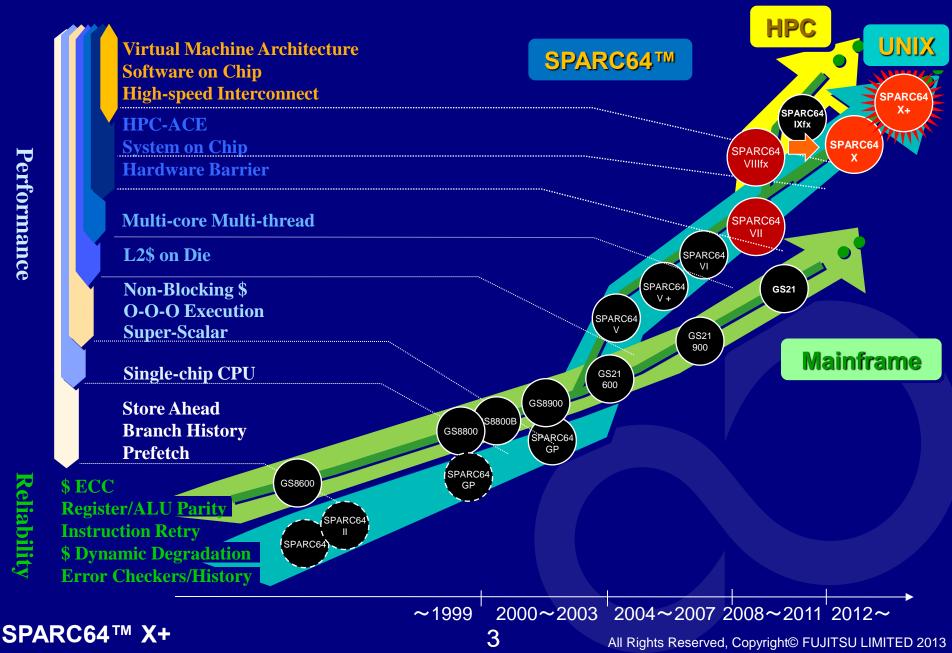
SPARC64[™] X+: Fujitsu's Next Generation Processor for UNIX servers

August 27, 2013

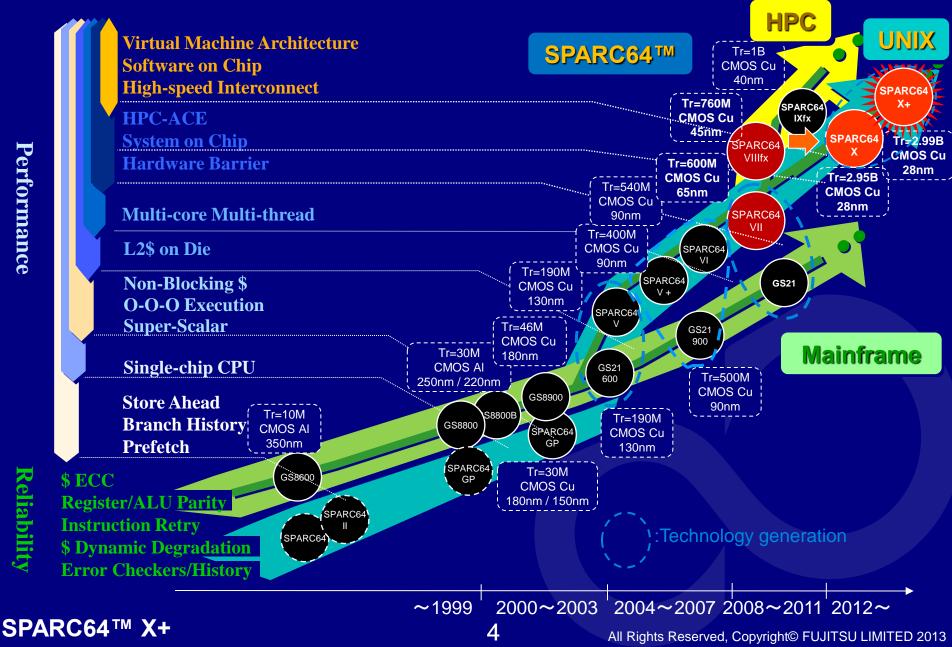
Toshio Yoshida

Processor Development Division Enterprise Server Business Unit Fujitsu Limited

All Rights Reserved, Copyright© FUJITSU LIMITED 2013


Fujitsu Processor Development

◆SPARC64[™] X+


- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

♦ Summary

Fujitsu Processor Development

Fujitsu Processor Development

Fujitsu Processor Development

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

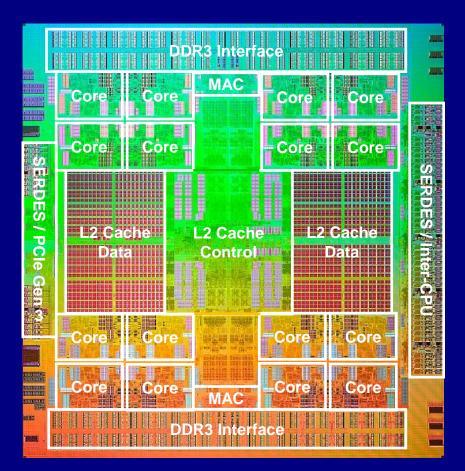
SPARC64™ X+

Design of SPARC64TM X / X+

Combine Fujitsu HPC and UNIX processor features

✓ Single-Thread Performance

- Higher clock speed
- Micro-architectural enhancements
- Directly connected DIMMs


High Throughput for massive data processing

- SIMD parallelism and more registers
- Multi-core and multi-thread
- High bandwidth interconnect and memory links
- Scalability up to 64 sockets (2048 threads)

Software on Chip (SWoC) for specific applications

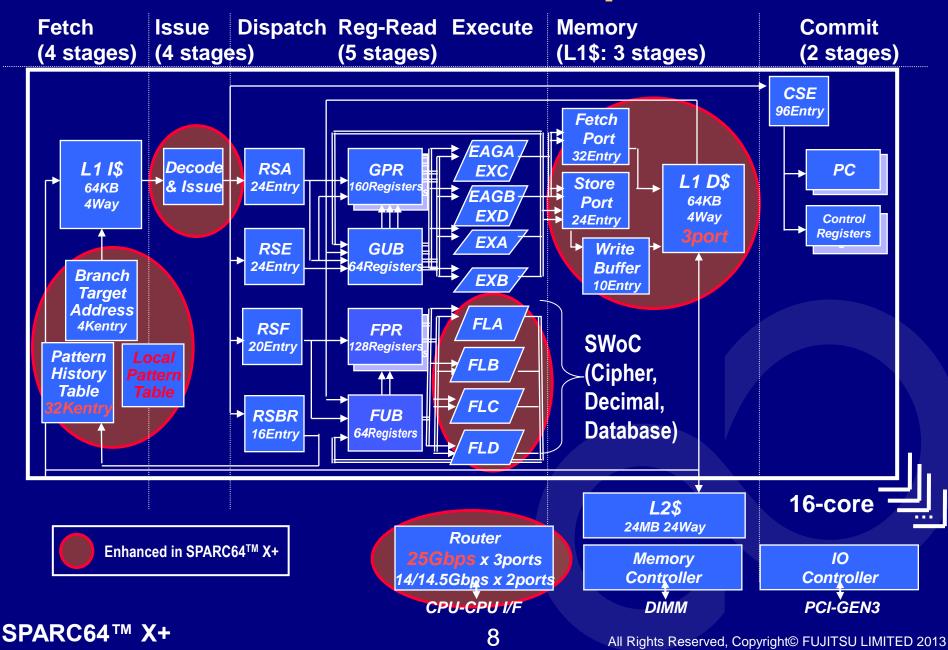
- Cipher, Decimal, Database

SPARC64™ X+ Chip Overview

SPARC64[™] X+

Architecture Features

- 16 cores x 2 SMT threads
- Shared 24 MB L2\$
- Memory and I/O Controllers
- HPC-ACE
- SWoC (Software on Chip)


28nm CMOS

- 24.0mm x 25.0mm
- 2,990M transistors
- 1,500 signal pins
- 3.5GHz+

Performance (peak)

- 448GFlops+
- 102GB/s memory throughput

SPARC64[™] X+ Pipeline

Fujitsu Processor Development

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

♦ Summary

Software on Chip (SWoC)

◆SPARC64[™] X / X+ Software on Chip

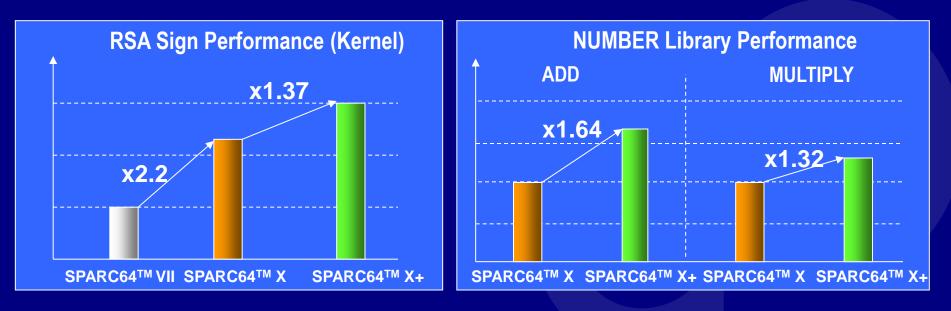
- Cipher
- ✓ Decimal (IEEE754 DPD, NUMBER)
- Database processing

Accelerate specific software functions in hardware

- SWoC engines implemented in floating-point unit can use 128 floating-point registers, software pipelining
- ✓ Area/number of gates < 3% of core and < 1% of chip</p>

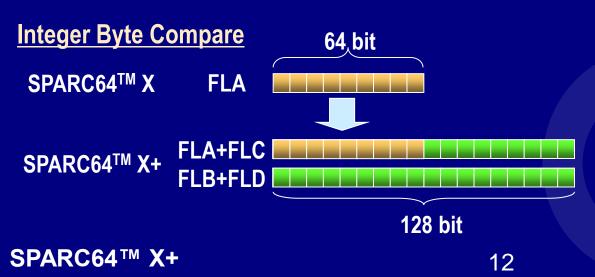
L1\$ L1D\$ Decimal Engine L11\$ L1D\$ Database Engine Instruction Control Execution Unit Cipher Engine

SPARC64[™] X Core

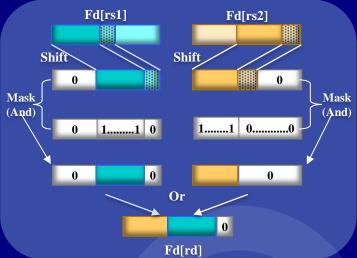

SPARC64[™] X+

All Rights Reserved, Copyright© FUJITSU LIMITED 2013

Cipher and Decimal Performance


Cipher

- AES/DES/SHA/RSA in SPARC64TM X
- RSA further improved in SPARC64TM X+
 - New instruction for RSA sign library
- Decimal
 - SPARC64[™] X+ micro-architectural enhancements speed up several NUMBER libraries


Database Acceleration

- Fine-grained data manipulation
 - Byte vector in SPARC64TM X
 - Bit vector enhanced in SPARC64[™] X+
- Integer Byte Compare
 - Enhanced ISA supports SIMD operation
 - Enhanced core supports instruction in both floating-point pipelines

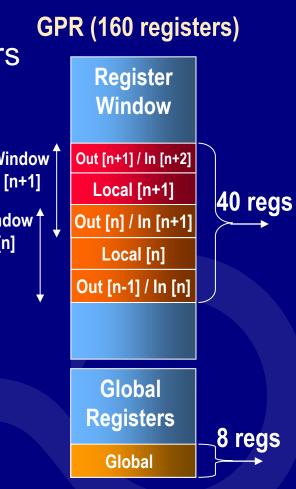
Bit Vector Operations

Shift -> Mask -> Or

Extract 2 bit fields from rs1 -> Logical operation with rs2 Fd[rs1] Fd[rs2] Extract Logical operations Fd[rd]

All Rights Reserved, Copyright© FUJITSU LIMITED 2013

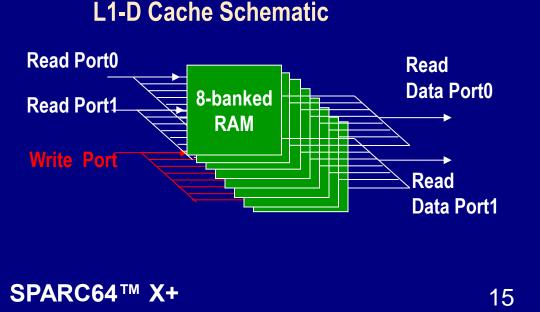
Fujitsu Processor Development

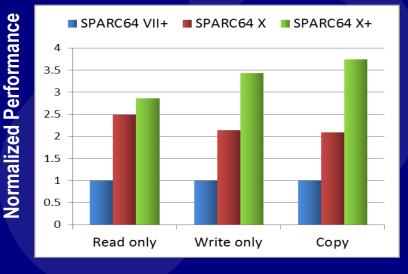

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

♦ Summary

Micro-Architectural Enhancements 1/2


Register window switches • Out-of-order access to 48 integer registers (current & next window) No penalty for all window switches between same two windows Window [n+1] SPARC64[™] X handles only one window switch without penalty Window 1 [n] **Improved Branch prediction** • Rehashed indirect branch predictor Indirect branch with variable target address Local pattern branch predictor More pattern history table entries


Micro-Architectural Enhancements 2/2

L1 data cache

- Dedicated write pipeline
 - 64 RAM banks (8 sets of 8-banked RAMs)
 - One write and two reads each cycle, except when RAM bank conflict occurs
- Faster atomic memory operations
- Increased hardware prefetch throughput

L1-D Cache Throughput

All Rights Reserved, Copyright© FUJITSU LIMITED 2013

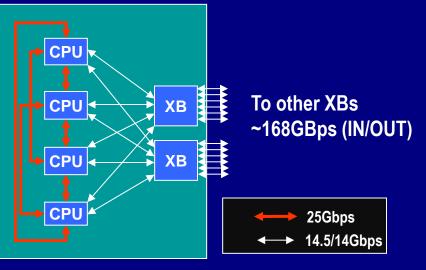
Fujitsu Processor Development

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

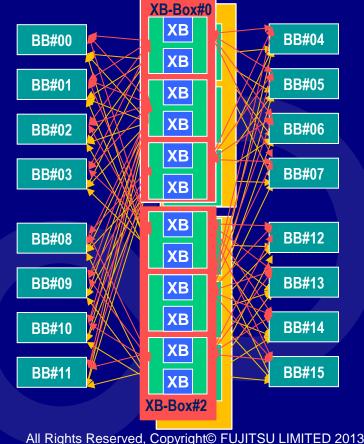
♦ Summary

SPARC64[™] X / X+ System Architecture


Scales from 1 to 64 CPU sockets (2048 threads)

- Directory-based cache coherency
- High-speed interconnect, up to <u>25Gbps</u> per lane in SPARC64[™] X+ (Up to 14.5Gbps in SPARC64[™] X)

System Configuration

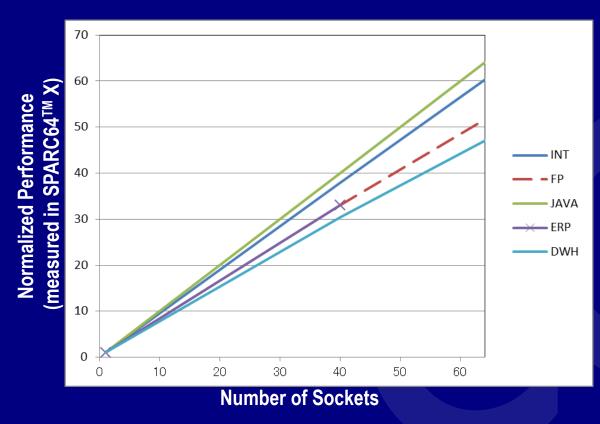

- Building Block (BB) is 4 CPUs and 2 XBs
- Up to 4 BBs can be connected by XBs
- 16BBs can be connected via XB-Boxes

Building Block (4 CPU Sockets)

16 BBs (64 CPU Sockets)

(Each line represents connections between a BB and two XBs in a XB-Box)

SPARC64[™] X+


17

System Scalability

 SPARC64TM X systems demonstrate high scalability across a wide-range of applications

 Integer, Floating-Point, Java, ERP, DWH

SPARC64[™] X efficiently scales to 64 CPU sockets

SPARC64[™] X+

18

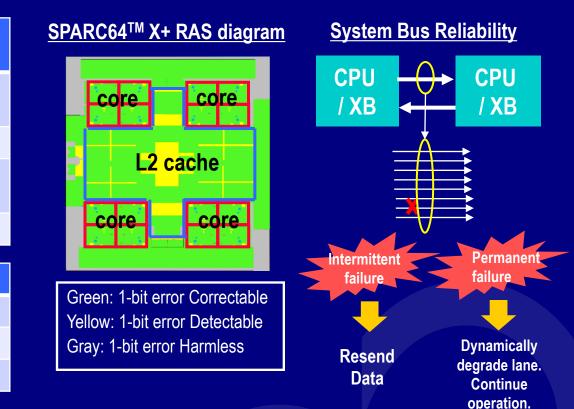
Fujitsu Processor Development

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

♦ Summary

Reliability, Availability, Serviceability


Units	Error Detection and Correction
Cache (Tags)	ECC, Parity & Duplicate
Cache (Data)	ECC, Parity
Registers	ECC (INT/FP), Parity (Others)
ALUs	Parity, Residue

Other RAS features

Cache dynamic degradation

Hardware Instruction Retry

Lane dynamic degradation

◆ Mainframe-level RAS features for SPARC64[™] X / X+

- Number of checkers increased to ~54,000
- System bus mechanisms for self-recovery and lane dynamic degradation

Guarantee Data Integrity and Keep on Running

SPARC64[™] X+

20

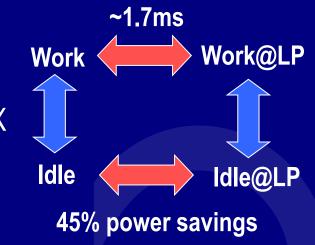
Fujitsu Processor Development

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

♦Summary

Power Management


Save energy while Idle

- CPU Lower Power (LP) State introduced in SPARC64TM X
 - Dynamically decrease frequency and voltage
 - Keep all data and caches coherent
 - State transition managed by software
- ✓ 45% power savings measured in SPARC64[™] X
- \checkmark Transition time between states is ~1.7ms
- ✓ Continue working while in transition
- DIMM power saving mechanism
 - Memory controller supports two lower power states

22

- Power-down
- Self-refresh

Fujitsu Processor Development

◆SPARC64[™] X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

♦ Summary

Summary

 ◆ SPARC64[™] X+ is Fujitsu's latest SPARC processor, designed for Fujitsu's next generation UNIX servers

- ◆ SPARC64[™] X+ realizes improved single-thread performance with a higher clock speed, micro-architectural enhancements, and SWoC
- ◆ SPARC64[™] X / X+ systems realize high scalability, from 1 to 64 CPU sockets (2048 threads)
- ◆ SPARC64TM X+ implements extensive RAS features

◆ Fujitsu will continue to develop the SPARC64[™] series

Abbreviations

• SPARC64[™] X+

- RSA: Reservation Station for Address generation
- RSE: Reservation Station for Execution
- RSF: Reservation Station for Floating-point
- RSBR: Reservation Station for Branch
- GUB: General-purpose Update Buffer
- FUB: Floating-point Update Buffer
- GPR: General-Purpose Register
- FPR: Floating-Point Register
- CSE: Commit Stack Entry
- EAG: Effective Address Generator
- EX : Execution unit (Integer)
- FL : Floating-point unit
- HPC-ACE: High Performance Computing-Arithmetic Computational Extensions
- ERP: Enterprise Resource Planning
- DWH: Data WareHouse