
Make data
transformation
simpler by
automating data
flows

If you’re an IT Project Manager, you’ll know
that data transformation can be a long and
gruelling af fair. Extract, Transform, and Load
(ETL) operations that convert data from
one format to another are usually dif ficult
to create and require expert knowledge
and bespoke code, often running over time
and budget. However, there’s a much easier
solution to many of the ETL headaches.
Apache NiFi is a no- to low-code open-source
option that allows ETL data flows to be
created quickly and simply, radically speeding
up the transformation timeline.

What Is Apache NiFi?

NiFi is a free and open-source product from the Apache
Software Foundation. Written in Java, it is cross-platform
allowing it to be run on any system that has a Java Virtual
Machine installed.

Nifi uses a flow-based programming paradigm to simplify
and streamline ETL operations. A flow is a collection of
data processors, each of which performs a small part of
the overall operation. A processor might do something
as simple as writing something to a log file, or something
more complex like calling a HTTP API endpoint, or writing
data to a database. Processors are linked together
via queues, which also provide a means of throttling
throughput.

Data is contained in FlowFiles, each of which can have
associated metadata attributes, to allow for routing or
conditional processing. FlowFiles can contain data in any
format, and the contents of a FlowFile can change as it
moves through the flow. For example, the flow could read
a comma separated value (CSV) file from a filesystem,
split that file into individual rows (each in its own flow file),
then convert each row into JSON format. All of this can be
done without writing any code.

How do you create a flow?

Creating a flow is a simple process. A new processor is
added to the flow by dragging the processor icon off the
toolbar onto the flow canvas, then selecting which type of
processor from a list.

Once added to the canvas, the processor is configured by
filling in the required parameters in a configuration dialog.
This tailors the operations of that specific processor for the
needs of the ETL operation.

Each processor normally has one or more output queue
options, for example ‘success’ or ‘failure’. Processors are
linked together by dragging one processor and dropping it
onto another one, then choosing which queue to connect
to the target processor. Linking processors in this way
allows for error handling and reprocessing.

Australia T +61 2 9776 4555 E askus@fujitsu.com W www.fujitsu.com/au/dx

Can it be extended?

NiFi comes with a huge range of processor types at
installation. However, its out-of-the-box functionality can be
extended in several ways:

•• The first is third-party provided processors. These are
often vendor-specific database interfaces, or JDBC
database drivers. Adding new processors like this is as
simple as copying the processor Java archive file into
a folder in the NiFi installation and restarting NiFi. The
new processors will then be immediately available for
use in a flow.

•• ExecuteScript processors allow for bespoke code to
be written in a variety of languages (such as Python,
Groovy, or JavaScript). This code is executed against
each incoming FlowFile. These scripts are for relatively
simple tasks, and error options are limited to success
and failure queues only.

•• Custom processors can also be developed in Java
for situations where more complex logic with finer
grained control over outputs is required.

What knowledge level do you require?

Creating a basic NiFi flow is very straight forward
and can be learned quickly. A business analyst who
understands basic data operation and logic flows
could set up a flow. NiFi’s expression language is similar
in complexity to using a Microsoft Excel formula, so
anyone who is familiar with Excel could learn NiFi’s
expression language syntax quickly.

Writing bespoke code, either for use in an ExecuteScript
processor or creation of a custom processor in Java,
will require more specialised software development
knowledge and experience.

