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Deep Tensor: Eliciting New Insights from 
Graph Data that Express Relationships 
between People and Things

  Koji Maruhashi

An important problem in information and communications technology (ICT) is classifying graph 
data that expresses the relationships between people and things.  For example, how can cyber-
attacks be detected by using network traffi c logs showing the relationships between the source 
IP address and the destination IP addresses and ports, and how can fraudulent activities be de-
tected by using banking transactions showing the relationships between senders and receivers 
and bank branches?  When classifying large volumes of graph data, however, there are many 
yet-to-be-expressed features in the partial graphs used in conventional graph learning meth-
ods, so there are limits to achieving accurate classifi cation.  We propose using a novel tensor 
decomposition method called “Deep Tensor” for leveraging a deep neural network to enable it 
to automatically extract these features of graph data.  Experiments in three different domains 
demonstrated that use of this decomposition method results in high accuracy for various types 
of graph data, enabling interpretation based on the activity of the neural network.

1. Introduction
Massive amounts of data have been accumulated 

thanks to the development of high-speed communica-
tion and the Internet of Things (IoT), including many 
types of data that can be analyzed as graph data that 
express relationships between people and things.  
Typical examples are network traffi c logs showing rela-
tionships between source IPs (src IPs), destination IPs 
(dst IPs), and ports.

An example graph representation of a network 
traffi c log is shown in the center panel in Figure 1.  
Records, represented as elliptical nodes, are connected 
to elements, represented as rectangular nodes.  The 

corresponding tensor representation is shown in 
the right panel.  Connections between elements are 
expressed as non-zeros.  The problem is to learn predic-
tive model µ that can predict class y of graph data g as 
accurately as possible on the basis of the given set of 
training data.  The training data contains a set of pairs 
of graph data gi and their class yi (Figure 2).  This prob-
lem is strongly related to the problems addressed by 
‘FUJITSU Human Centric AI Zinrai’ technology, including 
intrusion detection based on the connectivity between 
IPs and ports and detection of online banking fraud 
based on the relationships between senders, receiv-
ers, and bank branches.  Conventional methods use a 

Figure 1
Graph data and tensor representation.
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set of sub-graphs designed by specialists knowledge-
able about the data.  However, these methods cannot 
achieve high classifi cation accuracy because many 
important features are missed, especially in large-scale 
graph data with a highly complicated structure.  For 
example, a set of network traffi c logs is graph data with 
a complicated structure even though they are observed 
within only a few minutes (Figure 3).

We have developed a novel tensor decomposition 

method called “Deep Tensor (DT)” for learning and clas-
sifying graph data by using a deep neural network.  
DT automatically learns how to extract the features 
of graph data by utilizing a tensor decomposition 
technique.

In this paper we report the experimental results 
for three different domains: intrusion detection, peer-
to-peer (P2P) lending, and drug discovery.  The results 
show that our method can achieve high accuracy for 
many types of graph data and thus enable further 
inspection of the results along with the activity of 
neurons.

2. Feature extraction of graph data
Previous work related to feature extraction of 

graph data can be categorized as designing sub-
graphs, learning sub-graphs using deep learning, and 
extracting features using tensor decomposition.

2.1 Designing sub-graphs
As mentioned above, conventional graph learning 

methods use a set of sub-graphs designed by special-
ists knowledgeable about the graph data (Figure 4).  
Support vector machines (SVMs) using graph kernels1) 
are based on the same idea even though they do not 
explicitly enumerate all the sub-graphs.  However, they 
cannot achieve high classifi cation accuracy because it 
is hard for pre-designed sub-graphs to express all the 
important features of many types of graph data.

2.2 Learning sub-graphs using deep 
learning
Recent advances in deep learning using deep 

neural networks have enabled us to automatically gen-
erate useful features for many types of data in speech 
recognition and image recognition.2)  A convolutional 
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Figure 2
Learning graph data.

Figure 3
Example of graph data expressing network traffi c logs.
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neural network can be used to learn sub-structures of 
graph data from matrices that express the connectivity 
of the data.3)  However, it is not trivial to fi nd the opti-
mal alignments of elements in the adjacency matrices.

2.3 Extracting features using tensor 
decomposition
As shown in Figure 1, graph data can be 

expressed as a tensor, and the tensor can be approxi-
mated as a core tensor multiplied by factor matrices 
(Figure 5).4)  The core tensor expresses the major con-
nectivity structure of the graph data.5)  However, the 
alignments of the elements in the core tensor can be 
decided freely, and it is not trivial to fi nd the optimal 
alignments for classifi cation.  Unlike conventional ten-
sor decomposition, DT can learn how to extract the 
optimal core tensor so that high classifi cation accuracy 
can be achieved. 

3. Deep Tensor
An overview of DT is shown in Figure 6.  Given 

a tensor expressing graph data, DT calculates a core 
tensor and factor matrices by using structure restricted 
tensor decomposition (SRTD) and uses the core ten-
sor as input to a neural network.  SRTD calculates the 
core tensor as closely as possible to a target core ten-
sor expressing key sub-structures for classifi cation.  DT 
optimizes the target core tensor in order to maximize 
the classifi cation accuracy by using an extension of the 
backpropagation algorithm used in training conven-
tional neural networks.

3.1 Structure restricted tensor 
decomposition
Conventional tensor decomposition does not 

necessarily locate key sub-structures for classifi cation 
in similar indices of core tensors calculated from every 
graph data instance.  We have developed an SRTD 
method that not only approximates the input tensor 
but also calculates the core tensor as closely as possible 
to the target core tensor so that the key sub-structures 
should be located in similar indices of the core tensor.  
We can accurately classify graph data by using these 
core tensors via neural networks trained by using these 
tensors.  SRTD is calculated using a two-step optimiza-
tion (Figure 7).  In the fi rst step, factor matrices are 
optimized so that the target core tensor multiplied by 
the factor matrices approximates the input tensor as 
closely as possible.  In the second step, the core tensor 
is optimized so that the core tensor multiplied by the 
optimized factor matrices approximates the input ten-
sor as closely as possible.

Figure 5
Conventional tensor decomposition.
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3.2 Extended backpropagation (EBP)
We have developed an EBP method that opti-

mizes the target core tensor in order to achieve better 
classifi cation accuracy.  The conventional backpropaga-
tion algorithm calculates the parameter adjustments 
needed to minimize the classifi cation errors by propa-
gating the classifi cation errors toward the lower layers 
of the neural network.  EBP extends the algorithm so 
that the errors are propagated to the target core ten-
sor and calculates the degree to which the target core 
tensor should be adjusted.  It updates the target core 
tensor along with the neural network parameters by 
using the stochastic gradient descent (SGD) algorithm.

4. Empirical results
As mentioned, we evaluated our method by using 

datasets from three different domains: intrusion detec-
tion, P2P lending, and drug discovery.

4.1 Datasets
1) Intrusion detection

We used an intrusion detection dataset6) contain-
ing data logs for nine weeks: seven weeks of the data 
were used as training data and the other two weeks of 
data were used as test data.  We used source IP (src IP), 
destination IP (dst IP), source port (src Port), and des-
tination port (dst Port) and used service descriptions 
such as “http” and “ftp” as the labels for dst Port.  We 
applied our method to this dataset on a per-10-minute 
basis to predict whether any attacks occurred in each 
10-minute period.  The model used for prediction was 
learned separately for each category.
2) P2P lending

P2P lending services7) enable people to borrow 
and lend money by matching lenders directly with 

borrowers.  We regarded loans with interest rates 
higher than 10% as high-risk loans and set the prob-
lem as the problem of predicting them by using a set 
of transactions that includes the relationships between 
lender, borrower, and lending ID.  We used the loca-
tions of lenders and borrowers as their labels.  We used 
transactions for 2012, with those before December 
used as training data and those in December used as 
evaluation data.  The ability to identify high-risk loans 
without using personal information would expand the 
possibilities for new FinTech services.
3) Drug discovery

For drug discovery, we set the problem as the 
problem of predicting the activity or toxicity of chemical 
compounds by using a graph structure expressing the 
relationships between atoms labeled by species.8)

4.2 Compared methods
We compared DT with SVM using several graph 

kernels, graphlet kernels (GK), shortest path kernels 
(SP), and Weisfeiler-Lehman subtree kernels (WL).  
We also compared DT with a method using conven-
tional tensor decomposition (Tucker) instead of SRTD.  
Furthermore, we evaluated DT without EBP, in which 
SGD was not used to update the target core tensor 
(noEBP).

4.3 Prediction accuracy
The results for intrusion detection and P2P lend-

ing are shown in Figure 8.  For intrusion detection, we 
show the results for probing-type and denial of service 
(DoS)-type attacks, which had the largest number of 
log entries among the various types of attack.  Note 
that GK and SP are impractical for these data types 
because they need enormous calculation time and 

Figure 7
Structure restricted tensor decomposition.
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memory space due to the huge number of elements 
and relationships.  Moreover, Tucker is impractical for 
detecting DoS-type attacks for the same reason.  We 
used average precision as the measure of accuracy, 
i.e., the average precision values (number of true posi-
tives divided by number of predicted positives) for the 
thresholds for the predicted attack and high-risk loan 
probabilities.  The average precisions for both DT and 
noEBP were better than for the other methods, and the 
accuracy for DT was higher than for noEBP.

These results suggest that SRTD works better 
than conventional methods and that EBP is effective 
in many cases.  DT predicted probing-type attacks with 
practical accuracy (almost 80% of the predicted posi-
tives were true positives), whereas more than half of 
the predicted positives were false positives for WL and 
Tucker.  Although the accuracy of DT for P2P lending 
might seem to be very low (about 16%), there were 
about 10 high-risk loans out of more than 1,600 loans 
in the test data (less than 1%), and DT detected more 
than half of them.

Evaluation using the datasets for drug discovery 
were done using 10-fold cross validation.  WL achieved 
the highest accuracy for most of the datasets, sug-
gesting that the Weisfeiler-Lehman graph kernels are 
well-suited for classifying chemical compounds.  The 
accuracies of DT and noEBP were generally higher than 
the average accuracies of the graph kernels for all the 
datasets, suggesting that our method is also effective 
for chemical compounds.

4.4 Learning large-scale data
We also evaluated DT using data from the 

PubChem BioAssay database,9) an open database of 

chemical compounds.  We used the dataset containing 
the largest number of compounds in this database.  
The results of 10-fold cross validation showed that our 
method achieved about 75% accuracy after only 20 
training epochs using SGD, whereas the accuracy was 
about 66% after training using 1,286 compounds for 
200 epochs.  These results suggest that our method can 
achieve higher accuracy with very large-scale datasets, 
as with other deep neural networks. 

4.5 Interpreting prediction results
We further analyzed the results in order to ex-

plain the prediction results along with neuron activity.  
Figure 9 depicts the data that had the greatest effect 
on neurons whose activities are most correlated with 
the classifi cation probabilities.  In the detection of 
probing-type attacks for intrusion detection, the logs 
that most contributed to neuron activity [arrowheads 
in Figure 9 (a)] indicated that one of many HTTP serv-
ers was attacked through various ports, and these logs 
have successfully spotted a port scanning included in 
the true attacks.

The two compounds with the highest activities 
for the top two neurons in the dataset taken from the 
PubChem BioAssay database are shown in Figure 9(b).  
Of the compounds most affecting neuron 2, the bonds 
between sulfur (S) and oxygen (O) [arrowheads in 
Figure 9(b)] greatly contributed to neuron activity, sug-
gesting that these bonds are important for classifying 
compounds in this dataset.

5. Conclusion
The tensor decomposition method we devel-

oped, “Deep Tensor,” uses a deep neural network to 
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automatically extract features of graph data.  It utilizes 
a novel tensor decomposition, structure restricted ten-
sor decomposition, to extract the important features 
of graph data by using a target core tensor.  We also 
developed an extended backpropagation method that 
optimizes the target core tensor along with the pa-
rameters of the neural network.  Experiments on three 
different domains showed that these methods achieve 
high accuracy, enabling further inspection of the results 
along with the activity of neurons.

Future work includes evaluation using a wider va-
riety of predictive models, that is, models using larger 
neural networks, models combined with other models 
such as convolutional neural networks, and models 
using core tensors with more complicated structures.  
Further studies in which these methods are applied to 
real world problems are needed to expand the possi-
bilities and clarify the limitations of these methods.

These methods will be used as part of FUJITSU 
Human Centric AI Zinrai, Fujitsu’s AI technology.
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Graph data with greatest effect on specifi c neurons.
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