Memory FRAM

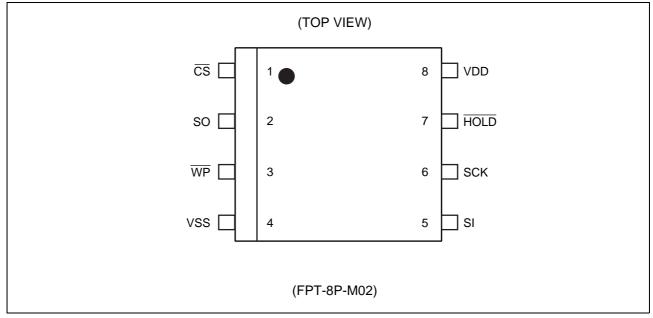
512K (64 K × 8) Bit SPI

MB85RS512T

DESCRIPTION

MB85RS512T is a FRAM (Ferroelectric Random Access Memory) chip in a configuration of 65,536 words \times 8 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.

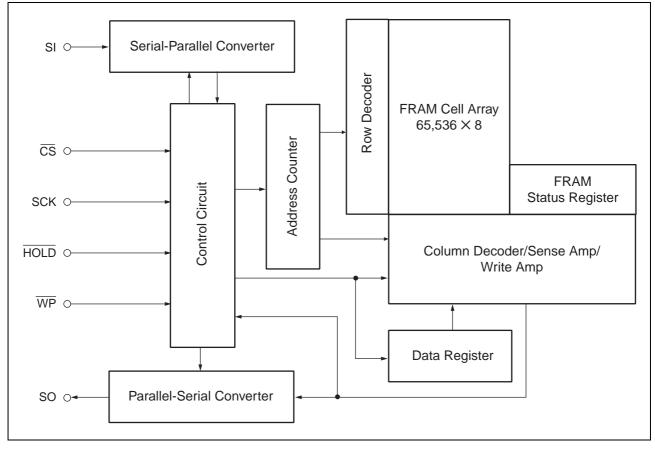
MB85RS512T adopts the Serial Peripheral Interface (SPI).


The MB85RS512T is able to retain data without using a back-up battery, as is needed for SRAM. The memory cells used in the MB85RS512T can be used for 10¹³ read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM. MB85RS512T does not take long time to write data like Flash memories or E²PROM, and MB85RS512T takes no wait time.

■ FEATURES

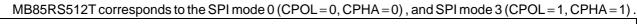
Bit configuration	: 65,536 words \times 8 bits
Serial Peripheral Interface	: SPI (Serial Peripheral Interface)
	Correspondent to SPI mode 0 (0, 0) and mode 3 (1, 1)
Operating frequency	: 1.8 V to 2.7 V, 25 MHz (Max)
	2.7 V to 3.6 V, 30 MHz (Max)
	For FSTRD command 2.7 V to 3.6 V, 40 MHz (Max)
High endurance	: 10 ¹³ times / byte
Data retention	: 10 years (+85 °C)
 Operating power supply voltage 	: 1.8 V to 3.6 V
 Low power consumption 	: Operating power supply current 10 mA (Max@30 MHz)
	Standby current 120 μA (Max)
	Sleep current 10 μA (Max)
Operation ambient temperature ra	ange : -40 °C to +85 °C
Package	: 8-pin plastic SOP (FPT-8P-M02)
	RoHS compliant

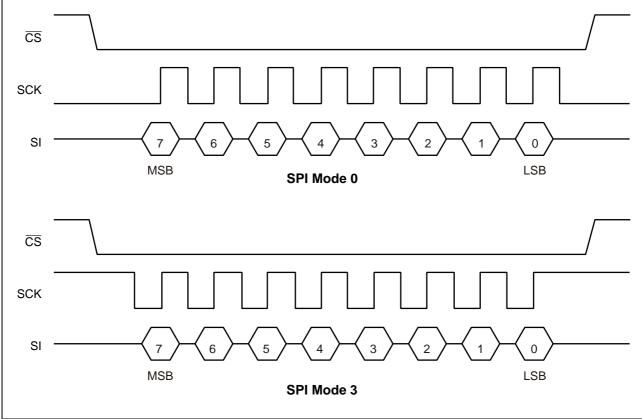
■ PIN ASSIGNMENT

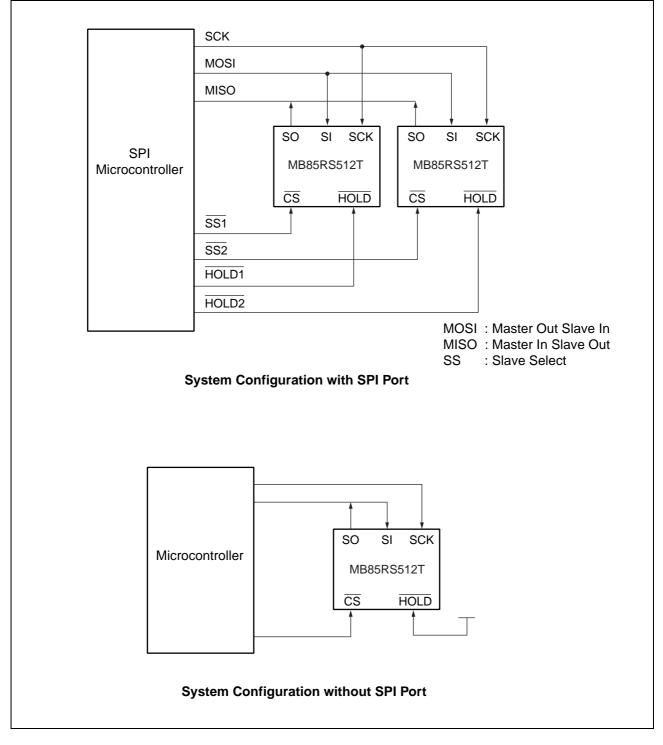


■ PIN FUNCTIONAL DESCRIPTIONS

Pin No.	Pin Name	Functional description
1	CS	Chip Select pin This is an input pin to make chips select. When \overline{CS} is "H" level, device is in deselect (standby) status and SO becomes High-Z. Inputs from other pins are ignored for this time. When \overline{CS} is "L" level, device is in select (active) status. \overline{CS} has to be "L" level before inputting op-code. The Chip Select pin is pulled up internally to the VDD pin.
3	WP	Write Protect pin This is a pin to control writing to a status register. The writing of status register (see "■ STATUS REGISTER") is protected in related with WP and WPEN. See "■ WRITING PROTECT" for detail.
7	HOLD	Hold pin This pin is used to interrupt serial input/output without making chips deselect. When HOLD is "L" level, hold operation is activated, SO becomes High-Z, SCK and SI become do not care. While the hold operation, \overline{CS} has to be retained "L" level.
6	SCK	Serial Clock pin This is a clock input pin to input/output serial data. SI is loaded synchronously to a rising edge, SO is output synchronously to a falling edge.
5	SI	Serial Data Input pin This is an input pin of serial data. This inputs op-code, address, and writing data.
2	SO	Serial Data Output pin This is an output pin of serial data. Reading data of FRAM memory cell array and status register data are output. This is High-Z during standby.
8	VDD	Supply Voltage pin
4	VSS	Ground pin


PRELIMINARY


BLOCK DIAGRAM


SPI MODE

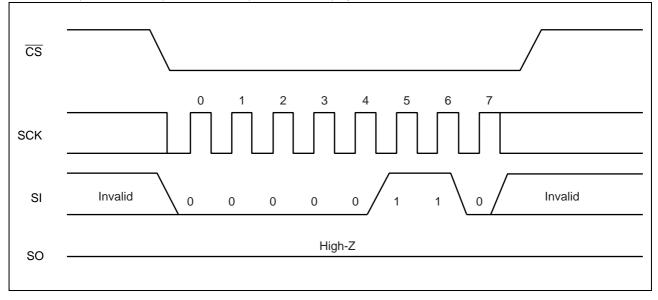
SERIAL PERIPHERAL INTERFACE (SPI)

MB85RS512T works as a slave of SPI. More than 2 devices can be connected by using microcontroller equipped with SPI port. By using a microcontroller not equipped with SPI port, SI and SO can be bus connected to use.

■ STATUS REGISTER

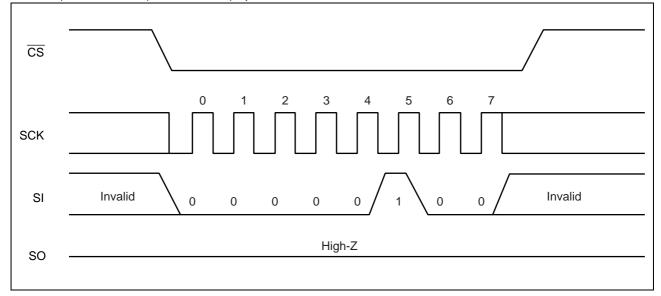
Bit No.	Bit Name	Function
7	WPEN	Status Register Write Protect This is a bit composed of nonvolatile memories (FRAM). WPEN protects writing to a status register (refer to "■ WRITING PROTECT") relating with WP input. Writing with the WRSR command and reading with the RDSR command are possible.
6 to 4	_	Not Used Bits These are bits composed of nonvolatile memories, writing with the WRSR command is possible. These bits are not used but they are read with the RDSR command.
3	BP1	Block Protect This is a bit composed of nonvolatile memory. This defines size of write
2	BP0	protect block for the WRITE command (refer to "■ BLOCK PROTECT"). Writing with the WRSR command and reading with the RDSR command are possible.
1	WEL	Write Enable Latch This indicates FRAM Array and status register are writable. The WREN command is for setting, and the WRDI command is for resetting. With the RDSR command, reading is possible but writing is not possible with the WRSR command. WEL is reset after the following operations. After power ON. After WRDI command recognition. The rising edge of CS after WRSR command recognition. The rising edge of CS after WRITE command recognition.
0	0	This is a bit fixed to "0".

■ OP-CODE

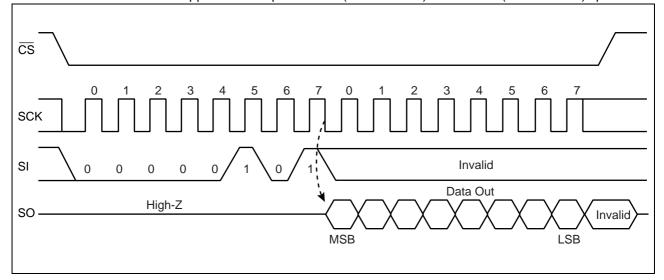

MB85RS512T accepts 9 kinds of command specified in op-code. Op-code is a code composed of 8 bits shown in the table below. Do not input invalid codes other than those codes. If \overline{CS} is risen while inputting op-code, the command are not performed.

Name	Description	Op-code
WREN	Set Write Enable Latch	0000 0110в
WRDI	Reset Write Enable Latch	0000 0100в
RDSR	Read Status Register	0000 0101в
WRSR	Write Status Register	0000 0001в
READ	Read Memory Code	0000 0011в
WRITE	Write Memory Code	0000 0010в
RDID	Read Device ID	1001 1111в
FSTRD	Fast Read Memory Code	0000 1011в
SLEEP	Sleep Mode	1011 1001в

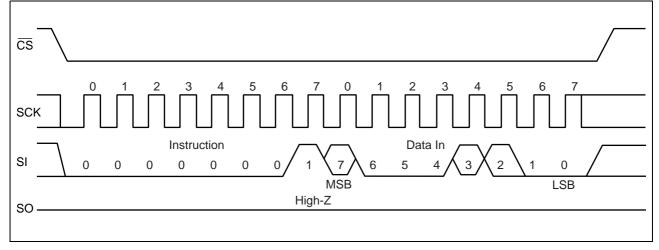
■ COMMAND


• WREN

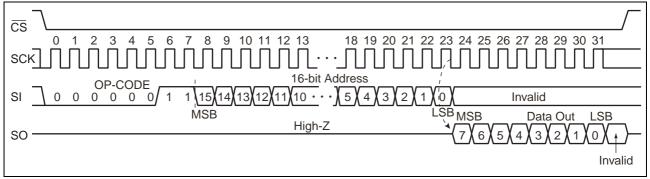
The WREN command sets WEL (Write Enable Latch) . WEL has to be set with the WREN command before writing operation (WRSR command and WRITE command) . WREN command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".


• WRDI

The WRDI command resets WEL (Write Enable Latch) . Writing operation (WRSR command and WRITE command) are not performed when WEL is reset. WRDI command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".


• RDSR

The RDSR command reads status register data. After op-code of RDSR is input to SI, 8-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. In the RDSR command, repeated reading of status register is enabled by sending SCK continuously before rising of \overline{CS} . RDSR command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".


• WRSR

The WRSR command writes data to the nonvolatile memory bit of status register. After performing WRSR op-code to a SI pin, 8 bits writing data is input. WEL (Write Enable Latch) is not able to be written with WRSR command. A SI value correspondent to bit 1 is ignored. Bit 0 of the status register is fixed to "0" and cannot be written. The SI value corresponding to bit 0 is ignored. WP signal level shall be fixed before performing WRSR command, and do not change the WP signal level until the end of command sequence. WRSR command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".

• READ

The READ command reads FRAM memory cell array data. Arbitrary 16 bits address and op-code of READ are input to SI. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When \overline{CS} is risen, the READ command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before \overline{CS} rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely. READ command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".

• WRITE

The WRITE command writes data to FRAM memory cell array. WRITE op-code, arbitrary 16 bits of address and 8 bits of writing data are input to SI. When 8 bits of writing data is input, data is written to FRAM memory cell array. Risen \overline{CS} will terminate the WRITE command, but if you continue sending the writing data for 8 bits each before \overline{CS} rising, it is possible to continue writing with automatic address increment. When it reaches the most significant address, it rolls over to the starting address, and writing cycle can be continued infinitely. WRITE command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".

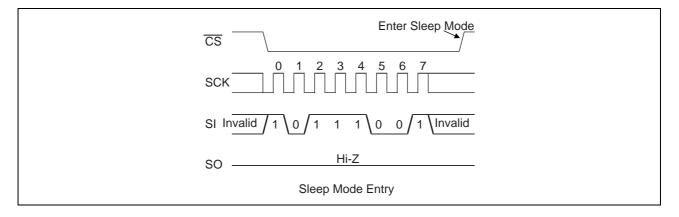
$\begin{array}{c} \hline CS \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
SI $100000/1$ 11313121110000 51432110000 514321100000 15043211000000 $15000000000000000000000000000000000000$
MSB LSB MSB LSB SO High-Z

• FSTRD

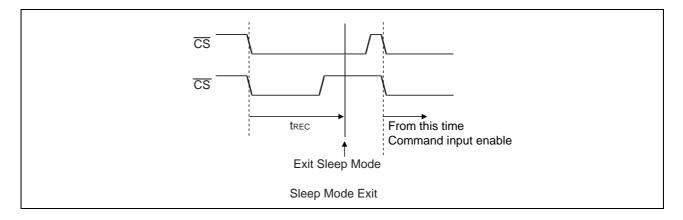
The FSTRD command reads FRAM memory cell array data. Arbitrary 16 bits address and op-code of FSTRD are input to SI followed by 8 bits dummy. Then, 8-cycle clock is input to SCK. SO is output synchronously to the falling edge of SCK. While reading, the SI value is invalid. When \overline{CS} is risen, the FSTRD command is completed, but keeps on reading with automatic address increment which is enabled by continuously sending clocks to SCK in unit of 8 cycles before \overline{CS} rising. When it reaches the most significant address, it rolls over to the starting address, and reading cycle keeps on infinitely. FSTRD command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 40 MHz (2.7 V to 3.6 V) operation".

0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 30 31 32 33 34 35 36 37 38 39 SCK
$ \begin{array}{c} 16 \text{-bit Address} \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
SO $(7 \sqrt{6} \sqrt{5} \sqrt{4} \sqrt{3} \sqrt{2} \sqrt{1} \sqrt{0} \sqrt{4})$ Invalid

• RDID


The RDID command reads fixed Device ID. After performing RDID op-code to SI, 32-cycle clock is input to SCK. The SI value is invalid for this time. SO is output synchronously to a falling edge of SCK. The output is in order of Manufacturer ID (8bit)/Continuation code (8bit)/Product ID (1st Byte)/Product ID (2nd Byte). In the RDID command, SO holds the output state of the last bit in 32-bit Device ID until \overline{CS} is risen. RDID command is applicable to "Up to 25 MHz (1.8 V to 2.7 V) and 30 MHz (2.7 V to 3.6 V) operation".

cs						_ ••	••			
scк ⁰ 1 2 3 4 5 6 7 8 9 10 11 31 32 33 34 35 36 37 38 39										
SI 1 0 0 1 1 1 1 1 I Invalid										
so <u>High-Z</u> $\xrightarrow{\text{High-Z}} Data Out \\ \xrightarrow{31/30/29/28} \dots \xrightarrow{8/7/6/5/4/3/2/1/0}_{LSB}$										
bit										
	7	6	5	4	3	2	1	0	Hex	
Manufacturer ID	0	0	0	0	0	1	0	0	04н	Fujitsu
Continuation code	0	1	1	1	1	1	1	1	7 Fн	
										_
	Prop	rietary	y use		0	Densit	у		Hex	
Product ID (1st Byte)	0	0	1	0	0	1	1	0	26н	Density: 00110 _B = 256Kbit
										_
		Proprietary use							Hex	
Product ID (2nd Byte)	0	0	0	0	0	0	1	1	03н	


• SLEEP

The SLEEP command shifts the LSI to a low power mode called "SLEEP mode". The transition to the SLEEP mode is carried out at the rising edge of \overline{CS} after operation code in the SLEEP command. However, when at least one SCK clock is inputted before the rising edge of \overline{CS} after operation code in the SLEEP command, this SLEEP command is canceled.

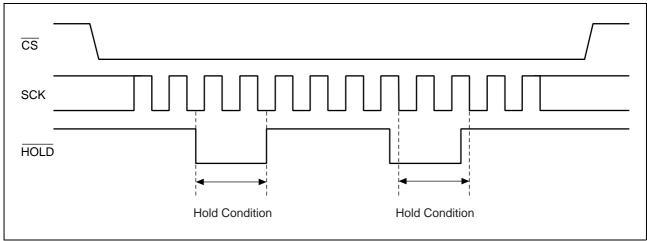
After the SLEEP mode transition, SCK and SI inputs are ignored and SO changes to a Hi-Z state.

Returning to an normal operation from the SLEEP mode is carried out after t_{REC} (Max 400 μ s) time from the falling edge of \overline{CS} (see the figure below). It is possible to return \overline{CS} to H level before t_{REC} time. However, it is prohibited to bring down \overline{CS} to L level again during t_{REC} period.

BLOCK PROTECT

Writing protect block for WRITE command is configured by the value of BP0 and BP1 in the status register.

BP1	BP0	Protected Block
0	0	None
0	1	С000н to FFFFн (upper 1/4)
1	0	8000н to FFFFн (upper 1/2)
1	1	0000н to FFFFн (all)


■ WRITING PROTECT

Writing operation of the WRITE command and the WRSR command are protected with the value of WEL, WPEN, \overline{WP} as shown in the table.

WEL	WPEN	WP	Protected Blocks	Unprotected Blocks	Status Register
0	Х	Х	Protected	Protected	Protected
1	0	Х	Protected	Unprotected	Unprotected
1	1	0	Protected	Unprotected	Protected
1	1	1	Protected	Unprotected	Unprotected

HOLD OPERATION

Hold status is retained without aborting a command if \overline{HOLD} is "L" level while \overline{CS} is "L" level. The timing for starting and ending hold status depends on the SCK to be "H" level or "L" level when a \overline{HOLD} pin input is transited to the hold condition as shown in the diagram below. In case the \overline{HOLD} pin transited to "L" level when SCK is "L" level, return the \overline{HOLD} pin to "H" level at SCK being "L" level. In the same manner, in case the \overline{HOLD} pin transited to "L" level when SCK is "H" level when SCK is "H" level when SCK is "H" level when SCK being "L" level. In the same manner, in case the \overline{HOLD} pin transited to "L" level when SCK is "H" level, return the \overline{HOLD} pin to "H" level at SCK being "L" level at SCK being "H" level. Arbitrary command operation is interrupted in hold status, SCK and SI inputs become do not care. And, SO becomes High-Z while reading command (RDSR, READ). If \overline{CS} is rising during hold status, a command is aborted. In case the command is aborted before its recognition, WEL holds the value before transition to hold status.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit	
Farameter	Symbol	Min	Max	Unit
Power supply voltage*	Vdd	- 0.5	+ 4.0	V
Input voltage*	VIN	- 0.5	Vdd + 0.5	V
Output voltage*	Vout	- 0.5	Vdd + 0.5	V
Operation ambient temperature	TA	- 40	+ 85	°C
Storage temperature	Tstg	- 55	+ 125	°C

*: These parameters are based on the condition that Vss is 0 V.

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit				
Faiametei	Symbol	Min	Тур	Max	onit		
Power supply voltage*	Vdd	1.8	3.3	3.6	V		
Input high voltage*	VIH	$V_{DD} imes 0.7$	—	Vdd + 0.5	V		
Input low voltage*	VIL	- 0.5	—	$V_{\text{DD}} imes 0.3$	V		
Operation ambient temperature	TA	- 40		+ 85	°C		

*: These parameters are based on the condition that Vss is 0 V.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

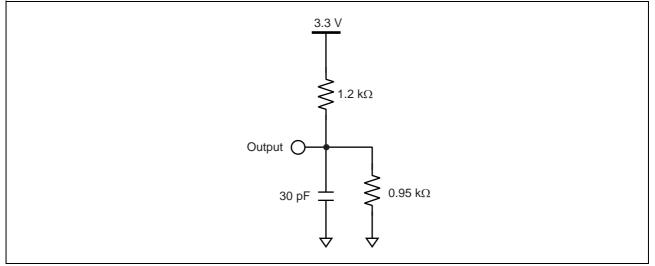
Parameter	Symbol	Condition	Min	Тур	Max	Unit
		$0 \le \overline{CS} < V_{DD}$			200	
Input leakage current*1	lu	$\overline{\text{CS}} = V_{\text{DD}}$			1	μA
	IILII	WP, HOLD, SCK SI = 0 V to V _{DD}			1	μΛ
Output leakage current*2	ILO	$SO = 0 V to V_{DD}$			1	μΑ
Operating power supply current	ldd	SCK = 30 MHz			10	mA
Standby current	lsв	$SCK = SI = \overline{CS} = V_{DD}$		25	120	μΑ
Sleep current	Izz	CS = V _{DD} All inputs V _{SS} or V _{DD}			10	μΑ
Output high voltage	Vон	Iон = - 2 mA	$V_{\text{DD}} - 0.5$			V
Output low voltage	Vol	IoL = 2 mA			0.4	V
Pull up resistance for \overline{CS}	R₽		18	33	80	kΩ

*1 : Applicable pin : \overline{CS} , \overline{WP} , \overline{HOLD} , SCK, SI

*2 : Applicable pin : SO

2. AC Characteristics

	Value						
Parameter	Parameter Symbol		z operation* ¹ V to 2.7 V)	Up to 30 MHz operation*2 (V _{DD} = 2.7 V to 3.6 V)		Unit	
		Min	Max	Min	Max		
SCK clock frequency (All commands except FSTRD command)	fск	0	25	0	30	MHz	
SCK clock frequency (for FSTRD command)	fск	0	25	0	40	MHz	
Clock high time	tсн	15	—	11	—	ns	
Clock low time	tc∟	15	—	11	—	ns	
Chip select set up time	t csu	10	—	10	—	ns	
Chip select hold time	tсsн	10	—	10		ns	
Output disable time	top		12	—	12	ns	
Output data valid time	todv	—	18		9	ns	
Output hold time	tон	0	—	0		ns	
Deselect time	t⊳	40	—	40	—	ns	
Data in rising time	tR	—	50		50	ns	
Data falling time	t⊧		50		50	ns	
Data set up time	t su	5	—	5	—	ns	
Data hold time	tн	5	—	5	—	ns	
HOLD set uptime	tнs	10	—	10	—	ns	
HOLD hold time	tнн	10		10		ns	
HOLD output floating time	tнz		20	_	20	ns	
HOLD output active time	t∟z		20		20	ns	
SLEEP recovery time	t REC		400		400	μs	

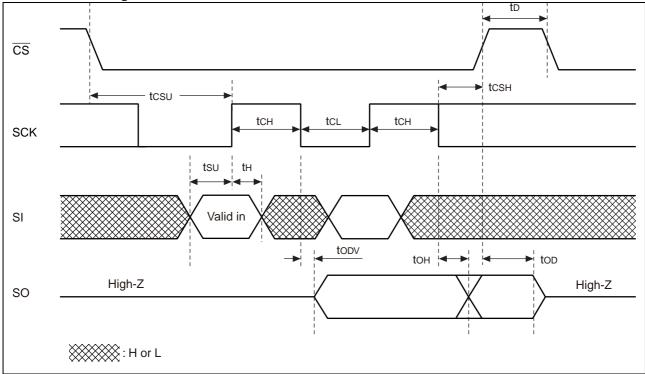

*1 : All commands except FSTRD are applicable to "Up to 25 MHz operation" in $V_{DD} = 1.8$ V to 2.7 V.

*2 : All commands except FSTRD are applicable to "Up to 30 MHz operation" in $V_{DD} = 2.7$ V to 3.6 V.

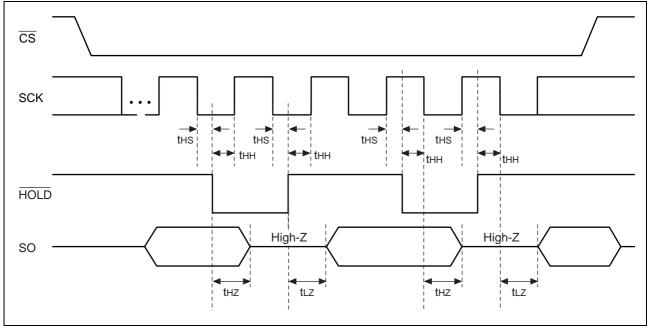
AC Test Condition

Power supply voltage Operation ambient temperature Input voltage magnitude	: 1.8 V to 3.6 V : $-40 \ ^{\circ}C$ to $+85 \ ^{\circ}C$: $V_{DD} \times 0.8 \le V_{IH} \le V_{DD}$ $0 \le V_{IL} \le V_{DD} \times 0.2$
Input rising time	: 5 ns
Input falling time	: 5 ns
Input judge level	: V _{DD} /2
Output judge level	: V _{DD} /2

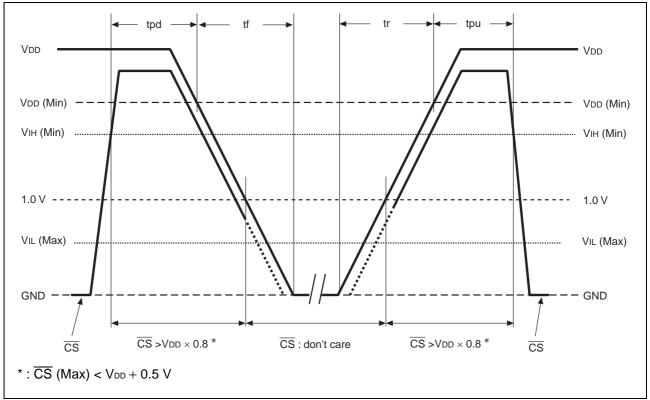
AC Load Equivalent Circuit



3. Pin Capacitance


Parameter	Symbol	Condition	Va	lue	Unit
Farameter	Symbol	Condition	Min	Max	Onit
Output capacitance	Co	$V_{\text{DD}} = V_{\text{IN}} = V_{\text{OUT}} = 3.3 \text{ V},$		8	pF
Input capacitance	Cı	f = 1 MHz, T _A = +25 °C		6	pF

■ TIMING DIAGRAM


Serial Data Timing

• Hold Timing

■ POWER ON/OFF SEQUENCE

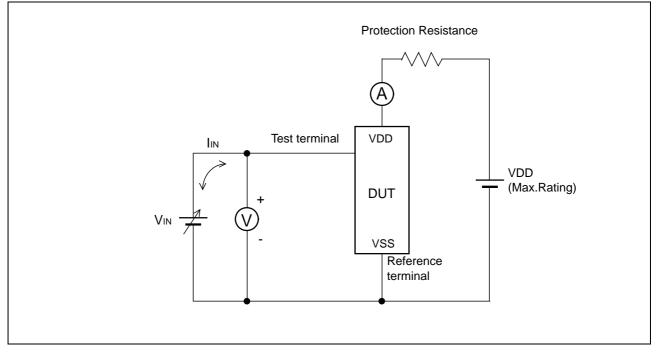
Parameter	Symbol	Va	Unit	
Falametei	Symbol	Min	Max	Onic
CS level hold time at power OFF	tpd	400		ns
CS level hold time at power ON	tpu	250	—	μs
Power supply rising time	tr	0.05	—	ms/V
Power supply falling time	tf	0.1		ms/V

If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

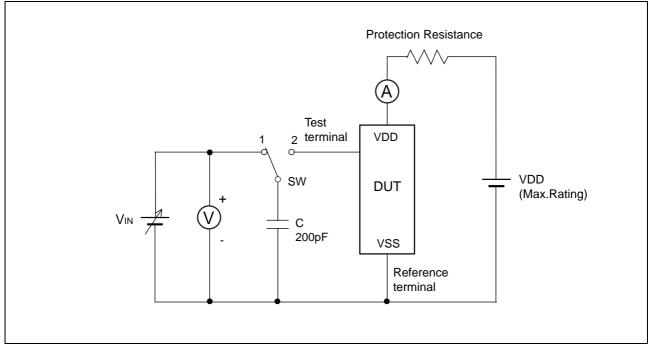
■ FRAM CHARACTERISTICS

Parameter	Va	lue	Unit	Remarks
Farameter	Min	Max	Unit	Remarks
Read/Write Endurance	10 ¹³		Times/byte	Operation Ambient Temperature $T_A = +85 \ ^{\circ}C$ Total numbers of reading and writing
Data Retention	10		Years	Operation Ambient Temperature $T_A = +85 \ ^{\circ}C$ Retention time of the first reading/writing data right after shipment

Note : Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism.


■ NOTE ON USE

We recommend programming of the device after reflow. Data written before reflow cannot be guaranteed.


■ ESD AND LATCH-UP

Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant		≥ 2000 V
ESD MM (Machine Model) JESD22-A115 compliant		≥ 200 V
ESD CDM (Charged Device Model) JESD22-C101 compliant	MB85RS512TPNF-G-JNE1	—
Latch-Up (I-test) JESD78 compliant		_
Latch-Up (V _{supply} overvoltage test) JESD78 compliant		—
Latch-Up (Current Method) Proprietary method		_
Latch-Up (C-V Method) Proprietary method		_

• Current method of Latch-Up Resistance Test

Note : The voltage V_{IN} is increased gradually and the current I_{IN} of 300 mA at maximum shall flow. Confirm the latch up does not occur under I_{IN} = ± 300 mA. In case the specific requirement is specified for I/O and I_{IN} cannot be 300 mA, the voltage shall be increased to the level that meets the specific requirement. • C-V method of Latch-Up Resistance Test

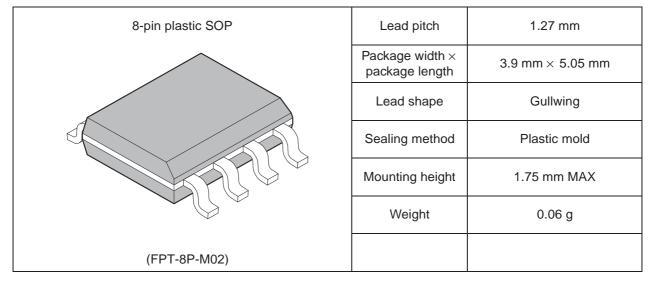
Note : Charge voltage alternately switching 1 and 2 approximately 2 sec interval. This switching process is considered as one cycle. Repeat this process 5 times. However, if the latch-up condition occurs before completing 5 times, this test must be stopped immediately.

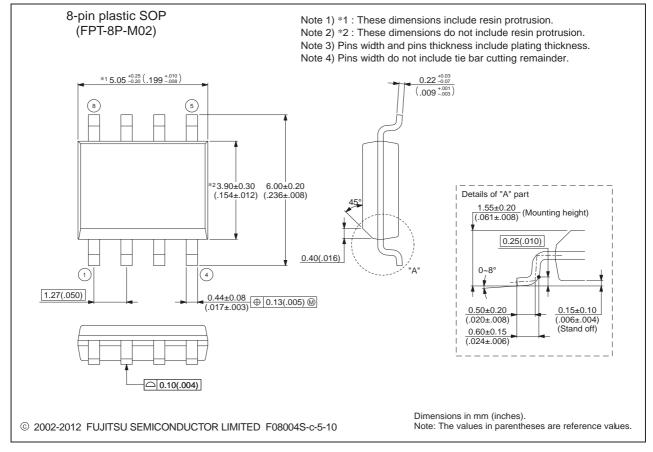
■ REFLOW CONDITIONS AND FLOOR LIFE

[JEDEC MSL] : Moisture Sensitivity Level 3 (ISP/JEDEC J-STD-020D)

Current status on Contained Restricted Substances

This product complies with the regulations of REACH Regulations, EU RoHS Directive and China RoHS. Please refer to the following web site for more details of current status on contained restricted substances in our products.

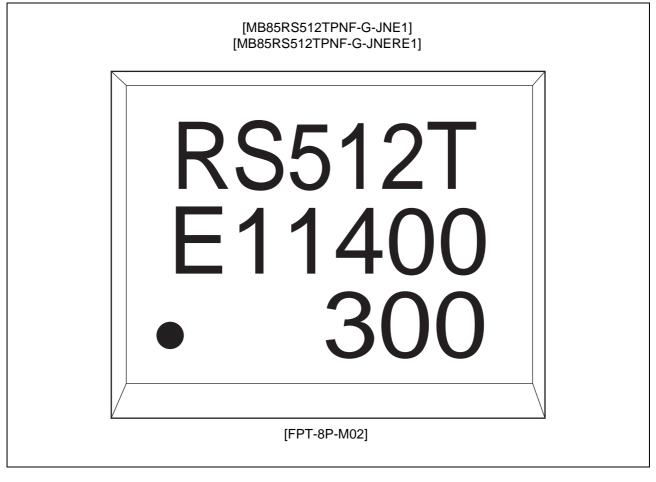

http://www.fujitsu.com/global/services/microelectronics/environment/products/


■ ORDERING INFORMATION

Part number	Package	Shipping form	Minimum shipping quantity
MB85RS512TPNF-G-JNE1	8-pin plastic SOP (FPT-8P-M02)	Tube	*
MB85RS512TPNF-G-JNERE1	8-pin plastic SOP (FPT-8P-M02)	Embossed Carrier tape	1500

* : Please contact our sales office about minimum shipping quantity.

■ PACKAGE DIMENSION

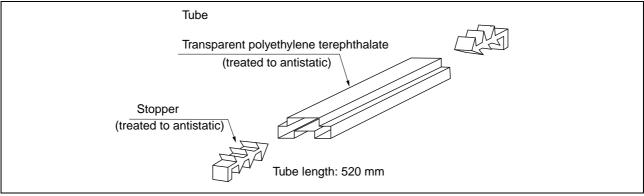


ĬITSU

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

22

■ MARKING

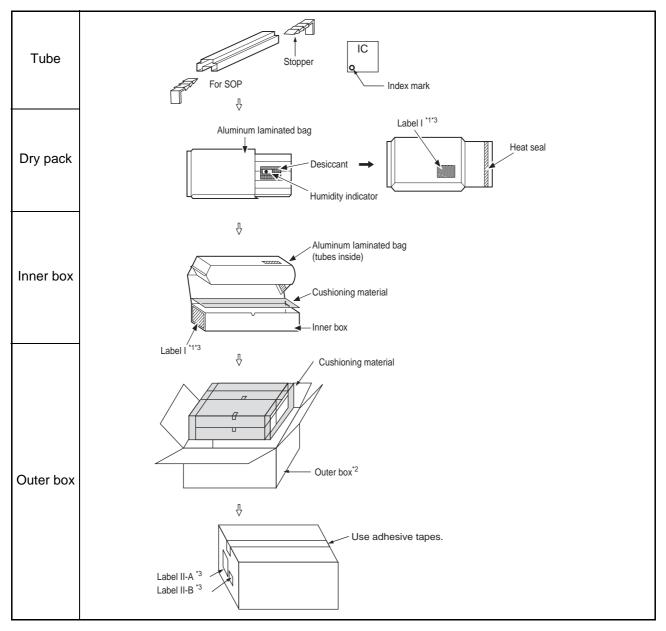


PACKING INFORMATION

1. Tube

1.1 Tube Dimensions

Tube/stopper shape


Tube cross-sections and Maximum quantity

		Ν	laximum qua	antity
Package form	Package code	pcs/ tube	pcs/inner box	pcs/outer box
SOP, 8, plastic (2)	FPT-8P-M02	95	7600	30400
©2006-2010 FUJITSU SEMICONDUCTOR LIMITED F08008-SET1-PET:FJ99L-0022-E0008-1-K-3				
t = 0.5 Transparent polyethylene terephthalate				

(Dimensions in mm)

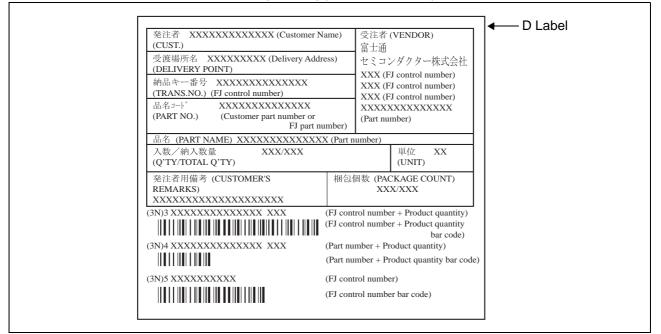
PRELIMINARY

1.2 Tube Dry pack packing specifications

*1: For a product of witch part number is suffixed with "E1", a " G (R)" marks is display to the moisture barrier bag and the inner boxes.

*2: The space in the outer box will be filled with empty inner boxes, or cushions, etc.

*3: Please refer to an attached sheet about the indication label.


Note: The packing specifications may not be applied when the product is delivered via a distributor.

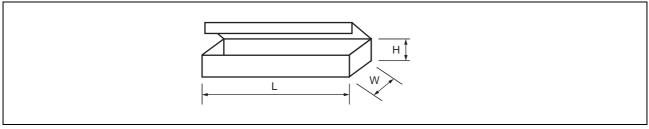
1.3 Product label indicators

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	←— C-3 Label
(SIV)2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Perforated line
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Supplemental Label

Label II-A: Label on Outer box [D Label] (100mm × 100mm)

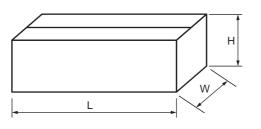
Label II-B: Outer boxes product indicate


XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	art number)		
(Lot Number) XXXX-XXX XXXX-XXX	(Count) X箱 X箱 計	(Quantity) XXX 個 XXX 個 XXX 個	

Note: Depending on shipment state, "Label II-A" and "Label II-B" on the external boxes might not be printed.

ſ

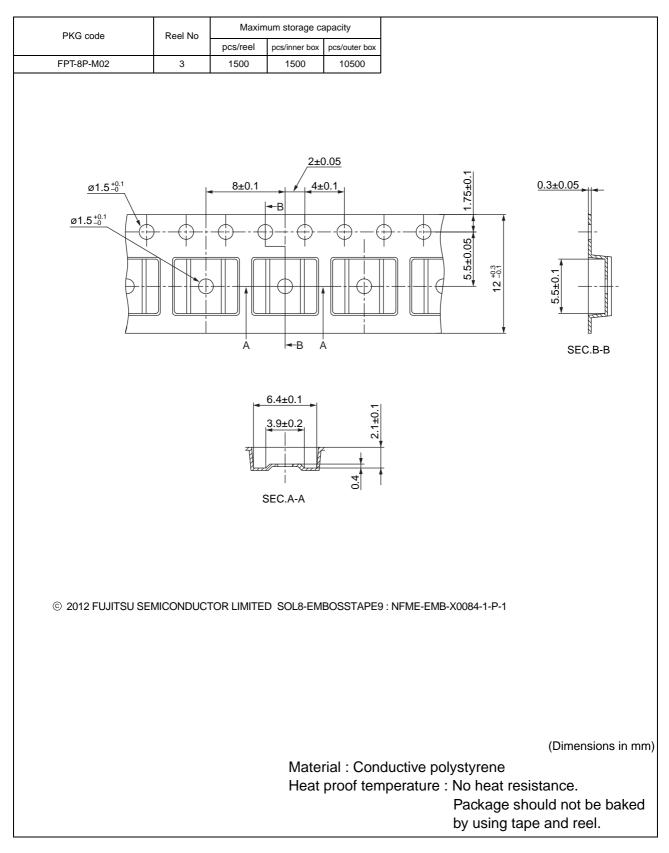
1.4 Dimensions for Containers


(1) Dimensions for inner box

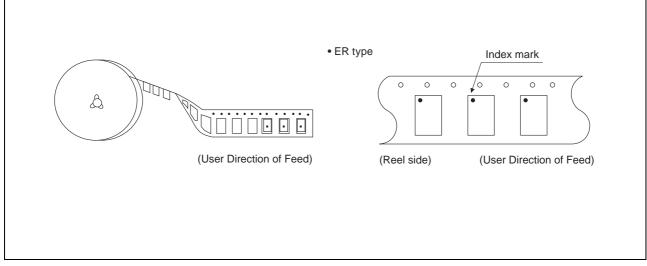
L	W	Н
540	125	75

(Dimensions in mm)

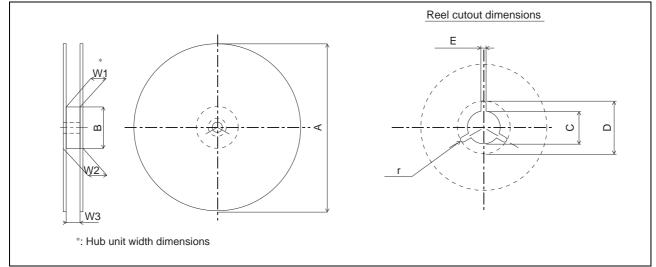
(2) Dimensions for outer box

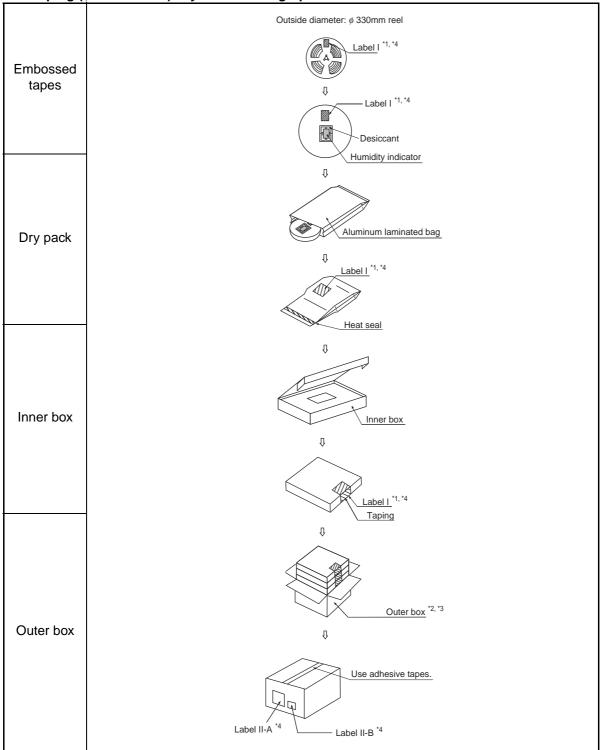


L	W	Н
565	270	180


(Dimensions in mm)

2. Emboss Tape


2.1 Tape Dimensions

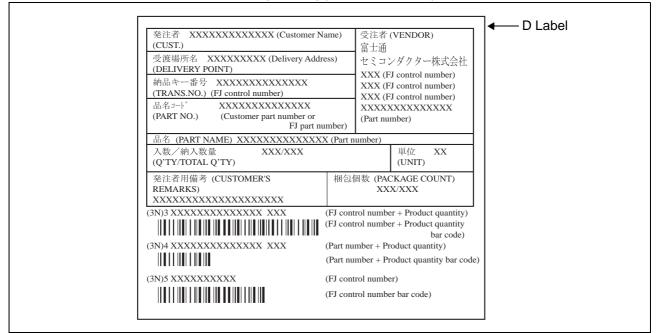

2.2 IC orientation

2.3 Reel dimensions

								_					D	imensior	ns in mm
Reel No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Tape width Symbol	8	12		16		24		32		4	4	56	12	16	24
A	254 ± 2 254 ± 2 330 ± 2 254 ± 2 330 ± 2 254 ± 2 330 ± 2 330 ± 2 330 ± 2														
В	$100_{-0}^{+2} 100_{-0}^{+2} 100_{-0}^{+2} 150_{-0}^{+2} 100_$							100 ± 2							
С	13 ± 0.2								13 ^{+0.5}						
D	21 ± 0.8								20.5 ⁺¹ _{-0.2}						
E	2 ± 0.5														
W1	8.4 -0	1:	2.4 -0	16	6.4 ⁺²	2	4.4 -0	32	2.4 +2	44	1.4 ⁺² -0	56.4 +2	12.4 +1	16.4 +1	24.4+0.1
W2	less than 14.4	less the	an 18.4	less that	an 22.4	less th	an 30.4	less tha	an 38.4	less tha	an 50.4	less than 62.4	less than 18.4	less than 22.4	less than 30.4
W3	7.9 ~ 10.9	11.9	~ 15.4	15.9 -	~ 19.4	23.9	~ 27.4	31.9 ~	- 35.4	43.9 ~	- 47.4	55.9 ~ 59.4	12.4 ~ 14.4	16.4 ~ 18.4	24.4 ~ 26.4
r	1.0														

2.4 Taping (\u00f6330mm Reel) Dry Pack Packing Specifications

- *1: For a product of witch part number is suffixed with "E1", a " G (R)" marks is display to the moisture barrier bag and the inner boxes.
- *2: The size of the outer box may be changed depending on the quantity of inner boxes.
- *3: The space in the outer box will be filled with empty inner boxes, or cushions, etc.
- *4: Please refer to an attached sheet about the indication label.


Note: The packing specifications may not be applied when the product is delivered via a distributor.

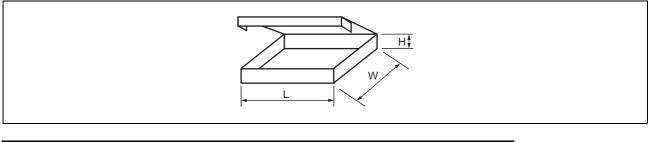
2.5 Product label indicators

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm × 100mm) Supplemental Label (20mm × 100mm)]

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(3N)2 XXXXXXXX XXXXXX (FJ control number) XXX pcs (Quantity) XXXXXXXXXXXXXXXX (Customer part number or FJ part number) Will Will Will Will Will Will (Customer part number or FJ part number) (Customer part number or FJ part number) bar code) XXXXXXXXXXXXX (Customer part number or FJ part number) (FJ control number bar code) XXXXXXXXXXXXXXX (Customer part number or FJ part number) (FJ control number bar code) XXXXXXXXXXXXXXXX (Customer part number or FJ part number) (FJ control number bar code) XXXXXXXXXXXXXXXX (Customer part number or FJ part number) (FJ control number bar code) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Label II-A: Label on Outer box [D Label] (100mm × 100mm)

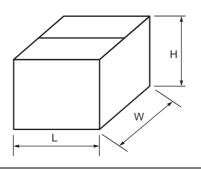
Label II-B: Outer boxes product indicate


XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Part number)		
(Lot Number) XXXX-XXX XXXX-XXX	(Count) X箱 X箱 計	(Quantity) XXX 個 XXX 個 XXX 個	

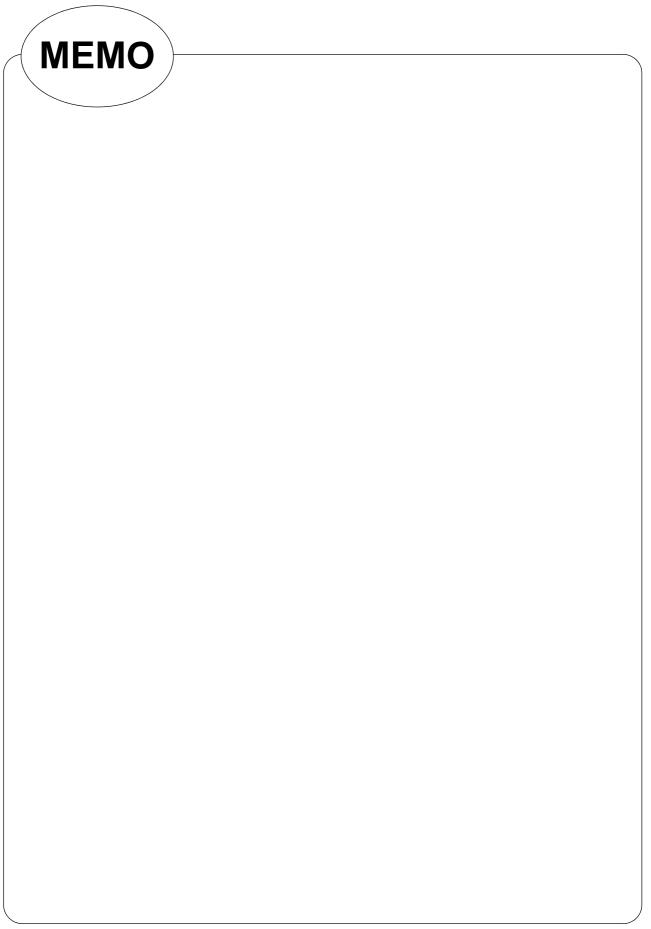
Note: Depending on shipment state, "Label II-A" and "Label II-B" on the external boxes might not be printed.

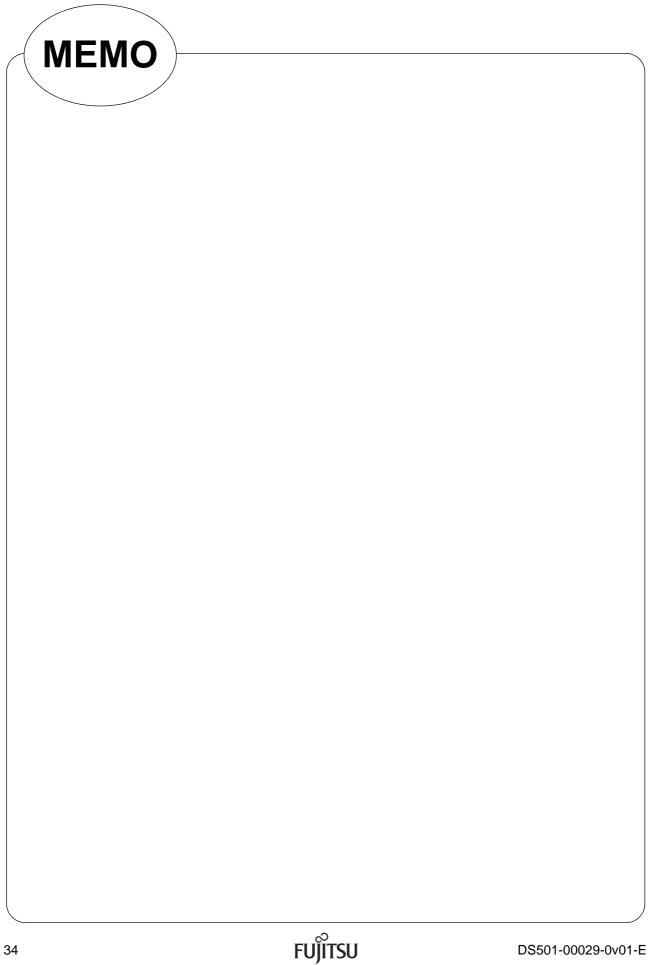
Г

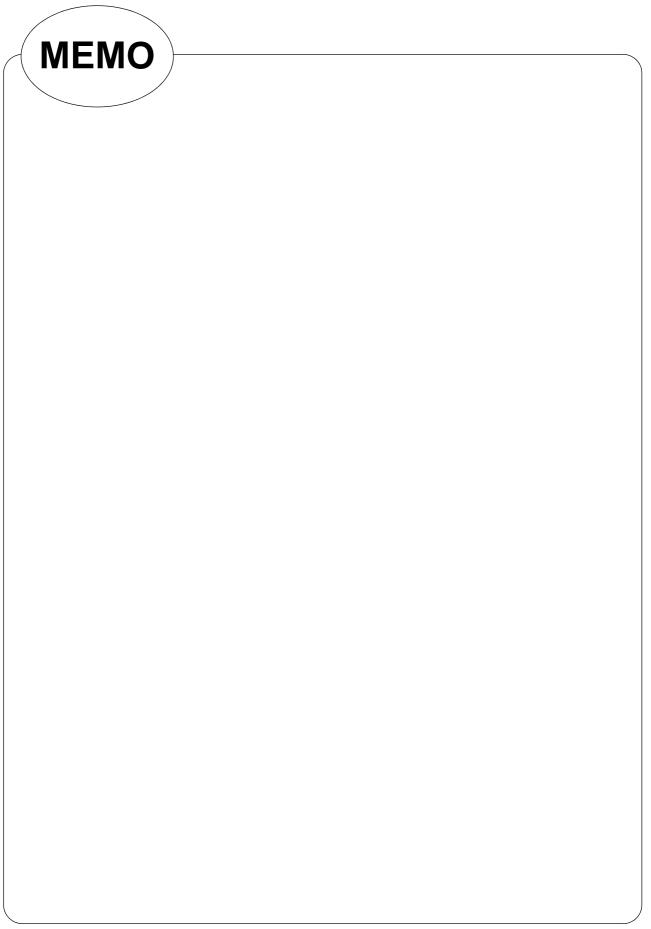
2.6 Dimensions for Containers


(1) Dimensions for inner box

Tape width	L	W	н
12, 16	365	345	40
24, 32			50
44	- 303		65
56			75


(Dimensions in mm)


(2) Dimensions for outer box



L	W	Н
415	400	315

(Dimensions in mm)

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Argues Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fujitsu.com/kr/fsk/

Asia Pacific

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China Tel: +86-21-6146-3688 Fax: +86-21-6146-3660 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 2/F, Green 18 Building, Hong Kong Science Park, Shatin, N.T., Hong Kong Tel: +852-2736-3232 Fax: +852-2314-4207 http://cn.fujitsu.com/fsp/

All Rights Reserved.

FUJITSU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device.

Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated for general use including manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages

arising out of or in connection with above-mentioned uses of the products. Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions. The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control

Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.

Edited: Corporate Planning Department