
Powering Data Pipelines: XML Ingestion with Databricks Autoloader

Select Information Classification Uncontrolled if printed 1 of 4 © Fujitsu 2022

Many of us have and maybe still use XML as a standard format for various applications and industries
in web services, APIs, and data integration scenarios for exchanging data between different systems,
platforms, and programming languages.

XML is considered a structured data format. It provides a well-defined structure for organising and
representing data using tags and hierarchical relationships. XML documents follow a set of rules and
guidelines, allowing data to be organised in a logical and consistent manner.

Unlike unstructured data, which lacks a predefined organisation or schema, XML enforces a
hierarchical structure and defines the relationships between different elements. This structure
enables data validation, querying, and processing based on the defined structure and rules.

While this short article is not a tutorial on structure streaming and Autoloader, these features have
impacted streaming workloads for both structured and non-structured files and have been used
extensively in our Datalake Accelerator. There are many benefits in using Autoloader but one of the
key factors why it is changing ingestion landscape is because AutoLoader incrementally and
efficiently processes new data files as they arrive in cloud storage without any additional setup.

A very common scenario in an Extract, Transform and Load (ETL) or sometimes described as Extract,
Load and Transform (ELT) dataflow, is where we use Databricks to request data from REST API or
maybe use external data exchange from other applications or data exchanges between
organisations and drop into distributed storage like Azure Data Lake Storage or AWS S3 bucket and
used as part of data for analytics purpose. While the frequency of dropping these XML files can be
determined, we would often like to automate it as part of an ETL/ELT orchestration, not manually.

Powering Data Pipelines: XML Ingestion
with Databricks Autoloader

Powering Data Pipelines: XML Ingestion with Databricks Autoloader

Select Information Classification Uncontrolled if printed 2 of 4 © Fujitsu 2022

Assuming we have a simple XML file that has been dropped in an Azure storage container which
looks like this

<Sales>
 <Orders>
 <Order id="03413">
 <CustomerID>9a132a1c-ebf2-4e31-b38d-ce00169c201a</CustomerID>
 <OrderDate>1607247470559</OrderDate>
 <Note>advance couple medicines rally pts</Note>
 <comment>feeds</comment>
 <OrderDetails>
 <OrderDetail>
 <ProductID>MAZOLA</ProductID>
 <UnitPrice>90.61</UnitPrice>
 <Quantity>36</Quantity>
 </OrderDetail>
 </OrderDetails>
 </Order>
 </Orders>
 <Orders>
</Sales>

We can use the following Autoloader code to initiate a streaming process from the Azure storage
container.

 1. landing = (spark
 2. .readStream
 3. .format("cloudFiles")
 4. .option("cloudFiles.format", "binaryFile")
 5. .load(sourcePath)
 6.)
 7.
 8. bronze = (landing
 9. .writeStream
10. .queryName("xml_file")
11. .trigger(availableNow=True)
12. .format("delta")
13. .outputMode("append")
14. .foreachBatch(foreachbatch_xml)
15. .option("checkpointLocation", checkpointPath)
16. .start()
17.)
18.

In the above code snippet, I have defined the Autoloader file type to “cloudFiles”, and from here, we
can add options to include how the file is handled during the ingestion. Here I have added an option
to treat the input file format as “binaryFile”, and the “sourcePath” points to the location of the source.

Using the above “readStream”, my “landing” data frame would look like this when we run the
Autoloader code above.

Powering Data Pipelines: XML Ingestion with Databricks Autoloader

Select Information Classification Uncontrolled if printed 3 of 4 © Fujitsu 2022

You may also notice that for “writeStream”, I have included a “foreachbatch” option that would allow
me to specify a function that is executed on the output data of every micro-batch of the streaming
query. It takes two parameters: a data frame or Dataset that has the output data of a micro-batch
and the unique ID of the micro-batch. This is necessary here; as you recall, I have ingested the XML
file via “readStream” as a binary file, and it is in this function that I will convert the “content” column
to string and use the “xmlToDict” library to convert to the XML to a JSON data frame, so that I can
format the XML contents to its proper columns.

The code snippet below describes the process and additionally cleaning column names to a proper
camel case format before persisting to a delta table using Unity Catalog 3-level names base
structure.

1. def foreachbatch_xml(batch_df, batch_id):
 2.
 3. batches = batch_df.collect()
 4. for xml in batches:
 5. stream = xml.content
 6. content = bytes(stream).decode("utf-8")
 7. df = spark.read.json(sc.parallelize([json.dumps(xmltodict.parse(content))]))
 8.
 9. bronze = (
10. df
11. .selectExpr("inline(Sales.Orders.Order)")
12. .select("*", explode("OrderDetails.OrderDetail").alias("to_be_drop"))
13. .select("*", "to_be_drop.*")
14. .withColumn("OrderDate", from_unixtime(col("OrderDate")/1000))
15. .drop("OrderDetails", "to_be_drop")
16.
17.)
18. columns = [camelCase(x) for x in bronze.columns] # sanitize column names to camel case
19. bronze = (
20. bronze
21. .toDF(*columns)
22. .selectExpr(
23. "cast(Id as string) Id",
24. "cast(CustomerID as string) CustomerID",
25. "cast(Note as string) Note",
26. "cast(OrderDate as timestamp) OrderDate",
27. "cast(Comment as string) Comment",
28. "cast(ProductID as string) ProductID",
29. "cast(Quantity as int) Quantity",
30. "cast(UnitPrice as decimal(10,2)) UnitPrice"
31.)
32.)
33.
34. bronze.write.mode("overwrite").saveAsTable(name = "samples.sales.order")
35.
36.

Sample output from the table in Data Explorer

Powering Data Pipelines: XML Ingestion with Databricks Autoloader

Select Information Classification Uncontrolled if printed 4 of 4 © Fujitsu 2022

While there are other ways to parse XML files in the Apache Spark platform, e.g., using Spark-XML
driver but I find using “xmlToDict” allows more flexibility and control of how the XML data can be
easily managed.

I hope this has provided some insights into how we can ingest XML files via Databricks Autoloader.
This feature is fundamental to providing a common ingesting strategy for structured and
unstructured requirements built into our Lakehouse Accelerator, simplifying data ingestion with data
accuracy and rapidly delivering value from data.

If your business needs help with data quality and accuracy, please contact one of our specialists by
emailing us or call 03 9924 3000.

Contact

Fujitsu Data & AI

+61 3 9924 3000

© Fujitsu 2022. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu
Limited registered in many jurisdictions worldwide. Other product, service and company
names mentioned herein may be trademarks of Fujitsu or other companies. This
document is current as of the initial date of publication and subject to be changed by
Fujitsu without notice. This material is provided for information purposes only and Fujitsu
assumes no liability related to its use.

