
Tips and Tricks: Deriving first Normal Form using pySpark / Databricks

Select Information Classification Uncontrolled if printed 1 of 5 © Fujitsu 2022

In this article, I present a lesser-known inbuilt Spark function – “stack”, which is very useful for data
wrangling operations. Code and output in this article were written in pySpark using a Databricks
workspace.

When working with data, there often exist attributes that repeat themselves. The old classic –
invoice data contains invoice header attributes and the repeating elements that form the invoice
lines. Traditionally, these repeating groups are managed through data normalisation; the data design
process that involves deriving split data entities thereby restructuring the data to its First Normal
Form. Recent moves to cloud technology often led to flattened representation of normalised data
and reintroducing repeating attributes. Whilst the best practice of data migration can be argued at
length, what should one do when faced with repeating elements.

To give context to the discussion, please refer to Figure 1 which shows an arbitrary set of invoice lines
presented as a data matrix - split by both rows and columns. This form of the data can present
challenges when applying computation and it would be desirable to either have in a single row with
repeating columns or preferably in its First Normal Form.

Figure 1: Sample Invoice Data

An unpivoting operation is required to derive the desired form. This can be achieve using Spark’s
inbuilt stack function which can expressed as:

“stack(n, expr1, expr2, … exprk) as (1, … m)”

Tips and Tricks: Deriving first Normal
Form using pySpark / Databricks

Tips and Tricks: Deriving first Normal Form using pySpark / Databricks

Select Information Classification Uncontrolled if printed 2 of 5 © Fujitsu 2022

The “stack” function takes a list of “k” expressions and separates them into “n” rows. This also implies
the “m” columns are formed, where m = k/n rounded up to nearest whole number.

Examples below demonstrate the relationship between k (expressions), m (columns) and n (rows).

Example: 3 expressions, 2 rows and 2 columns

Example: 5 expressions, 2 rows and 3 columns

Example: 6 expressions, 2 rows and 3 columns

From the examples above, it can be inferred that the stack function can be formulated to derive a
key, value pair (m = 2) for each column the repeating group. In the normalised form the desired
number of “n” rows would be equivalent to the number of columns in the repeating group. The
Python list comprehension code below shows dynamic calculation the value of “n”.

Tips and Tricks: Deriving first Normal Form using pySpark / Databricks

Select Information Classification Uncontrolled if printed 3 of 5 © Fujitsu 2022

Figure 2: List comprehension to calculate n-rows

Next, a list of “k” stack expressions needs to be generated. For the desired key-value pairing, the
expressions need to alternate between the column name and column value such that the stack
function generate n-rows with two columns.

Code below generates a string array called kvCols. Elements of the array alternate between a “string
within a string” and a string. List comprehension for column “Line1Price” returns two strings
“ ’Line1Amount’ ” and “ Line1Amount ”. When these two expressions when passed to the “stack”
function, the first string (string within string) will evaluate to the column name. The second string will
evaluate the column reference thereby yielding column value in the “stack” function.

The string “.join” operator to concatenates and array of strings int a single string.

Figure 3: List comprehension to build “k” expressions

The fully encoded “stack” function is show in Figure 4.

Figure 4: Stack function encoding

The encoded “stack” function passed as an expression to a dataframe will return the unpivoted Key,
Value columns as shown in Figure 5.

Tips and Tricks: Deriving first Normal Form using pySpark / Databricks

Select Information Classification Uncontrolled if printed 4 of 5 © Fujitsu 2022

Figure 5: Application of stack to DataFrame

The results can be cleaned up by removing redundant rows whose “Value” field are null and
additionally removing the original unnormalized columns can be removed.

Figure 6: Cleaned up

The final code put all together and with minor refinements is show Figure 7. Note that the order in
which the “select” and “where” clauses are written is highly significant.

Tips and Tricks: Deriving first Normal Form using pySpark / Databricks

Select Information Classification Uncontrolled if printed 5 of 5 © Fujitsu 2022

Figure 7: Full code block

Analysts can now proceed onto computation involving joins and aggregations with other datasets as
they would normally do with structured data.

To see how we can help your business unlock the value of your data, please contact a Fujitsu Data &
AI specialist now.

Contact

Fujitsu Data & AI

+61 3 9924 3000

© Fujitsu 2022. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu
Limited registered in many jurisdictions worldwide. Other product, service and company
names mentioned herein may be trademarks of Fujitsu or other companies. This
document is current as of the initial date of publication and subject to be changed by
Fujitsu without notice. This material is provided for information purposes only and Fujitsu
assumes no liability related to its use.

