

Infrastructure as Code (IaC) has emerged as a transformative approach to managing and automating
IT infrastructure through code. In this article, we'll explore the concept of IaC, explore its numerous
benefits for organisations, and examine the various types of languages used in implementing IaC
solutions.

Understanding IaC

At its core, IaC is the practice of defining and managing infrastructure resources such as servers,
networks, and storage using machine-readable files or scripts. Traditionally, setting up and managing
infrastructure involved manual processes that were time-consuming, error-prone, and lacked
consistency. With IaC developers can automate these processes using scripts or configurations files,
allowing for faster deployment, easier management, and greater reliability.

Benefits of IaC for Organisations

1. Automation

Automation is one of the primary benefits of IaC. By codifying infrastructure configurations,
organisations can automate repetitive tasks, reduce manual errors, and accelerate deployment
processes. Automation enables faster provisioning of infrastructure resources, improves consistency,
and frees up valuable time and resources for innovation and strategic initiatives.

2. Scalability

In today's dynamic business environment, scalability is crucial for meeting fluctuating demand and
adapting to growth. IaC facilitates scalability by allowing organisations to define scalable
architectures and automate the provisioning of additional resources as needed. Whether scaling up
to handle increased traffic or scaling down to optimise costs during low-demand periods, IaC
enables organisations to scale infrastructure resources on-demand, ensuring optimal performance
and cost-efficiency.

3. Consistency and Reproducibility
Manual configuration of infrastructure resources can lead to inconsistencies and drifts between
different environments, such as development, testing, and production. IaC promotes consistency

Driving Success: How Infrastructure as
Code Benefits Organisations

and reproducibility by defining infrastructure configurations as code. By using the same codebase to
provision infrastructure across environments, organisations can ensure that applications behave
predictably regardless of the deployment environment. This also facilitates easier debugging,
testing, and disaster recovery, as environments can be recreated with precision using code.

4. Version Control and Collaboration

IaC integrates seamlessly with version control systems like Git, enabling organisations to manage
infrastructure configurations alongside application code. By treating infrastructure configurations as
code, teams can leverage version control features such as branching, merging, and code reviews.
This fosters collaboration among team members, promotes code reuse, and provides a
comprehensive audit trail of changes made to infrastructure configurations over time.

5. Agility and DevOps Practices

IaC aligns with DevOps principles and practices, promoting collaboration, automation, and
continuous delivery. By automating infrastructure provisioning and configuration, organisations can
accelerate the deployment pipeline, deliver new features and updates more frequently, and respond
rapidly to changing business requirements. IaC also encourages a culture of shared responsibility
between development and operations teams, breaking down silos and fostering cross-functional
collaboration.

6. Disaster Recovery

As the term suggests, this one is important. IaC is an extremely efficient way to track your
infrastructure and redeploy the last healthy state after a disruption or disaster of any kind that
occurs.

Types of Infrastructure as Code Languages

Several types of languages are used in implementing IaC solutions, each with its own strengths and
applications:

 1. Domain-Specific Languages (DSLs)

DSLs are purpose-built languages designed specifically for defining and managing infrastructure
resources. These DSLs are designed to address the unique requirements and challenges of
provisioning, configuring and orchestrating infrastructure components in public cloud environments.
Examples include Terraform Configuration Language (HCL), Azure Resource Manager (ARM)
Templates, Bicep and AWS CloudFormation Template Language.

 2. General-Purpose Programming Languages

General-purpose programming languages offer flexibility and expressiveness and extensibility for
implementing complex infrastructure setups and automation workflows.
Examples include Python, JavaScript/TypeScript, and Ruby.

 3. Configuration Management Tools

Despite not being traditional programming languages, configuration management tools enable
organisations to define, deploy and maintain infrastructure configurations across environments,
ensuring reliability, scalability, and efficiency.
Examples include Ansible Playbooks and Chef Recipes.

Conclusion

IaC is a paradigm shift in how organisations manage their IT infrastructure, providing numerous
benefits in terms of automation, scalability, consistency, collaboration, and agility. By adopting IaC
practices and leveraging appropriate languages and tools, organisations can optimise their IT
operations, improve deployment processes, and stay competitive in today's fast-paced digital
landscape. As the importance of automation and efficiency continues to grow, IaC remains a
cornerstone for organisations seeking to harness the full potential of cloud computing and DevOps
methodologies.

If you would like to discuss how IaC could benefit your business, please contact one of our specialists
by emailing us today or call 03 9924 3000.

Contact
Fujitsu Data & AI

+61 3 9924 3000

© Fujitsu 2022. All rights reserved. Fujitsu and Fujitsu logo are trademarks of Fujitsu
Limited registered in many jurisdictions worldwide. Other product, service and company
names mentioned herein may be trademarks of Fujitsu or other companies. This
document is current as of the initial date of publication and subject to be changed by
Fujitsu without notice. This material is provided for information purposes only and Fujitsu
assumes no liability related to its use.

mailto:dataandai@fujitsu.com

