Case Study
Advanced Telecommunications Research Institute International

The customer
Keihanna Datacenter, established as the Ministry of the Environment’s technology verification project, started verification tests on 15th July 2013. The Keihanna Datacenter was built at the Advanced Telecommunications Research Institute International (ATR) on 1st October 2013. The data center operates as part of the Japan Ministry of the Environment’s FY2013 project to 'Strengthen measures to reduce CO\textsubscript{2} emissions through technological development and verification', and is equipped with the newest technology for linking DEMS (Datacenter Energy Management System) and VM (Virtual Machines).

The challenge
The main aim was to improve overall energy efficiencies by lowering carbon production in the data center and improving exhaust heat utilization in the offices.

NTT Data Intellilink Corporation, Osaka University, Takasago Thermal Engineering Co. Ltd., and ATR formed the core management structure for the project, while Fujitsu and Schneider Electric joined as technology partners, with Fujitsu providing FUJITSU Server PRIMERGY RX200 S7 and fan-less servers.

The project was centered on 'Joint technology development to reduce carbonization in the data center and to improve emission heat utilization in the offices'. Focusing on Better Usage of Server Emission Heat, the data center was designed to drastically reduce CO\textsubscript{2} emissions. Thus, in order to improve Emission Heat Utilization (as the temperature of emission heat is high), servers which provide stable performance in high temperature environments were required.

Another aim of this project was to promote cross industry collaboration rather than entrust the project to one company. "The previous data center was vertically integrated and controlled by one company. However as a data center environment is a comprehensive system combining a variety of components, reducing the power consumption of isolated ICT devices, such as servers or air cooling systems, does not necessarily decrease overall data center energy consumption. To effectively improve overall system efficiency, companies from each specialist area were engaged including air cooling, hardware and data center management," says Prof. Morito Matsuoka, Osaka University, The Cybermedia Center (CMC).

The solution
FUJITSU Server PRIMERGY RX200 S7 was selected for the Datacenter Energy Management System (DEMS) as its Power Control Unit functionality to improve the energy efficiency via a HVDC (High Voltage Direct Current) +12V power supply and reduce overall TCO.

Case Study
Advanced Telecommunications Research Institute International

»We plan to reduce power consumption by 30% by end of FY2013 and 40% by end of FY2014, with a long term goal of a 70% reduction in FY2015. Our objective is achievable using the High Voltage Direct Current +12V approach and wall-mounted air flow system.«

Prof. Morito Matsuoka, Osaka University, The Cybermedia Center (CMC)
The benefit

- 12 DC power supply improves energy efficiency (AC/DC) to 90%
- Reduce TCO by combining highly efficient intense power supply (HVDC) and direct current power supply compatible server
- FUJITSU Server PRIMERGY RX200 S7 operates in environments over 40°C
- Reduce power consumption by 30% in FY2013 and strive for a 70% reduction in FY2015

The solution

When ICT components are virtualized and tasks are consolidated, power consumption generally decreases. However, this also creates hot spots that require additional cooling, thus leading to increased expenditure on air conditioning. To minimize overall electricity consumption, there must be complete consideration of all components including ICT and air conditioning. DEMS-VM Linked Control is an approach that controls energy consumption by linking vendor-developed virtualization systems with DEMS. DEMS is an integrated management system involving 3 individual controlling units: Cloud Control Unit, Air Conditioning Control Unit, and Power Control Unit.

Technical elements of the project consisted of an ICT System: emission heat consolidation using FUJITSU Server PRIMERGY RX200 S7, a model ideal for high temperature environments, Air Cooling System: integrated low air flow system and individual rack fan using a Wall-Mounted Cooling Structure; Low-Loss Power System: reduce power loss with implementation of the HVDC+12V and linked controller; Application of Server Emission Heat: humidity control using a high temperature exhaust heat recycling system that is phased across 3 channels, Cold Aisle (20-25 degrees) on the left, Hot Aisle (35 degrees) in the middle, and Super-Hot Aisle (40-50 degrees) on the right; Integrated Management: manage systems together in real-time, optimizing overall data center efficiency and minimizing overall power consumption.

The benefit

The data center increased power efficiency through the Low-Loss Power System by implementing the HVDC+12V directly to the data center server rack, thereby improving operational efficiency. The advantages achieved by implementing the solution include a 20% reduction in power consumption by lowering the power conversion frequency (AC/DC), a seamless connection to the battery during a power outage, security with electric shock prevention and earth fault measures, affinity with recyclable energy and low cost.

From the 374 servers that operated with Alternate Current (AC), 154 were switched to HVDC+12V. This was achieved by connecting FUJITSU Server PRIMERGY RX200 S7 to NTT Data Intellilink Corporation’s XECHNO Power HVDC power supply unit. The previous system needed to convert AC/DC three times, while the HVDC+12V method only requires one AC/DC conversion. This ensures the power utilization efficiency of the AC power supply system is increased to 90%, with a 10-20% reduction in power from the previous current supply system which operated at 70-80% utilization efficiency.

"Following the HVDC implementation, initial server efficiency improved by 5% compared to the previous AC method," says Prof. Matsuoka.

Prof. Matsuoka explains the reason HVDC+12V and the servers were chosen for this verification project. "The technical advantage of implementing the 340-380V direct current is its greater tolerance for stray current or voltage fluctuation, keeping the current at a minimum before it arrives at the server. While it costs to build security and an arc discharge system for using high voltage currents, the power module also requires voltage conversion for each server, therefore we decided to work with this method and product."

Conclusion

The data center aims to reduce power consumption by 70% through energy coordination initiatives.

"We plan to reduce power consumption by 30% by end of FY2013 and 40% by end of FY2014, with a long term goal of a 70% reduction in FY2015. Our objective is achievable using the HVDC+12V approach and wall-mounted air flow system. Although by FY2015 the plan will require us to have all data center operations fully integrated to optimize overall power consumption."

Prof. Morito Matsuoka, Osaka University, The Cybermedia Center (CMC)

Contact
FUJITSU Limited
1-5-2 Higashi-Shimbashi,
Minato-ku, Tokyo
105-7123 JAPAN
2015-03-16

© 2015 Fujitsu and the Fujitsu logo are trademarks or registered trademarks of Fujitsu Limited in Japan and other countries. Other company, product and service names may be trademarks or registered trademarks of their respective owners. Technical data subject to modification and delivery subject to availability. Any liability that the data and illustrations are complete, actual or correct is excluded. Designations may be trademarks and/or copyrights of the respective manufacturer, the use of which by third parties for their own purposes may infringe the rights of such owner.