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Technologies for Practical Application of Deep 
Learning

 Atsushi Ike      Teruo Ishihara      Yasumoto Tomita      Tsuguchika Tabaru

Deep learning, a machine learning method, is attracting more and more attention.  Research 
and development of deep learning have accelerated as it achieves recognition accuracy that 
far surpasses that of conventional methods of extracting features manually.  Two issues are 
affecting its practical application: lengthy training and limited graphical processing unit 
(GPU) memory.  As neural networks are being enlarged to enable higher recognition accu-
racy, these two issues are becoming more and more serious.  In this paper, we introduce three 
technologies targeting them: distributed parallel processing for faster training, memory opti-
mization for increased GPU memory, and a dedicated hardware engine architecture for data 
size reduction.

1.	 Introduction
Deep learning, which has become a central tech-

nology in artificial intelligence, is a general term for 
machine learning algorithms using deep neural net-
works (basically those having three or more layers).

Generally, three elements are necessary for deep 
learning to be successful.  The first is a large amount of 
data for training, the second is an algorithm capable of 
training a deep neural network, and the third is high-
performance computing resources for training the deep 
neural network.

Deep learning R&D generally takes a long time.  
This is because rigorous theories on how to decide net-
work structure or optimize training time still have not 
been formulated.  Experience and know-how gained 
so far indicate that this could be because solutions are 
found by trial and error in an extremely large solution 
space and that the learning process itself requires a 
huge amount of computation.

The ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) is a global image recognition 
competition held each year.  In 2012, Prof.  Geoffrey 
Hinton’s team from the University of Toronto applied 
deep learning for the first time to the image recogni-
tion challenge to classify 12 million images into 1,000 
categories.1) They were awarded the top prize, having 
improved the recognition rate, which thus far had not 

exceeded 25.8%, by almost 10% in one leap.  This ig-
nited the current (3rd generation) deep learning boom.  
Since then, all of the top competitors at ILSVRC have 
used deep learning, and the results have continued to 
improve.  In 2015, the error rates were below 5.1%, the 
rate for human recognition, and in 2016 they dropped 
below 3%.

2.	 Issues affecting application
As deep learning has advanced, image recog-

nition error rates have dropped remarkably, but the 
training time required has become extremely long.  In 
2012, AlexNet required one to two weeks to train with 
1.28 million images, but since then network scale has 
increased in size and complexity.  As an example, ex-
tremely deep neural networks such as Microsoft’s MS 
ResNet2 have been proposed with some 150 layers.  
Inevitably the computing resources required for training 
and evaluation have increased accordingly, and this is 
becoming a major issue.  Recently, so-called ensemble 
methods have become prevalent, in which a number, 
n, of networks are combined to obtain multiple solu-
tions, but this is also raising further issues such as the 
fact that n-times the training is needed [Issue 1].

Furthermore, the graphics processing units 
(GPUs) generally used for deep learning are limited in 
memory size compared to CPUs, so even the latest Tesla 
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GPU has only 16 GB of memory.  This is a significant 
issue for use with such large-scale networks [Issue 2].  
To illustrate, AlexNet required 0.6 GB of memorynote) and 
MS ResNet required 8 GB, which represents a ten-fold 
increase in only three years.  GPU memory cannot be 
increased to that extent easily, so networks must be 
designed to fit within the available memory.  This could 
be a factor limiting progress.

With deep learning, the accuracy of the recogni-
tion result is the most important factor, but the highest 
accuracy is not necessarily needed for data used in 
intermediate computations.  Generally, 32-bit floating-
point operations are used, but many recent research 
reports have indicated that recognition accuracy did 
not degrade much when 16-bit floating point, or even 
16-bit/8-bit fixed-point operations are used.  As such, 
computing resources with reinforced or augmented 
16-bit/8-bit arithmetic units have begun to appear.  
Conversely, if operator accuracy is simply reduced, rec-
ognition accuracy also drops, so trade-offs with network 
design and other factors must be considered, which 
results in further time required anyway [Issue 3].

With continuing advances and increasing scale in 
deep learning, handling long training times, the scale 
of neural networks and the trade-off of calculation accu-
racy is presenting major issues.  At Fujitsu Laboratories, 
we have made significant progress in addressing these 
issues by applying some of the technology we have 
obtained from working on development of the K super-
computer and its successor, project Flagship 2020, to 
deep learning.

In this article, we discuss the technologies we are 
using to improve the efficiency of deep learning and 
thereby resolve these issues.

3.	 Distributed-parallel computing 
technology to accelerate deep 
learning
With deep learning, advanced recognitions are 

implemented using many expressions of neural net-
works to approximate the characteristics of objects, 
such as images, sounds, and texts.  Coefficients ap-
pearing in these approximation expressions, called 
weights, are determined through training.

Generally, training involves repeated cycles of a 
forward process and a backward process.  The forward 
process is the sequence by which the output (e.g., an 
image recognition result) is generated from an input 
(the image).  Generally, this process is also called infer-
ence.  In the backward process, the inference result is 
compared with the correct result, and the difference is 
used to update the approximation coefficients used in 
each layer.

A large number of these coefficients are used in 
deep learning, so very large amounts of data, of the 
order of millions or tens of millions of items, are used 
to compute these coefficients correctly.  For this reason, 
performing deep learning can take a long time, from 
days to weeks, which is a significant issue.

In the main current training methods, data is 
segmented into sets of dozens or hundreds of items 
(mini-batches), and training is done one mini-batch at 
a time.  The amount by which to update coefficients is 
computed by processing each data item, and when pro-
cessing mini-batches, the average value of all updates 
in the mini-batch is used for the update.

Processing methods that distribute data in a 
mini-batch to multiple computers are called data-par-
allel methods.  Data-parallel methods achieve speed 
increases by reducing processing time per computer.  
With these methods, the average update amount is 
calculated by sharing results among the computers.  
Communication to share this data results in distributed 
processing overhead, so if the communication time is 
longer than the time saved by segmented processing, 
distributing the data can actually increase processing 
time.  For this reason, it is important to both reduce 
the time for communication between computers and to 
hide such time by performing communication concur-
rently with computation.

We did both by using the methods described 
below.3)

1)	 Parallelizing back-propagation and communica-
tion processing
The neural networks used for deep learning 

have multiple layers, and coefficient update values 
are obtained by back-propagation through each layer, 
so some communication can be performed dur-
ing back-propagation processing.  This function has 
been incorporated into recent parallel deep learning 
frameworks.note)	 For batch sizes of eight in both cases
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2)	 Parallelizing forward propagation and communi-
cation processing
Forward propagation for each layer can be done 

as soon as the coefficients for that layer have been 
updated, so some communication can be done during 
forward-propagation processing.
3)	 Pipelining communication processing

General-purpose computing on graphics process-
ing unit (GPGPUs) is often used to perform the large 
amount of computing needed for deep learning.  To 
minimize the amount of GPU waiting time, the authors 
implemented communication processing on the CPU.  
The communication processing sequence is as follows:
1.	 Update data is sent from GPU to CPU
2.	 CPU performs communication
3.	 Update data is sent from CPU to GPU.

To pipeline these processes, the update data is 
processed in segments.  Communication processing 
also includes computing the averages of update data, 
which involves a large amount of computation, so 
this is accelerated by using thread parallelization and 
single-instruction/multiple-data parallelization on the 
CPU.

We tested these methods using 64 GPUs 
and achieved a 1.8-fold increase in training speed 
(Figure 1).

4.	 Memory optimization technique for 
large-scale neural networks
For deep learning, GPUs are used to perform the 

large amount of computation.  The communication 

bandwidth between a GPU and the CPU is narrow, so as 
much of the data used in a sequence of operations as 
possible must be stored in the GPU internal memory to 
utilize the high computational performance of the GPU.  
However, GPUs generally have less internal memory 
than ordinary computers, so this limits the scale of the 
neural networks that can be trained at high speed.

To resolve this issue, we developed a technique 
to optimize memory use and increase the scale of the 
neural networks that can be computed on a single GPU.  
To train each layer of a neural network, error back-
propagation requires computing intermediate error 
data from the weight data, and updating the weight 
data requires computing the weight data error from 
intermediate data.

Our optimization technique focuses on perform-
ing these operations independently.  When beginning 
training, we analyze the structure of each neural net-
work layer and estimate the amount of memory 
required to store each of the intermediate error data 
points and the weight data errors.  We then reduce 
memory use by switching the order of operations so 
that the larger of these two allocated memory areas 
can be reused (Figure 2).4)

Figure 3 shows the memory use for a conven-
tional operation flow in a neural network that includes 
layers with more neuron data (e.g., convolutional lay-
ers) and also layers with more weight data (e.g., fully 
connected layers).  When a hand-written “6” is entered 
as input data, the neural network incorrectly recognizes 
it as “5,” and the error derived by comparing it with the 
correct answer is used to update the neural network 
weights.  Figure 4 shows an example of memory use 
with the operation flow of our memory optimization 
technique.

Conventionally, all memory required for recogni-
tion and learning is allocated, but with our technique, 
computations are done in numerical order, and the 
computations with data requiring the most memory in 
each layer are done first.  By ending the period when 
this data is needed, that memory area can be reused, 
reducing the total memory needed.

We implemented this memory optimizing tech-
nique in the Caffe deep learning framework, which is 
open-source software, and measured memory use in 
the GPU internal memory.

We evaluated this technique using AlexNet and 

Figure 1
Ratio of learning speed as a function of number of GPUs 
used.
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VGGNet, neural networks often used in image recogni-
tion research, and identified a reduction in memory 
use of over 40%.  If the memory saved by using this 
technique is used to increase the number of neural net-
work layers or the number of neurons, it is possible to 
train neural networks of up to twice the size on a single 
GPU.  We have also shown that the number of images 
processed in one training session can be doubled, in-
creasing image recognition accuracy by 4%.5)

5.	 Dedicated deep learning hardware 
technology
To increase the recognition rate during inference, 

there is a trend toward increasing the scale (number 
of layers) of neural networks, which also increases the 
processing required for training.  Generally a GPGPU is 
used for training, and a single chip consumes from 200 
W to 300 W of power.  Because of this, when increas-
ing speed through cluster parallelization, the number 

Figure 2
Technique for optimizing memory use.
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Conventional technique: process and memory utilization.
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Memory efficient technique: process and memory utilization.
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of GPUs that can be used is limited by the available 
power, so power efficiency is a factor determining over-
all processing performance.  If, for example, a chip has 
twice the power efficiency, twice the processing can be 
done given the same available power.

Current training processes usually use 32-bit float-
ing point operations to avoid concern about inadequate 
precision.  The multi-chip parallel processing discussed 
in Section 2 requires communication between chips, 
and we can accelerate parallel processing by reducing 
this communication time.

For these reasons, we have attempted to improve 
energy efficiency for deep learning training and have 

developed hardware that preserves accuracy while 
reducing the bit-width of operations.6)  The computa-
tional core of our deep learning hardware (Figure 5) 
has three blocks: (1) a block to analyze data during 
operations, (2) a database that stores the distribution 
of data analyzed, and (3) a block to store calculation 
settings.  The data analysis block analyzes the data 
output from the compute unit in real time during deep 
learning and stores statistical information representing 
the data distribution in a database.  The distribution 
can then be used to optimize learning settings for the 
computation to maintain sufficient computation accu-
racy to increase deep learning precision (Figure 6).

Figure 5
Improving calculation accuracy in computational core.
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Thus, the units of processed data can be reduced 
from 32 bits to 16 or 8 bits, increasing the capacity of 
the memory, bus, and compute unit from 2–4 times.  At 
the same time, the small data units enable the time 
required for communication between chips to be short-
ened.  This can improve power effi ciency of training for 
deep learning by a factor of two to four.  Implementing 
these functions in a library will facilitate their use in 
various frameworks.

6. Conclusion
This article has given an overview of deep learn-

ing technology and several issues related to it.  It also 
discussed methods to resolve three of these issues, 
including a parallelization technology, a technology 
to improve memory effi ciency, and a dedicated engine 
architecture for reducing data size.

Fujitsu Laboratories will continue development 
related to these issues, including expansion to frame-
works other than Caffe, and will apply the knowledge 
gained to our Deep Learning Unit (DLUTM), which is 
currently under development at Fujitsu.  We will also 
continue advancing R&D contributing to technical de-
velopment in the deep learning fi eld.
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