fields, 35

WEAK_SPCA field, 35

deferred-trap queue

floating-point (FQ), 38

integer unit (IU), 38, 150

denormalized

operands, 23

results, 23

deprecated instructions

RDY, 98

WRY, 112

DMMU

bypass access, 202

disabled, 183

registers accessed, 184

Synchronous Fault Status Register, 195

DMMU_DEMAP register, 292

DMMU_SFAR register, 291

DMMU_SFSR register, 291

DMMU_TAG_ACCESS register, 291

DMMU_TAG_TARGET register, 291

DMMU_TSB_BASE register, 291

DMMU_VA_WATCHPOINT register, 292

DSFAR

on JMPL instruction error, 81

update during MMU trap, 180

D-SFSR, 180

DSFSR

bit description, 198

format, 195

FT field, 199, 200

on JMPL instruction error, 81

UE field, 195, 198

update policy, 200

DTLB_DATA_ACCESS register, 292

DTLB_DATA_IN register, 292

DTLB_TAG_READ register, 292

E
E bit of PTE, 40

ECC_error exception, 59, 260, 286

ee_second_watch_dog_timeout, 274

ee_sir_in_maxtl, 274

Ver 15, 26 Apr. 2010 Index
 v

ee_trap_addr_uncorrected_error, 273
ee_trap_in_maxtl, 274
ee_watch_dog_timeout_in_maxtl, 274
enable floating-point (FEF) field of FPRS register, 83,

87, 102, 106, 131
enable floating-point (PEF) field of PSTATE register, 83,

87, 102, 106, 131
error

catastrophic, 47
categories, 255
classification, 9
correctable, 293
correction, for single-bit errors, 8
D1 cache data, 294
fatal, 256
handling

ASI errors, 290
ASR errors, 288
most registers, 287

isolation, 9
restrainable, 260
source identification, 268
transition, 256, 257
U2 cache tag, 293
uncorrectable, 293

D1 cache data, 295
without direct damage, 260

urgent, 257
Error Detection, 263
ERROR_CONTROL register, 291
ERROR_MARK_ID, 268, 294, 295
error_state, 152, 246, 248, 278
exceptions

async_data_error, 84
data_access_error, 85, 90, 104, 107, 132
data_access_exception, 85, 88, 104, 107, 132
data_access_protection, 90
data_breakpoint, 151
fp_disabled, 83, 84, 87, 88, 102, 103, 106, 107, 132
fp_exception_ieee_754, 77, 145, 146
fp_exception_other, 142, 158
illegal_instruction, 77, 84, 94, 103, 108, 149, 151,

153, 154
LDDF_mem_address_not_aligned, 85, 88, 159,

221
mem_address_not_aligned, 83, 85, 88, 103, 107,

132, 159, 221
persistence, 47
privileged_action, 87, 88, 99, 106, 107, 159

privileged_opcode, 111
STDF_mem_address_not_aligned, 103, 107
trap_instruction, 108
unfinished_FPop, 142, 146

execute_state, 248
execution

EU (execution unit), 11
speculative, 39

F
FABSd instruction, 166, 167
FABSq instruction, 166, 167
fast_data_access_MMU_miss exception, 180, 200
fast_data_access_protection exception, 179, 180,

200
fast_data_instruction_access_MMU_miss

exception, 308
fast_instruction_access_MMU_miss exception, 59,

180, 196, 197, 308
Fatal error, 262, 263, 265, 266
fatal error, 156, 299, 331

behavior of CPU, 256
cache tag, 293
definition, 256
U2 cache tag, 293

FBA instruction, 169
FBE instruction, 169
FBfcc instructions, 163, 168
FBG instruction, 169
FBGE instruction, 169
FBL instruction, 169
FBLE instruction, 169
FBLG instruction, 169
FBN instruction, 169
FBNE instruction, 169
FBO instruction, 169
FBPA instruction, 169
FBPE instruction, 169
FBPfcc instructions, 163, 168, 171
FBPG instruction, 169
FBPGE instruction, 169
FBPL instruction, 169
FBPLE instruction, 169
FBPLG instruction, 168
FBPN instruction, 168
FBPNE instruction, 168
FBPO instruction, 169
FBPU instruction, 169

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 vi

FBPUE instruction, 169
FBPUG instruction, 169
FBPUGE instruction, 169
FBPUL instruction, 168
FBPULE instruction, 169
FBU instruction, 169
FBUE instruction, 169
FBUG instruction, 169
FBUGE instruction, 169
FBUL instruction, 169
FBULE instruction, 169
FCMP instructions, 171
FCMPd instruction, 167
FCMPE instructions, 171
FCMPEd instruction, 167
FCMPEq instruction, 167
FCMPEs instruction, 167
FCMPq instruction, 167
FCMPs instruction, 167
fDTLB, 156, 175, 181
FdTOx instruction, 166, 167
fetch, 4
fill_n_normal exception, 308
fill_n_other exception, 308
fITLB, 156, 175, 181
floating-point

deferred-trap queue (FQ), 38
denormalized operands, 23
denormalized results, 23
operate (FPop) instructions, 23
trap types

fp_disabled, 69, 77, 94, 153, 154
unimplemented_FPop, 149

floating-point state (FSR) register, 102
floating-point trap type (ftt) field of FSR register, 102
FLUSH instruction, 152
FMADD instruction, 72
FMADD instruction

specifying registers for a SIMD instruction, special
case, 75

FMOVcc instructions, 170
FMOVccd instruction, 167
FMOVccq instruction, 167
FMOVccs instruction, 167
FMOVd instruction, 166, 167
FMOVq instruction, 166, 167
FMOVr instructions, 170
FMSUB instruction, 72
FNEGd instruction, 166, 167

FNEGq instruction, 166, 167
FNMADD instruction, 72
FNMSUB instruction, 72
formats, instruction, 41
fp_disabled exception, 69, 77, 83, 84, 87, 88, 94, 102,

103, 106, 107, 132, 153, 154
fp_exception_ieee_754 exception, 77, 145, 146
fp_exception_other exception, 52, 60, 142, 158
FQ, 38
FqTOx instruction, 166, 167
FSR

aexc field, 24

cexc field, 23, 24

conformance, 24

NS field, 142

TEM field, 24

VER field, 23

FsTOx instruction, 166, 167
fTLB, 157, 182, 191, 192, 193, 203, 299
FTRIMADDd instruction, 41, 43, 63, 144, 148, 307, 329
FxTOd instruction, 166, 167
FxTOq instruction, 166, 167
FxTOs instruction, 166, 167

G
GSR register, 289

H
hardware barrier, 214, 222

barrier resources, 222
barrier synchronization, 224
resources, 224
shared by all cores, 222

Hardware Prefetch, 237
HPC, 83, 87, 102, 106, 131
HPC-ACE, 4, 52, 59, 60, 134, 150, 206, 288

I
i field of instructions, 82, 86
I_UGE

definition, 257
error detection action, 271
type, 257

IAE
reporting, 258

IE, Invert Endianness bit, 177

Ver 15, 26 Apr. 2010 Index vii

IEEE Std 754-1985, 23, 141

IIU_INST_TRAP register, 60, 292

illegal_action exception, 47, 53

illegal_instruction exception, 38, 52, 77, 84, 94, 97,

103, 108, 111, 149, 151, 153, 154

imm_asi field of instructions, 82, 86

IMMU

registers accessed, 184

Synchronous Fault Status Register, 195

IMMU_DEMAP register, 291

IMMU_SFSR register, 291

IMMU_TAG_ACCESS register, 291, 292

IMMU_TAG_TARGET register, 291

IMMU_TSB_BASE register, 291, 292

IMPDEP1 instruction, 42, 43, 71

IMPDEP1 instructions, 171, 172, 173

IMPDEP2 instruction, 42, 43, 71, 74

IMPDEP2A instruction, 80

IMPDEP2B instruction, 72

IMPDEPn instructions, 71, 72

impl field of VER register, 23

implementation number (impl) field of VER

register, 150

instruction

execution, 39

formats, 41

prefetch, 40

instruction fields

i, 82, 86

imm_asi, 82, 86

op3, 82, 86

rd, 82, 86

rs1, 82, 86

rs2, 82, 86

simm13, 82, 86

instruction fields, reserved, 59

instruction_access_error exception, 59, 180, 181,

195, 197, 259

instruction_access_exception exception, 59, 179,

180, 196, 197

instruction_access_MMU_miss exception, 60

instructions

atomic load-store, 47

cacheable, 230

compare and swap, 47

fetched, with error, 294

floating-point operate (FPop), 23

FLUSH, 152

implementation-dependent (IMPDEP2), 42

implementation-dependent (IMPDEPn), 71, 72

LDDFA, 159

prefetch, 154, 184

reserved fields, 59

store floating point, 101

store floating-point into alternate space, 105, 105

timing, 60

write privileged register, 109

writing privileged register, 110

integer unit (IU) deferred-trap queue, 38

interrupt

dispatch, 239

level 15, 28

Interrupt Vector Dispatch Register, 242

Interrupt Vector Receive Register, 243

interrupt_level_n exception, 308

interrupt_level_n exception, 79

interrupt_vector_trap exception, 47, 79, 308

INTR_DATA0

3_W register, error handling, 292

INTR_DATA0:7_R register, error handling, 292

INTR_DISPATCH_STATUS register, 291

INTR_DISPATCH_W register, 292

INTR_RECEIVE register, 291

I-SFSR, 180

update during MMU trap, 180

ISFSR

bit description, 195

format, 195

FT field, 196

update policy, 197

ITLB_DATA_ACCESS register, 291

ITLB_DATA_IN register, 291

ITLB_TAG_READ register, 291

J
JEDEC manufacturer code, 26

L
LDD instruction, 47

LDDA instruction, 47, 89, 199

LDDF instruction, 82

LDDF_mem_address_not_aligned exception, 85,

88, 159, 221

LDDFA instruction, 86, 159, 220

LDF instruction, 82

LDFA instruction, 86

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010
 viii

LDQF instruction, 82

LDQF_mem_address_not_aligned exception, 60

LDQFA instruction, 86

LDSTUB instruction, 40, 47, 199

LDSTUBA instruction, 199

LDXFSR instruction, 82

load quadword atomic, 89

LoadLoad MEMBAR relationship, 91

load-store instructions

compare and swap, 47

LoadStore MEMBAR relationship, 91

Lookaside MEMBAR relationship, 92

M
Maskable error, 262

MAXTL, 46, 152, 246, 248

MCNTL.NC_CACHE, 230

mem_address_not_aligned exception, 83, 85, 88, 89,

103, 107, 132, 159, 180, 200, 221

MEMBAR

#LoadLoad, 91

#LoadStore, 91

#Lookaside, 92

#MemIssue, 92

#StoreLoad, 91

#Sync, 92

blockload and blockstore, 68

functions, 91

in interrupt dispatch, 240

instruction, 91

partial ordering enforcement, 92

membar_mask field, 91

memory access

disable speculative memory access, 35

memory access instruction

D1 cache data errors, 295

memory model

PSO, 55

RMO, 55

store order (STO), 154

TSO, 55, 56

MEMORY_CONTROL register, 291

mmask field, 91

MMU

disabled, 183

exceptions recorded, 180

registers accessed, 184

Synchronous Fault Address Registers, 247

TLB data access address assignment, 192

TLB organization, 175

MOVcc instructions, 168, 170

MOVr instructions, 170

multi-threaded, 259

N
next program counter (nPC), 93

noncacheable access, 230

nonfaulting load, 178

nonstandard floating-point (NS) field of FSR

register, 23, 150

nonstandard floating-point mode, 23, 142

NOP instruction, 93

O
OBP

features that facilitate diagnostics, 230

notification of error, 272

resetting WEAK_ED, 257

validating register error handling, 287

with urgent error, 258

op3 field of instructions, 82, 86

Operating Status Register (OPSR), 46, 248

opf_cc field of instructions, 170

OS panic, 258

other windows (OTHERWIN) register, 109

OTHERWIN register, 155, 276

out-of-order execution, 4, 319

P
P superscript on instruction name, 60

PA_watchpoint exception, 200

Parity Error, 182

parity error

counting in D1 cache, 296

D1 cache tag, 293

I1 cache data, 293

I1 cache tag, 293

partial ordering, specification, 92

partial store instruction

watchpoint exceptions, 94

partial store instructions, 221

partial store order (PSO) memory model, 55

PASI superscript on instruction name, 60

Ver 15, 26 Apr. 2010 Index ix

PASR superscript on instruction name, 60

PC register, 279

PCR

counter events, selection, 302

error handling, 289

NC field, 27

OVF field, 27

OVRO field, 27

PRIV field, 28, 98, 112

SC field, 27, 302

SL field, 302

ST field, 306

SU field, 302

UT field, 306

performance monitor

groups, 303

pessimistic overflow, 145

PIC register

clearing, 301

counter overflow, 28

error handling, 289

nonprivileged access, 28

OVF field, 28

PIL register, 47

PNPT superscript on instruction name, 60

POPC instruction, 95

POR reset, 270, 273, 285

power-on reset (POR)

implementation dependency, 151

RED_state, 248

PPCR superscript on instruction name, 60

PPIC superscript on instruction name, 60

precise traps, 47

prefetch

instruction, 40, 154, 184

variants, 96

prefetcha instruction, 96

PRIMARY_CONTEXT register, 291

privileged (PRIV) field of PSTATE register, 87, 106

privileged registers, 26

privileged_action exception, 28, 87, 88, 99, 106, 107,

159, 180, 200

privileged_opcode exception, 29, 111

processor interrupt level (PIL) register, 109

processor state (PSTATE) register, 109

processor states

after reset, 249

error_state, 46, 152, 248

execute_state, 248

RED_state, 46, 248

program counter (PC), 93

program counter (PC) register, 155

program order, 40

PSTATE

PRIV field, 179

PSTATE register

AM field, 42, 70, 155

IE field, 240, 241

MM field, 56

RED field, 26, 230, 248, 249, 251, 252

PTE

E field, 40

R
RAS, see Return Stack Address, 13

rcond field of instructions, 170

rd field of instructions, 82, 86

RDASI instruction, 98

RDASR instruction, 98

RDCCR instruction, 98

RDDCR instruction, 98

RDFPRS instruction, 98

RDGSR instruction, 98

RDPC instruction, 98

RDPCR instruction, 28, 98, 112

RDPIC instruction, 28, 98

RDSOFTINT instruction, 98

RDSTICK instruction, 98

RDSTICK_CMPR instruction, 98

RDTICK instruction, 25, 98, 99

RDTICK_CMPR instruction, 98

RDTXAR instruction, 98

RDXASR instruction, 98

RED_state, 278

entry after SIR, 246

entry after WDR, 248

entry after XIR, 246

processor states, 248, 249

restricted environment, 45

setting of PSTATE.RED, 26

trap vector, 45

trap vector address (RSTVaddr), 154

registers

address space identifier (ASI), 87, 106

clean windows (CLEANWIN), 109, 155

clock-tick (TICK), 153

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010
 x

current window pointer (CWP), 109, 155

Data Cache Unit Control (DCUCR), 34

other windows (OTHERWIN), 109, 155

privileged, 26

processor interrupt level (PIL), 109

processor state (PSTATE), 109

restorable windows (CANRESTORE), 109, 155

savable windows (CANSAVE), 109, 155

TICK, 109

trap base address (TBA), 109

trap level (TL), 109, 110

trap next program counter (TNPC), 109

trap program counter (TPC), 109

trap state (TSTATE), 109

trap type (TT), 109

window state (WSTATE), 109

relaxed memory order (RMO) memory model, 55

release

resource, 4

renaming register, 4

reservation station, 4, 311

reserved, 1

reserved fields in instructions, 59

reset

externally_initiated_reset (XIR), 246

power_on_reset (POR), 151

software_initiated_reset (SIR), 246

resets

POR, 270, 273, 285

WDR, 263, 273

restorable windows (CANRESTORE) register, 109, 155

Restrainable error, 263, 264, 265

restrainable error

definitions, 260

handling

ASI_AFSR.UE_DST_BETO, 286

ASI_AFSR.UE_RAW_L2$FILL, 286

UE_RAW_D1$INSD, 286

UE_RAW_L2$INSD, 286

software handling, 286

types, 260

Return Address Stack, 13

rs1 field of instructions, 82, 86

rs2 field of instructions, 82, 86

rs3 field of instructions, 41

RSTVaddr, 45, 154, 246, 248

S
savable windows (CANSAVE) register, 109, 155

scan, 4

sDTLB, 12, 156, 175, 285

SECONDARY_CONTEXT register, 291

SERIAL_ID register, 291

SET_SOFTINT register, 289

SETHI instruction, 93, 133

SHARED_CONTEXT register, 292

SHUTDOWN instruction, 100

SIMD

cexc, aexc update, 24

load

memory ordering, 84, 131

load store

watchpoint detection, 84

load/store

double-precision load

LDDF_mem_address_not_aligned, 84

endian conversion, 84

memory ordering, 131

noncacheable, 84, 103

watchpoint detection, 37, 103

set by SXAR, 133

specifying registers

FMADD special case, 75

store

memory ordering, 103

watchpoint detection, 201

SIMD_load_across_pages, 181

SIMD_load_across_pages exception, 47, 53, 84, 180,

181, 183, 200, 308, 330

simm13 field of instructions, 82, 86

SIR instruction, 246

sITLB, 12, 156, 175, 181, 285

size field of instructions, 41

SLEEP instruction, 71

SLEEP instruction, 79, 313, 329

SOFTINT register, 47, 241, 289

software_trap_number, 205

Specification Differences, 328

speculation

disable speculative memory access, 35

speculative, 303

execution, 39

speculative execution, 5, 182, 183, 233

spill_n_normal exception, 308

spill_n_other exception, 308

stalled, 5

Ver 15, 26 Apr. 2010 Index xi

107

STBAR instruction, 115
STCHG_ERROR_INFO register, 291
STD instruction, 47
STDA instruction, 47
STDF instruction, 101
STDF_mem_address_not_aligned exception, 103,

STDFA instruction, 105, 105, 220, 221
STDFR instruction, 130
STF instruction, 101
STFA instruction, 105
STFR instruction, 130
STICK, 79
STICK register, 98, 276, 289
STICK_COMP register, 276
STICK_COMPARE register, 98, 289
sTLB, 157, 186, 187, 191, 192, 193, 201, 203, 204, 298
Store Buffer, 12
store buffer

error signalling restrictions, 181
restrictions on error signalling, 286

store floating-point into alternate space instructions, 105
store order (STO) memory model, 154
StoreLoad MEMBAR relationship, 91
StoreStore MEMBAR relationship, 91
STQF instruction, 101
STQF_mem_address_not_aligned exception, 60
STQFA instruction, 105, 105
strong prefetch, 5
STXFSR instruction, 101
superscalar, 5, 39
suspend, 5

SUSPEND instruction, 78
SUSPEND instruction, 71
SUSPEND instruction, 66, 78, 313, 329
suspended state, 78, 255, 256, 259, 260
SWAP instruction, 40, 47, 199
SWAPA instruction, 199
SXAR, 53
SXAR instruction, 133
sync instruction, 5
Sync MEMBAR relationship, 92
synchronizing caches, 56

T
TA instruction, 169
Tcc instructions, 165, 168, 171
TCS instruction, 169

TE instruction, 169
TG instruction, 169
TGE instruction, 169
TGU instruction, 169
thread, 5, 78, 223, 255, 256, 257, 259, 260
TICK register, 25, 153
TICK_COMPARE register, 289
TL instruction, 169
TL register, 110, 246, 248
TLB, 197, 201

CP field, 230, 231
data

characteristics, 156

in TLB organization, 175

data access address, 193

index, 193

instruction

characteristics, 156
in TLB organization, 175

multiple hit detection, 176

replacement algorithm, 192

TLE instruction, 169
TLEU instruction, 169
TN instruction, 169
TNE instruction, 169
TNEG instruction, 169
total store order (TSO) memory model, 55, 56
TPOS instruction, 169
transition error, 256, 257
trap base address (TBA) register, 109
trap level (TL) register, 109, 110
trap next program counter (TNPC) register, 109
trap program counter (TPC) register, 109
trap state (TSTATE) register, 109
trap type (TT) register, 109
trap_instruction (ISA) exception, 108
traps

deferred, 46
TSTATE register

CWP field, 26
TTE

Context field, 177
CP field, 178
CV field, 178, 230, 231
E field, 178
G field, 177, 179
L field, 178
NFO field, 177
P field, 179

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 xii

PA field, 178

Size field, 177

Soft2 field, 177

V field, 177

VA_tag field, 177

W field, 179

TVC instruction, 169

TVS instruction, 169

TXAR register, 289

U
U2 cache

operation control (SXU), 12

tag error protection, 293

uncorrectable data error, 295

uDTLB, 175

UE_RAW_D1$INSD error, 294

uITLB, 175, 181

uncorrectable error, 260, 276

unfinished_FPop exception, 142, 146

unimplemented_FPop floating-point trap type, 149

unimplemented_LDD exception, 60

unimplemented_STD exception, 60

Urgent Error, 263

Urgent error, 262, 264, 265

urgent error

definition, 257

types

A_UGE, 257

DAE, 257

IAE, 257

instruction-obstructing, 257

Urgent errors, 287

URGENT_ERROR_STATUS register, 291

V

VA_watchpoint exception, 200

var field of instructions, 41

VER register, 26, 220

version (ver) field of FSR register, 150

VIS instructions

encoding, 171, 172

W
watchdog timeout, 274, 276, 293

watchdog_reset (WDR), 46, 159, 248

watchpoint exception

on block load-store, 69

on partial store instructions, 94

quad-load physical instruction, 90

WDR reset, 263, 273

window ASI, 79, 224, 226

window state (WSTATE) register

writing WSTATE with WRPR instruction, 109

WRASI instruction, 112

WRASR instruction, 112

WRDCR instruction, 112

WRGSR instruction, 112

WRPCR instruction, 112

WRPIC instruction, 112

WRSOFTINT instruction, 112

WRSOFTINT_CLR instruction, 112

WRSOFTINT_SET instruction, 112

WRSTICK instruction, 112

WRSTICK_CMPR instruction, 112

WRTICK_CMP instruction, 112

WRTXAR instruction, 112

WRXAR instruction, 112

WRXASR instruction, 112

WRCCR instruction, 112

WRFPRS instruction, 112

Write Buffer, 12

write privileged register instruction, 109

writeback cache, 231

WRPCR instruction, 28

WRPIC instruction, 28

WRPR instruction, 109, 109, 248, 249, 251, 252

WRY instruction, 112

X

XAR register, 289

XASR register, 289

Z
zero result, 145

Ver 15, 26 Apr. 2010 Index xiii

SPARC64™ VIIIfx ExtensionsVer 15, 26 Apr. 2010 xiv

	Overview
	1.1 Navigating the SPARC64™ VIIIfx Extensions
	1.2 Fonts and Notational Conventions
	Reserved Fields
	Register Field Read-Write Attributes

	Definitions
	Architectural Overview
	3.1 The SPARC64�VIIIfx processor
	A High Performance Microarchitecture
	Highly-Integrated Functionality
	High Reliability
	3.1.1 Core Overview
	3.1.2 Instruction Control Unit (IU)
	3.1.3 Execution Unit (EU)
	3.1.4 Storage Unit (SU)
	3.1.5 Secondary Cache and External Access Unit (SXU)

	3.2 Processor Pipeline
	3.2.1 Instruction Fetch Stages
	3.2.2 Issue Stages
	3.2.3 Execution Stages
	Execution Stages for Cache Access

	3.2.4 Commit Stage

	Data Formats
	Registers
	5.1 Nonprivileged Registers
	5.1.1 General-Purpose r Registers
	5.1.4 Floating-Point Registers
	Floating-Point Register Number Encoding
	Using double-precision registers for single-precision operations
	Specifying registers for SIMD instructions

	5.1.7 Floating-Point State Register (FSR)
	FSR_nonstandard_fp (NS)
	FSR_version (ver)
	FSR_floating-point_trap_type (ftt)
	FSR_current_exception (cexc)
	FSR Conformance
	Updates to cexc, aexc by SIMD Instructions

	5.1.9 Tick (TICK) Register

	5.2 Privileged Registers
	5.2.6 Trap State (TSTATE) Register
	5.2.9 Version (VER) Register
	5.2.11 Ancillary State Registers (ASRs)
	Performance Control Register (PCR) (ASR 16)
	Performance Instrumentation Counter (PIC) Register (ASR 17)
	Dispatch Control Register (DCR) (ASR 18)
	Extended Arithmetic Register (XAR) (ASR 29)
	How XAR is referred to in this specification.
	XAR operation
	Extended Arithmetic Register Status Register (XASR) (ASR 30)
	Trap XAR Registers (TXAR) (ASR 31)

	5.2.12 Registers Referenced Through ASIs
	Data Cache Unit Control Register (DCUCR)
	Data Watchpoint Registers
	Instruction Trap Register

	5.2.13 Floating-Point Deferred-Trap Queue (FQ)
	5.2.14 IU Deferred-Trap Queue

	Instructions
	6.1 Instruction Execution
	6.1.1 Data Prefetch
	6.1.2 Instruction Prefetch
	6.1.3 Syncing Instructions

	6.2 Instruction Formats and Fields
	6.3 Instruction Categories
	6.3.3 Control-Transfer Instructions (CTIs)
	CALL and JMPL Instructions

	6.3.7 Floating-Point Operate (FPop) Instructions
	6.3.8 Implementation-Dependent Instructions

	Traps
	7.1 Processor States, Normal and Special Traps
	7.1.1 RED_state
	RED_state Trap Table
	RED_state Execution Environment

	7.1.2 error_state

	7.2 Trap Categories
	7.2.2 Deferred Traps
	7.2.4 Reset Traps
	7.2.5 Uses of the Trap Categories

	7.3 Trap Control
	7.3.1 PIL Control

	7.4 Trap-Table Entry Addresses
	7.4.2 Trap Type (TT)
	7.4.3 Trap Priorities

	7.5 Trap Processing
	7.6 Exception and Interrupt Descriptions
	7.6.1 Traps Defined by SPARC V9 As Mandatory
	7.6.2 SPARC V9 Optional Traps That Are Mandatory in SPARC JPS1
	7.6.4 SPARC V9 Implementation-Dependent, Optional Traps That Are Mandatory in SPARC JPS1
	7.6.5 SPARC JPS1 Implementation-Dependent Traps

	Memory Models
	8.1 Overview
	8.4 SPARC V9 Memory Model
	8.4.5 Mode Control
	8.4.7 Synchronizing Instruction and Data Memory

	Instruction Definitions
	A.4 Block Load and Store Instructions (VIS I)
	A.9 Call and Link
	A.24 Implementation-Dependent Instructions
	A.24.1 Floating-Point Multiply-Add/Subtract
	SIMD Execution of FMA Instructions

	A.24.2 Suspend
	A.24.3 Sleep
	A.24.4 Integer Multiply-Add

	A.25 Jump and Link
	A.26 Load Floating-Point
	A.27 Load Floating-Point from Alternate Space
	A.30 Load Quadword, Atomic [Physical]
	A.35 Memory Barrier
	A.41 No Operation
	A.42 Partial Store (VIS I)
	A.48 Population Count
	A.49 Prefetch Data
	Strong Prefetch
	Hardware Prefetch

	A.51 Read State Register
	A.59 SHUTDOWN (VIS I)
	A.61 Store Floating-Point
	A.62 Store Floating-Point into Alternate Space
	A.68 Trap on Integer Condition Codes (Tcc)
	A.69 Write Privileged Register
	A.70 Write State Register
	A.71 Deprecated Instructions
	A.71.10 Store Barrier

	A.72 Floating-Point Conditional Compare to Register
	A.73 Floating-Point Minimum and Maximum
	A.74 Floating-Point Reciprocal Approximation
	A.75 Move Selected Floating-Point Register on Floating-Point Register's Condition
	A.76 Floating-Point Trigonometric Functions
	A.77 Store Floating-Point Register on Register Condition
	A.78 Set XAR (SXAR)
	A.79 Cache Line Fill with Undetermined Values

	IEEE Std. 754-1985 Requirements for SPARC-V9
	B.1 Traps Inhibiting Results
	B.6 Floating-Point Nonstandard Mode
	B.6.1 fp_exception_other Exception (ftt=unfinished_FPop)
	Conditions for a Zero Result
	Conditions for an Overflow Result

	B.6.2 Behavior when FSR.NS = 1

	Implementation Dependencies
	C.4 List of Implementation Dependencies

	Formal Specification of the Memory Models
	Opcode Maps
	Memory Management Unit
	F.1 Virtual Address Translation
	F.2 Translation Table Entry (TTE)
	F.4 Hardware Support for TSB Access
	F.5 Faults and Traps
	F.5.1 Trap Conditions for SIMD Load/Store
	F.5.2 Behavior on TLB Error

	F.8 Reset, Disable, and RED_state Behavior
	F.10 Internal Registers and ASI Operations
	F.10.1 Accessing MMU Registers
	ASI_MCNTL (Memory Control Register)

	F.10.2 Context Registers
	ASI_PRIMARY_CONTEXT
	ASI_SECONDARY_CONTEXT
	ASI_SHARED_CONTEXT

	F.10.3 Instruction/Data MMU TLB Tag Access Registers
	ASI_I/DMMU_TAG_ACCESS_EXT

	F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers
	I/D MMU TLB Tag Read Register
	I/D MMU TLB Tag Access Register

	F.10.6 I/D TSB Base Registers
	F.10.7 I/D TSB Extension Registers
	F.10.8 I/D TSB 8-Kbyte and 64-Kbyte Pointer and Direct Pointer Registers
	F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, D- SFSR)
	F.10.10 Synchronous Fault Addresses
	F.10.11 I/D MMU Demap
	F.10.12 Synchronous Fault Physical Addresses

	F.11 MMU Bypass
	F.12 Translation Lookaside Buffer Hardware
	F.12.2 TLB Replacement Policy
	Automatic TLB Replacement
	Restrictions on Direct Replacement of sTLB Entries

	Assembly Language Syntax
	G.1 Notation Used
	G.1.5 Other Operand Syntax

	G.4 HPC-ACE Notation
	G.4.1 Suffixes for HPC-ACE Extensions

	Software Considerations
	Extending the SPARC V9 Architecture
	Changes from SPARC V8 to SPARC V9
	Programming with the Memory Models
	Address Space Identifiers
	L.2 ASI Values
	L.3 SPARC64�VIIIfx ASI Assignments
	L.3.1 Supported ASIs
	L.3.2 Special Memory Access ASIs
	ASI 5316 (ASI_SERIAL_ID)
	ASI 4F16 (ASI_SCRATCH_REGx)
	Block Load and Store ASIs
	Partial Store ASIs

	L.3.3 Trap Priority for ASI and Instruction Combinations
	L.3.4 Timing for Writes to Internal Registers

	L.4 Hardware Barrier
	L.4.1 Initialization and Status of Barrier Resources
	L.4.2 Assignment of Barrier Resources
	L.4.3 Window ASI for Barrier Resources
	Sample Code for Barrier Synchronization

	Cache Organization
	M.1 Cache Types
	M.1.1 Level-1 Instruction Cache (L1I Cache)
	M.1.2 Level-1 Data Cache (L1D Cache)
	M.1.3 Level-2 Unified Cache (L2 Cache)
	Index Hash

	M.2 Cache Coherency Protocols
	M.3 Cache Control/Status Instructions
	M.3.1 Flush Level-1 Instruction Cache L1 (ASI_FLUSH_L1I)
	M.3.2 Cache invalidation (ASI_CACHE_INV)
	M.3.3 Sector Cache Configuration Register (SCCR)
	Setting the SCCR value
	Managing the Sector Cache
	Behavior when the Sector Cache is Not Valid

	M.4 Hardware Prefetch

	Interrupt Handling
	N.1 Interrupt Vector Dispatch
	N.2 Interrupt Vector Receive
	N.4 Interrupt ASI Registers
	N.4.1 Outgoing Interrupt Vector Data<7:0> Register
	N.4.2 Interrupt Vector Dispatch Register
	N.4.3 Interrupt Vector Dispatch Status Register
	N.4.4 Incoming Interrupt Vector Data Registers
	N.4.5 Interrupt Vector Receive Register

	N.6 Identifying an Interrupt Target

	Reset, RED_state, and error_state
	O.1 Reset Types
	O.1.1 Power-on Reset (POR)
	O.1.2 Watchdog Reset (WDR)
	O.1.3 Externally Initiated Reset (XIR)
	O.1.4 Software-Initiated Reset (SIR)

	O.2 RED_state and error_state
	O.2.1 RED_state
	O.2.2 error_state
	O.2.3 CPU Fatal Error state

	O.3 Processor State after Reset and in RED_state
	O.3.1 Operating Status Register (OPSR)

	Error Handling
	P.1 Error Types
	P.1.1 Fatal Errors
	P.1.2 Error State Transition Errors
	EE asynchronous to thread execution
	EE synchronous to thread execution

	P.1.3 Urgent Errors
	Errors that affects instruction execution
	Urgent Error Independent of Instruction Execution
	Exception Signalling for Urgent Errors
	Urgent error asynchronous to thread execution
	Urgent error synchronous to thread execution

	P.1.4 Restrainable Errors
	DG_U2$, UE_RAW_L2$INSD
	DG_D1$sTLB, UE_RAW_D1$INSD
	UE_DST_BETO

	P.1.5 instruction_access_error
	P.1.6 data_access_error

	P.2 Error Handling and Error Control
	P.2.1 Registers Used for Error Handling
	P.2.2 Summary of Behavior During Error Detection
	Conditions that Inhibit Error Detection
	Conditions that Inhibit Exception Signalling when an Error is Detected
	Behavior During Error Detection
	Relationship between TPC and the Instruction that Caused the Error
	Other

	P.2.3 Limits to Automatic Correction of Correctable Errors
	P.2.4 Error Marking for Cacheable Data
	Error Marking for Cacheable Data
	Format for Error-Marking Data
	ERROR_MARK_ID Set by CPU

	P.2.5 ASI_EIDR
	P.2.6 Error Detection Control (ASI_ERROR_CONTROL)

	P.3 Fatal Errors and error_state Transition Errors
	P.3.1 ASI_STCHG_ERROR_INFO
	P.3.2 Error_state Transition Error in Suspended Thread

	P.4 Urgent Error
	P.4.1 URGENT ERROR STATUS (ASI_UGESR)
	P.4.2 Processing for async_data_error (ADE) Traps
	P.4.3 Instruction Execution when an ADE Trap Occurs
	P.4.4 Expected Software Handling of ADE Traps

	P.5 Instruction Access Errors
	P.6 Data Access Errors
	P.7 Restrainable Errors
	P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR)
	P.7.2 Expected Software Handling for Restrainable Errors

	P.8 Internal Register Error Handling
	P.8.1 Nonprivileged and Privileged Register Error Handling
	P.8.2 ASR Error Handling
	STICK Behavior on Error

	P.8.3 ASI Register Error Handling

	P.9 Cache Error Handling
	P.9.1 Error Handling for Cache Tag Errors
	D1 Cache Tag Errors and I1 Cache Tag Errors
	U2 Cache Tag Errors

	P.9.2 Error Handling for I1 Cache Data Errors
	P.9.3 Error Handling for D1 Cache Data Errors
	Correctable Errors in D1 Cache Data
	Marked Uncorrectable Errors in D1 Cache Data
	Unmarked UE in D1 Cache Data During Cache Line Writeback
	Unmarked UE in D1 Cache Data on a Read by a Memory Access Instruction

	P.9.4 Error Handling for U2 Cache Data Errors
	Correctable Errors in U2 Cache Data
	Marked Uncorrectable Errors in U2 Cache Data
	Unmarked UE in U2 Cache Data

	P.9.5 Automatic I1, D1, and U2 Cache Way Reduction
	Conditions for Cache Way Reduction
	I1 Cache Way Reduction
	D1 Cache Way Reduction
	U2 Cache Way Reduction

	P.10 TLB Error Handling
	P.10.1 Error Processing for TLB Entries
	TLB Error Detected on Access Via ASI Register
	sTLB Error Detected During Address Translation
	fTLB Error Detected During Address Translation

	Performance Instrumentation
	Q.1 PA Overview
	Q.1.1 Sample Pseudo-codes
	Counter Clear/Set
	Counter Event Selection and Start
	Counter Stop and Read

	Q.2 Description of PA Events
	Q.2.1 Instruction and Trap Statistics
	Standard PA Events
	Supplemental PA Events

	Q.2.2 MMU and L1 cache Events
	Standard PA Events
	Supplemental PA Events

	Q.2.3 L2 cache Events
	Standard PA Events
	Supplemental PA Events
	Bus Transaction EventsStandard PA Events
	Supplemental PA Events

	Q.3 Cycle Accounting

	System Programmer’s Model
	R.1 System Config Register
	R.2 STICK Control Register

	Summary of Specification Differences

