O
FUJITSU

SPARC64™ X [X+
Specification

Distribution: Public
Privilege Levels: Nonprivileged

Ver 29.0
2015/01/27

Fujitsu Limited

Fujitsu Limited

4-1-1 Kamikodanaka
Nakahara-ku, Kawasaki, 211-8588
Japan

Copyright© 2007 - 2015 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki,
211-8588, Japan. All rights reserved.

This product and related documentation are protected by copyright and distributed under
licenses restricting their use, copying, distribution, and decompilation. No part of this
product or related documentation may be reproduced in any form by any means without prior
written authorization of Fujitsu Limited and its licensors, if any.

The product(s) described in this book may be protected by one or more U.S. patents, foreign
patents, or pending applications.

TRADEMARKS

SPARC® is a registered trademark of SPARC International, Inc. Products bearing SPARC
trademarks are based on an architecture developed by Oracle and / or its affiliates.

SPARC64™ ig a registered trademark of SPARC International, Inc., licensed exclusively to
Fujitsu Limited.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Fuyjitsu and the Fujitsu logo are trademarks of Fujitsu Limited.

This publication is provided “as is” without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of merchantability, fitness for a
particular purpose, or noninfringement.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically added to the information herein; these changes will be incorporated in new
editions of the publication. Fujitsu Limited may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

2 Ver 29.0 Jan. 2015

Index

1. Document OVEIVIEWcceeeeieiieeeererunnieieeeeeeererernsnneeseeseeessssssansnnsessessessses 8

1.1, FONES ANG NOTALIONS ...ttt bbb bbbt bbbttt ettt e s 8
1.1.1.
1.1.2.
1.1.3. Meaning Of rESEIVEA AN ——.......cviiiiiiiie ettt sa e e ne et e 9
1.1.4. AACCESS ALLIIDULES. ...ttt ettt et e b e sb e b e e e s e et e beebesb e e e e eneereabenee s 9
1.15. INFOIMALIONAT INOTES. ...ttt ettt b e et b et sb et e e eneeresnennan 9
B D153 5101 o) o - S PUUR P 11
Architectural OVErVIEWcuuueeeeeiiieiiieieiiiiceeeeeeeeeeerereraeeeeeeeeeesesesannnnes 12
Data FOrmatsccciiiiiiiiiiiiiec et eee e e e e eva e e e e aaes
4.1. Densely Packed Decimal (DPD) Floating-Point NUMDEIS........cccccevieiiiiiiiicece e
A L1 FHEI bbbttt
412, CombiNAtioN FIEIA (G) ...eoveieeieeieiieeee ettt ae
4.1.3. Trailing significand field (T)
4.1.4. CONOI ..
4.15. Normal and denormal DPD floating-point numbers
4.1.6. Numbers that can be encoded by the DPD format.............ccccoevevvireennnnne.
4.1.7. Rounding modes...........ccceevierieieiineneseeee e

4.2. Packed BCD (Binary Coded Decimal)
421, Fields...ccoiiiniiiies

4.3. Oracle floating-point numbers
4.3.1. L T=] (o OSSPSR
S T | 1) ISP
4.3.3. Exponent (exp)
4.34. Mantissa (SIGNITICANM)oiueeiiii ettt sne e
4,35, SPECIAL VAIUBS ..ottt b st b ettt ettt n e te bbbt eerearenae
4.3.6. Normal and denormal NUMDBETS ..o
4.3.7. Numbers that can be encoded as Oracle floating-point numbers
4.3.8. Rounding modes..........c..ccoeevvenennas
4.3.9. Extended exponent part (exp10)
S T Y4 1 =)
5.1, ReSErved REGISIEr FIEIAS.ceiiiiieeieie ettt bttt b et e e e e eneebesaennan
5.2. General-Purpose R Registers
5.2.1. General-Purpose INtEger REGISEIScviiiieieieecieiesiest et ste sttt ere e 23
522, WINAOWEI R REGISIEIS.cuiiiiitiriieieeitiitesie ettt sttt sttt b et st e st tesbe st e sn s ereene et ne 23
5.2.3. Special R Registers

5.3, FlOGtING-POINE REGISIEIS.ttt ettt sttt b et b et e me et e bt sbese e e e e eneebeeaennan
5.3.1. Floating-Point Register NUMBEr ENCOAINGcoviiiiiiiieiiiceiese e
5.3.2. Using double-precision registers for single-precision operations
5.3.3. Specifying registers for SIMD inStructions...........ccccceevvrevesericineresninenns

5.4. Floating-Point State RegiSter (FSR)cccieiiiiiiiiiiieeee e e

5.5, ANCIHIAry State REGISEIS.........cueiuiiterierieieeieertc ettt ettt sttt seenes
5.5.1. 32-bit Multiply/Divide Register (Y) (ASR 0)......cccoeerireniieicieeneeeens
5.5.2. Integer Condition Codes Register (CCR) (ASR 2)ccoiiiiiiieieneiereeieesie e
5.5.3. Address Space Identifier (ASI) RegiSter (ASR 3)ccciiiiiiiieiiiciseseee e
5.5.4. Tick (TICK) Register (ASR 4)
5.5.5. Program Counters (PC, NPC) (ASR 5)ccuoiiiiieieieieese ettt
5.5.6. Floating-Point Registers State (FPRS) RegiSter (ASR 6)ccccvciiiiiieriiieiiice e

5.5.7. Performance Control Register (PCR) (ASR 16).......ccciieiiiieiiiiisieiieees e

5.5.8. Performance Instrumentation Counter (PIC) RegiSter (ASR 17)cccceoiieieiiieneneieieese e

5.5.9. General Status Register (GSR) (ASR 19).......coieiiiiiiiiierieiee st
5.5.11. System Tick (STICK) Register (ASR 24)cccccoveveivivviiineiericieess e

5.5.13. Pause Register (PAUSE) (ASR 27) ..o

5.5.14. Extended Arithmetic Register (XAR) (ASR 29)......cccccorviniininiiniencienn

5.5.15. Extended Arithmetic Register Status Register (XASR) (ASR 30)

6. Instruction Set OVEIVIEWccccciiiiiiiiiiiiiiieeieieeeeeeerereeeeeeeeeeeeenerannneeaeeens 40
6.1, INSLIUCHION EXECULIONc.vviitiiiiiiiis bbbt bbbttt 40
6.2. Instruction Formats
6.3, INSLIUCTION CABYOITES ...ttt e ettt sttt ettt e e e st et e bt b e e b e e e seebeebeebese e e e seent et e ebesbe e eneeseaneabeaten 40

6.3.9 Floating-Point Operate (FPOP) INSLIUCTIONS.c.cii it 40
6.3.11 Reserved Opcodes and INStruction FIeldscooiiiiiiiiiiiiieie e 41

R Y17 b Ui o) o T ST RPPT R
T.0o ADD bbbttt
7.2, Align AdAress.......ccccevevvieieverieriiisiennens
7.4. Three-Dimensional Array Addressing....
7.5. Byte Mask and Shuffle..........cccocevvirinennn.
7.6. Branch on Integer Condition Codes (Bicc)
7.7. Branch on Integer Condition Codes with Prediction (BPCC).........ccoueririiiiiieieieeesc e 56
7.8. Branch on Integer Register with Prediction (BPr)
7.9. Call and LinK.....oooooiiiiiiiieeeeeee e
7.10. COMPAE QNG SWAP ...eviiiteriitieieeti st et et te s e st e s e e e bt s tesbe st et esseteabesbesbe s esseseabesbessesbeseeseateabesae s essasaatessentens
7.12. Edge Handling INSIUCLIONS.cvitiiiiiiciee sttt ettt st st et et et besbe st st e b esaesesreabens
7.13. Edge Handling Instructions (noCC)...
7.14. Convert Integer to Floating-Point
7.15. Convert Between Floating-Point Formats.....
7.16. Convert Floating-Point to Integer
7.17. Floating-Point Absolute Value
7.18. Floating-Point Add and SUDIIACTcc.oiuiiiiiiieee ettt sttt e b e resne
AR A 1o 4 - DO OSSR SO PSPTPTPTOOt
7.20. Branch on Floating-Point Condition Codes (FBfcc)
7.21. Branch on Floating-Point Condition Code with Prediction (FBPTCC)ccoevviiieiiiiiiicece e 72
7.22. FlOating-POINt COMPAIEcviieiietiitiiiiieeet e ste et e ettt et ete et e te s b e e e s eseebesbesse b e e enseteabesbessesbesaasenreaben
7.23. Floating-Point Conditional Compare to Register
7.24. SIMD Compare (COMFOrmS 10 UAZ20LL).... ..ottt st see e sneneareanea
7.25. FlOAtiNg-POINt DIVIAE......ceieiiieiiii ettt sttt b e e e b e e e st et e ebeebe e eneeseenestenten
7.26. Floating-Point Exponential Auxiliary ...
7.27. FEXPANDocoooiieiiitinnceece s
7.28. Flush Instruction Memory...............
7.29. Flush Register Windowsc.ccveuine
7.30. Floating-Point Multiply-Add/Subtract
7.31. Floating-Point Minimum and MaXimUIMcoooiiiiiiee ettt e b seeseesaeneereanea
7.32. FIOALING-POINT IMOVE ...ttt b e bttt b e b e e e e e e ae et e ebenbe e eseereaneseenaea
7.33. Move Floating-Point Register on Condition (FMOVcc)
7.34. Move Floating-Point Register on Integer Register Condition (FMOVR)ccoceiiiiiiiinineneeeeeeene e 95
7.35. Partitioned MUIIPlY INSIIUCLIONSc.oiviiiiciiiciceee et sttt st a e re b
7.36. Floating-Point Multiply...................
7.37. Floating-Point Negative
7.38. FPACK ..ottt
7.39. Fixed-point Partitioned Add............
7.40. Integer Multiply-Add............cc..c......
7.41. FPMERGE........ccccoeiiiininniiccc e
7.42. Fixed-point Partitioned Subtract (64-bit)
7.43. F Register Logical Operatecccceeerueene.
7.44. Floating-Point Reciprocal APProXimationcccceeeiierieieiiiisierieees e se et a e sre st se e re e 109
7.45. Move Selected Floating-Point Register on Floating-Point Register's Condition............ccocoveviieriiiiennnns 112
7.46. Floating-Point Square Root
7.47. Floating-Point TrigonOmEtric FUNCLIONScviiiiiieiiiieese et 114
7.48. 1Hegal INSTIUCTION TEAP .. .tteeeuieteiteiteeieeeeete ettt sttt sttt e e et e besbesae e eseeseebeebeseeneaseeneabeebesbe e eneereaneeeenen
7.49. Integer Logical Operation
7.51. Jump and Link
7.52. Load INteger.....cccceiviereriieieieeeceene
7.53. Load Integer from Alternate Space
754, BIOCK LOAU.cocveiiieiiiii ettt

4 Ver 29.0 Jan. 2015

7.55.
7.56.
7.57.
7.58.
7.59.
7.60.
7.61.
7.62.
7.63.
7.64.
7.65.
7.66.
7.67.
7.68.
7.69.
7.72.
7.73.
7.74.
7.75.

7.76.
7.79.
7.80.
7.82.
7.83.
7.85.
7.87.
7.88.
7.89.
7.91.
7.92.
7.93.
7.94.
7.95.
7.96.
7.97.
7.98.
7.99.

7.100.
7.101.
7.102.
7.103.
7.104.
7.105.
7.106.
7.107.
7.108.
7.109.
7.110.
7.111.
7.114.
7.115.
7.116.
7.117.
7.118.
7.119.
7.120.
7.121.
7.122.
7.123.
7.124.
7.125.
7.126.
7.127.
7.128.

LOA FIOEING-POINT ...ttt ettt b et e st et e s e b e ebesbe b e e eneeneeneseeneens
Load Floating-Point from AIErNAE SPACE.........ciuiieiiieeie ettt sre e
Short Floating-Point Load...........cc.ccccceenneee
Load-Store Unsigned Byte............ccocevveriereennnnne.
Load-Store Unsigned Byte to Alternate Space.....
Load Integer TWin WOrdccccccoevevierinneennnnen
Load Integer Twin Word from Alternate Space............c........

Load Integer Twin Extended Word from AIErnate SPACEccooveieeririeriereieeese et 138
Load FIoating-Point State REGISTENcuiuiiireieeeeec ettt ettt st e et e b e e e e sresne s
MemOry Barriercoccoeeiieeneieneieeee e
Move Integer Register on Condition (MOVcc)
Move Integer Register on Register Condition (MOWVI)cccviiiiiiiieieiiciseeee et 143
MUIEIPIY STEP et

Multiply and Divide (64-bit)..................
No Operation.......
Partitioned Add
Pixel Component Distance (with Accumulation)....
Population Countccoovieiiieiiiiene e
Prefetch ..o
7.75.1. Prefetch Variantscccccccevvnne

7.75.2. Weak Versus Strong PrefetChes.......oiiiiiiciiiiee e e
Read Ancillary State RegiSter (RDASR).......cciiiiieiiiie ittt sttt b e ene s
Return
SAVE aNd RESTORE ..ottt bbbt bbbttt bbbttt
Signed Divide (B4-Dit32-DIt)couiiiiiiiiie et
SETHI oot

SIEEP oot
Store Barrier....
Store INteger......cooevvveeiiiiecreee
Store Integer into Alternate Space
BIOCK INTHIAIIZING STOTE ...ttt b ettt et b e b et e e s e enesre e
2] (o101 1S (o] £SO USSR RRUR PR
Store Floating-Point
Store Floating-Point int0 AIEINAtE SPACEcevveiiieiiiiesiee et re s
Store Floating-Point Register on Register Condition (for SPARCE4™ X))ccccovvveviiieienenenieieesnsiens 174
Store Partial FIoating-POiNt...........coiiiiiiiiiiccc e

Store Short Floating-Point...............
Store Integer TWin WOrdcooevvieneiccncene
Store Integer Twin Word into Alternate Space......
Store Floating-Point State Register............c.........
SUBEFACE ...

Swap Register with Memory...........
Set XAR (SXAR)...ccovirreiriien
Tagged Add and SUDTIIACTciiiiiiiieie ettt b et et e e s e te et e bt e e e seebe st e
Trap on Integer Condition COE (TCC) ..voviieriiiiiiiiieiei ettt st sbesae b e ns et s
Unsigned Divide (64-bit+32-bit)
UNSIgNed MUIEIPIY (32-DIL) ...ttt sttt saeean
Write Ancillary State RegiSter (WRASR)couiiiiieeee ettt
Cache Line Fill with Undetermined Values...
DES support instructions
AES support instructions
Decimal Floating-Point Operations....
Oracle Floating-Point Operations.......
Decimal Floating-Point Compare....
Oracle Decimal Floating-Point Compare......
Decimal Floating-Point Convert
Shift Mask Or (fOr SPARCEA™ X).....ccueviriieieereeeieteesteseseeeseseesssseseesesessensssesessesesessesessessssssensasesessens
SIMD Compare (FOr SPARCEA™ X))ocuiiiiririiieieiieiestesiesteae e ste et e e tesbeste st esae e esastesbessesseseessareans
Leading Zero Detect
Fixed-point Partitioned Add (64-Dit).........cccciiiiiiiiiiiiice s
Fixed-point Partitioned SUBLract (64-Dit)ccceveiiiiiiiicie s
SIMD Unsigned COmpare........ccccceeeeereeneenas

Floating-Point Lexicographic Compare

7.129. Floating-Point NEGAtIVE AGG.........coiiiieiei ettt sttt b e be e e e reene e s 235
7.130. Floating-Point Negative MUIIPIYcc.ooiiii e e 237
7131, WRPAUSE(PAUSE)coutiieteirieiisie e sestees et ie e teeste e sesseseesesessesessesessesesessesessesesessenessesessesessnsensssessssesen 239
7.132. Load Entire FIoating-Point State REGISIENcuciiiiiieiiieesie ettt 241
7.133. Compare and BranCh (CBCON)c.coviiiiiiiiiisiesiee sttt sttt st b e e s reeneere e 242
7.134. Partitioned Move Selected Floating-Point Register on Floating-Point Register’s Condition..................... 243

7.135. 64-bit Integer Compare on Fl0aing-Point REGISIETc.civiiiiiiiicicieie st 246
7.136. 64-bit Integer Shift on Floating-PoiNt REGISENc.civiiriiiiiiieeeee e 247
7.137. Store Floating-Point Register on Register Condition (Extension of SPARCE4™ X+)ccccevcererriinienncns 248
7.138. Shift Mask Or (Extension of SPARC64™ X+)

7.139. SIMD Compare (Extension 0f SPARCEHA™ X+)eiuiiiieieieierieieeei ettt see e e 257
7.140. Fixed-Point Partitioned Add (128-Dit)........c.coviiiiiiiiiieiiiicese e 261

7.141. Integer Minimum and Maximum
7.142. Move Integer Register to Floating-Point Register (for SPARC64™ X+)

8. IEEE Std. 754-1985 Requirements for SPARC-V9.........cccovvrvrrrcierrvnnnnnn.. 265
8.1. Nonstandard FIOating-POINt MOTEcoiiiiie ettt st et sae e

8.1.1. fp_exception_other (ftt = unfinished FPop)

8.1.2. Behavior When FSRUNS = L ..o

£S J\Y) =304 Vo) i 20\ (oY 1= F- T

10.Address Space Identifiers........ccccceeeeeeerenniieereienieeeereieeeeeereneeeerereneeeesennns
10.3. ASTASSIGNIMENT ...ttt ettt ettt e et e et eae e b e ebeee et e s e eseebesb e beneeme et e ebenbesbeneeneeneaeeaeennan
O T S TW oo To] 1 (=10] [OOSR
10.3.2 . ASI ACCESS EXCEPLIONS ...ecvreviviteieieeett e ste ettt se e r e be s te st e b et e s e ebeebaste st e saensereaneeras

11. Performance InStrumentation.....cccc.eeveeeieeeieeeiieniieneereeeeeneeeneeeneceeneeennnes
I R @ 1Y oY 1= RSO STRPROSE ORI
11.1.1. Sample Pseudo-codes......

11.2. Description of PAEvVeNtscccccooeeeeene.
11.2.1. Instruction and Trap Statistics...
11.2.2. MMU and L1 cache Events.......
11.2.3. L2 CACNE EVENTS ...ttt ettt sttt ettt e et e neeresnennan
11.2.4. BUS TranSaCtion EVENTScoiiiiiiiiiieiie ettt
11,3, CYCIE ACCOUNTING ...cueitiitiiiteiett ettt ettt ettt e e e eseete st e s e b e seeseebe st e be e esseteebesbe st esbeneeseatesreein
LD b | o L= TN
12.1. Virtual Processor Privilege Modes
12.5. Trap list and prioritieS.........cccccevevnene

12.5.1. Trap Descriptions
12.5.2. Special cases for priority

13.Memory Management Unit
I T O Y [0 [= £ o L= ORI
13.4. TSB Translation Table Entry (TTE)
13,6, CONIEXE REGISTEIS ...viviitiiiiceeti ettt sttt be et e st e bt e s e e b e e be st et e s esseteebesbe st e b eneeseatesreen
TR T o Vo LI - SRS

14.0PCOAE MAPS «..oevniiiiiiiiiiieeiee ettt eeraeeeerteeeraeeeerseeerssnsersssersnneersnneens

15. Assembly Language SyNtaxcccccceeeeiivieieiiieiiieieeeeeeeeeereeeeeeneeesaneeernneeens
IS T R (o) 7=V o] o U T ORI
15.1. 1. Other OPErand SYNEAXcoueieueruirieieeieeriestesteseeeeiee e stesteste e eseeseeseseesbessesseseasesbeseesteseeneasesaeanas
15.2. HPC-ACE NOTALION.cuiititeiii ettt sttt e e st be s bt e et e se e st ebesaeebeseemeebeeaeseesbeeeneeneaseanenean
15.2.1. Suffixes for HPC-ACE EXIENSIONS......c.cioiiriiiiieieiiitrinise et

6 Ver 29.0 Jan. 2015

Preface

This document defines the logical specification of SPARC64™ X / SPARC64™ X+ and is
based on Oracle SPARC Architecture 2011(UA2011). Differences from UA2011 are noted in
this document or as references to other documents.

This specification refers to the following documents:.
e Oracle SPARC Architecture 2011. Draft D0.9.6, May 2014.

http!//www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentati
on/140521-ua2011-d096-p-ext-2306580.pdf
We refer to this document as UA2011.

o SPARCG64 VIIIfx Extensions. Ver 15, 26 Apr. 2010.
http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf
We refer to this document as SPARC64 VIIIfx Extensions.

e SPARC® Joint Programming Specification (JPS1): Commonality

Release 1.0.4, 31 May 2002.
http://www.fujitsu.com/downloads/PRMPWR/JPS1-R1.0.4-Common-pub.pdf
We refer to this document as JPS1.

Document Overview

1.1.

1.1.1.

1.1.2.

8

Fonts and Notations

Font

e Arial font is used for registers and register fields (REG and REG.field, respectively).
This font is also used when reffering to the field of an ASI register.

e Courier font is used for ASI names (AS1_NAME), which are prefixed by ASI_. We
avoid the use of the construction AS1_NAME. field.

e Italic Arial font is used for exceptions (exception_name).
e Uppercase Courier font is used for instructions (INSTRUCTION).
e Courier font is used for CPU states (CPU_state).

e Italic Times Roman font or “—" is used for reserved, which indicates that a register
field is reserved for future expansion.

Notation

The notation used in this document generally follws the notation used in JPS1.

Specifically,

Numbers are decimal unless otherwise indicated by a numeric subscript (for example,
10002).

Spaces may be inserted in long binary or hex numbers (for example, 1000 000016) to
improve readability.

Verilog notation may be used for some numbers. For example, the prefixes
“tbit_width}’B” and “/bit_width}’h indicate binary and hexadecimal numbers,
respectively. When Verilog notation is used, there is no numeric subscript indicating
the base.

Numbered integer and floating-point registers are written as Rlnumber] and
Flnumber], respectively.

Instruction names and various objects may contain the symbols {} | * and n.

e A character string enclosed by {} is optional. For example,
ASI_PRIMARY{ LITTLE} expands to ASI_PRIMARY and
ASI_PRIMARY_LITTLE.

e Ifthere are | symbols inside the curly braces 1}, one of the character strings
separated by the vertical bars must be selected. For example, FMUL{s|d}
expands to FMULs and FMULd. An empty charater string makes the alternatives
inside the braces optional. For example, F{|N}sMULd is equivalent to
F{N}sMULd.

e The * and n symbols indicate character string and numeric substitution,
respectively, for all possible values. For example, DAE_* expands to
DAE_invalid_asi, DAE_nc_page, DAE_nfo_page, DAE_privilege_violation, and
DAE_side_effect_page. spill_n_normal expands to spill_0_normal, spill_1_normal,

Ver 29.0 Jan. 2015

spill_2_normal, spill_3_normal, spill_4_normal, spill_5_normal, spill_6_normal, and
spill_7_normal.

e Bit strings are of the form <a> and <a:b>.

e The double dolon (:}) operator concatenates two bit strings.

e ASCII characters are used.

1.1.3.

Meaning of reserved and —

reserved or — indicates that a bit field is reserved for future expansion and has an undefined
value. reserved is used when future expansion is expected; a brief description of the field is
provided. — is used when the usage is undecided. No description is provided for fields

marked with —.

1.1.4.

Access attributes

Registers and register fields may have the access attributes shown in the table below.

Table 1-1 Access attributes

Access Object Operation
attribute Read Write
Field Undefined value Ignored.
R Register and Field The value is read. Ignored.
RO Register and Field The value is read. Not permitted.
RO Field Zero is read. Ignored.
w Register and Field Undefined value The value is written.
WO Register and Field Not permitted. The value is written.
RW Register and Field The value is read. The value i1s written.
RW1C Field The value is read. Writing 1 clears the
field.i
RWQF Field The value is read. Register value indicates
condition, and a write of
the same value is
preserved in the
register. Otherwise, the
write is ignored.
RWS/ROWS Register The value is read. Or, Causes side effect.
zero is read. Value to be written is
ignored.

1.1.5.

Informational Notes

This document contains several different types of information notes.

Compatibility Note Compatibility notes explain compatibility differences
versus SPARC V8/V9, JPS1, SPARC64 VIIIfx Extensions, and

UA2011.

Note Notes provide general information.

i The bit range that is reset to 0 depends on the field.

Programming Note Programming notes provide information for writing
software.

10 Ver 29.0 Jan. 2015

Definitions

For additional definitions, please refer to Chapter 2 of UA2011.

CPUID :

A CPUID is the unique logical ID of a strand in a system. The CPUID contains the LSBID
(logical system board ID) and Chip ID (physical processor ID within a system board).

LSB (Logical System Board) :

A physical partition is a set of one or more system boards that work together as a single
system. An LSB is a system board in a physical partition and is identified by the allocated
logical ID.

VCPU (Virtual Processor):

A virtual processor (refer to Chapter 2 of UA2011). SPARC64™ X and SPARC64™ X+ have
two VCPUs per physical CPU core.

Architectural Overview

12

Feature

HPC-ACE and SMT are supported. VA is 64-bits wide and has no hole bit.
RA is normally 64 bits wide.

Instructions only on local ROM can be executed for non-cacheable space.
NWINDOWS = 8

MAXPTL =2

Present parameter

16 cores/chip and 25SMT/core

L1 instruction cache : 64KB/4way ; L1 data cache : 64KB/4way ; Unified L2 cache :
24MB/24way ; line size of all cache memories : 128 bytes

For main TLB, set-associative TLB only. instruction : 1024entries/4way ; data :
1024entries/4way ; page size : 4 sizes (8KB, 64KB, 4MB, 256MB)

Ver 29.0 Jan. 2015

Data Formats

4.1.

4.1.1.

Refer to UA2011 for Integer Data Formats, Floating-Point Data Formats, and VIS
instruction set SIMD Data Formats.

Refer to 5.3 Floating-Point Registers in this document for the HPC-ACE SIMD Data
Format.

Densely Packed Decimal (DPD)
Floating-Point Numbers

SPARC64™ X / SPARC64™ X+ support decimal floating-point numbers encoded with the
DPD (Densely Packed Decimal) format defined by IEEE754-2008 and instructions that
operate on DPD floating-point numbers.

Field

The value of a DPD floating-point number is given by the following expression, where S, the
exponent, and the significand are integers. S has a value of 0 or 1.

(-1)° x significand x 10"

A DPD floating-point number is encoded by a sign field S, a combination field G, and a
trailing significand field T. The exponent is stored in the combination field G, and the
significand is split between G and the trailing significand field T. The combination field G
has additional structure, with two bit ranges that are 5-bits wide and W bits wide.

SPARC64™ X / SPARC64™ X+ support the DPD format for both single-precision and
double-precision floating-point numbers.

Table 4-1 DPD format field widths

Single precision | Double precision
Entire data | 32 bits 64 bits
S 1 bit 1 bit
G (W+5) |11bits 13 bits
W 6 bits 8 bits
T 20 bits 50 bits
Ls] G | T |
31 30 20 19 0

Figure 4-1 DPD floating-point single-precision data format

Ls | G | T
63 62 50 49 0

Figure 4-2 DPD floating point double-precision data format

4.1.2.

Combination field (G)

The combination field G is divided into the upper five bits (GU<4:0>) and the remaining
lower bits (GL<(W-1):0>). GU contains the two uppermost bits of the exponent and the
most significant digit of the significand. The most significant digit of the significand is the
leftmost digit (LMD). GU also indicates if the data is not a number (NaN, «). Table 4-2
shows the encoding of the GU bit range.

Table 4-2 Encoding of upper five bits in the combination field (GU)

GU<4:0> | Upper two bits of Leftmost digit of significand | Remarks
exponent part (LMD)
111112 — — SNaN if GL<W-1> = 1.
QNaN if GL<W-1>=0.
GL<(W-2):0> is ignored.
T is the payload.
1110: | — — 100 0T —00
GL<(W-1):0> is ignored.
1110x2 GU<2:1> 8 + GU<0> GL<(W-1):0> are the lower
110xx2 (002, 012, 102) (8or9) bits of the exponent.
10xxx2 GU<4:3> 4 x GU<2> + 2 x GU<1> + GL<(W-1):0> are the lower
0xXXX2 (002, 012, 102) GU<0> bits of the exponent.
-7

When GU is 000002, 010002 or 10000¢, the significand is zero. Therefore, +0 is expressed as
S=0,T=0, and GU = 000002, 010002, or 100002. -0 is expressed as S=1, T =0, and GU =
000002, 010002 or 100002. Note that there are different representations of zero due to the
three possible values of GU<4:3> and the bit width of GL, which depends on the precision of
the data. (The set of possible encodings is called a cohort.)

4.1.3.

Trailing significand field (T)

There are two or more sets of ten bits (referred to as declet) in the trailing significand field
T. Each declet encodes a number from 0 to 999. The following tables show how to convert
between declets and three-digit decimal numbers. In these tables, a declet is shown as
b<9:0>. The decimal number is divided into three parts, which are weighted by 100, 10, and
1, respectively. Each part is four bits. The hundreds part is shown as h<3:0>. The tens part
is shown as t<3:0>. The ones part is shown as 0<3:0>. Bit i in any of these ranges (b, h, t,
and o) is written by concatenating the name of the bit range and the bit number. For
example, b9 is equivalent to b<9>.

Table 4-3 Converting from declets (b<9:0>) to three-digit decimal numbers (100 x h + 10

xt+0)
b<9:0> Humdreds (h3h2h1h0) | Tens (t3t2t1t0) | Ones (03020100)
xxXxXXX0xxX | 4 Xb9+2 X b8+b7 4 Xb6+2Xb5+b4 | 4 Xb2+2 X b1+b0
xxxxxx100% | 4 Xb9+2 X b8+b7 4 Xb6+2Xb5+b4 | 8+b0
xxxxxx101x | 4 Xb9+2 X b8+b7 8+b4 4 Xb6+2 X b5+b0
xxxxxx110x | 84+b7 4 Xb6+2Xb5+b4 | 4 Xb9+2 X b8+b0
xxx00x111x | 8+b7 8+b4 4 Xb9+2 X b8+b0
xxx01x111x | 84+b7 4 Xb9+2 X b8+b4 | 8+b0
xxx10x111x | 4 Xb9+2 X b8+b7 8+b4 8+b0
xxx11x111x | 8+b7 8+b4 8+b0

14

Ver 29.0 Jan. 2015

4.1.4.

4.1.5.

4.1.6.

Table 4-4 Converting from three-digit decimal numbers (100 x h + 10 x t + 0) to declets

(b<9:0>)

Hundreds Tens Ones b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl | bO
h3 h2 h1 hO | t3 t2 t1 t0 03 02 0l 00

Oxxx Oxxx Oxxx h2 [hl1 | hO | t2 [tl [t0O | O 02 | ol | 00
Oxxx Oxxx 100x h2 | hl1 | hO | t2 [tl [t0 | 1 0 0 00
0xxx 100x 0xxx h2 | h1 | hO |02 |ol [t0 |1 0 1 00
Oxxx 100x 100x h2 | hl1 | hO | 1 0 t0 | 1 1 1 00
100x 0xxx 0xxx 02 ol |hO | t2 [t1 [t0 |1 1 0 o0
100x 0xxx 100x t2 [t1 |hO | O 1 t0 | 1 1 1 o0
100x 100x 0xxX 02 ol | hO | O 0 t0 | 1 1 1 00
100x 100x 100x X X hO | 1 1 t0 | 1 1 1 o0

Note that a declet b<9:0> can encode 1024 numbers, while a three-digit decimal number
only encodes 1000 numbers. In other words, some decimal numbers convert to more than
one declet of equivalent value. The bottom row of Table 4-4 shows the cases where b<9:8>
may assume different values for the same decimal number.

The following table explicitly shows the decimal numbers with multiple declets.

b<9:0> Decimal number | b<9:0> Decimal number
06E16, 16E16, 26E16, 36E16 | 888 O0EE1s, 1EE16, 2EE16, 3EE16 | 988
06F16, 16F16, 26F16, 36F16 | 889 0EF16, 1EF16, 2EF16, 3EF16 | 989
07E16, 17E16, 27E16, 37E16 | 898 0FE16, 1FE16, 2FE16, 3FE16 | 998
07F16, 17F16, 27F16, 37F16 | 899 0FFi6, 1FF16, 2FF16, 3FF16 | 999

Cohort

The encoding of a real number in the DPD floating-point format is not unique. For example,
1.000 x 102 =10.00 x 101 = 100.0 x 109. The set of equivalent encodings is called a cohort.
The number of cohort members for a DPD floating-point number depends on the value. For
example, 1.000 x 102 has 7 cohort members in single precision and 16 members in double
precision. As discussed in section 4.1.2, zero has multiple encodings due to the 3 possible
values of GU and the width of GL. Note that +0 and -0 are different numbers and are not
part of the same cohort.

When comparing DPD floating-point numbers, some members of a cohort are considered
equivalent.

Normal and denormal DPD floating-point numbers

A DPD floating-point number is normal if there is a cohort member with LMD greater than
0.

A number is denormal if the cohort member with the smallest exponent has an LMD of 0.

+/-0 and +/- are neither normal nor denormal numbers.

Numbers that can be encoded by the DPD format

Table 4-5 shows the numbers that can be expressed as DPD floating-point numbers.

4.1.7.

4.2.

4.2.1.

16

Table 4-5 Range of DPD floating-point numbers

Single precision

Double precision

Number of significand digits

7

16

Exponent

-101-90 (bias = 101)

-398-369 (bias = 398)

Normal numbers
Maximum absolute value (Nmax)
Minimum absolute value (Nmin)

(107-1)x109%
1>< 10-95

(1016-1)x 10369
1x10-383

Denormal numbers
Maximum absolute value (Dmax)

(106-1)x10101

(1015-1)x 10398

Minimum absolute value (Dmin) 1x10101 1x10398
0 S Sign S Sign
Exponent Any | Exponent Any
Significand 0 Significand 0
Infinity S Sign S Sign
GU 111102 GU 11110
GL Ignored GL Ignored
T Any (payload) T Any (payload)
NaN
SNaN S Ignored S Ignored
GU 11111: GU 11111
GL 1xxxxx2 GL 1xxXXXxXX2
T Any (payload) T Any (payload)
QNaN S Ignored S Ignored
GU 11111: GU 11111

GL Oxxxxxs
Any (payload)

GL OxXxXXXXX2
Any (payload)

Rounding modes

There are five DPD rounding modes, which conform to IEEE754-2008. The rounding mode
is specified by the value of FSR.drd (page 26) or GSR.dirnd (page 34).

e Nearest (even, if tie)
e Round toward 0
e Round toward +w

e Round toward —oo

e Nearest (away from 0, if tie)

Packed BCD (Binary Coded Decimal)

SPARC64™ X / SPARC64™ X+ support instructions to convert between a BCD number and
the equivalent DPD floating-point number. No instructions that operate directly on BCD
data are defined. The BCD data may be signed or unsigned.

Fields

[D][D[D[D|D|D[D[D[D|D|D[D[D[D]|D]D]

6360 5956 5552 5148 4744 4340 3936 3532 3128 2724 2320 1916 1512 11 8 7 43 O

Figure 4-3 TUnsigned BCD data format

Ver 29.0 Jan. 2015

4.3.

4.3.1.

[D]D[D[D|D|DJ[D[D[D|D|[DJ[D[D[D]D]S]
6360 5956 5552 5148 4744 4340 3936 3532 3128 2724 2320 1916 1512 11 8 7 43 0

Figure 4-4 Signed BCD data format

A number 0-9 is encoded by four bits in the BCD number. Each field "D" in Figure 4-3 and
Figure 4-4 is one decimal digit. The signed BCD data format encodes 15 decimal digits, and
the unsigned BCD data format encodes 16 decimal digits. If any field "D" has a value of A1e
— F16, the data is not a BCD number.

In a signed BCD number, the least significant four bits S encode the sign of the number.
Table 4-6 shows the relationship between the value of S and the sign. Note that SPARC64™
X / SPARC64™ X+ encode the plus sign as Cis and the minus sign as Die.

Table 4-6 Sign of BCD data

S |Sign|S |Sign
O16 |+ 816

lis |+ 916

216 | + Aie

316 |+ Bis |-
416 |+ Cis |+
516+ Dis |-
616 | + Ei6

T |+ Fie

Oracle floating-point numbers

Compatibility Note The specification for Oracle floating-point numbers
may change in the future. This format should be used only for
libraries targeting the SPARC64™ X and SPARC64™ X+ platforms.

SPARC64™ X / SPARC64™ X+ support Oracle floating-point numbers and instructions
that operate on these numbers.

Fields

An Oracle floating-point number consists of a sign S, an exponent exp, and a significand. S
is an integer with value O or 1, exp is an integer with value -65 to 62, and the significand is
a number with a fixed number of digits and value 0 to 99.999999999999. The value is given
by the following expression.

(-1)® x significand x 100%°

Table 4-7 Oracle floating-point fields widths

Oracle floating-point number
Entire data | 64 bits

S 1 bit

exp 7 bits

Significand 56 bits

[s] exp | Significand
63 62 56 55 0

4.3.2.

4.3.3.

4.3.4.

18

Figure 4-5 Oracle floating-point data format

Sign (S)
The field S encodes the sign. Table 4-8 shows the possible values of sign S.

Table 4-8 Sign encoding

S| Sign
0 | Negative

—

Positive

Exponent (exp)

The exponent is stored in the field exp, which has a value in the range —65 to 62. The
maximum exponent encoded by exp is infinity. The encoding of the exponent depends on the
sign S. The field exp is encoded in ascending order if the sign is positive and in descending
order if the sign is negative. The calculation of the exponent from integer exp<6:0>is shown
in Table 4-9.

Table 4-9 Exponent calculation

S Exponent
0 (negative) | 62-exp<6:0>
1 (positive) |exp<6:0>-65

Table 4-10 shows the explicit encoding of the exponent.

Table 4-10 Exponent encoding

S exp<6:0> | Exponent
0 (negative) |0 62 (or, —0)
1 61
62 0
126 -64
127 -65
1 (positive) |0 —-65
1 -64
65 0
126 61
127 62 (or, +0)

Mantissa (significand)

The significant consists of seven bytes. Each byte encodes an integer 0-99. The value of the
significand in relation to these seven integers (digits) is given by the following expression.

Ver 29.0 Jan. 2015

6
> digit; x100™

i=0

[digit, | digi, | digit, | digit, | digit, | digit, | digity |
55 48 47 40 39 32 31 24 23 16 15 87 0

Figure 4-6 Significand format

The encoding of these bytes depends on the sign S. The digits of a positive value are
encoded in ascending order. The digits of a negative value are encoded in descending order.
Each integer is expressed as digit<7:0> and is calculated as shown in Table 4-11

Table 4-11 Integer Calculation

S Integer
0 (negative) | 101-digit<7:0>
1 (positive) |digit<7:0>-1

Table 4-12 shows the explicit encoding of each digit.

Table 4-12 Encoding of digit<7:0 >

S digit<7:0> | Number
0 (negative) |0 — 1 Outside the range (treated as 0)
2 99
3 98
4 97
99 2
100 1
101 0
102 — 255 | Outside the range (treated as 0)
1 (positive) |0 Outside the range (treated as 0)
1 0
2 1
3 2
98 97
99 98
100 99
101 — 255 | Outside the range (treated as 0)

Note When a number with all digits outside the range is specified as an
operand, it is generally treated as 0. In certain combinations where a
digit has the value 0 or 101, the number may be treated as infinity.
See Section 4.3.5.

4.3.5.

4.3.6.

4.3.7.

20

Special values

The values 0, —oo, +00 and dANAN are special Oracle floating-point numbers. These values are
expressed as a combination of several fields. The combination of these fields is shown below.

When an operation results in the special value 0, —o, +00, or ANAN, the resulting Oracle
floating-point number has the format shown in Table 4-13.

Table 4-13 Output of special values

Special value |S exp |digito |digitie Remarks

0 1 (positive) |0 0 0 Negative 0 is never an output.

—0 0 (negative) |0 0 0

+00 1 (positive) | 127 |101 0

dNAN 1 (positive) |0 0 0 Same as 0. It is not possible to
distinguish between dNAN and 0 from
the result.

To use a special value as the operand of an operation, specify the Oracle floating-point
number as described in Table 4-14. To input —o or +oo, specify S, exp, and digito as described
in Table 4-14. To input 0, specify all digits with values treated as 0. The value dNAN cannot
be specified.

Table 4-14 Input of special values

Special S exp | digito | digiti-6 | Remarks

value

0 — — | *0* | *0* *0* is a value 0 — 1 or 101 — 255.

—o0 0 0o |0 — Negative digit O is outside the range, as shown in
(negative) Table 4-12.

+00 1 (positive) | 127|101 |— Positive digit 101 is outside the range, as shown

in Table 4-12.
dNAN — — |— — Cannot be specified.

Normal and denormal numbers

An Oracle floating-point number is normal if the value of digito of the significand is larger
than 0. The number is denormal if the value of digito of the significand is 0.

The Oracle floating-point numbers 0 and +/-%© are neither normal nor denormal.

NoteIn SPARC64™ X / SPARC64™ X+, most operations with Oracle
floating-point numbers always output a normal number or one of the
special values defined in Section 4.3.5. Operations can be denormal. A
few instructions output the result without normalizing the value.
Refer to the specification of each instruction for details.

Numbers that can be encoded as Oracle floating-point
numbers

Table 4-15 shows the numbers that can be expressed as Oracle floating-point numbers.

Ver 29.0 Jan. 2015

Table 4-15 Range of Oracle floating-point numbers

4.3.8.

Oracle floating-point number

Number of significand digits 7
(decimal number) (14
Exponent —65 — 62 (bias = 65)

Normal numbers
Maximum absolute value (Nmax)
Minimum absolute value (Nmin)

99.999999999999 x 10062
1 x 10065

Denormal numbers
Maximum absolute value (Dmax)
Minimum absolute value (Dmin)

0.999999999999 x 10062
1 x 1007

Special values
0
—00
~+00

dNaN

Refer to Section 4.3.5.

Rounding modes

There are five rounding modes for Oracle floating-point numbers. The rounding mode is
specified by the value of FSR.drd (page 26) or GSR.irnd (page 34).

4.3.9.

Nearest (even if tie)
Round toward 0
Round toward +oo
Round toward -

Nearest (away from 0, if tie)

Note The least significant bit (LSB) of the significand is rounded after
normalization. The LSB is the rightmost bit. When rounding,
normalization ignores the limits imposed by the encoding of the exponent.

If the rounded result is denormal, 0 is returned.

Example) 0.200000000001e¢5

1) Normalizing this value gives the number 20.000000000100 e-66,
(Remember that the exponent is a power of 100.) Note that the minimum
possible exponent that can be encoded is -65.

2) Then the LSB of the normalized number is 0 and rounding does not
change the value. After forcing the rounded number to satisfy the
minimum value of the exponent, we recover the original number,
whose most significant bit is 0. The result is denormal and 0 is

returned.

Note Underflow is decided after rounding for Oracle floating-point
numbers, unlike IEEE 754, where underflow is decided before

rounding.

Extended exponent part (expl10)

Certain instructions take an extended exponent as an operand. The extended exponent
specifies the exponent as a power of 10 instead of 100 (see the formula in Section 4.3.1). It

consists of sign S and the extended exponent exp10. The extended exponent is used only to
specify the exponent and has no meaning as a numerical value.

Table 4-16 Extended exponent field widths

Extended exponent
Entire data | 64 bits

S 1 bit
expl0 8 bits
reserved 55 bits
[s] exp10 | —
63 62 55 54 0

Figure 4-7 Extended exponent format

The encoding of the extended exponent depends on the sign S. The extended exponent
expl0 is encoded in ascending order if positive and in descending order if negative. The
extended exponent is expressed by the integer exp10<7:0> and has the value indicated in
Table 4-17.

Table 4-17 Calculation of exponent radix 10

S Exponent radix 10
0 (negative) | 125 — exp10<7:0>
1 (positive) |exp10<7:0> - 130

Explicit encodings for the extended exponent exp10 are shown in Table 4-18.

Table 4-18 Encoding of extended exponent exp10<7:0 >

S exp10<7:0> | Exponent radix 10

0 (negative) | 0 125
1 124
125 0
254 -129
255 -130

1 (positive) |0 -130
1 -129
130 0
254 124
255 125

22 Ver 29.0 Jan. 2015

Register

5.1.

b.2.

5.2.1.

5.2.2.

5.2.3.

5.3.

Reserved Register Fields

Refer to Section 5.1 in UA2011.

Compatibility Note To preserve compatibility with previous platforms,
some reserved fields will read as 0.

Programming Note When comparing values, reserved fields should be
masked and excluded from the comparison.

General-Purpose R Registers

General-Purpose Integer Registers

Refer to Section 5.2.1 in UA2011.

Global registers are referred to as R[0] — R[7] or g[0] — g[7] in this specification. There is no
notation for indicating which set of global registers is currently selected by the GL register.

Windowed R Registers

Refer to Section 5.2.2 in UA2011.

The number of windowed register sets, N_REG_WINDOWS, is 8.

Special R Registers

Refer to Section 5.2.3 in UA2011.

Floating-Point Registers

In addition to the floating-point registers defined in Section 5.3 Floating-Point Registers of
UA2011, new double-precision floating-point registers Fd[64] — Fd[126] and Fd[256] —
Fd[382] are added. Only even-numbered registers can be accessed. The XASR register is
added to display the state of the additional registers. See “Extended Arithmetic Register
Status Register (XASR)” (page 37) for details.

Fd[0] — Fd[126] are called the Basic Floating-Point Registers, and Fd[256] — Fd[382] are
called the Extended Floating-Point Registers. In addition, Fd[0] — Fd[62] are also called V9
Floating-Point Registers.

5.3.1.

5.3.2.

24

Floating-Point Register Number Encoding

Refer to Section 5.3.1 in UA2011.

We expand the encoding of floating-point registers defined in UA2011 to support the
addition of the HPC-ACE floating-point registers.

The XAR register contains the ursl, urs2, urs3, and urd fields, which extend the rsl, rs2, rs3,
and rd fields in an instruction word. A decoded HPC-ACE register number is a 9-bit number.
The upper 3 bits are specified in the XAR and are concatenated with the decoded 6-bit
register number. When an instruction uses HPC-ACE floationg-point registers, it must use
double-precision floating-point registers. Then the least significant bit of the register
number is always 0, and 128 even-numbered registers Fd[0] — Fd[126] and Fd[256] — Fd[382]
can be specified by this encoding.

b<4> | b<3> | b<2> | b<1> | b<5> Encpded
Register Number

b<5> | b<4> | b<3> | b<2> | b<1>]| O Decpded
Register Number

Decoded HPC-ACE
u<2> | u<l1> | u<0> | b [b<4> [b<3> [b<2> | b<1>| O Register Number
- J

hd
from XAR

Figure 5-1 HPC-ACE Floating-Point Register Number Encoding

Using double-precision registers for single-precision
operations

In SPARC64™ X / SPARC64™ X+, double-precision registers can be used to perform
single-precision operations. This applies not only to the registers added in SPARC64™ X /
SPARC64™ X+ but also to the double-precision registers defined in SPARC V9. To use a
double-precision register for a single-precision operation, it is sufficient to set XAR.v =1 at
execution time. Thus, a SIMD single-precision operation always uses double-precision
registers.

When using a double-precision register for a single-precision operation, the following
behavior differs from the SPARC V9 specification:

e The encoding of the instruction field is the same as for a double-precision operand
in TABLE 5-3 of UA2011. Consequently, only even-numbered registers Fd[2n] (n = 0
— 63, 128 — 191) can be used.

e The upper 4 bytes of the register (bits <63:32>) are treated as a single-precision
value, and the lower 4 bytes (bits <31:0>) are ignored.

e Execution results and load data are written in the upper 4 bytes, and zeroes are
written in the lower 4 bytes.

Ver 29.0 Jan. 2015

5.3.3.

Programming Note When XAR.v = 1 and XAR.urs1 =0, the SPARC V9
double-precision register specified by rsl is used to perform a
single-precision operation. There are similar cases for rs2, rs3, and rd. In
these situations, bits <31:0> of the register overlap an odd-numbered
register, and will be written over with zeroes.

Endian conversion is done for each single-precision word; that is, endian conversion is done
in 4-byte units.

Specifying registers for SIMD instructions

When XAR.v =1 and XAR.SIMD = 1, the majority of instructions that use the floating-point
registers become SIMD instructions. One SIMD instruction executes two floating-point
operations. Registers used for SIMD instructions must be register pairs of the form Fd[2n]
and Fd[2n+256] (n = 0 — 63). The Fd[2n] register number is specified by the instruction. An
illegal_action exception is signalled when an unusable register is specified.

The SIMD instructions listed below are special:

o FMADD: Registers Fd[2n+256] can be specified for rs1 and rs2. Refer to Section 7.30 for
details.

e FSHIFTORX: Registers Fd[2n+256] can be specified for rs1. Refer to Section 7.122 and
Section 7.138 for details.

e FAESENCX, FAESENCLX, FAESDECX, and FAESDECLX: Registers Fd[2n+256] can be
used for rsl1. Refer to Section 7.116 for details.

Programming Note Single-precision floating-point instructions support
SIMD execution; however, double-precision registers must be used. See
Section 5.3.2 Using double-precision registers for single-precision
operations (page 24) for details.

Of the existing floating-point instructions, the following instructions do not support SIMD
execution. See Table 7-3 for the list of instructions that do support SIMD execution.

e FDIV(S,D), FSQRT(S,D)
e Most VIS instructions that are not logical operations (FOR, FAND, etc.)

Note On SPARC64™ X+, some VIS instructions like FPADD16{] S} that
are not logical operations support SIMD execution.

o Instructions that reference and/or update fcc, icc, xcc (FBFfcc, FBPfcc, FCMP, FCMPE,
FMOVcc, etc.)

e FMOVr

e Instructions that have both floating-point and integer operands
(FCMPU{LENE|GT]EQ}S8, etc.)

e Decimal Floating-Point Operations, Compare, and Convert
e Oracle Floating-Point Operations and Oracle Decimal Floating-Point Compare
One SIMD floating-point instruction specifies two operations. The floating-point operation

that stores its result in Fd[2n] is called the basic operation. The floating-point operation
that stores its result in Fd[2n+256] is called the extended operation.

Endian conversion is performed separately for the basic and extended floating-point
registers.

5.4. Floating-Point State Register (FSR)

| — [drd | —] fce3 | fec2 | feel |
63 43 42 40 39 38 37 36 35 34 33 32

[rd | — [tem [ns] — | ver [fit [ogne]—]fccO | Aexc | Cexc |

3130 29 28 27 23 2221 2019 17 16 14 13 12 1110 9 54 0

Bit Field Access Explanation

42:40 drd RW Specifies the rounding method for decimal floating
operations. Refer to “drd” (page 26) for details.

37:36 fce3 RW Displays the result of a floating-point compare
instruction. Refer to “fccn” (page 27) for details.

35:34 fcc2 RW Displays the result of a floating-point compare
instruction. Refer to “fccn” (page 27) for details.

33:32 fccl RW Displays the result of a floating-point compare
instruction. Refer to “fcen” (page 27) for details.

31:30 rd RW Specifies the rounding method for floating-point
operations.

27:23 tem RW Controls whether a trap is generated for an IEEE-754
floating-point exception. Refer to “tem” (page 28) for
details.

22 ns RW Specifies whether execution results conform to
IEEE-754. Refer to “ns” (page 27) for details.

19:17 ver R Identifies the version of the floating-point processing
unit. This field is 0 in the initial version of
SPARC64™ X / SPARC64™ X+,

16:14 fitt R Displays information about a floating-point exception
trap. Refer to “ftt” (pages 27-28) for details.

13 gne R Always 0.

11:10 fccO RW Display the result of a floating-point compare
instruction. Refer to “fccn” (page 27) for details.

9:5 aexc RW Accumulates all IEEE-754 floating-point exceptions

that occur while floating-point exception traps are
disabled. Refer to “aexc” (page 28) for details.

4:0 cexc RW Displays the IEEE-754 floating-point exceptions for
the most recently executed FPop instruction,
regardless of whether floating-point exception traps
are disabled. Refer to “cexc” (page 28) for details.

drd

Bits 42-40 select the rounding direction for decimal floating-point results. The drd field is
implemented in accordance with IEEE 754-2008 and its separate from the rd field, which is
used for binary floating-point results. Five rounding methods defined in IEEE 754-2008 are
supported. If GSR.dim = 1, then the value of FSR.drd is ignored and decimal floating-point
results are instead rounded according to GSR.dirnd. Refer to Section 5.5.9 (page 34) for
details.

26 Ver 29.0 Jan. 2015

Table 5-1 Decimal Rounding Direction Field of FSR

drd | Round Toward

Nearest (away from 0, if tie)

0 |Nearest (even, if tie)
1 0

2 +00

3 |-

4

5-

7 | reserved
The rounding result is undefined.

fcen
Refer to Section 5.4.1 in UA2011.

Additionalily, execution of the following instructions updates one of the fccn fields in the
FSR.

e FCMP and FCMPE
e FCMP{td|Etd]od}
e FLCMP and FPCMP{64X |U64X} (SPARC64™ X+ only)

ns
The field ns specifies whether floating-point operations conform to IEEE754.

On SPARC64™ X, when ns = 0, all operation results and exceptions conform to IEEE754.
When ns = 1, instead of generating a trap, a subnormal input or output is replaced by 0 (the
sign is the same as the subnormal number).

On SPARC64™ X+, when XASR.fed = 0 and ns = 0, all operation results and exceptions
conform to IEEE754. When XASR.fed = 1 or ns = 1, instead of generating a trap, a
subnormal input or ouput is replaced by O (the sign is the same as the subnormal number).

Refer to Section 8, “IEEE std. 754-1985 Requirements for SPARC-V9” (page 265) for details.

Programming Note If the SIAM instruction is executed to set GSR.im =1,
settings for FSR.ns will be ignored and floating-point operations will
behave as if FSR.ns = 0.

Compatibility Note XASR.fed is supported only on SPARC64™ X+. When
XASR.fed = 1, FSR.ns is ignored and floating-point operations behave
as if FSR.ns = 1. Values set by the SIAM instruction are ignored.

ftt (on SPARC64™ X or on SPARC64™ X+ with XASR.fed - 0)

Refer to Section 5.4.6 in UA2011.

Compatibility Note Floating-point arithmetic exception disable mode is
added in SPARC64™ X+, When XASR.fed = 0, the behavior of
floating-point exception traps is the same as SPARC64™ X.

28

Note When an fp_exception_ieee_754 trap occurs for a non-SIMD
instruction, the bit corresponding to the exception is set in cexc. For a
SIMD instruction, one or two bits are set in cexc.

ftt (on SPARC64™ X+ with XASR.fed - 1)

In SPARC64™ X+, fp_exception_ieee_754 and fp_exception_other(unfinished_FPop) traps
are not generated when XASR.fed = 1. Also, because quad FPops are not implemented,
hardware generates an illegal_instruction exception rather than fp_exception_other
(invalid_fp_register). Then no floating-point exception traps are generated when XASR.fed =
1.

FSR.tem and FSR.ns are ignored.

Programming Note When XASR.fed = 1, values set by the SIAM
instructions are ignored and floating-point operations behave as if FSR.ns
=1.

When FSR.tem = 0_00002 and FSR.ns = 1 is set, traps for fp_exception_ieee_754 and
fp_exception_other (unfinished_FPop) are also not generated. However, the handling of
FSR.aexc and FSR.cexc differs. The behavior of FSR.aexc and FSR.cexc observed by user
software when XASR.fed = 1 is described below.

e FSR.aexc is not be updated

e FSR.cexc is cleared when instructions that update FSR are executed.

When an unexpected floating-point exception occurs while XASR.fed = 1, there is no way to
determine that an exception occurred, other than the result of the operation.

tem, aexc, cexc

tem
[nvm | ofm [ufm [dzm [nxm
27 26 25 24 23
aexc
nva | ofa | ufa [dza | nxa
9 8 7 6 5
cexc
nve | ofc [ufc [dzx | nxc
4 3 2 1 0

These three fields display the five floating-point exceptions defined by IEEE 754 and
control trap generation. Each field is 5 bits, where each bit corresponds to an exception
defined by IEEE 754. The arrangement of bits is the same for all three fields. Table 5-3
shows the meanings of these bits.

e The tem field controls trap generations for IEEE 754 floating-point exceptions. If a
floating-point instruction generates one or more exceptions and the tem bit
corresponding to any of the exceptions is 1, then the exception causes a trap. A tem
bit of O prevents the corresponding exception from generating a trap.

o The aexc field accumulates IEEE 754 floating-point exceptions that occur while
floating-point exception traps are disabled.

Ver 29.0 Jan. 2015

The cexc field displays IEEE 754 floating-point exceptions generated by the most
recently executed FPop instruction. The cexc bits corresponding to the exceptions

are set, and the other bits are set to zero.

Programming Note If a floating-point exception generates a trap, the
recovery software should set cexc appropriately before returning.

Table 5-2 shows the values of ftt, aexc and cexc corresponding to various floating-point
exception conditions.

Table 5-2 Floating-Point Exceptions and Updates to the FSR

one bit corresponding to the
highest-priority exception is set.
For SIMD instructions, one or two
bits are set.

Events ftt | cexc aexc

IEEE 754 floating-point 0|0 unchanged
exceptions are not generated.

IEEE 754 floating-point 0 |Bits in the cexc field corresponding | The new cexc field
exceptions are generated but to the exceptions are set. is ORed into the
traps are masked. aexc field.

IEEE 754 floating-point 1 | Bits in the cexc field corresponding |unchanged
exceptions and traps are to the exceptions are set.

generated. For non-SIMD instructions, only

The fp_exception_other 9ii | unchanged unchanged
exception and trap are
generated

Table 5-3 Fields in aexc, cexc

Field |Exception Notation
enabled | disabled

nva, An operand is improper for the operation to be performed. NV nv
nvc For example, 0.0 —~ 0.0 and o - o are invalid.

(1 = invalid operand(s), 0 = valid operand(s))
ofa, The result, rounded as if the exponent range were OF of
ofc unbounded, would be larger in magnitude than the destination

format’s largest finite number.

(1 = overflow, 0 = no overflow)
ufa, The rounded result is inexact and would be smaller in magnitude UF uf
ufc than the smallest normalized number

in the indicated format;

(1 = underflow, 0 = no underflow)

Underflow is never indicated when the correct unrounded result is

0.

Otherwise:

o If FSR.tem.ufm = 0: Underflow occurs if a nonzero result is tiny
and a loss of accuracy occurs.
o If FSR.tem.ufm = 1: Underflow occurs if a nonzero result is tiny.

dza, X = 0.0, where X is not 0.0 nor NaN. DZ dz
dzc (1 = division by zero, 0 = no division by zero)
nxa, The rounded result of an operation differs from the infinitely precise | NX nx
nxc unrounded result.

(1 = inexact result, 0 = exact result)

i Hardware never sets fit = 6 (invalid_fp_register).

Floating-point operations which cause an overflow (of) or underflow (uf) condition may also
cause an "inexact" (nx) condition. For non-SIMD instructions, only one bit in cexc is set if
the corresponding trap is enabled in the tem field. Otherwise, if the exceptions are masked,
all bits corresponding to generated exceptions are set. Table 5-4 summarizes how FSR.cexc
bits are set for various exceptions and masks.

Table 5-4 Setting of FSR.cexc bits for non-SIMD instructions

Condition Result

Exception(s) detected in | Trap Enable Mask |fp_exception_ieee_754 Current Exception
floating-point operation |bits (in FSR.tem) Trap Occurs? bits (in FSR.cexc)
of uf nx ofm [ufm |nxm ofc |ufc |[nxc
— — — X X X no 0 0 0
— — v X X 0 no 0 0 1
— v iii viii X 0 0 no 0 1 1
viv — Viv 0 X 0 no 1 0 1
— — v X X 1 yes 0 0 1
— viii Vil X 0 1 yes 0 0 1
— v — X 1 X yes 0 1 0
— v v X 1 X yes 0 1 0
viv — viv 1 X X yes 1 0 0
viv — viv 0 X 1 yes 0 0 1

Updates to cexc and aexc for SIMD instructions

For SIMD instructions, two bits might be set in cexc when traps are enabled.

Basic and extended operations are performed simultaneously. However, because the source
operands are different, either operation or both could cause exceptions.

When only one operation causes an exception, the behavior is the same as for a non-SIMD
instruction. When both operations cause exceptions, cexc, aexc and ftt are updated and
traps are generated as shown below. For the purposes of illustration, let’s say the exception
caused by the basic operation updates the hypothetical basic.aexc and basic.cexc fields. The
exception caused by the extended operation updates the hypothetical extend.aexc and
extend.cexc fields.

e When fp_exception_ieee_754 exceptions are detected for both basic and extended
operations:

e Both exceptions are masked and no exception is signaled:

The logical OR of basic.cexc and extend.cexc is displayed in FSR.cexc. The
logical OR of basic.cexc and extend.cexc is accumulated in FSR.aexc.

FSR.cexc < basic.cexc | extend.cexc
FSR.aexc < FSR.aexc | basic.cexc | extend.cexc
e EKither the basic or extended operation signals an exception:

The logical OR of basic.cexc and extend.cexc is displayed in FSR.cexc. FSR.aexc
is unchanged.

FSR.cexc < basic.cexc | extend.cexc

i Except for FRCPA{s]d}, when the underflow trap is disabled (FSR.tem.ufm = 0), underflow (uf) is always accompanied
by inexact (nx). For FRCPA{s]d}, when the underflow trap is disabled (FSR.tem.ufm = 0), underflow (uf) is not
accompanied by inexact (nx).

v Qverflow (of) is always accompanied by inexact (nx).

30

Ver 29.0 Jan. 2015

5.5.

5.5.1.

5.5.2.

5.5.3.

5.5.4.

e Both basic and extended operations signal exceptions:

The logical OR of basic.cexc and extend.cexc is displayed in FSR.cexc. FSR.aexc
is unchanged.

FSR.cexc < basic.cexc | extend.cexc

o When fp_exception_ieee_754 is detected for one operation and fp_exception_other
is detected for the other operation, the fp_exception_other exception is signalled
with ftt = unfinished_FPop. Both FSR.aexc and FSR.cexc are unchanged.

Programming Note When an fp_exception_other exception is generated,
it is impossible for hardware to determine whether an
fp_exception_ieee_754 exception occurred simultaneously. System
software must run an emulation routine to detect the second exception
and update the necessary registers.

o When fp_exception_other exceptions are detected for both basic and extended
operations, an fp_exception_other with ftt = unfinished_FPop is signalled. Both
FSR.aexc and FSR.cexc are unchanged.

tem, cexc, aexc on SPARC64™ X+ with XASR.fed =1

On SPARC64™ X+ with XASR.fed = 1, the value of tem is ignored and no floating-point
exception traps are generated. Changing the value of tem has no effect on this behavior. In
this case, the aexc and cexc fields are updated as follows.

e The aexc field is unchanged.

e The cexc field is cleared when an instruction that updates FSR is executed.

FSR Conformance

A SPARC V9 implementation may choose to implement the tem, cexc, and aexc fields in
hardware in either of two ways (both of which comply with IEEE Std 754-1985). On
SPARC64™ X / SPARC64™ X+, all three fields are implemented.

Ancillary State Registers

32-bit Multiply/Divide Register (Y) (ASR 0)

Refer to Section 5.5.1 in UA2011.

Integer Condition Codes Register (CCR) (ASR 2)

Refer to Section 5.5.2 in UA2011.

Address Space ldentifier (ASI) Register (ASR 3)

Refer to Section 5.5.3 in UA2011.

Tick (TICK) Register (ASR 4)

[npt] Counter
63 62 0

The counter field of the TICK register is a 63-bit counter (SPARC V9 Impl. Dep. #105b) that
counts processor clock cycles. Bit 63 of the TICK register is the nonprivileged trap (npt) bit,
which controls access to the TICK register by nonprivileged software.

Compatibility Note Each thread in SPARC64™ X / SPARC64™ X+ has
its own copy of the npt field and the counter field.

Nonprivileged software can read the TICK register, but only when nonprivileged access to
TICK is enabled (TICK.npt = 0). If nonprivileged access is disabled (TICK.npt = 1), an attempt
by nonprivileged software to read the TICK register causes a privileged_action exception.
Table 5-5 shows the exceptions generated by reading or writing the TICK register.

Table 5-5 Exceptions when reading or writing the TICK register

RDTICK (WRTICK RDPR WRPR
doesn't
exist)
OK (f TICK.npt = 0) — privileged_opcode | privileged_opcode
privileged_action (if
TICK.npt= 1)

5.5.5. Program Counters (PC, NPC) (ASR 5)

Refer to Section 5.5.5 in UA2011.

5.5.6. Floating-Point Registers State (FPRS) Register (ASR 6)

Refer to Section 5.5.6 in UA2011.

5.5.7. Performance Control Register (PCR) (ASR 16)

[—] toe<7:0> | — Jovi<7:0> [ovro [ulro | — | nc [su [sl [—[sc[ht]ut]st]priv]
63 55 48 47 40 39 32 31 30 2927 26 24 23 16 158 7 64 3 2 1 0
Bit Field R/W Description
55148 toe<7:0> RW Controls whether an overflow exception is generated for

performance counters. A write updates the field, and a
read returns the current settings. If PCR.toe<i>=1 and
the counter corresponding to PCR.ovf<i> overflows,
PCR.ovf<i> is set to 1 and a pic_overflow exception is
generated. If PCR.toe<i> = 0 and the counter
corresponding to PCR.ovf<i> overflows, PCR.ovf<i> is set
to 1 but a pic_overflow exception is not generated. When
PCR.ovf<i> is already 1 and PCR.toe<i> is changed to 1
from 0, a pic_overflow exception is not generated.

39:32 ovf<7:.0> RW Overflow Clear/Set/Status. A read by RDPCR returns the
overflow status of the counters (if ovf = 1, the
corresponding counter has overflowed). PCR.ovf<2n> and
PCR.ovf<2n+1> refer to the lower counter (PIC<31:0>) and
upper counter (PIC<63:32>), respectively, of the n-th

32 Ver 29.0 Jan. 2015

5.5.8.

counter pair selected by PCR.sc. A write of 0 to an ovf bit
clears the overflow status of the corresponding counter.
Writing a 1 via software does not cause a pic_overflow
exception.

|U3|L3|U2|L2[U1|L1]U0[Lo]
76 5 4 3 2 1 0

31 ovro RW Overflow Read-Only. A write to the PCR register with
write data containing a value of ovro = 0 updates the
PCR.ovf field with the ovf write data. If the write data
contains a value of ovro = 1, the ovf write data is ignored
and the PCR.ovf field is not updated. A read of the
PCR.ovro field returns 0. The PCR.ovro field allows PCR
to be updated without changing the overflow status.
Hardware maintains the most recent state in PCR.ovf
such that a subsequent read of the PCR returns the
current overflow status.

30 ulro RW SU/SL Read-Only. A write to the PCR register with write
data containing a value of ulro = 0 updates the PCR.su
and PCR.sl fields with the su/sl write data. If the write
data contains a value of ulro = 1, the su/sl write data is
ignored and the PCR.su and PCR.sl fields are not
updated. A read of the PCR.ulro field returns 0.

26:24 nc RO Indicates the number of counter pairs. On SPARC64™ X/
SPARC64™ X+, nc has a value of 3 (indicating 4 counter
pairs). Writes to the PCR.Nc are ignored.

23:16 su RW Selects the event counted by PIC<63:32>. A write updates
the field, and a read returns the current setting.

15:8 sl RW Selects the event counted by PIC<31:0>. A write updates
the field, and a read returns the current setting.

6:4 sc RW PIC Pair Selection. A write updates which PIC counter
pair is selected, and a read returns the current selection.

3 ht RO If PCR.ht = 1, events are counted in hypervisor mode.
PCR.ht can be read. Writes to PCR.ht are ignored.

2 ut RW Non-privileged Mode. When PSTATE.priv =0 and PCR.ut =
1, events are counted.

1 st RW System Mode. When PSTATE.priv=1 and PCR.st =1,
events are counted.

0 priv RW Privileged. If PCR.priv = 1, executing a RDPCR, WRPCR,

RDPIC, or WRPIC instruction in non-privileged mode
(PSTATE.priv = 0) causes a privileged_action exception. If
PCR.priv = 0, a RDPCR, WRPCR, RDPIC, or WRPIC
instruction can be executed in non-privileged mode. If
PCR.priv = 0, a non-privileged (PSTATE.priv = 0) attempt
to update PCR.priv (that is, to write a value of 1) via a
WRPCR instruction causes a privileged_action exception.

Performance Instrumentation Counter (PIC) Register
(ASR 17)

| picu [picl

63 32 31 0
Bit Field Access Explanation
63:32 picu RW 32-bit counter for the event selected by the su field

of the Performance
Control Register (PCR).

31:0 picl RW 32-bit counter for the event selected by the sl field
of the Performance
Control Register (PCR).

5.5.9. General Status Register (GSR) (ASR 19)

Refer to Section 5.5.7 in UA2011.

[mask | dim | dirnd [im]| imd | reserved [scale|align|
63 32 31 30 28 27 26 25 24 8 73 20
Bit Field Access Explanation
63:32 mask RW Refer to UA2011.
31 dim RW Interval Mode for decimal floating-point numbers.

When dim = 1, the value in FSR.drd is ignored. The
processor rounds floating-point results according
to GSR.dirnd.

30:28 dirnd RW Rounding direction to use in interval mode for
decimal floating-point numbers. GSR.dirnd is valid
when GSR.dim = 1. Refer to FSR.drd (page 26) for

details.
27 im RW Refer to UA2011.
26:25 irnd RW Refer to UA2011.
24:8 reserved RO Reserved (undefined)
73 scale RW Refer to UA2011.
2:0 align RW Refer to UA2011.

Note A read of a reserved field returns an undefined value. Zeros must be
written to reserved fields to preserve compatibility with future
implementations.

5.5.11. System Tick (STICK) Register (ASR 24)

[npt] Counter
63 62 0

The counter field of the STICK register is a 63-bit counter that increments at a rate
determined by a clock signal external to the processor. Bit 63 of the STICK register is the
nonprivileged trap (NPT) bit, which controls access to the STICK register by nonprivileged
software. A clock signal external to the processor is not defined in this specification.

Compatibility Note Each thread in SPARC64™ X / SPARC64™ X+ has
its own copy of the npt field and the counter field.

Nonprivileged software can read the STICK register by using the RDSTICK instruction, but
only when nonprivileged access to STICK is enabled (STICK.npt = 0). If nonprivileged access
is disabled (STICK.npt = 1), an attempt by nonprivileged software to read the STICK register
causes a privileged_action exception. Table 5-6 shows the exceptions generated when
reading or writing the STICK register.

Table 5-6 Exceptions when reading or writing the STICK register

34 Ver 29.0 Jan. 2015

5.5.13.

5.5.14.

RDSTICK WRSTICK

OK (if STICK.npt = 0) illegal_instruction
privileged_action (if STICK.npt = 1) | (differs from TICK register)

Compatibility Note In JPS1, writing the STICK register in nonprivileged
mode generates a privileged_opcode exception.

A read of STICK.counter<6:0> always returns 0x7f.

Pause Register (PAUSE) (ASR 27)

| — | pause —

63 15 14 3 2 0
Bit Field Access Description
63:15 reserved WO reserved
14:3 pause WO Pause VCPU for the specified number of processor
cycles.
2:0 reserved WO ignored

A virtual processor’s PAUSE register is used to pause execution on the virtual processor for
the number of cycles specified by the WRPAUSE or PAUSE instruction. Software initiates a
pause by writing the number of cycles to the bits PAUSE<14:0>. The lowest 3 bits of the
PAUSE register are ignored. Then the maximum duration that can be specified by a
WRPAUSE or PAUSE instruction is 32760 virtual processor cycles.

Extended Arithmetic Register (XAR) (ASR 29)

[0o Jfv] o [fsimd[furd][fursi|furs2][furs3]sv] 0 J[ssimd|[s urd][s ursl]s urs2]s urs3]
63 3231 30 29 28 27 2524 2221 1918 16 15 14 13 12 11 98 65 32 0

Bit Field Access Description

31 fv RW Indicates whether the contents of fields beginning
with f_are valid. If f_v = 1, the contents of the f_
fields are applied to the instruction that executes
first. After the 1st instruction completes, all f_
fields are cleared.

28 f_simd RW If f_simd = 1, the 1st instruction is executed as a
SIMD instruction. If f_simd = 0, execution is
non-SIMD.

27:25 f_urd RW Extends the rd field of the 1st instruction.

24:22 f_ursl RW Extends the rsl field of the 1st instruction.

21:19 f_urs2 RW Extends the rs2 field of the 1st instruction.

18:16 f_urs3 RW Extends the rs3 field of the 1st instruction.

15 S_V RW Indicates whether the contents of fields beginning

with s_ are valid. If s_v = 1, the contents of the s_
fields are applied to the instruction that

executes second. After the 2nd instruction
completes, all s_ fields are cleared.

12 s_simd RW If s_simd = 1, the 2nd instruction is executed as a
SIMD instruction. If s_simd = 0, execution is
non-SIMD.

11:9 s_urd RW Extends the rd field of the 2nd instruction.

8:6 s_ursl RW Extends the rsi field of the 2nd instruction.

36

5:3 s_urs2 RW Extends the rs2 field of the 2nd instruction.

2:0 s_urs3 RW Extends the rs3 field of the 2nd instruction.

The XAR register extends the fields in an instruction word. It holds the upper 3 bits of an
instruction’s register number fields (rsi1, rs2, rs3, rd) and indicates whether the instruction

is a SIMD instruction.

The register contains fields for two separate instructions. There are V (valid) bits for the
first and second instructions; all other fields for a given instruction are valid only when v =
1. These register fields are mainly used to specify floating-point registers, except the
*_urs3<1> fields, which are also used to disable hardware prefetch for integer and
floating-point load/store instructions.

When a trap occurs, the contents of the XAR are saved to the TXAR[TL] register, and all
fields in the XAR are set to 0. The saved value corresponds to the value of the XAR just
before the instruction that caused the trap was executed.

NoteIf a Tcc initiates a trap, the contents of the XAR just before the Tcc
instruction was executed are saved.

Aliases of XAR fields in this specification

The fields described in Table 5-7 have the following aliases.

Table 5-7 Alias for memory access

Aliases Field Usage
XAR.f_dis_hw_pf | XAR.f_urs3<1> | Disable hardware prefetch

XAR.s_dis_hw_pf | XAR.s_urs3<1> | Disable hardware prefetch

XAR.f_negate_mul | XAR.f urd<2> |For SIMD FMA
XAR.s_negate_mul | XAR.s_urd<2> | For SIMD FMA
XAR.f_rsl _copy XAR.f_urs3<2> | For SIMD FMA
XAR.s_rs1_copy |XAR.s_urs3<2>|For SIMD FMA

XAR operations

Only some instructions can reference the XAR register. In this document, instructions that
can reference XAR are called “XAR-eligible instructions”. Refer to Table 7-3 (page 43) for
details on which instructions are XAR eligible.

e An attempt to execute an instruction that is not XAR-eligible while XAR.v = 1
causes an illegal_action exception.

e XAR-eligible instructions have the following behavior.

e If XAR.v =1, the XAR.urs1, XAR.urs2, XAR.urs3 and XAR.urd fields are
concatenated with the instruction fields rsi, rs2, rs3, and rd respectively, to
specify floating-point registers. The XAR.urs3<1> fields may instead be used to
disable hardware prefetch for integer and floating-point load/store instructions.

Floating-point registers are referenced by 9-bit register numbers; the XAR fields
specify the upper 3 bits. A double-precision encoded 5-bit instruction field is
decoded to generate the lower 6 bits of the register number. Refer to “5.3.1
Floating-Point Register Number Encoding” (page 24) for details.

Ver 29.0 Jan. 2015

o If XAR.f_v=1, the XAR.f_ursl, XAR.f_urs2, XAR.f_urs3 and XAR.f_urd fields are
used.

e If XAR.f v=0 and XAR.s_v =1, the XAR.s_urs1, XAR.s_urs2, XAR.s_urs3 and
XAR.s_urd fields are used.

o The values of the f_or s_ fields are only valid once. After the instruction referencing
the XAR register completes, the referenced fields are set to 0.

o XAR-eligible instructions cause illegal_action exceptions in the following cases.

e XAR ursl # 0 is specified for an instruction that does not use rs1. There are
similar cases for rs2, rs3 and rd.

XAR ursl<1> # 0 is specified for an instruction that uses rsl. There are similar
cases for rs2, rs3 and rd.

XAR.urs2 #+ 0 is specified for an instruction whose rs2 field holds an immediate
value (such as simm13 or fcn).

e Aregister number greater than or equal to F[256] is specified for the rd field of
an FDIV{S|D} or FSQRT{S|D} instruction.

e XAR.simd = 1 for an instruction (including integer arithmetic) that does not
support SIMD execution.

e XAR.simd = 1, and a register number greater than or equal to F[256] is specified.
Some instructions (F{N}MADD{s|d}, F{N}MSUB{s|d}, FAES*X and so on) are
exceptions to this rule; register numbers greater than or equal to F[256] can be
specified. Refer to the specification for each instruction.

e XAR.urs3<2> #0 for a ld/st/atomic instruction.

When the XAR specifies register numbers for only one instruction, either the f_or s_ fields
can be used.

Programming Note If the WRXAR instruction is used, either XAR.f v or
XAR.s_v can be set to 1. The SXAR1 instruction sets XAR.f_v to 1.

If XAR.f_v =0, the f_simd, f_urs1, f _urs2, f_urs3, and f_urd fields are ignored even when the
fields contain non-zero values. The value of each field after execution is undefined. If
XAR.s_v=0, thes_simd, s_ursl, s_urs2, s_urs3, and s_urd fields are ignored even when the
fields contain non-zero values. The value of each field after execution is undefined.

5.5.15. Extended Arithmetic Register Status Register (XASR)
(ASR 30)

<SPARC64™ X>
[reserved | xfd<5:4> | reserved | xfd<1:0> |
63 6 5 4 3 2 1 0
Bit Field Access Description
63:6 reserved RO, RW reserved (undefined). <63:9> is RO, <8:6> is RW.
5:4 xfd<5:4> RW Updating a floating-point register (F[382] - F[256])
sets the appropriate bit to 1. Refer to xfd (page 39)
for details.
3:2 reserved RW reserved (undefined)
1:0 xfd<1:0> RW Updating a floating-point register (F[126] - F[0])

sets the appropriate bit to 1. Refer to xfd (page 39)
for details.

<SPARC64™ X+>

reserved | fed | reserved xfd<5:4> reserved xfd<1:0>

63 37 36 35 6 5 4 3 2 1 0
Bit Field Access Description
63:37 reserved RO Reserved (undefined).
36 fed RW Floating-Point Exception Disable mode.

No floating-point exception traps are generated
(supported from SPARC64™ X+).
35:6 reserved RO, RW reserved (undefined). <35:9> is RO, <8:6> is RW
54 xfd<5:4> RW Updating a floating-point register (F[382] - F[256])
sets the appropriate bit to 1. Refer to xfd (page 39)
for details.

3:9 reserved RW reserved (undefined)

1:0 xfd<1:0> RW Updating a floating-point register (F[126] - F[0])
sets the appropriate bit to 1. Refer to xfd (page 39)
for details.

Note A read of a reserved field returns an undefined value. Zeros must be
written to reserved field to preserve compatibility for future
implementation.

fed (supported on SPARC64™ X+)

Setting the fed field masks all floating-point exceptions. When XASR.fed = 0, the behavior
of floating-point exceptions are the same as SPARC64™ X. This field is updated by the

WRXASR instruction.

All floating-point exceptions are masked when XASR.fed = 1. That is, correspoinding traps
are not generated. In addition, FSR.aexc is not updated and FSR.fit is cleared by 0,
regardless of the values of FSR.tem and FSR.ns. Refer to FSR (pages 27, 28) for details. Also,
the FSHIFTORX instruction does not generate an illegal_instruction trap.

Exception XASR.fed =0 XASR.fed =1
fp_exception_ieee | Behavior specified by Trap is not generated.
FSR.tem If an instruction that updates FSR is
executed

e FSR.cexc and FSR.ftt are cleared
¢ FSR.aexc is not updated

fp_exception_other | Behavior specified by FSR.ns | Trap is not generated.
(unfinished_FPop)
illegal_instruction illegal_instruction trap is Trap is not generated.

(FSHIFTORX) generated depending on the | The value in Fd[rd] is undefined.
value of Fd[rs3]

Operation results for fed = 1 are the same as fed = 0, FSR.tem = 0_00002 and FSR.ns = 1
except for the behavior of the FSHIFTORX instruction.

The use of this flag is determined solely by the compiler. In other words, user-privileged
software routines generated by the compiler, and compiler startup routines or libraries can
use this field.

The Compiler can freely choose to alter this flag or leave it untouched. Nonprivileged
software not generated by the compiler (e.g., assembly language) should not alter this flag.

When modifying this field, it is caller’s responsibility to clear the flag before jumping to
routines that are not generated by the compiler, such as OS library routines.

38 Ver 29.0 Jan. 2015

Note Minimizing the period where XASR.fed = 1 is recommended.

xfd

The xfd fields are used to determine whether any of the floating-point registers need to be
saved during a context switch. Updating a register sets the appropriate bit to 1.

e There is no flag indicating an update to an integer register.

o Updating a floating-point register sets the appropriate XASR.xfd<i> = 1. The
floating-point registers and corresponding xfd bits are shown below.

xfd bits | Corresponding floating-point registers
FIO] - F[62]

F[64] - F[126]

Reserved

Reserved
F[256] - F[318]
F[320] - F[382]
Reserved

N[O (O [W N |~ |O

Reserved

Programming Note Updating a V9 floating-point register sets the xfd[0]
bit of the XASR and also updates the V9 FPRS. For example, updating
F[15] sets both FPRS.dl = 1 and XASR.xfd<0> = 1.

Programming Note The fields XASR.xfd<7:6> and XASR.xfd< 3:2> are
undefined.

Instruction Set Overview

6.1.

6.2.

6.3.

6.3.4.3

6.3.4.6

6.3.9

40

Instruction Execution

Refer to Section 6.1 in UA2011.

Instruction Formats

Refer to Section 6.2 in the SPARC64 VIIIfx extensions.

Instruction Categories

Refer to Section 6.3 in UA2011.

CALL and JMPL Instructions

Compatibility Note When PSTATE.am = 1, the upper 32bits of %07 are
set to 0.

Trap Instruction (Tcc)

Compatibility Note Traps numbered 128 ~ 255 trap to hypervisor mode.
It is not possible to trap directly from nonprivileged mode to
hypervisor mode. The base address of the trap vector is HTBA.

Floating-Point Operate (FPop) Instructions

FPop refers to floating-point execution instructions (except for FBfcc, FBPfcc, and
load/store instructions). FPopl and FPop2 are defined in Table 14-5 ~ Table 14-7 (page 317)
and are FPop instructions. FPop also includes IMPDEP1 and IMPDEP2, which are
described in the table below.

IMPDEP1 IMPDEP2

FADDtd, FSUBtd, FMULtd, FDIVtd, F{N}IMADD{s|d}, F{N}IMSUB{s|d},
FCMP{E}td, FQUAtd, FADDod, FSUBod, | FTRIMADDd, FSELMOV{s|d}
FMULod, FDIVod, FCMPod, F{R}QUAod,
FXADDod{LO|HI}, FXMULodLO,
FbuxTOtd, FtdTObux, FbsxTOtd,
FtdTObsx, FodTOtd, FtdTOod,
FCMP{LE|LT|GE|GT|EQINE}{E}{s|d},
FMAX{s]|d}, FMIN{s]d}, FRCPA{s|d},
FRSQRTA{s|d}, FTRISSELd,
FTRISMULd, FEXPAd

Ver 29.0 Jan. 2015

6.3.11 Reserved Opcodes and Instruction Fields

Compatibility Note An illegal_instruction exception is generated when an
attempt is made to execute an instruction where one or more reserved
fields in the instruction word are not 0. In JPS1, this behavior was
not clearly described in the footnote.

Instructions

42

This chapter describes instructions defined in SPARC64™ X / SPARC64™ X+. Refer to
Chapter 7 of UA2011 for instructions not defined in this chapter.

Compatibility Note When the specification of an instruction in JPS1
differs from UA2011, SPARC64™ X / SPARC64™ X+ conform to
UA2011. There are several differences between JPS1 and UA2011
that are not a result of the differences between sun4u and sun4v (for
example, handling of reserved fields and the exceptions generated by
quadruple-precision floating-point instructions).

Instruction definitions for SPARC64™ X / SPARC64™ X+ include the following
descriptions.

Table of opcodes for instructions defined in the subsection. This table also includes
values for unique field(s) whether HPC-ACE features can be used with the
instruction, and assembly language notation.

Illustration of the applicable instruction format(s). Fields marked “reserved” are
reserved for future expansion and must be set to 0 by software on SPARC64™ X /
SPARC64™ X+, Refer to Section 1.1.3 (page 9) for details about the meaning of
reserved and the em dash (—).

Description of the instruction and restrictions.

Note Exceptional conditions are summarized in the table at the end of the
subsection. Exceptions may be described in the description when
further explanation is needed.

For floating-point arithmetic instructions, a table relating input operands to the
arithmetic result. The table also relates input operands to the arithmetic exceptions
(OF, UF, DZ, NX, NV) defined by IEEE 754.

Table of exceptions that can occur when the instruction is executed. Exceptions are
listed in descending priority order. The highest-priority exception is listed first.

The following exceptions are not described in this table.

e |AE_* exceptions can occur for all instructions

¢ illegal_instruction exceptions occur for unimplemented instructions

XAR fields are shown without the f_or s_ prefix, except when describing conditions
that cause an illegal_action exception.

No timing information is described.

Table 7-3 shows the list of all instructions supported by SPARC64™ X / SPARC64™ X+.
Certain instructions are marked with mnemonic superscripts. These superscripts are also
used in Chapter 14, “Opcode Maps” (page 314). Table 7-1 lists these mnemonic superscripts
and their meanings.

Table 7-1 Meaning of mnemonic superscripts

Ver 29.0 Jan. 2015

Superscript | Meaning

D Instruction should not be used (Deprecated)

N Incompatible instruction

Pasr Privileged operation when bit 7 of ASI is 0.

Pasr Privileged operation depending on the ASR number

Pner Privileged operation when PSTATE.PRIV = 0 and {S}TICK.NPT =1
Pric Privileged operation when PCR.PRIV =1

Ppcr Privileged access when PCR.PRIV =1

+ Instruction not supported on SPARC64™ X.

The description of an instruction may use the notation described in Table 7-2 when
referring to specific operands.

Table 7-2 Register notation for rs1 (same for rs2, rs3, and rd)

rs1 field of the instruction word

Notation | Meaning
XAR.Vv=0 XAR.v =1
R[rs1] Integer register encoded by the | Integer register encoded by the

rsl field of the instruction word

Fs[rs1]

Single-precision floating-point
register encoded by the rs1
field of the instruction word

Single-precision floating-point
register encoded by XAR.urs1 and
the rsl field of the instruction
word

Fd[rs1]

Double-precision floating-point
register encoded by the rs1
field of the instruction word

Double-precision floating-point
register encoded by XAR.urs1 and
the rs1 field of the instruction
word

F[rs1]

Floating-point register encoded
by the rs1 field of the
instruction word

(no distinction made between
single precision, double
precision, or quadruple
precision)

Floating-point register encoded by
XAR.ursl and the rsl field of the
instruction word

(no distinction made between
single precision, double precision,
or quadruple precision)

In the Table 7-3, the columns for HPC-ACE extension show which HPC-ACE features can
be used with an instruction on SPARC64™ X / SPARC64™ X+,

¢ Regs.

XAR-eligible instruction. The extended floating-point registers can be

used. For memory access instructions, hardware prefetch can be disabled.

An instruction which has a ¢ in this column can specify Fd[0] - Fd[126] for the rd
register but not Fd[256] - Fd[382] .

e SIMD

Instruction can be specified as a SIMD instruction.

Instructions without checks in either of these two columns are not XAR eligible.
Instructions that are not XAR eligible are described in "XAR operations" (page 36).

Table 7-3 Instruction set of SPARC64™ X / SPARC64™ X+

Instruction HPC-ACE extension | Page
Regs. SIMD

ADD (ADDcc) 51
ADDC (ADDCcc) 51
ALIGNADDRESS{ LITTLE} 52
AND (ANDcc) 120
ANDN (ANDNcc) 120
ARRAY{8]16]32} 53
BMASK 54
BPcc 56
BPr 57
BSHUFFLE 54
BiccP 55
CALL 58
CASAPAs, CASXAPsst v 59
CWB{NE|E|G|LE]JGE|L]GU]JLEU]CC|CS|POSINEG|VC|VS}* 242
CXB{NE|E|G|LE|GE|L]GU]JLEU]CC|CS]|POSINEG|VC|VS}" 242
EDGE{8]16|32}{LIN 62
EDGE{8]16]32}{L}cc 61
FABSq v 67
FABS{s|d} v v/ 67
FADDod ¥ 209
FADDq v 68
FADD{s|d} v v/ 68
FADDtd Pie 204
FAESDECLX v v/ 197
FAESDECX v v/ 197
FAESENCLX v v/ 197
FAESENCX v v/ 197
FAESKEYX v v/ 197
FALIGNDATA 70
FANDNOT{1]2}{s} v v 106
FAND{s} v v/ 106
FBPfcc 7?2
FBfccP 71
FCMP{E}{sld]la} v 73
FCMP{E}td v 217
FCMP{LE]LT|GE|GTEQINE}{E}{s|d} v v/ 74
FCMP{LE|NE|GT|EQ}{16]32} 76
FCMP{LE[GT}H{8X[16X[32X|X} ¥ 226
FPCMP{LE | GT}{8X| 16X]32X]64X}" 4 v 257
FCMPod v 219
FLCMP{s|d}" v 234
FDESENCX v v/ 192
FDESI IPX v v/ 192
FDESIPX v/ v/ 192
FDESKEYX v v/ 192
FDESPC1X v v/ 192

44 Ver 29.0 Jan. 2015

Instruction HPC-ACE extension | Page
FDIVod ¥ 209
FDIV{sld|qg} Yo 77
FDIVtd ¥ 204
FEXPAd v v/ 78
FEXPAND 80
FLUSH 81
FLUSHW 82
FMADD{s]d} v/ v/ 83
FMAX{s |d} v v/ 91
FMIN{s|d} v v/ 91
FMOVq v 93
FMOVcc 94
FMOVR 95
FMOV{s|d} v v/ 93
FMSUB{s]d} v v/ 83
FMUL8x16 96
FMUL8x16{AU]AL} 96
FMUL8{SU|UL}x16 96
FMULD8{SUJUL}x16 96
FMULod v 209
FMULq v 97
FMUL{s]d} v v/ 97
FMULtd ¥ 204
FNAND{s} v v/ 106
FNEGq v 98
FNEG{s|d} v v/ 98
FNMADD{s |d} v/ v/ 83
FNMSUB{s|d} v v/ 83
FNADD{s|d}* v v/ 235
FNMUL{s]d}* 4 v 2317
FNsMULd* 4 4 237
FNOR{s} v v/ 106
FNOT{1]2}{s} v v/ 106
FONE{s} v v/ 106
FORNOT{1|2}{s} v v/ 106
FOR{s} v v/ 106
FPACK{16]32]|FIX} 99
FPADD{16|32}{S} 100
FPADD{16|32}{S}" 4 4 100
FPADD64* 4 v 231
FPADD128XHI1* 4 4 261
FPMADDX{HI} v v/ 102
FPMAX{u}{32]64}* v v/ 262
FPMIN{u}{32|64}" 4 v 262
FPMERGE 103
FPSUB{16|32}{S} 104

Instruction HPC-ACE extension | Page
FPSUB{16|32}{S}" v v 104
FPSUB64+ v/ v/ 232
F{R}QUAod kg 209
FQUAtd ¥ 204
FRCPA{s|d} v v/ 109
FRSQRTA{s|d} v v/ 109
FPSELMOV{8]16]32}x" 4 v 243
FSELMOV{s|d} v/ v 112
FSHIFTORX v v 222
FSHIFTORX* v v 252
FSQRT{sld|q} kg 113
FSRC{1]2}{s} v v 106
FSUBod ¥ 209
FSUBq v 68
FSuB{s|d} v v 68
FSuBtd ¥ 204
FTRIMADDd v v 114
FTRISMULd v/ v 114
FTRISSELd v/ v 114
FUCMP{LE [NE|GT |EQ}{8X] 16X | 32X | X} e 226
FPCMPU{LE |NE | GT | EQ}{8X | 16X] 32X | 64X}" 4 v 257
FPCMPU{LE |NE|GT|EQ}8* 233
FPCMP{64|UB4}X+ 4 246
FXADDod{LO|HI} ¥ 209
FXMULodLO ¥ 209
FXNOR{s} v v/ 106
FXOR{s} v v/ 106
FZERO{s} v v/ 106
FdMULq V4 97
F{bsx]bux|od}TOtd ¥ 220
FaTo{i Ix} v 66
FsMULd v v/ 97
F{ix}T0q v 63
F{iIx}T0{s|d} v v 63
F{s|d}T0q v 64
F{s1d}TO{i |x} v v 66
FsTOd, FdTOs v/ v/ 64
FtdTO{bsx|bux|od} v 220
FqTO{s|d} v 64
ILLTRAP 119
JIMPL 121
LDBLOCKF v 124
LDF, LDDF v v/ 126
LDQF v 126
LDFAPAst, LDDFAPAs! v v/ 129

Ver 29.0 Jan. 2015

Instruction HPC-ACE extension | Page
LDQFAPast v 129
LDFSRP v 140
LDSHORTF 132
LDSTUB v 133
LDSTUBAPast v 134
LDTWP v 135
LDTWAD-Past v 136
LDTXAN v 138
LDXEFSR+ v o1
LDXFSR v 140
LD{SJU}HBIH|W}, LDX v 122
LD{S|UHB|H|W}AP2s: LDXAPast v 123
LZD 230
MEMBAR 141
MOVcc 142
MOV 143
MOVWTOs™ v/ 264
MOVXTOd™* v 264
MULSccP 144
MULX 146
NOP 147
OR (Orcc) 120
ORN (ORNcc) 120
PADD32 148
PAUSE* 239
PDIST 149
POPC 150
PREFETCH, PREFETCHAPAs! v 151
RDASI 154
RDCCR 154
RDFPRS 154
RDGSR 154
RDPC 154
RDPCRFrer 154
RDP I CPrre 154
RDST ICKEP~er 154
RDT ICKPNer 154
RDXASR 154
RDYDP 154
RDASRPasr 154
RESTORE 156
RETURN 155
ROLX 160
SAVE 156
SDIAM 159

Instruction HPC-ACE extension | Page
spIVP (sbiveeP) 157
SDIVX 146
SETHI 158
SIAM 159
SLEEP 162
SLL, SLLX 160
FPSLL64X+ v v 947
SMULP (SMULccP) 161
SRA, SRAX 160
FPSRAG4X™ v v 247
SRL, SRLX 160
FPSRL64X" v v 247
STBARD 163
STBIN v 166
STBLOCKF v 167
STF, STDF v v 169
STQF v 169
STFAPas1 STDFAPast v v/ 171
STQFAPast v 171
STFSRD, STXFSR v 181
STPARTIALF 177
STSHORTF 178
ST{BIHIW]|X} v 164
ST{BH|W][X}APast v 165
ST{D}FR v v/ 174
ST{D}FR+ v v/ 248
STTWP v 179
STTWAD:Past v 180
SUB (SUBcc) 182
SUBC (SUBCcc) 182
SWAPD, SWAPAD-Past v 183
SXAR{1]2} 184
TADDcc (TADDccTVD) 185
TSUBcc (TSUBccTVD) 185
Tcc 186
uD1vP (UDIVeeD) 187
UDIVX 146
uMULP (UmuLcceP) 188
WRASI 189
WRASRPasr 189
WRCCR 189
WRFPRS 189
WRGSR 189
WRPAUSE* 189

Ver 29.0 Jan. 2015

Instruction HPC-ACE extension | Page
WRPCRPPer 189
WRP 1 CFrie 189
WRXAR 189
WRXASR 189
WRYD 189
XFILLN v 190
XNOR (XNORcc) 120
XOR (XORcc) 120

In SPARC64™ X / SPARC64™ X+, certain instructions are defined as the combination of a
specific ASI number with one of the instructions LDDFA, LDTWA, LDXA, STDFA, STTWA, STXA,
LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, or LDUWA. This combination is interpreted as a
separate instruction, rather than an access to an alternate space. Table 7-4 shows these
instructions. Refer to the instruction definition for details.

An empty column means that the combination of that ASI number with an instruction is
not interpreted as a separate instruction. Those ASI numbers are invalid for LDDFA, LDTWA,
LDXA, STDFA, STTWA, STXA, LDSBA, LDSHA, LDSWA, LDUBA, LDUHA, and LDUWA.

Table 7-4 Instructions defined as load/store to alternate space with special ASI.

AST number
2216, 2316
1616, 17 ’ ’
1E11€:, lF}fe;, E0ws. E1 Fo.6. F3 S]’QG’ 22%16’ C016 - Chis, D016 - D31, ng
ggls, géls, 16, B8 16, T8 Eziz: E3112’7 C816- CD1s |D816-DBys | ¢
16, F16 EAss, EBis
i=0
LDDFA = LDBLOCKF LDSHORTF
| =
i=0 STPARTIALF
STDFA STBLOCKF |STBLOCKF |XFILLN STSHORTF
i=1
LDTWADPast =9 LDTXAN
i=1
i=0
STTWADPast — XFILLN | sTBIN
i=0
LDXA
i=1
i=0
STXA — XFILLN | sTBIN
i=0
LDSBA
i=1
i=0
LDSHA
i=1
i=0
LDSWA
i=1
i=0
LDUBA
i=1
i=0
LDUHA
i=1
i=0
LDUWA
i=1

50 Ver 29.0 Jan. 2015

7.1. ADD

Refer to Section 7.1 in UA2011.

Exception Target Condition

instruction
illegal_instruction All i=0and iw<12:5> #0
illegal_action All XAR.v=1

7.2. Align Address

Refer to Section 7.5 in UA2011.

Note ALIGNADDR_LITTLE generates the opposite-endian byte ordering
for a subsequent FALIGNDATA operation.

Exception Target Condition

instruction
fp_disabled All FPRS.fef = 0 or PSTATE.pef =0
illegal_action All XAR.v=1

52 Ver 29.0 Jan. 2015

7.4. Three-Dimensional Array Addressing

Refer to Section 7.8 in UA2011.

Exception | Target Condition
instruction

illegal_action | All XARwv=1

7.5.

54

Byte Mask and Shuffle

Refer to Section 7.10 in UA2011.

Exception | Target Condition

instruction
fp_disabled | All FPRS.fef = 0 or PSTATE.pef =0
illegal_action | All XARwv=1

Ver 29.0 Jan. 2015

7.6. Branch on Integer Condition Codes

(Bicc)

Refer to Section 7.9 in UA2011.

Note The Trap on Control Transfer feature is implemented on
SPARC64™ X / SPARC64™ X+ (page 302).

Exception Target Condition
instruction
illegal_action All XARv=1

control_transfer_instruction

Excluding BN

The branch is taken and PSTATE.tct = 1.
The conditional branch BA is always taken.

7.7. Branch on Integer Condition Codes with
Prediction (BPcc)

Refer to Section 7.11 in UA2011.

Note The Trap on Control Transfer feature is implemented on
SPARC64™ X / SPARC64™ X+ (page 302).

Exception Target instruction | Condition

illegal_instruction All A reserved field is not 0.
(cco=1)

illegal_action All XAR.v=1

control_transfer_instruction | Excluding BPN The branch is taken and PSTATE.tct = 1.
The conditional branch BA is always taken.

Related Branch on Integer Register with Prediction (BPr) (page 57)

56 Ver 29.0 Jan. 2015

7.8. Branch on Integer Register with
Prediction (BPr)

Refer to Section 7.12 in UA2011.

Note The Trap on Control Transfer feature is implemented on
SPARC64™ X / SPARC64™ X+ (page 302).

Exception Target Condition
instruction
illegal_instruction All When any of the following are true

e rcond = 0002 or 1002
o iw<28>=1

illegal_action All XARv =1
control_transfer_instruction | All The branch is taken and PSTATE.tct = 1.

Related Branch on Integer Condition Codes with Prediction (BPcc) (page 56)

7.9.

Related

58

Call and Link

Refer to Section 7.13 in UA2011.

Note When PSTATE.am = 1, the upper 32 bits of the PC are masked (set
to 0) and written to R[15]. R[15] is updated immediately, and the delay
instruction can use the modified value of R[15].

Note The Trap on Control Transfer feature is implemented in
SPARC64™ X / SPARC64™ X+ (page 302).

Exception Target Condition
instruction

illegal_action All XAR.v=1

control_transfer_instruction | All PSTATE.tct=1

JIMPL (page 121)

Ver 29.0 Jan. 2015

7.10. Compare and

Swap

Opcode op3 Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
CASAPast 1111002 Compare and Swap Word from Alternate v casa [regwi] imm_asi, regsz, regu
Space casa [regisi/ %asi, regrss, regra
CASXAPast 1111102 Compare and Swap Extended Word from v casxa [regrsi] imm_asi, regrss, regrd

Alternate Space

casxa [regysi] %asi, regss regr

Refer to Section 7.16 in UA2011.

The compare-and-swap instructions can be used with any of the following ASls, subject to the
privilege mode rules described for the privileged_action exception. Use of any other ASI with
these instructions causes a DAE_invalid_asi exception.

ASIs valid for CASA and CASXA

ASI1_NUCLEUS

ASI_NUCLEUS_LITTLE

ASI_AS_IF_USER_PRIMARY

ASI_AS_IF_USER_PRIMARY_LITTLE

ASI1_AS_IF_USER_SECONDARY

ASI_AS_IF_USER_SECONDARY_LITTLE

ASI1_REAL

ASI_REAL_LITTLE

AS1_PRIMARY

ASI1_PRIMARY_LITTLE

AS1_SECONDARY

AS1_SECONDARY_LITTLE

60

Target

Exception instruction Condition
. . . A reserved field is not 0.
illegal_instruction All (i=1 and iw<12:5> # 0)
XAR.v = 1 and any of the following are true
e XAR.simd =1
. . e XAR.ursl # 0
illegal_action All o XAR.UIS2 = 0
o XAR.urs3<2> # 0
e XAR.urd # 0
When the address indicated by R[rs1] is not
CASXA . .
. aligned on eight-byte boundary
mem_address_not_aligned . B
When the address indicated by R[rs1] is not
CASA .
aligned on four-byte boundary
PSTATE.priv = 0 and either of the following
is true
All e i=0and ASI<7>=0
. . e i=1andimm_asi<7>=0
privileged_action - . -
PSTATE.priv = 1 and either of the following
All is true
. i=0and 3016 < ASI < 7F16
e i=1and 3016 < imm_asi < 7F16
VA_watchpoint All Refer to 12.5.1.62.
DAE_invalid_asi All Refer to 12.5.1.5
DAE_privilege_violation All Refer to 12.5.1.8
Attempted access to non-cacheable space.
DAE_nc_page All Refer to 12.5.1.6
DAE_nfo_page All Refer to 12.5.1.7
DAE_side_effect_page All Refer to 12.5.1.9

Ver 29.0 Jan. 2015

7.12. Edge Handling Instructions

Refer to Section 7.23 in UA2011.

Exception | Target Condition
instruction

illegal_action | All XAR.v =1

7.13. Edge Handling Instructions (noCC)

Refer to Section 7.24 in UA2011.

Exception Target Condition
instruction
illegal_action | All XAR.wv =1

62 Ver 29.0 Jan. 2015

7.14.

Convert Integer to Floating-Point

Opcode opf Operation HPC-ACE Assembly Language
Regs. SIMD Syntax

FiTOs 0110001002 Convert 32-bit Integer to Single v v fitos fregws, fregw
FITOd 0110010002 Convert 32-bit Integer to Double v v fitod fregws, fregw
FiITOg 0110011002 Convert 32-bit Integer to Quad v fitoq freges fregra
FXTOs 01000 0100z Convert 64-bit Integer to Single v v fxtos fregs freg
FXTOd 01000 10002 Convert 64-bit Integer to Double v v fxtod fregs, freg
FXTOg 01000 1100. Convert 64-bit Integer to Quad v fxtoq fregss fregra

Refer to Section 7.36 and Section 7.68 in UA2011.

Note Rounding is performed as specified by FSR.rd or GSR.irnd.

Exception Target Condition
instruction
illegal_instruction FiTOs, A reserved field is not 0.

FiTOd,

FXTOs,

FxTOd

FiTOq, Always.

FxTOq For these instructions, exceptions with
priority lower than illegal_instruction are
used for emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action FiTOs, XAR.v =1 and any of the following are true

FiTOd, e XAR.ursl#0

FXTOs, o XAR.Urs2<1>=#0

FxTOd o XAR.urs3 =0

e XAR.urd<1>=0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> # 0
FiTOq, XAR.v =1 and any of the following are true
FXTOq e XAR.simd=1
o XAR.urs1 =0
e XAR.urs2<1> =0
o XAR.urs3 =0
e XAR.urd<1>=0
fp_exception_ieee_754 | NX FXTOs, Conforms to IEEE754.
FxTOd,
FiTOs
fp_exception_other FqTOX, rs2<1>=0
(FSR.fit = invalid_fp_register) FqTOi

7.15.

Convert Between Floating-Point

Formats
Opcode opf Operation HPC-ACE Assembly Language
Regs. SIMD Syntax
FsTOd 01100 10012 Convert Single to Double v v fstod fregws, fregw
FsTOg 01100 1101z Convert Single to Quad 4 fstoq firegrs, fregr
FdTOs 0110001102 Convert Double to Single v v fdtos fregs, fregwu
FAdTOg 01100 11102 Convert Double to Quad v fdtoq fregs, fregw
FQTOs 01100 0111: Convert Quad to Single v fqtos fregis, fregw
FQTOd 01100 1011z Convert Quad to Double v fqtod fregis, fregw

64

Refer to Section 7.66 in UA2011.

Note Rounding is performed as specified by FSR.rd or GSR.irnd.

Exception Target Condition
instruction
illegal_instruction FsTOd, A reserved field is not 0.
FdTOs
FsTOq, Always.
FdTOq, For these instructions, exceptions with
FqTOs, priority lower than illegal_instruction are
FqTod intended for emulation.
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action FsTOd, XAR.v =1 and any of the following are true
FdTOs e XAR.ursl#0
o XAR.urs2<1>=0
e XAR.urs3 =0
e XAR.urd<1>=0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> # 0
FsTOq, XAR.v =1 and any of the following are true
FdTOq, e XAR:simd=1
FqTOs, e XAR.ursl =0
FqTOd o XAR.urs2<1> =0
o XAR.Uurs3#0
e XAR.urd<1>=0
fp_exception_ieee_754 | OF, UF, NX |FqTOs, Conforms to IEEE754.
FqTOd,
FdTOs
NV All F[rs2] is sNAN.
fp_exception_other FsTOq, rd<1>=0
(FSR.ftt = invalid_fp_register) FdTOq
FqTOs, rs2<1> = 0
FqTOd
fp_exception_other FsTOd, Refer to Chapter 8.
(FSR.ftt = unfinished_FPop) FdTOs

Ver 29.0 Jan. 2015

Compatibility Note fp_exception_other (FSR.fit = invalid_fp_register)
conforms to UA2011. In JPS1, the fp_exception_other (FSR.ftt =
unimplemented_FPop) exception was detected when executing
quadruple-precision instructions.

7.16.

Convert Floating-Point to Integer

Opcode opf Operation HPC-ACE Assembly Language
Regs. SIMD Syntax

FSTOX 01000 0001z Convert Single to 64-bit Integer v v fstox fregys, fregw
FATOX 01000 0010z Convert Double to 64-bit Integer v v fdtox fregs, fregr
FATOX 00100 00112 Convert Quad to 64-bit Integer 4 fqtox fregiss, fregra
FSTOi 0110100012 Convert Single to 32-bit Integer 4 v fstoi fregws, fregr
FATOi# 01101 00102 Convert Double to 32-bit Integer v v fdtoi fregws, fregr
FqTOi 01101 0011 Convert Quad to 32-bit Integer v fqtol fregiss, fregra

66

Refer to Section 7.65 in UA2011.

Note The result is always rounded towards zero. FSR.rd and GSR.irnd
are ignored.

Exception Target Condition
instruction
illegal_instruction FsTOx, A reserved field is not 0.

FATOX,

FsTO1,

FdTO1

FQTOX, Always.

FQTO1 For these instructions, exceptions with
priority lower than illegal_instruction are
intended for emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action FsTOX, XAR.v =1 and any of the following are true

FdTOx, e XAR.ursl =0

FsTOI, o XAR.Urs2<1> =0

FATO1 e XAR.urs3 =0

e XAR.urd<1>=0
e XAR.simd =1 and XAR.urs2<2> =0
e XAR.simd =1 and XAR.urd<2> = 0
FQTOX, XAR.v = 1 and any of the following are true
FgTO1 e XAR.simd=1
e XAR.urs1 =0
e XAR.urs2<1>=0
e XAR.urs3 =0
e XAR.urd<1>=0
fp_exception_ieee_754 | NV, NX All Conforms to IEEE754.
fp_exception_other FQTOx, rs2<1>=0
(FSR.ftt = invalid_fp_register) FqTOi

Ver 29.0 Jan. 2015

Compatibility Note fp_exception_other (FSR.ftt = invalid_fp_register)
conforms to UA2011. In JPS1, the fp_exception_other

(FSR.fit = unimplemented_FPop) exception was detected when executing
quadruple precision instructions.

7.17.

Floating-Point Absolute Value

Opcode opf Operation

HPC-ACE
Regs. SIMD

Assembly Language
Syntax

FABSs
FABSd
FABSq

0 0000 10012
0 0000 10102
0 0000 10112

Absolute value Single
Absolute value Double
Absolute value Quad

v v
v v

fabss
fabsd
4 fabsq

[I‘egrs& fr e8rd
fregrsz, fregra
fr €Lrs2, 11 eLrd

Refer to Section 7.25 in UA2011.

Exception

Target
instruction

Condition

illegal_instruction

FABSs,
FABSd

A reserved field is not 0.

FABSq

Always.

For this instruction, exceptions with priority
lower than illegal_instruction are intended for
emulation.

fp_disabled

All

PSTATE.pef =0 or FPRS.fef=0

illegal_action

FABSs,
FABSd

XAR.v = 1 and any of the following are true
o XAR.Ursl #0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> %0

XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

FABSq

XAR.v = 1 and any of the following are true
e XAR.simd=1

e XAR.urs1#0

o XAR.urs2<1> =0

e XAR.urs3 =0

e XAR.urd<1>=0

fp_exception_other
(FSR.fit = invalid_fp_register)

FABSq

When either of the following is true
e 152<1>+0
e rd<1>#%0

7.18.

Floating-Point Add and Subtract

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD

FADDs 00100 0001z Add Single v v fadds fregi, fregs, fregu
FADDd 00100 00102 Add Double v v faddd fregwi, fregiss, fregra
FADDg 00100 0011: Add Quad v faddq fregisi, fregrss, fregra
FSUBs 00100 01012 Subtract Single v v fsubs fregi, fregs, fregu
FSUBd 00100 01102 Subtract Double v v fsubd fregui, fregis, frega
FSUBgQ 00100 0111z Subtract Quad v fsubq fregrsi, fregrss, fregr

68

Refer to Section 7.26 and Section 7.67 in UA2011.

Note Rounding is performed as specified by FSR.rd or GSR.irnd.

Exception Target Condition
instruction
illegal_instruction FADDs, A reserved field is not 0.
FADDd,
FSUBs,
FSUBd
FADDq, Always
FSUBq, For these instructions, exceptions with
priority lower than illegal_instruction are
intended for emulation.
fp_disabled All PSTATE.pef =0 or FPRS.fef=0
illegal_action FADDs, XAR.v = 1 and any of the following are true
FADDd, e XAR.urs1<1>=0
FSUBs, o XAR.urs2<1> =0
ESUBd e XAR.urs3 =0
e XAR.urd<1>=0
e XAR.simd =1 and XAR.urs1<2> =0
e XAR.simd =1 and XAR.urs2<2> =0
e XAR.simd =1 and XAR.urd<2> = 0
FADDq, XAR.v =1 and any of the following are true
FSUBq, e XAR.simd =1
e XAR.urs1l<1>=0
e XAR.urs2<1>=0
e XAR.urs3=0
e XAR.urd<1>=0
fp_exception_ieee_754 | OF, UF, NX, | All Conforms to IEEE754.
NV
fp_exception_other FADDq When any of the following are true
(FSR.fit = invalid_fp_register) FSUBq e rsl<l>=#0
e 1s2<1>=%0
o rd<1>=0
fp_exception_other FADDs, Refer to Chapter 8.
(FSR.ftt = unfinished_FPop) FADDd,
FSUBs,
FSUBd

Ver 29.0 Jan. 2015

Compatibility Note fp_exception_other (FSR.fit = invalid_fp_register)
conforms to UA2011. In JPS1, the fp_exception_other

(FSR.fit = unimplemented_FPop) exception was detected when executing
quadruple-precision instructions.

7.19. Align Data

Refer to Section 7.27 in UA2011.

Compatibility Note This instruction is referred to as “FALIGNDATAQ” in
UA2011.

Exception Target Condition

instruction
fp_disabled FALIGNDATA | PSTATE.pef = 0 or FPRS.fef = 0
illegal_action FALIGNDATA | XAR.v =1

70 Ver 29.0 Jan. 2015

7.20. Branch on Floating-Point Condition

Codes (FBfce)

Refer to Section 7.28 in UA2011.

Note The Trap on Control Transfer feature is implemented on
SPARC64™ X / SPARC64™ X+ (page 302).

Exception Target Condition

instruction
fp_disabled All PSTATE.pef =0 or FPRS.fef=0
illegal_action All XAR.v=1

control_transfer_instruction

Excluding FBN

The branch is taken and PSTATE.tct = 1.
The conditional branch FBA is always taken.

7.21. Branch on Floating-Point Condition
Code with Prediction (FBPfcc)

Refer to Section 7.29 in UA2011.

Note

The Trap on Control Transfer feature is implemented on

SPARC64™ X / SPARC64™ X+ (page 302).

Exception Target Condition

instruction
fp_disabled All PSTATE.pef = 0 orFPRS.fef =0
illegal_action All XARv=1

control_transfer_instruction

Excluding FBPN

When the branch is taken and
PSTATE.tct = 1.

The conditional branch FBPA is always
taken.

72 Ver 29.0 Jan. 2015

7.22. Floating-Point Compare

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FCMPs 00101 00012 Compare Single v fcmps Wfcen, fregsi, fregrss

FCMPd 00101 00102 Compare Double v fecmpd %fcen, fregis, fregrsz

FCMPq 00101 00112 Compare Quad v fcmpg %Fccen, fregis:, fregrse

FCMPEs 00101 0101z Compare Single and Exception if v fcmpes %fcen, fregsi, fregrs:
Unordered.

FCMPEd 00101 01102 Compare Double and Exception if v fcmped %fcen, fregrs:, fregrse
Unordered.

FCMPEq 00101 0111z Compare Quad and Exception if v fcmpeq %fcen, fregrs:, fregrse
Unordered.

Refer to Section 7.31 in UA2011.

Note The “compare and cause exception if unordered” (FCMPEs, FCMPEd,
and FCMPEQ) instructions cause an fp_exception_ieee_754 invalid (NV)
exception if either operand is a sNaN or qNaN.

Note FCMP causes an fp_exception_ieee_754 invalid (NV) exception if
either operand is a sNaN.

Exception Target instruction | Condition

illegal_instruction FCMPs, FCMPd, | A reserved field is not 0.
FCMPEs, FCMPEd

FCMPqg, FCMPEq | Always

For these instructions, exceptions with
priority lower than illegal_instruction are
intended for emulation.

fp_disabled All PSTATE.pef =0 or FPRS.fef=0
illegal_action All When XAR.v = 1 and any of the following are
true

e XAR.simd=1
XAR.urs1<1> =0
XAR.urs2<1> =0
XAR.urs3 =0
XAR.urd =0

fp_exception_ieee_754 |NV All Conforms to IEEE754.

fp_exception_other FCMPq, FCMPEq | When either of the following is true
(FSR.fit = invalid_fp_register) e 1sl<1>=#0
e 1s2<1>=%0

7.23.

Floating-Point Conditional Compare to
Register

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FCMPEQd 10110 0000 Fd[rs1] = Fd[rs2] v v fcmpeqd fregrs1, fregrsz,
fregra
FCMPEQEd 10110 00102 Fd[rs1] = Fd[rs2] v v fcmpeged fregrsi, fregrss,
Exception if Unordered fregra
FCMPLEEd 1011001002 Fd[rs1] << Fd[rs2] v v fcmppeed fregi, fregss,
Exception if Unordered fregra
FCMPLTEd 101100110: Fd[rs1] < Fd[rs2] v v fcmplteq fregei fregrs,
Exception if Unordered fregra
FCMPNEd 1011010002 Fd[rs1] = Fd[rs2] v V' fcmpned fregrsi, fregrss,
fregra
FCMPNEEd 1011010102 Fd[rs1] = Fd[rs2] v v fcmpneed fregi, fregss,
Exception if Unordered fregra
FCMPGTEd 10110 11002 Fd[rs1] > Fd[rs2] v v fcmpgted fregr, fregrss,
Exception if Unordered fregra
FCMPGEEd 10110 11102 Fd[rs1] > Fd[rs2] v v fcmpgeed fregrsi, freguss,
Exception if Unordered fregra
FCMPEQs 1011000012 Fs[rs1] = Fs[rs2] v v fcmpegs fregisi, fregrsz,
fregra
FCMPEQES 10110 00112 Fs[rs1] = Fs[rs2] v v fcmpeges fregrsi, fregrss,
Exception if Unordered fregra
FCMPLEES 1011001012 Fs[rs1] < Fs[rs2] v v fcmplees fregisi, fregis,
Exception if Unordered fregra
FCMPLTES 10110 01112 Fs[rs1] < Fs[rs2] v v fcmpltes fregisi, fregss,
Exception if Unordered fregra
FCMPNEs 10110 10012 Fs[rs1] # Fs[rs2] v v fcmpnes fregisi, fregrss,
fregra
FCMPNEES 1011010112 Fs[rs1] = Fs[rs2] v v fcmpnees fregii, fregiss,
Exception if Unordered fregra
FCMPGTEsS 10110 11012 Fs[rs1] > Fs[rs2] v v fcmpgtes fregrsi, fregrss,
Exception if Unordered fregra
FCMPGEEs 10110 11112 Fs[rs1] > Fs[rs2] v v fcmpgees fregrsi, fregiss,
Exception if Unordered fregra
[10, | rd op3=110110, | | opf rs2
31 30 29 25 24 19 18 14 13 5 0
Description The above instructions compare the values in the floating-point registers specified by F[rs1]

and F[rs2]. If the condition specified by the instruction is met, then the floating-point

register specified by F[rd] is written entirely with ones. If the condition is not met, then F[rd]

is written entirely with zeroes.

When the source operands are sNaN or qNaN, generated exceptions and instruction results
are described below. The “exception” column indicates the value set in FSR.cexc when an
fp_exception_ieee_754 exception occurs. The “F[rd]” column indicates the value stored in

F[rd] when no exception occurs.

74 Ver 29.0 Jan. 2015

Instruction SNaN QNaN

Exception F[rd] Exception Flrd]
FCMPGTE{s|d}, NV allo NV allo
FCMPLTE{s|d},
FCMPGEE{s |d},
FCMPLEE{s |d}
FCMPEQE{s | d} NV allo NV allo
FCMPNEE{s | d} NV alll NV alll
FCMPEQ{s|d} NV allo — allo
FCMPNE{s|d} NV alll — alll

Programming Note These instructions can be efficiently used with
FSELMOV{s|d}, STFR, STDFR, and the VIS logical instructions.

Exception Target Condition
instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All When XAR.v = 1 and any of the following are true

e XAR.ursl<1>=0

o XAR.Urs2<1> =0

XAR.urs3 =0

e XAR.urd<1>#0

e XAR.simd = 1 and XAR.urs1<2> =0
e XAR.simd = 1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> =0

fp_exception_ieee_754 |NV |All Unordered

7.24.

76

SIMD Compare (comforms to UA2011)

Refer to Section 7.54 and Section 7.55 in UA2011.

Refer to Section 7.127 regarding the SIMD Unsigned Compare instructions,
FPCMPU{EQ|NE|LE|GT}S.

Compatibility Note There are three kinds of SIMD compare instructions.

1) SIMD compare instructions conforming to UA2011 (described in this
section and 7.127)

- The comparison result is stored in the least significant bits of R[rd].

- Source (Fd[rs1] and Fd[rs2]) and destination (R[rd]) registers cannot be
extended by XAR.

- The instruction mnemonic is FPCMP*{8]16]32} or
FUCMP*{8]16]32}.

- FPCMP{NE | EQ}8 are not defined on SPARC64™ X / SPARC64™ X+.

2) SIMD compare instructions as implemented on SPARC64™ X /
SPARC64™ X+ (described in 7.123)

- The comparison result is stored in the most significant bits of Fd[rd].

- Source (Fd[rs1] and Fd[rs2]) registers can be extended by XAR. The
destination (Fd[rd]) register can be extended by XAR, but only basic
floating-point registers (FA[0] — Fd[126]) can be specified. HPC-ACE SIMD
operations are not supported.

- The instruction mnemonic is FCMP*{8]16]|32]|64}X or
FUCMP*{8]16| 32| }X.

- FCMP{NE|EQ}{8]16] 32| }X are not defined on SPARC64™ X/
SPARC64™ X+.

3) SIMD compare instructions as implemented on SPARC64™ X+
(described in 7.139)

- The comparison result is stored in the most significant bits of Fd[rd].

- Source (Fd[rs1] and Fd[rs2]) and destination (Fd[rd]) registers can be
extended by XAR. HPC-ACE SIMD operations are supported.

- The instruction mnemonic is FPCMP*{8]16]32]64}X or
FPCMPU*{8]16]32]64}X.

- FPCMP{NE| EQ}{8]16]32]64}X are not defined on SPARC64™ X /
SPARC64™ X+,

Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef =0
illegal_action XARv=1

Ver 29.0 Jan. 2015

7.25. Floating-Point Divide

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FDIVs 00100 11012 Divide Single Only basic : rd. fdivs fregysi, fregrss, fregra

FDIvd 00100 11102 Divide Double Only basic : rd. fdivd fregysi, fregrss, fregra

FDIVq 00100 11112 Divide Quad Only basic : rd. fdivq fregysi, fregrss, fregra

Refer to Section 7.32 in UA2011.

Note Rounding is performed as specified by FSR.rd or GSR.irnd field.

Exception Target Condition
instruction

illegal_instruction FDI1Vqg Always

For this instruction, exceptions with priority

lower than illegal_instruction are intended for

emulation.
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v =1 and any of the following are true

e XAR.simd=1

e XAR.ursl<1>=#0

e XAR.urs2<1>#0

e XAR.urs3=0

e XAR.urd<2:1> 0
fp_exception_ieee_754 | OF, UF, DZ, |All Conforms to IEEE754.

NV, NX

fp_exception_other FDIVq When either of the following is true
(FSR.ftt = invalid_fp_register) e rsl<1>=0

e 1s2<1>x0
fp_exception_other FDIVs, Refer to Chapter 8.
(FSR.ftt = unfinished_FPop) FDIvVd

7.26. Floating-Point Exponential Auxiliary

Instruction opf Operation HPC-ACE Assembly Language
Regs SIMD Syntax
FEXPAd 10111 1100z Exponential Auxiliary v v fexpad fregyss, fregr
[10, | rd [op3=110110, | — opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0
Description The FEXPAd instruction accelerates the series approximation of the exponential function

exp(x). A table lookup is performed based on the lower bits of Fd[rs2], and the result is
stored in Fd[rd].

Fd[rd] = 1'b0 :: Fd[rs2]<16:6> :: Texp[Fd[rs2]<5:0>]

If the FEXPAd instruction is executed, FSR.cexc and FSR.ftt are set to 0. FSR.aexc is not
updated.

Texp is table of 64 entries that maintains the 52-bit significand of a double-precision
number.

Table 7-5 Table of Texp [k]

Texplk] k |Texplkl k |Texplkl k | Texplkl

0x0000000000000 16 | 0x306FE0A31B715 |32 | 0x6A09E667F3BCD |48 | 0xAE89F995AD3AD

0x02C9A3E778061 |17 |0x33C08B26416FF |33 |0x6DFB23C651A2F |49 |0xB33A2B84F15FB

0x059B0D3158574 |18 |0x371A7373AA9CB |34 | 0x71F75E8EC5F74 |50 | 0xB7F76F2FB5E47

0x0874518759BC8 |19 | 0x3A7DB34E59FF7 | 35 | 0x75FEB564267C9 |51 | 0xBCC1E904BC1D2

0x0B5586CF9890F |20 | 0x3DEA64C123422 | 36 | 0x7A11473EB0187 |52 |0xC199BDD85529C

0xOE3EC32D3D1A2 | 21 | 0x4160A21F72E2A |37 | 0x7E2F336CF4E62 |53 | 0xC67F12E57D14B

0x11301D0125B51 |22 | 0x44E086061892D |38 | 0x82589994CCE13 |54 |0xCB720DCEF9069

0x1429AAEA92DEO | 23 | 0x486A2B5C13CDO0 | 39 | 0x868D99B4492ED | 55| 0xD072D4A07897C

0x172B83C7D517B |24 | 0x4BFDAD5362A27 | 40 | 0x8ACE5422AA0DB | 56 | 0xD5818DCFBA487

© |0 ([(O (O |W ||~ O (F

0x1A35BEB6FCB75 | 25 | 0x4F9B2769D2CA7 | 41 | 0x8F1AE99157736 |57 | 0xDA9E603DB3285

—
o

0x1D4873168BY9AA |26 | 0x5342B569D4F82 |42 | 0x93737BOCDC5E5 |58 | 0xDFC97337B9B5F

—
=

0x2063B88628CD6 |27 | 0x56F4736B527DA |43 | 0x97D829FDE4E50 |59 | 0xE502EE78B3FF6

—
[\

0x2387A6E756238 |28 | 0x5AB07DD485429 |44 | 0x9C49182A3F090 |60 | 0OxEA4AFA2A490DA

—
w

0x26B4565E27CDD |29 | 0x5E76F15AD2148 | 45 | 0xA0C667B5DE565 |61 | 0xEFA1BEE615A27

—
'S

0x29E9DF51FDEE1 | 30 | 0x6247EB03A5585 | 46 | 0xA5503B23E255D |62 | 0xF50765B6E4540

—
[

0x2D285A6E4030B |31 | 0x6623882552225 |47 | 0xA9E6B5579FDBF | 63 | 0xFA7C1819E90D8

78

FEXPAd does not treat Fd[rs2] as a floating-point number. Even if Fd[rs2] is NaN, it is not
treated as a special value.

Ver 29.0 Jan. 2015

Exception

Condition

illegal_instruction

A reserved field is not 0.

fp_disabled

PSTATE.pef = 0 or FPRS.fef=0

illegal_action

When XAR.v = 1 and any of the following are
true

XAR.urs1 =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> %0

XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.27. FEXPAND

Refer to Section 7.33 in UA2011.

Exception Condition

illegal_instruction A reserved field is not 0.
fp_disabled PSTATE.pef = 0 or FPRS.fef = 0
illegal_action XAR.v=1

80 Ver 29.0 Jan. 2015

7.28. Flush Instruction Memory

Refer to Section 7.38 in UA2011.

Note The specifications of the FLUSH instruction in JPS1 and UA2011
are slightly different. Differences between these specifications are noted.
SPARC64™ X / SPARC64™ X+ mainly conform to the JPS1 specification.

Compatibility Note In both JPS1 and UA2011, the least siginificant 3
address bits are ignored, but JPS1 expects software to specify 0 for
the least significant 2 address bits.

Note SPARC64™ X/ SPARC64™ X+ guarantee consistency between the
instruction cache and the data cache, so even if a FLUSH instruction is not
executed, the values in both caches eventually become consistent.
Therefore, the address specified by the instruction is not used, and
exceptions related to the address fields are not generated. However,
SPARC64™ X / SPARC64™ X+ execute instructions out of order, so an
instruction might be sent the pipeline before the instruction cache is
updated. Use the FLUSH instruction on SPARC64™ X / SPARC64™ X+ to
guarantee consistency with instructions in the pipeline.

Exception

Condition

illegal_instruction

A reserved field is not 0.

illegal_action

XAR.v =1

7.29.

82

Refer to Section 7.39 in UA2011.

Flush Register Windows

Exception

Condition

illegal_instruction

A reserved field is not 0.

illegal_action

XARv =1

spill_n_normal

spill_n_other

Ver 29.0 Jan. 2015

7.30. Floating-Point Multiply-Add/Subtract

Instruction var size Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FMADDs 002 01z Multiply-Add Single 4 v fmadds fregrsi, fregrsz fregrss,fregri
FMADDd 002 102 Multiply-Add Double v v fmaddd fregiss, fregrsz, fregrss,fregrd
FMSUBs 01z 01z Multiply-Subtract Single v v fmsubs fregisi, fregrss, fregrss fregra
FMSUBd 01z 102 Multiply-Subtract Double v v fmsubd fregrsi, fregrss, fregrss, fregra
FNMSUBsS 10; 012 Negative Multiply-Subtract Single v v fnmsubs fregyi, fregrsz, fregrss fregra
FNMSUBd 10; 102 Negative Multiply-Subtract Double v v fnmsubd fregis, fregrsz, fregrss fregra
FNMADDs 112 012 Negative Multiply-Add Single v v fnmadds fregsi, fregrss fregss, fregra
FNMADDd 11 102 Negative Multiply-Add Double v v fnmaddd fregisi, fregyss, fregrss fregr

[10,] rd [op3=110111, | rsl | rs3 [var | size | rs2 |

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

SPARC64™ X / SPARC64™ X+ use IMPDEP2 opcodes to implement the Floating-Point
Multiply-Add/Subtract (FMA) instructions. FMA instructions support SIMD execution,
which is an HPC-ACE feature. This section first describes the behavior of non-SIMD FMA
instructions and then explains the use of FMA instructions with HPC-ACE features.

Instruction Operation
Multiply-Add F[rd] = F[rs1] x F[rs2] + F[rs3]
Multiply-Subtract F[rd] = F[rs1] x F[rs2] — F[rs3]

Negative Multiply-Subtract | F[rd] = — (F[rs1] x F[rs2] - F[rs3])
Negative Multiply-Add F[rd] = — (F[rs1] x F[rs2] + F[rs3])

Non-SIMD execution

FMADD multiplies the floating-point registers specified by F[rs1] and F[rs2], adds the product
to the floating-point register specified by F[rs3], and writes the result into the floating-point
register specified by F[rd].

FMSUB multiplies the floating-point registers specified by F[rs1] and F[rs2], subtracts the
floating-point register specified by F[rs3] from the product, and writes the result into the
floating-point register specified by F[rd].

FNMADD multiplies the floating-point registers specified by F[rs1] and F[rs2], subtracts the
floating-point register specified by F[rs3] from the product, negates this value, and writes
the result into the floating-point register specified by F[rd].

FNMSUB multiplies the floating-point registers specified by F[rs1] and F[rs2], adds the
product to the floating-point register specified by F[rs3], negates this value, and writes the
result into the floating-point register specified by F[rd].

An FMA instruction is processed as a fused multiply-add/subtract operation. That is, the
result of the multiply operation is not rounded and has infinite precision. For

FM{ADD | SUB}{s|d}, rounding is done after addition/subtraction. For

FNM{ADD | SUB}{s]d}, rounding is done after negation. Thus, at most one rounding error
can occur.

Table 7-6 describes how SPARC64™ X / SPARC64™ X+ handle traps generated by

Floating-point Multiply-Add/Subtract instructions. If the multiply detects a denormal
source operand while FSR.ns = 0 and the invalid exception trap is not masked, the execution of
the instruction is aborted, the invalid (NV) exception bit is set in FSR.cexc, and a trap for
the exception is generated. FSR.aexc, is not updated.

Addition/subtraction is only done if the multiply does not generate an invalid exception trap.
If addition/subtraction generates an IEEE754 exception trap, the exception is recorded in
FSR.cexc. FSR.aexc is not updated. If addition/subtraction detects an IEEE754 exception
that is masked, the exception is recorded in FSR.cexc and accumulated in FSR.aexc. The
conditions that cause an unfinished_FPop exception for Floating-point
Multiply-Add/Subtract instructions are the same as the conditions for the FMUL instruction
for source operands F[rs1] and F[rs2], and the same as the FADD instruction for source
operand F[rs3] and the destination F[rd].

Table 7-6 TEEE754 Exceptions for Floating-Point Multiply-Add/Subtract Instructions

FMUL IEEE754 trap NV or | No trap No trap

FADD NX only) IEEE754 trap No trap

cexc FMUL exception FADD exception FADD exception,
masked

aexc No change No change Logical OR of cexc
(above) and aexc

Table 7-7 and Table 7-8 describe the values of cexc for various conditions when exceptions
are masked by FSR.tem and do not generate a trap. The IEEE exceptions are abbreviated
as underflow (uf), overflow (of), invalid operation (inv), and inexact (nx).

Table 7-7 Masked exceptions in cexc when FSR.ns =0

FADD
None nx of nx inv
FMUL none None nx of nx inv
inv inv — — inv

Table 7-8 Masked exceptions in cexc when FSR.ns =1

FADD
None nx of nx uf nx inv
FMUL none None nx of nx uf nx inv
nv nv — — — nv
nx nx nx of nx uf nx inv nx
In the above tables, conditions marked “—” do not occur.

Programming Note The Floating-Point Multiply-Add/Subtract
instructions are implemented using the SPARC V9 IMPDEP2 opcode
space. These instructions are specific to SPARC64™ X / SPARC64™ X+
and cannot be used in any programs that will be executed on another
SPARC V9 processor.

The results of FMADD{s|d}, FNMADD{s|d}, FMSUB{s|d}, and FNMSUB{s|d} differ from
the specification of UA2011 when (1) either F[rs1] or F[rs2] is SNaN or (2) F[rs3] is QNaN.

84 Ver 29.0 Jan. 2015

When the result is exactly 0 and the rounding mode is 3 (towards -o), the sign of the result
is negative. When the result is exactly 0 and the rounding mode is not 3, the sign of the

result is positive. The lowercase ”n” in QNaNn, QSNaNn and SNaN#n used in the following
tables refer to the operand number (F[rsn]).

Table 7-9 FMADD{s|d}

F[rs3]
o | N | o0 | 0o | 4N + | QNaN3| SNaN3
B — NV
-00 dQNaN
-N Flrs1] X F[rs2] o Flrs1] X F[rs2]
> !
T F[rs3] Fd[rs1] X Fd[rs2] N F[rs3]'
0 _ -0 +0ii _
F [rs3] _ _ Flrs3]
+0 w | o _
— — QNaN3
+N Flrs1] X F[rs2] o Frs1] X F[rs2]
- X
Flrs1] + F[rs3] Fdirs1] > Fdlrs2] +F[rs3] NV
X
NV — QSNaN3
F[rs2] +00 dQNaN o
QNaN1 QNaN1
QNaN2 Ql\g N2
QNaN
(+0x NV
e dQNaN .
NV QNaN3
QSNaN1 QSNaN1
NV
QSNaN2 QSNaN2

i When the result is 0, footnote (ii) applies.

i When the rounding mode is towards —°, the result is —0.

Table 7-10 FNMADD{s|d}

F[rs3]
- | N -0 | 10 | +N +00 QNaN3 | SNaN3
B — NV
— dQNaN
i) % — -(F[rs1] X F[rs2
N (F[rs_l]F[rsg][rsﬂ) -(Fd[rs1] X Fd[rs2]) F) 'l[rSS]iEi)
-0 _ +0 +01v —
-F[rs3] _ _ -F[rs3]
+0 +Qiv -0 .
— — QNaN3
N -(F[rs1] X F[rs2]) o -(F[rs1] X F[rs2])
-(Fd[rs1] X Fd[rs2
F[;fl] - F[rs3]" (Fered] ez - Flrss] NV
NV — QSNaN3
F[rs2
[rs2] +o0 dQNaN ~o0
QNaN1 QNaN1
QNaN2 QNaN2
QNaN
(+0x N
o dQNaN NV
- QNaN3
QSNaN1 QSNaN1
NV
QSNaN2 QSNaN2

i When the result is 0, footnote (iv) applies.
v When the rounding mode is towards —o, the result is —0.

86 Ver 29.0 Jan. 2015

Table 7-11 FMSUB{s|d}

F[rs3]
- N 0 | 40 N +o | QNaN3| SNaN3
o NV —
dQNaN .
- Flrs1] X F[rs2 _ x
N [rs1] [rs2] Fd[rs1] X Fd[rs2] Flrs1] X Frs2]
- Frs3]v - F[rs3]
0 _ +QVvi -0 _
-F [rs3] o o -F[rs3]
0 +0 | +0v —
QNaN3
+N Flrs1] X F[rs2] N Flrs1] X F[rs2]
Flrs1] ~Flrs3] Fd[rs1] X Fd[rs2] CFirsa]’ .
X
— NV QSNaN3
F[rs2] +00 oo dQNaN
QNaN1 QI\E N1
QNaN2 Ql\g N2
QNaN
NV
(£0x
o) dQNaN NV
NV QNaN3
QSNaN1 QSNaN1
NV
QSNaN2 QSNaN2

v When the result is 0, footnote (vi) applies.

vi. When the rounding mode is towards —<°, the result is —0.

Table 7-12 FNMSUB{s|d}

F[rs3]
= N 0 | 0 +N +o | QNaN3| SNaN3
-0 NV -
dQNaN o0
- -(F[rs1] X F[rs2 — i
N (Flrs1] > Firs2]) (Fd[rs1] % Fdfrsz)) | (Frst] X Flrs2)
+ F[rs3]v2 +F[rs3]
° _ +Qviil 5 B
F[rs3] o o F[rs3]
+0 _
-0 +()viil QNaN3
Frsyy| N ~(F[rs1] X F[rs2])| _ o -(Flrs1] X Flrs2])

[><] © Frs3] (Fdrs1] > Frs2)) | 77 o -
Flrs] +o0 - NV QSNaNs3
= dQNaN

QNaN1 QNaN1
QNaN2 QNaN2
QNaN
o dQNan
+o0) QNa -
NV QNaN3
QSNaN1 QSNaNT
NV
QSNaN2 QSNaN2

SIMD execution In SPARC64™ X / SPARC64™ X+, the basic and extended operations of a SIMD instruction
are executed independently. Because the basic operation uses registers in the range Fd[0]

— Fd[126], the operation always sets the most significant bits of XAR.urs1, XAR.urs2,
XAR.urs3, and XAR.urd to 0 (page 35). This restriction is relaxed for SIMD FMA
instructions, so that operations that refer to both basic and extended registers can be

executed.

Note The above limitation for SIMD instructions only applies when

XAR.simd = 1. When XAR.simd = 0, rs1, rs2, rs3, and rd can use any of
the floating-point registers.

For a SIMD FMA instruction, rs1 and rs2 can specify any of the floating-point registers

Fd[2n] (n =0 -63, 128 — 191). When the basic operation specifies an extended register, the
extended operation uses the corresponding basic register. That is, the basic operation uses
registers Fd[2n] (n =0 - 63, 128 — 191), and the extended operation uses
Fd[(2n + 256) mod 512] (n =0 - 63, 128 — 191).

The limitations for rs3 and rd are the same as for other SIMD instructions. The basic
operation must use registers Fd[0] — Fd[126], and the extended operation must use
Fd[256] — Fd[382]. That is, urs3<2> and urd<2> are never used to specify registers. SIMD

vi When the result is 0, footnote (viii) applies.
viiWhen the rounding mode is towards —<°, the result is —0.

88

Ver 29.0 Jan. 2015

FMA instructions use these bits to specify additional execution options; these bits should be
0 for all other SIMD instructions. When urs3<2> = 1, the register(s) specified by rs1 is used
for both basic and extended operations. When urd<2> = 1,the sign of the product for the
extended operation is reversed.

The meanings of XAR.urs1, XAR.urs2, XAR.urs3, and XAR.urd for a SIMD FMA instruction
are summarized below:

=« XAR.urs1<2> rs1<8> for the basic operation, -rs1<8> for the extended operation

= XAR.Urs2<2> rs2<8> for the basic operation, -rs2<8> for the extended operation

=« XAR.urs3<2> specifies whether the extended operation uses rs1<8> or —rs1<8>

= XAR.urd<2> specifies whether the sign of the product is reversed for the extended
operation

The rs1<8> bit described above is a bit in the decoded HPC-ACE register number for a
double-precision register. Refer to Figure 5-1 (page 24) for details.

Table 7-13 shows these SIMD operations in more details. See Table 7-14 for the notation
used in Table 7-13.

Table 7-13 SIMD operations

Instruction | Basic operation Extended operation
Fmadd frdy < frslx frs2+ frs3 frde— (= 1)nx (¢? frs1: frsli) x frs2i+ frsSe
Fmsub frdy < frsl x frs2— frs3s frde— (= 1)nx (¢? firs1: fisli) x frs2i— frsSe

Fnmsub frdy < — (frslx frs2- frs3y) frde— —((=1)nx (¢? frsl: frsli) x frs2i— frs3e)

Fnmadd | frds < — (frs1 x frs2+ frs3) frde— —((=1)nx(c? frs1: frsli)x frs2i+ frs3e)

Table 7-14 Notation used in Table 7-13

frs1: urs1<2:0>:rs1<5:1>::1'b0 frs1;-ursl<2>::urs1<1:0>::rs1<5:1>::1'b0
frs2: urs2<2:0>::rs2<5:1>::1'b0 frs2;:~urs2<2>::urs2<1:0>::rs2<5:1>::1'b0
1rs3y° 1'b0::urs3<1:0>::rs3<5:1>::1'b0 frs3e- 1'b1::urs3<1:0>::rs3<5:1>::1'b0
frdy: 100:: urd<1:0>::rd<5:1>::1'b0 frde: 1b1::urd<1:0>::rs3<5:1>::1'b0

! urs3<2>

n urd<2>

Example 1: Multiplication of complex numbers
(al+ixXb1) X(a2+ixXb2)=(alxa2-b1xXb2)+ix(alXb2+a2xbl)

/*

* X: address of source complex number

* Y: address of source complex number

* Z: address of destination complex number

*/

/* Set up registers */

sxar2

Idd,s [X], wFO /* %FO: al, %F256: bl */
ldd,s [Y1, ¥f2 /* %F2: a2, %F258: b2 */
sxarl

fzero,s %F4 /* clear destination registers */

/* Perform calculation */

sxar2

fnmaddd,snc %f256, %f258, %f4, %f4
/* %f4 = -%F256 * %fF258 - %f4 */
/* %F260 = %F256 * %f2 - %F260 */

fmaddd,sc %f0, %f2, %f4, %f4

/* %fF4
/* %260

/* Store results */.
sxarl
std,s %F4,

[Z1

= %FO0 * %F2 + %F4 */
= %fO0 * %F258 + %F260 */

Example 2: 2x2 matrix multiplication

/*

* A: address of source matrix : all, al2, a2l, a22
* B: address of source matrix : bll, bl2, b21, b22
* C: address of destination matrix : cll, cl2, c21, c22

*/

/* Set up registers */

sxar2

ldd,s [A], %FO /* %FO: all, %F256: al2 */
ldd,s [A+16], %f2 /* %f2: a21, %f258: a22 */
sxar2

ldd,s [Bl, %f4 /* %F4: bll, %F260: bl2 */
ldd,s [B+16], %f6 /* %F6: b2l, %F262: b22 */
sxar2

fzero,s%f8 /* %f8: cll, %f264: cl2 */
fzero,s%f10 /* %F10: c21, %f266: c22 */

/* Perform calculation */

sxar?2

fmaddd,sc %f0, %f4, %F8, %Ff8
/* %F8 = %fO * %f4 + %F8 */

/> %fF264
fmaddd,sc %f256, %f6, %f8, %F8
/* %f8 = wf256 * %f6 + %f8 */

/* %F264

sxar?2

= %fO0 * %f260 + %f264 */

= %F256 * %F262 + %F264 */

fmaddd,sc %f2, %f4, %f10, %F10

/* %Fl1l0 = %F2 * %f4 + %F10 */
/* %fF266 = %fF2 * %F260 + %F266 */
fmaddd,sc %f258, %f6, %F10, %Fl0
/* %F10 = %F258 * %f6 + %fF10 */
/* %f266 = %F258 * %F262 + %F266 */
/* Store results */.
sxar2
std,s %wf8, [Z]
std,s %10, [Z+16]
Exception Target Condition
instruction
illegal_instruction All size = 11, and var = 11,
(Reserved for quadruple-precision
FMA instructio)
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action XAR.v = 1 and any of the following are
true
o XAR.Ursl<1>=#0
o XAR.urs2<1> =0
o XAR.Urs3<1> =0
e XAR.urd<1>=0
fp_exception_ieee_754 | NV, NX, OF, |All
UF
fp_exception_other All Refer to Chapter 8.
(FSR.fit = unfinished_FPop)

90 Ver 29.0 Jan. 2015

7.31.

Floating-Point Minimum and Maximum

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FMAXd 10111 00002 Select Maximum Double v v fmaxd fregisi, fregss, fregra

FMAXs 10111 00012 Select Maximum Single v v fmaxs fregisi, fregss, fregra

FMINd 10111 00102 Select Minimum Double v v fmind fregisi, fregrss, fregra

FMINs 10111 00112 Select Minimum Single v v fmins fregrsi, fregrss, fregra

[10, | rd | op3 = 11 0110, [rsl [opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0

Description FMAX{s]d} compares the values in the floating-point registers specified by F[rs1] and F[rs2].

If F[rs1] > F[rs2], then F[rs1] is written to the floating-point register specified by F[rd].
Otherwise, F[rs2] is written to F[rd].

FMIN{s]d} compares the values in the floating-point registers specified by F[rs1] and F[rs2].
If F[rs1] < F[rs2], then F[rs1] is written to the floating-point register specified by F[rd].
Otherwise, F[rs2] is written to F[rd].

FMIN and FMAX ignore the sign of a zero value. When the value of F[rs1] is +0 or —0 and the
value of F[rs2] is +0, -0, the value of F[rs2] is written to the destination register.

When one of the source operands is QNaN and the other operand is neither QNaN nor
SNaN, the value that is not QNaN is stored in F[rd].

Note Unlike other floating-point instructions, FMIN and FMAX do not
propagate NaN.

When one or both of the source operands are SNaN, or both of the source operands are
QNaN, the value defined in Table B-1 of JPS1 Commonality is written to F[rd].
Furthermore, when one of the source operands is QNaN or SNaN, SPARC64™ X /
SPARC64™ X+ detect an fp_exception_ieee_754 exception.

92

Table 7-15 FMIN{s]|d} and FMAX{s|d}

F[rs2]
o |-Ffn |0 [+0 |+Fn |+o |QNaN|SNaN
—00
—Fn
—0 — NV
+0 min(F[rs1], F[rs2]), or max(F[rs1], F[rs2]) | F[rs1]
+Fn NV
Flrsi] QSNaN2
+00
NV
QNaN F[rs2]
NV
SNaN | 0 sNaN1
Exception Target Condition
instruction
fp_disabled All PSTATE.pef =0 or FPRS.fef=0
illegal_action All When XAR.v = 1 and any of the following are true
e XAR.urs1<1>=0
o XAR.Urs2<1> =0
e XAR.urs3 =0
o XAR.urd<1>=%0
e XAR.simd =1 and XAR.urs1<2> = 0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> = 0
fp_exception_ieee_754 |NV |All Unordered

Ver 29.0 Jan. 2015

7.32. Floating-Point Move

Instruction opf Operation

HPC-ACE Assembly Language
Regs SIMD Syntax

FMOVs 0 0000 00012 Move Single
FMOVd 0 0000 00102 Move Double
FMOVq 0 0000 00112 Move Quad

v v fmovs fregrss, fregra
v v fmovd ﬁ'egrSZ,ﬁ'egrd
4 meVq ﬁ'egrSZ,ﬁ'egrd

[10,] rd | op3=110100,

opf | rs2 |

31 30 29 25 24 19

18 14 13

Refer to Section 7.42 in UA2011.

5 4 0

Exception

Target
instruction

Condition

illegal_instruction

FMOVs,
Fmovd

A reserved field is not 0.

FMOVq

Always

For this instruction, exceptions with priority
lower than illegal_instruction are intended for
emulation.

fp_disabled

All

PSTATE.pef =0 or FPRS.fef =0

illegal_action

FMOVs,
Fmovd

XAR.v = 1 and any of the following are true
o XAR.Ursl =0

o XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> %0
XAR.simd =1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

FMOVq

XAR.v =1 and any of the following are true
e XAR.simd =1

e XAR.urs1#0

o XAR.urs2<1>=0

e XAR.urs3 =0

e XAR.urd<1>=0

fp_exception_other
(FSR.ftt = invalid_fp_register)

FMOVq

When either of the following is true
e 152<1>+0
e rd<1>#%0

7.33.

94

Condition (FMOVece)

Refer to Section 7.43 in UA2011.

Move Floating-Point Register on

Exception

Target instruction

Condition

illegal_instruction

FMOV{S|D}icc,
FMOV{S|D}xcc,
FMOV{S|D}fcc

A reserved field is not 0.

FMOVQicc, FMOVQxcc,
FMOVQfcc

Always

For these instructions, exceptions
with priority lower than
illegal_instruction are intended for
emulation.

When either of the following is true
e opf_cc =101,
e opf_cc =111,

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef=0

illegal_action

All

XARv =1

fp_exception_other
(FSR.fit = invalid_fp_register)

FMOVQicc, FMOVQxcc,
FMOVQfcc

When either of the following is true
e 1s2<1>x0
e rd<1>=0

Ver 29.0 Jan. 2015

7.34.

Move Floating-Point Register on Integer

Register Condition (FMOVR)

Refer to Section 7.44 in UA2011.

Exception

Target instruction

Condition

illegal_instruction

FMOVR{s|d}Z,
FMOVR{s|d}LEZ,
FMOVR{s|d}LZ,
FMOVR{s | d}NZ,
FMOVR{s|d}GZ,
FMOVR{s | d}GEZ

A reserved field is not 0.

FMOVRQGEZ

FMOVRQqZ, Always
FMOVRQLEZ, For these instructions, exceptions
FMOVRgLZ, with priority lower than
FMOVRgNZ, illegal_instruction are intended for
FMOVRQGZ, emulation.
FMOVRQGEZ
— When any of the following are true
e rcond = 0002
e rcond = 1002
o opf_low : excluding 0 01012,
001102, and 0 01112
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action All XARv =1
fp_exception_other FMOVRgZ, When either of the following is true
(FSR.fit = invalid_fp_register) FMOVRQLEZ, o rs2<1>=0
FMOVRqgLZ, o rd<1>=0
FMOVRQgNZ,
FMOVRQGZ,

7.35.

96

Refer to Section 7.45 in UA2011.

Partitioned Multiply Instructions

Exception Target Condition

instruction
fp_disabled all PSTATE.pef = 0 or FPRS.fef =0
illegal_action all XARv=1

Ver 29.0 Jan. 2015

7.36.

Floating-Point Multiply

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FMULs 00100 10012 Multiply Single v v fmuls fregisi, fregss, fregra

FMULd 00100 10102 Multiply Double v v fmuld fregysi, fregss, fregra

FMULq 00100 10112 Multiply Quad v fmulq fregysi, fregss, fregra

FsMuLd 00110 10012 Multiply Single to Double v v fsmuld freguss, fregrss, fregra

FAMULg 00110 1110: Multiply Double to Single v

Ffdmul q ﬁ'EgrsJ, ﬁ'egrsz, ﬁ'egrd

Refer to Section 7.46 in UA2011.

Note For FMUL{s|d]qg}, rounding is performed as specified by FSR.rd or

GSR.irnd.
Exception Target Condition
instruction
illegal_instruction FMULq, Always.

FdMULq For these instructions, exceptions with
priority lower than illegal_instruction are
intended for emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action FMULSs, XAR.v =1 and any of the following are

FMULd, true

FsMULd e XAR.Urs1l<1>=0

o XAR.urs2<1> =0
e XAR.urs3 =0
e XAR.urd<1>=0
e XAR.simd =1 and XAR.urs1<2> = 0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> # 0
FMULq, XAR.v = 1 and any of the following are
FdMULq true
e XAR.simd =1
e XAR.urs1l<1>=0
o XAR.urs2<1>=0
o XAR.urs3 =0
o XAR.urd<1>=0
fp_exception_ieee_754 | NV All Conforms to IEEE754.
OF, UF, NX FMULSs,
FMULd,
FMULg
fp_exception_other FMULqg When any of the following are true
(FSR.ftt = invalid_fp_register) e rs1<1>=#0
e 1s2<1>=0
e rd<1>=%0
FdMULq rd<1>=0
fp_exception_other FMULSs, Refer to Chapter 8.
(FSR.ftt = unfinished_FPop) FMULd,

FsMuLd

7.3

7. Floating-Point Negative

Instruction opf

Operation

HPC-ACE Assembly Language
Regs. SIMD Syntax

FNEGs

FNEGd
FNEGq

00000 01012
0 0000 01102
0 0000 01112

Negate Single
Negate Double
Negate Quad

v v
v v

fnegs
fnegd
4 fnegq

fregyss, fregra
fr €Lrs2, 11 eLrd
fr €Lrs2, 11 eLrd

98

Refer to Section 7.48 in UA2011.

Exception

Target

instruction

Condition

illegal_instruction

FNEGs,
FNEGd

A reserved field is not 0.

FNEGq

Always.

For this instruction, exceptions with
priority lower than illegal_instruction are
intended for emulation.

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef=0

illegal_action

FNEGs,
FNEGd

XAR.v =1 and any of the following are
true

o XAR.urs1 =0

XAR.urs2<1> =0

XAR.urs3 £ 0

XAR.urd<1>==0

XAR.simd = 1 and XAR.urs2<2> = 0

e XAR.simd =1 and XAR.urd<2> = 0

FNEGq

XAR.v = 1 and any of the following are
true

e XAR.simd =1

XAR.urs1 =0

XAR.Urs2<1> =0

XAR.urs3 =0

XAR.urd<1>=0

fp_exception_other
(FSR.fit = invalid_fp_register)

FNEGq

When either of the following is true
e 152<1>+0
e rd<1>+#0

Ver 29.0 Jan. 2015

7.38. FPACK

Refer to Section 7.51 in UA2011.

Exception

Target Instruction

Condition

illegal_instruction

FPACK16, FPACKFIX

iw<18:14> #+ 0

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef =0

illegal_action

All

XAR.v =1

7.39. Fixed-point Partitioned Add

<SPARC64™ X>

Instruction opf

Operation

HPC-ACE
Regs. SIMD

Assembly Language Syntax

FPADD16 00101 00002
FPADD16S 00101 00012
FPADD32 00101 00102
FPADD32S 00101 00112

Four 16-bit addition
Two 16-bit addition
Two 32-bit addition
One 32-bit addition

fpaddl6 fregrsi, fregrss, fregra
fpaddl6s fregrsi, fregrss, fregra
fpadd32 fregrsi, fregrss, fregra
fpadd32s fregrsi, fregrss, fregra

<SPARC64™ X+>

Instruction opf

Operation

HPC-ACE
Regs. SIMD

Assembly Language Syntax

FPADD16 00101 00002
FPADD16S 00101 00012
FPADD32 00101 00102
FPADD32S 00101 00112

Four 16-bit addition
Two 16-bit addition
Two 32-bit addition
One 32-bit addition

v

v
v
v

v

v
v
v

fpaddl6 fregrsi, fregrss, fregra
fpaddl6s fregrsi, fregrss, fregra
fpadd32 fregrsi, fregrss, fregra
fpadd32s fregrsi, fregrss, fregra

Refer to Section 7.52 in UA2011.

Note

FPADD{16]32}{S} do not update any fields in FSR.

Note

SIMD is not available for these instructions on SPARC64™ X, but
it is available on SPARC64™ X+,

Behavior of FPADD16
63 47 31 15 0
Flrs1] | v [\ \\ | \ |
63 47 31 15 0
sl [\, T\, T \ T \]
¥ ¥ ¥ ¥
63 | a7 | a1 | 15 i 0
F[rd] | v | v \ 4 | |
Behavior of FPADD16S
31 15
F[rs1] | \ | \\
31 15
Fis2l [\, T '\
< +¥ < +¥
31 | 15|
F[rd] | v [v

100 Ver 29.0 Jan. 2015

Behavior of FPADD32

63 31
Flrs1] | \ | \
63 31 \
Fis?] | - | N
] +$ Y _I_i
63 | 31 |
F[rd] | A [v
Behavior of FPADD32S
31 0
Flrs1] | \ |
31 0
Firs2] | - |
] + ¥
31 | 0
Flrd] | v |
<SPARC64™ X>
Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef =0
illegal_action XAR.v =1
<SPARC64™ X+>
Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef =0
illegal_action XAR.v = 1 and any of the following are true

XAR.urs1<1> =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.40. Integer Multiply-Add

Instruction var size Operation HPC-ACE Assembly Language Syntax

Regs SIMD
FPMADDX 002 002 Lower 8 hytes of unsigned integer multiply-add v v fpmaddXx fregrsi, fregrsz, fregrss, fregra
FPMADDXH 012 002 Upper 8 bytes of unsigned integer multiply-add 4 v fpmaddxhi fregisi, fregrss, fregss fregra

Refer to Section 7.56 in UA2011.

Exception Target Condition
instruction

fp_disabled All PSTATE.pef = 0 or FPRS.fef =0

illegal_action All XAR.v =1 and any of the following are true
XAR.urs1l<1> =0

XAR.urs2<1> =0

XAR.urs3<1> =0

XAR.urd<1># 0

XASR.simd = 1 and XAR.urs1<2> = 0
XASR.simd = 1 and XAR.urs2<2> = 0
XASR.simd = 1 and XAR.urs3<2> = 0
XASR.simd = 1 and XAR.urd<2> = 0

102 Ver 29.0 Jan. 2015

7.41.

FPMERGE

Refer to Section 7.57 in UA2011.

Exception

Condition

fp_disabled

PSTATE.pef = 0 or FPRS.fef =0

illegal_action

XARv =1

7.42.

<SPARC64™ X>

Fixed-point Partitioned Subtract (64-bit)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD

FPSUB16 00101 01002 Four 16-bit Subtract fpsubl6 fregrsi, fregrss, fregra

FPSUB16S 00101 01012 Two 16-bit Subtract fpsubl6s fregi, fregsz, fregra

FPSUB32 00101 01102 Two 32-bit Subtract fpsub32 fregrsi, fregrss, fregra

FPSUB32S 00101 01112 One 32-bit Subtract fpsub32s fregisi, fregrss, fregra

<SPARC64™ X+>

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD

FPSUB16 00101 0100 Four 16-bit Subtract v v fpsubl6 fregusi, fregrss, fregra

FPSUB16S 00101 01012 Two 16-bit Subtract v v fpsubl6s fregysi, fregrss, fregra

FPSUB32 00101 01102 Two 32-bit Subtract v v fpsub32 fregrsi, fregrss, fregra

FPSUB32S 00101 0111z One 32-bit Subtract v v

Tpsub32s fregrsi, fregrss, fregra

Refer to Section 7.58 in UA2011.

Note FPSUB{16]32}{S} do not update any fields in FSR.

Note SIMD is not available for these instructions on SPARC64™ X, but

it is available on SPARC64™ X+,

Behavior of FPSUB16

63 47

F[rs1] | \ | \

Frs2] | \

63 \ 47\
\

«_»
63 | 47
F[rd] | A |
Behavior of FPSUB16S
31 15
Flrs1] [[\
31 \ 15 \
F[rs2] | \ , |
_»
31 | 15
F[rd] | v [

104 Ver 29.0 Jan. 2015

Behavior of FPSUB32

63 31 0
Flrs1] | \ | \
63 \ 31 \ 0
Flrs2] | \ g | \ g |
¥ Y ¥
63 | 31 | 0
Flrd] | \ | v |
Behavior of FPSUB32S
31 0
Flrs1] | \ |
31 \ 0
F[rs2] | \) |
«_»¥
31 | 0
F[rd] | A |
<SPARC64™ X>
Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef =0
illegal_action XAR.v =1
<SPARC64™ X+ >
Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef =0
illegal_action XAR.v = 1 and any of the following are true

XAR.urs1<1> =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.43.

F Register Logical Operate

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FZERO 00110 00002 Zero fill v v fzero fregra
FZEROs 0 0110 00012 Zero fill, single precision 4 4 fzeros fregra
FONE 00111 11102 Onefill v v fone fregra
FONEs 00111 11112 One fill, single precision v v fones fregra
FSRC1 00111 01002 Copy Fd[rs1] v v fsrcl fregysi, fregra
FSRC1s 00111 01012 Copy Fs[rsi] v v fsrcils fregrsi, fregra
FSRC2 00111 10002 Copy Fd[rs2] v v fsrc2 fregrsz, fregrd
FSRC2s 00111 10012 Copy Fs[rs2] v v fsrc2s fregrss, fregra
FNOT1 00110 10102 Negate (1’s complement) Fd[rs1] 4 4 fnotl fregrsi, fregra
FNOT1s 00110 10112 Negate (1’s complement) Fs[rs1] v v fnotls fregysi, fregra
FNOT2 00110 01102 Negate (1’s complement) Fd[rs2] v v fnot2 fregyss, fregra
FNOT2s 00110 01112 Negate (1’s complement) Fs[rs2] 4 4 fnot2s fregrss, fregra
FOR 00111 11002 Logical OR v v for fregysi, fregrss, fregra
FORs 00111 11012 Logical OR, single precision v v fors fregysi, fregyss, fregra
FNOR 00110 00102 Logical NOR v v fnor fregysi, fregrss, fregra
FNORs 00110 00112 Logical NOR, single precision v v fnors fregysi, fregrss, fregra
FAND 00111 00002 Logical AND v v fand fregysi, fregyss, fregra
FANDs 00111 00012 Logical AND, single precision 4 4 fands fregysi, fregrss, fregrd
FNAND 00110 11102 Logical NAND v v fnand 1regrsi, fregrss, fregra
FNANDs 00110 11112 Logical NAND, single precision v v fnands fregis1, fregyss, fregra
FXOR 00110 1100, Logical XOR v v fxor fregysi, fregyss, fregra
FXORs 00110 11012 Logical XOR, single precision v v fxors fregysi, fregrss, fregra
FXNOR 00111 00102 Logical XNOR v v fxnor fregysi, fregyss, fregra
FXNORs 00111 00112 Logical XNOR, single precision v v fxnors fregrs1, fregyss, fregra
FORNOT1 00111 10102 (not Fd[rs1]) or Fd[rs2] v v fornotl fregri, fregss, fregra
FORNOT1s 0011110112 (not Fs[rs1]) or Fs[rs2] v v fornotls fregri, fregrss, fregra
FORNOT2 00111 01102 Fd[rs1] or (not Fd[rs2]) v v fornot2 fregui, fregss, fregra
FORNOT2s 00111 0111z Fs[rs1] or (not Fs[rs2]) v v fornot2s fregri, fregss, fregra
FANDNOT1 00110 10002 (not Fd[rs1]) and Fd[rs2] v v fandnotl fregisi, fregrsz, fregr
FANDNOT1s 00110 1001; (not Fs[rs1]) and Fs[rs2] v v fandnotls fregi, fregss, fregra
FANDNOT2 00110 01002 Fd[rs1] and (not Fd[rs2]) v v fandnot2 fregri, fregrss, fregra
FANDNOT2s 00110 01012 Fs[rs1] and (not Fs[rs2]) v v fandnot2s fregri, fregrss, fregra

Refer to Sections 7.60, 7.61, and 7.62 in UA2011.

For the 64-bit versions of these instructions, the names of these instructions on SPARC64™
X/ SPARC64™ X+ are different than the instruction names used in UA2011.

UA2011 name

SPARC64™ X / SPARC64™ X+ name

FZEROd FZERO
FONEd FONE
FSRC1d FSRC1

106

Ver 29.0 Jan. 2015

FSRC2d FSRC2
FNOT1d FNOT1
FNOT2d FNOT2
FORd FOR
FNORd FNOR
FANDd FAND
FNANDd FNAND
FXORd FXOR
FXNORd FXNOR
FORNOT1d FORNOT1
FORNOT2d FORNOT2
FANDNOT1d FANDNOT1
FANDNOT2d FANDNOT2

108

Exception Target Condition

instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_instruction | FZERO, iw<18:14> = 0 or iw<4:0> = 0

FZEROs, FONE,
FONEs

FSRC1,
FSRC1s,
FNOT1, FNOT1s

iw<4:0> =0

FSRC2,
FSRC2s,
FNOTZ2, FNOT2s

iw<18:14> = 0

illegal_action

FZERO,
FZEROs, FONE,
FONEs

XAR.v = 1 and any of the following are true
XAR.urs1 =0

XAR.urs2 =0

XAR.urs3 = 0

XAR.urd<1> =0

XASR.simd = 1 and XAR.urd<2> =0

FSRC1,
FSRC1s,
FNOT1, FNOT1s

XAR.v = 1 and any of the following are true
o XAR.urs1<1> =0

o XAR.urs2 =0

XAR.urs3 =0

XAR.urd<1>=0

XASR.simd = 1 and XAR.urs1<2> = 0
XASR.simd = 1 and XAR.urd<2> = 0

FSRC2,
FSRC2s,
FNOT2, FNOT2s

XAR.v =1 and any of the following are true
o XAR.urs1=0

o XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1>=0

XASR.simd = 1 and XAR.urs2<2> = 0
XASR.simd = 1 and XAR.urd<2> =0

FOR, FORs,
FNOR, FNORSs,
FAND, FANDs,
FNAND,
FNANDs, FXOR,
FXORs, FXNOR,
FXNORs,
FORNOT1,
FORNOT1s,
FORNOT2,
FORNOT2s,
FANDNOT1,
FANDNOT1s,
FANDNOTZ,
FANDNOT2s

XAR.v =1 and any of the following are true
e XAR.ursl<1> =0

e XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XASR.simd = 1 and XAR.urs1<2> = 0
XASR.simd = 1 and XAR.urs2<2> = 0
XASR.simd = 1 and XAR.urd<2> = 0

Ver 29.0 Jan. 2015

7.44. Floating-Point Reciprocal Approximation

Instruction opf

Operation

HPC-ACE Assembly Language

Regs SIMD Syntax

FRCPAd 10111 01002 Reciprocal Approximation Double v v frcpad fregysz, fregra
FRCPAs 10111 01012 Reciprocal Approximation Single v v frcpas fregrss, fregra
FRSQRTAd 10111 01102 Reciprocal Approximation of v v frsqrtad fregys, fregr
Square Root, Double
FRSQRTAsS 10111 01112 Reciprocal Approximation of v v frsqrtas freguws, fregr
Square Root, Single
[10,] rd | op3=110110, | — opf | rs2 |
31 30 29 25 24 19 18 5 4 0
Description FRCPA{s,d} calculates the reciprocal approximation of the value in the floating-point

register specified by F[rs2] and stores the result in the floating-point register specified by
F[rd]. Although the result is an approximation, the calculation ignores FSR.rd. The resulting
rounding error is less than 1/256, when the result is normalized. In other words,

frcpa(x) —1/x <
1/x

1
256

Results and exceptions for FRCPA{s,d} are shown in Table 7-16. The upper row in each
entry indicates the type(s) of exception if an exception is signalled, and the lower row in
each entry indicates the result when an exception is not signalled. For more information on
the causes of an fp_exception_ieee_754 exception, refer to Appendix B in JPS1
Commonality.

Table 7-16 FRCPA{s|d}

op2 Exceptions and results
FSR.ns =0 FSR.ns=1
~+00 — —
0 0
+N (N > 2" for single, UFix UF, NX
N >2"*for double) approximation of +1/N +0

(denormal)X

+N (+Nmin <N <2 for single,

+Nmin <N <22 for double)

approximation of +1/N

approximation of +1/N

+D unfinished_FPop DZ
- +00
+0 DZ DZ
+00 +00
-0 DZ DZ
—o0 —00
-D unfinished_FPop DZ
- —00

-N (+Nmin < N < 2" for single,

+Nmin <N < 2"2for
double)

approximation of -1/N

approximation of -1/N

-N (N > 2= for single, UFix UF, NX
N > 2" for double) approximation of -1/N -0
(denormal)*
_o _ _
-0 -0
SNaN NV NV
QSNaN2 QSNaN2
QNaN — —
op2 op2
N Positive normal number (except for zero, NaN, and infinity)
D Positive denormal number
Nmin Minimum value of a positive normal number
dNaN Sign of QNaN is 0 and all bits of the exponent and significand are 1
QSNaN2 Refer to TABLE B-1 in JPS1 Commonality

FRSQRTA{s]d} calculates the reciprocal approximation of the square root of the value in
the floating-point register specified by F[rs2] and stores the result in the floating-point
register specified by F[rd]. Although the result is an approximation, the calculation ignores
FSR.rd. The resulting rounding error is less than 1/256. In other words,

|frsqrta(x)—1/(\/;)|<i
iR | e

Results and exceptions for FRSQRTA{s]d} are shown in Table 7-17. The upper row in each
entry indicates the type(s) of exception if an exception is signalled, and the lower row in
each entry indicates the result when an exception is not signalled. For more information on
the causes of an fp_exception_ieee_754 exception, refer to Appendix B in JPS1
Commonality

ix When FSR.tem.ufm = 0, NX is not detected.
X When the result is denormal, the rounding error may be larger than 1/256.

110 Ver 29.0 Jan. 2015

Table 7-17 FRSQRTA{s|d}

op2 Exceptions and results
FSR.ns =0 FSR.ns=1
+00 - -
+00 +0
+N — —
+1U[N) AN
+D unfinished_FPop —
- +0
+0 — —
+0 +0
-0 J— J—
+0 +0
-D NV NV
dNaN dNaN
-N NV NV
dNaN dNaN
—0 NV NV
dNaN dNaN
SNaN NV NV
QSNaN2 QSNaN2
QNaN — —
op2 op2
Exception Target instruction Condition
illegal_instruction All A reserved field is not 0. (iw<18:14> #0)
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v = 1 and any of the following are

true
o XAR.ursl =0

o XAR.urs2<1> =0
e XAR.urs3 =0
o XAR.urd<1>=0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd = 1 and XAR.urd<2> = 0
fp_exception_ieee_754 | NV, | FRCPAs, FRCPAd, Conforms to IEEE754.
DZ FRSQRTs, FRSQRTAd
UF, |FRCPAs, FRCPAd Conforms to IEEE754.
NX

fp_exception_other

(FSR.fitt = unfinished_FPop)

All

Refer to Chapter 8.

7.45. Move Selected Floating-Point Register
on Floating-Point Register's Condition

Instruction var size Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FSELMOVd 112 00, Select and Move Double v v fselmovd fregrsi, fregrss, fregss, fregr
FSELMOVs 11, 112 Select and Move Single. v v fselmovs fregisi, fregrss, fregss, fregr
[10, | rd | op3=110111, | rsl | rs3 | var | size | rs2 |
31 30 29 25 24 19 18 14 13 9 8 76 5 4 0

Description FSELMOV{s|d} selects F[rs1] or F[rs2] according to the most-significant bit (MSB) of the
floating-point register specified by F[rs3] and stores the value of the selected register in
F[rd].

For FSELMOVd, if Fd[rs3]<63> is 1, Fd[rs1] is selected; if Fd[rd3]<63> is 0, Fd[rs2] is selected.
For FSELMOVSs, if Fs[rs3]<31>is 1, Fs[rs1] is selected; if Fs[rs3]<31> is 0, Fs[rs2] is selected.

Exception Target Condition

instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v = 1 and any of the following are true

e XAR.ursl<1>=0

o XAR.urs2<1> =0

o XAR.Urs3<1> =0

o XAR.urd<1>#0

e XAR.simd =1 and XAR.urs1<2>=0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urs3<2> =0
e XAR.simd =1 and XAR.urd<2> =0

112 Ver 29.0 Jan. 2015

7.46.

Floating-Point Square Root

Instruction opf Operation HPC-ACE Assembly Language
Regs. SIMD Syntax

FSQRTs 00010 10012 Square Root Single rd is basic fsqrts freguss, fregm
only.

FSQRTd 00010 10102 Square Root Double rd is basic fsqrtd fregrss, fregra
only.

FSQRTq 00010 10112 Square Root Quad rd is basic fsqrtq fregrso, fregra
only.

Refer to Section 7.64 in UA2011.

Note Rounding is performed as specified by FSR.rd or GSR.irnd.

(FSR.ftt = unfinished_FPop)

FSQRTd

Exception Target Condition
instruction
illegal_instruction FSQRTs, |Areserved field is not 0.
FSQRTd
FSQRTq Always
For this instruction, exceptions with priority
lower than illegal_instruction are intended for
emulation.
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v = 1 and any of the following are true
e XAR.simd =1
e XAR.ursl =0
o XAR.urs2<1>#0
o XAR.urs3 =0
e XAR.Urd<2:1># 0
fp_exception_ieee_754 | NV, NX All Conforms to IEEE754.
fp_exception_other FSQRTq When either of the following is true
(FSR.fit = invalid_fp_register) o 1s2<1>%0
o rd<1>#0
fp_exception_other FSQRTs, |Refer to Chapter 8.

7.47. Floating-Point Trigonometric Functions

Instruction op3 opf Operation HPC-ACE Assembly Language
Regs SIMD Syntax

FTRIMADDdA 11 01112 — Trigonometric Multiply-Add v v ftrimaddd fregii,
Double fregrsz, Index, fregra

FTRISMULd 110110, 10111 10102 Calculate starting value for v v ftrismuld frege,
FTRIMADDd fregrss, fregra

FTRISSELd 1101102 10111 10002 Select coefficient for final v v ftrisseld fregus,
calculation in Taylor series fregysa, fregra

approximation FTRIMADDd

[10,] rd | opa=110111, | rsl | index | var=10, |size=00,] rs2 |
[10,] rd | op3=110110, | rsl [opf [rs2 |
31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Instruction |Operation

FTRIMADDd | Fd[rd] < Fd[rs1] x abs(Fd[rs2]) + T[Fd[rs2]<63>][index]
FTRISMULG | Fd[rd] « (Fd[rs2]<0> << 63) ~ (Fd[rs1] x Fd[rs1])
FTRISSELd | Fd[rd] « (Fd[rs2]<1> << 63) * (Fd[rs2] <0> ? 1.0 : Fd[rs1])

Description These instructions accelerate the calculation of the Taylor series approximation of the sine
function sin(x). FTRIMADDd operates on the result of FTRISMULd, and the intermediate
result is multiplied by the result of FTRISSELd. All three instructions are defined as
double-precision instructions only. FTRIMADDd calculates series terms for either sin(x) or
cos(x), where the argument is adjusted to be in the range - = /4 < x < = /4. These series
terms are used to perform the supporting operations shown in Figure 7-1. See the example

at the end of this section for description of how to calculate sin(x) using these support
operations.

114 Ver 29.0 Jan. 2015

sinx;x—lx3 +lx5 —ix7 +£x9 —ix11 +ix13 —ix15

3 51 7 a 1 13 151
=X l—ix2 +£x4 —ix6 +ix8 —ix10 Jrix12 —ix14
3 51 7 a 11 13 151
=X- O‘xz—i x2+i x2—i x2+i x2—i x2+i xz—1 x2 11
A 15! 13! 11 g 7 5 3
L _
Y
cosx;l—lszrlle—lxﬁ+lx8—ix10+ix12 —ix14
2! 4 6! a8l 10! 121 141
=1 0-x2 _ L x2+i x2 _ L x2+i xz—l x2+i x2—i x2 11
A 141 12! 10! 8! 6! 4 2!
N 4
YT

Figure 7-1 Trigonometric functions assistance operation

FTRIMADDd multiplies Fd[rs1] and the absolute valueof Fd[rs2] and adds the product to a
double-precision number obtained from a table. This double-precision number is specified
by the index field. The result is stored in the double-precision register specified by Fd[rd].
FTRIMADD is used to calculate series terms in the Taylor series of sin(x) or cos(x), where -
nld<x< /4.

FTRISMULd squares the value in the double-precision register specified by Fd[rs1]. The sign
of the squared value is selected according to bit O of the double-precision register specified
by Fd[rs2]. The result is written to the double-precision register specified by Fd[rd].
FTRISMULA is used to calculate the starting value of FTRIMADDd.

FTRISSELd checks bit 0 of the double-precision register specified by Fd[rs2]. Based on this
bit, either the double-precision register specified by Fd[rs1] or the value 1.0 is selected. Bit 1
of Fd[rs2] indicates the sign; the exclusive OR of this bit and the selected value is written to
the double-precision register specified by Fd[rd]. FTRISSELd is used to select the coefficient
for calculating the last step in the Taylor series approximation.

To calculate the series terms of sin(x) and cos(x), the initial source operands of FTRIMADDd
are zero for Fd[rs1] and x2 for Fd[rs2], where - /4 < x < = /4. FTRIMADDd is executed 8
times; this calculates the sum of 8 series terms, which gives the resulting number sufficient
precision for a double-precision floating-point number. As show in Figure 7-1, the
coefficients of the series terms are different for sin(x) and cos(x). FTRIMADDd uses the sign
of Fd[rs2] to determine which set of coefficients to use.

e When Fd[rs2]<63> = 0, the coefficient table for sin(x) is used.
e When Fd[rs2]<63> = 1, the coefficient table of cos(x) is used.

The expected usage for FTRIMADDd is shown in the example below. Coefficients are chosen

to minimize the loss of precision; these differ slightly from the exact mathematical values.
Table 7-18 and Table 7-19 show the coefficient tables for FTRIMADDd .

116

Table 7-18 Coefficient Table for sin(x) (Fd[rs2] <63> = 0)

Index | Coefficient used for the operation Exact value of the
Hexadecimal representation | Decimal representation coefficient

0 3ff0 0000 0000 000016 1.0 =1/1!

1 bfch 5555 5555 554316 -0.1666666666666661 > -1/3!

2 3f81 1111 1110 f30c16 0.8333333333320002e—02 < 1/5!

3 bf2a 01a0 19b9 2fc616 -0.1984126982840213e-03 > -1/7!

4 3ec7 1de3 51f3 d22bis 0.2755731329901505e—05 < 1/9!

5 beba ebe2 b60f 7b9116 —0.2505070584637887e—-07 >—1/11!

6 3de5 d840 8868 552f16 0.1589413637195215e—09 < 1/13!

7 0000 0000 0000 000016 0 > -1/15!

Table 7-19 Coefficient Table for cos(x) (Fd[rs2] <63>= 1)

Index | Coefficient used for the operation Exact value of the
Hexadecimal representation | Decimal representation coefficient

0 3ff0 0000 0000 000016 1.0 =1/0!

1 bfe0 0000 0000 000016 —-0.5000000000000000 =-1/2!

2 3fab 5555 5555 553616 0.4166666666666645e—01 < 1/4!

3 bf56 c16¢ 16¢1 3a0bie —-0.1388888888886111e—02 > —1/6!

4 3efa 01a0 19b1 e8d8:s6 0.2480158728388683e—04 < 1/8!

5 be92 Tedf 7282 {46816 -0.2755731309913950e-06 > -1/10!

6 3e21 ee96 d264 1b131s 0.2087558253975872e—08 < 1/12!

7 bda8 {763 80fb b40116 -0.1135338700720054e—10 > -1/14!

The initial value in Fd[rs2] for FTRIMADDd is calculated using FTRISMULd, which is
executed with Fd[rs1] set to x, where - /4 < x < 7 /4 and Fd[rs2] set to Q, as defined in
Figure 7-2. FTRISMULd returns x2 as the result, where the sign bit specifies which set of

coefficients to use to calculate the series terms. Q is an integer, not a floating-point number.

Bits Fd[rs2]<63:1> are not used. An exception is not detected if Fd[rs2] is NaN.

The final step in the calculation of the Taylor series is the multiplication of the FTRIMADDd
result and the coefficient selected by FTRISSELd. This coefficient is selected by executing
FTRISSELd with Fd[rs1] set to x, where - ©/4 <x < n/4 and Fd[rs2] set to Q, as defined in
Figure 7-2. Either x or 1.0 is selected, and the appropriate sign is affixed to the result. Q is

an integer, not a floating-point number. Bits Fd[rs2]<63:2> are not used. An exception is not
detected if Fd[rs2] is NaN.

Ver 29.0 Jan. 2015

T T
(20-1)-—<x<(29+1)-—
Q(Q)4< (q+)4

Q:gmod 4
R :x—q~£(—£< R SEJ
2\ 4 4
sin(x) = cos(R)
g n
Q=1 4
Q=2 Q=0
|]
sin(x) :Lsin(R) sin(x) i sin(R)
Q=3 .
_Zx 2

sin(x) = —cos(R)

Figure 7-2 Relationships for calculating sin(x)

Example: calculating sin(x)

/*

* Input value: x

q: where (29-1)*n/4 < x <= (2g+1)*n/4
Q: q%4

* R: x - q * n/2

*/

*

*

ftrismuld R, Q, M
ftrisseld R, Q, N

/*

* M <R2[63]=table_type, R2[62:0]=R2

* Because R2 is always positive, the sign bit (bit<63>) is always O.
* This sign bit indicates the table_type of ftrimaddd.)

* N < coefficient used in final step; the value is (1.0 or R)* sign
* S <0

*/

ftrimaddd
ftrimaddd
ftrimaddd
ftrimaddd
ftrimaddd
ftrimaddd
ftrimaddd
ftrimaddd
fmuld S, N, S

DL LLmumum,m
===
OFRPNWAUIITON

DU LmLmmum,m

/*
* S < result
*/

118

Exception Target instruction | Condition
illegal_instruction FTRIMADDd index > 17
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v = 1 and any of the following are true
e XAR.ursl<1> =0
e XAR.urs2<1> =0
e XAR.Uurs3 =0
e XAR.urd<1>=0
e XAR.simd = 1 and XAR.urs1<2> = 0
e XAR.simd = 1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> = 0
fp_exception_ieee754 | NV | FTRIMADDd, Conforms to IEEE754.
FTRISMULd FTRISMULA : only rs1
NX | FTRIMADDd, Conforms to IEEE754.
FTRISMULd
OF | FTRIMADDd, Conforms to IEEE754.
FTRISMULd
UF | FTRIMADDd, Conforms to IEEE754.
FTRISMULd
fp_exception_other FTRIMADDA,
(FSR.ftt = unfinished_FPop) | FTRISMULd

Ver 29.0 Jan. 2015

7.48.

Illegal Instruction Trap

Refer to Section 7.69 in UA2011.

Exception Target Condition
instruction
illegal_instruction All Always

7.49. Integer Logical Operation

Refer to Sections 7.7, 7.98, and 7.144 in UA2011.

Exception Target Condition
instruction
illegal_instruction All A reserved field is not 0.
(i =0 and iw<12:5> # 0)
illegal_action All XAR.v=1

120 Ver 29.0 Jan. 2015

7.51.

Jump and Link

Refer to Section 7.71 in UA2011.

Note SPARC64™ X/ SPARC64™ X+ clear the most significant 32 bits of
the PC value stored in R[rd] when PSTATE.am = 1. The updated value in
R[rd] is visible to the delay slot instruction immediately.

Note If either of the two lowest bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

Exception Condition
illegal_instruction A reserved field is not 0.
illegal_action XAR.v =1

mem_address_not_aligned | When either of the two lowest bits of the target

address is not 0

7.52.

Load Integer

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD

LDSB 00 10012 Load Signed Byte v Idsb [addressl, regra
LDSH 00 1010;, Load Signed Halfword v Idsh [addressl, regra
LDSW 00 10002 Load Signed Word v Ildsw [addressl, regra
LDUB 00 0001, Load Unsigned Byte v Idub [addressl, regra
LDUH 00 0010, Load Unsigned Halfword v Iduh [addressl, regra
LDUW 00 0000, Load Unsigned Word v Iduw [addressl, regra

Id [addressl, regra
LDX 00 10112 Load Extended Word v ldx [addressl, regra

Refer to Section 7.72 in UA2011.

Exception Target instruction Condition
illegal_instruction All A reserved field is not 0.
illegal_action All XAR.v = 1 and any of the following are

true
e XAR.simd=1
e XAR.ursl =0
o XAR.urs2 #0
o XAR.Urs3<2> =0

e XAR.urd =0
mem_address_not_aligned | LDUH, LDSH, LDUW, LDSW, | Refer to UA2011.
LDX
VA_watchpoint All Refer to 12.5.1.62
DAE_privilege_violation All Refer to 12.5.1.8
DAE_nfo_page All Refer to 12.5.1.7

Related LDTW (page 135)

122

Ver 29.0 Jan. 2015

7.563. Load Integer from Alternate Space

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDSBAPast 01 1001, Load Signed Byte from Alternate Space v Ildsba [address| imm_asi, regra
Idsba [addressl %asi, reg
LDSHAPast 01 10102 Load Signed Halfword from Alternate Space v/ Idsha [address| imm_asi, regra
Ildsha [addressl %asi, reg
LDSWAPast 01 10002 Load Signed Word from Alternate Space v ldswa [addressl imm_asi, regra
Idswa [addressl %asi, reg
LDUBAPast 01 0001y Load Unsigned Byte from Alternate Space v Iduba [addressl imm_asi, regr
Iduba [addressl %asi, regi.
LDUHAPast 01 00102 Load Unsigned Halfword from Alternate Space v/ Iduha [addressl imm_asi, regra
Iduha [addressl %asi, regw
LDUWAPast 01 0000z Load Unsigned Word from Alternate Space v Iduwa [addressl imm_asi, regr
Iduwa [addressl %asi, regw
Ida [address| imm_asi, regra
Ida [address] %asi, regr
LDXAPsst 01 1011» Load Extended Word from Alternate Space v ldxa [addressl imm_asi, regr

ldxa [addressl %asi, regw

Refer to Section 7.73 in UA2011.

Exception Target instruction Condition
illegal_action All XAR.v = 1 and any of the following are true
e XAR.simd=1
e XAR.ursl #+ 0
e XAR.urs2 # 0
e XAR.urs3<2> + 0
e XAR.urd # 0
mem_address_not_aligned | LDUHA, LDSHA, LDUWA, LDSWA, LDXA | Refer to the UA2011.
privileged_action All PSTATE.priv = 0 and ASI 0016 — 7F16 is specified
VA_watchpoint All Refer to 12.5.1.62
DAE_invalid_asi All Refer to UA2011 and 12.5.1.5
DAE_privilege_violation All Refer to 12.5.1.8
DAE_nfo_page All Refer to 12.5.1.7

Related LDTWA (136Page)

7.54.

Block Load

Instruction ASI

LDBLOCKF F016

LDBLOCKF F1i6

LDBLOCKF F8:6

LDBLOCKF F9:6

Operation HPC-ACE Assembly Language Syntax
Regs SIMD

64-byte block load from primary v/ Idda [regaddr AS1_BLK_P, fregr
address space Idda [reg plus imm) %asi, fregw
64-byte block load from secondary v/ Idda [regaddr] AS1_BLK_S, fregra
address space Idda [reg plus imm) %asi, fregw
64-byte block load from primary v/ Idda [regaddr] AS1_BLK_PL, fregya
address space, little-endian Idda [reg plus imml %asi, fregwu
64-byte block load from secondary v/ Idda [regaddr] AS1_BLK_SL, fregia
address space, little-endian Idda [reg plus imml %asi, fregwu

124

Refer to Section 7.74 in UA2011.

The LDBLOCKF can only be used to access cacheable addresses, unlike a normal load.
LDBLOCKF ASIs do not allow LDBLOCKF to access the non-cacheable space.

The effective address is “R[rs1] + R[rs2]” if i = 0, or “R[rs1] + sign_ext(simm13)” if i = 1.

When an exception is generated for a block load, register values may have been updated by
the block load.

LDBLOCKF on SPARC64™ X / SPARC64™ X+ follow T'SO. That is, the ordering between the
preceding and following load/store/atomic instructions and the 8-byte loads comprising the
block loads conforms to TSO.

LDBLOCKF on SPARC64™ X / SPARC64™ X+ preserves the order of register accesses in the
same manner as any other load instruction. The cache behavior of LDBLOCKF is the same as
for a normal load. A block load reads data from the LL1D cache; if the data is not in the LL1D
cache, the L1D cache is updated with data from memory before being read.

A VA_watchpoint exception is detected only for the first eight bytes accessed by an
LDBLOCKF instruction.

Ver 29.0 Jan. 2015

Exception

Target instruction

Condition

illegal_instruction

All

Register number specified for rd is not a
multiple of 8.

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef = 0

illegal_action

All

XAR.v =1 and any of the following are true
e XAR.simd =1

e XAR.ursl # 0

e XAR.Urs2 # 0

o XAR.urs3<2> # 0

e XAR.urd<1> # 0

mem_address_not_aligned

All

Address is not aligned on a 64-byte
boundary

VA_watchpoint

All

On access to lowest 8 bytes only
Refer to 12.5.1.62

DAE_privilege_violation

ASI FO16, F116, F815,
and F9i6

PSTATE.priv =0 and TTE.p = 1
Refer to 12.5.1.8

DAE_nc_page All Access to non-cacheable space
Refer to 12.5.1.6
DAE_nfo_page All Refer to 12.5.1.7

7.55. Load Floating-Point

Instruction op3 rdxi Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDF 10 00002 0-31 Load to Single Floating-Point Id [addressl, fregwa
Register (XAR.v = 0)

LDF 10 0000z 0 — 126, Load to Double Floating-Point v 4 1d laddressl, fregra
256 — 382 Register (XAR.v = 1)

LDDF 1000112 0 - 126, Load to Double Floating-Point v v Idd [addressl, fregra
256 — 382 Register

LDQF 10 0010z 0 — 126, Load to Quad Floating-Point v ldq [addressl, frege
256 — Register
382

Non-SIMD execution

Refer to Section 7.75 in UA2011.

LDF copies a word from memory into the 32-bit floating-point destination register F[rd]. If
XAR.v =0, LDF copies the word into a single-precision floating point register. If XAR.v = 1,
LDF copies the word into the upper 32-bits of a double-precision floating point register.

SIMD execution

On SPARC64™ X / SPARC64™ X+, LDF and LDDF can be executed as SIMD instructions. A
SIMD LDF and SIMD LDDF simultaneously execute basic and extended loads from the
effective address for single-precision and double-precision data, respectively. Refer to
Section 5.5.14 (page 35) for details on how to specify the registers.

A SIMD LDF loads 2 single-precision data aligned on a 4-byte boundary. Data from the
lower 4-bytes of the address is loaded into the upper 4-bytes of Fd[rd], and data from the
upper 4-byte of the address is loaded into the upper 4-bytes of Fd[rd+256]. Misaligned
accesses cause a mem_address_not_aligned exception.

A SIMD LDDF instruction loads 2 double-precision data aligned on an 8-byte boundary.
Data from the lower 8-bytes of the address is loaded into Fd[rd],,and data from the upper
8-bytes of the address is loaded into Fd[rd+256]. Misaligned accesses cause a
mem_address_not_aligned exception.

Note A double-precision SIMD load that accesses data aligned on a 4-byte
boundary but not an 8-byte boundary does not cause an
LDDF_mem_address_not_aligned exception.

SIMD LDF and SIMD LDDF can only be used to access cacheable address spaces. An attempt
to access a noncacheable address space using a SIMD LDF or SIMD LDDF causes a
DAE_nc_page exception.

Like non-SIMD load instructions, memory access semantics for SIMD load instructions
adhere to TSO. A SIMD load simultaneously executes basic and extended loads; however,
the ordering between the basic and extended loads conforms to TSO.

xi Encoding defined in 5.3.1 "Floating-Point Register Number Encoding” (page 26).

126 Ver 29.0 Jan. 2015

For a SIMD load instruction, endian conversion is done separately for the basic and
extended loads. When the basic and extended data are located on different pages with
different endianness, conversion is only done for one of the loads. A watchpoint can be
detected in both the basic and extended loads.

128

Exception

Target
instruction

Condition

illegal_instruction

LDF, LDDF

A reserved field is not 0.

LDQF

Always

For this instruction, exceptions with priority
lower than illegal_instruction are intended for
emulation.

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef = 0

illegal_action

LDF, LDDF

XAR.v =1 and any of the following are true
e XAR.Ursl # 0

e XAR.Urs2 # 0

o XAR.Urs3<2> + 0

e XAR.urd<1l> # 0

e XAR.simd =1 and XAR.urd<2> # 0

LDQF

XAR.v =1 and any of the following are true
e XAR.simd =1

e XAR.Ursl # 0

e XAR.Urs2 # 0

o XAR.Urs3<2> + 0

e XAR.urd<1> # 0

fp_exception_other
(FSR.fit = invalid_fp_register)

LDQF

rd<1> + 0

LDDF_mem_address_not_aligned

LDDF

XAR.v = 0 or XAR.simd =0,
and address is 4-byte aligned but not 8-byte
aligned

mem_address_not_aligned

LDF, LDQF

Address not 4- byte aligned

LDDF

When either of the following is true
e XAR.v =0 or XAR.simd = 0,
and address not 4-byte aligned
e XAR.v =1, XAR.simd = 1, and address not
8-byte aligned

VA_watchpoint

All

Refer to the description and 12.5.1.62

DAE_privilege_violation

All

Refer to 12.5.1.8

DAE_nc_page

All

XAR.v =1, XAR.simd = 1, and access to
non-cacheable space

DAE_nfo_page

All

Refer to 12.5.1.7

Ver 29.0 Jan. 2015

7.56. Load Floating-Point from Alternate
Space

Instruction op3 rdxi Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDFAPast 11 00002 0—31 Load to Single Floating-Point Ida [addressl imm_asi, frega
register from Alternate Space Ida [address %asi, fregw
(XAR.v=0)
LDFAPast 1100002 0 — 126, Load to Double Floating-Point v/ v lda [addressl imm_asi, frega
256 — 382 register from Alternate Space Ida [address %asi, fregw
XARv=1)
LDDFAPast 11 00112 0 — 126, Loaq to Double Floating-Point v v Idda [address| imm_asi, fregra
256 — 382 Register Idda [address| %asi, fregra
from Alternate Space
LDQFAPast 1100102 0 — 126, Loaq to Quad Floating-Point v Idga [address| imm_asi, fregra
256 — 382 Register from Idga [address) %asi, fregia

Alternate Space

Non-SIMD execution

Refer to Section 7.76 in UA2011.

LDFA copies a word from Alternate Space into the 32-bit floating-point destination register
F[rd]. If XAR.v = 0, LDF copies the word into a single precision floating-point register. If
XAR.v = 1, LDF copies the word into the upper 32 bits of a double-precision floating point
register.

SIMD execution

On SPARC64™ X / SPARC64™ X+, LDFA and LDDFA can be executed as SIMD instructions.
A SIMD LDFA and SIMD LDDFA simultaneously execute basic and extended loads from the
effective address for single-precision and double-precision data, respectively. Refer to
Section 5.5.14 (page 35) for details on how to specify the registers.

A SIMD LDFA loads 2 single-precision data aligned on a 4-byte boundary. Data from the
lower 4 bytes of the address is loaded into the upper 4-bytes of Fd[rd], and data from the
upper 4 bytes of the address is loaded into the upper 4 bytes of Fd[rd+256]. Misaligned
accesses cause a mem_address_not_aligned exception.

A SIMD LDDFA loads 2 double-precision data aligned on an 8-byte boundary. Data from the
lower 8 bytes of the address is loaded into Fd[rd], and data from the upper 8 bytes of the
address 1s loaded into Fd[rd+256]. Misaligned accesses cause a mem_address_not_aligned
exception.

Note A double-precision SIMD load that accesses data aligned on a 4-byte
boundary but not an 8-byte boundary does not cause an
LDDF_mem_address_not_aligned exception.

=i Fncoding defined in 5.3.1 "Floating-Point Register Number Encoding” (page 26).

SIMD LDFA and SIMD LDDFA can only be used to access cacheable address spaces. An
attempt to access a non-cacheable address space using a SIMD LDFA or SIMD LDDFA causes
a DAE_nc_page exception.

Like non-SIMD load instructions, memory access semantics for SIMD load instructions
adhere to TSO. SIMD LDFA and SIMD LDDFA simultaneously execute basic and extended
loads; however, the ordering between the basic and extended loads conforms to TSO.

For SIMD LDFA and SIMD LDDFA, endian conversion is done separately for the basic and
extended loads. When the basic and extended data are located on different pages with
different endianness, conversion is only done for one of the loads. A watchpoint can be
detected in both the basic and extended loads.

130 Ver 29.0 Jan. 2015

Exception

Target instruction

Condition

illegal_instruction

LDQFA

Always

For this instruction, exceptions with
priority lower than illegal_instruction are
intended for emulation.

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef = 0

illegal_action

LDFA, LDDFA

XAR.v = 1 and any of the following are
true

e XAR.ursl # 0

e XAR.urs2 #+ 0

o XAR.urs3<2> # 0

e XAR.urd<1> # 0

e XAR.simd =1 and XAR.urd<2> # 0

LDQFA

XAR.v = 1 and any of the following are
true

e XAR.simd =1

e XAR.ursl # 0

e XAR.urs2 # 0

e XAR.urs3<2> + 0

e XAR.urd<1l> # 0

fp_exception_other
(FSR.ftt = invalid_fp_register)

LDQFA

rd<l> # 0

LDDF_mem_address_not_aligned

LDDFA

XAR.v = 0 or XAR.simd =0,
and address 4-byte aligned but not
8-byte aligned

mem_address_not_aligned

LDFA, LDQFA

Address mot 4-byte aligned

LDDFA

When either of the following is true

e XAR.v =0 or XAR.simd =0, and
address not 4-byte aligned

e XAR.v =1, XAR.simd = 1, and address
not 8-byte aligned

privileged_action

All

Refer to 12.5.1.49

VA_watchpoint

All

Refer to the description and 12.5.1.62

DAE _invalid_asi

All

Refer to the UA2011 and 12.5.1.5

DAE_privilege_violation

All

Refer to 12.5.1.8

DAE_nc_page

All

XAR.v =1, XAR.simd = 1, and access to
non-cacheable space

DAE_nfo_page

All

Refer to 12.5.1.7

DAE_side_effect_page

All

Refer to 12.5.1.9

7.57.

132

Short Floating-Point Load

Refer to Section 7.78 in UA2011.

LDSHORTF is equivalent to LDDFA using ASIs D016 — D316 and D816 — DB16. No other ASIs

can be used with LDSHORTF.

An ASI is specified by the imm_asi instruction field when i = 0, or the contents of the ASI
register when i = 1. If i = 0, the effective address for these instructions is “R[rs1] + R[rs2]”
and if i = 1, the effective address is “R[rs1] + sign_ext(simm13)”.

Programming Note

instruction.
Exception Condition
fp_disabled PSTATE.pef =0 or FPRS.fef =0
illegal_action XAR.v =1

mem_address_not_aligned

Refer to UA2011

VA_watchpoint

Refer to 12.5.1.62

DAE_privilege_violation

Refer to 12.5.1.8

DAE_nfo_page

Refer to 12.5.1.7

Ver 29.0 Jan. 2015

LDSHORTF is typically used with the FALIGNDATA

7.568. Load-Store Unsigned Byte

Instruction op3 Operation HPC-ACE Assembly Language
Regs SIMD Syntax
LDSTUB 00 Load-Store Unsigned Byte v Idstub [address], regra
11012

Refer to Section 7.79 in UA2011.

Exception Condition
illegal_instruction A reserved field is not 0.
illegal_action XAR.v =1 and any of the following are true.

e XAR.simd=1

e XAR.Ursl # 0

e XAR.Urs2 # 0

o XAR.Urs3<2> # 0
e XAR.uurd # 0

VA_watchpoint Refer to 12.5.1.62
DAE_privilege_violation | Refer to 12.5.1.8
DAE_nc_page Refer to 12.5.1.6

DAE_nfo_page Refer to 12.5.1.7

7.59. Load-Store Unsigned Byte to Alternate
Space

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDSTUBAPast 01 Load-Store Unsigned Byte into v Ildstuba [address] imm_asi, regra
1101z Alternate Space Idsba [addressl %asi, regm.

Refer to Section 7.80 in UA2011.

The effective address is “R[rs1] + R[rs2]” if i =0, or “R[rs1] + sign_ext(simm13)” ifi = 1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are not described in this specification. Refer to the system specification.

ASIs valid for LDSTUBA.
ASI1_PRIMARY ASI_PRIMARY_LITTLE
ASI1_SECONDARY ASI1_SECONDARY_LITTLE

Exception Condition

illegal_action XAR.v =1 and any of the following are true.
e XAR.simd =1

e XAR.ursl # 0O

e XAR.urs2 # 0

e XAR.urs3<2> #+ 0

e XAR.urd # 0

privileged_action PSTATE.priv = 0 and ASI 0016 - 7F16 is satisfied
VA_watchpoint Refer to 12.5.1.62

DAE_invalid_asi Refer to UA2011 and 12.5.1.5
DAE_privilege_violation | Refer to 12.5.1.8

DAE_nc_page Refer to 12.5.1.6

DAE_nfo_page Refer to 12.5.1.7

134 Ver 29.0 Jan. 2015

7.60. Load Integer Twin Word

Instruction op3 Operation HPC-ACE Assembly Language
Regs SIMD Syntax
LDTWP 00 00115 Load integer twin word v Idtw [address|, regra

Refer to Section 7.81 in UA2011.

Exception Condition

illegal_instruction When either of the following is true
e i=0andiw<12:5> # 0
e LDTW refers to an odd-numbered destination register (rd).

illegal_action XAR.v = 1 and any of the following are true
e XAR.simd=1

XAR.ursl # 0

e XAR.urs2 # 0

e XAR.urs3<2> # 0

e XAR.urd # 0

mem_address_not_aligned | Refer to UA2011

VA_watchpoint Refer to 12.5.1.62

DAE_privilege_violation Refer to 12.5.1.8

DAE_nfo_page Refer to 12.5.1.7
Related LDX (page 122)

STTW (page 179)

7.61. Load Integer Twin Word from Alternate
Space

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDTWAD-Past 01 00112 Load Twin word from Alternate Space v Idtwa [address] imm_asi, reg:.

ldtwa [address] %asi, regr

[11,] rd [op3 [rsl [i=0] imm_asi | rs2 |
[11,] rd [op3 | rsl [i=1] simm13 |
31 30 29 25 24 19 18 14 13 12 5 4 0

Refer to Section 7.82 in UA2011.

Note For instructions that specify ASI_TWINX* for LDTWA, refer to 7.62.

ASTs valid for LDTWA
ASI1_PRIMARY AS1_PRIMARY_LITTLE
AS1_SECONDARY AS1_SECONDARY_LITTLE
ASI_PRIMARY_NO_FAULT |ASI_PRIMARY_NO_FAULT LITTLE
ASI1_SECONDARY_NO_FAULT |ASI1_SECONDARY_NO_FAULT_LITTLE

136 Ver 29.0 Jan. 2015

Related

Exception

Condition

illegal_instruction

rd is an odd-numbered register.

illegal_action

XAR.v = 1 and any of the following are true.
e XAR.simd =1

XAR.urs1 # 0

e XAR.urs2 # 0

e XAR.Urs3<2> # 0

e XAR.urd # 0

mem_address_not_aligned

Refer to UA2011

privileged_action

PSTATE.priv = 0 and ASI of 0016 - 7F16.1s specified

VA_watchpoint

Refer to 12.5.1.62

DAE_invalid_asi

Refet to 12.5.1.5

DAE_privilege_violation

Refer to 12.5.1.8

DAE_nfo_page

Refer to 12.5.1.7

LDXA (page 123)
STTWA (page 180)

7.62.

Load Integer Twin Extended Word from
Alternate Space

Instruction ASI Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDTXAN Load Integer Twin Extended Word v Idtxa [regaddr#ASI_TWINX_P, regw

EBi1s

from Alternate Space

Load Integer Twin Extended Word v Idtxa [regaddd#AS1_TWINX_S, regw
from Alternate Space

EA16 Load Integer Twin Extended Word v Idtxa [regaddr#AS1_TWINX_PL, reg

from Alternate Space

Load Integer Twin Extended Word v Idtxa [regaddrl#AS1_TWINX_SL, regy
from Alternate Space

[11,] rd | op3 | rsl [i=0] imm_asi | rs2 |
[11,] rd | op3 | rsl [i=1] simm13 |
31 30 29 25 24 19 18 14 13 12 5 4 0

Refer to Section 7.83 in UA2011.

If i = 0, the LDTXA instruction contains the address space identifier (ASI) to be used for the
load in its imm_asi field and the effective address for the instruction is “R[rs1] + R[rs2]”. If i
=1, the ASI to be used is contained in the ASI register and the effective address for the
instruction is “R[rs1] + sign_ext(simm13)”.

A LDTXA instruction that performs a little-endian access behaves as if it comprises two
32-bit loads, each of which is byte-swapped independently before being written into its
respective destination register.

A successful LDTXA instruction operates atomically.

Programming Note LDTXA can be used to read one entry of TSB TTE
atomically.

ASIs E24, E345, EAss and EBys are used with LDTXA. An attempt to use other ASIs with LDTXA has
the same result as LDTWA with those ASIs. ASIs E2;6, E3:5, EAs and EBys perform an access using
aVA.

138 Ver 29.0 Jan. 2015

Exception

Target instruction

Condition

illegal_instruction

All

rd is an odd-numbered register

illegal_action

All

XAR.v =1 and any of the following are true.
e XAR.simd =1

XAR.urs1 # 0

e XAR.urs2 # 0

o XAR.urs3<2> # 0

e XAR.urd # 0

mem_address_not_aligned

All

Address not 16-byte aligned

VA_watchpoint

ASI E216, E316,
EAis, and EBis

Only detected for first 8 bytes
Refer to 12.5.1.62.

DAE_privilege_violation

ASI E216, E316, E31s,
and EBis

When PSTATE.priv = 0 and access to page
with TTEp=1

DAE_nc_page

All

Refer to 12.5.1.6

DAE_nfo

All

Refer to 12.5.1.7

7.63.

Load Floating-Point State Register

Instruction op3 rd

Operation

HPC-ACE Assembly Language
Regs SIMD Syntax

LDFSRDP 10 0 Load Floating-Point State Register (Lower) v 1d laddress], %fsr
00012
LDXFSR 10 1 Load Floating-Point State Register v Idx [address], %fsr
00012
—_— 10 2 - reserved
00012 31
Refer to Section 7.77 and Section 7.84 in UA2011.
Exception Target instruction | Condition
illegal_instruction LDFSR, LDXFSR |i=0 and iw<12:5> # 0.
— rd=2-31
fp_disabled All PSTATE.pef =0 or FPRS.fef=0
illegal_action All XAR.v = 1 and any of the following are

140

true

e XAR.simd=1

e XAR.Ursl # 0

o XAR.Urs2 # 0

o XAR.Urs3<2> #+ 0
e XAR.urd # 0

mem_address_not_aligned LDFSR Address not 4-byte aligned.
LDXFSR Address not 8-byte aligned.
VA_watchpoint All Refer to 12.5.1.62
DAE_privilege_violation All Refer to 12.5.1.8
DAE_nfo_page All Refer to 12.5.1.7

Ver 29.0 Jan. 2015

7.64. Memory Barrier

Refer to Section 7.87 in UA2011.

Note mmask<3> has no effect on SPARC64™ X / SPARC64™ X+ because
all stores are performed in program order.

Note mmask<1> has no effect on SPARC64™ X / SPARC64™ X+ because
all stores are performed in program order and the ordering between a load
and a store is guaranteed.

Note mmask<0> has no effect on SPARC64™ X / SPARC64™ X+ because
all loads are performed in program order.

Note #StoreStore is equivalent to the deprecated STBAR instruction
on SPARC64™ X / SPARC64™ X+,

Note #Memlssue is equivalent to #Sync on SPARC64™ X / SPARC64™

X+

Note #Lookaside is equivalent to #Sync on SPARC64™ X /
SPARC64™ X+,

Exception Condition

illegal_instruction iw<12:7> # 0

illegal_action XARv =1

7.65. Move Integer Register on Condition
(MOVce)

Refer to Section 7.90 in UA2011.

Exception Target instruction | Condition
illegal_instruction | All i=0and iw<10:5> # 0

— Either of the following is true
e cc2:ccl:ccO =101,

e cc2:ccliccO =111,
fp_disabled MOVF* PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All XAR.v=1

142 Ver 29.0 Jan. 2015

7.66. Move Integer Register on Register
Condition (MOVr)

Refer to Section 7.91 in UA2011.

Exception Target Condition
instruction
illegal_instruction All A reserved field is not 0.

— When either of the following is true
e rcond = 000,
e rcond = 100,

illegal_action All XAR.v =1

7.67. Multiply Step

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
MULSccD 10 Multiply Step and modify cc mulscc regwsi, reg or imm, regra
01002
[10, | rd | op3=100100, | rsl [i=0] — | rs2
[10, | rd | op3=100100, | rsl l[i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description MULScc is a deprecated instruction that assists in performing a multiplication operation.

MULScc treats the less significant 32 bits of both R[rs1] and the Y register as a single 64-bit,
right-shiftable doubleword register. The least significant bit of R[rs1] is treated as if it were

adjacent to bit 31 of the Y register. The MULScc instruction adds, based on the least

significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, R[rs1] contains

the most significant bits of the product, and R[rs2] contains the multiplicand. Upon

completion of the multiplication, the Y register contains the least significant bits of the

product.

Note A standard MULScc instruction has rs1 = rd.

1. The multiplicand is R[rs2] if i = 0, or sign_ext(simm13) if i = 1.

2. A 32-bit value is computed by shifting R[rs1] right by one bit with “CCR.icc.n xor
CCR.icc.v” replacing bit 31 of R[rs1]. (This is the proper sign for the previous

partial product.)

3. If the least significant bit of Y = 1, the shifted value from step (2) and the
multiplicand are added. If the least significant bit of the Y =0, then 0 is added to

the shifted value from step (2).

4. The following values are set to the register.

Register field | Value set by MULSce

CCR.icc Updated according to the addition performed in step 3.
R[rd]<63:33> |0

R[rd]<32> CCRu.icc.c

R[rd]<31:0> | The lower 32 bits of R[rd] of step 3.

CCR.xcc.n 0

CCR.xcc.v 0

CCR.xcc.c 0

CCR.xcc.z Set to 1 if R[rd]=0. Otherwise, set to 0.

Compatibility Note In SPARC V9 and JPS1, the upper 32 bits of R[rd]

and CCR.xcc were undefined.

5. The Y register is shifted right by one bit, with the least significant bit of the

unshifted R[rs1] replacing bit 31of Y.

144 Ver 29.0 Jan. 2015

Exception Condition

illegal_instruction A reserved field is not 0.

illegal_action XAR.v =1

7.68. Multiply and Divide (64-bit)

Refer to Section 7.95 in UA2011.

Exception Target instruction | Condition
illegal_instruction | All A reserved field is not O.
illegal_action All XAR.v =1
division_by_zero | SDIVX, UDIVX Divisor is 0.

146 Ver 29.0 Jan. 2015

7.69. No Operation

Refer to Section 7.96 in UA2011.

Exception

Target instruction

Condition

illegal_instruction

All

iw<29:25, 21:0> # 0

illegal_action

All

XARwv=1

7.72. Partitioned Add

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
PADD32 0 1000 Two 32-bit Add Two 32 bit addition padd32 regwi, regrss, regra
10012
[10, | rd | op3=110110, | rsl opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0
Description PADD32 performs two 32-bit partitioned adds between the corresponding fixed-point values

contained in the source operands (the 64-bit integer registers specified by rs1 and rs2). The
result is placed in the 64-bit destination register specified by rd.

Exception Condition
illegal_action XAR.v =1

148 Ver 29.0 Jan. 2015

7.73.

Pixel Component Distance (with
Accumulation)

Refer to Section 7.101 in UA2011.

Exception Condition

fp_disabled PSTATE.pef = 0 or FPRS.fef =0

illegal_action XAR.v =1

7.74. Population Count

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
POPC 10 Population Count v popc reg_or_imm, regrd
11102

Refer to Section 7.103 in UA2011.

Exception Condition
illegal_instruction | e jw<18:14 > # 0.

e i=0andiw<12:5> # 0.
illegal_action XARv =1

150 Ver 29.0 Jan. 2015

7.75.

Prefetch

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
PREFETCH 10 Prefetch Data v prefetch [|addressl, prefetch_fen
11012
PREFETCHAPast 11 Prefetch Data from v prefetch [regaddd, imm_asi, prefetch_fen
1101, Alternate Space prefetch [reg plus imm] %asi, prefetch_fen

7.75.1.

Refer to Section 7.104 in UA2011.

An arbitrary address can be specified for the address specified by the instruction. One cache
line (128 bytes) or two cache lines (256 bytes), as specified by the instruction, are copied.
The mem_address_not_aligned exception is never generated.

The PREFETCH{A} instruction becomes a NOP when the specified address is non-cacheable
or in an undefined cacheable space.

ASIs that can be specified by the PREFETCHA instruction are shown in Table 7-20. When an
ASI other than those listed below is specified, the PREFETCHA instruction becomes a NOP.

Table 7-20 ASIs valid for PREFETCHA

ASI1_PRIMARY ASI1_PRIMARY_LITTLE
AS1_SECONDARY | AS1_SECONDARY_LITTLE

The prefetch instruction has no side effects other than bringing a data block into cache.

The prefetch instruction might not be executed due to a lack of hardware resources
(prefetch lost). Whether a prefetch instruction has been executed or lost cannot be known.

Prefetch Variants

Table 7-21 shows available fcns on SPARC64™ X / SPARC64™ X+ and describes their
operation.

Table 7-21 fcns for PREFETCH and PREFETCHA

fen JPS1 and UA2011 Definition Operation on SPARC64™ X / SPARC64™ X+

0 Frequently used data is 128-byte data is copied into the L1 data cache.
prefetched for reading.

1 Infrequently used data is 128-byte data is copied into the U2 cache.
prefetched for reading.

2 Frequently used data is 128-byte data is copied into the L1 data cache
prefetched for writing. with exclusive ownership.

3 Infrequently used data is 128-byte data is copied into the U2 cache with
prefetched for writing. exclusive ownership.

4 Page mapping performed by NOP
privileged software.

5-15 An illegal_instruction exception is | An illegal_instruction exception is detected.

(0516 - detected.

0F16)

16-19 Implementation dependent NOP

(1016 -

1316)

20 (1416) | Frequently used data is 128-byte data is copied into the L1 data cache.
prefetched for reading. Strong Strong prefetch.
prefetch.

21 (1516) | Infrequently used data is 128-byte data is copied into the U2 cache. Strong
prefetched for reading. Strong prefetch.
prefetch.

22 (1616) | Frequently used data is 128-byte data is copied into the L1 data cache
prefetched for writing. Strong with exclusive ownership. Strong prefetch.
prefetch.

23 (1716) | Infrequently used data is 128-byte data is copied into the U2 cache with
prefetched for writing. Strong exclusive ownership. Strong prefetch.
prefetch.

24 - 28 Implementation dependent NOP

(1816 -

1Ci6)

29 (1D16) 256 byte data aligned on 256-byte boundary is

copied into the U2 cache. Strong prefetch.

30 (1E16) NOP

31 (1F10) 256-byte data aligned on 256-byte boundary is

copied into the U2 cache with exclusive
ownership. Strong prefetch.

7.75.2. Weak versus Strong Prefetches

Programming Note Strong prefetches might block subsequent load or
store instructions. Therefore, strong prefetches should be used only when
prefetched data is guaranteed to be accessed.

152 Ver 29.0 Jan. 2015

Exception

Target instruction

Condition

illegal_instruction

All

When either of the following is true
o A reserved field is not 0.
e fcn=5-15

illegal_action

All

XAR.v = 1 and any of the following are
true

e XAR.simd =1

e XAR.Ursl # 0

o XAR.Urs2 # 0

o XAR.urs3<2> # 0

e XAR.urd # 0

7.76. Read Ancillary State Register (RDASR)

Instruction rsl Operation HPC-ACE Assembly Language Syntax
Regs SIMD

RDYD 0 ReadY Register; deprecated (see A.71.9 in JPS1 rd %y, regra
Commonality)

RDCCR 2 Read Condition Codes Register rd %eer, regra

RDASI 3 Read ASI Register rd %asi, regw

RDTICKPxr 4 Read Tick Register rd %tick, reg.

RDPC 5 Read Program Counter rd %pcC, regra

RDFPRS 6 Read Floating-Point Registers Status Register rd %fprs, regr.

MEMBAR 15 MEMBAR (page 141).

RDPCRPrcr 16 Read Performance Control Registers (PCR) rd %pcr, regwu

RDP I CPrcr 17 Read Performance Instrumentation Counters rd %picC, regrw
(PIC)

RDGSR 19 Read Graphic Status Register (GSR) rd %gsSr, regr

RDSTICKPxr 24 Read System TICK Register rd %stick, regw

RDXASR 30 Read XASR rd %xasr, regra

RDASR copies the contents of an Ancillary State Register to R[rd]. For descriptions of
Ancillary State Registers, see Section 5.5 (page 31). Though MEMBAR corresponds to rs1 = 15,
MEMBAR is described on page 141 and not covered in this section.

e RDY reads the Y register into R[rd]. Instructions that reference the Y register should be
avoided. (deprecated)

e RDFPRS waits for all pending FPops to complete before reading the FPRS register.

e When PCR.priv =1, an attempt to execute RDPCR or RDPIC in non-privileged mode
causes a privileged_action exception.

For exceptions when rd = 15, refer to MEMBAR.

154

Exception Target Condition
instruction
illegal_instruction All When any of the following are true
e rsl1=1,7-14,18,20-21,26-29
e i=1
® iw<12:0> # 0
fp_disabled RDGSR PSTATE.PEF =0 or FPRS.FEF =0
illegal_action All XAR.v =1
privileged_action RDTICK PSTATE.priv=0 and TICK.npt =0
RDPCR, RDPIC |PSTATE.priv=0 and PCR.priv=1
RDSTICK PSTATE.priv=0 and STICK.npt =1

Ver 29.0 Jan. 2015

7.79.

Return

Refer to Section 7.110 in UA2011.

Exception

Condition

illegal_instruction

i =0 and iw<29:25, 12:5> + 0
i=1andiw<29:25> # 0

illegal_action XAR.v =1
fill_n_normal
fill_n_other

mem_address_not_aligned

Effective address is not 4-byte aligned

control_transfer_instruction

PSTATE.tct=1

7.80.

SAVE and RESTORE

Refer to Section 7.111 and Section 7.107 in UA2011.

<SAVE>

Exception

Condition

illegal_instruction

i =0 and iw<12:5> # 0

illegal_action

XARv =1

spill_n_normal

spill_n_other

clean_window

<RESTORE>

Exception

Condition

illegal_instruction

i=0andiw<12:5> #+ 0

illegal_action XAR.v =1
fill_n_normal
fill_n_other

156 Ver 29.0 Jan. 2015

7.82. Signed Divide (64-bit= 32-bit)

Refer to Section 7.113 in UA2011.

Exception Condition
illegal_instruction i =0 and iw<12:5> # 0
illegal_action XAR.v =1
division_by_zero Divisor is zero

7.83. SETHI

Refer to Section 7.114 in UA2011.

158

Exception

Condition

illegal_action

XARvV =1

Ver 29.0 Jan. 2015

7.85.

Set Interval Arithmetic Mode

Instru opf
ction

Operation

Regs

HPC-ACE

Assembly Language
Syntax

SIAM 01000 0001
SDIAM 0 1000 01012

Set the interval arithmetic mode fields in the GSR.

Set the decimal interval arithmetic mode fields in the
GSR

siam siam_mode

sdiam siam_mode

SIAM

| 10 op3 =11 0110, | opf | [mode]

31 30 29 25 24 19 18 14 13 5 4 3 2 0

SDIAM

| 10] — op3 = 11 0110, — opf mode

31 30 29 25 24 19 18 14 13 5 4 0

Refer to Section 7.116 in UA2011.
Description The SIAM instruction sets the GSR.im and GSR.irnd fields as follows:

GSR.im
GSR.irnd

<~ mode<2>
<~ mode<1:0>

The SDIAM instruction sets the GSR.dim and GSR.dirnd fields as follows:

GSR.dim < mode<4>
GSR.dirnd <~ mode<2:0>
Exception Target Condition
instruction
illegal_instruction SIAM A reserved field is not 0.
SDIAM When either of the following is true
o A reserved field is not 0
e mode<3> # 0
fp_disabled All PSTATE.PEF =0 or FPRS.FEF =0

7.87.

Shift

Instruction op3 X r Operation HPC-ACE Assembly Language Syntax
Regs SIMD

SLL 10 0101z 0 O Shift left logical — 32 bits sl regrsi, reg_or_shent, regra
SRL 10 0110: 0 O Shift right logical — 32 bits srl regisi, reg_or_shcent, regra
SRA 10 01112 O O Shift right arithmetic — 32 bits sra regrsi, reg_or_shent, regra
SLLX 10 0101z 1 0 Shift left logical — 64 bits slIX regwsi, reg or_shent, regra
SRLX 10 0110s 1 O Shift right logical — 64 bits sriX regsi, reg or shent, regra
SRAX 10 01112 1 O Shift right arithmetic — 64 bits srax regmsi, reg or shent, regra
ROLX 10 01012 1 1 Rotate left — 64 bits rolx regsi, reg or_shcnt, regra
[10, | rd | op3 | rs1 [i=o] x [r] — | rs2 |
[10, | rd | op3 | rs1 [i=1]x=0]r=0] — | shcnt32 |
[10,] rd | op3 | rsl [i=1]x=1] r] _ | shcnt64 |

31 30 29 25 24 19 18 14 13 12 11 10 6 5 4 0

160

Refer to Section 7.117 in UA2011.

ROLX rotates all 64 bits of the value in R[rs1] left(towards the higher-order bit positions) by
the number of bits specified by the shift count. Unlike shift instructions, the rotate
instruction replaces the vacated positions on the right (the lower-order bit positions) with
the overflow bits from the left. The rotated result is written to R[rd].

Compatibility Note ROLX is a new instruction defined for SPARC64™ X /
SPARC64™ X+, Bit 11 of the instruction word is reserved in

SPARCV9.
Exception Target Condition
instruction
illegal_instruction All A reserved field is not 0.
SLL, SLLX, x=0andr=1
ROLX
SRL, SRA, SRLX, [r=1
SRAX
illegal_action All XAR.v =1

Ver 29.0 Jan. 2015

7.88. Signed Multiply (32-bit)

Refer to Section 7.118 in UA2011.

Exception Condition

illegal_instruction i =0 and iw<12:5> # 0

illegal_action XARv =1

7.89. Sleep

Instruction Opf Operation HPC-ACE Assembly Language
Regs. SIMD Syntax
SLEEP 0 1000 00112 VCPU is stopped during the fixed time. sleep
[10,] — [op3=110110, | — Opf | —
31 30 29 25 24 19 18 14 13 5 4 0

The SLEEP instruction stops the VCPU for a fixed period of time, unless there is a pending
interrupt.
The stopped VCPU restarts execution when either of the following conditions is true.

e A fixed period of time, which is implementation dependent, has passed.

e An interrupt is pending or has occured.

Programming Note Software should not expect the SLEEP instruction to
always stop a VCPU for a fixed amount of time.

Compatibility Note On SPARCG64 VIIIfx, and earlier processors,
execution was restarted when the interrupt occurs. In SPARC64™ X /
SPARC64™ X+, execution is restarted when an interrupt is pending
(for example, when the processor cannot accept interrupts). That is,
execution may restart when an interrupt has not occurred.

Exception Condition
illegal_instruction A reserved field is not 0.
illegal_action XARv=1

162 Ver 29.0 Jan. 2015

7.91. Store Barrier

Instruction op3 Operation HPC-ACE Assembly Language
Regs. SIMD SYPtax
STBAR 10 10002 nop stbar
[10, | 00000, | op3=101000, 01111, [i=0 | _ |
31 30 29 25 24 19 18 14 13 12 0

On SPARC64™ X / SPARC64™ X+, Store Barrier (STBAR) behaves as a NOP since the
hardware memory model always enforces the semantics of this instruction for all memory

accesses.
Exception Condition
illegal_instruction iw<12:0> # 0
illegal_action XAR.v =1

7.92. Store Integer

164

Refer to Section 7.119 in UA2

011.

Exception

Target Instruction

Condition

illegal_instruction

All

i=0and iw<12:5> # 0

illegal_action All XAR.v = 1 and any of the following
are true
e XAR.simd =1
e XAR.ursl # 0
e XAR.urs2 # 0
e XAR.Urs3<2> # 0
e XAR.wurd # 0
mem_address_not_aligned STH Effective address is not 2-byte
aligned
STW Effective address is not 4-byte
aligned
STX Effective address is not 8-byte
aligned
VA_watchpoint All
DAE_privilege_violation All
DAE_nfo_page All

Ver 29.0 Jan. 2015

7.93.

Store Integer into Alternate Space

Refer to Section 7.120 in UA2011.

Exception

Target Instruction

Condition

illegal_action

All

XAR.v = 1 and any of the following
are true

e XAR.simd =1

e XAR.ursl # 0

e XAR.urs2 # 0

o XAR.urs3<2> # 0

e XAR.urd # 0

mem_address_not_aligned STHA Effective address is not 2-byte
aligned
STWA Effective address is not 4-byte
aligned
STXA Effective address is not 8-byte
aligned
privileged_action All
VA_watchpoint All
DAE_invalid_asi All
DAE_privilege_violation All
DAE_nfo_page All

7.94.

166

Block Initializing Store

UA2011 defines ASI_STBI_*. On SPARC64™ X / SPARC64™ X+, if ASI_STBI_*is
specified for the STBA, STHA, STWA, STXA, and STTWA instructions, these stores behave as
normal store instructions. For example, if ASI_STBI_P is specified for STBA, STBA behaves
as if AS1_P was specified.

The behavior of Block Initializing Stores is shown below.

ASI number | AST name Integer store (STBA, STHA, STWA, STXA, STTWA) operation
E216 ASI_STBI_P |ASI_P

E316 ASI_STBI_S |ASI_S

EAs AS1_STBI_PL|ASI_PL

EBus AS1_STBI_SL|ASI_SL

Only DAE_invalid_ASI and mem_address_not_aligned exceptions are generated. DAE _*
exceptions, except for DAE_invalid_ASI, do not occur.

Ver 29.0 Jan. 2015

7.95.

Block Store

Instruction ASI Operation HPC-ACE Assembly Language Syntax
Regs SIMD
STBLOCKF F016 64 bytes block store is executed to v/ stda fregw, [regaddrl AS1_BLK_P
primary address space. stda fregw, [reg plus imm] %asi
STBLOCKF F1i6 64 bytes block store is executed to v/ stda fregw, [regaddrl AS1_BLK_S
secondary address space. stda fregw, [reg plus_imm] %asi
STBLOCKF F81s 64 bytes block store is executed to v stda fregw, [regaddr] AS1_BLK_PL
primary address space. Little stda fregw, lreg plus imm] %asi
endian.
STBLOCKF F9:6 64 bytes block store is executed to v stda fregw, [regaddr] AS1_BLK_SL
secondary address space. Little stda fregw, lreg plus imm] %asi
endian.
STBLOCKF EO0i6 64 bytes block committing store is v stda fregw, [regaddr] AS1I_BLK_COMMIT_P
executed to primary address stda fregw, [reg plus imm] %asi
space.
STBLOCKF Elis 64 bytes block committing store is v stda fregw, [regaddr] AS1_BLK_COMMIT_S
executed to secondary address stda fregw, [reg plus imm] %asi

space.

Refer to Section 7.121 in UA2011.

The effective address is "R[rs1] + R[rs2]" if i = 0, or “R[rs1] + sign_ext(simm13)" if i = 1".

On SPARC64™ X / SPARC64™ X+, block store instruction and block committing store
instruction behave exactly the same.

STBLOCKF on SPARC64™ X / SPARC64™ X+ follow TSO. That is, the ordering between the
preceding and following load/store/atomic instructions and the 8-bytes stores comprising

the block store conforms to TSO.

STBLOCKF on SPARC64™ X / SPARC64™ X+ preserves the order of register accesses in the
same manner as any other store instruction.

The cache behavior of STBLOCKF is the same as for a normal store. If there is data in L1D
cache, then the block store writes to the L1D cache. If there is no data in the L1D cache, the
data is loaded into the L1D cache and then written.

A non-cacheable address can be specified for STBLOCKF.

A VA _watchpoint exception is detected only for the first eight bytes accessed by a STBLOCKF

instruction.

168

Exception

Target instruction

Condition

illegal_instruction

All

Register number specified by rd is not
a multiple of 8

fp_disabled

All

PSTATE.pef =0 or FPRS.fef =0

illegal_action

All

XAR.v = 1 and any of the following are
true
e XAR.simd =1
XAR.ursl =0
XAR.urs2 # 0
XAR.urs3<2> = 0
XAR.urd<1> # 0

mem_address_not_aligned

All

Address not aligned on a 64-byte
boundary.

VA_watchpoint

All

On access to eight lowest bytes only.
Refer to 12.5.1.62.

DAE_privilege_violation

ASI EO16, El16, FO16, F11s,
F8i6, and F916.

PSTATE.priv=0and TTE.p=1
Refer to 12.5.1.8

DAE_nfo_page

All

Refer to 12.5.1.7

Ver 29.0 Jan. 2015

7.96.

Store Floating-Point

Instruction op3

rdxiii Operation HPC-ACE Assembly Language
Regs SIMD Syntax

STF 10 01002 0—-31 Store single floating point register st fregra, laddress)
(XAR.v = 0)

STF 10 01002 0 — 126, Store double floating point register v v st fregra, laddress]
256 — (XAR.v=1)
382

STDF 10 01112 0 — 126, Store double floating point register v v std fregw, laddress]
256 —
382

STQF 10 01102 0 — 126, Store quad floating point register to v stq fregw, laddress]
256 — memory
382

non-SIMD execution

SIMD execution

Refer to Section 7.122 in UA2011.

STF copies 4 bytes in F[rd] to an address aligned on a 4-byte boundary. When XAR.v =0, STF
copies the contents of a single-precision floating-point register. When XAR.v = 1, STF copies
the upper 4 bytes of a double-precision floating-point register.

The STQF instruction is defined by SPARC V9 but it is not implemented on SPARC64™ X /
SPARC64™ X+. If STQF is executed, an illegal_instruction exception occurs.

On SPARC64™ X / SPARC64™ X+, STF and STDF can be executed as SIMD instructions. A
SIMD STF and SIMD STDF simultaneously execute basic and extended stores for
single-precision and double-precision data, respectively. Refer to Section 5.5.14 (page 35) for
details on how to specify the registers.

A SIMD STF copies the upper 4 bytes of Fd[rd] to the lower 4 bytes of the address and copies
the upper 4 bytes of Fd[rd + 256] to the upper 4 bytes of the address. The address must be
aligned on an 8-byte boundary. Misaligned accesses cause a mem_address_not_aligned
exception.

A SIMD STDF copies the 8 bytes of Fd[rd] to the lower 8 bytes of the address and copies the 8
bytes of Fd[rd + 256] to the upper 8 bytes of the address. The address must be aligned on a
16-byte boundary. Misaligned accesses cause a mem_address_not_aligned exception.

Note A SIMD STDF that accesses data aligned on a 4-byte boundary but
not an 8-byte boundary does not cause an
STDF_mem_address_not_aligned exception.

SIMD STF and SIMD STDF can only write to cacheable address. An attempt to access a
non-cacheable space causes a DAE_nc_page exception.

Like non-SIMD store instructions, memory access semantics adhere to TSO. SIMD STF and
SIMD STDF simultaneously execute basic and extended stores; however, the ordering
between the basic and extended stores comforms to T'SO.

A VA _watchpoint exception can be detected in either the basic or extended operation of a
SIMD STF or SIMD STDF instruction.

=i Fncoding defined in 5.3.1 "Floating-Point Register Number Encoding” (page 26).

Exception Target instruction | Condition

illegal_instruction STF, STDF i =0 and a reserved is not 0.

STQF Always

For this instruction, exceptions with
priority lower than illegal_instruction are
intended for emulation.

fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action STF, STDF XAR.v =1 and any of the following are
true

e XAR.ursl =0

o XAR.urs2 #0

XAR.urs3<2> =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urd<2> = 0

STQF XAR.v = 1 and any of the following are
true

XAR.simd =1

XAR.ursl =0

XAR.urs2 # 0

XAR.urs3<2> = 0

XAR.urd<1> =0

fp_exception_other STQF rd<1>#0
(FSR.fit = invalid_fp_register)

STDF_mem_address_not_aligned | STDF Address aligned on 4-byte boundary but
not 8-byte boundary when XAR.v =0 or
XAR.simd = 0.

mem_address_not_aligned STF When either of the following is true

o Address not aligned on 4-byte
boundary when XAR.v =0 or
XAR.simd =0

e Address not aligned on 8-byte
boundary when XAR.v =1 and
XAR.simd =1

STDF When either of the following is true

o Address not aligned on 4-byte
boundary when XAR.v =0 or
XAR.simd =0

e Address not aligned on 16-byte
boundary when XAR.v =1 and

XAR.simd =1
STQF Address not aligned on 4-byte boundary.
VA_watchpoint All Refer to the description and 12.5.1.62.
DAE_privilege_violation All Refer to 12.5.1.8
DAE_nc_page All Access to non-cacheable space when
XAR.v =1 and XAR.simd = 1
DAE_nfo_page All Refer to 12.5.1.7

170 Ver 29.0 Jan. 2015

7.97.

Store Floating-Point into Alternate
Space

Instruction op3 rdxiv Operation HPC-ACE Assembly Language Syntax
Regs SIMD
STEAPast 1101002 0-31 Store single floating point sta fregw, laddressl imm_asi
register into alternate space sta fregra, laddress] %asi
(xar.v =0)
STFAPast 11 01002 0 - 126, Store double floating point v v sta fregw, laddressl imm_asi
256 — register into alternate space sta fregra, laddress] %asi
382 (xar.v=1)
STDFAPast 1101112 0 - 126, Store double floating point v v stda fregw, laddressl imm_asi
256 — register into alternate space stda fregw, laddress] %asi
382
STQFAPast 1101102 0 - 126, Store quad floating point v stqa fregw, laddress] imm_asi
256 — register into alternate space stqa fregw, laddress) %asi
382

non-SIMD execution

SIMD execution

Refer to Section 7.123 in UA2011.

STFA copies the 4-bytes in F[rd] to the 4-byte aligned address in the specified alternate
space. When xar.v = 0, STFA copies the content of a single-precision floating-point
register..When xar.v = 1, STFA copies the upper 4 bytes of a double-precision floating-point
register.

The STQFA instruction is defined by SPARC V9 but is not implemented on SPARC64™ X /
SPARC64™ X+, If STQFA is executed, an illegal_instruction exception occurs.

On SPARC64™ X / SPARC64™ X+, STFA and STDFA can be executed as SIMD instructions.
SIMD STFA and SIMD STDFA simultaneously execute basic and extended stores for
single-precision and double-precision data. Refer to Section 5.5.14 (page 35) for details on
how to specify the registers.

SIMD STFA copies the upper 4 bytes of Fd[rd] to the lower 4 bytes of the address and copies
the upper 4 bytes of Fd[rd + 256] to the upper 4 bytes of the address. The address must be
aligned on an 8-byte boundary. Misaligned accesses cause a mem_address_not_aligned
exception.

SIMD STDFA copies the 8bytes of Fd[rd] to the lower 8 bytes of the address and copies the 8
bytes of Fd[rd + 256] to the upper 8 bytes of the address. The address must be aligned on a
16-byte boundary. Misaligned addresses cause a mem_address_not_aligned exception.

Note A SIMD STDFA that access data aligned on a 4-byte boundary but not
an 8-byte boundary does not cause an
STDF_mem_address_not_aligned exception. Unlike SIMD LDDFA, a
SIMD STDFA that accesses data aligned on an 8-byte boundary but
not a 16-byte boundary causes a mem_address_not_aligned exception.

xiv. Encoding defined in 5.3.1 "Floating-Point Register Number Encoding” (page 26).

SIMD STFA and SIMD STDFA can only write to cacheable addresses. An attempt to access a
non-cacheable space causes a DAE_nc_page exception. If a nontranslating ASI is specified
for a SIMD STFA or SIMD STDFA, a DAE_invalid_ASI exception will occur.

Like non-SIMD store instructions, memory access semantics adhere to TSO. SIMD STFA
and SIMD STDFA simultaneously execute basic and extended stores; however, the ordering
between the basic and extended stores conforms to TSO.

A VA_watchpoint exception can be detected in either the basic or extended operation of a
SIMD STFA or SIMD STDFA.

172 Ver 29.0 Jan. 2015

Exception

Target
instruction

Condition

illegal_instruction

STQFA

Always

For this instruction, exceptions with priority
lower than illegal_instruction are intended for
emulation.

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef=0

illegal_action

STFA, STDFA

XAR.v =1 and any of the following are true
e XAR.urs1 =0
o XAR.urs2 =0
o XAR.urs3<2> =0
e XAR.urd<1>=0
e XAR.simd =1 and XAR.urd<2> = 0

STQFA

XAR.v =1 and any of the following are true
e XAR:ssimd=1
o XAR.ursl#0
o XAR.urs2 #0
o XAR.Urs3<2>#0
e XAR.Urd<1>#0

fp_exception_other
(FSR.ftt = invalid_fp_register)

STQFA

rd<1> <0

STDF_mem_address_not_aligned

STDFA

Address aligned on 4-byte boundary but not 8-
byte boundary when XAR.v = 0 or XAR.simd =0

mem_address_not_aligned

STFA

When either of the following is true

o Address not aligned on 4-byte boundary
when XAR.v = 0 or XAR.simd =0

o Address not aligned on 8-byte boundary
when XAR.v =1 and XAR.simd = 1

STDFA

When either of the following is true

e Address not aligned on 4-byte boundary
when XAR.v = 0 or XAR.simd =0

e Address not aligned on 16-byte boundary
when XAR.v =1 and XAR.simd =1

STQFA

privileged_action

All

Refer to 12.5.1.49

VA_watchpoint

All

Refer to the description

DAE_invalid_asi

All

Refer to the description and 12.5.1.5

DAE_privilege_violation

All

Refer to 12.5.1.8

DAE_nc_page

All

Access to non-cacheable space when XAR.v=1
and XAR.simd =1

DAE_nfo_page

All

Refer to 12.5.1.7

7.98. Store Floating-Point Register on
Register Condition (for SPARC64™ X)

Compatibility Note For the specification of this instruction on
SPARC64™ X+, refer to page 248.

Instruction op3 rs2,rd Operation HPC-ACE Assembly Language Syntax
Regs SIMD
STFR 10 11002 0-31 Store single floating point register stfr fregw, fregrs, [regrsi]
on condition (xar.v = 0)
STFR 10 11002 0 — 126, Store single floating point register v v stfr fregw, freges, [regrsi]
256 — on condition (xar.v=1)
382%V
STDFR 10 11112 0 - 126, Store double floating point register v v stdfr fregw, fregrs, [regrsil
256 — on condition
382xv
[(11,] rd | op3 rsl [i=1] rs2
31 30 29 25 24 19 18 14 13 12 5 4 0

Programming Note This instruction does not execute a store operation if
the MSB of the corresponding register F[rs2] or F[rs2+256] is 0. However,
certain exception can still occur.

Non-SIMD execution

When XAR.v = 0 and the MSB (bit 31) of Fs[rs2] is 1, STFR copies the 4bytes of the
single-precision register Fs[rd] to the specified address, which should be aligned on a 4-byte
boundary. When XAR.v = 1, XAR.simd = 0, and MSB (bit 63) of Fd[rs2] is 1, STFR copies the
upper 4bytes of the double-precision register Fd[rd] to the specified address, which should
be aligned on a 4-byte boundary.

When the MSB (bit 63) of Fd[rs2] is 1, STDFR copies the 8 bytes of the double-precision
register Fd[rd] to the specified address, which should be aligned on a 4-byte boundary.

These floating-point store instructions use implicit ASIs (refer to Section 6.3.1.3 in UA2011)
to access memory. The effective write address is "R[rs1]".

STFR and STDFR cause a mem_address_not_aligned exception when writing to an address
that is not aligned on a word boundary.

When executing a non-SIMD STDFR, the address needs to be aligned on a word boundary.
However, if the address is aligned on a word boundary but is not aligned on a doubleword
boundary, a STDF_mem_address_not_aligned exception will occur. The trap handler must
emulate the STDFR instruction when this exception occurs.

Regardless of whether the store operation is actually executed, a VA_watchpoint exception is
detected for STFR and STDFR if the address matches.

SIMD execution STFR and STDFR support SIMD execution on SPARC64™ X. SIMD STFR and SIMD STDFR
simultaneously execute basic and extended stores for single-precision and double-precision
data, respectively. Refer to Section 5.5.14 (page 35) for details on how to specify the
registers.

= Encoding defined in 5.3.1 "Floating-Point Register Number Encoding” (page 26)

174 Ver 29.0 Jan. 2015

A SIMD STFR copies the upper 4 bytes of Fd[rd] to the lower 4 bytes of the address when
XAR.v = 1, XAR.simd = 1, and the MSB (bit 63) of Fd[rs2] is 1, and copies the upper 4 bytes of
Fd[rd + 256] to the upper 4 bytes of the address when XAR.v = 1, XAR.simd = 1, and the MSB
(bit 63) of Fd[rs2+256] is 1. The address must be aligned on an 8-byte boundary. Misaligned
accesses cause a mem_address_not_aligned exception.

A SIMD STDFR copies Fd[rd] to the lower 8 bytes of the address when XAR.v = 1,

XAR.simd = 1, and the MSB (bit 63) of Fd[rs2] is 1, and copies Fd[rd + 256] to the upper 8
bytes of the address when XAR.v = 1, XAR.simd = 1, and the MSB (bit 63) of Fd[rs2+256] is 1.
The address must be aligned on a 16-byte boundary. Mialigned accesses cause a
mem_address_not_aligned exception.

Note A SIMD STDFR does not cause a STDF_mem_address_not_aligned
exception when writing to an address that is aligned on a 4-byte
boundary but not an 8-byte boundary.

SIMD STFR and SIMD STDFR can only write to cacheable address spaces. An attempt to
write a non-cacheable space causes a DAE_nc_page exception.

Like non-SIMD store instructions, memory access semantics adhere to TSO. SIMD STFR
and SIMD STDFR simultaneously execute basic and extended stores; however, the ordering
between the basic and extended stores conforms to TSO.

176

Exception

Target instruction

Condition

illegal_instruction

All

i =0 or a reserved field is not 0.

fp_disabled

All

PSTATE.pef = 0 or FPRS.fef=0

illegal_action

All

XAR.v =1 and any of the following are
true

e XAR.ursl =0

XAR.urs2<1> =0

XAR.urs3<2> =0

XAR.urd<1> %0

XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

STDF_mem_address_not_aligned

STDFR

Store to address aligned on 4-byte
boundary but not an 8-byte boundary
when XAR.v =0 or XAR.v=1 and
XAR.simd =0

mem_address_not_aligned

STFR

When either of the following is true
e Store to address not aligned on 4-byte
boundary when XAR.v=1 and
XAR.simd = 0, or XAR.v=0
e Store to address not aligned on 8-byte
boundary when XAR.v=1 and
XAR.simd =1

STDFR

When either of the following is true
e Store to address not aligned on 4-byte
boundary when XAR.v=1 and
XAR.simd = 0, or XAR.v = 0.
e Store to address not aligned on
16-byte boundary when XAR.v =1
and XAR.simd =1

VA_watchpoint

All

Refer to the description and 12.5.1.62

DAE_privilege_violation

All

Refer to 12.5.1.8

DAE_nc_page

All

Access to non-cacheable space when
XAR.v =1 and XAR.simd =1

DAE_nfo_page

All

Refer to 12.5.1.7

Ver 29.0 Jan. 2015

7.99. Store Partial Floating-Point

Refer to Section 7.125 in UA2011.

Exception Condition

illegal_instruction i=1

fp_disabled PSTATE.pef = 0 or FPRS.fef =0

illegal_action XAR.v =1

STDF_mem_address_not_aligned Effective address is 4-byte aligned but not
8-byte aligned

mem_address_not_aligned Effective address is 4-byte aligned

VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

7.100. Store Short Floating-Point

178

Refer to Section 7.126 in UA2011.

Exception Target Condition
Instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action All XAR.v =1
mem_address_not_aligned ASI 0xD2, | Effective address is not 2-byte aligned
0xD3,
0xDA,0x
DB
VA_watchpoint All
DAE_privilege_violation All
DAE_nfo_page All

Ver 29.0 Jan. 2015

7.101. Store Integer Twin Word

Refer to Section 7.127 in UA2011.

Exception

Condition

illegal_instruction

e rd is an odd numbered register
e i=0andiw<12:5> # 0

illegal_action

XAR.v = 1 and any of the following
are true

e XAR.simd=1

e XAR.urs1 # 0

e XAR.Urs2 # 0

o XAR.Urs3<2> + 0

e XAR.urd # 0

mem_address_not_aligned

Effective address is not 8-byte
aligned

VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

7.102. Store Integer Twin Word into Alternate
Space

Refer to Section 7.128 in UA2011.

Exception Condition

illegal_instruction rd is an odd numbered register

illegal_action XAR.v = 1 and any of the following
are true

e XAR.simd=1

e XAR.ursl # 0

e XAR.urs2 # 0

e XAR.Urs3<2> #+ 0
e XAR.urd # 0

mem_address_not_aligned Effective address is not 8-byte
aligned

privileged_action
VA_watchpoint
DAE_invalid_asi
DAE_privilege_violation
DAE_nfo_page

180 Ver 29.0 Jan. 2015

7.103. Store Floating-Point State Register

Instruction op3 rd Operation HPC-ACE Assembly Language
Regs SIMD Syntax

STESRD 10 01012 O Store FSR (Only lower 32 bits) v st %fsr, laddress]

STXFSR 10 01012 1 Store FSR v stx %fsr, [address]

— 10 01012 2- 31 reserved

Refer to Section 7.124 and Section 7.129 in UA2011.

Exception Target instruction | Condition
illegal_instruction STFSR, STXFSR |i=0 and the reserved field is not 0.
— rd =2-31
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action All XAR.v =1 and any of the following are
true
e XAR.simd =1
e XAR.ursl#0
o XAR.urs2 #0
o XAR.urs3<2> =0
e XAR.urd #0
mem_address_not_aligned STFSR Address not aligned on 4-byte boundary
STXFSR Address not aligned on 8-byte boundary.
VA_watchpoint All Refer to 12.5.1.62
DAE_privilege_violation All Refer to 12.5.1.8
DAE_nfo_page All Refer to 12.5.1.7

7.104. Subtract

Refer to Section 7.130 in UA2011.

Exception Target Condition
instruction
illegal_instruction All A reserved field is not 0.
(i=0and iw<12:5> = 0)
illegal_action All XAR.v =1

182 Ver 29.0 Jan. 2015

7.105. Swap Register with Memory

Refer to Section 7.131 and Section 7.132 in UA2011.

Exception Condition

illegal_instruction i =0 and iw<12:5> # 0

illegal_action XAR.v = 1 and any of the following
are true

e XAR.simd=1

e XAR.ursl # 0

e XAR.Urs2 # 0

e XAR.Urs3<2> #+ 0
e XAR.urd # 0

mem_address_not_aligned Effective address is not 4-byte
aligned

VA_watchpoint

DAE_privilege_violation

DAE_nfo_page

7.106. Set XAR (SXAR)

Instruction op2 cmb Operation

HPC-ACE Assembly
Regs SIMD Language

Syntax

SXAR1 1112 0 Set XAR for the following instruction sxarl

SXAR2 1112 1 Set XAR for the following two instructions sxar2
[00, Jcmb[fsimd] furd | 0op2=1112 | fursl | furs2 | furs3 [s simd| s urd [s ursl | s urs2 | s urs3 |

31 30 29 28 27 25 24

Description

184

22 21 19 18 16 15 13 12 11 9 8 6 5 3 2

SXAR updates the XAR register. XAR holds values for up to two instructions. SXAR1 sets

values for one instruction, and SXAR2 sets values for two instructions. Fields that start
with f_ are used by the first instruction executed after SXAR, and fields that start with s_
are used by the second instruction executed after SXAR.

The fields of SXAR1 that starts with s_ must be 0. An illegal_instruction exception will occur
if a value other than 0 is specified.

Compatibility Note In SPARC64 VIIIfx, values other than 0 in fields

starting with s_ were ignored for SXAR1.

SXAR modifies the one or two instructions that are immediately executed after SXAR. The
SXAR instruction is used to specify the HPC-ACE floating-point registers on SPARC64™ X /
SPARC64™ X+, HPC-ACE SIMD operations with floating-point registers, and disabling
hardware prefetch for memory access instructions. Even if the instruction fields, *_simd,

* ursl, *_urs2,* urs3 and *_urd are all specified as 0, XAR.f_v is set to 1 after SXAR1 is
executed; both XAR.f_v and XAR.s_v are set to 1 after SXAR2 is executed.

Performance may suffer if the SXAR instruction and the instructions that it modifies are not
contiguous in memory. For example, if SXAR is placed in the delay slot of a branch
instruction or a Tcc instruction is inserted after the SXAR.

SXAR itself is not XAR eligible. If XAR.v = 1 when executing SXAR, an illegal_action exception

will occur.

Compatibility Note op = 002 and op2 = 1112 are reserved in SPARC V9,
but SPARC V8 defines FBcc in these opcodes. When running a SPARC V8
application on SPARC64™ X / SPARC64™ X+, there is the possibility of
different behavior.

Programming Note The SXAR instruction word contains the value to be
set in the XAR register but this value is not shown in the assembly syntax
of SXAR. Instead, HPC-ACE features are indicated by mnemonic suffixes
appended to the instruction(s) that SXAR modifies, and the assembler
generates the appropriate value for the SXAR instruction word.

Exception

Target instruction | Condition

illegal_instruction

SXAR1 s *=0

illegal_action

All XARv =1

Ver 29.0 Jan. 2015

7.107. Tagged Add and Subtract

Refer to Sections 7.133, 7.134, 7.136 and 7.137 in UA2011.

Exception Condition

illegal_instruction i=0and iw<12:5> # 0

illegal_action XAR.v =1

7.108.

Trap on Integer Condition Code (Tcc)

Refer to Section 7.135 in UA2011.

The state of the XAR register does not affect the operation of the Tcc instruction. Even if
XAR.v = 1, no illegal_action exception is detected.

When the condition is not true, no trap is generated, but settings in the XAR register for one
instruction are cleared. That is, if XAR.f_v =1, then XAR.f_* are set to 0. If XAR.f_v=0 and
XAR.s_v =1, then XAR.s_* are set to 0.

Programming Note XAR is ignored so that the Tcc instruction can be
inserted at any location in a sequence of instructions. This behavior is
useful for implementing breakpoints for a debugger.

Whether the trap is generated or not depends on the SWTN. Table 7-22 shows this
relationship.

Table 7-22 Trap generated given SWTN

Privilege level SWTN
0-127 128 - 255
Non-privileged mode | trap_instruction | —
PSTATE.priv=0 (Effective SWTN is only seven bits)

Note The Trap on Control Transfer feature is implemented on
SPARC64™ X / SPARC64™ X+.

The values saved in TPC[TL] and TNPCJ[TL] are affected by the settings of PSTATE.am when
the trap occurs.

Refer to pages 309 for more information about trap processing.

Exception Target instruction | Condition
illegal_instruction All When either of the following is true
o Areserved field is not 0.
e ccO=1
control_transfer_instruction | Except TN Condition is true and PSTATE.tct = 1
Condition always true for TA
trap_instruction Except TN Refer to the description

186 Ver 29.0 Jan. 2015

7.109. Unsigned Divide (64-bit+ 32-bit)

Refer to Section 7.138 in UA2011.

Exception Condition
illegal_instruction i=0and iw<12:5> # 0
illegal_action XAR.v =1
division_by_zero Divisor is zero

7.110. Unsigned Multiply (32-bit)

Refer to Section 7.139 in UA2011.

Exception Condition
illegal_instruction i=0and iw<12:5> # 0
illegal_action XAR.v =1

188 Ver 29.0 Jan. 2015

7.111. Write Ancillary State Register (WRASR)

Instruction rd Operation HPC-ACE Assembly Language Syntax
Regs SIMD
WRYD 0 Write Y register. (deprecated.) Wr regri, reg or_imm, %y
WRCCR 2 Write CCR register Wr regri, reg_or_imm, %CCr
WRASI 3 Write ASI register WIr regrsi, reg_or_imm, %asi
WRFPRS 6 Write FPRS register Wr regrsi, reg_or_imm, %fprs
WRPCRPrcr 16 Write PCR register Wr regwi, reg_or_imm, %pcr
WRPICPrer 17 Write PIC register WK regisi, reg_or_imm, %pic
WRGSR 19 Write GSR register Wr regsi, reg or imm, %Qsr
WRPAUSE 27 Write PAUSE register Wr regi, reg or_imm, %pause
WRXAR 29 Write XAR register WK regrsi, reg or_imm, %hxar
WRXASR 30 Write XASR register Wr regrsi, reg or_imm, %Xasr

Refer to Section 7.141 in UA2011.

The result of a WRASR instruction takes affect immediately. The new setting is visible to
downstream instructions.

e An attempt to set values other than 0 to reserved fields of XAR using the WRXAR
instruction generates an illegal_instruction exception. Note that, in this case, the
priority of an illegal_action exception is higher than the illegal_instruction exception.

Exception

Target instruction

Condition

illegal_instruction

rd=1,4-5,7-14,18,26 - 28

All i=0andiw<12:5> %0
fp_disabled WRGSR PSTATE.PEF = 0 or FPRS.FEF =0
illegal_action All XAR.v =1
privileged_action | WRPCR PSTATE.priv = 0 and one of the following is true
e PCR.priv=1
e PCR.priv =0 and PCR.priv is set to 1
WRPIC PSTATE.priv =0 and PCR.priv=1

7.114. Cache Line Fill with Undetermined

Values

Compatibility Note This instruction (and corresponding ASIs) is left to

ensure compatibility with SPARC64 VIIIfx

Instruction ASI op3 Operation HPC-ACE Assembly Language Syntax
Regs SIMD
XEILLN ASI_XFILL_P 0111102 nop v/ stxa regw, lreg plus imml| %asi
ASI_XFILL_S 01 0111 stxa regw, lregaddr] imm_asi
11 0111 sttwa regw, lreg plus imm) %asi
sttwa regw, lregaddrl imm_asi
stda fregw, lreg plus imm| %asi
stda fregw, lregaddrl imm_asi
[[11,] rd [op3 [rsl [i=0] imm_asi [rs2
[11, | rd | op3 | rsl [i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4
Description This instruction is left for compatibility with SPARC64 VIIIfx. On SPARC64 VIIIfx, this
instruction updated the entire cache line with an undefined value. On SPARC64™ X/
SPARC64™ X+, it does not perform any memory or cache operations. However, exceptions
related to memory accesses are detected.
XFILL for noncacheable space does not cause a DAE_nc_page exception.
190 Ver 29.0 Jan. 2015

Exception Target Condition
instruction

illegal_instruction op3 =01 01112 Odd-numbered destination register (rd)
(STTWA)

fp_disabled op3=1101112 PSTATE.PEF =0 or FPRS.FEF =0
(STDFA)

illegal_action op3 =01 11102 XAR.v = 1 and any of the following are

(STXA)
op3 =01 01112
(STTWA)

true
e XAR.simd=1
o XAR.ursl #0
o XAR.Urs2 #0
o XAR.urs3<2> =0
e XAR.urd #0

op3 =11 01112
(STDFA)

XAR.v = 1 and any of the following are
true

e XAR.simd=1

e XAR.urs1 =0

e XAR.urs2 =0

o XAR.urs3<2> =0

e XAR.urd<1>=0

STDF_mem_address_not_aligned

op3 =11 0111z

regaddr aligned on 4-byte boundary but

(STDFA) not 8-byte boundary
mem_address_not_aligned op3 =11 01112 regaddr not aligned on 4-byte boundary
(STDFA)
VA_watchpoint All When the watchpoint address matches
any address in the cache line
Refer to 12.5.1.62
DAE_privilege_violation All Refer to 12.5.1.8
DAE_nfo_page All Refer to 12.5.1.7

7.115. DES support instructions

Compatibility Note Future compatibility of DES support instructions is
not guaranteed. These instructions should only be used in libraries
for the SPARC64™ X or SPARC64™ X+ platform.

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FDESENCX 01001 1000: DES operation v v fdesencx fregrsi, fregrss, fregr
FDESPC1X 01001 10012 DES Permuted Choice 1 v v fdespclx fregs:, fregra
FDESIPX 01001 10102 DES Initial Permutation v v fdesipx fregysi, fregra
FDESIIPX 01001 10112 DES Inverse Initial Permutation v v fdesiipXx fregrsi, fregrw
FDESKEYX 01001 1100: DES Key Calculation v v fdeskeyx fregwi, index, fregra
FDESENCX
[10,] rd | op3=110110, | rsl Opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
FDESPC1X, FDESIPX, FDESI IPX
[10,] rd | op3=110110, | rsl Opf 0 0000,
31 30 29 25 24 19 18 14 13 5 4 0
FDESKEYX
[10,] rd | op3=110110, | rsl Opf index
31 30 29 25 24 19 18 14 13 5 4 0
Description FDESENCX processes one round of the 16 rounds in the DES encoding and decoding

algorithms. Given Fd[rs1] as the permuted input, we refer to the upper 32 bits as L and the
lower 32 bits as R, Fd[rs2] is the key data, and the result is written in Fd[rd]. FDESENCX
preforms the operation shown in the following expression.
Fd[rd] = Fd[rs1]<31:0> :: (Fd[rs1]<63:32> " f(Fd[rs1]<31:0>, PC2(Fd[rs2]<55:0>))
=R : (LM (R, PC2(KEY)))

Here, {0 is the encoding or decoding function, which outputs 32-bit data. PC20 is the
Permuted Choice2 function, which outputs 48-bit data. Both functions are defined in the
DES specification.

Note FDESENCX applies PC2(to Fd[rs2]. That is, the key data specified
for Fd[rs2] is not the result Kn of the key schedule defined in the DES
specification. Instead, Fd[rs2] is the input for PC20. This key data is
calculated by the FDESKEYX instruction.

FDESPC1X operates on Fd[rs1] and writes the result in Fd[rd].

FDESPC1X executes PC1(), which is the Permuted Choice 1 function defined by the DES
specification. PC10 chooses 56 bits from Fd[rs1] and writes the result in the lower 56 bits of
Fd[rd]. Parity bits for Fd[rs1] are generated and written in the upper 8 bits of Fd[rd].

Fd[rd]<63>: ~"Fd[rs1]<63:56>
Fd[rd]<62>: ~"Fd[rs1]<55:48>
Fd[rd]<61>: ~"Fd[rs1]<47:40>
Fd[rd]<60>: ~"Fd[rs1]<39:32>
Fd[rd]<59>: ~"Fd[rs1]<31:24>
Fd[rd]<58>: ~"Fd[rs1]<23:16>

192 Ver 29.0 Jan. 2015

Fd[rd]<57>: ~"Fd[rs1]<15:8>
Fd[rd]<56>: ~Fd[rs1]<7:0>

FDESIPX operates on Fd[rs1] and writes the result in Fd[rd].

FDESIPX performs the initial permutation, IP() defined by the DES specification. Table
7-23 shows how IP() permutes the input bits. The position of a bit in the output data
Fd[rd]<63:0> is a binary number 0000002 - 111111s. We fix the upper or lower three bits of
this binary number and let the other bits vary. That is, each row represents the positions in
the output with the same upper three bits, and each column represents the positions with
the same lower three bits. The intersection of a row and column shows the position of the
bit in the input Fd[rs1]<63:0> that is written to that position in the output.

For example, the first row (111xxx2) shows the positions in the input data (bits 6, 14, ..., 62)
corresponding to positions in the output data (bits 1111112, 111110z, ..., 1110002). The next
row (110xxx2) shows the positions in the input data (bits 4, 12, ..., 60) corresponding to
positions in the output data (bits 1101112, 1101102, ..., 1100002). Specifically, the cell in the
first row and the first column, whose upper bits are 1112 and lower bits are 1112, has the
value 6. That is, input bit Fd[rs1]<6> is written to output bit Fd[rd]<63>.

Table 7-23 FDESIPX bit permutation

Bit position in Fd[rd]
Upper three bits | Lower three bits
xxx1112 | xxx1102 | xxx10132 | xxx1002 | xxx0112 | xXXxx0102 | xXxx0012 | xXXxx0002

111xxx2 6 14 22 30 38 46 54 62
110xxx2 4 12 20 28 36 44 52 60
101xxx2 2 10 18 26 34 42 50 58
100xxx2 0 8 16 24 32 40 48 56
011xxx2 7 15 23 31 39 47 55 63
010xxx2 5 13 21 29 37 45 53 61
001xxx2 3 11 19 27 35 43 51 59
000xxx2 1 9 17 25 33 41 49 57

FDESI IPX operates on Fd[rs1] and writes the result in Fd[rd].

FDESI IPX executes IP'1(), which is the inverse function of the initial permutation, as
defined by the DES specification. Table 7-24 shows how IP1() permutates the input bits.
The position of a bit in the output data Fd[rd]<63:0> is a binary number 000000z - 1111115.
We fix the upper or lower three bits and let the other bits vary. That is, each row represents
the positions in the output with the same upper three bits, and each column represents the
positions with the same lower three bits. The intersection of a row and column shows the
positions of the bit in the input Fd[rd]<63:0> that is written to that position in the output.

For example, the first row (111xxx2) shows the positions in the input data (bits 56, 24, ..., 0)
corresponding to the positions in the output data (bits 1111112, 111110z, ..., 1110002). The
next row (110xxx2) shows the positions in the input data (bits 57, 25, ..., 1) corresponding to
the positions in the output data (bits 1101112, 1101102, ..., 1100002). Specifically, the cell in
the first row and the first column, whose upper 3 bits are 1112 and lower 3 bits are 1112, has
the value 56. That is, input bit Fd[rs1]<56> is written to output bit Fd[rd]<63>.

Table 7-24 FDESI1 IPX bit permutation

Bit position in Fd[rd]
Upper three bits | Lower three bits
xxx1112 | xxx1102 | xxx1012 | xxx1002 | xxx0112 | xXx0102 | XX¥x0012 | Xx3xx0002

111xxXe 56 24 48 16 40 8 32 0
110xxxz2 57 25 49 17 41 9 33 1
101xxx2 58 26 50 18 42 10 34 2
100xxx2 59 27 51 19 43 11 35 3
011xxx2 60 28 52 20 44 12 36 4
010xxx2 61 29 53 21 45 13 37 5
001xxx2 62 30 54 22 46 14 38 6
000xxx2 63 31 55 23 47 15 39 7

Note Table 7-24 difers from the table in the DES specification for the
inverse function of the initial permutation because FDESIIPX is a
composite operation that exchanges the upper and lower 32 bits in
the pre-output and then applies IP1().

FDESKEYX performs the operation specified by the index field on the input Fd[rs1] and
writes the result in Fd[rd].

index |Operation

0 Fd[rs1]<63:56> :: ROTL(Fd[rs1]<55:28>, 1) :: ROTL(Fd[rs1]<27:0>, 1)
1 Fd[rs1]<63:56> :: ROTL(Fd[rs1]<55:28>, 2) :: ROTL(Fd[rs1]<27:0>, 2)
2 — 1F16 | reserved

In the above table, ROTL(x, y) is a function that rotates x left by y bits.

The DES key schedule takes 56 bits from the 64-bit key, permutes these bits by PC1(), and
divides the result into two 28-bit data, C'and D. Depending on the round, C'and D are each
rotated left by one or two bits and then merged. Merged data is permuted by PC20.
FDESKEYX does part of this processing. The FDESKEYX instruction assumes Cand D as
inputs, rotates each data based on the index, and outputs the merged result. C'and D are
generated by the FDESPC1X instruction.

Usage example

/*

* DES encryption

*

* Input

* %fO: Plaintext data

* %f2: Key data

* Output

* %f0: Ciphertext data

*/
fdespclx %2, %f2 1 IP(key)
fdeskeyx %f2, 0, %F4 1 Ky
fdeskeyx %f4, 0, %f6 1 K,
fdeskeyx wf6, 1, %f8 1 Kj
fdeskeyx %f8, 1, %F10 1 Ky
fdeskeyx %F10, 1, %fl2 1 Ky
fdeskeyx %wf12, 1, %fl4 1 Kg

194 Ver 29.0 Jan. 2015

fdeskeyx %f14, 1, %Fl6
fdeskeyx %fl16, 1, %fl8
fdeskeyx %f18, 0, %f20
fdeskeyx %F20, 1, %f22
fdeskeyx wf22, 1, %f24
fdeskeyx wf24, 1, %f26
fdeskeyx %f26, 1, %f28
fdeskeyx %f28, 1, %F30
fdeskeyx %f30, 1, %F32
fdeskeyx %f32, 0, %f34
fdesipx %FO, %FO
fdesencx %f0o, %f4, %FO
fdesencx %fo, %f6, %fO
fdesencx %fo, %f8, %fO
fdesencx %f0o, %F10, %FO
fdesencx wfo, %fl12, %FO
fdesencx %f0o, %fl4, %FO
fdesencx %fOo, %fF1l6, %FO
fdesencx %f0o, %F18, %FO
fdesencx %fOo, %F20, %FO
fdesencx %fo, %f22, %FO
fdesencx wfo, %f24, %fO
fdesencx %f0o, %f26, %FO
fdesencx %fo, %f28, %fFO
fdesencx %f0o, %F30, %FO
fdesencx %fo, %f32, %fO
fdesencx %f0o, %F34, %FO
fdesiipx %fO, %O

/*

* DES decryption

*

* Input

* %f0: Ciphertext data

* %f2: Key data

* Output

* %f0: Plaintext data

*/
fdespclx %f2, %f2
fdeskeyx wf2, 0, %f4
fdeskeyx %f4, 0, %f6
fdeskeyx wf6, 1, %f8
fdeskeyx %f8, 1, %F10
fdeskeyx %f10, 1, %fl2
fdeskeyx %wf12, 1, %fl4
fdeskeyx %F14, 1, %fl6
fdeskeyx %f16, 1, %Fl8
fdeskeyx %f18, 0, %f20
fdeskeyx %f20, 1, %wf22
fdeskeyx wf22, 1, %f24
fdeskeyx %wf24, 1, %fF26
fdeskeyx %f26, 1, %f28
fdeskeyx %28, 1, %F30
fdeskeyx %F30, 1, %f32
fdeskeyx %f32, 0, %f34
fdesipx %0, %fO
fdesencx %fOo, %f34, %fO
fdesencx %f0o, %F32, %FO
fdesencx %fOo, %F30, %FO
fdesencx %f0o, %f28, %FO
fdesencx %FOo, %fF26, %FO
fdesencx %fo, %f24, %FO
fdesencx %fo, %f22, %FO
fdesencx %fOo, %F20, %FO

IP(data)

round
round
round
round
round
round
round
round
round
round
round
round
round
round
round
round

16

1Pl (data)

1P(key)

IP(data)

round
round
round
round
round
round
round
round

16
15
14
13
12
11
10
9

196

fdesencx %f0o, %Ff18, %FO ! round 8
fdesencx %fFOo, %fF1l6, %FO ! round 7
fdesencx %f0o, %fl4, %FO I round 6
fdesencx %fo, %fl12, %fFO ! round 5
fdesencx %f0, %F10, %FO ! round 4
fdesencx %fOo, %f8, %fO ! round 3
fdesencx %fo, %f6, %fO ! round 2
fdesencx %FOo, %f4, %fO ! round 1
fdesiipx %f0, %FO 1 IPl(data)
Exception Target instruction Condition
illegal_instruction |FDESPC1X,FDESIPX,FDESII |ijw<4:0> =0

PX

FDESKEYX index = 0216 — 1F16
fp_disabled All PSTATE.PEF =0 or FPRS.FEF =0
illegal_action FDESENCX XAR.v =1 and any of the following are

true

e XAR.ursl<1> =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> =0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> =0

FDESPC1X,FDESIPX,FDESI I
PX,FDESKEYX

XAR.v =1 and any of the following are
true

e XAR.ursl<1> =0

XAR.urs2 =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urd<2> =0

Ver 29.0 Jan. 2015

7.116.

AES support instructions

Compatibility Note Future compatibility of AES support instructions is
not guaranteed. These instructions should only be used in libraries
for the SPARC64™ X or SPARC64™ X+ platform.

Instruction Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FAESENCX 01001 00002 AES encryption operation v v faesencx fregisi, fregrss, fregra
FAESDECX 01001 00012 AES decryption operation v v faesdecx fregrs1, fregiss, fregra
FAESENCLX 0 1001 00102 AES final round of encryption v v faesenclx fregi, fregrss, fregr
FAESDECLX 01001 00112 AES the final round of decryption v v faesdeclx fregwi, fregrsz, fregr
FAESKEYX 01001 01002 AES key generation v v faeskeyx fregrsi, index, fregra
FAESENCX, FAESDECX, FAESENCLX, FAESDECLX
[10, | rd | op3=110110, | rsl Opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
FAESKEYX
[10, rd | op3=110110, rsl | Opf index
31 30 29 25 24 19 18 14 13 5 4 0
Description FAESENCX executes the four functions defined for each round of the AES encryption

algorithm.
Fd[rd] = {MixColumns(ShiftRows(SubBytes({Fd[rd], Fd[rs1])))<127:64> ~ Fd[rs2]}

Fd[rd] and Fd[rs1] are the 16-byte input data. Fd[rd] is the upper eight bytes, and Fd[rs1] is
the lower eight bytes. Fd[rs2] is the upper eight bytes of the round key. First, SubBytes(
operates on the input data. Second, ShiftRows() operates on the result. Third,
MixColumns() operates on the result, and a 16-byte result is generated. Fourth, the upper
eight bytes of this result are XORed with the round key in Fd[rs2]. This fourth step is called
AddRoundKey() in the AES specification. This final 8-byte result is written in Fd[rd]. Note
that Fd[rd] is used both as an input and as the output.

The operations performed by FAESENCX are symmetric for the upper and lower eight bytes
of the input data. By exchanging the input, FAESENCX outputs a result which is the lower
eight bytes for the round. That is, specify the lower eight bytes in Fd[rd] and the upper eight
bytes in Fd[rs1]. Fd[rs2] is the lower eight bytes of the round key.

When using FAESENCX as a SIMD instruction, any floating-point register Fd[0] — Fd[126],
Fd[256] — Fd[382] can be specified for Fd[rs1]. However, only basic registers Fd[0] — Fd[126]
can be specified for Fd[rs2] and Fd[rd]. When an extended register Fd[256] — Fd[382] is
specified for Fd[rs1], the corresponding basic register in Fd[0] — Fd[126] is used for the
extended SIMD operation.

FAESENCLX executes the three functions defined for the final round of the AES encryption
algorithm.

Fd[rd] = {ShiftRows(SubBytes({Fd[rd], Fd[rs1]}))<127:64> ~ Fd[rs2]}

Fd[rd] and Fd[rs1] are the 16-byte input data. Fd[rd] is the upper eight bytes, and Fd[rs1] is
the lower eight bytes. Fd[rs2] is the upper eight bytes of the round key. First, SubBytes(
operates on the input data. Second, ShiftRows() operates on the result, and a 16-byte result
is generated. Third, the upper eight bytes of the result are XORed with the round key in

198

Fd[rs2]. This third step is called AddRoundKey() in the AES specification. This final result
is written in Fd[rd]. Note that Fd[rd] is used both as an input and as the output.

The operations performed by FAESENCLX are symmetric for the upper and lower eight bytes
of the input data. By exchanging the input, FAESENCLX outputs a result which is the lower
eight bytes for the final round. That is, specify the lower eight bytes in Fd[rd] and the upper
eight bytes in Fd[rs1]. Fd[rs2] is the lower eight bytes of the round key.

When using FAESENCLX as a SIMD instruction, any floating-point register Fd[0] — Fd[126],
Fd[256] — Fd[382] can be specified for Fd[rs1]. However, only basic registers Fd[0] — Fd[126]
can be specified for Fd[rs2] and Fd[rd]. When an extended register Fd[256] — Fd[382] is
specified for Fd[rs1], the corresponding basic register in Fd[0] — Fd[126] is used for the
extended SIMD operation.

FAESDECX executes the four functions defined for each round of the AES decryption
algorithm.

Fd[rd] = {InvMixColumns((InvSubBytes(InvShiftRows({Fd[rd],
Fd[rs1])))<127:64> ~ Fd[rs2])}

Fd[rd] and Fd[rs1] are the 16-byte input data. Fd[rd] is the upper eight bytes and Fd[rs1] is
the lower eight bytes. Fd[rs2] is the upper eight bytes of the round key. First, InvShiftRows()
operates on the input data. Second, InvSubBytes() operates o the result, and a 16-byte
result is generated. Third, the upper eight bytes of this result are XORed with the round
key in Fd[rs2]. This third step is called AddRoundKey() in the AES specification. Fourth,
InvMixColumns() operates on the result. The final result is written in Fd[rd]. Note that
Fd[rd] is used both as an input and as the output.

The operations performed by FAESDECX are symmetric for the upper and lower eight bytes
of the input data. By exchanging the input, FAESDECX outputs a result which is the lower
eight bytes for the round. That is, specify the lower eight bytes in Fd[rd] and the upper eight
bytes in Fd[rs1]. Fd[rs2] is the lower eight bytes of the round key.

When using FAESDECX as a SIMD,instruction, any floating-point register Fd[0] — Fd[126],
Fd[256] — Fd[382] can be specified for Fd[rs1]. However, only basic registers Fd[0] — Fd[126]
can be specified for Fd[rs2] and Fd[rd]. When an extended register Fd[256] — FA[382] is
specified for Fd[rs1], the corresponding basic register in Fd[0] — Fd[126] is used for the
extended SIMD operation.

FAESDECLX executes the three functions defined for the final round of the AES decryption
algorithm.

Fd[rd] = {(InvSubBytes(InvShiftRows({Fd[rd], Fd[rs1]})))<127:64> * Fd[rs2]}

Fd[rd] and Fd[rs1] are the 16-byte input data. Fd[rd] is the upper eight bytes, and Fd[rs1] is
the lower eight bytes. Fd[rs2] is the upper eight bytes of the round key. First, InvShiftRows(
operates on the input data. Second, InvSubBytes() operates on the results and a 16-byte
result is generated. Third, the upper eight bytes of the result are XORed with the round key
in Fd[rs2]. This third step is called AddRoundKey() in the AES specification. This final
result is written in Fd[rd]. Note that Fd[rd] is used both as an input and an output.

The operations performed by FAESDECLX are symmetric for the upper and lower eight bytes
of the input data. By exchanging the input, FAESDECLX outputs a result which is the lower
eight bytes for the final round. That is, specify the lower eight bytes in Fd[rd] and the upper
eight bytes in Fd[rs1]. Fd[rs2] is the lower eight bytes of the round key.

When using FAESDECLX as a SIMD instruction, any floating-point register Fd[0] — Fd[126],
Fd[256] — Fd[382] can be specified for Fd[rs1]. However, only basic registers Fd[0] — Fd[126]
can be specified for Fd[rs2] and Fd[rd]. When an extended register Fd[256] — FA[382] is
specified for Fd[rs1], the corresponding basic register in Fd[0] — Fd[126] is used for the
extended SIMD operation.

Ver 29.0 Jan. 2015

FAESKEYX generates the round key. To calculate all 4-byte data W[il, which are the round
keys used in each round, two 4-byte inputs W[i-1] and W[i-Nk] are needed from the
previous rounds where Nk is the number of 4-byte words comprising the key data.
FAESKEYX calculates both W[i] and W[i+1] at the same time. Specify W[i-2] in the upper
four bytes of Fd[rs1] and W[i-1] in the lower four bytes. Specify W[i-Nk] in the upper four
bytes of Fd[rd] and W[i-Nk+1] in the lower 4 bytes.. FAESKEYX performs the operation
specified by the index field and the 32-bit result is output to temp.

index | Operation

0016 |temp = Fd[rd]<63:32> * Fd[rs1]<31:0>

0lis |temp = Fd[rd]<63:32> » SubWord(Fd[rs1]<31:0>)

1016 |temp = Fd[rd]<63:32> * SubWord(RotWord(Fd[rs1]<31:0>)) ~ 0100 000016
1116 |temp = Fd[rd]<63:32> * SubWord(RotWord(Fd[rs1]<31:0>)) ~ 0200 000016
1216 |temp = Fd[rd]<63:32> * SubWord(RotWord(Fd[rs1]<31:0>)) ~ 0400 000016
1316 |temp = Fd[rd]<63:32> * SubWord(RotWord(Fd[rs1]<31:0>)) ~ 0800 000016
1416 |temp = Fd[rd]<63:32> *» SubWord(RotWord(Fd[rs1]<31:0>)) ~ 1000 000016
1516 |temp = Fd[rd]<63:32> » SubWord(RotWord(Fd[rs1]<31:0>)) ~ 2000 000016
1616 |temp = Fd[rd]<63:32> *» SubWord(RotWord(Fd[rs1]<31:0>)) ~ 4000 000016
1716 |temp = Fd[rd]<63:32> * SubWord(RotWord(Fd[rs1]<31:0>)) ~ 8000 000016
1816 |temp = Fd[rd]<63:32> *» SubWord(RotWord(Fd[rs1]<31:0>)) ~ 1B00 000016
1916 |temp = Fd[rd]<63:32> * SubWord(RotWord(Fd[rs1]<31:0>)) ~ 3600 000016

After this calculation, temp is equivalent to W[il. W[i+1] is calculated as "temp xor
WI[i-Ni+1]", which is equivalent to "temp xor Fd[rd]<31:0>". WI[i] is written in the upper four
bytes of Fd[rd] and W[i+1] is written in the lower four bytes.

Usage example, non SIMD

AES-128 key generation

*
*
* Input:
*
*
*

%F0o, %f2 : Key data
Output:

%F0o, %f2 ... %F40, %F42: Round keys
*/
fmovd %f0, %f40 1 W[o],w[1]
fmovd wf2, %f42 1 W[21.W[3]
faeskeyx %f42, 0x10, %F40
fmovd %f40, %Fa 1 W[4]1.W[5]
faeskeyx %f40, 0x0, %F42
fmovd %f42, %f6 1 W[e1.W[71
faeskeyx %f42, Ox11l, %F40
fmovd %f40, %F8 1 W[8]1.W[9]
faeskeyx %Ff40, O0x0, %F42
fmovd %f42, %F10 1 W[10],W[11]
faeskeyx %f42, 0x12, %F40
fmovd %F40, %F12 1 W[12],W[13]
faeskeyx %Ff40, 0x0, %F42
fmovd wfa2, %fla 1 W[14].,W[15]
faeskeyx %f42, 0x13, %F40
fmovd %f40, %F16 1 W[16],W[17]
faeskeyx %Ff40, O0x0, %F42
fmovd wf42, %F18 1 W[18],W[19]
faeskeyx %Ff42, 0x14, %F40
fmovd %f40, %F20 1 W[20],wW[21]

faeskeyx %f40, 0x0, %f42

fmovd %f42, %F22 1 W[22].,wW[23]
faeskeyx %f42, 0x15, %F40

fmovd %f40, %F24 1 W[24].,W[25]
faeskeyx %F40, O0x0, %F42

fmovd %f42, %F26 1 W[26].wW[27]
faeskeyx %f42, 0x16, %F40

fmovd %f40, %F28 1 W[28],W[29]
faeskeyx %F40, Ox0, %F42

fmovd %f42, %F30 1 W[30],W[31]
faeskeyx %f42, 0x17, %F40

fmovd %f40, %F32 1 W[32].,W[33]
faeskeyx %F40, Ox0, %F42

fmovd %f42, %F34 1 W[34].,W[35]
faeskeyx %f42, 0x18, %f40

fmovd %f40, %F36 1 W[36],W[37]
faeskeyx %f40, 0x0, %F42

fmovd %f42, %F38 1 W[38],W[39]
faeskeyx %f42, 0x19, %F40 1 W[40],wW[41]
faeskeyx %F40, O0x0, %F42 1 W[42].,w[43]
/*

* AES-128 ECB mode encryption

*

* Input:

* %FOo, %f2 ... %F40, %F42: Round keys
* %F50, %F52 : Plaintext data
* Output:

* %60, %F62 : Ciphertext data
*/

fxor %f50, %fFO, %F60 I Round O
fxor %f52, %f2, %fF62

fmovd %f60, %F58 I Round 1

faesencx %f62, %f4, %F60
faesencx %f58, %f6, %f62
fmovd %f60, %F58 1 Round 2
faesencx %f62, %f8, %f60
faesencx %f58, %f10, %f62
fmovd %f60, %F58 ! Round 3
faesencx %f62, %fl2, %f60
faesencx %f58, %fl14, %F62
fmovd %f60, %f58 ! Round 4
faesencx %f62, %fl6, %F60
faesencx %f58, %f18, %f62
fmovd %f60, %F58 I Round 5
faesencx %f62, %f20, %f60
faesencx %f58, %f22, %f62
fmovd %f60, %fF58 ! Round 6
faesencx %f62, %f24, %F60
faesencx %58, %f26, %f62
fmovd %F60, %F58 1 Round 7
faesencx %f62, %f28, %F60
faesencx %58, %F30, %f62
fmovd %f60, %F58 1 Round 8
faesencx %f62, %f32, %f60
faesencx %f58, %f34, %f62
fmovd %f60, %F58 ! Round 9
faesencx %f62, %f36, %F60
faesencx %58, %F38, %f62

fmovd %f60, %fF58 I Round 10 final round
faesenclx %f62, %f40, %F60
faesenclx %58, %f42, %f62

/*

200 Ver 29.0 Jan. 2015

* AES-128 ECB mode decryption

*

* Input:

* %F0o, %f2 ... %F40, %F42: Round keys

* %50, %F52 : Ciphertext data
* Output:

* %f60, %F62 : Plaintext data
*/

fxor %f50, %fF40, %F60 ! Round O

fxor %52, %fF42, %fF62

fmovd %f60, %F58 I Round 1

faesdecx %f62, %f36, %F60

faesdecx %58, %f38, %f62

fmovd %f60, %F58 I Round 2
faesdecx %f62, %f32, %f60

faesdecx %f58, %f34, %f62

fmovd %f60, %fF58 ! Round 3
faesdecx %f62, %f28, %f60

faesdecx %58, %Ff30, %f62

fmovd %f60, %fF58 I Round 4
faesdecx %f62, %f24, %f60

faesdecx %58, %f26, %f62

fmovd %f60, %f58 I Round 5
faesdecx %f62, %F20, %F60

faesdecx %f58, %f22, %f62

fmovd %f60, %F58 ! Round 6
faesdecx %f62, %fl6, %f60

faesdecx %58, %f18, %62

fmovd %f60, %F58 1 Round 7
faesdecx %f62, %Fl12, %F60

faesdecx %f58, %fl14, %f62

fmovd %f60, %F58 1 Round 8
faesdecx %f62, %f8, %F60

faesdecx %f58, %f10, %f62

fmovd %f60, %F58 1 Round 9
faesdecx %f62, %f4, %f60

faesdecx %f58, %f6, %F62

fmovd %f60, %fF58 I Round 10 final round

faesdeclx %f62, %f0, %F60
faesdeclx %f58, %f2, %f62

Usage example SIMD

/*
* AES-128 key generation
* Input:
* wf2, %F258 : Key data
* Qutput:
* %2, %f258, %f4, %F260 ... %F22, %fF278 : Round keys
*/

fmovd %2, %fF32 I W[oj,w[ai]

sxarl

fmovd %258, %f34 T w[2]1,w3]

faeskeyx %f34, 0x10, %F32
faeskeyx %f32, 0x0, %f34

fmovd %f32, %f4 1 W[4],W[5]
sxarl
fmovd %f34, %F260 1 W[e],w[7]

faeskeyx %f34, Ox11l, %F32
faeskeyx %f32, 0x0, %f34
fmovd %F32, %f6 1 W[8],w[9o]

sxarl

fmovd %F34, %F262 T W[10],w[11]
faeskeyx %f34, 0x12, %f32
faeskeyx %f32, 0x0, %f34
fmovd %F32, %f8 T W[12].,w[13]
sxarl
fmovd %F34, %F264 1 W[14].,W[15]
faeskeyx %f34, 0x13, %fF32
faeskeyx %f32, 0x0, %f34
fmovd %f32, %F10 T W[1e],w[17]
sxarl
fmovd %F34, %F266 1 w[ais],w[i9]
faeskeyx %f34, 0x14, %F32
faeskeyx %f32, 0x0, %f34
fmovd %f32, %f12 1 W[20],W[21]
sxarl
fmovd %F34, %F268 1 W[22],W[23]
faeskeyx %f34, 0x15, %F32
faeskeyx %f32, 0x0, %f34
fmovd %f32, %fFla 1 W[24],W[25]
sxarl
fmovd %F34, %F270 1 W[26].,W[27]
faeskeyx %f34, 0x16, %f32
faeskeyx %f32, 0x0, %f34
fmovd %F32, %F16 1 W[28],wW[29]
sxarl
fmovd %F34, %F272 1 W[30],W[31]
faeskeyx %Ff34, Ox17, %F32
faeskeyx %f32, 0x0, %f34
fmovd %F32, %F1l8 1 W[32],W[33]
sxarl
fmovd %F34, %fF274 1 W[34].,W[35]
faeskeyx %f34, 0x18, %f32
faeskeyx %f32, 0x0, %f34
fmovd %F32, %F20 1 W[36].,.W[37]
sxarl
fmovd %fF34, %F276 1 W[38],W[39]
faeskeyx %f34, 0x19, %f22 1 W[40].,W[41]
sxarl
faeskeyx %f22, 0x0, %f278 1 W[42].,W[43]
/*
* AES-128 ECB mode encryption (SIMD use)
*
* Input:
* wf2, %f258, %f4, %F260 ... wfF22, %fF278 : Round keys
* %Fo, %F256 : Plaintext data
* Qutput:
* wFOo, %F256 : Ciphertext data
*/
sxar2
fxor,s %fo, %f2, %fO ! Round O
faesencx, s %256, %f4, %FO ! Round 1
sxar2
faesencx, s %F256, %f6, %FO ! Round 2
faesencx, s %f256, %f8, %fO ! Round 3
sxar2
faesencx, s %f256, %F10, %FO 1 Round 4
faesencx, s %F256, %fl2, %fO ! Round 5
sxar2
faesencx, s %F256, %fl4, %O ! Round 6
faesencx, s %f256, %Fl6, %FO 1 Round 7
sxar2
faesencx, s %f256, %F18, %FO 1 Round 8
faesencx, s %¥F256, %F20, %FO 1 Round 9

202 Ver 29.0 Jan. 2015

sxarl

faesenclx,s %f256, %f22, %fO I Round 10 final round
/*
* AES-128 ECB mode decryption (SIMD use)
*
* Input:
* %f2, %f258, %f4, %F260 ... wf22, %fF278 : Round keys
* %0, %F256 : Ciphertext data
* Output:
* %fo, %fF256 : Plaintext data
*/
sxar2
fxor,s wfo, %f22, %fFO ! Round O
faesdecx, s %fF256, %F20, %FO I Round 1
sxar2
faesdecx, s %f256, %F18, %FO 1 Round 2
faesdecx, s %F256, %fFl6, %fO ! Round 3
sxar2
faesdecx, s %F256, %fl4, %FO ! Round 4
faesdecx,s %f256, %fl2, %FO I Round 5
sxar2
faesdecx, s %f256, %F10, %FO I Round 6
faesdecx,s %f256, %f8, %fO I Round 7
sxar?2
faesdecx,s %f256, %f6, %fO I Round 8
faesdecx, s %f256, %f4, %FO I Round 9
sxarl
faesdeclx,s %f256, %fF2, %fO I Round 10 final round
Exception Target instruction Condition
illegal_instruction FAESKEYX index = 0216 — OF16, 1A16 — 1F16
fp_disabled All PSTATE.PEF =0 or FPRS.FEF =0
illegal_action FAESKEYX XAR.v =1 and any of the following are true
o XAR.Urs1<1>=#0
o XAR.urs2 =0
e XAR.urs3 =0
o XAR.urd<1> %0
e XAR.simd =1 and XAR.urs1<2> =0
e XAR.simd =1 and XAR.urd<2> = 0
FAESENCX,FAESDECX, |XAR.v =1 and any of the following are true
FAESENCLX,FAESDECLX | o XAR.urs1<1> 0
o XAR.Urs2<1> =0
o XAR.Urs3 =0
e XAR.urd<1>#0
e XAR.simd =1 and XAR.urs2<2> = 0
e XAR.simd =1 and XAR.urd<2> = 0

7.117. Decimal Floating-Point Operations

Instruction Opf Operation HPC-ACE Assembly Language
Regs SIMD Syntax
FADDtd 0 1010 00002 Add decimal floating point rd : basic faddtd fregysi,
only fregrss, fregra
FSUBtd 01010 00012 Subtract decimal floating point rd : basic fsubtd fregysi,
only fregrss, fregra
FMULtd 01010 00102 Multiply decimal floating point rd : basic fmultd fregysi,
only fregrsz, fregra
FDIVtd 01010 00112 Divide decimal floating point rd : basic fdivtd fregrsi,
only fregyss, fregra
FQUAtd 01010 01102 Significant digit conversion of rd : basic fquatd fregrsi,
decimal floating point only fregrss, fregra
[10, | rd | op3=110110, | rsl | opf | rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description FADDtd adds two double precision decimal floating point numbers, Fd[rs1] and Fd[rs2]. The

result is written in Fd[rd]. When the operation result is exact, the preferred exponent is the
smaller exponent of Fd[rs1] and Fd[rs2]. When the result is inexact, the preferred exponent
is the closest value to the smaller exponent of Fd[rs1] and Fd[rs2] within the range and the
precision of the output format. When the result is exactly zero, the sign of the result is
negative if the rounding mode is 3 (towards —o). Otherwise, the sign is positive.

Table 7-25 FADDtd
Fd[rs2]
o N | 0 | +o | N w0 | QNaN | SNaN
. — NV
—0 dNaN
N o . — - _
Fd[rs1] + Fd[rs2]*v: Fd[rs1] Fd[rs1] + Fd[rs2]xvi
-0 o __() +Oxvil o
Fd[rs2] _ o Fd[rs2] —
+0 ..
40XVl +0 QN aN2 NV
Fd[rs1] — - — QSNaN2
N Fd[rs1] + Fd[rs2]=~i | Fd[rs1] |Fd[rs1] + Fd[rs2]=i
+00 NV —
dNaN +00
QNaN QNaN1
NV
SNaN QSNaN1

FSUBtd subtracts the double-precision decimal floating-point number in Fd[rs2] from the
double-precision decimal floating-point number in Fd[rs1]. The result is written in Fd[rd].
When the result is exact, the preferred exponent is the smaller exponent of Fd[rs1] and
Fd[rs2]. When the result is inexact, the preferred exponent is the closest value to the
smaller exponent of Fd[rs1] and Fd[rs2] within the range and the precision of the output

xi When the result is 0, footnote (xvii) applies.
wii When the rounding mode is towards —°, the result is —0.

204 Ver 29.0 Jan. 2015

format. When the operation result is exactly zero, the sign of the result is negative if the
rounding mode is 3 (towards —«). Otherwise, the sign is positive.

Table 7-26 FSUBtd
Fd[rs2]
o N | 0 | +o0 | N | +o | QNaN | SNaN
o NV —
dNaN .
-N Fd[rs1] - Fd[rs2]xviii | Fd[rs1] Fd[rs1] - Fd[rs2]™"
N _ +0xix __0 .
—Fd[rs2] L - _Fdlrs2] B
+0 :
+0 +0XIX QNaN2 NV
Fd[rs1] — L - e
+N Fd[l’Sl] _ Fd[rsz]xviii Fd[rsl] Fd[l’Sl] _ Fd[rsz]xviii
+00 _ NV
= dNaN
Nl QNaN1
NV
ShaX QSNaN1

FMULtd multiplies two double-precision decimal floating-point numbers Fd[rs1] and Fd[rs2].
The result is written in Fd[rd]. When the result is exact, the preferred exponent is the sum
of the exponents of Fd[rs1] and Fd[rs2]. When the operation result is inexact, the preferred

exponent is the closest value to the sum of the exponents of Fd[rs1] and Fd[rs2] within the

range and the precision of the output format.

Table 7-27 FMULtd
Fd[rs2]
o | N 0]+0 N | 4o | QNaN | SNaN
= NV —
+0 dNaN —0
N Fd[rs1] x Fd[rs2] Fd[rs1] x Fd[rs2]
-0 |
NV +0|-0 NV
, |dNaN _|—= dNaN| __
+
-0|+0 QNaN2 NV
Fd[rs1] . — — QSNaN2
* Fd[rs1] x Fd[rs2] Fd[rs1] x Fd[rs2]
+00 — NV _
—® dNaN o0
QNaN QNaN1
NV
SNaN QSNaN1

xviii When the result is 0, the footnote (xix) applies..
xix_ When the rounding mode is towards —<°, the result is —0.

FDIVtd divides the double-precision decimal floating-point number Fd[rs1] by the
double-precision decimal floating-point number Fd[rs2]. The result is written in Fd[rd].
When the result is exact, the preferred exponent is the difference of the exponents of Fd[rs1]
and Fd[rs2]. When the result is inexact, the preferred exponent is the closest value to the
difference of the exponents of Fd[rs1] and Fd[rs2] within the range and the precision of the
output format. If the result of the operation is not within the range of the preferred
exponent, the quotient is calculated until the remainder is zero or the maximum number of
significant figures is reached. The exponent is then adjusted to be consistent with the
quotient.

When the result is 0, the exponent is the preferred exponent and the significand is all zeros.
However, if the result is 0 and the divisor is oo, the exponent is all zeros as well.

Table 7-28 FDIVtd
Fd[rs2]
o0 N | 0 | +o | N w0 | QNaN | SNaN
| N — — NV
dNaN +00 —0 dNaN
N — DZ | DZ —
— | Fd[rs1] / Fd[rs2] | +o —oo | Fd[rs1] /Fd[rs2] | —
-0 +Oxxi NV _oxxi
_ dNaN _ _
Fdrs] +0 _ _Qxxi +Oxxi — | QNaN2 NV
_Qxx _ D7 D7 _ +0XX QSNaN2
N Fd[rs1]/Fd[rs2] | —»o | +o |Fd[rsl]/Fd[rs2]
oo NV — — NV
dNaN —0 +00 dNaN
QNaN QNaN1
NV
SNaN QSNaN1

FQUAtd converts the double-precision decimal floating-point number in Fd[rs1] into a cohort
member whose exponent is the same as the double-precision decimal floating-point number
in Fd[rs2]. The result is written in Fd[rd]. The preferred exponent is the exponent of Fd[rd],
regardless of whether the result is exact or inexact.

On overflow, the output is QNaN with an NV exception. That is, an NV exception is
generated when the result cannot be expressed using the specified exponent.

When the significand is 0 due to underflow or rounding, the result remains O to be
consistent with the preferred exponent.

x= Sjgnificand is 0. Exponent after bias is 0.
x=i FExponent is the preferred exponent.

206

Ver 29.0 Jan. 2015

Table 7-29 FQUAtd
Fd[rs2]
—o |-Fn[-0+0|+Fn [+ [QNaN |[SNaN
Y — NV —
—0 dNaN —0
—Fn o
Q(Fd[rs1] : Fd[rs2])
- NV g NV
dNaN _ dNaN| __
+0 "
+0xxil QNaN2| NV
Fd[rs1] — QSNaN2
'n Q(Fd[rs1] : Fd[rs2))
+00 o NV o
+00 dNaN +00
QNaN QNaN1
NV
SNaN QSNaN1

Instructions that operate on single-precision and quadruple-precision data are not defined.

The result is rounded as specified by GSR.dirnd when GSR.dim = 1, or FSR.drd when

GSR.dim = 0.
The following table summarizes the preferred exponents for the decimal floating-point
instructions.
Table 7-30 Preferred exponents
Instruction | Result is exact Result is inexact
FADDtd Smaller of Fd[rs1] | Closest value to preferred exponent for an exact result
and Fd[rs2]
exponents
FSUBtd Smaller of Fd[rs1] | Closest value to preferred exponent for an exact result
and Fd[rs2]
exponents
FMULtd Sum of Fd[rs1] and | Closest value to preferred exponent for an exact result
Fd[rs2] exponents
FDIVtd Difference of Closest value to preferred exponent for an exact result
Fd[rs1] and Fd[rs2] |If result is not within the range of the preferred exponent,
exponents quotient is calculated until remainder is zero or maximum
significant figures reached. Exponent adjusted to be consistent
with quotient.
FQUAtd Exponent of Fd[rs2] | Exponent of Fd[rs2]

wii Sionificand is 0. Exponent is exponent of rs2.

208

Exception Target Condition
instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action All XAR.v = 1 and any of the following are true
e XAR.simd =1
e XAR.Ursl<1>=0
o XAR.urs2<1>=0
e XAR.urs3#0
e XAR.urd<2:1>#0
fp_exception_ieee_754 | OF, |FADDtd, |Conforms to IEEE754-2008
UF |FSuBtd,
FMULtd,
FDIVtd
NX, |All Conforms to IEEE754-2008
NV
DZ |FDIVtd Refer to table in description

Ver 29.0 Jan. 2015

7.118. Oracle Floating-Point Operations

Compatibility Note Future compatibility of Oracle floating-point
operations is not guaranteed. These instructions should only be used
in libraries for the SPARC64™ X / SPARC64™ X+ platforms.

Instruction Opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FADDod 01011 0000z Add Oracle floating point rd : basic faddod fregysi, fregsz, fregrd
only
FSUBod 01011 00012 Subtract Oracle floating point rd : basic fsubod fregys1, fregyss, fregra
only
FMULod 01011 0010z Multiply Oracle floating point rd : basic fmulod fregysi, fregysz, fregra
only
FDIVod 0 1011 00112 Divide Oracle floating point rd : basic fdivod fregysi, fregrss, fregra
only
FXADDodL 0 1011 10002 Exact add Oracle floating point rd : basic fxaddodlo fregy:, fregrss, fregra
0 (lower) only
FXADDodH 01011 1001; Exact add Oracle floating point rd : basic fxaddodhi fregrsi, fregrss, fregra
1 (upper) only
FXMULodL 0 1011 10102 Exact multiply Oracle floating rd : basic fxmulodlo fregesi, fregess, fregma
0 point (lower) only
FQUAod 01011 01102 Significant digit conversion of rd : basic fquaod fregisi, fregrss, fregra
Oracle floating point only
FRQUAod 01011 01112 Extended exponent conversion rd : basic Frquaod fregw:, fregrss, fregra
of Oracle floating point only
[10, | rd [op3=110110, | rsl | opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0
Description FADDod adds the Oracle floating-point numbers Fd[rs1] and Fd[rs2] and writes the result in

Fd[rd]. The result is normalized.

Table 7-31 FADDod
Fd[rs2]
—0 -N | 0 | +N +00
S NV
—o dNaN
-N . XXiii e L xxiii
Fd[rs1] + Fd[rs2] Fd[rs1] | Fd[rs1] + Fd[rs2]
Flrs1l) 0 Fd[rs2] Oxxiv Fd[rs2]
+N = xxiii e = xxiii
Fd[rs1] + Fd[rs2] Fd[rs1] | Fd[rs1] + Fd[rs2]
+o0 NV -
dNaN +00

xii When the result is 0, footnote (xxiv) applies.
xiv. When the rounding mode is towards —o, the result is —0.

FSUBod subtracts the Oracle floating-point number Fd[rs2] from the Oracle floating-point
number Fd[rs1] and writes the result in Fd[rd]. The result is normalized.

Table 7-32 FSUBod
Fd[rs2]
—00 -N | 0 | +N +00
| NV —
dNaN —0
N Fd[rs1] - Fd[rs2]™" | Fd[rs1]| Fd[rs1] — Fd[rs2]™
Fd[rs1 T . —
[rsi]} o ~ Fd[rs2] oxxvi — Fd[rs2]
+N e XXV - i XXV
Fd[rs1] - Fd[rs2] Fd[rs1] | Fd[rs1] — Fd[rs2]
+00 _ NV
oo dNaN

FMULod multiplies the Oracle floating-point numbers Fd[rs1] and Fd[rs2] and writes the
result in Fd[rd]. The result is normalized.

Table 7-33 FMULod
Fd[rs2]
| N 0 AN [4o
ol NV —
+0 dNaN —o
N Fd[rs1] x Fd[rs2] Fd[rs1] x Fd[rs2]
NV — NV
Firsil| 0 | gNaN 0 dNaN
+N T T
Fd[rs1] x Fd[rs2] Fd[rs1] x Fd[rs2]
oo | NV —
—00 dNaN +00

FDIVod divides the Oracle floating-point number Fd[rs1] by the Oracle floating-point
number Fd[rs2] and writes the result in Fd[rd]. The result is normalized.

FDIVod generates a DZ exception if the divisor Fd[rs2] is 0. However, even if the divisor is 0,
a DZ exception is not generated if the dividend Fd[rs1] is +oo, —oo or 0. If the divisor is 0
and the dividend is +o© or —oo, the result is +o© and —<°, respectively. If the divisor is 0
and the dividend is 0, the result is dNaN with an NV exception.

xv When the result is 0, footnote (xxvi) applies.
xxvi When the rounding mode is towards —o°, the result is —0.

210 Ver 29.0 Jan. 2015

Table 7-34 FDI1Vod

Fd[rs2]
—0 -N 0 +N +00
_Oo NV — — — NV
dNaN +00 —0 —o0 dNaN
N — DZ —
Fd[rs1]/Fd[rs2]| - |[Fd[rs1]/Fd[rs2]
_ NV —
Fd [rs 1] 0 0 dNaN 0
+N o Dz o
Fd[rs1]/Fd[rs2]| +eo |[Fd[rs1]/Fd[rs2]
oo NV — — — NV
dNaN —o0 +00 +00 dNaN

FXADDodLO and FXADDodHI are used to calculate the exact sum of two Oracle
floating-point numbers. Note that the FADDod instruction outputs a rounded result and
generates an NX exception when the sum cannot be expressed precisely as an Oracle
floating-point number. FXADDodHI and FXADDodLO, however, output the exact sum of two
Oracle floating-point numbers. These instructions can be used to add and subtract with
arbitrary precision.

FXADDodLO behaves differently depending on the difference of the exponents of the two
Oracle floating-point numbers Fd[rs1] and Fd[rs2]. If the difference is less than or equal to
seven, Fd[rs1] and Fd[rs2] are added and the lower digits of the result are written in Fd[rd].
If the difference is greater than seven, the number with the smaller exponent is selected
and written in Fd[rd]. If either Fd[rs1] or Fd[rs2] is the special value 0, the special value 0 is
written in Fd[rd], regardless of the difference of the exponents.

FXADDodHI behaves differently depending on the difference of the exponents of the two
Oracle floating-point numbers Fd[rs2] and Fd[rs1]. If the difference is less than or equal to
seven, Fd[rs1] and Fd[rs2] are added and the upper digits of the result are written in Fd[rd].
If the difference is greater than seven, the number with the larger exponent is selected and
written in Fd[rd]. If either Fd[rs1] or Fd[rs2] is the special value 0, the other number which is
not 0 is written in Fd[rd], regardless of the difference of the exponents. If both Fd[rs1] and
Fd[rs2] are the special value 0, the special value 0 is written in Fd[rd].

The results of FXADDodLO and FXADDodHI are normalized.

For the FXADDodLO and FXADDodHI instructions, the rounding mode is set to 1 (towards 0).
Results are rounded regardless of the settings in FSR and GSR.

Note To precisely express the sum of two values with opposite signs, the
number of digits required is equal to the difference of the exponents.

Example:1x10% + (-1x10°) = 9999999999 x 10°

When adding two numbers of opposite signhs where the difference of their
exponents is large, the result exceeds the number of digits that can be
saved in two registers. FXADDodLO and FXADDodH1 preserve precision by
saving the inputs when the difference of the exponents is greater than
seven.

212

Table 7-35 FXADDodLO
Fd[rs2]
—0 | -N | 0 | +N +00
_oo NV
— dNaN
N ADDLO(Fd[rs1], Fd[rs2]) ADDLO(Fd[rs1], Fd[rs2])
Fd[rs1]| 0 ;
N ADDLO(Fd[rs1], Fd[rs2]) ADDLO(Fd[rs1], Fd[rs2])
"1 dNaN o0
Table 7-36 FXADDodHI1
Fd[rs2]
-0 | -N | 0 | +N +00
B NV
dNaN
N ADDHI(Fd[rs1], Fd[rs2]) | Fd[rs1] | ADDHI(Fd[rs1], Fd[rs2])
Fd[rs1]| O Fd[rs2] 0 Fd[rs2]
N ADDHI(Fd[rs1], Fd[rs2)) | Fd[rs1] | ADDHI(Fd[rs1], Fd[rs2])
"] dNaN +50

FXMULodLO is used with FMULod to calculate the exact product of two Oracle floating-point
numbers. Note that the FMULod instruction outputs a rounded result and generates an NX
exception when the product cannot be expressed precisely as an Oracle floating-point

number. FXMULodLO outputs the lower part of the product that is rounded by FMULod. The

FXMULodLO instruction can be used to multiply with arbitrary precision.

FXMULodLO multiplies two Oracle floating-point numbers Fd[rs2] and Fd[rs1] and writes the

lower part of the result in Fd[rd].

For the FXMULodLO instruction, the rounding mode is set to 1 (towards 0). Results are

rounded regardless of the settings in FSR and GSR.

Ver 29.0 Jan. 2015

Programming Note

Add the result of FMULod with rounding mode set to 1
(towards 0) and the result of FXMULodLO to calculate the exact product.

Table 7-37 FXMULodLO

Fd[rs2]
| N 0 N | 4o
= NV —
+o0 dNaN —o0
-N - -
LO(Fd[rs1] x Fd[rs2]) LO(Fd[rs1] x Fd[rs2])
NV — NV
Firsl 0 gnaN 0 dNaN
N LO(Fd[rs1] x Fd[rs2]) LO(Fd[rs1] x Fd[rs2])
+00 T NV _
-0 dNaN +00
Table 7-38 Multiplying rs1 = 99.99999999 x 1001° and rs2 = 99.99999999 x 1000
FMULod FXMULodLO

99.99999998 x 10021 00.0001 x 10014

Table 7-39 Output of FXMULodLO if lower bits of result is 0

Sign Exponent part Significand
Either of 1 0 | 0x00000000000000
the
inputs is
0
Neither |Same as Exponent of multiplication Sign is positive:
of the multiplication | result minus 7 0x01010101010101
inputs is |result
0 (Exponent <= -59: exponent Sign is negative
~7+128)
0x65656565656565
(Exponent >=+70:
exponent—7-128)

FQUAOd converts the Oracle floating-point number in Fd[rs1] into a cohort member whose
exponent is the same as the Oracle floating-point number in Fd[rs2]. The result is written in
Fd[rd]. The result is not normalized.

On overflow, the output is dNaN with an NV exception. That is, an NV exception is
generated when the result cannot be expressed using the specified exponent.

When the significand is 0 due to underflow or rounding, the result remains 0. This 0 is not
the special value 0. The sign is the same as Fd[rs1], the exponent is the same as Fd[rs2], and
0 corresponding to the sign is written in the significand.

The result of FQUAod is rounded as specified by GSR.dirnd when GSR.dim = 1, and FSR.drd
when GSR.dim = 0.

Table 7-40 FQUAod

Fd[rs2]
—0 -Fn | 0 | +Fn +00
= NV —
-0 dNaN —0
—Fn Q(Fd[rs1] : Fd[rs2))
NV — NV
Fdls1l 0| gNaN 0 dNaN
+¥n Q(Fd[rs1] : Fd[rs2))
+00 — NV -
+00 dNaN +00

FRQUAoOd converts the Oracle floating-point number in Fd[rs1] into a cohort member with
the extended exponent (page 21) is specified by Fd[rs2]. The rounded result is converted into
an Oracle floating-point number and written in Fd[rd]. An extended exponent can be used to
round an arbitrary digit of the decimal number. The result is not normalized.

When the exponent of Fd[rs1] more than double the extended exponent specified by Fd[rs2],
Fd[rs1] is written in Fd[rd].

When the significand is 0 due to underflow or rounding, the result remains 0. This 0 is not
the special value 0. The sign is the same as Fd[rs1], the exponent is the extended exponent
specified by Fd[rs2], and 0 corresponding to the sign is written in the significand.

The result is rounded as specified by GSR.dirnd when GSR.dim = 1, amd FSR.drd when
GSR.dim = 0.

The rounded result, which is expressed in terms of the extended exponent, is converted to
an Oracle floating-point number and then written in Fd[rd].

o When the extended exponent is even, the converted Oracle floating-point number
consists of the sign of the rounded result, an exponent equivalent to the extended
exponent of the rounded result, and the significand of the rounded result.

¢ When the extended exponent is odd, the converted Oracle floating-point number consists
of the sign of the rounded result, an exponent equivalent to the extended exponent of the
rounded result minus one, and a significand which is the rounded result’s significand
shifted left by one digit.

Table 7-41 FRQUAod
Fd[rs2]
exp10 < exp(Fd[rs1)) x 2 | expl0 > exp(Fd[rs1]) x 2
_Oo NV
dNaN
—Fn
Fd[rs1]| © o .
Fd[rs1] RQ(Fd[rs1] : Fd[rs2])
+Fn
oo NV
dNaN

Table 7-42 shows examples of FRQUAod when the exponent of Fd[rs1] is 10, the significand
is 11.223344556677, and the rounding mode is 4 (towards nearest, away from 0 if tie) .

214 Ver 29.0 Jan. 2015

Table 7-42 Examples of FRQUAod
Fd[rs2] Processing Exp | Extende Significand Remarks
d Exp (underflow)
Extended 1) Convert to extended exponent | 10.5 21 01.122334455667(7) | Right shift 1
exponent 21 digit
2) Rounding process 10.5 21 01.122334455668 Round at 102223
3) Exponent correction 10 20 11.223344556680 Left shift 1 digit
Extended 1) Convert to extended exponent |11 22 00.112233445566(7) | Right shift 2
exponent 22 digits
2) Rounding process 11 22 00.112233445567 Round at 10213
3) Exponent correction 11 22 00.112233445567 No shift
Extended 1) Convert to extended exponent | 11.5 23 00.011223344556(6) | Right shift 3
exponent 23 digits
2) Rounding process 11.5 23 00.011223344557 Round at 1023
3) Exponent correction 11 22 00.112233445570 Left shift 1 digit
Extended 1) Convert to extended exponent |12 24 00.001122334455(6) | Right shift 2
exponent 24 digits
2) Rounding process 12 24 00.001122334456 Round at 1023
3) Exponent correction 12 24 00.001122334456 No shift
unnecessary.
Extended 1) Convert to extended exponent |16 32 00.000000000011(2) | Right shift 12
exponent 32 digits
2) Rounding process 16 32 00.000000000011 Round at 103212
3) Exponent correction 16 32 00.000000000011 No shift
Extended 1) Convert to extended exponent | 16.5 33 00.000000000001(1) | Right shift 13
exponent 33 digits
2) Rounding process 16.5 33 00.000000000001 Round at 1033
3) Exponent correction 16 32 00.000000000010 Left shift 1 digit
Extended 1) Convert to extended exponent |17 34 00.000000000000(1) | Right shift 14
exponent 34 digits
2) Rounding process 17 34 00.000000000000 Round at 10312
3) Exponent correction 17 34 00.000000000000 No shift.

The results of FADDod, FSUBod, FMULod, FD1Vod, FQUAod, and FRQUA0Od are rounded as
specified by GSR.dirnd when GSR.dim = 1, or FSR.drd when GSR.dim = 0. The results of

FXADDodLO, FXADDodH I, and FXMULodLO are rounded with rounding mode 1 (towards 0)
regardless of the settings in FSR or GSR.

When the results of FADDod, FSUBod, FMULod, FD1Vod, FXADDodLO, FXADDodHI, and

FXMULOdLO are zero after rounding, the ouput is the special value 0 (page 20). If the result
is smaller than Nmin (page 20), the output is 0 or Nmin depending on the rounding mode. If
the result is not a special value, the output is normalized, except for FQUAod and FRQUAod.

When either Fd[rs1] or Fd[rs2] is written to Fd[rd] as a result of FADDod, FSUBod, FMULod,
FDIVod, FXADDodLO, FXADDodHI, FXMULodLO, FQUAod, or FRQUAOd, the digits outside the
range of the significand (page 18) are converted to the number 0.

Exception Target Condition

instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v =1 and any of the following are true

e XAR.simd=1
o XAR.Ursl<1>=0
o XAR.Urs2<1> =0
o XAR.Urs3 =0
e XAR.urd<2:1> %0

fp_exception_ieee_754 |OF | FADDod, Result is larger than Nm.x (page 20)
FSUBod,
FMULod,
FDIVod,
FXADDodHI,
FXMULodLO,
FRQUAod
UF |FADDod, Result is smaller than N (page 20)
FSUBod,
FMULod,
FDIVod,
FXADDodHI,
FXADDodLO,
FXMULodLO
NX |All Result cannot be expressed as an Oracle
floating-point number
For FXADDodHI, FXADDodLO and FXMULodLO,
only when OF or UF.
NV |Al Refer to tables in the description
DZ |FDIVod Refer to the table in the description

216 Ver 29.0 Jan. 2015

7.119. Decimal Floating-Point Compare

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FCMPtd 01010 01002 Compare decimal floating v. fcmptd %feen, fregrsi, fregrsz
point numbers

FCMPEtd 01010 01013 Compare decimal floating v fcmpetd %feen, fregisi, fregrs2
point numbers (exception if
non-ordinal).

[10, | — [ccl]ccO] op3=110110, rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 4 0
Description FCMPtd and FCMPEtd compare two double-precision decimal floating-point numbers Fd[rs2]

and Fd[rs1]. The result is written in FSR.fccn. Cohorts members are considered equal.

When either number is SNaN, FCMPtd detects an exception.

When either number is SNaN or QNaN, FCMPEtd detects an exception.

Table 7-43

FCMPtd and FCMPEtd

rs2

-Fn !—0|+0!+Fn |+oo

QNaN

SNaN

rsl

—00

=]

-Fn

+0

+Fn

+00

o

[y

=]

QNaN

NV xxvii
3

SNaN

Instructions that compare single-precision or quadruple-precision decimal floating-point
numbers are not defined.

xvii FCMPEtd instruction only

Exception Target Condition

instruction
lllegal_instruction All A reserved field is not 0.
(iw<29:27> = 0)
fp_disabled All PSTATE.pef = 0 or FPRS.fef = 0
illegal_action All XAR.v = 1 and any of the following are true

e XAR.simd=1

e XAR.Ursl<1>=0
o XAR.Urs2<1> =0
e XAR.urs3 =0

e XAR.urd #0

fp_exception_ieee_754 |NV |FCMPtd FSR.tem.nv = 0, and either input is SNaN

FCMPEtd |FSR.tem.nv =0, and FSR.fccn = 3

218 Ver 29.0 Jan. 2015

7.120. Oracle Decimal Floating-Point Compare

Compatibility Note Future compatibility of Oracle decimal floating-point
compare is not guaranteed. This instruction should only be used in
libraries for the SPARC64™ X or SPARC64 X+ platform.

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FCMPod 01011 0100 Compare Oracle floating v fcmpod %feen, fregysi,
point numbers fregyrs2
[10,] — [ccl]ccO] o0p3=110110, | rsl [opf [rs2 |
31 30 29 27 26 25 24 19 18 14 13 5 4 0
Description FCMPod compares two Oracle format floating-point numbers Fd[rs2] and Fd[rs1]. The result

is written in FSR.fccn.

Table 7-44 Operation result of FCMPod
rs2
—oo | -Fn | 0 | +Fn | +00
o _
Fn N !
B 0,1,2
rsl|o 0
+Fn 2 0,1,2
+00 0
Exception Target Condition
instruction
lllegal_instruction All A reserved field is not 0.
(iw<29:27> = 0)
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v = 1 and any of the following are true
e XAR.simd =1
e XAR.urs1<1>=0
o XAR.urs2<1> =0
e XAR.urs3 =0
o XAR.urd =0

7.121. Decimal Floating-Point Convert

Compatibility Note Future compatibility of Oracle floating-point
numbers is not guaranteed. This format should only be used for
libraries for the SPARC64™ X or SPARC64 X+ platform.

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FbuxTOtd 11010 11002 Convert decimal floating rd : basic only fbuxtotd fregiss, fregra
point

FtdTObux 11010 11012 Convert decimal floating rd : basic only ftdtobux fregiss, fregra
point

FbsxTOtd 11010 1110 Convert decimal floating rd : basic only fbsxtotd fregrss, fregra
point

FtdTObsx 11010 11112 Convert decimal floating rd : basic only ftdtobsx fregrss, fregra
point

FodTOtd 11011 11102 Convert decimal floating rd : basic only fodtotd fregrss, fregra
point

FtdTOod 11011 11112 Convert decimal floating rd : basic only ftdtood fregiss, fregra
point

| 10, | rd | op3=110110, — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description FbuxTOtd converts a 64-bit unsigned BCD integer Fd[rs2] into a double-precision decimal

floating point number. The result is written in Fd[rd]. The exponent of the decimal-floating
point number after the conversion is 0 (bias only).

Because the range of values that can be represented by a decimal floating-point number is
larger than the range of an unsigned BCD number, the conversion result is always exact.

When a digit outside the range 00002 — 10012 is present in the BCD integer, an NV
exception is generated.

FbsxTOtd converts a 64-bit signed integer BCD Fd[rs2] into a double-precision decimal
floating-point number. The result is written in Fd[rd]. The exponent of the decimal
floating-point number after the conversion is 0 (bias only).

Because the range of values that can be represented by a decimal floating-point number is
larger than the range of a signed BCD number, the conversion result is always exact.

The lowest four bits of the BCD integer encode the sign of the number. Table 4-6 shows how
FbsxTOtd interprets the sign field.

When a digit outside the range 00002 — 10012 is present in a BCD integer, excluding the
sign field, an NV exception is generated.

FtdTObux converts the significand of a double-precision decimal floating-point number
Fd[rs2] into a 64-bit signed BCD integer. The result is written in Fd[rd]. Because the range
that can be represented by an unsigned BCD number is the same as the range of the
significand of a decimal floating-point number, the conversion result is always exact.

Programming Note Because FtdTObux ignores the exponent, first use
FQUAtd to make the biased exponent 0.

If a special value (0 or NaN) is input, the value of the Combination field (exponent, NaNs,
and) is ignored, and no exceptionis generated. When the LMD cannot be determined
because the significand is o or NaN, the LMD is treated as 0.

220 Ver 29.0 Jan. 2015

FtdTObsx converts the significand of a double-precision decimal floating-point number
Fd[rs2] into a 64-bit signed BCD integer. The result is written in Fd[rd]. The exponent part
is ignored.

A signed BCD can represent 15 decimal digits and has a smaller range than a decimal
floating-point number, which has 16 digits. The number after conversion is the signed lower
15 digits of the decimal floating-point number. When the upper digit is thrown away, no
exception is generated.

Note For F{sdq}TOi and F{sdq}TOx, an exception is generated if
FSR.tem.nvm = 1. If FSR.tem.nvm = 0, the result is the maximum value Gf
negative, minimum value) that can be shown.

The left part of the significand is not a target of the conversion and is ignored. If a special
value (c© and NaN) is input, the value of the Combination field (exponent, NaNs, and ©) is
ignored, and no exception is generated. The LMD is not converted, so it doesn’t matter if the
LMD cannot be determined because the significand is e or NaN.

FodTOtd converts Oracle floating-point number Fd[rs2] into a double-precision decimal
floating-point number. The result is written in Fd[rd]. No exceptions are generated.

e If a special value (w0, 0) is input
The special value is converted to the corresponding value in the output format.
When Fd[rs2] is 0, the significand is 0 and the exponent is the exponent of Fd[rs2].
FtdTOod converts a double-precision decimal floating-point number Fd[rs2] into an Oracle
floating-point number. The result is written in Fd[rd].
e About OF and UF

When the exponent of the rounded result of the conversion of Fd[rs2] is larger than
Emax of the output format, an OF exception is generated. The result is © or Nmax.

When the exponent of the rounded result of the conversion of Fd[rs2] is smaller than
Emin of the output format, a UF exception isgenerated. The result is O or Nmin.

e If a special value (o0, NaN) is input
The special value is converted to the corresponding value in the output format.

When the input is NaN, the results is dNaN, and an NV exception is generated.

Exception Target Condition
instruction
lllegal_instruction All A reserved field is not 0.
(iw<18:14> = 0)
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v =1 and any of the following are true
e XAR.simd =1
e XAR.urs1 =0
o XAR.urs2<1>#0
e XAR.urs3 =0
e XAR.urd<2:1>#0
fp_exception_ieee_754 | OF FtdTOod |Refer to the description
UF FtdTOod |Refer to the description
NX FtdTOod |Refer to the description
NV FbuxTOtd, | Refer to the description
FbsxTOtd,
FtdTOod

7.122. Shift Mask Or (for SPARC64™ X)

Note For the specification of this instruction on SPARC64™ X+, refer to

page 252.
Instruction var size Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FSHIFTORX 102 11: Concatenate two double-precision v v fshiftorx fregesi, fregrs, fregrss,
floating-point registers fregra
[10,] rd | op3=110111, | rsl | rs3 [var = 10, [size = 11, | rs2 |
31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Non-SIMD execution

FSHIFTORX shifts Fd[rs1] right or left and extracts part of the result. It also shifts Fd[rs2]
right or left and extracts part of the result. The two extracted values are bitwise ORed, and
this result is written in Fd[rd]. The shift count and shift direction are specified by Fd[rs3].

Table 7-45 Meaning of bits in Fd[rs3]

[set_rs2_default [— | rsl_mask inv | rsl_mask offset | rs1_mask_length | rs1_shift_amount |
63 62 56 55 48 a7 40 39 32
57
| — | rs2_mask_inv | rs2_mask offset | rs2_mask_length | rs2_shift_amount |
31 25 24 23 16 15 8 7 0
Bit Field Description
rsl rs2
63 - set_rs2_default Specifies set of rs{1|2}_* fields to use for rs2

0: Use the rs2_* fields
1: Use values derived from the rs1_* fields

56 24 rs{1|2}_mask_inv Specifies whether to invert the mask
0: Do not invert
1: Invert

55:48 23:16 rs{1]|2}_mask_offset Starting bit position in mask (number of bits from MSB),
8-bit signed integer

47:40 15:8 rs{1]2}_mask_length Mask bit length, 8-bit signed integer

39:32 7:0 rs{1]2}_shift_amount Shift count (positive: left shift, negative: right shift), 8-bit
signed integer

Note Specifying the following values in Fd[rs3] causes an illegal_instruction
exception.
1) '1'in a reserved field
2) set_rs2_default = 1 and <31:0> # 0
3) rs{1|2}_mask_offset, rs{1|2}_mask_length, or
rs{1]|2}_shift_amount # multiple of 8

Note The FSHIFTORX instruction causes an illegal_instruction exception for
certain values in the register Fd[rs3]. An fp_disabled or illegal_action
exception may be detected before the register is read. That is, for this
instruction, these exceptions may have higher priority than an illegal
instruction exception.

The behavior of FSHIFTORX is divided into 1) shift, 2) mask and 3) OR operations.

222 Ver 29.0 Jan. 2015

Fd[rs1] Fd[rs2]

v NN

1) shift
" NN
and and
0...0 1...1 0 1...1 0...0
2) mask
777K NN °

3) bitwise OR \ /
N\\WZ7ZZ/&

Fd[rd]

The shift operation executes a logical shift. If shifting left, the vacated positions on the right
are replaced by 0. If shifting right, the vacated positions on the left are replaced by 0. The
rs{1|2}_shift_amount field specifies both the shift direction and shift count. The shift is
leftwards if the value is positive and rightwards if the value is negative. Only 0 and
multiples of 8 can be specified for the shift count. If any other value is specified, an
illegal_instruction exception will occur.

The mask operation extracts the specified bits from the shifted register. Two mask patterns
are defined by rs{1]|2} _mask_offset, rs{1|2}_mask_length, and rs{1|2}_mask_inv. A mask
pattern is generated from one set of these fields and bitwise ANDed with the corresponding
shifted register.

A mask pattern is a generated range of contiguous 1s in a 64-bit doubleword, where no bits
are 1 outside this range. The inverse of this pattern can also be specified . The
rs{1]2}_mask_offset field specifies the starting position of the mask (the range of 1s) in the
register as the number of bits from the left (MSB). The rs{1|2}_mask_length field specifies
the length of the range of bits that are set to 1. To invert this mask, specify 1 for
rs{1|2}_mask_inv.

Only 0 and multiples of 8 can be specified for rs{1|2} mask_offset and rs{1|2} _mask_length.
If any other value is specified for these fields, an illegal_instruction exception will occur.

Note The mask pattern contains bits that are 1 when 0 <
rs{1]2}_mask_offset < 64 and 0 <rs{1|2}_mask_length. That is, the
pattern fits inside a doubleword. The specified pattern can exceed the
length of a doubleword if 64 < “rs{1]2}_mask_offset +
rs{1|2}_mask_length”. In this case, the mask pattern is a contiguous
range of 1s from rs{1|2} _mask_offset to the LSB.

Note The mask pattern may contain bits that are 1 even if the value of
rs{1]2}_mask_offset is negative. Specifically, when the absolute value
of rs{1|2}_mask_offset is less than rs{1]|2}_mask_length, the mask
pattern is a contiguous range of 1s from the MSB to
rs{1]2}_mask_length — |rs{1]|2}_mask_offset].

Note The 64-bit mask pattern is all Os when rs{1|2}_mask_offset and
rs{1]2}_mask_length satisfy any of the conditions below. The mask
pattern is all 1s under the same conditions when rs{1|2}_mask_inv is

used to invert the mask pattern.
- rs{1]2}_mask_length <0
- rs{1|2}_mask_offset + rs{1|2}_mask_length <0
- rs{1]|2}_mask_offset > 64

The values obtained from Fd[rs1] and Fd[rs2] using the shift and mask operations are
bitwise ORed. The result is written in Fd[rd]. Table 7-46 shows an example of how to specify

the bits in Fd[rs3].

Table 7-46

Example of how to specify bits in Fd[rs3]

Field

Concatenate lower 32 bits of Fd[rs1] and lower 32 bits of Fd[rs2]
(Fd[rs1]<31:0>::Fd[rs2]<31:0>)

set_rs2_default

0 (rs2_* fields areused.)

rs1_mask_inv

0 (Do not invert the rs1 mask)

rs1_mask_offset

0 (Mask shifted rs1 register starting from MSB)

rs1_mask_length

32 (Mask length is 32 bits)

rs1_shift_amount

32 (Shift left 32 bits)

rs2_mask_inv

0 (Do not invert the rs2 mask)

rs2_mask_offset

32 (Mask shifted rs2 register starting from bit<31>)

rs2_mask_length

32 (Mask length is 32 bits)

rs2_shift_amount

0 (No shift)

If 1 is specified for set_rs2_default, the shift and mask operations use values for
rs2_mask_inv, rs2_mask_offset, rs2_mask_length, and rs2_shift_amount that are derived
from the corresponding rs1_* fields. This behavior is useful when concatenating lower bits
of Fd[rs1] and upper bits of Fd[rs2], since only the rs1_* fields need to be specified. When
set_rs2_default = 1 and values other than 0 are specified in the rs2_* fields, an
illegal_instruction exception will occur.

Table 7-47 shows how the values for rs2_* are derived from the corresponding rs1_* fields.
An example of how to specify the bits in Fd[rs3] when set_rs2_default = 1 is shown in Table

224

7-48.

Table 7-47

Derived values for rs2_* fields

Field

Derived value

rs2_mask_inv

rs1_mask_inv

rs2_mask_offset

rs1_mask_offset

rs2_mask_length

rs1_mask_length

rs2_shift_amount

rs1_shift_amount — 64

Ver 29.0 Jan. 2015

Table 7-48 Example of how to specify bits in Fd[rs3] when set_rs2_defaul = 1t.

Field Concatenate lower 8 bits of Fd[rs1] and upper 24 bits of Fd[rs2] in this
order.
(Fd[rs1]<7:0>::Fd[rs2]<63:40>)

set_rs2_default |1 (Use rs1_* fields to derive values for rs2_*.)

rs1l_mask_inv 0 (Do not invert the rs1 mask)

rs1_mask_offset | 0 (Mask shifted rs1 register starting from MSB)

rs1_mask_length | 32 (Mask length is 32 bits)

rs1_shift_amount | 56 (Shift left 56 bits)

rs2_mask_inv Set value: 0 (Not used) Derived value: 0 (Do not invert the derived
rs2 mask)

rs2_mask_offset | Set value: 0 (Not used) Derived value: 0 (Mask shifted rs2 register
starting from MSB)

rs2_mask_length | Set value: 0 (Not used) Derived value: 32 (Mask length is 32 bits)

rs2_shift_amount | Set value: 0 (Not used) Derived value: -8 (Shift right eight bits)

SIMD execution When FSHIFTORX is used as a SIMD instruction, any floating point register Fd[0] — Fd[126],
Fd[256] — Fd[382] can be specified for Fd[rs1]. If an extended register FA[256] — Fd[382] is
specified for Fd[rs1], the extended register Fd[n] is used for the basic operation and the basic
register Fd[n — 256] is used for the extended operation. On the other hand, only basic
registers FA[0] — FA[126] can be specified for Fd[rs2], Fd[rs3], and Fd[rd]. The basic operation
uses the basic register Fd[n], and the extended operation uses the extended register Fd[n +

256].
Exception Target Condition
instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action All When XAR.v = 1 and any of the following are true

XAR.urs1<1> =0

XAR.urs2<1> =0

XAR.urs3<1> =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urs3<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

illegal_instruction | All Refer to the description.

7.123. SIMD Compare (for SPARC64™ X)

Note For the specification of this instruction on SPARC64™ X+, refer to
page 257.
Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FCMPLE16 01100000 Compare four 16 bit signed rd : basic fecmplel6x fregis:, fregiss,
X 02 integer only fregra
If srcl < src2, then 1.
FUCMPLE16 0 1100 0001z Compare four 16 bit unsigned rd : basic fucmplel6x fregisi, fregss,
X integer only fregra
If srcl < src2, then 1
FUCMPNE16 0 1100 00112 Compare four 16 bit unsigned rd : basic fucmpnel6x fregisi, fregss,
X integer. only fregra
If srcl # src2, then 1
FCMPLE32X 01100 01002 Compare two 32 bit signed rd : basic fcmple32x fregrsi, fregrsz,
integer. only fregra
If srcl < src2, then 1
FUCMPLE32 01100 0101z Compare two 32 bit unsigned rd : basic fucmple32x fregisi, fregss,
X integer only fregra
If srcl < src2, then 1
FUCMPNE32 01100 0111: Compare two 32- bit unsigned rd : basic fucmpne32x fregisi, fregss,
X integer. only fregra
If srcl # src2, then 1
FCMPGT16X 0 1100 10002 Compare four 16- bit signed rd : basic fcmpgtl6x fregysi, fregyss,
integer only fregra
If srcl > src2, then 1
FUCMPGT16 0 1100 1001z Compare four 16 bit unsigned rd : basic fucmpgtl6x fregisi, fregss,
X integer. only fregra
If srcl > src2, then 1
FUCMPEQ16 0 1100 10112 Compare four 16 bit unsigned rd : basic fucmpeql6x fregisi, fregss,
X integer. only fregra
If srcl = src2, then 1
FCMPGT32X 01100 11002 Compare two 32- bit signed rd : basic fcmpgt32x fregrsi, fregrsz,
integer only fregra
If srcl > src2, then 1
FUCMPGT32 01100 11012 Compare two 32 bit unsigned rd : basic fucmpgt32x fregisi, fregss,
X integer. only fregra
If srcl > src2, then 1
FUCMPEQ32 01100 11112 Compare two 32 bit unsigned rd : basic fucmpeq32x fregisi, fregss,
X integer. only fregra
If srel = src2, then 1
FCMPLEBX 01101 00002 Compare eight 8- bit signed ~ rd : basic fcmple8x fregys, fregrss,
integer only fregra
If srcl < src2, then 1
FUCMPLE8BX 01101 00012 Compare eight 8 bit unsigned rd : basic fucmple8x fregisi, fregrss,
integer only fregra
If srcl < src2, then 1
FUCMPNEBX 01101 00112 Compare eight 8 bit unsigned rd : basic fucmpne8x fregisi, fregrss,
integer. only fregra
If srcl # src2, then 1
FCMPLEX 01101 01002 Compare 64- bit signed integer rd : basic femplex fregysi, fregyss,
If srcl < src2, then 1 only fregra

226

Ver 29.0 Jan. 2015

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FUCMPLEX 01101 0101z Compare 64 bit unsigned rd : basic fucmplex fregysi, fregyss,
integer only fregra
If srcl < src2, then 1
FUCMPNEX 01101 01112 Compare 64 bit unsigned rd : basic fucmpnex fregrsi, fregrsz,
integer. only fregra
If srcl # src2, then 1
FCMPGT8X 01101 1000: Compare eight 8- bit signed rd : basic fcmpgt8x fregysi, fregyss,
integer only fregra
If srcl > src2, then 1
FUCMPGT8X 01101 10012 Compare eight 8 bit unsigned rd : basic fucmpgt8x fregisi, fregrss,
integer only fregra
If srcl > src2, then 1
FUCMPEQ8X 01101 1011z Compare eight 8 bit unsigned rd : basic fucmpeq8x fregrsi, fregysz,
integer only fregra
If srcl = src2, then 1
FCMPGTX 01101 11002 Compare 64- bit signed integer rd : basic fcmpgtx fregrsi, fregrss,
If srcl > sre2, then 1 only fregra
FUCMPGTX 01101 1101z Compare 64- bit unsigned rd : basic fucmpgtx fregrsi, fregysz,
integer. only fregra
If srcl > src2, then 1
FUCMPEQX 01101 1111z Compare 64- bit unsigned rd : basic fucmpegx fregrsi, fregysz,
integer. only fregra
If srcl = src2, then 1
[10, | rd | op3=110110, | rsi opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description

These instructions compare the elements (partitions) in the two floating-point registers
Fd[rs1] and Fd[rs2]. The result is written in the floating-point register Fd[rd]. The
comparison results for these elements are written in the most-significant bits of Fd[rd]. Os
are written in the other bits.

The number of elements in a 64-bit input register depends on the data type of the
comparison. The number of elements and their bit ranges for each data type are shown in
Table 7-49.

228

Table 7-49 Number of elements #E) and their bit ranges (E) for each data type

Data Type #E E1 E2 E3 E4 E5 E6 E7 E8
8-bit signed integer 8 63:56 [55:48 | 47:40 [39:32 |31:24 [23:16 | 15:8 |7:0

8-bit unsigned integer |8 63:56 |55:48 | 47:40 [39:32 |31:24 |23:16 |15:8 |7:0

16-bit signed integer 4 63:48 |47:32 | 31:16 | 15:0 — _ _ _
16-bit unsigned integer |4 63:48 (47:32 | 31:16 | 15:0 _ _ — _
32-bit signed integer 2 63:32 |31.0 — — — — _ _
32-bit unsigned integer | 2 63:32 |31:0 — — — — _ _
64-bit signed integer 1 63:0 |— — — — — _ _
64-bit unsigned integer |1 63.0 |— — — — _ _ _

Elements of Fd[rs1] and Fd[rs2] that occupy the same bit range are compared. The result is
written in the corresponding bit of Fd[rd]. The bit positions of Fd[rd] corresponding to each
element are shown in Table 7-50.

Table 7-50 Elements and corresponding bit positions in Fd[rd]

E1|E2|E3|E4|E5|E6|E7|E8
Fd[rd] |63 |62 |61 |60 |59 |58 |57 |56

FCMPLE{8X,16X,32X,X} compares the elements of Fd[rs1] and Fd[rs2] as signed integers.
If “element of Fd[rs1]” < “element of Fd[rs2]”, the corresponding bit of Fd[rd] is set to 1.

FCMPGT{8X,16X,32X, X} compares the elements of Fd[rs1] and Fd[rs2] as signed integers.
If “element of Fd[rs1]” > “element of Fd[rs2]”, the corresponding bit of Fd[rd] is set to 1.

FUCMPLE{8X,16X,32X,X} compares the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “element of Fd[rs1]” < “element of Fd[rs2]”, the corresponding bit of Fd[rd] is set
to 1.

FUCMPNE{8X,16X,32X,X} compares the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “element of Fd[rs1]” # “element of Fd[rs2]”, the corresponding bit of Fd[rd] is set
to 1.

FUCMPGT{8X,16X,32X,X} compares the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “element of Fd[rs1]” > “element of Fd[rs2]”, the corresponding bit of Fd[rd] is set
to 1.

FUCMPEQ{8X,16X,32X,X} compares the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “element of Fd[rs1]” = “element of Fd[rs2]”, the corresponding bit of Fd[rd] is set
to 1.

Ver 29.0 Jan. 2015

NoteInstructions that compare whether signed integers are equal or not
equal are not defined. These comparisons are equivalent to the
FUCMPEQ{8X,16X,32X,X} and FUCMPNE{8X,16X,32X,X})
instrictions, which respectively compare whether unsigned integers
are equal or not equal.

Exception Target Condition
instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All When XAR.v = 1 and any of the following are
true

e XAR.simd=1
o XAR.urs1l<1> =0
XAR.urs2<1> =0
XAR.urs3 =0
XAR.urd<2:1># 0

7.124. Leading Zero Detect

Instruction opf Operation HPC-ACE Assembly Language
Regs. SIMD SYPtax
LZD 00001 01112 Counts number of 0 from left end of R[rs2] 1zd regysz, regrd

Refer to Section 7.85 in UA2011.

Compatibility Note In UA2011, the name of this instruction is LZCNT.

Exception Condition
illegal_instruction iw<18:14> = 0
illegal_action XAR.v =1

230 Ver 29.0 Jan. 2015

7.125. Fixed-point Partitioned Add (64-bit)

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FPADD64 00100 00102 64-bit addition v v fpadd64 fregysi, fregyss, fregra

Refer to Section 7.52 in UA2011.

FPADD64 adds the 8-byte integer in Fd[rs1] and the 8-byte integer in Fd[rs2]. The lower 8
bytes of the result is written in Fd[rd].

FPADD64 does not update any fields in FSR.

Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef=0
illegal_action XAR.v = 1 and any of the following are true.

XAR.urs1<1> =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.126. Fixed-point Partitioned Subtract (64-bit)

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FPSUB64 00100 01102 64-bit subtraction v v fpsub64 fregysi, fregyss, fregra

Refer to Section 7.58 in UA2011.

FPSUB64 subtracts the 8-byte integer in Fd[rs2] from the 8-byte integer in Fd[rs1]. The
lower 8 bytes of the result are stored in Fd[rd].

FPSUB64 does not update any fields in FSR.

Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef =0
illegal_action XAR.v = 1 and any of the following are true.

e XAR.urs1l<1>=0

o XAR.Urs2<1> =0

XAR.urs3 =0

XAR.urd<1> %0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

232 Ver 29.0 Jan. 2015

7.127. SIMD Unsigned Compare

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Refer to Section 7.55 in UA2011.
FPCMPU{LENE|GT]EQ}8 do not update any fields in FSR.

Compatibility Note FPCMPUNES8 and FPCMPUEQ8 on SPARC64™ X+ are
compatible with FPCMP{ | U}NES and FPCMP{ | U}EQ8 in UA2011,

respectively.
Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef=0
illegal_action XAR.v =1

7.128. Floating-Point Lexicographic Compare

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FLCMPs 10101 00012 Single-precision v flcmps %fcen, freges:, fregrsz
lexicographic compare
FLCMPd 10101 00102 Double-precision v flcmpd %Ffcen, freges:, fregrsz

lexicographic compare

Refer to Section 7.37 in UA2011.

Table 7-51 FLCMP{s | d}

F[rs2]
o ['N_ [-0[+0]+N [+=| QNaN2 | SNaN2
~00
-N - 1
0,1
0| L
+0 3
F[rs1] Q I—
N 0 0,1 ‘
+o0
QNaN1
SNaN1 2

Exception Condition

fp_disabled PSTATE.pef = 0 or FPRS.fef=0

lllegal_instruction iw<29:27>#0

illegal_action XAR.v = 1 and any of the following are true.
e XAR.urs1<1>=0
e XAR.urs2<1> =0
e XAR.urs3=0
e XAR.urd #0
e XAR.simd =1

234 Ver 29.0 Jan. 2015

7.129. Floating-Point Negative Add

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instructio opf Operation HPC-ACE Assembly Language Syntax
n Regs. SIMD
FNADDs 00101 00012 Floating point negative add single v v fnadds fregrsi, fregrss, fregra
FNADDd 00101 00102 Floating point negative add double v v fnaddd fregrsi, fregrss, fregra
Refer to Section 7.47 in UA2011.
Table 7-52 FNADD{s|d}
F[rs2]
o | N | 0 | +0 | N +o | QNaN2| SNaN2
- — NV
+00 dQNaN
N -(Frs1] + F[rs2)) -F[rs1] -(F[rs1] + F[rs2])xxviil
0 o -0 | +0oxxix _
-F[rs2] _ | = -F[rs2] _
+0 +(Qxxix +0 QNaN2 NV
Flrs1] QSNaN2
N -(F[rs1] + F[rs2)*"" -Frs1] -(F[rs1] + F[rs2])
+o0 NV e
dQNaN i
QNaN1 QNaN1
NV
SNaN1 QSNaN1

xwviii When the result is 0, footnote (xxix) applies.
xix. When the rounding mode is towards —o°, the result is —0.

Exception Condition

fp_disabled PSTATE.pef = 0 or FPRS.fef=0

illegal_action XAR.v = 1 and any of the following are true.
e XAR.urs1l<1>=#0

e XAR.urs2<1>=0

XAR.urs3 =0

XAR.urd<1>#0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

fp_exception_ieee_754 Same as FADD{s|d}

fp_exception_other Same as FADD{s|d}

236 Ver 29.0 Jan. 2015

7.130. Floating-Point Negative Multiply

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FNMULs 00101 10012 Floating-point negative multiply single v v fnmuls fregysi,
fregrsz, fregra

FNMULd 00101 1010 Floating-point negative multiply double v 4 fnmuld fregrsi,
fregysz, fregra

FNSMULA 00111 1001 Floating-point negative multiply single v v fnsmuld

to double fir eLrsl, fr €8rs2, fr egrd

Refer to Section 7.50 in UA2011.

Table 7-53 FNMUL{s]d}, FNsMULd

F[rs2]
o | N 0]+0 +N | +o [QNaNz| sNaNg
. — NV —
- dNaN +oo
N -(F[rs1] x Frs2]) -(F[rs1] x F[rs2])
° NV 0]+0 NV
o |dQNaN _|= dQNaN| __
+0|-0 QNaN2 NV
Flrs1] _ — QSNaN2
N -(F[rs1] x F[rs2]) -(F[rs1] x F[rs2))
+o0 - NV -
+oo dNaN -0
QNaN1 QNaN1
NV
SNaN1 QSNaN1

238

Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef=0
illegal_action XAR.v = 1 and any of the following are true

e XAR.Ursl<1>=#0

e XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

fp_exception_ieee_754

Same as FMUL{s|d}, FsMULd

fp_exception_other

Same as FMUL{s]d}, FsMuLd

Ver 29.0 Jan. 2015

7.131. WRPAUSE(PAUSE)

Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction op3 Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
WRPAUSE 11 00002 Pause VCPU for specified wr regisi, reg_or_imm, %pause
number of cycles.
PAUSE 11 00002 Pause VCPU for specified pause reg or imm

number of cycles.

[10, | rd=11012, | op3=110000, | rsl [i=0] — rs2
| 20, | rd=11011, | 0p3=110000, | rsl [i=1] simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Description WRPAUSE and PAUSE stop the VCPU for the specified number of processor cycles.

The WRPAUSE and PAUSE instructions write the number of cycles in the PAUSE register
(ASR27). The PAUSE register has the following fields.

[— | Pause | — |
63 15 14 3 2 0
Bit Field Access Description
63:15 Reserved WO Reserved
14:3 Pause WO Specifies the number of cycles the VCPU is
paused. Can be accessed in nonpriviledged mode.
2:0 Reserved WO Ignored

When i = 0, WRPAUSE writes (min(2”15 - 1, (R[rs1] xor R[rs2])) >> 3) into the pause field
(PAUSE<14:3>) of the PAUSE register. When i = 1, WRPAUSE writes (min(2/15 — 1, (R[rs1]
xor sign_ext(simm13))) >> 3) into the pause field.

When i = 0, PAUSE writes (min(2~15 - 1, R[rs2]) >> 3) into the pause field (PAUSE<14:3>) of
the PAUSE register. When i = 1, PAUSE writes (min(2/15-1, sign_ext(simm13)) >> 3) into the
pause field.

Programming Note The behavior of PAUSE is the same as WRPAUSE with
rs1=0.

The number of cycles the VCPU will be paused is the lower 15 bits (PAUSE<14:0>) of the
PAUSE register. However, bits PAUSE<2:0> are ignored. The pause field (PAUSE<14:3>) is
decremented by 1 every 8 CPU clock cycles. Therefore, the maximum number of cycles
which the VCPU can be paused is 32760 (and 32760 is written to PAUSE<14:0> if the
specified value exceeds this number).

The paused VCPU will restart operation when either of the following conditions is true.
e Value of the pause field (PAUSE<14:3>) in the PAUSE register is 0.

e A disrupting exception causes a trap.

Note The VCPU stays paused if the exception is masked and no trap is
generated.

When the VCPU restarts operation, the instruction specified by the NPC of the WRPAUSE or
PAUSE instruction is executed. If a trap occurs while the VCPU is paused, the WRPAUSE or
PAUSE instruction is not treated as the instruction that was disrupted by the trap.

Exception Condition
lllegal_instruction i=0and iw<12:5>=0
illegal_action XAR.v =1

240 Ver 29.0 Jan. 2015

7.132. Load Entire Floating-Point State
Register

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction op3 rd Operation HPC-ACE Assembly Language Syntax
Regs SIMD
LDXEFSR 1000012 3 Read from memory to FSR v 1dx [addressl, %efsr

Refer to Section 7.84 in UA2011.

If an LDXEFSR exception generates a precise trap, FSR is not updated.

Exception Condition

lllegal_instruction i =0 and reserved = 0

fp_disabled PSTATE.pef = 0 or FPRS.fef =0

illegal_action XAR.v = 1 and any of the following are
true

o XAR.urs1 =0

e XAR.urs2 #0

XAR.urs3<2> = 0

XAR.urd = 0

XAR.simd =1
mem_access_not_aligned Address not alilgned on 8 -byte
boundary

VA_watchpoint Refer to 12.5.1.62
DAE_privilege_violation Refer to 12.5.1.8
DAE_nfo_page Refer to 12.5.1.7

7.133. Compare and Branch (CBcond)

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Refer to Section 7.17 in UA2011.

Note The Trap on Control Transfer feature is implemented on

SPARC64™ X+,
Exception Condition
lllegal_instruction c_lo =000¢
illegal_action XAR.v =1
control_transfer_instruction PSTATE.tct = 1 and CBcond causes a transfer
of control

242 Ver 29.0 Jan. 2015

7.134.

Partitioned Move Selected
Floating-Point Register on
Floating-Point Register’s Condition

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD

FPSELMOV8X 01001 0101z Select eight 8-bit v v fpselmov8x fregysi, fregrss, fregrd
data from
registers

FPSELMOV16X 01001 01102z Select four 16-bit v v fpselmovl6x fregri, fregiss, fregra
data from
registers

FPSELMOV32X 01001 01112 Select two 32-bit v v fpselmov32x fregri, fregiss, fregra
data from
registers

[10, | rd | op3=110110, | rsl opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0
Description The n most significant bits of Fd[rs1] select bit ranges from either Fd[rs2] or Fd[rd]. Selected

bit ranges are written in Fd[rd]. If the (63 — n)th bit of Fd[rs1] is 1, the corresponding bit
range in Fd[rs2] is selected and written to the same bit range in Fd[rd]. If the bit in Fd[rs1] is

0, the corresponding bit range in Fd[rd] is selected

The bit ranges of .Fd[rs2] and Fd[rd] that are selected by Fd[rs1] are shown below.

Note Bits Fd[rs1]<55:0> for FPSELMOV8X, Fd[rs1]<59:0> for
FPSELMOV16X, and Fd[rs1]<61:0> for FPSELMOV32X are ignored and have

no effect.
Frs1] F[rs1] F[rs1] Frs1] Frs1] Frs1] F[rs1] Frs1]
bit 63 bit 62 bit 61 bit 60 bit 59 bit 58 bit 57 bit 56
Corresponding | <63:56> | <55:48> | <47:40> | <39:32> | <31:24> | <23:16> | <15:8> | <T7:0>
bit ranges for
FPSELMOV8X
Corresponding | <63:48> | <47:32> | <31:16> | <15:0>
bit ranges for
FPSELMOV16X
Corresponding | <63:32> | <31:0>

bit ranges for
FPSELMOV32X

Example of FPSELMOV8X

6362 .. 56
Firsil [o [~ T4
63 55 4 39 15 7
Flrs2] | N | | | | .
63 BN 47 39 3 23 1 7
Frd | [*] | | | | |
Example of FPSELMOV16X
63626160

FIrs1] [lololn]

63 W 15

63 RS —3 1
Example of FPSELMOV32X
6362
FIrs1] [Jo]
63 31
Flrs2] | —~a [
63 3
F[rd | | —

Note The 64-bit FPSELMOV instruction is not defined because its
behavior would be the same as FSELMOVd (page 112). However,FSELMOVd
updates fields in FSR.

FPSELMOV{8]16]32}X do not update any fields in FSR.

244 Ver 29.0 Jan. 2015

Exception

Condition

fp_disabled

PSTATE.pef = 0 or FPRS.fef =0

illegal_action

XAR.v = 1 and any of the following are true
e XAR.urs1<1>=0

o XAR.Urs2<1>=0

XAR.urs3 =0

XAR.urd<1>=0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.135. 64-bit Integer Compare on Floaing-Point
Register

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur).

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FPCMP64X 10000 01002 Compare signed 64-bit v fpcmp64x %fcen, fregrsi, fregrsz
integers
FPCMPU64X 10000 0101z Compare unsigned 64-bit v/ fpcmpub4x %fccn, fregisi, fregis:
integers
[10, | — Jccl]ccO] o0p3=110110, | rsl [opf [rs2 |
31 30 29 27 26 25 24 19 18 14 13 5 4 0
ccl | ccO | Condition code
0 |0 |fccO
0 |1 |fecl
1 |0 [fcc2
1 |1 |fcc3
Description Compare the 64-bit integer values in the floating-point registers Fd[rs1] and Fd[rs2] and
stores the result in the floating-point condition code field FSR.fcen specified by the
instruction.
Comparison result Value of %fcen
F[rs1] = F[rs2] 0
F[rs1] < F[rs2] 1
F[rs1] > F[rs2] 2
3 N/A
Programming Note FPCMP{64]U64}X is not an FPop. FSR.cexc and
FSR.aexc are not updated, and fp_exception_other exceptions do not occur.
Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef=0
lllegal_instruction iw<29:27> =0
illegal_action XAR.v = 1 and any of the following are true
e XAR.urs1<1>=0
e XAR.urs2<1>=#0
e XAR.urs3=0
e XAR.urd =0
e XAR.simd =1

246 Ver 29.0 Jan. 2015

7.136. 64-bit Integer Shift on Floating-Point
Register

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur).

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FPSLL64X 1000001102 Shift left logical 64-bit integer v v fpsl164x fregysi,
fregrsz, fregrd
FPSRL64X 1000001112 Shift right logical 64-bit integer v v fpsril64x fregrsi,
fregrsz, fregrd
FPSRAG64X 10000 11112 Shift right arithmetic 64-bit v v fpsra64x fregysi,
integer fregrss, fregrd
[10,] rd | op3=110110, | rsl opf [rs2 |
31 30 29 25 24 19 18 14 13 5 4 0
Description These instructions shift the data in Fd[rs1] right or left and store the result in Fd[rd]. The

shift count is specified by the lowest 6 bits of Fd[rs2].

FPSLL64X shifts all 64 bits of Fd[rs1] left, replacing the vacated positions on the right with
0, and stores the result in Fd[rd].

FPSRL64X shifts all 64 bits of Fd[rs1] right, replacing the vacated positions on the left with
0, and stores the result in Fd[rd].

FPSRA64X shifts all 64 bits of Fd[rs1] right, replacing the vacated positions on the left with
the MSB of Fd[rs1], and stores the result in Fd[rd].

FP{SLL]SRL]SRA}64X do not update any fields in FSR.

Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef=0

illegal_action XAR.v = 1 and any of the following are true
XAR.urs1l<1>«0

XAR.urs2<1> =0

XAR.urs3 # 0

XAR.urd<1>=0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.137. Store Floating-Point Register on
Register Condition (Extension of

SPARC64™ X+)

Compatibility Note For the specification of this instruction on

SPARC64™ X, refer to page 174.

Instruction op3 rs2,rd Operation HPC-ACE Assembly Language Syntax
Regs SIMD
STFR 10 1100z 0-31 Store single-precision stfr fregw, fregess, [regrsi]
floating-point register on register
condition (XAR.v = 0)
STFR 10 1100z 0 - 126, Store single-precision v v stfr fregw, freges, [regrsi]
256 floating-point register on register
_3g82xxx condition (XAR.v=1)
STDFR 10 11112 0 - 126, Store double-precision v v stdfr fregw, fregrs, [regrsi]
256 floating-point register on register
—382xx condition
[11, | rd | op3 [rsl [i=1] — rs2
31 30 29 25 24 19 18 14 13 12 5 4 0

non-SIMD execution

When XAR.v = 0 and the MSB (bit 31) of Fs[rs2] is 1, STFR writes the 4 bytes of the
single-precision register Fs[rd] to the specified address, which should be aligned on a 4-byte
boundary. When XAR.v = 1, XAR.simd = 0, and the MSB (bit 63) of F[rs2] is 1, STFR writes
the upper 4 bytes of the double-precision register Fd[rd] to the specified address, which
should be aligned on a 4-byte boundary.

When the MSB (bit 63) of Fd[rs2]is 1, STDFR writes the 8 bytes of the double-precision
register Fd[rd] to the specified address, which should be aligned on an 4-byte boundary.

These floating-point store instructions use implicit ASIs (refer to Section 6.3.1.3 in UA2011)
to access memory. The effective address is “R[rs1]”.

STFR and STDFR cause a mem_address_not_aligned exception when the address is not
aligned on a word boundary.

When executing a non-SIMD STDFR, the address needs to be aligned on a word boundary.
However, if the address is aligned on a word boundary but is not aligned on a doubleword
boundary, a STDF_mem_address_not_aligned exception will occur. The trap handler must

emulate the STDFR instruction when this exception occurs.

STFR does not cause any exceptions except illegal_instruction, fp_disabled, and illegal_action
when XAR.v = 1, XAR.simd = 0, and the MSB (bit 63) of Fd[rs2] is 0; or when XAR.v =0 and
the MSB (bit 31) of Fs[rs2] is 0. STDFR does not cause any exceptions except
illegal_instruction, fp_disabled, and illegal_action when the MSB (bit 63) of Fd[rs2] is 0.

xxx 5.3.1 Encoding which is defined in “Floating-Point Register Number Encoding”(page 26)

248 Ver 29.0 Jan. 2015

Exceptions that re always Exceptions that are detected only when MSB

detected of Fs[rs2] or MSB of Fd[rs2] is 1
lllegal_instruction mem_address_not_aligned
fp_disabled STDF_mem_address_not_aligned
illegal_action VA_watchpoint

DAE_privilege_violation
DAE_nfo_page

SIMD execution STFR and STDFR support SIMD execution on SPARC64 X+. SIMD STFR and SIMD STDFR
simultaneously execute basic and extended stores for single-precision and double-precision
data, respectively. Refer to Section 5.5.15 (page 35) for details on how to specify the
registers.

A SIMD STFR writes the upper 4 bytes of Fd[rd] to the lower 4 bytes of the address when
XAR.v = 1, XAR.simd = 1, and the MSB (bit 63) of Fd[rs2] is 1, and writes the upper 4 bytes
of Fd[rd + 256] to the upper 4 bytes of the address when XAR.v =1, XAR.simd = 1, and the
MSB (bit 63) of Fd[rs2+256] is 1. The address must be aligned on an 8-byte boundary.
Misaligned accesses cause a mem_address_not_aligned exception.

SIMD STDFR writes Fd[rd] to the lower 8 bytes of the address when XAR.v = 1, XAR.simd = 1,
and the MSB (bit 63) of Fd[rs2] is 1, and writes Fd[rd + 256] to the upper 8 bytes of the
address when XAR.v = 1, XAR.simd = 1, and the MSB (bit 63) of Fd[rs2+256] is 1. The
address must be aligned on a 16-byte boundary. Misaligned accesses cause a
mem_address_not_aligned exception.

These floating-point store instructions use implicit ASIs (refer to Section 6.3.1.3 in UA2011)
to access memory.

Note A SIMD STDFR does not cause a STDF_mem_address_not_aligned
exception when the address is aligned on a word boundary but is not
aligned on a doubleword boundary.

SIMD STFR and SIMD STDFR can only be used to access cacheable address spaces. An
attempt to access a non-cacheable address space causes a DAE_nc_page exception.

Like non-SIMD store instructions, memory access semantics adhere to TSO. SIMD STFR
and SIMD STDFR simultaneously execute basic and extended stores; however, the ordering
between the basic and extended stores conforms to TSO.

SIMD STFR and SIMD STDFR always detect an illegal_instruction, fp_disabled, or
illegal_action exception.

SIMD STFR and SIMD STDFR always detect mem_address_not_aligned or VA_watchpoint
exceptions for both the basic and extended operations when the exception condition is
detected and either of the following conditions is true.

1. Either MSB (bit 63) of basic register Fd[rs2] or extended register Fd[rs2+256] is 1.
2. Both MSBs (bit63) of Fd[rs2] and Fd[rs2+256] are 1.

SIMD STFR and SIMD STDFR detect an exception only for the corresponding basic or
extended operation when the exception condition is detected (excluding illegal_instruction,
fp_disabled, illegal_action, mem_address_not_aligned, VA_watchpoint) and the MSB (bit63)
of basic register Fd[rs2] or the MSB (bit 63) of extended register Fd[rs2+256] is 1. The
exception is detected for both operations only if both the MSBs of Fd[rs2] and Fd[rs2+256]
are 1.

Exceptions that
are always
detected

Exceptions that are detected for
both operatopns when either
MSB in Fd[rs2] or Fd[rs2+256] is
1

Exceptions that are detected for the
corresponding operation(s) when the
MSB in Fd[rs2] or Fd[rs2+256] is 1

lllegal_instruction
fp_disabled
illegal_action

mem_address_not_aligned
VA_watchpoint

DAE_privilege_violation
DAE_nc_page
DAE_nfo_page

Exceptions that are detected for both operations
when either MSB in Fd[rs2] or Fd[rs2+256] is 1

Detected address

mem_address_not_aligned

Address of basic operation (always)

VA_watchpoint

The detected address. When detected for both operations,
address of the basic operation

Exceptions that are detected for the corresponding operation(s) when the

MSB in Fd[rs2] or Fd[rs2+256] is 1

Detected address

DAE_privilege_violation

Address of basic operation (always)

DAE_nc_page

Address of basic operation (always)

DAE_nfo_page

Address of basic operation (always)

250 Ver 29.0 Jan. 2015

Exception

Target instruction

Condition

illegal_instruction

all

i = 0 or the reserved field is not 0

fp_disabled

all

PSTATE.pef = 0 or FPRS.fef =0

illegal_action

all

XAR.v = 1 and any of the following are
true

o XAR.ursl =0

XAR.urs2<1> =0

XAR.urs3<2> = 0

XAR.urd<1> = 0

XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

STDF_mem_address_not_aligned

STDFR

MSB of Fd[rs2] is 1 and address aligned
on a word boundary but not a
doubleword boundary when XAR.v =1
and XAR.simd = 0, or XAR.v=0

mem_address_not_aligned

STFR

Either of the following conditions is true

e Address not aligned on word
boundary when XAR.v =0 and MSB
of Fs[rs2] is 1

o Address not aligned on word
boundary when XAR.v =1,
XAR.simd = 0, and MSB of Fd[rs2] is 1

o Address not aligned on a doubleword
boundary when MSB of Fd[rs2] or
Fd[rs2+256] is 1, XAR.v = 1 and
XAR.simd =1

STDFR

Either of the following conditions is true

e Address not aligned on a word
boundary when MSB of Fd[rs2] is 1
and XAR.v =1 and XAR.simd = 0, or
XAR.v =0

e Address not aligned on a quadword
boundary when MSB of Fd[rs2] or
Fd[rs2+256] is 1 and XAR.v =1 and
XAR.simd =1

VA_watchpoint

all

Refer to the description and 12.5.1.62

DAE_privilege_violation

all

Refer to the description and 12.5.1.8

DAE_nc_page

all

Access to non-cacheable space when
XAR.V = 1, XAR.simd = 1, and MSB of
Fd[rs2] or Fd[rs2+256] is 1

DAE_nfo_page

all

Refer to the description and 12.5.1.7

7.138. Shift Mask Or (Extension of SPARC64™
X+)

Compatibility Note For the specification of this instruction on
SPARC64™ X, refer to page 222.

Instruction var size Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FSHIFTORX 10, 112 Concatenate the values of two 4 v fshiftorx fregsi, fregrs, fregss,
double-precision floating-point fregra
registers
[10, | rd | op3=110111, | rsl rs3 | var = 10, | size = 11, rs2
31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Non SIMD execution

Depending on the setting in Fd[rs3], FSHIFTORX performs one of the following sets of
operations. In pattern A) two fields are used, and in pattern B) three fields are used.

A) FSHIFTORX shifts the value of Fd[rs1] right or left and extracts part ofthe result, as
specified by 1st_*. It also shifts the value of Fd[rs2] right or left and extracts part ofthe
result, as specified by 2nd_*. The two extracted values are bitwise ORed, and this
result is written in Fd[rd].

B) FSHIFTORX shifts the value of Fd[rs1] right or left and extracts part of the result, as
specified by 1st_*. It again shifts the value of Fd[rs1] right or left and extracts part ofthe
result, this time as specified by 2nd_*. The two extracted values are bitwise ORed.
Then a logical operation (AND, OR, or XOR) is performed with this result and the value
of Fd[rs2] as the inputs. The final result is written into Fd[rd].

The exceptions detected for this instruction depend on the value of XASR.fed. An
illegal_instruction exception occurs when setting the following values to Fd[rs3] and
XASR.fed = 0.

e 1) Set 1 to a reserved field
e 2) Set 1 to set_2nd_default and set values other than 0 to <31:0>
When XASR.fed = 1, an illegal_instruction exception will not occur even if the above values

are specified in Fd[rs3]. However, the result written in Fd[rd] is not guaranteed to be valid
when such values are set.

Table 7-54 Meanings of bits in Fd[rs3]

| set_2nd_default | operation | — | Ist_mask_inv | 1Ist mask_offset [1st_mask length | 1st shift_amount |
63 62 61 60 57 56 55 48 47 40 39 32
| — | 2nd_mask_inv | 2nd_mask offset | 2nd_mask length | 2nd_shift_amount |
31 25 24 23 16 15 8 7 0
Bit Field Description

252 Ver 29.0 Jan. 2015

rsl rs2
63 — set_2nd_default Specifies set of {1st | 2nd}_* fields to use for the 2nd field
0: Use the rs2_* fields for the 2nd field
1: Use values derived from 1st_* fields
62:61 — operation Specifies type of operation. Refer to Table 7-55
56 24 {1st|2nd}_mask_inv Specifies whether to invert the mask
0: Do not invert
1: Invert
55:48 23:16 {lst|2nd}_mask_offset Starting position in mask (number of bits from MSB)
8-bit signed integer
47:40 15:8 {1st|2nd}_mask_length Mask bit length,8-bit signed integer
39:32 70 {1st|2nd}_shift_amount Shift count (positive: left shift, negative: right shift), 8-bit
signed integer
Table 7-55 Operation Patterns
operation | 1st 2nd field | 3rd Logical operation of 3rd field and value generated from 1st and
field 2nd fields
002 rsl rs2 — —
01s rsl rsl rs2 AND
102 rsl rsl rs2 OR
11s rsl rsl rs2 XOR

Note FSHIFTORX detects an illegal_instruction exception for certains values
in the register Fd[rs3]. An fp_disabled exception or illegal_action
exception may be detected before the register is read. That is, for this
instruction, these exceptions may have higher priority than an
illegal_instruction exception.

The operation fields select one of two patterns for FSHIFTORX, which are divided into the
operations shown below.

A: 1) Shift, 2) Mask, 3) OR

B: 1) Shift, 2) Mask, 3) OR, 4) Logical operation

254

1) Shift

3) bitwise OR

4) AND, OR, XOR
(example.: OR)

$<Step 4 is only
executed for

pattern B)

Fd[rs1] Fd[rs1] or Fd[rs2]

Y, NN
" W NN °
" w0 NN
v oe—
NN ° e

x\\\/////

Fd[rd]

The shift operation executes a logical shift. If shifting left, the vacated positions on the right
are replaced by 0. If shifting right, the vacated positions on the left are replaced by 0. The
{1st|2nd}_shift_amount field specifies the shift direction and shift count. The shift is
leftwards if the value is positive and rightwards if the value is negative.

The mask operation extracts the specified bits from the shifted register. Two mask patterns
are defined by {1st|2nd}_mask_offset, {1st|2nd}_mask_length, and {1st|2nd}_mask_inv. A
mask pattern is generated from one set of these fields and bitwise ANDed with the
corresponding shifted register.

A mask pattern is a generated range of contiguous 1s in a 64-bit doubleword, where no bits
are 1 outside this range. The inverse of this pattern can also be specified. The
{1st|2nd}_mask_offset field specifies the starting position of the mask (the range of 1s) as
the number of bits from the left (MSB) . The {1st|2nd}_mask_length field specifies the length
of the range of bits that are set to 1. To invert this mask, specify 1 for {1st|2nd}_mask_inv.

Note The mask pattern contains bits that are 1 when
0 < {1st|2nd}_mask_offset < 64 and 0 < {1st|2nd}_mask_length. That is,
the pattern fits inside a doubleword. The specified pattern can exceed
the length of a doubleword if
64 < “{1st|2nd}_mask_offset + {1st|2nd}_mask_length”. In this case, the
mask pattern is a contiguous range of 1s from {1st|2nd}_mask_offset
to the LSB.

Note The mask pattern may contain bits that are 1 even if the value of
{1st|]2nd}_mask_offset is negative. Specifically, when
[{1st|2nd}_mask_offset |< {1st|2nd} _mask_length, the mask pattern is
a contiguous range of 1s from the MSB to
“{1st|2nd}_mask_length — |{1st|2nd}_mask_offset|”.

Ver 29.0 Jan. 2015

Note The 64-bit mask pattern is all Os when {1st|2nd}_mask_offset and
{1st|2nd}_mask_length satisfy any of the conditions below. The mask
pattern is all 1s under the same conditions when {1st|2nd}_mask_inv
is used to invert the mask pattern.

- {1st|2nd}_mask_length <0
- {1st|2nd}_mask_offset + rs{1]|2}_mask_length < 0
- {1st|2nd}_mask_offset > 64

In pattern A), the bitwise OR operation is executed on the values obtained from Fd[rs1] and
Fd[rs2] using the shift and mask operations . The result is written in Fd[rd]. In pattern B),
the bitwise OR operation is executed on the two different values generated from Fd[rs1]
using the shift and mask operations. A logical operation (in the example, an OR) is
performed with this result and Fd[rs2] as the inputs. The final result is written in Fd[rd].

Table 7-56 shows an example of how to specify the bits in Fd[rs3]. In this example,

1. The lower 32 bits of Fd[rs1] (Fd[rs1]<31:0>) and the upper 24 bits of Fd[rs1]
(Fd[rs1]<63:40>) are concatenated in the given order (Fd[rs1]<31:0>::Fd[rs2]<63:40>).

2. A bitwise OR of the concatenated value and Fd[rs2] is executed.

3. The final result is written in Fd[rd].

Table 7-56

Example of how to specify bits in Fd[rs3]

Field

Concatenate lower 32 bits of Fd[rs1] and upper 24 bits of Fd[rs1]
(Fd[rs1]<31:0>::Fd[rs1]<63:40>), then OR the result and Fd[rs2]

set_2nd_default

0 (2nd_* field are used)

operation

01(OR of 3rd field and value generated from 1st and 2nd fields)

1st_mask_inv

0 (Do not invert 1st mask)

1st_mask_offset

32 (Mask shifted 1st field starting from bit<31>)

1st_mask_length

24 (Mask length is 24 bits)

1st_shift_amount

-32 (Shift right 32 bits)

2nd_mask_inv

0 (Do not invert the 2nd mask)

2nd_mask_offset

0 (Mask shifted 2nd field starting from MSB)

2nd_mask_length

32 (Mask length is 32 bits)

2nd_shift_amount

32 (Shift left 32 bits)

SIMD execution When FSHIFTORX is executed as a SIMD instruction, any floating-point register Fd[0] —
Fd[126], Fd[256] —

Fd[382] can be specified for Fd[rs1]. If an extended register FA[256] —

Fd[382] is specified for Fd[rs1], the extended register Fd[n] is used for the basic operation
and the basic register Fd[n — 256] is used for the extended operation. On the other hand,
only basic registers Fd[0] — Fd[126] can be specified for Fd[rs2], Fd[rs3], and Fd[rd]. The basic
operation uses the basic register Fd[nl, and the extended operation uses the extended
register Fd[n+256].

FSHIFTORX does not update any fields in FSR.

256

Exception Taget Condition
instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef =0
illegal_action All XAR.v = 1 and any of the following are true
e XAR.Urs1l<1>=0
o XAR.urs2<1>#0
o XAR.Urs3<1>=0
o XAR.urd<1>=0
e XAR.simd =1 and XAR.urs2<2> # 0
e XAR.simd =1 and XAR.urs3<2> = 0
e XAR.simd =1 and XAR.urd<2> = 0
illegal_instruction | All Refer to the description.

Ver 29.0 Jan. 2015

7.139. SIMD Compare (Extension of
SPARC64™ X+)

Compatibility Note For the specification of this instruction on
SPARC64™ X, refer to page 226.

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FPCMPLE16X 0 1100 00002 Compare four 16-bit signed v v fpcmplel6x fregysi, fregyss,
integers fregra .
If srel < sre2then 1 (fcmplelbx) ™
FPCMPULE16 0 1100 0001: Compare four 16-bit unsigned v v fpcmpulel6x fregisi, freguss,
X integers fregrd
If srei< src2then 1 (fucmplel6x)’
FPCMPUNE16 0 1100 00112 Compare four 16-bit unsigned v v fpcmpunel6x fregisi, freguss,
X integers fregrd
If srel+# src2then 1 (fucmpnel16x)’
FPCMPLE32X 01100 0100z Compare two 32-bit signed v v fpcmple32x fregrsi, fregrss,
integers fregra .
If srel < sre2then 1 (fcmple32x) "’
FPCMPULE32 0 1100 0101: Compare two 32-bit unsigned v v fpcmpule32x fregisi, fregrsz,
X integers fregrd
If srei< src2then 1 (fucmple32x) '
FPCMPUNE32 0 1100 0111: Compare two 32-bit unsigned v v fpcmpune32x fregisi, fregisz,
X integers fregrd
If srel+# src2then 1 (fucmpne32x) '
FPCMPGT16X 0 1100 1000z Compare four 16-bit signed v v fpcmpgtl6x fregrsi, fregrss,
integers fregra .
If srel > sre2then 1 (fcmpgtl6x) ’
FPCMPUGT16 0 1100 10012 Compare four 16-bit unsigned v v fpcmpugtlex fregisi, freguss,
X integers fregra
If srel > sre2then 1 (fucmpgtl6x)’
FPCMPUEQ16 0 1100 1011z Compare four 16-bit unsigned v v fpcmpueql6x fregisi, fregrss,
X integers fregra
If srel = sre2then 1 (fucmpeql16x)’
FPCMPGT32X 0 1100 11002 Compare two 32-bit signed v v fpcmpgt32x fregysi, fregyss,
integers fregra .
If srel > sre2then 1 (fcmpgt32x) "’
FPCMPUGT32 01100 1101z Compare two 32-bit unsigned v v fpecmpugt32x fregisi, fregyss,
X integers fregra
If srel > sre2then 1 (Fucmpgt32x)*
FPCMPUEQ32 01100 1111z Compare two 32-bit unsigned v v fpcmpueq32x fregisi, fregyss,
X integers fregra
If srel = sre2then 1 (fucmpeqg32x) '
FPCMPLE8X 01101 00002 Compare eight 8-bit signed v v fpcmple8x fregrsi, fregss,
integers fregra

If srcl < src2then 1

(fcmple8x) '

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
FPCMPULE8X 0 1101 0001z Compare eight 8-bit unsigned v v fpcmpule8x fregysi, fregyss,
integers fregra
If src1< sre2then 1 (fucmplesx)’
FPCMPUNE8X 0 1101 0011z Compare eight 8-bit unsigned v v fpcmpune8x fregsi, fregis,
integers fregra
If src1+# src2then 1 (fucmpnesx) ’
FPCMPLE64X 0 1101 01002 Compare 64-bit signed v v fpcmple64x fregsi, fregis,
integers fregra
If src1< sre2then 1 (femplex)’
FPCMPULE64 0 1101 01012 Compare 64-bit unsigned v v fpcmpulebax fregrsi, fregrs,
X integers fregra
If src1< src2then 1 (fucmplex)’
FPCMPUNE64 0 1101 01112 Compare 64-bit unsigned v v fpcmpune64x fregisi, fregisz,
X integers fregra
If srci1+# src2then 1 (Ffucmpnex) '
FPCMPGT8X 01101 10002 Compare eight 8-bit signed v v Ffpcmpgt8x fregsi, fregis,
integers fregra
If src1> src2then 1 (fcmpgtsx) '
FPCMPUGT8X 0 1101 10012 Compare eight 8-bit unsigned v v fpcmpugt8x fregrsi, fregrss,
integers fregra
If src1> src2then 1 (fucmpgtsx) ’
FPCMPUEQ8X 0 1101 1011z Compare eight 8-bit unsigned v’ v fpcmpueq8x fregsi, fregis,
integers fregra
If srel= src2then 1 (fucmpeq8x) ’
FPCMPGT64X 0 1101 11002 Compare 64-bit signed integer v v fpcmpgt64x fregysi, fregrss,
If src1> src2then 1 fregra
(fempgtx) '
FPCMPUGT64 0 1101 11012 Compare 64-bit unsigned v v fpcmpugt6ax fregrsi, fregrsz,
X integer fregra
If srel> src2then 1 (Fucmpgtx)’
FPCMPUEQ64 0 1101 11112 Compare 64-bit unsigned v v fpcmpueq64x fregrsi, fregrsz,
X integer fregra
If srel= src2then 1 (Fucmpeqgx) '
Tthe older mnemonic for this instruction (still recognized by the assembler)
[10, | rd | op3=110110, | rsl | opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0

These instructions compare the several elements (partitions) in the two floating-point
registers Fd[rs1] and Fd[rs2]. The result is written in the floating-point register Fd[rd]. The
comparison results for these elements are written in the most-significant bits of Fd[rd]. Os
are written in the other bits.

Description

The number of elements in a 64-bit input register depends on the data type of the
comparison. The number of elements and their bit ranges for each data type are shown in
Table 7-57.

258 Ver 29.0 Jan. 2015

Table 7-57 Number of elements and their bit ranges for each data type

Data type Number | Element | Element | Element | Element | Element | Element | Element | Element
of 1 2 3 4 5 6 7 8
elements

8-bit signed 8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

integer

8-bit unsigned |8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

integer

16-bit signed 4 63:48 47:32 31:16 15:0 — — — —

integer

16-bit 4 63:48 47:32 31:16 15:0 — — — —

unsigned

integer

32-bit signed 2 63:32 31:0 — — — — — —

integer

32-bit 2 63:32 31:0 — — — — — —

unsigned

integer

64-bit signed 1 63:0 — — — — — — —

integer

64-bit 1 63:0 — — — — — — —

unsigned

integer

Elements of Fd[rs1] and Fd[rs2] which occupy the same bit range are compared. The result
is written in the corresponding bit of Fd[rd]. The bit positions of Fd[rd] corresponding to each
element are shown in Table 7-58.
Table 7-58 Elements and corresponding bit positions in Fd[rd]
Element 1 | Element 2 | Element 3 | Element 4 | Element 5 | Element 6 | Element 7 | Element 8
Fd[rd] | 63 62 61 60 59 58 57 56

FPCMPLE{8X,16X,32X,64X} compare the elements of Fd[rs1] and Fd[rs2] as signed
integers. If “elements of Fd[rs1]” < “elements of Fd[rs2]”, the corresponding bits of Fd[rd] is
set to 1.

FPCMPGT{8X,16X,32X,64X} compare the elements of Fd[rs1] and Fd[rs2] as signed
integers. If “elements of Fd[rs1]” > “elements of Fd[rs2]”, the corresponding bits of Fd[rd] is
set to 1.

FPCMPULE{8X,16X,32X,64X} compare the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “elements of Fd[rs1]” < “elements of Fd[rs2]”, the corresponding bits of Fd[rd] is
set to 1.

FPCMPUNE{8X,16X,32X,64X} compare the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “elements of Fd[rs1]” = “elements of Fd[rs2]”, the corresponding bits of Fd[rd] is
set to 1.

FPCMPUGT{8X,16X,32X,64X} compare the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “elements of Fd[rs1]” > “elements of Fd[rs2]”, the corresponding bits of Fd[rd] is
set to 1.

FPCMPUEQ{8X,16X,32X,64X} compare the elements of Fd[rs1] and Fd[rs2] as unsigned
integers. If “elements of Fd[rs1]” = “elements of Fd[rs2]”, the corresponding bits of Fd[rd] is
set to 1.

260

Note Instructions that compare whether signed integers are equal or not

equal are not defined. These comparisons are equivalent to the
instructions FPCMPUEQ{8X, 16X, 32X, 64X} and

FPCMPUNE{8X, 16X,32X,

64X}, which respectively compare whether

unsigned integers are equal or not equal.

Compatibility Note Differences from SPARC64™ X are the following:

extended floating-point registers can be specified for non SIMD
instructions, HPC-ACE SIMD execution is supported, and the
instruction mnemonic is changed (FCMP*/FUCMP*—FPCMP*/FPCMPU*¥).

SIMD Compare does not update any fields in FSR.

Exception Taget Condition

instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_action All XAR.v = 1 and any of the following are true

XAR.urs1<1> =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1> =0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

Ver 29.0 Jan. 2015

7.140.

Fixed-Point Partitioned Add (128-bit)

Compatibility Note SPARC64™ X does not support this instruction. (An
illegal_instruction exception will occur.)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs. SIMD
FPADD128XHI 0 1001 11112 128-bit add 4 v fpadd128xhi fregssi, fregiss, fregr
[10, | rd | op3=110110, | rsl | opf | rs2 |
31 30 29 25 24 19 18 14 13 5 4 0
Description FPADD128XHI adds a 16-byte unsigned integer, where the upper 8 bytes are in Fd[rs1] and

the lower 8-bytes are in Fd[rs2], to the 8-byte unsigned integer in Fd[rd]. The upper 8 bytes

of the result are written in Fd[rd].

FPADD128XHI does not update any fields in FSR.

Exception Condition
fp_disabled PSTATE.pef = 0 or FPRS.fef=0
illegal_action XAR.v = 1 and any of the following are true

XAR.urs1l<1> =0

XAR.urs2<1> =0

XAR.urs3 =0

XAR.urd<1>#0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> = 0

7.141. Integer Minimum and Maximum

Compatibility Note SPARC64™ X does not support this instruction.
(Anillegal_instruction exception will occur.)

Instruction opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD

FPMAX64X 01110 11002 Max. of signed 64-bit integer v v fpmax64x fregrsi, fregrss, fregr
FPMAXu64x 01110 11012 Max. of unsigned 64-bit integer v v Tpmaxub4ax fregsi, fregss, fregr
FPMING4Xx 01110 11102 Min. of signed 64-bit integer v v TpminG4x fregrs:, fregrss, fregr
FPMINU64x 01110 11112 Min. of unsigned 64-bit integer v v Tpminub4x fregisi, fregrsz, fregr
FPMAX32x 011100100z Max. of signed 32-bit integer v v Tpmax32x fregrsi, fregrss, fregra
FPMAXu32x 011100101z Max. of unsigned 32-bit integer v v fpmaxu32x fregisi, fregsz, fregr
FPMIN32xX 0111001102 Min. of signed 32-bit integer v v Fpmin32x fregrsi, fregrss, fregr
FPMINU32x (0111001112 Min. of unsigned 32-bit integer v v Fpminu32Xx fregisi, fregsz, fregra

[10.] rd | op3=110110. | rsl | opf | rs2 |

31 30 29 25 24 19 18 14 13 5 4 0

Description FPMAX64x compares Fd[rs1] and Fd[rs2] as signed 64-bit integers. If Fd[rs1] > Fd[rs2], then

262

Fd[rs1] is written in Fd[rd], Otherwise, Fd[rs2] is written in Fd[rd].

FPMAXu64x compares Fd[rs1] and Fd[rs2] as unsigned 64-bit integers. If Fd[rs1] > Fd[rs2],
then Fd[rs1] is written in Fd[rd]. Otherwise, Fd[rs2] is written in Fd[rd].

FPMIN64x compares Fd[rs1] and Fd[rs2] as signed 64-bit integers. If Fd[rs1] < Fd[rs2], then
Fd[rs1] is written in Fd[rd]. Otherwise, Fd[rs2] is written in Fd[rd].

FPMINu64x compares Fd[rs1] and Fd[rs2] as unsigned 64-bit integers. If Fd[rs1] < Fd[rs2],
then Fd[rs1] is written in Fd[rd]. Otherwise, Fd[rs2] is written in Fd[rd].

FPMAX32x compares Fd[rs1]<63:32> and Fd[rs2]<63:32> as signed 32-bit integers. If

Fd[rs1]<63:32> > Fd[rs2]<63:32>, then Fd[rs1]<63:32> is written in Fd[rd]<63:32>.,0Otherwise,

Fd[rs2]<63:32> is written in Fd[rd]<63:32>. At the same time, Fd[rs1]<31:0> and

Fd[rs2]<31:0> are compared as signed 32-bit integers. If Fd[rs1]<31:0> > Fd[rs2]<31:0>, then

Fd[rs1]<31:0> is written in Fd[rd]. Otherwise, Fd[rs2]<31:0> is written in Fd[rd]<31:0>.

FPMAXuU32x compares Fd[rs1]<63:32> and Fd[rs2]<63:32> as unsigned 32-bit integers. If

Fd[rs1]<63:32> > Fd[rs2]<63:32>, then Fd[rs1]<63:32> is written in Fd[rd]<63:32>. Otherwise,

Fd[rs2]<63:32> is written in Fd[rd]<63:32>. At the same time, Fd[rs1]<31:0> and
Fd[rs2]<31:0> are compared as unsigned 32-bit integers. If Fd[rs1]<31:0> > Fd[rs2]<31:0>,
then Fd[rs1]<31:0> is written in Fd[rd]<31:0>. Otherwise, Fd[rs2]<31:0> is written in
Fd[rd]<31:0>.

FPMIN32x compares Fd[rs1]<63:32> and Fd[rs2]<63:32> as signed 32-bit integers. If

Fd[rs1]<63:32> < Fd[rs2]<63:32>, then Fd[rs1]<63:32> is written in Fd[rd]<63:32>. Otherwise,

Fd[rs2]<63:32> is written in Fd[rd]<63:32>. At the same time, Fd[rs1]<31:0> and

Fd[rs2]<31:0> are compared as signed 32-bit integers. If Fd[rs1]<31:0> < Fd[rs2]<31:0>, then

Fd[rs1]<31:0> is written in Fd[rd]<31:0>. Otherwise, Fd[rs2]<31:0> is written in
Fd[rd]<31:0>.

FPMINu32x compares Fd[rs1]<63:32> and Fd[rs2]<63:32> as unsigned 32-bit integers. If

Fd[rs1]<63:32> < Fd[rs2]<63:32>, then Fd[rs1]<63:32> is written in Fd[rd]<63:32>. Otherwise,

Fd[rs2]<63:32> is written in Fd[rd]<63:32>. At the same time, Fd[rs1]<31:0> and
Fd[rs2]<31:0> are compared as unsigned 32-bit integers. If Fd[rs1]<31:0> < Fd[rs2]<31:0>,

Ver 29.0 Jan. 2015

then Fd[rs1]<31:0> is written in Fd[rd]<31:0>. Otherwise, Fd[rs2]<31:0> is written in
Fd[rd]<31:0>.

FPMAX{64x]u64x]32x|u32x} and FMIN{64x]u64x|32x]u32x} do not update any fields
in FSR.

Exception Taget Condition
instruction

fp_disabled All PSTATE.pef = 0 or FPRS.fef =0

illegal_action All XAR.v = 1 and any of the following are true
XAR.urs1<1> =0

XAR.urs2<1> = 0

XAR.urs3 = 0

XAR.urd<1> # 0

XAR.simd = 1 and XAR.urs1<2> = 0
XAR.simd = 1 and XAR.urs2<2> = 0
XAR.simd = 1 and XAR.urd<2> # 0

7.142. Move Integer Register to Floating-Point
Register (for SPARC64™ X+)

Compatibility Note SPARC64™ X does not support this instruction (An
illegal_instruction exception will occur).

Opcode opf Operation HPC-ACE Assembly Language Syntax
Regs SIMD
MOVWTOs 10001 10012 Copy lower 32 bits of integer v movwtos regrsz, fregrd
register to single precision
register
MOVxTOd 10001 10002 Copy 64 bits of integer register v movxtod regrsz, fregrd
to double precision register
[10: | rd | op3=110110; — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Description The MOVWTOs instruction copies the lower 32 bits from the general-purpose register R[rs2]
to the floating-point register Fs[rd]. No conversion is performed on the copied bits.
The MOVXTOd instruction copies 64 bits from the general-purpose register R[rs2] to the
floating-point register Fd[rd]. No conversion is performed on the copied bits.
MOVWTOs and MOVXTOd do not update any fields in FSR.
Exception Target Condition
instruction
fp_disabled All PSTATE.pef = 0 or FPRS.fef=0
illegal_instruction All iw<18:14> £ 0
illegal_action All XAR.v = 1 and any of the following are true
e XAR.ursl =0
e XAR.urs2 =0
e XAR.Urs3 =0
e XAR.urd<1>=0
e XAR.simd =1
264 Ver 29.0 Jan. 2015

IEEE Std. 754-1985
Requirements for SPARC-V9

8.1.

8.1.1.

Nonstandard Floating-Point Mode

This section describes the behavior of SPARC64™ X / SPARC64™ X+ in nonstandard
floating-point mode, which does not conform to IEEE 754-1985. Nonstandard floating-point
mode is enabled when FSR.NS = 1 (refer to page 27). The floating-point behavior depends
on the value of FSR.Ns.

This section also describes the conditions that generate an fp_exception_other exception
with FSR.ftt = unfinished_FPop, even though this exception only occurs in standard
floating-point mode (FSR.ns = 0).

SPARC64™ X / SPARC64™ X+ floating-point hardware only handles numbers in a specific
range. If the hardware determines from the values of the source operands or the
intermediate result that the final result may not be in the specified range, an
fp_exception_other exception with FSR.ftt = 0216 (Unfinished_FPop) is generated.
Subsequent processing is handled by software; an emulation routine completes the
operation in accordance with IEEE 754-1985 (impl. dep. #3).

fp_exception_other (ftt = unfinished_FPop)

Almost all SPARC64™ X / SPARC64™ X+ floating-point arithmetic operations may cause
an fp_exception_other exception with FSR.ftt = unfinished_FPop. Refer to the
definition of the specific instruction for details. Conditions that generate this exception are
described below.

1) When one operand is denormal and all other operands are normal (not zero, infinity,
NaN), an fp_exception_other with unfinished_FPop occurs. The exception does not occur
when the result is a zero or an overflow.

2) When all operands are denormal and the result is not a zero or an overflow, an
fp_exception_other exception with unfinished_FPop occurs.

3) When all operands are normal, the result before rounding is denormal, TEM.ufm =0,
and the result is not a zero, an fp_exception_other exception with unfinished_FPop
occurs.

When the result is expected to be a constant, such as zero or infinity, and the calculation
can be handled by hardware, SPARC64™ X / SPARC64™ X+ performs the operation in
hardware. An unfinished_FPop does not occur.

Table 8-1 describes the formulas used to estimate the exponent of the result so that
hardware can determine whether to generate an unfinished_FPop. Here, Er is an

approximation of the biased exponent of the result before the significand is aligned and
before rounding; Er is calculated using only the source exponents (esrcl, esrc2).

Table 8-1 Estimating the Exponent of the Result

Operation Formula
fmuls Er = esrcl + esrc2 — 126
fmuld Er = esrcl + esrc2 — 1022
fdivs Er = esrcl — esrc2 + 126
fdivd Er = esrcl — esrc2 + 1022
esrcl and esrc2 are the biased exponents of the source operands. When a source operand is
a denormal number, the corresponding exponent is 0.
Once Er is calculated, eres can be obtained. eres is the biased exponent of the result after
the significand is aligned and before rounding. That is, the significand is left-shifted or
right-shifted so that an implicit 1 is immediately to the left of the binary point. eres is the
value obtained from adding or subtracting the amount shifted to the value of Er.
Table 8-2 describes the conditions under which each floating-point instruction generates an
unfinished_FPop exception.
Table 8-2 unfinished_FPop Conditions
Instructions Conditions
FdTOs —25 <eres <1 and TEM.ufm=20
FsTOd The second operand (rs2) is denormal
FADD{s|d}, FSUB{s|d}, [1) One operand is denormal, and the other operand is normal (not zero, infinity,
FNADD{s|d} NaN)i
2) Both operands are denormal
3) Both operands are normal (not zero, infinity, NaN), eres < 1, and TEM.ufm =0
FMUL{s]d}, FNMUL{s]d} | 1) One operands is denormal, the other operand is normal (not zero, infinity, NaN),
and
single precision : -25 < Er
double precision: -54 < Er
2) Both operands are normal (not zero, infinity, NaN), TEM.ufm = 0, and
single precision : -25<eres <1
double precision: -54 <eres <1
F{IN}sMULd 1) One operand is denormal, and the other operand is normal (not zero, infinity, NaN)
2) Both operands are denormal
FDIV{s|d} 1) The dividend (rs1) is normal (not zero, infinity, NaN), the divisor (rs2) is denormal,
and
single precision : Er <255
double precision: Er <2047
2) The dividend (rs1) is denormal, the divisor (rs2) is normal (not zero, infinity, NaN),
and
single precision : -25 < Er
double precision: -54 < Er
3) Both operands are denormal
4) Both operands are normal (not zero, infinity, NaN), TEM.ufm = 0, and

single precision: -25<eres<1
double precision: -54 <eres <1

i When the source operand is zero and denormal, the generated result conforms to IEEE754-1985.

266 Ver 29.0 Jan. 2015

FSQRT{s|d} The source operand (rs2) is positive, nonzero, and denormal
FMADD{s|d}, Multiply:
FMSUB{s|d}, 1) One operand is denormal, the other operand is normal (not zero, infinity, NaN),
FNMADD{s|d}, and
FNMSUB{s|d} single precision : -25 < Er
double precision: -54 < Er
2) Both operands are normal (not zero, infinity, NaN), TEM.ufm = 0, and
single precision : -25 < eres < 1
double precision: -54 < eres < 1
Add:
1) F[rs3] is denormal and the multiplication result is normal (not zero, infinity, NaN)
2) Both F[rs3] and the multiplication result are denormal
3) F[rs3] is normal (not zero, infinity, NaN), TEM.ufm = 0, and
single precision : -25 < eres < 1
double precision: -54 < eres < 1
FTRIMADDd Same as FMUL{s]d} for the multiply. Not detected for the add.
FTRISMULd When rs1 is normal (not zero, infinity, NaN), TEM.ufm =0, and -54 < eres < 1
FRCPA{s|d} When the operands are denormal
FRSQRTA{s|d} When the operands are positive, nonzero, and denormal

Conditions for a Zero Result

SPARC64™ X / SPARC64™ X+ generate a zero result when the result is a denormalized
minimum or a zero, depending on the rounding mode (FSR.rd). This result is called a
“pessimistic zero”. Table 8-3 shows the conditions for a zero result.

Table 8-3 Conditions for a Zero Result

Instructions Conditions
One operand is denormal i Both are denormal Both are normal il
FdTOs always — —
FMUL{s|d}, single precision: Er<-25 always single precision : eres < -25
FNMUL{s|d} double precision: Er <-54 double precision: eres < -54
F{N}M{ADD|SUB}{s|d} | Multiply: Multiply: Multiply:
single precision : Er < -25 always single precision : eres < -25
double precision: Er <-54 double precision: eres < -54
Add:
Add: never Add:
F[rs3] is normal (not infinity, single precision : eres < -25
NaN), the multiplication double precision: eres < -54
result is denormal, and
single precision : eres < -25
double precision: eres < -54
FDIV{s|d} single precision: Er<-25 never single precision : eres < -25
double precision: Er <-54 double precision: eres < -54
FTRIMADDd Fd[rs2]<63> = 0 and index = 7 |Fd[rs2]<63> =0 and ind | Fd[rs2]<63> = 0 and index = 7 an
and Er <-54 ex=17 d eres < -54

ii Except when both operands are zero, NaN, or infinity.
i And neither operand is NaN or infinity. If both operands are zero, eres is never less than zero.

FTRISMULd

Fd[rs1] is denormal — Fd[rs1] is normal and eres < -54

Conditions for an Overflow Result

SPARC64™ X / SPARC64™ X+ assume the instruction causes an overflow for the
conditions listed in Table 8-4.

Table 8-4 Conditions for an Overflow Result

Instructions Conditions
FDIVs The divisor (rs2) is denormal and Er > 255
FDIVd The divisor (rs2) is denormal and Er > 2047

8.1.2.

Behavior when FSR.ns =1

Compatibility Note In section 8.4 in UA2011, the behavior of some
instructions (for example, FADD, FDIV, and FMUL) is required to follow
IEEE Std. 754 at all times regardless of the value of FSR.ns. However, in
SPARC64™ X / SPARC64™ X+, the behavior of all floating-point
instructions is changed according to the value of FSR.ns (refer to page 27).

When FSR.ns = 1 (nonstandard mode), SPARC64™ X / SPARC64™ X+ replace all denormal
source operands and denormal results with zeroes. This behavior is described below in
greater detail:

e When one operand is denormal and none of the operands is zero, infinity, or NaN, the
denormal operand is replaced with a zero of the same sign, and the operation is
performed. After the operation, cexc.nxc is set to 1 unless one of the following
conditions occurs; in which case, cexc.nxc = 0.

e A division_by_zero or an invalid_operation is detected for FDIV{s|d}.
e An invalid_operation is detected for FSQRT{s|d}.
e The operation is FRCPA{s|d} or FRSQRTA{s|d}.

When cexc.nxc = 1 and tem.nxm = 1 in FSR, an fp_exception_ieee_754
exception occurs.

e When the result before rounding is denormal, the result is replaced with a zero of the
same sign. If tem.ufm = 1 in FSR, then cexc.ufc = 1; if tem.ufm = 0 and tem.nxm = 1,
then cexc.nxc = 1. In both cases, an fp_exception_ieee_754 exception occurs.
When tem.ufm = 0 and tem.nxm = 0, both cexc.ufc and cexc.nxc are set to 1.

When FSR.ns = 1, SPARC64™ X / SPARC64™ X+ do not generate unfinished_FPop
exceptions and do not return denormal numbers as results.

Table 8-5 summarizes the exceptions generated by the floating-point arithmetic
instructionsi” listed in Table 8-2. All possible exceptions and masked exceptions are listed in
the "Result" column. The generated exception depends on the value of FSR.ns, the source
operand type, the result type, and the value of FSR.tem; it can be found by tracing the

v rs2 for FTRISMULA is not a floating-point number and cannot be denormal.

268 Ver 29.0 Jan. 2015

conditions from left to right. If FSR.ns = 1 and the source operands are denormal, refer to
Table 8-6. In Table 8-5, the shaded areas in the “Result” column conform to IEEE754-1985.

Note In Table 8-5 and Table 8-6, lowercase exceptional conditions (nx, uf,
of, dv, nv) do not signal IEEE 754 exceptions. Uppercase exceptional
conditions (NX, UF, OF, DZ, NV) do signal IEEE 754 exceptions.

Table 8-5 Floating-Point Exceptional Conditions and Results

FSR.ns Source Result Zero Overflow |UFM OFM NXM Result
Denormal | Denormal |Result Result
v vi

0 No Yes Yes — 1 — — UF

0 — 1 NX

0 uf + nx, a signed
zero, or a signed
DminVit

No — 1 — — UF

0 B - unfinished FPopViil

No — — — — — Conforms to
IEEE754-1985

Yes — Yes — 1 — — UF

0 — 1 NX

0 uf + nx, a signed
zero, or a signed
Dmin

No Yes — 1 — OF

— 0 1 NX

0 of + nx, a signed
infinity, or a signed
Nmaxix

No — — — unfinished_FPop

1 No Yes — — 1 — — UF

0 — 1 NX

0 uf + nx, a signed
Zero

No — — — — — Conforms to
IEEE754-1985

Yes — — — — — — Table 8-6

Table 8-6 describes SPARC64™ X behavior when FSR.ns = 1 (nonstandard mode). Shaded

v One operand is denormal, and the other operands are normal (not zero, infinity, NaN) or denormal.

vi The result before rounding is denormal.

vii Dmin = denormalized minimum.

viii If the instruction is FADD{s|d} or FSUB{s]d} and the source operands are zero and denormal, SPARC64 X / SPARC64
X+ does not generate an unfinished_FPop; instead, the operation is performed conformant to IEEE754-1985.

x Nmax = normalized maximum.

areas in the “Result” column conform to IEEE754-1985.

Table 8-6 Operations with Denormal Source Operands when FSR.ns =1

Instructions Source Operands FSR.tem Result
opl op2 op3 UFM NXM DVM NVM
FsTOd — Denorm |— — 1 — — NX
0 — — nx, a signed
Zero
FdTOs — Denorm — 1 — — — UF
0 1 — — NX
0 — — uf + nx, a
signed zero
FADD{s|d}, Denorm Normal — — 1 — — NX
FSUB{s|d}, 0 — — 5
FNADD{s|d}, X, op
FNSUB{s|d} Normal Denorm — 1 — — NX
0 — — nx, opl
Denorm Denorm — 1 — — NX
0 — — nx,a signed
Zero
FMUL{s|d}, Denorm — — — 1 — — NX
FsMUL, 0 — — —
FNMUL{s|d}, nX.a s1gne
FNsMULd zero
— Denorm — 1 — — NX
0 — — nx,a signed
Zero
FDIV{s|d} Denorm | Normal — — 1 — — NX
0 — — nx,a signed
Zero
Normal Denorm — — 1 — DZ
0 — dz, a signed
infinity
Denorm Denorm — — — 1 NV
0 nv, dNaNx
FSQRT{s|d} — Denorm — — 1 — — NX
and
op2>0 0 — — nx, zero
Denorm — — — 1 NV
and
op2<0 0 nv, dNaNx
FMADD{s|d}, |Denorm — Normal — 1 — — NX
FMSUB{s|d}, 0 — — 3
FNMADD{s|d}, nx, op
FNMSUB{S I d}, Denorm — 1 — _ NX

x A single-precision dNaN is 7TFFFFFFF6, and a double-precision dNaN is 7FFFFFFFFFFFFFFF 6.

270 Ver 29.0 Jan. 2015

FTRIMADDdXi

nx,a signed
Zero

Denorm

Normal

NX

nx, op3

Denorm

NX

nx,a signed
Zero

Normal

Normal

Denorm

NX

nx,
opl X op2xil

FTRISMULd

Denorm

NX

nx, zero
whose sign
bit is
op2<0>

FRCPA{s|d}

Denorm

DZ

dz, a signed
infinity

FRSQRTA{s|d}

Denorm

Dz

dz, a signed
infinity

xi op3 is obtained from a table in the functional unit and is always normal.
xii When op1l X op2 is denormal, op1 X op2 becomes a zero with the same sign.

9. Memory Models

Refer to Chapter 9 in UA2011.

272 Ver 29.0 Jan. 2015

10. Address Space Identifiers

Refer to Chapter 10 in UA2011.

10.3. ASI Assignment

10.3.1. Supported ASlIs

ASIs supported on SPARC64™ X / SPARC64™ X+ are listed in Table 10-2. The notation for
the Type and Sharing columns in Table 10-2 are described in Table 10-1.

Table 10-1 Notation used in Table 10-2

Column Symbol | Meaning
Type Trans. The translation mode is determined by the privilege level and MMU settings.
Real Address is treated as a real address (RA).

non-T Not translated by MMU. VA watchpoint not detected.

Sharing (non-T only) | Chip Register is shared by the entire CPU chip.

Core Register is shared by VCPUs in the same core.
VCPU | Each VCPU has its own copy of the register.

Table 10-2 ASI list

ASI VA ASTI name Access Type Sharing | Page

8016 _ ASI_PRIMARY(ASI_P) RW Trans. |—

8116 _ AS1_SECONDARY (ASI_S) RW Trans. |—

8216 _ ASI_PRIMARY_NO_FAULT(ASI_PNF) RO Trans. |—

8316 i ASI_SECONDARY_NO_FAULT(ASI_SNF) RO Trans. |—

8416 — — — — — —

8716

8816 _ ASI_PRIMARY_LITTLE(ASI_PL) RW Trans. |—

8916 _ AS1_SECONDARY_LITTLE(ASI_SL) RW Trans. |—

8Aq6 _ ASI_PRIMARY_NO_FAULT_LITTLE(ASI_PNFL) [RO Trans. |—

8B16 _ AS1_SECONDARY_NO_FAULT_LITTLE(ASI_SNF [RO Trans. |—

L

8Ci6 — — _ _ _

BFis

CO016 i ASI_PST8_PRIMARY(ASI_PST8 P) WO Trans. |— 1717,
276

Clie _ AS1_PST8_SECONDARY(ASI_PST8_S) WO Trans. |— 177,
276

ASI VA AST name Access Type Sharing | Page
216 _ AS1_PST16_PRIMARY(ASI_PST16_P) WO Trans. |— 177,
276
CS316 i ASI_PST16_SECONDARY(ASI_PST16_5S) WO Trans. |— 1717,
276
Cdye _ ASI_PST32_PRIMARY(ASI_PST32_P) WO Trans. |— 177,
276
CB16 _ ASI_PST32_SECONDARY(ASI_PST32_S) WO Trans. |— 177,
276
C616 — — - - —
CT16
C816 i ASI_PST8 PRIMARY_LITTLE(ASI_PST8 PL) |WO Trans. |— 1717,
276
956 _ AS1_PST8_SECONDARY_LITTLE(ASI_PST8_SL | WO Trans. |— 177,
) 276
CAis — ASI_PST16_PRIMARY_LITTLE(ASI_PST16_PL | WO Trans. |— 1717,
) 276
CBis — ASI_PST16_SECONDARY_LITTLE(ASI_PST16_ | WO Trans. |— 1717,
sL) 276
CCie _ AS1_PST32_PRIMARY_LITTLE(ASI_PST32_PL | WO Trans. |— 177,
) 276
(D16 _ AS1_PST32_SECONDARY_LITTLE(ASI_PST32_ | WO Trans. |— 177,
SL) 276
CEw - |— — — - -
CFis
D016 — ASI_FL8 PRIMARY(ASI_FL8_P) RW Trans. |— 132,
178,
276
Dl _ AS1_FL8_SECONDARY(ASI_FL8_S) RW Trans. |— 132,
178,
276
D216 _ AS1_FL16_PRIMARY(ASI_FL16_P) RW Trans. |— 132,
178,
276
D316 — ASI_FL16_SECONDARY(ASI_FL16_S) RW Trans. |— 132,
178,
276
D416 _ — — — - -
CT16
D86 i ASI_FL8 PRIMARY_LITTLE(ASI_FL8 PL) RW Trans. |— 132,
178,
276
D96 _ ASI_FL8 SECONDARY_LITTLE(ASI_FL8 SL) |RW Trans. |— 132,
178,
276
DAis — ASI_FL16_PRIMARY_LITTLE(ASI_FL16_PL) |RW Trans. |— 132,
178,
276
DBus _ AS1_FL16_SECONDARY_LITTLE(ASI_FL16_SL |RW Trans. |— 132,
) 178,
276
DCws - |— — - - —
DFis
E016 — ASI_BLOCK_COMMIT_PRIMARY(ASI_BLK_COMM | WO Trans. |— 167,
IT_P) 276
Elis i ASI_BLOCK_COMMIT_SECONDARY (ASI_BLK CO |WO Trans. |— 167,
MMIT_S) 276

274 Ver 29.0 Jan. 2015

ASI VA AST name Access Type Sharing | Page

E216 i ASI_TWINX_P/AS1_STBI_P RW Trans. |— 138,
166

ES31s i ASI_TWINX_S/AS1_STBI_S RW Trans. |— 138,
166

E616 — — — _ _

E816 — — — — —

E916

EAse _ ASI_TWINX_PL/ASI_STBI_PL RW Trans. |— 138,
166

EBi6 _ ASI_TWINX_SL/ASI_STBI_SL RW Trans. |— 138,
166

ECes_ |— — — — —

EE16

EF16 0016 — |ASI_LBSY, ASI_BST RW non-T |VCPU

3816

FO16 _ AS1_BLOCK_PRIMARY(ASI_BLK_P) RW Trans. |— 124,
167,
276

Filis — ASI_BLOCK_SECONDARY(ASI1_BLK_S) RW Trans. |— 124,
167,
276

F216 _ ASI_XFILL_PRIMARY(ASI_XFILL_P) WO Trans. |— 190

F316 _ AS1_XFILL_SECONDARY(ASI_XFILL_S) WO Trans. |— 190

Fa16 — — — — —

FT716

FS16 _ AS1_BLOCK_PRIMARY LITTLE(ASI BLK_PL) |RW Trans. |— 124,
167,
276

T _ AS1_BLOCK_SECONDARY_LITTLE(ASI_BLK_SL |RW Trans. |— 124,

) 167,

276

FAw - | — — — — —

FFi6

10.3.2. ASI access exceptions

On SPARC64™ X / SPARC64™ X+, some exceptions that occur when an undefined ASI is
specified or the combination of an instruction and an ASI is illegal are different from JPS1
Commonality.

10.3.2.1. lllegal combination of ASI and instruction

Exceptions caused by illegal combinations of ASIs and instructions are explained below in
the order generated. That is, the exceptions are listed by priority from high to low.

1. An illegal_instruction exception may occur for LDBLOCKF, STBLOCKF, and
STPARTIALF. Refer to the definition of each instruction for details. (An
lllegal_instruction exception also occurs for LDTWA, LDTXA, or STTWA when an
odd-numbered register is specified for rd.)

2. The mem_address_not_aligned and *_mem_address_not_aligned exceptions
occur when the access does not meet the alignment requirements for the
instruction.

a) LDBLOCKF and STBLOCKF require 64-byte alignment, and
mem_address_not_aligned occurs when accessing an address that is not

10.3.2.2.

276

3.

64-byte aligned. LDDF_mem_address_not_aligned and
STDF_mem_address_not_aligned are never generated. A
mem_address_not_aligned exception is not generated when the Block Commit
Store ASIs E016, and E116 are specified by LDDFA.)

b) The 16-bit LDSHORTF and STSHORTF instructions (ASIs DO01s, D116, D816, and
D91¢) require 2-byte alignment, and mem_address_not_aligned occurs when
accessing an address that is not 2-byte aligned.
LDDF_mem_address_not_aligned and STDF_mem_address_not_aligned are
never generated.

¢) The 8-bit LDSHORTF and STSHORTF instructions (ASIs D216, D316, DA1s, and
DB16) require 1-byte alignment and do not cause any alignment violations.

d) STPARTIALF requires 8-byte alignment, and mem_address_not_aligned occurs
when accessing an address that 1is not 8-byte aligned.
LDDF_mem_address_not_aligned and STDF_mem_address_not_aligned are
never generated. (A mem_address_not_aligned exception is not generated when
the Partial Store ASIs C016 — C516, C816 — CD16 are specified by LDDFA.)

e) LDDF_mem_address_not_aligned and STDF_mem_address_not_aligned
exceptions are generated when an ASI other than the instructions listed above
is specified by LDDFA and STDFA, respectively, and the target address is 4-byte
aligned but not 8-byte aligned.

f) A mem_address_not_aligned exception is generated if there is an alignment
violation other than those described above.
A DAE_invalid_asi exception is generated when the combination of the ASI and
the instruction is invalid. (DAE_invalid_asi is not generated for PREFETCHA,
which is treated as a NOP in this case.)

Undefined ASI space

A privileged_action or DAE_invalid_asi exception is generated when an undefined ASI space
is accessed. The exception that is generated is determined by the ASI number and the
privileged mode at the time of access. Table 10-3 shows these exceptions. A privileged_action
or DAE_invalid_asi exception is not generated when the access is misaligned, even if the ASI
is undefined.

Table 10-3 Exceptions when an undefined ASI space is accessed

ASIT Non-privileged

0016 - 2F16 privileged_action
3016 - TF16 privileged_action
8016 - FF16 DAE_invalid_asi

Ver 29.0 Jan. 2015

11. Performance Instrumentation

11.1. Overview

Performance counters comprise one “Performance Control Register (PCR) (ASR 16)” and
multiple instances of “Performance Instrumentation Counter Register (PIC) (ASR 17)”.

SPARC64™ X / SPARC64™ X+ implement 4 PIC registers, which are selected by PCR.SC
and accessed via ASR 17. Each PIC register contains two counters.

Performance Control Register (PCR) (ASR 16)
[— [toe | — | ovf JovroJulro] — [mne | su [sl [—]sc[ht]ut]st][priv|
63 56 55 48 47 40 39 32 31 30 29 27 26 24 23 16 15 8 7 64 3 2 1 0

Bits Field Access Description

55:48 toe<7:0> RW Controls whether an overflow exception is generated
for performance counters.
A write updates the field and a read returns the
current settings.
If toe<i> is 1 and the counter corresponding to ovf<i>
overflows, ovf<i> = 1 and a pic_overflow exception is
generated.
If toe<i> is 0 and the counter corresponding to ovf<i>
overflows, ovf<i> = 1 but a pic_overflow exception is
not generated.
When ovf<i>= 1 and the value of toe<i> is changed to
1, a pic_overflow exception is not generated.

39:32 ovf<7:0> RW Overflow Clear/Set/Status. A read by RDPCR returns
the overflow status of the counters, and a write by
WRPCR clears or sets the overflow status bits.The
following figure shows the PIC counters
corresponding to the OVF bits.
A write of 0 to an OVF bit clears the overflow status of
the corresponding counter.

|us|L3|u2]|L2|U1|[L1]U0[LO]
76 5 4 3 2 1 0

31 ovro RW Overflow Read-Only. A write to the PCR register with
write data containing a value of ovro = 0 updates the
PCR.oVf field with the OVF write data.

If the write data contains a value of ovro = 1, the OVF
write data is ignored and the PCR.ovf field is not
updated. Reads of the PCR.ovro field return 0.

The PCR.ovro field allows PCR to be updated without
changing the overflow status.

Hardware maintains the most recent state in PCR.ovf
such that a subsequent read of the PCR returns the
current overflow status.

30 ulro RW su/sl Read-Only. A write to the PCR register with
write data containing a value of ulro = 0 updates the
PCR.su and PCR.sl fields with the su/sl write data.
If the write data contains a value of ulro = 1, the su/sl
write data is ignored and the PCR.su and PCR.sl|

fields are not updated. Reads of the PCR.ulro field
return 0.

The PCR.ulro field allows the PIC pair selection field
to be updated without changing the PCR.su and
PCR.sl settings.

26:24 nc RO This read-only field indicates the number of PIC
counter pairs.
23:16 su RW This field selects the event counted by PIC<63:32>.

A write updates the setting, and a read returns the
current setting.

15:8 sl RW This field selects the event counted by PIC<31:0>.
A write updates the setting, and a read returns the
current setting.

6:4 sc RW PIC Pair Selection.
A write updates which PIC counter pair is selected,
and a read returns the current selection.
When a “1” is written to bit<6>, no counter pair is
selected and a subsequent read returns “0”.

3 ht RO If ht = 1, events that occur while in hypervisor mode
are counted.
Writes to this field are ignored.

2 ut RW User Mode.
When PSTATE.priv =0 and ut = 1, events are counted.
1 st RW System Mode.

When PSTATE.priv =1 and st =1, events are counted.
If both PCR.ut and PCR.st are 1, all events are
counted.

If both PCR.ut and PCR.st are 0, counting is disabled.
PCR.ut and PCR.st are global fields; that is, they
apply to all PIC counter pairs.

0 priv RW Privileged.
If PCR.priv = 1, executing a RDPCR, WRPCR, RDPIC, or
WRPIC instruction in non-privileged mode
(PSTATE.priv = 0) causes a privileged_action
exception.
If PCR.priv = 0, a non-privileged (PSTATE.priv = 0)
attempt to update PCR.priv (that is, to write a value of
1) via a WRPCR instruction causes a privileged_action
exception.

Performance Instrumentation Counter (PIC) Register (ASR 17)

| picu | picl |

63 32 31 0
Bits Field Access Description
63:32 picu RW 32-bit counter for the event selected by PCR.su.
31:0 picl RW 32-bit counter for the event selected by PCR.sl.

11.1.1. Sample Pseudo-codes

11.1.1.1. Counter Clear/Set

The counter fields in the PIC registers are read/write fields. Writing zero clears a counter; writing
any other value sets the counter to that value. The following pseudo-code clears all PIC registers
(assuming privileged access).

278 Ver 29.0 Jan. 2015

/* Clear PICs without updating SU/SL values */
pic_init = 0x0;
pcr = rd_pcrQ);

pcr.ulro = 0x1; /* don”t update SU/SL on write */
pcr.ovf = 0x0; /* clear overflow bits */
pcr.ut = 0x0;

pcr.st = 0x0; /* disable counts */

pcr._ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */

for (i=0; i<=pcr.nc; i++) {

/* select the PIC to be written */

pcr.sc = 1i;

wr_pcr(pcr);

wr_pic(pic_init); /* clear counters in PIC[i]

11.1.1.2. Select and Enable Counter Events (SPARC64™ X)

Counter events are selected using the PCR.sc and PCR.su/PCR.sl fields. The following
pseudo-code selects events and enables counters (assuming privileged access).

pcr.ut = 0x0; /* Disable user counts >/

pcr.st = 0x0; /* Disable system counts also */
pcr._ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */
pcr.ulro = 0x0; /> Make SU/SL writeable */
pcr.ovro = 0x1; /* Overflow is read-only */

/* Select events without enabling counters */
for(i=0; i<=pcr.nc; i++) {

pcr.sc = i;

pcr.sl = select an event;

pcr.su = select an event;

wr_pcr(pcr);

/* Start counting */

pcr.ut = Ox1;

pcr.st = 0Ox1;

pcr.ulro = 0x1; /* SU/SL is read-only */
/* Clear overflow bits here if needed */
wr_pcr(pcr);

11.1.1.3. Select and Enable Counter Events (SPARC64™ X+)

Counter events are selected using the PCR.sc and PCR.su/PCR.sl fields. The following
pseudo-code selects events and enables counters (assuming privileged access).

pcr.ut = 0x0; /* Disable user counts */

pcr.st = 0x0; /* Disable system counts also */
pcr_ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */
pcr.ulro = 0x0; /> Make SU/SL writeable */
pcr.ovro = 0x1; /* Overflow is read-only */

/* Select events without enabling counters */
for(i=0; i<=pcr.nc; i++) {

pcr.sc = i;

pcr.sl = select an event;

pcr.su = select an event;
wr_pcr(pcr);

bs
/* Start counting */

pcr.ut = 0Ox1;

pcr.st = 0Ox1;

pcr.ulro = 0x1; /* SU/SL is read-only */
/* Clear overflow bits here if needed */
wr_pcr(pcr);

11.1.1.4. Stop Counter and Read

The following pseudo-code disables counters and reads their values (assuming privileged access).

pcr.ut = 0x0; /* Disable user counts >/
pcr.st = 0x0; /* Disable system counts also */
pcr._ht = 0x0; /* non-hypervisor mode */
pcr.priv = 0x0; /* privileged access */
pcr.ulro = 0x1; /* Make SU/SL read-only */
pcr.ovro = 0x1; /* Overflow is read-only */

for(i=0; i<=pcr.nc; i++) {
pcr.sc = i;
wr_pcr(pcr);
pic = rd_pic(Q);
picl[i] pic.picl;
piculi] pic.picu;

11.2. Description of PA Events

280

The performance counter (PA) events can be divides into the following groups:

1. Instruction and trap statistics
2. MMU and L1 cache events

3. L2 cache events

4. Bus transaction events

There are 2 types of events that can be measured on SPARC64™ X / SPARC64™ X+, standard and
supplemental events.

Standard events on SPARC64™ X / SPARC64™ X+ have been verified for correct behavior; they are
guaranteed to be compatible with future processors.

Supplemental events are primarily intended for debugging the hardware.
a. The behavior of supplemental events may not be fully verified. There is a possibility that some
of these events may not behave as specified in this document.

b. The definition of these events may change without notice. Compatibility with future processors
is not guaranteed.

Table 11-1 shows the PA events defined on SPARC64™ X. Table 11-2 shows the PA events defined
on SPARC64™ X+. Shaded events are supplemental events.

Ver 29.0 Jan. 2015

For details of each event, refer to the descriptions in the following sections.Unless otherwise
indicated, speculative instructions are also counted by PA events.

Table 11-1 PA Events and Encodings (SPARC64™ X)

Encoding Counter
binary. pic u0 | pic 10 pic ul pic 11 | pic u2 pic 12 pic u3 pic 13
0000_0000 cycle_counts
0000_0001 instruction_counts
0000 0010 instruction_ only_this_] single_mode._ gjng]e_mode_ instruction_ Y — cse_priority. wait S —

- flow counts thread active cycle counts instruction coun | flow counts - - - - -
0000_0011 iwr_empty ;Vlsz; window_ w._eu_comp_wait Wv?ﬁ ffnc‘h— cory iwr_empty w._op_stv._wait w_d_move w._Oendop
0000_0100 | Reserved W_op_sty_walt_ W_0p_StV_, W_op_Stv_walt | poserved 7] s e w_cse_window._ w_op_stv._

- nc pend wait_sxmiss SXMISS ex - = - empty sp full walt_ex
0000_0101 op_stv_wait
0000_0110 effective_instruction_counts
0000_0111 SIMD_load_stor | SIMD_floating_ SIMD_fma_ sxarl_ sxar2_ unpack_sxarl unpack_sxar2 Reserved

- e instructions instructions instructions instructions - -

0000_1000 load_store_instructions

0000_1001 branch_instructions

0000_1010 floating_instructions

0000_1011 fma_instructions

0000_1100 prefetch_instructions

0000 1101 Reserved gx_loadT ex_store_ ﬂ_load_A ﬂ_store_. SIMD_ﬂ_load_ SIMD_ﬂ_store_ Reserved

- instructions instructions instructions instructions instructions instructions
0000_1110 Reserved
0000_1111 Reserved
0001_0000 Reserved
0001_0001 Reserved
0001_0010 rsl flush_rs Reserved
0001_0011 liid_use 2iid_use 3iid_use | 4iid_use | Reserved | sync_intlk | regwin_intlk | Reserved
0001_0100 Reserved
0001_0101 Reserved toq_rsbr_phantom Reserved flush_rs Reserved rsl Reserved
0001_0110 trap_all Reserved trap_int_level trap_spill trap_fill trap_trap_inst Reserved Reserved
0001_0111 Reserved Reserved Reserved

nly thi both both t 1t t

0001_1000 ?br)e/;zd Z_ctive t]?regds active t]greé ds empty Reseryed Z%; Sb‘L/igvaas wof gtjfva_zi Z;'m 1SS
0001_1001 Reserved
0001_1010 Reserved Reserved f_;ng]e_sxar_comm Reserved suspend_cycle
0001_1011 rsf_pmmi Reserved g}z_;te\;l_gvalt_ 0iid_use flush_rs Reserved decode_all_intlk
0001_1100 Reserved Reserved Reserved Reserved Reserved Reserved
0001 1101 op_stv._walit_ Reserved op_sﬁv_wait_ op_stv_wait_ cse_window_ op_stv_wait_ both_ threads _ Reserved

- pfp busy ex SXmiss ex nc pend empty sp full pfp busy suspended

282

Ver 29.0 Jan. 2015

cse_window_

branch_comp_

0001_1110 ompty | eu_comp_wait wait ‘ Oendop op_stv_wait_ex | fl_comp_wait lendop 2endop
0001_1111 Reserved 3endop Reserved sleep_cycle op._stv_wait_swpf

0010_0000 | ITLB_write | DTLB_write | uITLB_miss | uDTLB_miss | L1I miss | L1D_miss | L1 wait_all | L1D_wait_all

0010_0001 Reserved

0010_0010 | Reserved

0010_0011 | L1I_thrashing L1D_thrashing Reserved

0010_0100 | swpf success_all swpf_fail_all Reserved | swpf_lbs_hit | Reserved

0010_0101 Reserved

0010_0110 | Reserved

0010_0111 | Reserved

0010_1000 Reserved

0010_1001 | Reserved

0010_1010 Reserved

0010_1011 | Reserved

0010_1100 Reserved

0010_1101 | Reserved

0010_1110 Reserved

0010_1111 | Reserved

0011_0000 Reserved L2_miss dm L2_miss_pf L2_read_dm L2_read_pf L2_wb_dm L2_wb_pf
bi_counts cpi_counts cpb_counts cpd_counts cpu_mem._ cpu_mem._ I0_mem_ IO'_mem_

0011_0001 - - - - read_counts write_counts read_counts write_counts
L2_miss_wait_ L2_miss_wait_ L2_miss_counts_ L2_miss_counts L2_miss_wait_ | L2_miss_wait_ | L2_miss_counts_ L2_miss_counts_

0011 0010 dm_bankO pf_bank0 dm_bankO I_) £ banko dm_bank1 pf_bank1l dm_bank1 pf_bank1
L2_miss_counts_ L2_miss_counts_ L2_miss_wait_ L2_miss_wait_ SZ_mlsS_count SZ_mlss_count L2_miss_wait_ L2_miss_wait_

0011 0011 dm_bank2 pf_bank2 dm_bank2 pf_bank2 dm._bank3 of bank3 dm_bank3 pf_bank3

0011_0100 lost_pf_pfp_full lost_pf_by_abort I10_pst_counts Reserved

0011_0101 | Reserved

0011_0110 | Reserved

0011_0111 | Reserved

0011_1000 Reserved

0011_1001 Reserved

0011_1010 Reserved

0011_1011 | Reserved

0011_1100 | Reserved

0011_1101 | Reserved

0011_1110 Reserved

0011_1111 Reserved

11111111 Disabled (Counter is not incremented)

¢ Encodings not shown are Reserved.

Table 11-2 PA Events and Encodings (SPARC64™ X+)

Encoding Counter
(binary) pic u0 | pic 10 | pic ul pic 11 | pic u2 pic 12 pic u3 pic 13
0000_0000 | cycle_counts
0000_0001 | instruction_counts
0000 0010 instruction_ only._this_) single_mode._ gjng]e_mode_ instruction_ Y — cse_priority._ wait S —

- flow counts thread active cycle counts instruction count | flow counts - - - - -
0000_0011 | iwr_empty ;VI;IL;E; window_ w._eu_comp_wait Wv?ﬁ j_”fncb_comp iwr_empty w._op_stv._wait w_d_move w._Oendop
0000 0100 | Reserved w._op_stv._wait._ W_op_stv._ w_op_stv_ wait_ Reserved 7] o T w_cse_window._ W_op_stv_

- nc_pend wait_sxmiss SXMISS ex - - - empty sp full wait_ex
0000_0101 | op_stv_wait
0000_0110 | effective_instruction_counts
0000_0111 _SIMD_I(_)ad_store_ _SIMD_ﬂ_oating_ _SIMD_fI_na_ sxarl_ sxar2_ unpack_sxarl unpack_sxar2 Reserved

- instructions instructions instructions instructions instructions - -

0000_1000 | load_store_instructions

0000_1001 | branch_instructions

0000_1010 | floating_instructions

0000_1011 | fma_instructions

0000_1100 | prefetch_instructions

0000 1101 | Reserved ex_load_ ex_store_ fl_load_ fl_store_ SIMD_f1 load_ SIMD_f]_store_ Reserved

- instructions instructions instructions instructions instructions instructions
0000_1110 | Reserved
0000_1111 | Reserved
0001_0000 | Reserved
0001_0001 | Reserved
0001_0010 | rsl flush_rs Reserved
0001_0011 | 1iid_use 2iid_use 3iid_use | 4iid_use | Reserved | sync_intlk | regwin_intlk | Reserved
0001_0100 | Reserved
0001_0101 | Reserved toq_rsbr_phantom Reserved flush_rs Reserved rsl Reserved
0001_0110 | trap_all Reserved trap_int_level trap_spill trap_fill | trap_trap_inst Reserved Reserved
0001_0111 | Reserved Reserved Reserved

nly thi both both t 1t t
0001_1000 ?br)e/;zd Z_ctive t]greé ds active t]greé ds _empty eyl Z%; Sb‘;_;;//as wof gtjfva_li Z;-m iss
0001_1001 | Reserved
0001_1010 | Reserved Reserved single_sxar_commi Reserved suspend_cycle
0001_1011 | rsf pmmi Reserved g}z_;te\;l_gvalt_ 0iid_use flush_rs Reserved decode_all_intlk
0001_1100 | Reserved Reserved Reserved Reserved Reserved Reserved
0001 1101 op_stv._walit_ Reserved op_sﬁv_wait_ op_stv_wait_ cse_window_ op_stv_wait_ both_ threads _ Reserved

- pfp busy ex SXmiss ex nc pend empty sp full pfp busy suspended
0001_1110 Sﬁﬁ‘t’cndow_ eu_comp_wait E})Vrgrtlch_comp_ Oendop op_stv_wait_ex fl_comp_wait lendop 2endop
0001_1111 | Reserved 3endop Reserved sleep_cycle op._stv._wait_swpf
0010_0000 | ITLB_write | DTLB_write | uITLB_miss | uDTLB_miss | L1I_miss | L1D_miss | L1 wait_all | L1D_wait_all

284

Ver 29.0 Jan. 2015

0010_0001 | Reserved

0010_0010 | Reserved

0010_0011 | L1I_thrashing L1D_thrashing Reserved

0010_0100 | swpf success_all swpf_fail_all Reserved | swpf_lbs_hit | Reserved

0010_0101 | Reserved

0010_0110 | Reserved

0010_0111 | Reserved

0010_1000 | Reserved

0010_1001 | Reserved

0010_1010 | Reserved

0010_1011 | Reserved

0010_1100 | Reserved

0010_1101 | Reserved

0010_1110 | Reserved

0010_1111 | Reserved

0011_0000 | Reserved L2_miss_dm L2_miss_pf L2_read_dm L2_read_pf L2_wb_dm L2_wb_pf
bi_counts cpi_counts cpb_counts cpd_counts cpu_mem_ cpu_mem_ I0_mem_ IO'_mem_

0011_0001 - - - - read_counts write_counts read_counts write_counts
L2_miss_wait_ L2_miss_wait_ L2_miss_counts_ L2_miss_counts_ L2_miss_wait_ L2_miss_wait_ L2_miss_counts_ L2_miss_counts_

0011_0010 | dm_bankO pf_bank0 dm_bankO0 pf_bank0 dm_bank1 pf_bank1 dm_bank1 pf_bank1
L2_miss_counts_ L2_miss_counts_ L2_miss_wait_ L2_miss_wait_ L2_miss_counts L2_miss_counts L2_miss_wait_ L2_miss_wait_

00110011 dm_bank2 pf_bank2 dm_bank2 pf_bank2 am_bank 3 ; £ banks dm_bank3 pf_bank3

0011_0100 | lost_pf_pfp_full lost_pf_by_abort I10_pst_counts Reserved

0011_0101 | Reserved

0011_0110 | Reserved

0011_0111 | Reserved

0011_1000 | Reserved

0011_1001 | Reserved

0011_1010 | Reserved

0011_1011 | Reserved

0011_1100 | Reserved

0011_1101 | Reserved

0011_1110 | Reserved

0011_1111 | Reserved

1111 1111 | Disabled (Counter is not incremented)

¢ Encodings not shown are Reserved.

11.2.1. Instruction and Trap Statistics
Standard PA Events

1 cycle_counts
Counts the number of cycles that the performance counter is enabled. This counter is
similar to the TICK register but can count user cycles and system cycles separately, based on
the settings of PCR.ut and PCR.st.

2 instruction_counts (Non-Speculative)
Counts the number of committed instructions, including SXAR1 and SXAR2. SPARC64™
X/SPARC64™ X+ commits up to 4 non-SXAR instructions per cycle and up to 2 SXAR
instructions. That is, instruction_counts/cycle_counts can be greater than 4.

3 effective_instruction_counts (Non-Speculative)
Counts the number of committed non-SXAR instructions. Instructions per cycle (IPC) can be
derived from this event and cycle counts.

IPC = effective_instruction_counts | cycle_counts

If effective Instruction_counts and cycle_counts are collected for user or system mode, the
IPC in either user or system mode can be calculated.

4 Joad_store_instructions (Non-Speculative)
Counts the number of committed non-SIMD load/store instructions. Also counts atomic
load-store instructions.

5 branch_instructions (Non-Speculative)
Counts the number of committed branch instructions. Also counts the CALL, JMPL, and

RETURN instructions.

6 floating instructions (Non-Speculative)
Counts the number of committed non-SIMD floating-point instructions. The counted
instructions are FPopl, FPop2, FSELMOV{s|d}, and IMPDEP1 with opf<8:4> = 0A1s, 0B1s,
1616, or 1716.

7 fma_instructions (Non-Speculative)
Counts the number of committed non-SIMD floating-point multiply-and-add instructions.
The counted instructions are FM{ADD | SUB}{s|d}, FNM{ADD|SUB}{s|d}, and FTRIMADDd.
Two operations are executed per instruction; the number of operations is obtained by
multiplying by 2.

8 prefetch_instructions (Non-Speculative)
Counts the number of committed prefetch instructions.

9 SIMD load_store_instructions (Non-Speculative)

Counts the number of committed SIMD load/store instructions.

10 SIMD floating instructions (Non-Speculative)
Counts the number of committed SIMD floating-point instructions. The counted
instructions are the same as floating instructions. Two operations are executed per
instruction; the number of operations is obtained by multiplying by 2.

286 Ver 29.0 Jan. 2015

11 SIMD fma_instructions (Non-Speculative)

Counts the number of committed SIMD floating-point multiply-and-add instructions. The
counted instructions are the same as fina_instructions. Four operations are executed per
instruction; the number of operations is obtained by multiplying by 4.

12 sxarl_instructions (Non-Speculative)
Counts the number of committed SXAR1 instructions.

13 sxar2_instructions (Non-Speculative)
Counts the number of committed SXAR2 instructions.

14 trap_all Non-Speculative)
Counts the occurrences of all trap events. The number of occurrences counted equals the
sum of the occurrences counted by all trap PA events.

16 trap_int level Non-Speculative)

Counts the occurrences of interrupt._level n.

17 trap_spill Non-Speculative)

Counts the occurrences of spill n_normal and spill n_other.

18 trap_fill Non-Speculative)

Counts the occurrences of fill n_normal and fill n_other.

19 trap_trap_inst (Non-Speculative)

Counts the occurrences of trap_instruction.

Supplemental PA Events

23 xma_inst (Non-Speculative)
Counts the number of committed FPMADDX and FPMADDXHI instructions.

24 unpack sxarl (Non-Speculative)

Counts the number of unpacked SXAR1 instructions that are committed.

25 unpack_sxar2 (Non-Speculative)

Counts the number of unpacked SXAR2 instructions that are committed.

26 1nstruction_flow_counts (Non-Speculative)
Counts the number of committed instruction flows. On SPARC64™ X / SPARC64™ X+,
some instructions are processed internally as several separate instructions, called
instruction flows. This event does not count packed SXAR1 and SXAR2 instructions.

27 ex_load_instructions (Non-Speculative)
Counts the number of committed integer-load instructions. Counts the LD(SJU)B{A},
LD(SJU)H{A}, LD(SJU)W{A}, LDD{A}, and LDX{A} instructions.

28 ex_store_instructions (Non-Speculative)
Counts the number of committed integer-store and atomic instructions. Counts the STB{A},
STH{A}, STW{A}, STD{A}, STX{A}, LDSTUB{A}, SWAP{A}, and CAS{X}A instructions.

288

29 f] load instructions (Non-Speculative)

Counts the number of committed non-SIMD floating-point load instructions. Counts the
LDF{A}, LDDF{A}, and LD{X}FSR instructions. This event does not count LDQF{A}

30 f1_store_instructions (Non-Speculative)

31

32

Counts the number of committed non-SIMD floating-point store instructions. Counts the
STF{A}, STDF{A}, STFR, STDFR, and ST{X}FSR instructions. This event does not count
STQF{A}.

SIMD fl load_instructions (Non-Speculative)
Counts the number of committed SIMD floating-point load instructions. Counted
instructions are LDF{A} and LDDF{A}.

SIMD fl store instructions (Non-Speculative)
Counts the number of committed SIMD floating-point store instructions. Counted
instructions are STF{A}, STDF{A}, STFR, and STDFR.

33 1wr_empty

Counts the number of cycles that the IWR (Issue Word Register) is empty. The IWR is a
fourentry register that holds instructions during instruction decode; the IWR may be empty
if an instruction cache miss prevents instruction fetch.

34 rs1 (Non-Speculative)

Counts the number of cycles in which normal execution is halted due to the following:
«a trap or interrupt
«update of privileged registers
«to guarantee memory ordering
«RAS-initiated hardware retry

35 flush_rs (Non-Speculative)

36

37

38

39

40

Counts the number of pipeline flushes due to branch misprediction. Since SPARC64™ X /
SPARC64™ X+ support speculative execution, instructions that should not have been
executed may be in flight. When it is determined that the predicted path is incorrect, these
instructions are cancelled. A pipeline flush occurs at this time.

misprediction rate = flush_rs/ branch_instructions

Oiid _use

Counts the number of cycles where no instruction is issued. SPARC64™ X / SPARC64™ X+
issue up to four non-SXAR instructions per cycle; when no instruction is issued, Oiid_use is
incremented. On SPARC64™ X / SPARC64™ X+, some instructions are processed
internally as several separate instructions, called instruction flows. Each of these
instruction flows is counted. SXAR instructions are also counted.

11id_use
Counts the number of cycles where one instruction is issued.

211d_use
Counts the number of cycles where two instructions are issued.

311d_use
Counts the number of cycles where three instructions are issued.

4iid_use
Counts the number of cycles where four instructions are issued.

Ver 29.0 Jan. 2015

41 sync_intlk

Counts the number of cycles where instruction issue is blocked by a pipeline sync.

42 regwin_intlk

Counts the number of cycles where instruction issue is blocked by a register window switch.

43 decode_all intlk

Counts the number of cycles where instruction issue is blocked by a static interlock
condition at the decode stage. decode_all intlk includes sync_intlk and regwin_intlk; stall
cycles due to dynamic conditions (such as reservation station full) are not counted.

44 rsf pmmi (Non-Speculative)
Counts the number of cycles where mixing single-precision and double-precision
floating-point operations prevents instructions from issuing.

45 toq_rsbr_phantom
Counts the number of instructions that are predicted taken but are not actually branch
instructions. Branch prediction on SPARC64™ X / SPARC64™ X+ is done prior to
instruction decode; in other words, branch prediction occurs regardless of whether the
instruction is actually a branch. Instructions that are not branch instructions may be
incorrectly predicted as taken branches.

46 op_stv_wait (Non-Speculative)
Counts the number of cycles where no instructions are committed because the oldest,
uncommitted instruction is a memory access waiting for data. op_stv_wait does not count
cycles where a store instruction is waiting for data (atomic instructions are counted).

Note that op_stv_wait does not measure the cache-miss latency, since any cycles prior to
becoming the oldest, uncommitted instruction are not included.

47 op_stv_wait_nc_pend (Non-Speculative)

Counts op_stv_wait for non-cacheable accesses.

48 op_stv_wait_ex (Non-Speculative)
Counts op_stv_wait for integer memory access instructions. Does not distinguish between
L1 cache and L2 cache misses.

49 op_stv_wait_sxmiss (Non-Speculative)
Counts op_stv_wait caused by an L.2$ miss. Does not distinguish between integer and
floating-point loads.

50 op_stv_wait_sxmiss_ex (Non-Speculative)
Counts op_stv_wait caused by an integer-load L2$ miss.

51 op_stv_wait_ptp_busy (Non-Speculative)
Counts op_stv_wait caused by a memory access instruction that cannot be executed due to
the lack of an available prefetch port.

52 op_stv_wait_ptp_busy_ex (Non-Speculative)
Counts op_stv_wait caused by an integer memory access instruction that cannot be

executed due to the lack of an available prefetch port.

53 op_stv_wait_swpf (Non-Speculative)

Counts op_stv_wait caused by a prefetch instruction.

54 op_stv_wait_ptp_busy_swpf(Non-Speculative)

290

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Counts op_stv_wait caused by a prefetch instruction that cannot be executed due to the lack
of an available prefetch port.

cse_window_empty_sp_full (Non-Speculative)
Counts the number of cycles where no instructions are committed because the CSE is empty
and the store ports are full.

cse_window_empty (Non-Speculative)
Counts the number of cycles where no instructions are committed because the CSE is empty.

branch_comp_wait (Non-Speculative)

Counts the number of cycles where no instructions are committed and the oldest,
uncommitted instruction is a branch instruction. Measuring branch _comp_wait has a lower
priority than measuring eu_comp wait.

eu_comp_wait (Non-Speculative)

Counts the number of cycles where no instructions are committed and the oldest,
uncommitted instruction is an integer or floating-point instruction. Measuring
eu_comp_wait has a higher priority than measuring branch_comp_wait.

{1 comp_wait (Non-Speculative)
Counts the number of cycles where no instructions are committed and the oldest,
uncommitted instruction is a floating-point instruction.

Oendop (Non-Speculative)
Counts the number of cycles where no instructions are committed. Oendop also counts cycles
where the only instruction that commits is an SXAR instruction.

lendop (Non-Speculative)

Counts the number of cycles where one instruction is committed.

Zendop (Non-Speculative)

Counts the number of cycles where two instructions are committed.

Sendop (Non-Speculative)

Counts the number of cycles where three instructions are committed.

suspend_cycle (Non-Speculative)
Counts the number of cycles where the instruction unit is halted by a SUSPEND or SLEEP
instruction.

sleep_cycle Non-Speculative)

Counts the number of cycles where the instruction unit is halted by a SLEEP instruction

single_sxar_commit (Non-Speculative)
Counts the number of cycles where the only instruction committed is an unpacked SXAR
instruction. These cycles are also counted by Oendop.

d_move_wait (non-speculative)
Counts the number of cycles where no instructions are committed while waiting for the
register window to be updated.

cse_priority_wait
Counts the number of cycles where no instructions are committed because the SMT thread
is waiting for commit priority. On SPARC64™ X / SPARC64™ X+, only one thread can

Ver 29.0 Jan. 2015

69

70

71

72

73

74

75

76

commit instructions in a given cycle, and the priority is switched every cycle as long as the
other thread is active. The event is counted only when there is an instruction ready to be
committed for that thread.

w_cse_window_empty (non-speculative)
Number of cycles where cse_window_empty for the thread that has commit priority.

w_eu_comp_wait (non-speculative)
Number of cycles where eu_comp_wait for the thread that has commit priority.

w_branch_comp_wait (non-speculative)
Number of cycles where branch_comp_warit for the thread that has commit priority.

w_op_stv_wait (non-speculative)
Number of cycles where op_stv_wait for the thread that has commit priority.

w_d_move wait
Number of cycles where d_move_wait for the thread that does not have commit priority.

w_Oendop (non-speculative)
Number of cycles where Oendop for the thread that does not have commit priority.

w_op_stv_wait_nc_pend (non-speculative)
Number of cycles where op_stv_wait_nc_pend for the thread that has commit priority.

w_op_stv_wait_sxmiss (non-speculative)
Number of cycles where op_stv_wait_sxmiss for the thread that has commit priority.

77 w_op_stv_wait_sxmiss_ex (non-speculative)

78

79

80

Number of cycles where op _stv_wait sxmiss ex for the thread that has commit priority.

w_fl_comp_wait (non-speculative)
Number of cycles where fI_comp_wait for the thread that has commit priority.

w_cse_window_empty_sp_full (non-speculative)
Number of cycles where cse_window_empty sp_full for the thread that has commit priority.

w_op_stv_wait_ex (non-speculative)
Number of cycles where op_stv_wait_ex for the thread that has commit priority.

81 only _this thread active

Number of cycles while SMT is enabled where the CSE of this thread is not empty and the
CSE of the other thread is empty.

82 single _mode_cycle_counts

Number of cycles that the thread is active in single-threaded mode (SMT disabled).

82 single_mode_instructions

Number of committed instructions in single-threaded mode (SMT disabled).

84 both threads active

Number of cycles while SMT is enabled where the CSEs of both threads are not empty.

85 both_threads_empty

Number of cycles where SMT is enabled where the CSEs of both threads are empty.

86 both_threads suspended

Number of cycles where both threads in a core are in the suspended state.

11.2.2. MMU and L1 cache Events
Standard PA Events

1 ulTLB miss

Counts the occurrences of instruction uTLB misses.

2 uDTLB miss

Counts the occurrences of data uTLB misses.

3 L1] miss

Counts the occurrences of L1 instruction cache misses.

4 L1D miss

Counts the occurrences of L1 data cache misses.

5 L1I wait_all
Counts the total time spent processing L1 instruction cache misses (i.e., the total miss
latency). On SPARC64™ X / SPARC64™ X+, the L1 cache is a non-blocking cache that can
process multiple cache misses in parallel; L1l wait_all only counts the miss latency for one of
these misses. That is, the overlapped miss latencies are not counted.

6 L1D wait all

Counts the total time spent processing L1 data cache misses (.e., the total miss latency). On
SPARC64™ X / SPARC64™ X+, the L1 cache is a non-blocking cache that can process
multiple cache misses in parallel; L1D_ wait_all only counts the miss latency for one of these
misses. That is, the overlapped miss latencies are not counted.

Supplemental PA Events

7 ITLB write

Counts the number of ITLB writes caused by an instruction fetch ITLB miss.

8 DTLB write
Counts the number of DTLB writes caused by a data access DTLB miss.

9 swpf success_all
Counts the number of prefetch instructions that are not lost in the SU and are sent to the SX.

10 swpf fail_all

Counts the number of prefetch instructions that are lost in the SU.

11 swpf Ibs_hit
Counts the number of prefetch instructions that hit in the L1 cache.
prefetch instructions sent to SU
= swpf success_all + swpf fail all+ swpf Ibs hit

292 Ver 29.0 Jan. 2015

12 L1I thrashing
Counts the occurrences of an L2 read request being issued twice in the period between
acquiring and releasing a store port. When instruction fetch causes an L1 instruction cache
miss, the requested data is updated in the L1I$. This counter is incremented if the updated
data is evicted before it can be read.

13 L1D thrashing
Counts the occurrences of an L2 read request being issued twice in the period between
acquiring and releasing a store port. When a memory access instruction causes an L1 data
cache miss, the requested data is updated in the L1D$. This counter is incremented if the
updated data is evicted before it can be read.

14 L1D miss dm

Counts the occurrences of L1 data cache misses for a load/store instructions.

15 L1D miss pf

Counts the occurrences of L1 data cache misses for a prefetch instructions.

16 L1D miss gpf

Counts the occurrences of L1 data cache misses for hardware prefetch requests.

11.2.3. L2 cache Events

L2 cache events may be due to the actions of a VCPU, I/0 or external requests. Events caused by
VCPUs are counted separately for each VCPU; those caused by I/0 or external requests are
counted for all VCPUs.

Most L2 cache events are categorized as either demand (dm) or prefetch (pf) events, but these
categories do not directly correspond to load/store/atomic and prefetch instructions, for the
following reasons.

= When a load/store instruction cannot be executed due to a lack of resources needed to move
data into the L1 cache, data is first moved into the L2 cache. Once L1 cache resources become
available, the load/store instruction is executed. That is, the request to move data into the L2
cache is processed as a prefetch request.

= The hardware prefetch mechanism generates prefetch requests.

= L1 cache prefetch instructions are processed as demand requests.

Instead, demand and prefetch L2 cache events correspond to the following:

» A demand (dm) request to the L2 cache is an instruction fetch, load/store instruction, or L1
prefetch instruction that successfully acquired the resources needed to access memory.

= A prefetch (pf) request to the L2 cache is an instruction fetch, load/store instruction, or L1
prefetch instruction that could not acquire the resources needed to access memory; L2 prefetch
instructions and hardware prefetch are also considered prefetch requests.

Standard PA Events

1 L2 read dm

Counts the number of L2 cache references by demand requests.
References by external requests are not counted.

2 L2 read pf

Counts the number of L.2 cache references by prefetch requests.

3 L2 miss dm
Counts the number of L.2 cache misses caused by demand requests.
This counter is the sum of the L2 miss counts dm_bank{0,1,2, 3.

4 L2 miss pf
Counts the number of L.2 cache misses caused by prefetch requests.
This counter is the sum of the L2 miss _counts_pf banki0, 1, 2, 5.

5 L2 miss counts dm_bank {0, 1, 2, 3}
Counts the number of L.2 cache misses for each bank caused by demand requests.
When an L2 cache miss causes a prefetch request for an address to be issued and then a
demand request for the same address is issued before the data is returned from memory or an
external CPU, the demand request is not counted in L2 miss counts dm_banki0,1,2,5.

6 L2 miss counts pf bank {0, 1, 2, 3/

Counts the number of L.2 cache misses for each bank caused by prefetch requests.

7 L2 miss wait dm bank {0, 1, 2, 3}
Counts the total time spent processing L2 cache misses for each bank caused by demand
requests (i.e., the total miss latency for each bank). The latency of each memory access
request is counted.
When an L2 cache miss causes prefetch request for an address to be issued and then a
demand request for the same address is issued before the data is returned from memory or an
external CPU, the cycles after the demand request but before the data is received are counted
in L2 miss wait dm bank{0,1,2 3.

8 L2 miss wait pf bank {0, 1, 2, 3}
Counts the total time spent processing L.2 cache misses for each bank caused by prefetch
requests, (i.e., the total miss latency for each bank). The latency of each memory access
request is counted.
The L2 cache miss latency can be derived by summing L2 miss wait *and dividing by the
sum of L2 miss _counts_*,
If individual L2 cache-miss latencies are calculated for pf/dm requests, the value obtained for

the miss latency of dm requests may be higher than expected.

9 L2 wh dm
Counts the occurrences of writeback to memory caused by L2 cache misses for demand
requests.

10 L2 _wb_pf
Counts the occurrences of writeback to memory caused by L2 cache misses for prefetch
requests.

Supplemental PA Events

11 Jost_pf pfp_full

Counts the number of weak prefetch requests lost due to prefetch port full.

12 lost_pf by abort

Counts the number of weak prefetch requests lost due to L2-pipe abort.

294 Ver 29.0 Jan. 2015

11.2.4. Bus Transaction Events

Standard PA Events

1 cpu_mem_read_counts
Counts the number of memory read requests issued by the CPU.
For this event, the same value is counted by all VCPUs.

2 cpu_mem_write_counts
Counts the number of memory write requests issued by the CPU.
For this event, the same value is counted by all VCPUs.

3 10_mem_read_counts
Counts the number of memory read requests issued by I/0.
For this event, the same value is counted by all VCPUs.

4 10_mem_write_counts
Counts the number of memory write requests issued by I/0.
Only IO-FST is counted by this event. IO-PST can be counted using /0_pst_counts.
For this event, the same value is counted by all VCPUs.

5 bi_counts
Counts the number of external cache-invalidate requests received by the CPU chip.
Cache-invalidate requests caused by internal IO-FST/PST requests are also counted by this
event.
These requests do not check the cache data before invalidating.
For this event, the same value is counted by all VCPUs.

6 cpi_counts
Counts the number of external cache-copy-and-invalidate requests received by the CPU chip.
These requests copy updated cache data to memory before invalidating; cache data that is
consistent with memory does not need to be copied and is invalidated.
For this event, the same value is counted by all VCPUs.

7 epb_counts
Counts the number of external cache-copyback requests received by the CPU chip.
These request copy updated cache data to memory.
For this event, the same value is counted by all VCPUs.

8 epd_counts
Counts the number of internal or external IO cache-read requests (DMA read requests)
received by the CPU chip.
For this event, the same value is counted by all VCPUs.

Supplemental PA Events

9 10 _pst_counts
Counts the number of memory write requests (I0O-PST) issued by I/O.

11.3. Cycle Accounting

296

Cycle accounting is a method used for analyzing performance bottlenecks. The total time
(number of CPU cycles) required to execute an instruction sequence can be divided into time
spent in various CPU execution states (executing instructions, waiting for a memory access,
waiting for execution to complete, and so on).

SPARC64™ X / SPARC64™ X+ define a large number of PA events that record detailed
information about CPU execution states, enable efficient analysis of bottlenecks, and are useful
for performance tuning.

In this document, cycle accounting is specifically defined as the analysis of instructions as they
are committed in order. SPARC64™ X / SPARC64™ X+ execute instructions out-of-order and
have multiple execution units; the CPU is generally in a state where executing and waiting
instructions are thoroughly mixed together. One instruction may be waiting for data from
memory, another executing a floating-point multiply, and yet another waiting for confirmation
of the branch direction. Simply analyzing the reasons why individual instructions are waiting is
not useful. Instead, cycle accounting classifies cycles by the number of instructions committed;
when a cycle commits no instructions, the conditions that prevented instructions from
committing are analyzed.

SPARC64™ X / SPARC64™ X+ commits up to 4 instructions per cycle. The more cycles that
commit the maximum number of instructions, the better the execution efficiency. Cycles that do
not commit any instructions have an extremely negative effect on performance, so it is
important to perform a detailed analysis of these cycles. The main causes are:

=« Waiting for a memory access to return data.
= Waiting for instruction execution to complete.
= Instruction fetch is unable to supply the pipeline with instructions.

Table 11-3 highlights some useful PA events and describes how these PA events can be used to
analyze execution efficiency.

Figure 11-1 shows the relationship between the various op_stv_wait_*events. The PA events
marked with a § in the table and in the figure are synthetic events, which are calculated from
other PA events.

op_stv_wait_pfp_busy_swpf
op_stv wait_pfp bu sy_ﬂJr

op_stv_wait_fIJr 1 op_stv_wait_sxhit_fIT op_stv_wait_pfp_busy

op.stv.wait = op_stv_wait_sxmiss_fIJr

op_stv wait_pfp_busy _ex

4

op_stv_wait_ex 1 op_stv_wait_sxhit_exT op_stv_wait_sxmiss

_ | Lop_stv_wait_sxmiss_ex —

Figure 11-1 Breakdown of op_stv._wait

Table 11-3 Useful Performance Events for Cycle Accounting

Instructions Cycles Remarks
Committed
per Cycle
4 cycle_counts N/A (maximum instructions committed)

Ver 29.0 Jan. 2015

- Sendop - Zendop
- lendop - Oendop

eu_comp_wait
+ branch_comp_wait

3 Sendop
2 Zendop
1 lendop
0 Execution: eu_comp_wait

= ex_comp_waiti+ fl_comp_wait

Instruction Fetch:
cse_window_empy

cse_window_empty
= cse_window_empty _sp_full
+ sleep_cycle + misc.t

L1D cache miss:
op_stv_wait

-L2 cache miss (see
below)

L2 cache miss:
op_stv_walt_sxmiss
+ op_stv_wait_nc_pend

Others:

Oendop

- op_stv_wait

- cse_window_empy

- eu_comp_wait

- branch_comp_ wait
-(instruction_flow_counts
- Instruction_counts)

12.

Traps

12.1.

12.5.

Virtual Processor Privilege Modes

When a trap occurs, the privilege level is changed depending on the trap. Refer to Table
12-2 and Table 12-3 for details.

For a VCPU running at a higher privilege level, if the exception would lower the current
privilege level, the trap will be pending until the privilege level is lower than the target
privilege level of the exception. Refer to Section 12.1 in UA2011 for the relationship
between privileged level and TL.

The possible values of the following registers depend on the privilege level. Refer to Section
5.7.7 and Section 5.7.9 in UA2011 respectively for details.
e TL

e GL

Trap list and priorities

Symbol | Description

-X- Trap will not occur in this mode.

P Change to privileged mode.

P(ie) | Change to privileged mode if PSTATE.ie = 1.
H Changes to hyperprivileged mode.

Table 12-2 Trap list, by TT value

TT Trap name Type Priority |Privil | Definition
ege
level
after
the
traps
occur
]
00016 reserved — J— _ _
00616 reserved _ _ _ _
00716 reserved _ _ o
00816 IAE_privilege_violation precise 3.1 H 305
00B16 IAE_unauth_access precise 2.7 H 306

298 Ver 29.0 Jan. 2015

TT Trap name Type Priority | Privil | Definition

ege

level

after

the

traps

occur

s
00C16 IAE_nfo_page precise 3.3 H 305
00D16 reserved — — — _
00E16 reserved — — — _
00F16 reserved _ _ _
01016 illegal_instruction precise 6.2 306
01116 privileged_opcode precise 7 P 308
01216 reserved — — — —
01316 reserved — — — —
01416 DAE _invalid_asi precise 12.1 H 302
01516 DAE_privilege_violation precise 12.5 H 303
01616 DAE_nc_page precise 12.6 H 303
01716 DAE_nfo_page precise 12.7 H 303
01816-01F6 | reserved — — — —
02016 fp_disabled precise 8 P 305
02116 fp_exception_ieee_754 precise 11.1 P 305
02216 fp_exception_other precise 11.1 P 305
02316 tag_overflow precise 14 P 309
02416 clean_window precise 10.1 P 302
02516-02716 | reserved — — — —
02816 division_by_zero precise 15 P 304
02916 reserved — — — —
02C16 reserved —
02D16 reserved _ _ _ _
02E16 reserved _ _ _ _
02F16 reserved — — — _
03016 DAE_side_effect_page precise 12.7 H 304
03316 reserved — — — —
03416 mem_address_not_aligned precise 10.2 H 307
03516 LDDF_mem_address_not_aligned precise 10.1 H 307
03616 STDF_mem_address_not_aligned precise 10.1 H 309
03716 privileged_action precise 11.1 H 308
03816 reserved — — — _
03916 reserved — — — _
03Cis reserved — _ _ _
03D1s reserved _ _ _ _

TT Trap name Type Priority | Privil | Definition

ege

level

after

the

traps

occur

s
04116-04F16 |interrupt_level n (n =1 - 15) disrupting | 39-ni PGe) |307

(interrupt_level_15 same as pic_overflow)
05016-05D16 | reserved — — — i
06116 PA_watchpoint (RA_watchpoint) precise 12.9 H 307
06216 VA_watchpoint precise 11.2 H 310
06516-06716 | reserved — — — —
06916-06B16 | reserved — — — i
06D16-07016 | reserved — — — |—=
07316 illegal_action precise 8.5 306
07416 control_transfer_instruction precise 11.1 P 302
07516 reserved — — — —
07816-07B16 | reserved — — _ _
07Cis cpu_mondo disrupting |16.8 PGe) |302
07D1s dev_mondo disrupting |16.11 PGie) |304
07E16 resumable_error disrupting |33.3 PGie) |308
07F16 nonresumable_error (not generated by — — 307
hardware)
08016-09C16 | spill_n_normal (n=10-7) precise 9 P 309
0A016-0BC16 | spill_n_other m=0-17) precise 9 P 309
0C016-0DCi6 | fill_n_normal m=0-17) precise 9 P 304
0EO16" fill_n_other h=0-"7) precise 9 P 304
0FCis
10016-17F16 | trap_instruction precise 16.2 P 309
Table 12-3 Trap list, by priority

TT Trap name Type Priority |Privil | Definition

ege

level

after

the

trap

occurs
00B16 IAE_unauth_access precise 2.7 H 306
00816 IAE_privilege_violation precise 3.1 H 305
00C16 IAE_nfo_page precise 3.3 H 305
01016 illegal_instruction precise 6.2 H 306
01116 privileged_opcode precise 7 P 308

1 In UA2011, the priorities of interrupt_level_15 and pic_overflow are different. On SPARC64 X/ SPARC64 X+, both have a

priority of 17.

300

Ver 29.0 Jan. 2015

TT Trap name Type Priority |Privil | Definition

ege

level

after

the

trap

occurs
02016 fp_disabled precise 8 P 305
07316 illegal_action precise 8.5 H 306
08016-09C16 | spill_n_normal (n=0-7) precise 9 P 309
0A016-0BC16 | spill_n_other m=0-17) precise 9 P 309
0C016-0DCi6 | fill_n_normal m=0-17) precise 9 P 304
0EO16- fil_n_other n=0-17) precise 9 P 304
0FCis
02416 clean_window precise 10.1 P 302
03516 LDDF_mem_address_not_aligned precise 10.1 H 307
03616 STDF_mem_address_not_aligned precise 10.1 H 309
03416 mem_address_not_aligned precise 10.2 H 307
02116 fp_exception_ieee_754 precise 11.1 p 305
02216 fp_exception_other precise 11.1 P 305
03716 privileged_action precise 11.1 H 308
07416 control_transfer_instruction precise 11.1 P 302
06216 VA_watchpoint precise 11.2 H 310
01416 DAE _invalid_asi precise 12.1 H 302
01516 DAE_privilege_violation precise 12.5 H 303
01616 DAE_nc_page precise 12.6 H 303
01716 DAE_nfo_page precise 12.7 H 303
03016 DAE_side_effect_page precise 12.7 H 304
06116 PA_watchpoint (RA_watchpoint) precise 12.9 H 307
02316 tag_overflow precise 14 p 309
02816 division_by_zero precise 15 p 304
10016-17F16 | trap_instruction precise 16.2 P 309
07C6 cpu_mondo disrupting |16.8 PGe) |302
07D16 dev_mondo disrupting |16.11 PGe) |304
04116-04F16 | interrupt_level n (n =1 - 15) disrupting | g2-pii PGe) |307

(interrupt_level_15 same as pic_overflow)

07E16 resumable_error disrupting |33.3 PGie) |308
07F16 nonresumable_error (not by hardware) — — 307

i In UA2011, the priorities of interrupt_level_15 and pic_overflow are different. On SPARC64 X / SPARC64 X+, both have a

priority of 17.

12.5.1. Trap Descriptions

Refer to Section 12.7 in UA2011.

12.5.1.2. clean_window
TT 02416 — 02716
Priority 10.1

Trap category precise

Privilege level priv
transition

Compatibility Note JPS1 and UA2011 allow hardware to clean the
register windows (Impl. Dep. #102), but SPARC64™ X / SPARC64™
X+ generate the exception so that the windows can be cleaned by

software.
12.5.1.3. control_transfer_instruction
T 07416
Priority 11.1

Trap category precise
Privilege level priv
transition
The control transfer instruction exception occurs in the following conditions.

e Conditional branch instructions (Bicc, BPcc, BPr, FBfcc, FBPfcc, CBcond) that are
taken

e Unconditional branch instructions (BA, BPA, FBA, FBPA)
e CALL, JMPL, RETURN, DONE, and RETRY instructions

e Tcc instructions that are taken
12.5.1.4. cpu_mondo

T 07Ci6
Priority 16.8
Trap category disrupting

Privilege level priv (if PSTATE.ie = 1)
transition

This exception occurs when PSTATE.ie = 1 and the head of the CPU_MONDO queue is not
the same as the tail.

12.5.1.5. DAE_invalid_asi

302 Ver 29.0 Jan. 2015

T 01416
Priority 12.1
Trap category precise

Privilege level hpriv
transition

12.5.1.6. DAE_nc_page

TT 01616
Priority 12.6
Trap category precise

Privilege level hpriv
transition

This exception occurs when a non-cacheable space is accessed by an atomic load-store
instruction, LDTXA, LDBLOCKF, a SIMD load instruction, or a SIMD store instruction.

Compatibility Note STPARTIALF does not generate this exception.

12.5.1.7. DAE_nfo_page

TT 01716
Priority 12.7
Trap category precise

Privilege level hpriv
transition

This exception occurs when a page (TTE.nfo = 1) marked for access only by nonfaulting
loads is accessed by any instruction except the following.

¢ Load instructions that specify ASI_PRIMARY_NO_FAULT{ LITTLE} or
ASI_SECONDARY_NO_FAULT{_ LITTLE}

e PREFETCH and PREFETCHA

In other word, this exception occurs for the following instructions.

e Load instructions that do not specify ASI_PRIMARY_NO_FAULT{ LITTLE} or
AS1_SECONDARY_NO_FAULT{ LITTLE}

e Store and atomic load-store instructions with any ASI
e FLUSH instructions

Note When ASI_PRIMARY_NO_FAULT{ LITTLE} and
ASI_SECONDARY_NO_FAULT{ LITTLE} are specified for store and
atomic load-store instructions, DAE_invalid_asi is generated.

12.5.1.8. DAE_privilege_violation

T 01516
Priority 12.5
Trap category precise

Privilege level hpriv
transition

Note FLUSH and PREFETCH{A} do not generate DAE_privilege_violation.

12.5.1.9. DAE_side effect_page

TT 03016
Priority 12.7
Trap category precise

Privilege level hpriv
transition

12.5.1.16. dev_mondo

T 07D1s
Priority 16.11
Trap category disrupting

Privilege level priv (if PSTATE.ie = 1)
transition

12.5.1.17. division_by zero

T 02816
Priority 15
Trap category precise

Privilege level priv
transition

12.5.1.22. fill_n_normal, fill_n_other

TT 0C016, 0C416, 0C816, 0CC16, 0D016, 0D416, 0D816, 0DCis,
0EO16, 0E416, 0E816, 0EC16, 0F016, 0F416, 0F816, OFCi6
Priority 9

Trap category precise

Privilege level priv
transition

304 Ver 29.0 Jan. 2015

12.5.1.23. fp_disabled

T 02016
Priority 8
Trap category precise

Privilege level priv
transition

12.5.1.24. fp_exception_ieee_ 754

TT 02116
Priority 11.1
Trap category precise

Privilege level priv
transition

Refer to FSR (page 26) regarding the trap enable mask for these exceptions.
12.5.1.25. fp_exception_other

T 02216
Priority 11.1
Trap category precise

Privilege level priv
transition

Refer to Section 8, “IEEE Std. 754-1985 Requirements for SPARC-V9" (page 265).

12.5.1.29. IAE_nfo_page

T 00Ci6
Priority 3.3
Trap category precise

Privilege level hpriv
transition

12.5.1.30. IAE_privilege_violation

T 00816
Priority 3.1
Trap category precise

Privilege level hpriv
transition

If instructions are fetched in non-privileged mode and TL > 0, this exception is generated. In
this case, because the exception is detected independently of the MMU settings, the priority
is different than the value shown in Table 12-2

12.5.1.31. IAE_unauth_access

T 00B16
Priority 2.7
Trap category precise

Privilege level hpriv
transition

12.5.1.32. lllegal_action

TT 07316
Priority 8.5
Trap category precise

Privilege level hpriv
transition

This exception occurs when the instruction is not XAR eligible but XAR.v = 1, or the
instruction is XAR eligible but the XAR settings are not correct. If XAR is set by SXAR, this
exception occurs when the instruction modified by SXAR is executed.

While the illegal_instruction exception has higher priority, in some cases where either
illegal_instruction or illegal_action could be generated, WRASR and FSHIFTORX will generate
an illegal_action exception. Refer to page 189 for details regarding WRASR and pages 252 and
250 for details regarding FSHIFTORX.

12.5.1.33. lllegal_instruction
T 01016
Priority 6.2

Trap category precise

Privilege level hpriv
transition

12.5.1.41. interrupt_level n(n=1-15)

306 Ver 29.0 Jan. 2015

TT 04116 — 04F16
Priority 17-31(32-n)
Trap category disrupting

Privilege level priv (if PSTATE.ie = 1 and PIL < n)
transition

If PIL < 14, setting SOFTINT.sm = 1 or SOFTINT.tm = 1 generates an interrupt_level 14
exception.

interrupt_level_15 has the same priority and trap number as pic_overflow which is generated
when a PA counter overflows.

125.1.43. LDDF_mem_address_not_aligned

T 03516
Priority 10.1
Trap category precise

Privilege level hpriv
transition

This exception occurs when an address accessed by a non-SIMD LDDF or LDDFA is word
aligned but not doubleword aligned.

12.5.1.44. mem_address_not_aligned

T 03416
Priority 10.2
Trap category precise

Privilege level hpriv
transition

12.5.1.45. nonresumable_error

T 07F16
Priority —
Trap category —

Privilege level undetected
transition

12.5.1.47. PIC overflow

T 04F16
Priority 17
Trap category disrupting

Privilege level priv (PSTATE.ie = 1 and PIL < 15)
transition

This exception occurs when a PA counter overflows and the overflow exception is not
masked. The priority and trap number is the same as interrupt_level_15 (page 306) on
SPARC64™ X / SPARC64™ X+.

12.5.1.49. privileged_action

T 03716
Priority 11.1
Trap category precise

Privilege level hpriv
transition

A privileged_action exception is generated for cases where a privilege level violation cannot
be determined solely from the opcode and PSTATE settings. For example,

e An attempt to use an ASI number that is not available at that privilege level.

e An attempt to access registers (such as TICK, STICK, PIC, PCR) that are configured
to prevent non-privileged access.

12.5.1.50. privileged_opcode

TT 01116
Priority 7
Trap category precise

Privilege level priv
transition

A privileged_opcode exception is generated for cases where the privilege level violation
can be determined solely from the opcode and the PSTATE.priv setting. This exception is
also generated if an instruction is executed in non-privileged mode and the executed opcode,
while valid, cannot be executed when TL = 0.

12.5.1.53. resumable_error

TT 07E16
Priority 33.3
Trap category disrupting

Privilege level priv Gif PSTATE.ie = 1)
transition

308 Ver 29.0 Jan. 2015

This exception occurs when PSTATE.ie = 1 and the head of the RESUMABLE_ERROR
queue is not the same as the tail.

12.5.1.56. spill_n_normal, spill_n_other

T

Priority
Trap category

Privilege level
transition

08016, 08416, 08816, 08C16, 09016, 09416, 09816, 09C16
0AO16, 0A416, 0A816, 0AC16, 0A016, 0A416, 0A816, 0AC16

9
precise

priv

12.5.1.57. STDF_mem_address_not_aligned

TT
Priority
Trap category

Privilege level
transition

03616
10.1
precise

hpriv

This exception occurs when an address accessed by a non-SIMD STDF, STDFA, or STDFR is
word aligned but not doubleword aligned.

12.5.1.58. tag_overflow

TT
Priority
Trap category

Privilege level
transition

12.5.1.59. trap_instruction

TT
Priority
Trap category

Privilege level
transition

02316
14
precise

priv

10016 — 17F16
16.2
precise

priv

12.5.1.62. VA_watchpoint

T 06216
Priority 11.2
Trap category precise

Privilege level hpriv
transition

12.5.2. Special cases for priority

When multiple exceptions occur, generally the exception with the highest priority shown in
Table 12-2 is chosen, and a trap is generated for that exception.However, in come special
cases an exception with lower priority can be chosen. These special cases are described
below.

e The priority of illegal_action is 8.5, but in come cases it takes precedence over
illegal_instruction, which has a priority of 6.2. Refer to WRASR (page 189) and to
FSHIFTORX (page 222, 252) for details.

e The privileged_opcode exception, not the illegal_instruction exception, is generated
when an instruction is executed in non-privileged mode and the opcode, while valid,
cannot be executed when TL = 0. Such instructions include DONE, RETRY, RDPR, and

WRPR.

310 Ver 29.0 Jan. 2015

13. Memory Management Unit

This chapter provides information about the SPARC64™ X / SPARC64™ X+ Memory
Management Unit. It describes the internal architecture of the MMU and how to program it.

13.1. Address types

The SPARC64™ X / SPARC64™ X+ MMUs support a 64-bit virtual address (VA) space (no
VA hole) and a 48-bit real address space.

e VA(Virtual Address) Access to a virtual address is protected at the granularity of a
page. A VA is 64 bits, and all 64 bits are available on SPARC64™ X / SPARC64™ X+
(no VA hole). It is identified by a context number.

e RA(Real Address) All 64 bits of an RA are valid for software, but only 48 bits are

valid for hardware.

Refer to Section 14.1 in UA2011 for information on Virtual-to-Real Translation

Table 13-1 SPARC64™ X / SPARC64™ X+ address widths

VA RA
Address width 64 bits 64 bits
Legal address 64 bits (no VA hole) 48 bits
width

13.4. TSB Translation Table Entry (TTE)

A TSB TTE contains the VA to RA translation for a single page mapping.

TTE Tag
| context_id —] va<63:22>
63 48 47 42 41 0
TTE Data
[v]nfo] soft2 | taddr<55:13> lie] e [cplev]plep]w] soft | size |
13121110 98 7 65 43 0

63 62 61

56 55

Table 13-2 TSB TTE

Bit Field Description
Tag 63:48 context_id

Tag 41:0 va<63:22>

Data 63 v

Data 62 nfo

Data 61:56 soft2

Data 55:13 taddr<55:13> Target address (RA).

On SPARC64™ X / SPARC64™ X+, if bits taadr<55:48> are not

zero, an invalid_TSB_entry exception is generated.

Data 12 ie The ie bit in the IMMU is ignored.
Data 11 e
Data 10 cp The cp bit is ignored on SPARC64™ X / SPARC64™ X+.
Data 9 cv The cv bit is ignored on SPARC64™ X / SPARC64™ X+.
Data 8 p
Data 7 ep
Data 6 w
Data 5:4 soft
Data 3:0 size Page size of this entry, encoded as shown in the table below.
Size<3:0> | Page size
0000 8KB
0001 64KB
0010 reserved
0011 4MB
0100 reserved
0101 256MB
0110-1111 | reserved

13.6. Context Registers

312

SPARC64™ X / SPARC64™ X+ support a pair of primary context registers and a pair of
secondary context registers per strand. These context registers are shared by the I- and

D-MMUs. The size of the context ID field is 16 bits. Primary Context 0 and Primary

Context 1 are the primary context registers. There is a hit in the TLB if a TLB entry for a
translating primary ASI matches the context field of either Primary Context O or Primary

Context 1. Secondary Context 0 and Secondary Context 1 are the secondary context

registers. There is a hit in the TLB if a TLB entry for a translating secondary ASI matches

the context field of either Secondary Context 0 or Secondary Context 1.

Compatibility Note In JPS1, a 13-bit context ID and a 51-bit VA are
defined. In UA2011, a 16-bit context ID is defined.

Table 13-3 shows the usage of the context registers for the -kMMU and D-MMU.

Table 13-3 I-MMU and D-MMU Context Register Usage

TL | ASI Instruction |Data
fetch access
0 |— primary primary
AS1_PRIMARY*, ASI_{BLOCK]|PST*|FL*|WRBK|XFILL}_PRIMARY*, N/A primary
AS1_{TWINX|STBI1}_P*, AS1_BLOCK_COMMIT_PRIMARY
ASI1_SECONDARY™>, N/A secondary

AS1_{BLOCK|PST* | FL* |WRBK | XFI1LL}_SECONDARY*,
ASI_{TWINX|STBI}_S*, ASI_BLOCK_COMMIT_SECONDARY

Ver 29.0 Jan. 2015

13.8. Page sizes

SPARC64™ X / SPARC64™ X+ support four page sizes: 8 KB, 64 KB, 4 MB, and 256 MB.

The TLBs can hold translations for all four sizes concurrently.

Table 13-4 Page types supported on SPARC64™ X / SPARC64™ X+

Page type Virtual page number |Offset in page Encoding
8KB page 51 bits 13 bits 0002
64KB page 48 bits 16 bits 0012
4MB page 42 bits 22 bits 011:
256MB page 36 bits 28 bits 1012

14.

Opcode Maps

314

This chapter contains the instruction opcode maps for SPARC64™ X / SPARC64™ X+.

Opcodes marked with an em dash “— are reserved; an attempt to execute a reserved opcode
shall cause an exception (illegal_instruction).

In this chapter, certain opcodes are marked with mnemonic superscripts. These
superscripts and their meanings are defined in Table 7-1 (page 42).

Table 14-1

op<110>

op<1:0>

0

1 2

3

Branches and SETHI | CALL | Arithmetic & Miscellaneous

Refer to Table 14-2 Refer to Table 14-3

Memory access instructions
Refer to Table 14-4

Table 14-2 Branches, SETHI, and SXAR (op<1:0> = 0)
op2<2:0>
0 1 2 3 4 5 6 7
ILLTRAP | BPcc BiccD BPr SETHI, | FBPfcc FBfccP SXAR1,
Refer to|Refer to Refer to NOP Refer to Table | Refer to SXAR2
Table 14-8 Table 14-8 Table 14-9 14-8 Table 14-8

Ver 29.0 Jan. 2015

Table 14-3 Arithmetic & Miscellaneous (op<1:0> = 2)
op3<3:0> op3<5:4>
0 1 2 3
0 ADD ADDcc TADDcc WRYD (rd =0)
WRCCR (rd =2)
WRASI (rd =3
WRFPRS (rd =6)
WRPCRFPcr (rd =16)
WRP I CPrIc (rd =17
WRGSR (rd =19
WRTICK_CMPR? (rd =23)
WRPAUSE* (rd =27
WRXAR (rd =29
WRXASR (rd =30)
1 AND ANDcc TSUBcc
2 OR ORcc TADDccTVD
3 XOR XORcc TSUBCCTVD
4 SUB SUBcc MULSccD FPop1 (Refer to Table 14-5, Table
14-6)
5 ANDN |ANDNcc |SLL (x =0,r =0),SLLX (x =1, r =0), ROLX FPop2 (Refer to Table 14-7)
x=1r=1
6 ORN |ORNcc |SRL (x =0),SRLX (x =1) IMPDEP1 (Refer to Table 14-13)
XNOR | XNORcC |SRA (x =0), SRAX (x =1) IMPDEP2 (Refer to Table 14-16)
ADDC |ADDCcc RDYD (rsl = Ji =0) JMPL
RDCCR (rs1 =2,i =0)
RDASI (rs1 =3,i =0)
RDTICKEer (rsl =4,i =0)
RDPC (rs1 =5,i =0)
RDFPRS (rs1 =6,i =0)
MEMBAR (rs1 =15,rd =0,
i=1
RDPCRP¥cr (rs1 =16,i =0)
RDP 1 CErie (rs1 =17,i =0)
RDGSR (rs1 =19,i =0)
RDSTICK (rsl =24,i =0)
RDXASR (rs1 =30,i =0)
9 MULX |— RETURN
Ase UMULP | uMULccP Tce
Bis SMULD SMULCCD FLUSHW FLUSH
Cis SUBC |SUBCcc |MOvVcc SAVE
Dis UDIVX | SDIVX RESTORE
Ee uD1vD |ub1vec? | POPC (rs1 =0)
Fis spDIVD | sD1VeeD? [MOVR (rsl =0) _

316

Table 14-4 Memory access instructions (op<1:0> = 3)
op3<3:0> op3<5:4>
0 1 2 3
0 LDUW LDuwAPast LDF LDFAPast
1 LDUB LpusaPast LDFSRP (rd=0) |—
LDXFSR (rd=1)
LDXEFSR* (rd = 3)
2 LDUH LDUHAPASI LDQF LDQFAPASI
3 LDTWP (rd even) | LDTWAD:PAST (rd even) | LPPF LDDFAPAst
LDTXA (rd even) LDBLOCKF
LDSHORTF
4 STW STWAPast STF STFAPast
5 STB sTRAPAST STFSRD (rd =0) | —
STXFSR (rd =1)
6 STH STHAPASI STQF STQFAPASI
g STTWP (rd even) | STTWAD:PAS1 (rd even) | STPF STDFAPast
N STBLOCKF
STBI N STPARTIALF
XFILL STSHORTF
XFILLN
8 LDSwW LDSWAPASI - -
9 LDSB LDSBAPASI - -
A16 LDSH LDSHAPASI —_— _—
B16 LDX LDXAPASI - -_—
Cis — — STFR CcASAPAst
Die LDSTUB LDSTUBAPASI PREFETCH PREEETCHAPAS!
E16 STX STXAPASI —_— CASXAPASI
steIN
XFILLN
Fis swapD SwAPAD: Past STDFR —

Ver 29.0 Jan. 2015

Table 14-5 FPop1 (op<1:0> = 2, op3 = 3416) (1/2)
opf<8:4> opf<8:0>
0|1 2 3 4 5 6 7

0016 — | FMOVs FMOvd FMOVQ | — FNEGs | FNEGd | FNEGq

0116 —|— — — — — — —

0216 —|— — — — — — —

0316 —|— — — — — — —

0416 — | FADDs FADDd FADDq | — FSUBs | FSUBd | FSUBq

0516 — | FNADDs* | FNADDd | — — — — —

0616 —|— — — — — — —

0716 —|— — — — — — —

0816 — | FSTOX FATOx |FQTOx |FXTOs | — — —

0916 —|— — — — — — —

0A16 —|— — — — — — —

0B1s —|— — — — — — —

0C16 —|— — — FiTOs | — FdTOs | FqTOs

0D1s — | FsTO1 FdTO1 FqTOi | — — _ _

OEi6 - 1F16 | —|— — — — — — —

Table 14-6 FPop1 (op<1:0> = 2, op3 = 3416) (2/2)

opf<8:4> opf<3:0>

8 9 Ass Bis Cise Die Ei6 Fie

0016 — FABSs FABSd FABSq |— — _ _

0116 — — — — — — — —

0216 — FSQRTs FSQRTd |FSQRTq |— — _ _

0316 — — — — — — — —

0416 _ FMULS FMULd |FMULg | FDIVs |FDIVd |FDIVq

0516 — FNMULs* | FNMULd™ [— — — — —

0616 — FsMULd |— — - = FdMULg |—

0716 — FNsMULdY |— — — — — —

0816 FxTOd | — — — FXTOq | — — —

0916 — — — — — — — —

0Ai6 — — — — — — — —

0Bi6 — — — — — — — —

0Cis FiTOd | FsTOd — FgTOd |[FiTOq|FsTOq|FdTOq |—

0D16 — — — — — — — —

OE16 - 1F16 | — — — — — — — —

Table 14-7 FPop2 (op<1:0> = 2, op3 = 3516)
opf<8:4> opf<3:0>

0|1 2 3 45 6 |7 8Fus

0016 — | FMOVs (fcc0) | FMOVd (fcc0) | FMOVq (fec0) | — | (Reserved variation of FMOVR) —
0116 —|— — — —|— — — —
0216 —|— — — — | FMOVRszill | FMOVRdZii | FMOVRqgZill |—

i jw<13>=0

318

Ver 29.0 Jan. 2015

opf<8:4> opf<3:0>
0316 — — — —|— — —
0416 FMOVs (fccl) | FMOVd (fecl) | FMOVq (fecl) | — | FMOVRSLEZIH | FMOVRALEZ! | FMOVRQLEZil
0516 FCMPs FCMPd FCMPq — | FCMPEsiii ECMPE(iii FCMPEqi
0616 — — — — | FMOVRsLZiil | FMOVRALZl | FMOVRqgLZiil
0716 — — — —|— — —
0816 FMOVs (fcc2) | FMovd (fce2) | FMOVq (fec2) |— | (Reserved variation of FMOVR)
0916 — — — —|— — —
0Ai6 — — — — | FMOVRsNZiii | FMOVRANZiil | FMOVRgNZiil
0B16 — — — —|— — —
0C1s6 FMOVs (fcc3) | FMOVd (fee3) | FMOVq (fee3) | — | FMOVRsGZil | FMOVRAGZiil | FMOVRQGZiil
0D16 — — — —|— — —
0E16 — — — — | FMOVRSGEZiil | FMOVRAGEZiii | FMOVRqGEZiii
0F16 — — — —|— — —
1016 FMOVs (icc) |FMmOvd (icc) |FMOvq (icc) |—|— — —
111671716 — — — —|— — —
1816 FMOVs (xcc) | FMOVd (xcc) | FMOVq (xce) |—|— — —
1916-1F16 — — — —|— — —

Table 14-8 cond<3:0>

cond<3:0> | BPcc | Bice FBPfce |FBfce |Tee

op=0 |op=0 |op=0 |op=0 |[op=2
op2=1|0p2=2|0p2=>5 |op2=6 |op3 =3Ais

016 BPN gD |FBPN |ggD |TN

116 BPE |ggD |FBPNE |geD |TE

26 BPLE | gD |FBPLG |pg gD |TLE

316 BPL gD |FBPUL |g, D |TL

416 BPLEU BLEUD FBPL rLD TLEU

516 BPCS |gegD |FBPUG |pgygD |TCS

616 BPNEG |gyvegD |FBPG | pggD | TNEG

T1e BPVS |gysD |FBPU |gyD |TVS

816 BPA gaD |FBPA | oD [TA

96 BPNE |gyeD |FBPE |pggD |TNE

Ase BPG |ggD |FBPUG |g gD |TG

Bis BPGE |ggeD |FBPGE |pggeD |TGE

Cis BPGU BcuD FBPUGE FBUGED TGU

D16 BPCC |gccD |FBPLE |gg gD |TCC

Eus BPPOS | googD | FBPULE | g gD | TPOS

Fue BPVC |gycD |FBPO |goD |TVC

Table 14-9 rcond<2:0>
rcond<2:0> | BPr CBcond MOVr FMOVr
op=0 op=0 op =2 op =2
op2=3 op2=3 op2 = 2F16 | op2 = 3516
iw<28>=0|iw<28>=1
0 N N N N
1 BRZ COWXJB{NEJE}* |MOVRZ |FMOVR{sld|q}Z
2 BRLEZ COW|X3B{G|LE} MOVRLEZ |FMOVR{s|d]q}LEZ
3 BRLZ C{WX3B{GE|L}* |MOVRLZ |FMOVR{sld|q}LZ
4 — C{W|X}B{GU|LEU}" |— —
5 BRNZ COW]X3B{CC|CS}* |MOVRNZ |FMOVR{s|d|q}NZ
6 BRGZ C{W|X3}B{POS|NEG}* |MOVRGZ | FMOVR{s|d|q}6Z
7 BRGEZ COWIX3B{VC|vS}* |MOVRGEZ |FMOVR{s|dlq}GEZ
Table 14-10 cc, opf_cc (MOVcc, FMOVcc)
cc2 | ccl | ccO | Condition code used
0 (0 |0 |fccO
0 (0 |1 |fecl
0 |1 |0 |fcc2
0 [1 |1 |[fcc3
1 |0 |0 |icc
1 (0 |1 |—
1 1 |0 |xcc
1 1 1 |—

Table 14-11 cc Fields (FBPfcc, FCMP, FCMPE, FLCMP and FPCMP)

ccl | ccO | Condition code used
0 0 fccO
0 1 fccl
1 0 fcc2
1 1 fcc3

Table 14-12 cc Fields (BPcc and Tcc)

ccl | ccO | Condition code used
0 0 icc

0 1 —

1 0 XcC

1 1 —

Table 14-13 IMPDEP1: VIS instructions (op<1:0> = 2, op3 = 3616) (1/3)

opf<3:0 opf<8:4>

> 0016 0l1s 0216 0316 0416 0516 0616 0716

016 EDGES8 ARRAY8 FPCMPLE16 |— i FPADD16 |FZERO FAND

11 EDGESN — — FMUL8x16 i FPADD16 |FZEROS FANDS
S

opf<3:0 opf<8:4>
216 EDGESL |ARRAY16 FPCMPNEL6 |— FPADDG4+ | FPADD32 | FNOR FXNOR
FPCMPUNE1
6
316 EDGESLN | — — FMUL8x16AU |— FPADD32 | FNORS FXNORS
S
416 EDGE16 |ARRAY32 FPCMPLE32 |— — FPSUB16 | FANDNOT2 |FSRC1
516 EDGE16N | — — FMUL8x16AL |— FPSUB16 |FANDNOT2 |FSRC1S
S S
616 EDGE16L |— FPCMPNE32 |FMUL8SUX16 |ppsyggat | FPSUB32 |FNOT2 FORNOT2
FPCMPUNE3
2
716 EDGE16L |LZD — FMUL8BULX16 | — FPSUB32 | FNOT2S FORNOT2
N S S
816 EDGE32 | ALIGNADDRE |FPCMPGT16 |FMULD8sUx1 |FALIGNDAT |— FANDNOT1 |FSRC2
S 6 A
916 EDGE32N | BMASK — FMULD8uLx1 |— — FANDNOT1 | FSRC2S
6 S
Ass EDGE32L |ALIGNADDRE | FPCMPEQ16 |FPACK32 — — FNOT1 FORNOT1
S FPCMPUEQ1
_LITTLE 6
Bis EDGE32L | — — FPACK16 FPMERGE — FNOT1S FORNOT1
N S
Cis — — FPCMPGT32 |— BSHUFFLE |— FXOR FOR
Dis — — — FPACKFIX FEXPAND — FXORS FORS
Es — — FPCMPEQ32 |PDIST — — FNAND FONE
FPCMPUEQ3
2
Fie _ _ _ _ _ _ FNANDS | FONES

320

Ver 29.0 Jan. 2015

Table 14-14 IMPDEP1: VIS instructions (op<1:0> = 2, op3 = 3616) (2/3)

opf<3:0> opf<8:4>
0816 0916 0A16 0Bi6 0Cis 0D16 0E16 0F16
O16 SHUTDOWN | FAESENCX | FADDtd FADDod FCMPLE16X FCMPLE8SX _ _
FPCMPLE16X™ | FPCMPLESX™
116 SIAM FAESDECX |FSUBtd FSUBod FUCMPLE16X FUCMPLESX — _
FPCMPULE16X* | FPCMPULESX"
%16 FAESENCLX | FMULtd FMULod _ _ — _
316 SLEEP FAESDECLX | FDIVtd FDIVod FUCMPNE16X FUCMPNESX — _
FPCMPUNE16X* | FPCMPUNESX™
drs — FAESKEYX |FCMPtd FCMPod FCMPLE32X FCMPLE64X FPMAX |
FPCMPLE32X™ |FPCMPLE64X*™ |32Xx*
516 SDIAM FPSELMOVS | FCMPEtd | — FUCMPLE32X FUCMPLE64X FPMAX |—
x* FPCMPULE32X* |FPCMPULE64X* |U32x*
616 — FPSELMOV1 | FQUAtd FQUAod _ _ FPMIN |
6Xx*+ 32x*t
T16 — FPSELMOV3 | — FRQUAod FUCMPNE32X FUCMPNE64X FPMIN |
2x+ FPCMPUNE32X* | FPCMPUNE64X* |U32Xx*
816 — FDESENCX |— FXADDodLO |FCMPGT16X FCMPGT8X — _
FPCMPGT16X* | FPCMPGT8X™"
96 PADD32 |FDESPC1X |— FXADDodHI | FUCMPGT16X FUCMPGT8X _ _
FPCMPUGT16X" | FPCMPUGT8X*
A — FDESIPX |— FXMULodLO |— _ — _
Bis — FDESIIPX |— — FUCMPEQ16X FUCMPEQ8X — _
FPCMPUEQ16X* | FPCMPUEQ8X™*
Cus — FDESKEYX |FbuxTotd |— FCMPGT32X FCMPGT64X FPMAX |
FPCMPGT32X™ | FPCMPGT64X*™ | 64X*
Dis — — FtdTObux |— FUCMPGT32X FUCMPGT64X FPMAX |—
FPCMPUGT32X" | FPCMPUGT64X" |U64X*
Eis — — FbsxTOtd |FodTOtd _ _ FPMIN |
64X+
Fis — FPADD128X | FtdTObsx |FtdTOod FUCMPEQ32X FUCMPEQ64X FPMIN |
HIY FPCMPUEQ32X* | FPCMPUEQ64X* |U64X*
Table 14-15 IMPDEP1: VIS instructions (op<1:0> = 2, op3 = 3616 (3/3)
opf<3:0> opf<8:4>
1016 1116 1216 1316 | 1416 | 1516 1616 1716 1816-1F16
O16 — — FPCMPULES* | — |— |— FCMPEQd | FMAXd —
11 _ _ _ — |— |FLcumPs* | FCMPEQs | FMAXs _
216 — — FPCMPUNE8* |— |— |FLCMPd™* | FCMPEQEd | FMIN —
316 _ _ _ S R FCMPEQEs | FMINs _
416 FPCMP64X* |— — — |— = FCMPLEEd | FRCPAd _
516 FPCMPUB4XT |— — — |— |— FCMPLEES | FRCPAs _
616 FPSLL64XtT |— — — = |— FCMPLTEd | FRSQRTAd |—
716 FPSRL64X' |— — — = = FCMPLTEs | FRSQRTAs |
816 — MOVXTOd* | FPCMPUGT8* | — | — |— FCMPNEd | FTRISSELD | —
916 — MOVWTOs* | — — |— |- FCMPNEs | — —
A _ _ FPCMPUEQS" | — | — |— FCMPNEEd | FTRISMULd | —

Bis — — — — FCMPNEES | —
Cie _ _ _ _ FCMPGTEd | FEXPAd
Due _ _ _ _ FCMPGTES | —
Ei1s — — — — FCMPGEEd | —
Fie FPSRAG4AXT |— — — FCMPGEES |

Table 14-16 IMPDEP2

: (0p<1:0> = 2, op3 = 3716)

size var

0 1 2 3
016 | FPMADDX | FPMADDXHI | FTRIMADDd FSELMOVd
1.6 | FMADDs |FMSUBs FNMSUBs FNMADDs
216 | FMADDd | FMSUBd FNMSUBd FNMADDd
36 |— _ FSHIFTORX | FSELMOVs

322 Ver 29.0 Jan. 2015

15.

Assembly Language Syntax

15.1.

15.1.1.

Notation Used

Other Operand Syntax

The syntax for software traps has been changed from JPS1 Commonality. The updated
syntax is shown below.

software_trap_number

15.2.

Can be any of the following:

regrs (equivalent to regrs:+ %g0)
regrs; + simm8

regrs1 — simmé&8

simm8 (equivalent to %g0 + simm8)
simm8+ regrs: (equivalent to regrs: + simmé&)
regrs1+ regrs2

Here, simm&is a signed immediate constant that can be represented in 8 bits. The resulting
operand value (software trap number) must be in the range 0 — 255, inclusive.

HPC-ACE Notation

When an instruction is executed, the value of the XAR register determines whether the
instruction uses any HPC-ACE features. Generally, these features are specified by
combining an arithmetic instruction with SXAR. This section defines the assembly language
syntax for specifying HPC-ACE features.

HPC-ACE extends the instruction definitions to support the use of HPC-ACE floating-point
registers, SIMD execution, and hardware prefetch disable. While the SXAR instructions
fully specify whether these features are used, the following notation is defined to facilitate
easy reading of the assembly language:

(1) SXAR is written as sxarl or sxar2. These instructions have no arguments.

(2) HPC-ACE floating-point registers are specified directly as arguments of the
instruction.

(3) Other HPC-ACE features are specified by appending suffixes to the instruction
mnemonic.

15. Assembly Language Syntax 323

15.2.1.

(4) The HPC-ACE features for a particular instruction are always specified by the closest
preceding SXAR instruction. Another SXAR instruction in a sequence that branches to a
point between an instruction and its corresponding SXAR never specifies features for
that instruction.

An SXAR instruction must be placed 1 or 2 instructions before any instruction that uses the
notation described in items (2) and (3). There are cases where the assembler cannot
automatically determine that an SXAR needs to be inserted for an instruction that uses
HPC-ACE features; thus, SXAR instructions cannot be omitted.

Whether a label can be inserted between an SXAR instruction and the instruction(s) that it
modifies is not defined, as item (4) clearly defines which SXAR instruction specifies the
HPC-ACE feature(s).

Suffixes for HPC-ACE Extensions

A comma (,) is placed after the instruction mnemonic, and the alphanumeric character(s)
that immediately follow the comma specify various HPC-ACE features. These suffixes are
shown in Table 15-1.

Table 15-1 Suffixes for HPC-ACE Extensions

XAR Notation Suffix
XAR.simd s
XAR.dis_hw_pf d
XAR.negate_mul n
XAR.rs1_copy c

Suffixes are not case-sensitive. When two or more suffixes are specified, the suffixes may be
specified in any order.

Example: SIMD instruction, HPC-ACE registers

sxar2
faddd %f0, %f2, %f510 /* HPC-ACE register specified, non-SIMD */
faddd, s %wfo, wf2, %F4 /* SIMD, extended operation uses HPC-ACE

registers */

Example 2: SIMD load
sxarl

ldd,s [%il], %fO

324 Ver 29.0 Jan. 2015

	Index
	Preface
	1. Document Overview
	1.1. Fonts and Notations
	1.1.1. Font
	1.1.2. Notation
	1.1.3. Meaning of reserved and (
	1.1.4. Access attributes
	1.1.5. Informational Notes

	2. Definitions
	3.
Architectural Overview
	4. Data Formats
	4.1. Densely Packed Decimal (DPD) Floating-Point Numbers
	4.1.1. Field
	4.1.2. Combination field (G)
	4.1.3. Trailing significand field (T)
	4.1.4. Cohort
	4.1.5. Normal and denormal DPD floating-point numbers
	4.1.6. Numbers that can be encoded by the DPD format
	4.1.7. Rounding modes

	4.2. Packed BCD (Binary Coded Decimal)
	4.2.1. Fields

	4.3. Oracle floating-point numbers
	4.3.1. Fields
	4.3.2. Sign (S)
	4.3.3. Exponent (exp)
	4.3.4. Mantissa (significand)
	4.3.5. Special values
	4.3.6. Normal and denormal numbers
	4.3.7. Numbers that can be encoded as Oracle floating-point numbers
	4.3.8. Rounding modes
	4.3.9. Extended exponent part (exp10)

	5. Register
	5.1. Reserved Register Fields
	5.2. General-Purpose R Registers
	5.2.1. General-Purpose Integer Registers
	5.2.2. Windowed R Registers
	5.2.3. Special R Registers

	5.3. Floating-Point Registers
	5.3.1. Floating-Point Register Number Encoding
	5.3.2. Using double-precision registers for single-precision operations
	5.3.3. Specifying registers for SIMD instructions

	5.4. Floating-Point State Register (FSR)
	5.5. Ancillary State Registers
	5.5.1. 32-bit Multiply/Divide Register (Y) (ASR 0)
	5.5.2. Integer Condition Codes Register (CCR) (ASR 2)
	5.5.3. Address Space Identifier (ASI) Register (ASR 3)
	5.5.4. Tick (TICK) Register (ASR 4)
	5.5.5.
Program Counters (PC, NPC) (ASR 5)
	5.5.6. Floating-Point Registers State (FPRS) Register (ASR 6)
	5.5.7. Performance Control Register (PCR) (ASR 16)
	5.5.8. Performance Instrumentation Counter (PIC) Register (ASR 17)
	5.5.9. General Status Register (GSR) (ASR 19)
	5.5.11.
System Tick (STICK) Register (ASR 24)
	5.5.13.
Pause Register (PAUSE) (ASR 27)
	5.5.14. Extended Arithmetic Register (XAR) (ASR 29)
	5.5.15.
Extended Arithmetic Register Status Register (XASR) (ASR 30)

	6.
Instruction Set Overview
	6.1. Instruction Execution
	6.2. Instruction Formats
	6.3. Instruction Categories
	6.3.4.3 CALL and JMPL Instructions
	6.3.4.6 Trap Instruction (Tcc)
	6.3.9 Floating-Point Operate (FPop) Instructions
	6.3.11 Reserved Opcodes and Instruction Fields

	7. Instructions
	7.1. ADD
	7.2. Align Address
	7.4.
Three-Dimensional Array Addressing
	7.5. Byte Mask and Shuffle
	7.6. Branch on Integer Condition Codes (Bicc)
	7.7. Branch on Integer Condition Codes with Prediction (BPcc)
	7.8. Branch on Integer Register with Prediction (BPr)
	7.9. Call and Link
	7.10. Compare and Swap
	7.12.
Edge Handling Instructions
	7.13. Edge Handling Instructions (noCC)
	7.14. Convert Integer to Floating-Point
	7.15. Convert Between Floating-Point Formats
	7.16. Convert Floating-Point to Integer
	7.17. Floating-Point Absolute Value
	7.18. Floating-Point Add and Subtract
	7.19. Align Data
	7.20. Branch on Floating-Point Condition Codes (FBfcc)
	7.21. Branch on Floating-Point Condition Code with Prediction (FBPfcc)
	7.22. Floating-Point Compare
	7.23. Floating-Point Conditional Compare to Register
	7.24. SIMD Compare (comforms to UA2011)
	7.25. Floating-Point Divide
	7.26. Floating-Point Exponential Auxiliary
	7.27. FEXPAND
	7.28. Flush Instruction Memory
	7.29. Flush Register Windows
	7.30. Floating-Point Multiply-Add/Subtract
	7.31. Floating-Point Minimum and Maximum
	7.32. Floating-Point Move
	7.33. Move Floating-Point Register on Condition (FMOVcc)
	7.34. Move Floating-Point Register on Integer Register Condition (FMOVR)
	7.35. Partitioned Multiply Instructions
	7.36. Floating-Point Multiply
	7.37. Floating-Point Negative
	7.38. FPACK
	7.39. Fixed-point Partitioned Add
	7.40. Integer Multiply-Add
	7.41. FPMERGE
	7.42. Fixed-point Partitioned Subtract (64-bit)
	7.43. F Register Logical Operate
	7.44. Floating-Point Reciprocal Approximation
	7.45. Move Selected Floating-Point Register on Floating-Point Register's Condition
	7.46. Floating-Point Square Root
	7.47. Floating-Point Trigonometric Functions
	7.48. Illegal Instruction Trap
	7.49. Integer Logical Operation
	7.51.
Jump and Link
	7.52. Load Integer
	7.53. Load Integer from Alternate Space
	7.54. Block Load
	7.55. Load Floating-Point
	7.56. Load Floating-Point from Alternate Space
	7.57. Short Floating-Point Load
	7.58. Load-Store Unsigned Byte
	7.59. Load-Store Unsigned Byte to Alternate Space
	7.60. Load Integer Twin Word
	7.61. Load Integer Twin Word from Alternate Space
	7.62. Load Integer Twin Extended Word from Alternate Space
	7.63. Load Floating-Point State Register
	7.64. Memory Barrier
	7.65. Move Integer Register on Condition (MOVcc)
	7.66. Move Integer Register on Register Condition (MOVr)
	7.67. Multiply Step
	7.68. Multiply and Divide (64-bit)
	7.69. No Operation
	7.72.
Partitioned Add
	7.73. Pixel Component Distance (with Accumulation)
	7.74. Population Count
	7.75. Prefetch
	7.75.1. Prefetch Variants
	7.75.2.
Weak versus Strong Prefetches

	7.76. Read Ancillary State Register (RDASR)
	7.79.
Return
	7.80. SAVE and RESTORE
	7.82.
Signed Divide (64-bit÷32-bit)
	7.83. SETHI
	7.85.
Set Interval Arithmetic Mode
	7.87.
Shift
	7.88. Signed Multiply (32-bit)
	7.89. Sleep
	7.91.
Store Barrier
	7.92. Store Integer
	7.93. Store Integer into Alternate Space
	7.94. Block Initializing Store
	7.95. Block Store
	7.96. Store Floating-Point
	7.97. Store Floating-Point into Alternate Space
	7.98. Store Floating-Point Register on Register Condition (for SPARC64™ X)
	7.99. Store Partial Floating-Point
	7.100. Store Short Floating-Point
	7.101. Store Integer Twin Word
	7.102. Store Integer Twin Word into Alternate Space
	7.103. Store Floating-Point State Register
	7.104. Subtract
	7.105. Swap Register with Memory
	7.106. Set XAR (SXAR)
	7.107. Tagged Add and Subtract
	7.108. Trap on Integer Condition Code (Tcc)
	7.109. Unsigned Divide (64-bit÷32-bit)
	7.110. Unsigned Multiply (32-bit)
	7.111. Write Ancillary State Register (WRASR)
	7.114.
Cache Line Fill with Undetermined Values
	7.115. DES support instructions
	7.116. AES support instructions
	7.117. Decimal Floating-Point Operations
	7.118. Oracle Floating-Point Operations
	7.119. Decimal Floating-Point Compare
	7.120. Oracle Decimal Floating-Point Compare
	7.121. Decimal Floating-Point Convert
	7.122. Shift Mask Or (for SPARC64™ X)
	7.123. SIMD Compare (for SPARC64™ X)
	7.124. Leading Zero Detect
	7.125. Fixed-point Partitioned Add (64-bit)
	7.126. Fixed-point Partitioned Subtract (64-bit)
	7.127. SIMD Unsigned Compare
	7.128. Floating-Point Lexicographic Compare
	7.129. Floating-Point Negative Add
	7.130. Floating-Point Negative Multiply
	7.131. WRPAUSE(PAUSE)
	7.132. Load Entire Floating-Point State Register
	7.133. Compare and Branch (CBcond)
	7.134. Partitioned Move Selected Floating-Point Register on Floating-Point Register’s Condition
	7.135. 64-bit Integer Compare on Floaing-Point Register
	7.136. 64-bit Integer Shift on Floating-Point Register
	7.137. Store Floating-Point Register on Register Condition (Extension of SPARC64™ X+)
	7.138. Shift Mask Or (Extension of SPARC64™ X+)
	7.139. SIMD Compare (Extension of SPARC64™ X+)
	7.140. Fixed-Point Partitioned Add (128-bit)
	7.141. Integer Minimum and Maximum
	7.142. Move Integer Register to Floating-Point Register (for SPARC64™ X+)

	8. IEEE Std. 754-1985 Requirements for SPARC-V9
	8.1. Nonstandard Floating-Point Mode
	8.1.1. fp_exception_other（ftt = unfinished_FPop）
	8.1.2. Behavior when FSR.ns = 1

	9. Memory Models
	10.
Address Space Identifiers
	10.3. ASI Assignment
	10.3.1. Supported ASIs
	10.3.2 . ASI access exceptions
	10.3.2.1. Illegal combination of ASI and instruction
	10.3.2.2 . Undefined ASI space

	11.
Performance Instrumentation
	11.1. Overview
	Sample Pseudo-codes
	11.1.1.1. Counter Clear/Set
	11.1.1.2. Select and Enable Counter Events (SPARC64™ X)
	11.1.1.3. Select and Enable Counter Events (SPARC64™ X+)
	11.1.1.4. Stop Counter and Read

	11.2. Description of PA Events
	11.2.1. Instruction and Trap Statistics
	11.2.2. MMU and L1 cache Events
	11.2.3. L2 cache Events
	11.2.4. Bus Transaction Events

	11.3.
Cycle Accounting

	12.
Traps
	12.1.
Virtual Processor Privilege Modes
	12.5.
Trap list and priorities
	12.5.1.
Trap Descriptions
	12.5.1.41.
interrupt_level_n (n = 1 - 15)

	12.5.2.
Special cases for priority

	13.
Memory Management Unit
	13.1. Address types
	13.4. TSB Translation Table Entry (TTE)
	13.6. Context Registers
	13.8. Page sizes

	14. Opcode Maps
	15. Assembly Language Syntax
	15.1. Notation Used
	15.1.1. Other Operand Syntax

	15.2. HPC-ACE Notation
	15.2.1. Suffixes for HPC-ACE Extensions

