Skip to main content


中文 | 日本語


Archived content

NOTE: this is an archived page and the content is likely to be out of date.

Fujitsu Develops 400 Gbps Optical Transceiver Architecture

Enables economical, high-bandwidth inter-datacenter communications over 100 km distances

Fujitsu Laboratories Ltd.,Fujitsu Research & Development Center Co. Ltd.

Kawasaki, Japan, and Beijing, China, March 22, 2016

Fujitsu Laboratories Ltd. and Fujitsu R&D Center Co., Ltd. (collectively "Fujitsu") today announced that, to connect multiple datacenters scattered within a metropolitan area with high capacity and at low cost, they have developed a basic architecture for digital-signal processing in optical transceivers transmitting data at 400 gigabits per second over a single wavelength.

Fujitsu have developed new transceiver architecture in which, on the transmitter side, a specially designed reference signal is transmitted, and this is used on the receiving end to effectively compensate for distortion. Fujitsu successfully performed repeaterless transmission tests over a distance of 160 km. This technology accurately compensates for variations in the characteristics of transceiver components and distortions introduced in the transmission path, making it possible to communicate at 400 Gbps per wavelength using inexpensive optical transceiver components.

This technology can be applied to integrated optical transceiver components using silicon photonics, a technology expected to reduce costs and contribute to building next-generation distributed computing platforms that will support 5G mobile networking and diverse IoT services.

Details of this technology are being presented at the Optical Fiber Communication Conference and Exhibition (OFC) 2016, opening March 20 in Anaheim, California.


As 5G mobile networks and the IoT advance, over the next few years it is expected that an era will arrive in which users can access ever more devices and data volumes while enjoying a greater level of real-time services. To achieve that, development work is advancing on distributed computing platforms, in which multiple datacenters are distributed throughout a metropolitan area and connected to work together (Figure 1). There is a need for the fiber-optic networks that will tie these datacenters together to carry more bandwidth, and now R&D activities are underway to go from currently common speeds of 100 Gbps per wavelength, up to 200 Gbps and eventually 400 Gbps.

Technological Issues

Until now, achieving 400 Gbps per wavelength has required the use of expensive components that have been optimized and selected for specific purposes. While there are expectations that the price of components for optical transceivers could be brought down by using cheaper parts or by using CMOS technology or silicon photonics technology, which are being developed in parallel, these all have relatively poor performance compared to expensive components that have been optimized and selected for the specific purpose. Due to piece-to-piece performance variations of the components, economically transmitting over distances of roughly 100 km, the distance needed for communications between datacenters, has not been possible using current methods.

About the Technology

To enable cost savings in optical transceivers, Fujitsu has developed a new optical transceiver architecture in which the receiver compensates for distortions, particularly those from transmitters that are expected to significantly degrade performance.

In this architecture, on the transmitter side, a reference signal that will remain relatively unaffected by the transmitter’s own signal distortions along the transmission path is combined with the data signal. This combined signal is then sent, and the receiver can then effectively compensate for the transmitter’s signal distortion (Figure 2).

Key features of the technology are as follows.

1. New transmission architecture using a novel reference signal

The typical approach used up to now has been to observe the output signal of the transmitter and compensate for signal distortions there in order to have the transmitter provide the highest quality signal possible. But when transmitting at 400 Gbps, the desired processing accuracy becomes very high, so it is difficult to compensate on the transmitter’s end without significant increase of costs for components and circuits. Fujitsu has developed a new architecture in which, by transmitting a specially designed reference signal, it is possible to compensate for the transmitter’s signal distortion on the receiver’s end.

2. New compensation technology in the receiver

Existing receivers need to carry on phase recovery, which is used to detect the signal after compensating for distortion in the transmission path, but this has been problematic when the effect of the transmitter’s distortion is significant. Fujitsu developed technology that, by using the transmitter’s own reference signal, makes it possible to perform phase recovery without having to compensate for distortion in the transmission path. Receivers using this technology will first apply phase recovery and transmitter-distortion compensation, and then compensate for distortion in the transmission path, making it possible to recover modulated data even from highly distorted signals (Figure 3).


Fujitsu successfully tested this technology to transmit data at 400 Gbps over fiber optic lines across 160 km, regarded as a sufficient distance for a wide-area network between datacenters in a metropolitan area (Figure 4). Furthermore, this technology can be applied to compensate for variations in performance when using low-cost components, which has been a problem. These results demonstrate that it will be possible to build a next-generation distributed computing platform using low-cost transceivers that operate at 400 Gbps per wavelength.

Future Plans

Fujitsu Laboratories plans to continue testing the technology combined with silicon photonics technology, and aims to have a practical implementation of a 400 Gbps transceiver in 2019.

A metropolitan area datacenter network implementing a distributed computing platformFigure 1: A metropolitan area datacenter network implementing a distributed computing platform

Optical transceiver block diagramFigure 2: Optical transceiver block diagram

Results of compensating for transmitter distortionFigure 3: Results of compensating for transmitter distortion

Configuration of 160 km repeaterless transmission test setup using this technologyFigure 4: Configuration of 160 km repeaterless transmission test setup using this technology

About Fujitsu

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 159,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.8 trillion yen (US$40 billion) for the fiscal year ended March 31, 2015.
For more information, please see

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see:

About Fujitsu R&D Center

Fujitsu R&D Center Co., Ltd. is the first research and development institution with independent legal status in China founded by Fujitsu through investment of 4.4 million US Dollars. The research fields cover full business scope of Fujitsu, including information processing, communications, semiconductor and software service. Fujitsu R&D Center Co., Ltd. was established in February of 1998. The operation ranges over technology development and transfer of multimedia system hardware, software and semiconductor components and materials, and providing relevant technology service and consultation. For more information, please see:

Press Contacts

Fujitsu Limited
Public and Investor Relations Division

Technical Contacts

E-mail: E-mail:
Company:Fujitsu Laboratories Ltd.
Network Systems Laboratory

All company or product names mentioned herein are trademarks or registered trademarks of their respective owners. Information provided in this press release is accurate at time of publication and is subject to change without advance notice.

Press Release ID: 2016-03-22
Date: 22 March, 2016
City: Kawasaki, Japan, and Beijing, China
Company: Fujitsu Laboratories Ltd. , Fujitsu R&D Center Co., Ltd.