
 Ingesting Microsoft Excel using Apache Spark Structured Streaming

Select Information Classification Uncontrolled if printed 1 of 4 © Fujitsu 2022

Everyone who has been into building data ingestions for the Internet of Things (IoT) using Apache
Spark would have been very well versed with Apache Spark structured streaming.

You may have used it to stream data from various event streaming technologies like Kafka or Azure
EventHub and use structured streaming to ingest data using continuous processing or time-based
trigger. Structured streaming also provides trigger modes that enable batch processing once or
whenever new data is available.

Another technology worth mentioning here is Databricks Autoloader, introduced back in 2020, which
helps to incrementally ingest a variety of data sources into cloud storage using the same Apache
Spark structured streaming functionalities with an added new streaming source called “cloudFiles”.
This automatically set up file notification services from the input directory and processes new files as
they arrive.

While this short article is not a tutorial on structure streaming and Databricks Autoloader, these
features have impacted streaming workloads for both structured and non-structured files and have
been used extensively in our Datalake Accelerator.

A very common scenario in an Extract, Transform and Load (ETL) or sometimes described as Extract,
Load and Transform (ELT) dataflow, we ingest data from relational databases; we also have scenarios
where users drop external or internally created Microsoft Excel (XLSX) files and used as part of data
for analytics purpose. While the frequency of dropping these XLSX files can be determined, we
would often like to automate it as part of an ETL/ELT orchestration, not manually.

Using Apache Spark structured streaming and Databricks Autoloader (if running in a Databricks
environment), we can create a process that automatically picks up the new XLSX file and save it as a
delta format table. We then can combine or transform this delta table and use it as a data source for
analytical purposes.

Assuming we have some XLSX files that have been dropped in an Azure storage container as below.

Ingesting Microsoft Excel using Apache
Spark Structured Streaming

https://delta.io/

 Ingesting Microsoft Excel using Apache Spark Structured Streaming

Select Information Classification Uncontrolled if printed 2 of 4 © Fujitsu 2022

This XLSX file we are using is Financial Sample.xlsx which is a fictitious company sales report that
looks like this:

We can use the following PySpark code to initiate a streaming process from the Azure storage
container.

In the above code snippet, I have defined the input file format as “binaryFile”, and the “sourcePath”
points to the user-drop/excel location. I have also used a schema to infer the schema for the
structure of the dataframe that is used when we persist the dataframe as a delta table in the
“writeStream”. The rest are regular syntax for structured streaming. The above snippet also has some
“cloudFiles” options missing, as I intentionally left that out so it can work in any PySpark environment,
e.g., Synapse notebooks using Apache Spark pool.

At this point, we are not ingesting the XLSX file per see, but instead, the content of the
user-drop/excel folder; thus, the schema will look as follows.

When we run the streaming code above, we will see the result below:

 Ingesting Microsoft Excel using Apache Spark Structured Streaming

Select Information Classification Uncontrolled if printed 3 of 4 © Fujitsu 2022

And this is what our delta table would look like. The column of interest will be the content column.

From here, assuming we have some metadata configuration file that describes what XLSX file we are
interested in and how the schema (columns of the XLSX file), we can filter the above delta table using
the “path” column and take the “content” column convert is as a “byte” object.

Anyone using PySpark to read the XLSX file will know that spark-excel_2.12-3.3.1_0.18.5.jar from
crealytics can be used, and it worked perfectly well in many of our previous projects, but getting it
to work in a streaming environment, can be quite challenging. So instead of using the above library, I
am using Pandas (part of Apache Spark framework) native read_excel() to read “byteObject”, which
is the converted “stream” (in bytes) as input to Pandas read_excel().

From here, we convert the Pandas dataframe to Spark dataframe by creating a new Apache Spark
dataframe with a schema that describes the XLSX file.

 Ingesting Microsoft Excel using Apache Spark Structured Streaming

Select Information Classification Uncontrolled if printed 4 of 4 © Fujitsu 2022

I hope this has provided some insights into how we can ingest Microsoft Excel files via Apache Spark
structured streaming.

This feature is fundamental to providing a common ingesting strategy for structured and
unstructured requirements built into our Lakehouse Accelerator, simplifying data ingestion with data
accuracy and rapidly delivering value from data.

If your business needs help with their data quality and accuracy, please contact a Fujitsu Data & AI
specialist now.

Contact

Fujitsu Data & AI

+61 3 9924 3000

© Fujitsu 2022. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu
Limited registered in many jurisdictions worldwide. Other product, service and company
names mentioned herein may be trademarks of Fujitsu or other companies. This
document is current as of the initial date of publication and subject to be changed by
Fujitsu without notice. This material is provided for information purposes only and Fujitsu
assumes no liability related to its use.

