

FUJITSU HPC The Next Step Toward Exascale

Toshiyuki Shimizu

November 17th, 2015

Past, PRIMEHPC FX100, and "Roadmap for Exascale" FUJITSU

K Computer and PRIMEHPC FX10 in Operation

Many applications are currently running and being developed for science and various industries

PRIMEHPC FX100 in Operation

The CPU and interconnect inherit the K computer architectural concept, featuring state-of-the-art technologies

System software TCS supports the FX100 with newly developed technologies

Towards Exascale

RIKEN selected Fujitsu as a partner for the basic design of the Post K computer

Toward Higher Performance beyond 100PF

- Hybrid and hierarchical implementation must be chosen!
 - Four and sixteen thread hybrid parallelization shows the best performance for most of the applications

Hybrid Implementation on 32-core CPU Nodes

2

Fujitsu's Approach for FX100 and Beyond

Using State-of-the-Art SW/HW Technologies for Application Performance

- System software is also enhanced for long term evolution
- A scalable, many-core micro architecture concept, "SMaC," has been developed
- Scalable interconnect "Tofu"

Scalable System Software: Resource-saving, Flexible, Reliable

- For Higher Application Performance
 - Thin and low overhead system design
- Resource-saving
 - Small system memory footprint
 - Power-saving control
- Usability and Compatibility
 - OSS, ISV support, asset protection
- Flexibility
 - Supports computer science research and data analytic science research in addition to computational science
- Reliability
 - Stable operation, immediate fault detection, minimization of downtime through fast recovery
- Maintainability
 - System updates occur during operation, minimizing maintenance time by enabling fault log sampling

Applications

HPC Portal / Sys Mgmt Portal

Technical Computing Suite

System Mgmt. Highly Scalable File System Automatic parallelization compiler

FEFS

Tools and math.

Parallel languages and libraries

Job Mgmt.

Linux-based OS

K computer & PRIMEHPC

SMaC (Scalable Many Core) Concept & Approach

- Many core-oriented, long-lasting architecture
- Scalable performance improvement by increasing the number of cores
 - Increasing the number of cores would be safe, even in the post-Moore's Law era using 3D stacking and alternative newer technologies

Middle-sized, general purpose, out-of-order, superscalar processor core

- Good performance for variety of apps
- Low power

Assistant core

- •OS jitter reduction and assistance for IO, async MPI
- Highly scalable nodes

Core Memory Group (CMG), many core building block, ccNUMA integration

- Hierarchal structure for hybrid parallel model
- Optimized area and performance

FX100 CPU implementation

Core Memory Group (CMG) Structure

- Cores in the group share the same L2 cache
- Dedicated memory and memory controller for the CMG provide high BW and low latency data access
- Loosely coupled CMGs using tagged coherent protocol share data with small silicon overhead
- Hierarchical configuration promises good core/performance scalability

High Performance Compute Core (SIMD extensions) Fujitsu

- DP 3x, SP 6x faster than FX10 in basic kernels
 - High BW memory & Improved L1 cache pipelines contribute to exceed a peak performance increase of 2.3x

Basic Kernels Performance per Core

Reducing Data Traffic (XFILL & Sector Cache)

- XFILL inst. marks the cache line filled with new data
- Sector cache holds specific data loaded by attributed load inst.

Himeno's Benchmark

```
!OCL CACHE_SECTOR_SIZE(18,6)
!OCL CACHE_SUBSECTOR_ASSIGN(...)
do k=2,kmax-1
 do j=2,jmax-1
                         Specify vars
  do i=2,imax-1
                        except array p
   s0=...p(i, j, k)... &
      ...p(i, j+1, k)... &
      ...p(i, J-1, k)...
   wrk2(i, j, k)=...
  enddo
 enddo
enddo
!OCL END CACHE SECTOR SIZE
!OCL END_CACHE_SUBSECTOR
```

Speedup by XFILL & Sector Cache (Problem size: SP 4098x130x130, parallelized by /)

CMG & SMaC Effect on OpenMP Microbenchmark

- FX100 outperforms Haswell due to the optimal implementation of the OpenMP library and the hardware inter-core barrier in the CPU
 - A single chip CPU of FX100 is effective (larger gap at 32 vs 28 threads)

Overlapping Execution of Non-blocking Comm. Fujitsu

- An assistant core is used in the MPI library
 - Boundary data transfer of stencil code

Application Evaluation

- CCS QCD Miniapp
 - Quantum chromodynamics, a linear equation solver with a large sparse coefficient matrix appearing in a lattice QCD problem
- NAS parallel benchmarks FT class C by OpenMP parallel
 - Time integration of a 3D partial differential equation using FFT (512^3)
- MHD
 - Simulation of Jovian and Kronian magnetosphere and space weather
- GT5D
 - Gyrokinetic toroidal 5D Eulerian code

CCS QCD "Miniapp" (OpenMP single node)

Compiler improves cache hit rate using hints of directive & sector cache, better than FX10

NAS Parallel Benchmark FT (OpenMP Single Node)

- 3.5x Improvement per node over the FX10
 - 256bit SIMD x SMaC high performance node
 - Scalable thread performance

NAS Parallel Benchmarks Ver. 3.3.1 OpenMP Class C

MHD Sim. of Jovian and Kronian Magnetosphere & Space Weather

- Binary of FX10 runs on FX100 (1.8x)
- Recompile for FX100 utilizes 4 way SIMD (1.3x)
- Source optimization for FX100 attains 3.5x of FX10 at the same # of cores (1,024 cores)

(Evaluated under the collaboration with Dr. Fukazawa @ Kyoto Univ.)

GT5D: Gyrokinetic Toroidal 5D Eulerian Code^[1]

- Assistant core enables overlapping of communication and calculations
 - While computation progresses on compute cores using local data, the assistant cores handle communication tasks, independently and in parallel, until 'MPI Waitall'
 - Minimal code modification retains portability and maintainability, free from the headache of manual code optimization for the same level of performance improvement

By courtesy of JAEA

Typical implementation of the overlapping of communication and computation

```
MPI Isend
 MPI Irecv
!$OMP PARALLEL DO
 do i=...
   Computation using local data
   (independent from the communication)
 enddo
!$OMP END PARALLEL DO
 MPI Waitall
 do i=...
    Computation using received data
 enddo
```


[2] Y. Idomura et al., Int. J. HPC Appl. 28, 73 (2014)

Summary, FX100, and Exascale...

FX100 Detailed Evaluation Unveiled

- Refined architectural concept "SMaC" is presented and evaluated
 Great application compatibility and scalable performance

FLAGSHIP 2020 Basic Design has been Completed

• High application performance efficiency by consistent and conclusive approach

PRIMEHPC Series Exascale (C) RIKFN **FX100** K computer **FX10** VISIMPACT VISIMPACT Tofu interconnect 2 SIMD extension HPC-ACE HPC-ACE HMC & Optical connections Direct network Tofu Direct network Tofu CY2010~ CY2012~ CY2015~ 128GF, 8-core/CPU 236.5GF, 16-core/CPU 1TF~, 32-core/CPU

shaping tomorrow with you