
14 FUJITSU Sci. Tech. J., Vol. 53, No. 5, pp. 14–19 (September 2017)

Technologies for Practical Application of Deep
Learning

 Atsushi Ike  Teruo Ishihara  Yasumoto Tomita  Tsuguchika Tabaru

Deep learning, a machine learning method, is attracting more and more attention. Research
and development of deep learning have accelerated as it achieves recognition accuracy that
far surpasses that of conventional methods of extracting features manually. Two issues are
affecting its practical application: lengthy training and limited graphical processing unit
(GPU) memory. As neural networks are being enlarged to enable higher recognition accu-
racy, these two issues are becoming more and more serious. In this paper, we introduce three
technologies targeting them: distributed parallel processing for faster training, memory opti-
mization for increased GPU memory, and a dedicated hardware engine architecture for data
size reduction.

1.	 Introduction
Deep learning, which has become a central tech-

nology in artificial intelligence, is a general term for
machine learning algorithms using deep neural net-
works (basically those having three or more layers).

Generally, three elements are necessary for deep
learning to be successful. The first is a large amount of
data for training, the second is an algorithm capable of
training a deep neural network, and the third is high-
performance computing resources for training the deep
neural network.

Deep learning R&D generally takes a long time.
This is because rigorous theories on how to decide net-
work structure or optimize training time still have not
been formulated. Experience and know-how gained
so far indicate that this could be because solutions are
found by trial and error in an extremely large solution
space and that the learning process itself requires a
huge amount of computation.

The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) is a global image recognition
competition held each year. In 2012, Prof. Geoffrey
Hinton’s team from the University of Toronto applied
deep learning for the first time to the image recogni-
tion challenge to classify 12 million images into 1,000
categories.1) They were awarded the top prize, having
improved the recognition rate, which thus far had not

exceeded 25.8%, by almost 10% in one leap. This ig-
nited the current (3rd generation) deep learning boom.
Since then, all of the top competitors at ILSVRC have
used deep learning, and the results have continued to
improve. In 2015, the error rates were below 5.1%, the
rate for human recognition, and in 2016 they dropped
below 3%.

2.	 Issues affecting application
As deep learning has advanced, image recog-

nition error rates have dropped remarkably, but the
training time required has become extremely long. In
2012, AlexNet required one to two weeks to train with
1.28 million images, but since then network scale has
increased in size and complexity. As an example, ex-
tremely deep neural networks such as Microsoft’s MS
ResNet2 have been proposed with some 150 layers.
Inevitably the computing resources required for training
and evaluation have increased accordingly, and this is
becoming a major issue. Recently, so-called ensemble
methods have become prevalent, in which a number,
n, of networks are combined to obtain multiple solu-
tions, but this is also raising further issues such as the
fact that n-times the training is needed [Issue 1].

Furthermore, the graphics processing units
(GPUs) generally used for deep learning are limited in
memory size compared to CPUs, so even the latest Tesla

15FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

A. Ike et al.: Technologies for Practical Application of Deep Learning

GPU has only 16 GB of memory. This is a significant
issue for use with such large-scale networks [Issue 2].
To illustrate, AlexNet required 0.6 GB of memorynote) and
MS ResNet required 8 GB, which represents a ten-fold
increase in only three years. GPU memory cannot be
increased to that extent easily, so networks must be
designed to fit within the available memory. This could
be a factor limiting progress.

With deep learning, the accuracy of the recogni-
tion result is the most important factor, but the highest
accuracy is not necessarily needed for data used in
intermediate computations. Generally, 32-bit floating-
point operations are used, but many recent research
reports have indicated that recognition accuracy did
not degrade much when 16-bit floating point, or even
16-bit/8-bit fixed-point operations are used. As such,
computing resources with reinforced or augmented
16-bit/8-bit arithmetic units have begun to appear.
Conversely, if operator accuracy is simply reduced, rec-
ognition accuracy also drops, so trade-offs with network
design and other factors must be considered, which
results in further time required anyway [Issue 3].

With continuing advances and increasing scale in
deep learning, handling long training times, the scale
of neural networks and the trade-off of calculation accu-
racy is presenting major issues. At Fujitsu Laboratories,
we have made significant progress in addressing these
issues by applying some of the technology we have
obtained from working on development of the K super-
computer and its successor, project Flagship 2020, to
deep learning.

In this article, we discuss the technologies we are
using to improve the efficiency of deep learning and
thereby resolve these issues.

3.	 Distributed-parallel computing
technology to accelerate deep
learning
With deep learning, advanced recognitions are

implemented using many expressions of neural net-
works to approximate the characteristics of objects,
such as images, sounds, and texts. Coefficients ap-
pearing in these approximation expressions, called
weights, are determined through training.

Generally, training involves repeated cycles of a
forward process and a backward process. The forward
process is the sequence by which the output (e.g., an
image recognition result) is generated from an input
(the image). Generally, this process is also called infer-
ence. In the backward process, the inference result is
compared with the correct result, and the difference is
used to update the approximation coefficients used in
each layer.

A large number of these coefficients are used in
deep learning, so very large amounts of data, of the
order of millions or tens of millions of items, are used
to compute these coefficients correctly. For this reason,
performing deep learning can take a long time, from
days to weeks, which is a significant issue.

In the main current training methods, data is
segmented into sets of dozens or hundreds of items
(mini-batches), and training is done one mini-batch at
a time. The amount by which to update coefficients is
computed by processing each data item, and when pro-
cessing mini-batches, the average value of all updates
in the mini-batch is used for the update.

Processing methods that distribute data in a
mini-batch to multiple computers are called data-par-
allel methods. Data-parallel methods achieve speed
increases by reducing processing time per computer.
With these methods, the average update amount is
calculated by sharing results among the computers.
Communication to share this data results in distributed
processing overhead, so if the communication time is
longer than the time saved by segmented processing,
distributing the data can actually increase processing
time. For this reason, it is important to both reduce
the time for communication between computers and to
hide such time by performing communication concur-
rently with computation.

We did both by using the methods described
below.3)

1)	 Parallelizing back-propagation and communica-
tion processing
The neural networks used for deep learning

have multiple layers, and coefficient update values
are obtained by back-propagation through each layer,
so some communication can be performed dur-
ing back-propagation processing. This function has
been incorporated into recent parallel deep learning
frameworks.note)	 For batch sizes of eight in both cases

16 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

A. Ike et al.: Technologies for Practical Application of Deep Learning

2)	 Parallelizing forward propagation and communi-
cation processing
Forward propagation for each layer can be done

as soon as the coefficients for that layer have been
updated, so some communication can be done during
forward-propagation processing.
3)	 Pipelining communication processing

General-purpose computing on graphics process-
ing unit (GPGPUs) is often used to perform the large
amount of computing needed for deep learning. To
minimize the amount of GPU waiting time, the authors
implemented communication processing on the CPU.
The communication processing sequence is as follows:
1.	 Update data is sent from GPU to CPU
2.	 CPU performs communication
3.	 Update data is sent from CPU to GPU.

To pipeline these processes, the update data is
processed in segments. Communication processing
also includes computing the averages of update data,
which involves a large amount of computation, so
this is accelerated by using thread parallelization and
single-instruction/multiple-data parallelization on the
CPU.

We tested these methods using 64 GPUs
and achieved a 1.8-fold increase in training speed
(Figure 1).

4.	 Memory optimization technique for
large-scale neural networks
For deep learning, GPUs are used to perform the

large amount of computation. The communication

bandwidth between a GPU and the CPU is narrow, so as
much of the data used in a sequence of operations as
possible must be stored in the GPU internal memory to
utilize the high computational performance of the GPU.
However, GPUs generally have less internal memory
than ordinary computers, so this limits the scale of the
neural networks that can be trained at high speed.

To resolve this issue, we developed a technique
to optimize memory use and increase the scale of the
neural networks that can be computed on a single GPU.
To train each layer of a neural network, error back-
propagation requires computing intermediate error
data from the weight data, and updating the weight
data requires computing the weight data error from
intermediate data.

Our optimization technique focuses on perform-
ing these operations independently. When beginning
training, we analyze the structure of each neural net-
work layer and estimate the amount of memory
required to store each of the intermediate error data
points and the weight data errors. We then reduce
memory use by switching the order of operations so
that the larger of these two allocated memory areas
can be reused (Figure 2).4)

Figure 3 shows the memory use for a conven-
tional operation flow in a neural network that includes
layers with more neuron data (e.g., convolutional lay-
ers) and also layers with more weight data (e.g., fully
connected layers). When a hand-written “6” is entered
as input data, the neural network incorrectly recognizes
it as “5,” and the error derived by comparing it with the
correct answer is used to update the neural network
weights. Figure 4 shows an example of memory use
with the operation flow of our memory optimization
technique.

Conventionally, all memory required for recogni-
tion and learning is allocated, but with our technique,
computations are done in numerical order, and the
computations with data requiring the most memory in
each layer are done first. By ending the period when
this data is needed, that memory area can be reused,
reducing the total memory needed.

We implemented this memory optimizing tech-
nique in the Caffe deep learning framework, which is
open-source software, and measured memory use in
the GPU internal memory.

We evaluated this technique using AlexNet and

Figure 1
Ratio of learning speed as a function of number of GPUs
used.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

Ra
tio

 o
f l

ea
rn

in
g

sp
ee

d
(n

or
m

al
ize

d
to

 1
 G

PU
 ca

se
)

Number of GPUs

Not optimzed

Optimized

17FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

A. Ike et al.: Technologies for Practical Application of Deep Learning

VGGNet, neural networks often used in image recogni-
tion research, and identified a reduction in memory
use of over 40%. If the memory saved by using this
technique is used to increase the number of neural net-
work layers or the number of neurons, it is possible to
train neural networks of up to twice the size on a single
GPU. We have also shown that the number of images
processed in one training session can be doubled, in-
creasing image recognition accuracy by 4%.5)

5.	 Dedicated deep learning hardware
technology
To increase the recognition rate during inference,

there is a trend toward increasing the scale (number
of layers) of neural networks, which also increases the
processing required for training. Generally a GPGPU is
used for training, and a single chip consumes from 200
W to 300 W of power. Because of this, when increas-
ing speed through cluster parallelization, the number

Figure 2
Technique for optimizing memory use.

Each neural network layer

Order of calculations for neural network layer with
a large volume of intermediate data

Order of calculations for neural network layer with
a large volume of weighted data

Analyze structure,
and change order
of calculations

Weight data Weight data error

Intermediate data Intermediate error data

Combined weighted data
and weighted data error

Intermediate data Intermediate error data

No-longer-needed
memory space

Combined intermediate data
and intermediate error data

Weight data Weight data error

No-longer-needed
memory space

1

2

Both 1 and 2 can be calculated independently.

12

1
2

1 and 2 are calculated in order.

Figure 3
Conventional technique: process and memory utilization.

Neural network layer with large volume of weight data

Weight data

Intermediate data Intermediate error data

Weight data error

5
Recognition results

6

Error

Input data

Compare with
correct answer

Neural network layer

Recognition Learning

Neural network layer with large volume of intermediate data

Intermediate data

Weight data Weight data error

Intermediate error data

Neural network layer
…

1

2

3

4

1 and 2 can be calculated independently.

Figure 4
Memory efficient technique: process and memory utilization.

Combined weighted data
and weight data error

Combined intermediate data
and intermediate error data

5
Recognition results

6

Error

Compare with
correct answer

Recognition Learning

Neural network layer with large volume of weight data

Intermediate data Intermediate error data

Input data

Neural network layer

Weight data Weight data error

Neural network layer

1

2

34

1 and 2 are calculated in order.

…

Neural network layer with large volume of intermediate data

18 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

A. Ike et al.: Technologies for Practical Application of Deep Learning

of GPUs that can be used is limited by the available
power, so power efficiency is a factor determining over-
all processing performance. If, for example, a chip has
twice the power efficiency, twice the processing can be
done given the same available power.

Current training processes usually use 32-bit float-
ing point operations to avoid concern about inadequate
precision. The multi-chip parallel processing discussed
in Section 2 requires communication between chips,
and we can accelerate parallel processing by reducing
this communication time.

For these reasons, we have attempted to improve
energy efficiency for deep learning training and have

developed hardware that preserves accuracy while
reducing the bit-width of operations.6) The computa-
tional core of our deep learning hardware (Figure 5)
has three blocks: (1) a block to analyze data during
operations, (2) a database that stores the distribution
of data analyzed, and (3) a block to store calculation
settings. The data analysis block analyzes the data
output from the compute unit in real time during deep
learning and stores statistical information representing
the data distribution in a database. The distribution
can then be used to optimize learning settings for the
computation to maintain sufficient computation accu-
racy to increase deep learning precision (Figure 6).

Figure 5
Improving calculation accuracy in computational core.

Calculation
settings

Data
analysis

Database

Computational core

Analyzes data being calculated

Stores results of analysis as
statistical information about data

Calculation settings optimized for
deep learning are derived from

statistical information collected in
database and applied

(1)

(2)

(3)

Compute
unit

Input data

Output data

Figure 6
Optimizing calculation settings using statistical information.

3.E-08 1.E-06 3.E-05 1.E-03 3.E-02 1

3.E-08 1.E-06 3.E-05 1.E-03 3.E-02 1

Area that can be
represented with 16 bits

Following shifts
in the data

Data
distribution

Data
distribution

Area that
can’t be

represented

Moving to
cover gap

Calculation
settings

Data
analysis

Database

Computational core

Compute
unit

Input data

Output data

19FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

A. Ike et al.: Technologies for Practical Application of Deep Learning

©2017 FUJITSU LIMITED

Thus, the units of processed data can be reduced
from 32 bits to 16 or 8 bits, increasing the capacity of
the memory, bus, and compute unit from 2–4 times. At
the same time, the small data units enable the time
required for communication between chips to be short-
ened. This can improve power effi ciency of training for
deep learning by a factor of two to four. Implementing
these functions in a library will facilitate their use in
various frameworks.

6. Conclusion
This article has given an overview of deep learn-

ing technology and several issues related to it. It also
discussed methods to resolve three of these issues,
including a parallelization technology, a technology
to improve memory effi ciency, and a dedicated engine
architecture for reducing data size.

Fujitsu Laboratories will continue development
related to these issues, including expansion to frame-
works other than Caffe, and will apply the knowledge
gained to our Deep Learning Unit (DLUTM), which is
currently under development at Fujitsu. We will also
continue advancing R&D contributing to technical de-
velopment in the deep learning fi eld.

References
1) G. E. Hinton et al.,: Improving neural networks by

preventing co-adaptation of feature detectors. Neural
and Evolutionary Computing 2012, Vol.1207.0580,
pp.1–18, 2012.

 https://arxiv.org/abs/1207.0580
2) K. He et al.,: Deep Residual Learning for Image

Recognition. arXiv: 1512.03385, 2015. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp.770–778, 2016.

 http://arxiv.org/abs/1512.03385
3) M. Yamazaki et al.: Accelerating Deep Learning

Framework with MPI. IPSJ SIG Technical Report, Vol.
2016-HPC-155, No. 6 (August 2016).

4) K. Shirahata et al.: Memory reduction method for deep
neural network training. IEEE MLSP 2016.

5) K. Shirahata et al.: Memory Reduction Method for
Training Very Deep Neural Networks on a GPU. GPU
Technology Conference (GTC) 2017.

6) M. Tomono et al.: Increasing power effi ciency in a DNN
training processor by reducing operator precision.
xSIG2017.

Atsushi Ike
Fujitsu Laboratories Ltd.
Mr. Ike is engaged in system architecture
research.

Yasumoto Tomita
Fujitsu Laboratories Ltd.
Mr. Tomita is engaged in intelligent com-
puting architecture research.

Teruo Ishihara
Fujitsu Laboratories Ltd.
Mr. Ishihara is engaged in intelligent com-
puting research.

Tsuguchika Tabaru
Fujitsu Laboratories Ltd.
Mr. Tabaru is engaged in developing high-
performance system architectures.

https://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1512.03385

