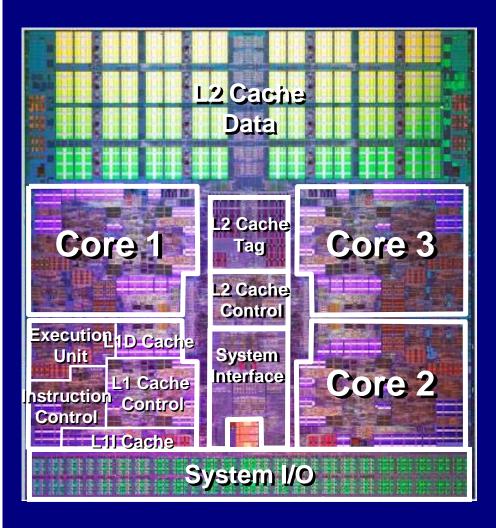
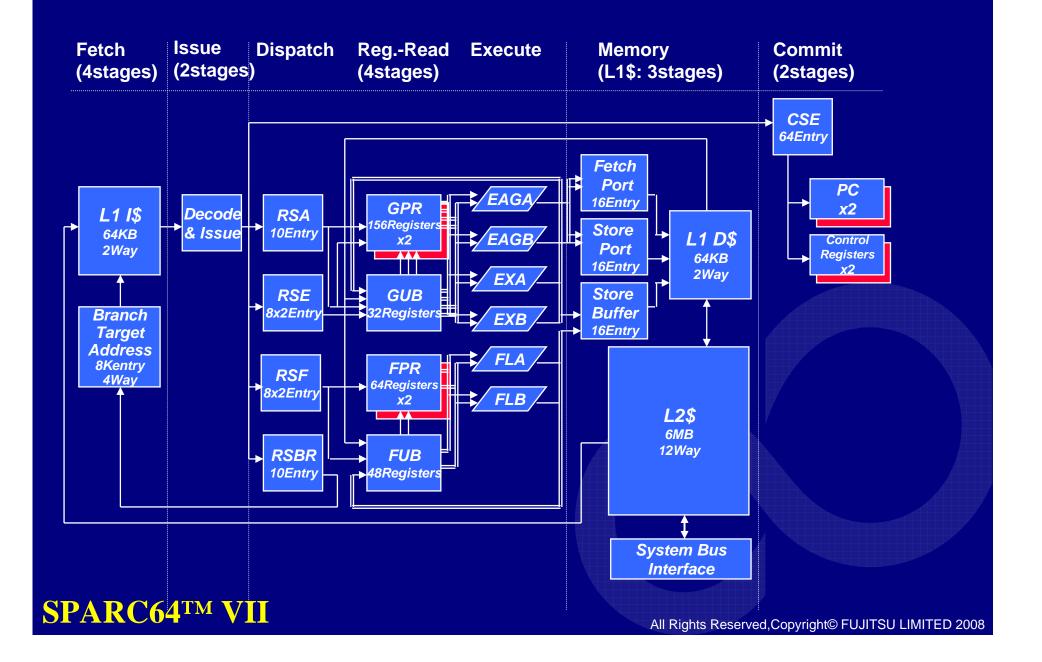

SPARC64[™] VII Fujitsu's Next Generation Quad-Core Processor


August 26, 2008

Takumi Maruyama

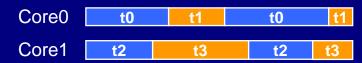
LSI Development Division
Next Generation Technical Computing Unit
Fujitsu Limited

SPARC64TM VII Chip

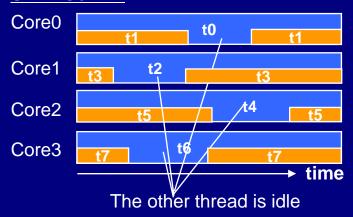

- Architecture Features
 - 4core x 2threads (SMT)
 - Embedded 6MB L2\$
 - 2.5GHz
 - Jupiter Bus
- Fujitsu 65nm CMOS
 - 21.31mm x 20.86mm
 - 600M transistors
 - 456 signal pins
- 135 W (max)
 - 44% power reduction per core from SPARC64TM VI

SPARC64TM VII Design Target

- Upgradeable from current SPARC64[™] VI on SPARC Enterprise Servers
 - → Keep single thread performance & high reliability by reusing SPARC64TM VI core as much as possible
 - Same system I/F: Jupiter-Bus
- More Throughput Performance
 - Dual core to Quad-core
 - → VMT (Vertical Multithreading) to SMT (Simultaneous Multithreading)
- Technical Computing
 - Shared L2\$ & Hardware Barrier
 - Increased Bus frequency (on Fujitsu 'FX1' server)



Pipeline Overview



Simultaneous Multi-Threading

SPARC64 VI

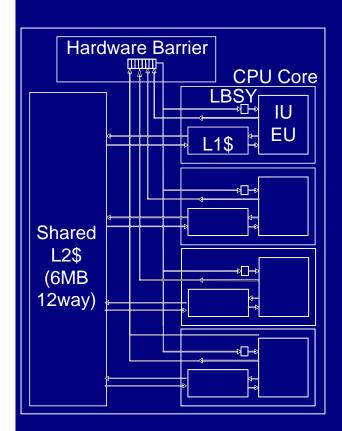
SPARC64 VII

Fine Grain Multi-thread

- Fetch/Issue/Commit stage:
 Alternatively select one of the two thread each cycle
- Execute stage: Select instructions based on oldest-ready independently from threads.

SMT throughput increase

- x 1.2 INT/FP
- x 1.3 Java
- x 1.3 OLTP

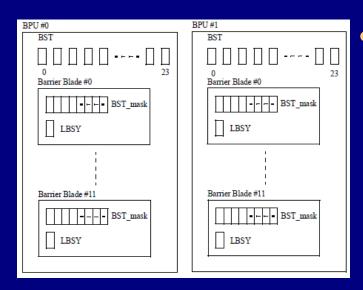

Split HW Queues

#Active threads	IB	Reservation Station.		Rename Registers		Port		CSE
		RSE	RSF	GUB	FUB	FP	SP	
Two	4+4	8x2	8x2	24+24	24+24	8+8	8+8	32+32
One	8	8x2	8x2	48	48	16	8	64

- To avoid interaction between threads.
- Automatically combined if the other thread is idle.

SPARC64TM VII

Integrated Multi-core Parallel Architecture

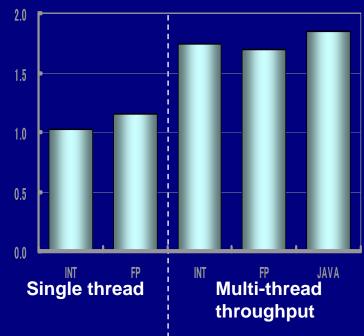



```
DO J=1,N
P DO I=1,M
P A(I,J)=A(I,J+1)*B(I,J)
P END
END
```

- L2 cache
 - Shared by 4 Cores to avoid false-sharing
 - B/W between L2 cache and L1cache (2x of SPARC64TM VI)
 - L2\$→L1\$: 32byte/cycle/2core x 4core
 - L2\$←L1\$: 16byte/cycle/core x 4core
- Hardware Barrier
 - High speed synchronization mechanism between cores in a CPU chip.
 - Reduce overhead for parallel execution
- → Handles the multi-core CPU as one equivalent fast CPU with Compiler Technology (Fujitsu's Parallelnavi Language Package 3.0)
 - Automatic parallelization
 - Optimize the innermost loop

Hardware Barrier

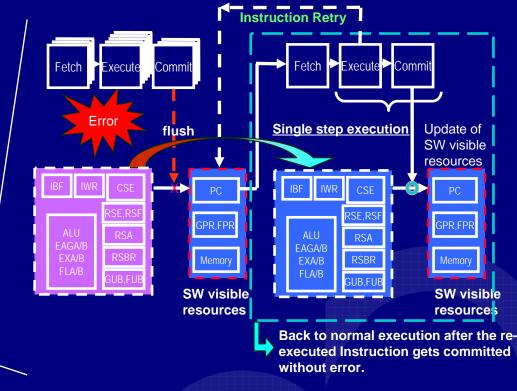
- Barrier resources
 - BST: Barrier STatus
 - BST_mask: Select Bits in BST
 - LBSY: Last Barrier synchronization status
 - Synchronization is established when all BST bits selected by BST_mask are set to the same value.


```
Sample Code of Barrier Synchronization
* %r1: VA of a window ASI, %r2:, %r3: work
ldxa [%r1]ASI_LBSY, %r2
                                     ! read current LBSY
                                     ! inverse LBSY
not %r2
and %r2, 1, %r2
                                     ! mask out reserved bits
                                    ! update BST
stxa %r2, [%r1]ASI BST
membar #storeload! to make sure stxa is complete
ldxa [%r1]ASI_LBSY, %r3
                                     ! read LBSY
and %r3, 1, %r3
                                     ! mask out reserved bits
subcc %r3, %r2, %g0
                                    ! check if status changed
bne,a loop
                  ! if not changed, sleep for a while
sleep
```

- Usage
 - Each core updates BST
 - Wait until LBSY gets flipped
- → Synchronization time: 60ns
 - 10 times faster than SW

Other performance enhancements

SPARC64[™] VII Relative Performance (SPARC64[™] VI=1.0)

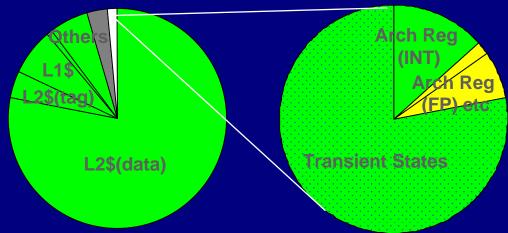


- Faster FMA (Fused Multiply-Add)
 - 7cycles→6cycles
 - DGEMM efficiency: 93% on 4 cores
 - → LINPACK=2,023Gflops with 64CPU
- Prefetch Improvement
 - HW prefetch algorithm further refined
 - SW is now able to specify "strong" prefetch to avoid prefetch lost.
- Shared context
 - Virtual address space shared by two or more processes
 - Effective to save TLB entries
- New Instruction
 - Integer Multiply-Add with FP registers
- etc...
- → Performance relative to SPARC64TM VI
 - Single thread performance: x1.0 x1.2
 - Throughput: x1.7 x1.9

Reliability, Availability, Serviceability

Existing RAS features

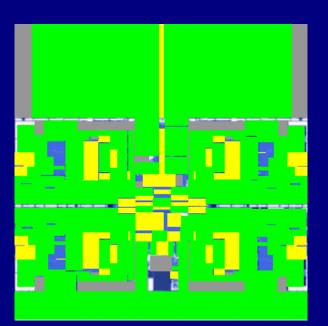
Cache	Tag	ECC (L2\$)		
Protection		Dupicate & Parity (L1\$)		
	Data	ECC (L2\$, L1D\$)		
		Parity (L1I\$)		
Cache		Yes		
Dynamic Deg	gradation	162		
ALU/Registe	r	ECC (INT Regs)		
		Parity (FP Regs, etc)		
HW Instruction	on Retry	Yes		
History		Yes		



- New RAS features of SPARC64™VII
 - Integer registers are ECC protected
 - Number of checkers increased to ~3,400

RAS coverage

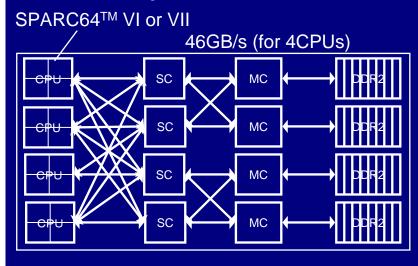
RAM (71.5Mbits)


RF/Latch (0.9Mbits)

Green: 1bit error Correctable Yellow: 1bit error Detectable Gray: 1bit error harmless

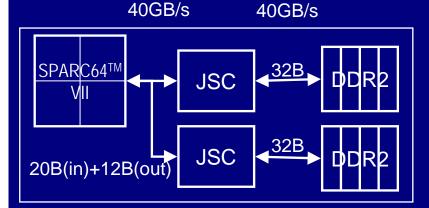
More than 70% of Transient States are 1bit error detectable.

→ Recoverable through HW Instruction Retry



- All RAMs are ECC protected or Duplicated
- Most latches are parity protected
- Guaranteed Data Integrity

SPARC64TM VII


Servers based on SPARC64TM VII

SPARC Enterprise M8000

FX1

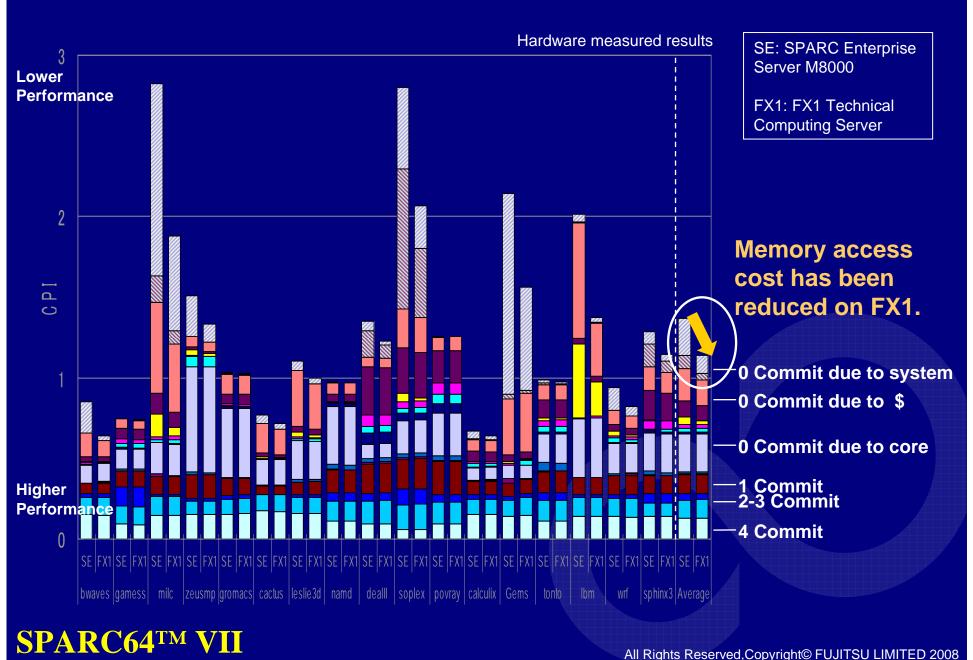
SPARC Enterprise: UNIX

- Max 64CPUs / SMP
- Upgradeable from SPARC64™ VI
- Possible to mix SPARC64TM VI and SPARC64TM VII within the same SB

FX1: Technical Computing

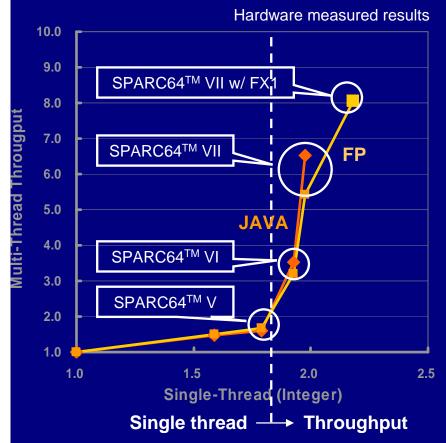
- Single CPU node
- Increased Jupiter Bus freq = 1.26GHz
- System chip is newly designed to realize
 - Higher memory throughput
 - Lower Memory latency
 - Smaller footprint
- Performance
 - FP throughput/socket: x1.5
 - STREAM benchmark: >13.5GB/s

SPARC64TM VII


Performance Analysis

Number	r of instructions and cycles committed	Factors to prevent	actors to prevent the next instruction from committing		
Inst.	Cycle		· · · · · · · · · · · · · · · · · · ·		
4	active_cycle_counts - 3endop - 2endop - 1endop - 0endop	N/A (Up to 4 instructions are committed in a cycle)			
3	3endop	inh_cmit_gpr_2write + misc.			
2	2endop	misc. = 2endop + 3endop - inh_cmit_gpr_2write			
1	1endop	misc. = 1endo	p		
0	0endop	Others	Oendop - op_stv_wait - cse_window_empy - eu_comp_wait - branch_comp_wait - (instruction_flow_counts - instruction_counts)		
		Execution	eu_comp_wait + branch_comp_wait		
		Fetch miss	cse_window_empy		
		L1D cache miss	op_stv_wait - op_stv_wait_sxmiss - op_stv_wait_nc_pend		
		L2 cache miss	op_stv_wait_sxmiss + op_stv_wait_nc_pend		
	cycle_counts - active_cycle_counts	The other threa	d is running.		

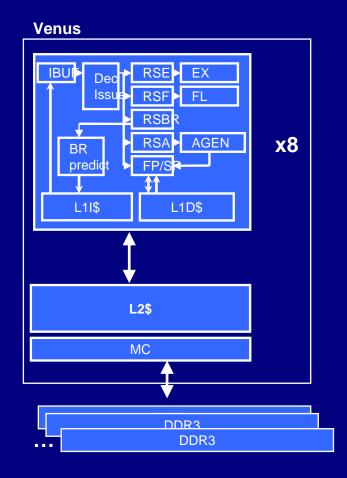
Performance Analyzer


- About 100 performance events can be monitored
- Available through cputrack() and cpustat()
- 8 performance events can be gathered at the same time.
- Commit base performance events
 - Number of commit instructions each cycle.
 - The cause of no commit
 - L2\$miss
 - L1D\$miss
 - Fetch miss
 - Execution Unit busy
 - •

SPARC64TM VII CPI (Cycle Per Instruction) Example

SPARC64™ Future

SPARC64[™] Relative Performance (SPARC64[™] V/1.35GHz = 1.0)



- Design History:
 Evolution rather than revolution
- SPARC64TM V (1core)
 - **✓**RAS
 - ✓ Single thread performance
- SPARC64TM VI (2core x 2VMT)
 - ✓ Throughput
- SPARC64TM VII (4core x 2SMT)
 - ✓ More Throughput
 - ✓ High Performance Computing
- What's next?

SPARC64TM VII Summary

- The same system I/F with existing SPARC64TM VI to protect customer's investment
- 4core x 2SMT design realizes high throughput without sacrificing single thread performance
- Shared L2\$ and HW barrier makes 4 cores behave as a single processor with compiler technology.
- The new system design has fully exploited potential of SPARC64TM VII.
- Fujitsu will continue to develop SPARC64TM series to meet the needs of a new era.

Venus

- For PETA-scale Computing Server
 - ✓ 8core
 - Embedded Memory Controller
- SPARC-V9 + extension (HPC-ACE)
 - ✓ SIMD
- Fujitsu 45nm CMOS
- → 128GF@socket

Abbreviations

SPARC64TM VII

RSA: Reservation Station for Address generation

RSE: Reservation Station for Execution

RSF: Reservation Station for Floating-point

RSBR: Reservation Station for Branch

GUB: General Update Buffer

FUB: Floating point Update Buffer

– GPR: General Purpose Register

FPR: Floating Point Register

– CSE: Commit Stack Entry

FP: Fetch PortStore Port

Chip-sets

SC: System ControllerMC: Memory Controller

JSC: Jupiter System Controller

SB: System Board

Others

DGEMM: Double precision matrix multiply and add

