Semicustom смоз Standard cell array

CS91 Series

DESCRIPTION

The CS91 series 0.11 μ m CMOS standard cell is a line of highly integrated CMOS ASICs featuring high speed and low power consumption. This series incorporates up to 48 million gates which have a gate delay time of 16 ps, resulting in both integration and speed about three times higher than conventional products.

FEATURES

- Technology : 0.11 μm silicon-gate CMOS, 5- to 8-layer wiring (Copper is used as wire material.), Low-K (2.7) Inter-layer material (Inter-layer material that has low permittivity)
- Support for high speed, high integration, low leak internal cell set. Capable of incorporating on the same chip.
- Supply voltage : +1.2 V \pm 0.1 V (standard specification)
- Junction temperature range : -40 °C to +125 °C
- Gate delay time : $t_{pd} = 16 \text{ ps} (1.2 \text{ V}, \text{ inverter}, \text{F/O} = 1)$
- Gate power consumption : Pd = 6.6 nW/MHz/BC (1.2 V, inverter, F/O = 1)
- Support for ultra high speed (622 Mbps to 780 Mbps, 2.5 Gbps to 3.125 Gbps, 10 Gbps) interface macros for transmission
- Special interfaces* : P-CML, LVDS, PCI, SSTL, HSTL, T-LVTTL, and others.
- · Buffer cell dedicated to crystal oscillator
- IP macros* : CPU (ARM9, ARM7TDMI), DSP, PCI, IEEE1394, USB, IrDA, PLL, ADC, DAC, and others.
- Compiled cells (RAM/ROM/multiplier, and others.)
- · Uses industry standard tools and supports the optimum tools for the application
- Short-term development using a physical prototyping tool
- Hierarchical design environment for supporting large-scale circuits
- Support for SIGNAL INTEGRITY, EMI noise reduction
- Support for High resolution RC extraction base delay calculation environment
- Support for optimization environment of power supply wire

(Continued)

CS91 Series

(Continued)

- Support for static timing sign off
- Support for memory (RAM/ROM) BIST
- Support for boundary SCAN
- Support for LOGIC BIST
- A variety of package options* : FCBGA (2116 pin Max) , EBGA, FBGA, and others.
- *: Including items under development.

MACRO LIBRARY (Including macros being prepared)

1. Logic cells (about 400 types)

- Adder
- AND-OR Inverter
 - Non-SCAN Flip FlopInverter
- Clock BufferLatch
- Buffer

• Decoder

• NAND

OR-AND Inverter

ANDNOR

- OR
- SelectorEOR
- SCAN Flip FlopENOR
- Others
- AND-OR

2. IP macros

CPU/DSP	ARM9, ARM7TDMI, Communications DSP, DSP for AV
Ultra high speed I/F macros	622 Mbps to 780 Mbps, 2.5 Gbps to 3.125 Gbps, 10 Gbps
Interface macros	PCI, IEEE1394, USB, IrDA, etc.
Multimedia processing macros	JPEG, MPEG, etc.
Mixed signal macros	ADC, DAC, OPAMP, etc.
Compiled macros	RAM, ROM, multiplier, adder, multiplier-accumulator, etc.
PLL	Analog PLL, digital PLL

3. Special I/O interface macros

- T-LVTTL SSTL
- HSTL • USB
 - -

LVDS

PCI

P-CML

■ COMPILED CELLS

Compiled cells are macro cells which are automatically generated with the bit/word configuration specified. The CS91 series has the following types of compiled cells. (Note that each macro is different in word/bit range depending on the column type.)

1. Clock synchronous single-port RAM (1 address : 1 RW)

Column type	Memory capacity	Word range	Bit range	Unit
4	32 to 128 K	16 to 1 K	2 to 128	bit
16	2176 to 288 K	1088 to 8 K	2 to 36	bit

2. Clock synchronous dual-port RAM (2 addresses : 2 RW)

Column type	Memory capacity	Word range	Bit range	Unit
4	32 to 288 K	16 to 2 K	2 to 144	bit
16	128 to 288 K	64 to 8 K	2 to 36	bit

3. Clock synchronous ROM

Column type	Memory capacity	Word range	Bit range	Unit
16	256 to 1 M	128 to 8 K	2 to 128	bit
64	1024 to 1 M	512 to 32 K	2 to 32	bit

4. High-capacity memory type of clock synchronous single port RAM (1 address : 1 RW)

Column type	Memory capacity	Word range	Bit range	Unit
32	16 K to 4 M	8 K to 32 K	2 to 128	bit

■ ABSOLUTE MAXIMUM RATINGS

(Vss = 0 V)						
Dexemptor	Symbol	Application	Rat	Unit		
Parameter	Symbol	Application	Min	tating Max + 1.8 + 3.6 + 4.0 VDDI + 0.5 (\leq 1.8 V) VDDE + 0.5 (\leq 3.6 V) VDDE + 0.5 (\leq 4.0 V) VDDE + 0.5 (\leq 1.8 V) VDDE + 0.5 (\leq 4.0 V) VDDE + 0.5 (\leq 3.6 V) VDDE + 0.5 (\leq 4.0 V) +125 ± 25	Unit	
		VDDI (Internal)	- 0.5	+ 1.8	V	
Power supply voltage	Vdd	VDDE (External 2.5 V)	- 0.5	+ 3.6	V	
		VDDE (External 3.3 V)	- 0.5	+ 4.0	V	
		1.2 V	- 0.5	$V_{DDI} + 0.5$ ($\leq 1.8 \text{ V}$)	V	
Input voltage ^{∗1}	Vı	2.5 V	- 0.5	$V_{DDE} + 0.5$ ($\leq 3.6 \text{ V}$)	V	
		3.3 V	- 0.5	$V_{DDE} + 0.5$ ($\leq 4.0 \text{ V}$)	V	
Output voltage Storage temperature		1.2 V	- 0.5	$V_{DDI} + 0.5$ ($\leq 1.8 \text{ V}$)	V	
	Vo	2.5 V	- 0.5	$V_{DDE} + 0.5$ ($\leq 3.6 \text{ V}$)	V	
		3.3 V	- 0.5	$V_{DDE} + 0.5$ ($\leq 4.0 \text{ V}$)	V	
Storage temperature	Тѕт	Plastic package	-55	+125	°C	
		L type simultaneous switching noise : minimum, delay : long		± 25	mA	
Output current ^{*2}	lo	M type simultaneous switching noise : small, delay : middle		± 25	mA	
		H type simultaneous switching noise : middle, delay : short		± 25	mA	

*1 : Values are determined separately for LVDS, etc.

*2 : Maximum output current which can be supplied constantly.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

 $(V_{SS} = 0 V)$

 $(V_{SS} = 0 V)$

RECOMMENDED OPERATING CONDITIONS

- Single power supply (V_{DD} = 1.2 V \pm 0.1 V)

				,	,
Deremeter	Symbol		Unit		
Falameter	Symbol	Min	Тур	Max	Omt
Power supply voltage	Vdd	1.1	1.2	1.3	V
"H" level input voltage	VIH	$V_{\text{DD}} \times 0.7$	_	$V_{\text{DD}} + 0.3$	V
"L" level input voltage	VIL	-0.3	_	$V_{\text{DD}} \times 0.3$	V
Junction temperature	Tj	-40		+125	°C

- Dual power supply (V_{DDE} = 3.3 V \pm 0.3 V, V_{DDI} = 1.2 V \pm 0.1 V)

D		Cumhal		Value		
Paran	neter	Symbol	Min	Тур	Max	Unit
Power supply voltage	3.3 V supply voltage	VDDE	3.0	3.3	3.6	V
	1.2 V supply voltage	Vddi	1.1	1.2	1.3	V
	3.3 V CMOS level	Max	2.0	—	VDDE + 0.3	V
n level liput voltage	1.2 V CMOS level	VIH	$V_{\text{DDI}} imes 0.7$	V _{DDE} + 0.3 V 0.7 V _{DDI} + 0.3 V	V	
"I " loval input valtage	3.3 V CMOS level	M.	-0.3	—	+0.8	V
L level input voltage	1.2 V CMOS level VIL		-0.3	—	$V_{\text{DDI}} imes 0.3$	V
Junction temperature		Tj	-40	—	+125	°C

- Dual power supply (V_{DDE} = 2.5 V \pm 0.2 V, V_{DDI} = 1.2 V \pm 0.1 V)

(Vss = 0 V)

Parameter		Symbol		Unit		
Falai		Symbol	Min	Тур	Max	Onit
Power supply voltage	2.5 V supply voltage	VDDE	2.3	2.5	2.7	V
Fower supply vollage	1.2 V supply voltage	Vddi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	2.5 V CMOS level	Mar	1.7	_	VDDE + 0.3	V
n level liput voltage	1.2 V CMOS level	VIH	$V_{\text{DDI}} imes 0.7$	_	Max 2.7 1.3 VDDE + 0.3 VDDI + 0.3 +0.7 VDDI × 0.3 +125	V
"I " lovel input veltage	2.5 V CMOS level	V	-0.3		+0.7	V
	1.2 V CMOS level	VIL	-0.3	_	$V_{\text{DDI}} imes 0.3$	V
Junction temperature		Tj	-40	_	+125	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

• Single power supply : $V_{DD} = 1.2 V$

Paramotor	Symbol	Condition		Unit		
Farameter	Symbol	Condition	Min	Тур	Max	Onit
"H" level output voltage	Vон	Іон = −100 μА	$V_{\text{DD}} - 0.2$		VDD	V
"L" level output voltage	Vol	lo∟ = 100 μA	0		0.2	V
Input leakage current*	IL.				±10	μA
Pull-up/pull-down resistance	R₽	$\begin{array}{l} Pull\text{-up}:V_{IL}=0\\ Pull\text{-down}:V_{IH}=V_{DD} \end{array}$		12		kΩ

*: The input leakage current may exceed the above value when the input buffer with pull-up/pull-down resistor is used.

• Dual power supply : $V_{DDE} = 3.3 V$, $V_{DDI} = 1.2 V$

	$(V_{DDE} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{DDI} = 1.2 \text{ V} \pm 0.1 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 ^{\circ}\text{C} \text{ to} +125 ^{\circ}\text{C})$								
Deremeter	Symbol	Condition		Value					
Parameter	Symbol	Condition	Min	Тур	Max VDDE VDDI 0.2 ±10 70	Unit			
	Vон4	Іон = −100 μА	Vdde - 0.2	_	Vdde	V			
n level output voltage	Vон2	Іон = −100 μА	Vddi - 0.2	_	Vddi	V			
"L" level output voltage	Vol4	lo∟ = 100 μA	0	_	0.2	V			
	Vol2	lo∟ = 100 μA	0	_	0.2	V			
Input leakage current*	IL.	—			±10	μA			
Pull-up/pull-down	Ba	$\begin{array}{l} 3.3 \ V \\ Pull-up \ : \ V_{I} = 0 \\ Pull-down \ : \ V_{I} = V_{\text{DDE}} \end{array}$	15	33	70	kΩ			
resistance		$ \begin{array}{l} 1.2 \ V \\ Pull-up \ : \ V_{I} = 0 \\ Pull-down \ : \ V_{I} = V_{DDI} \end{array} $	_	12		kΩ			

*: The input leakage current may exceed the above value when the input buffer with pull-up/pull-down resistor is used.

Parameter	Symbol	Condition	Value			llmit
			Min	Тур	Max	Unit
"H" level output voltage	Vонз	Іон = -100 μА	$V_{\text{DDE}} - 0.2$		Vdde	V
	V _{OH2}	Іон = −100 μА	V _{DDI} - 0.2	—	Vddi	V
"L" level output voltage	V _{OL3}	lo∟ = 100 μA	0		0.2	V
	Vol2	lo∟ = 100 μA	0		0.2	V
Input leakage current*	١L		—		±10	μA
Pull-up/pull-down resistance	Pa	2.5 V Pull-up : $V_I = 0$ Pull-down : $V_I = V_{DDE}$		25	_	kΩ
		1.2 V Pull-up : $V_I = 0$ Pull-down : $V_I = V_{DDI}$		12		kΩ

• Dual power supply : $V_{DDE} = +2.5 \text{ V}, V_{DDI} = +1.2 \text{ V}$ ($V_{DDE} = 2.5 \text{ V} \pm 0.2 \text{ V}, V_{DDI} = 1.2 \text{ V} \pm 0.1 \text{ V}, V_{SS} = 0 \text{ V}, T_j = -40 \text{ }^{\circ}\text{C} \text{ to } +125 \text{ }^{\circ}\text{C}$)

*: The input leakage current may exceed the above value when the input buffer with pull-up/pull-down resistor is used.

■ AC CHARACTERISTICS

Parameter	Symbol	Rating			
Falameter	Symbol	Min	Тур	Мах	Gint
Delay time	tpd ^{*1}	$typ^{*2} \times tmin^{*3}$	typ*2 × ttyp*3	typ* ² × tmax* ³	ns

*1 : Delay time = Propagation delay time, Enable time, Disable time

*2 : "typ" is calculated from the cell specification.

*3 : Measurement conditions

Measurement condition	tmin	ttyp	t max
V_{DD} = 1.2 V \pm 0.1 V, Vss = 0 V, T $_{\text{j}}$ = –40 °C to +125 °C	0.65	1.00	1.66

Note : Reference values. The values according to the cell.

■ INPUT/OUTPUT PIN CAPACITANCE

 $(f = 1 \text{ MHz}, V_{DD} = V_{DI} = 0 \text{ V}, T_j = +25 \text{ °C})$

		•	,
Parameter	Symbol	Value	Unit
Input pin	Cin	16 Max	pF
Output pin	Соит	16 Max	pF
Input/output pin	Cı/o	16 Max	pF

Note : Capacitance values according to the package and the location of the pin.

DESIGN METHOD

Fujitsu Microelectronics's Reference Design Flow provides the following functions that shorten the development time of large scale and high quality LSIs.

- High reliability design estimation in the early stage of physical design realized by physical prototyping.
- Layout synthesis with optimized timing realized by physical synthesis tools.
- High accuracy design environment considering drop in power supply voltage, signal noise, delay penalty, and crosstalk.
- I/O design environment (power line design, assignment and selection of I/Os, package selection) considering noise.

PACKAGES

A variety of package types

Development of chips with narrow-pitch solder bump technology and high-pin count packages enables users to respond to the high-pin count, high-speed requirements of the network market. A variety of packages from existing series are also available for smooth transition from previously developed models. Contact your FUJITSU MICROELECTRONICS representative for availability dates.

FCBGA package: maximum 2116 pinsEBGA package: maximum 672 pinsFBGA package: maximum 304 pinsQFP package: maximum 304 pins

CS91 Series

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. 151 Lorong Chuan, #05-08 New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road Tsimshatsui, Kowloon Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in

nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.