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In today’s world, there are many situations in which difficult decisions must be made under 
such constraints as a limited resource and a limited amount of time.  These situations in-
clude disaster response planning, economic policy decision-making, and investment portfolio 
optimization.  In such situations, it is often necessary to solve a “combinatorial optimization 
problem,” which involves evaluating different combinations of various factors and selecting the 
optimum combination.  Since the number of combinations increases explosively as the number 
of factors increases, it becomes difficult to find the best answer in a realistic amount of time 
using a von Neumann type processor.  To give a solution for such problems, we have developed 
two schemes to speed up the 1024-bit Ising model and implemented them in a field-program-
mable gate array (FPGA).  Testing demonstrated that a system using this architecture can solve 
a 32-city traveling salesman problem 12,000 times faster than the same algorithm running on 
a 3.5-GHz Intel Xeon E5-1620 v3 processor.

1. Introduction
Moore’s law, which has predicted the growth of 

computer systems over the last 50 years by updating 
the performance approximately 100-fold per decade, 
will end within another decade.1),2)  This implies that 
something innovative computer architecture is needed 
to maintain the progress without relying on semicon-
ductor device performance (Figure 1).

The architecture should feature scaling-indepen-
dent performance, power efficiency, and high speed.3)  
For example, an architecture optimized for a specific 
domain by using general-purpose computing on graph-
ics processing units (GPGPUs) or field-programmable 
gate arrays (FPGAs) would be widely accepted for the 
next ten years.  After that, a non von-Neumann archi-
tecture will be applied to suppress data transfer and 
memory access to achieve power efficient systems.  
Neural networks are expected to be used in future 
computing systems because of their superior power ef-
ficiency.  Quantum computers and coherent computers 
are expected to be applied to NP-hard problems, which 
are basically combinatorial optimization problems, 
because they are much  faster than ones based on the 
conventional von-Neumann architecture.

The search for ways to revolutionize optimization 
computations in the post-Moore era, when von-
Neumann architectures may fail to provide efficient 
solutions has led to increased interest in quantum-
annealing (QA) hardware,4) coherent computing,5) and 
neural networks.6),7)

However, whether and for which problem in-
stances QA or its classical counterpart performs 

Figure 1
Trend in computer performance.
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better than conventional processors are still under 
debate.  Answering these questions and achieving 
meaningful processor speedups by using system- and 
architecture-level innovations are of great importance 
to our ultimate goal, which is to enhance performance 
so that the ever-increasing amount of data can be 
handled with reasonable cost performance.

In this paper, we present an architecture for 
optimizing a fully connected 1024-bit Ising model 
implemented in an FPGA.  A system using this archi-
tecture solved a 32-city traveling salesman problem 
12,000 times faster than a simulated annealing pro-
gram running on a 3.5-GHz Intel Xeon E5-1620 v3 
processor.  This speedup can be increased by a factor 
greater than 100 in the near future by using a hierarchy 
of speed-up methods, ranging from ones for an optimi-
zation engine to those for a multi-ensemble system8) 
composed of a multiple of such engines, each on a 
custom-designed IC.

2. Operating principle
The architecture we propose consists of a PC and 

multiple engines, each of which performs a Markov-
chain Monte Carlo (MCMC) stochastic search and 
thereby minimizes the Ising energy:

 

E(X) = − ∑ Wij xi xj − ∑ bi xi ,
{i,j}

xi ∈{0,1} (i=1,2,···,N), Wij = Wji ,

i

 

(1)

where xi ∈{0,1} is the state variable or bit, N the num-
ber of bits, Wij the connection weight between xi and xj, 
and bi the bias term (Figure 2).  The operating cycle is 
divided into two phases, a trial phase in which a state-
variable change that meets an acceptance criterion is 
selected and an update phase in which the selected 
variable is fl ipped and relevant signals that depend on 
the variable are updated accordingly.

In the trial phase, in each neuron i that generates 
state variable xi, the increment in energy E when the 
state moves to a neighboring state X(i) is calculated.  
Neighboring state X(i) is generated from current state 
X=(x1, x2, ···, xN) by fl ipping state variable xi to 1−xi.  The 
resulting energy E(X) increment is given by 

 ∆Ei = −(1−2xi) hi ,
 (2)

 hi = ∑ Wij xj + bi ,
j

 (3)

where hi is the local fi eld of the i-th neuron.  We use 
an architecture in which at most one state variable 
changes its value during the update phase, and local 
fi eld values hi (i=1,2,···,N) are stored in registers 
(Figure 3).  When a state variable is updated, each local 

Figure 2
Optimizing Ising model using parallel trial scheme.
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field is updated accordingly by adding its increment δhi 
to its current value.  For example, when variable xj is 
updated to 1−xj in the update phase, the resulting δhi 
is

	
δhi

(j) = Wij(1−2xj) .
 (4)

In our design, the number of bits N on a chip is 
1024.  These 1024 bits are fully connected; i.e., any 
two bits, xi and xj, among the 1024 bits can be con-
nected with weight Wij, independent of other bit-pair 
connections.  The weight values are expressed in 16-bit 
fixed-point signed binary code, the local field hi in 27-
bit signed binary, and the bias term bi in 26-bit signed 
binary.  The bias term is implicitly given by setting the 
initial values of hi and xi to satisfy Eq. (3).

The criterion used in the trial phase is selectable 
from either Metropolis-Hastings or Gibbs ones: 

A(∆Ei) = {min[1, exp(−β∆Ei)]
1/[1 + exp(β∆Ei)]

(Metropolis − Hastings)
(Gibbs)

where A(ΔEi) is the acceptance probability of xi flip-
ping to 1−xj, and β (=1⁄ T) is the inverse temperature.  
In a parallel trial scheme, an acceptance decision block 

(ADB) in each neuron compares the value of ΔEi with 
a numerical noise value to produce a binary flag that 
becomes “1” with the probability given by Eq. (5).  The 
numerical noise is generated by a table lookup from a 
random number ri uniformly distributed between 0 and 
1 so that the table outcome is A−1(ri) (Figure 3).  The 
resulting flag bit indicates whether the corresponding 
state variable is a candidate that would change its 
value if selected.

3. Acceleration scheme 1: parallel trials
The update selector selects a single state variable 

from the state variables having a flag value of “1.”  It 
then generates a flag indicating whether there is a can-
didate bit or not and an index for the selected variable.  
Ten stages of two-to-one selectors perform the selection 
and the flag and index generation (Figure 4).  If both 
inputs of the two-to-one selection stage are eligible for 
the next flip, one of them is randomly selected using a 
random binary number.  If there is no candidate for the 
state-variable change, the last-stage selector produces 
a flag value of “0,” and no update is made in the next 
update phase.  The index of the selected candidate is 

,(5)
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used to generate the new state.
This parallel trial scheme accelerates conver-

gence by increasing the probability of finding a state to 
which the system can move in the next update phase.  
Simulation showed that the number of cycles needed 
to reach the global minimum for a 32-city traveling 
salesman problem (TSP) is inversely proportional to the 
parallelism of the trials [Figure 5(a)].  Since the trials 

are executed in parallel for all 1024 variables, there 
is no additional speed penalty due to serial execution 
of multiple trials.  Unlike a parallel update scheme in 
which several state variables are updated in parallel, 
this scheme guarantees convergence without requiring 
knowledge of the problem structure.
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Update selector.
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4. Acceleration scheme 2: dynamic 
offset 
When the state is at a local minimum of the Ising 

energy function, the probability of moving to a new 
state is much smaller than that even with the paral-
lel trial scheme.  The system thus stays at the same 
local-minimum state for many cycles, which slows con-
vergence.  In the rejection-free Metropolis scheme used 
by Zhu, et al.,9) the probability of moving to another 
state is made equal to 1 by normalizing the state ac-
ceptance probability so that the sum of the normalized 
acceptance probabilities is 1, resulting in a time-warp 
feature whereby the number of cycles during which the 
system stays at a local minimum is reduced to one.

Although this time-warp feature is effective, 
the computational overhead for normalizing the ac-
ceptance probability is high.  To reduce the overhead 
while retaining the effects of the time-warp feature, we 
implemented a scheme to subtract a positive offset Eoff 
from the energy increment (Figure 3), which is approxi-
mately equivalent to multiplying a common constant 
factor exp(β⋅Eoff) > 1 by the state-flip acceptance prob-
abilities.  This scheme shortens the time the system 
spends at a local minimum, as shown in Figure 5(b).  
This is achieved by having an offset generator generate 
the offset dynamically by adding a constant increment 
to the offset value when there is no move to a new 
state.  When there is a state-variable flip, the flag out-
put from the update selector becomes one, resetting 
the offset value to zero.

5. Connection between bits 
To search for the shortest path using the pro-

posed architecture, the TSP is mapped onto an Ising 
model.  A 32-city TSP can be represented by a 32×32 
matrix, in which the rows are the visiting order and the 
columns are the cities.  We thus need 1024 bits for a 
32-city TSP.  Wij represents the distance between two 
cities.  Penalties are used to restrict the visits to one per 
city.  Many connections between each bit are needed 
to efficiently implement these constraint conditions.  In 
general, a large number of connections between bits 
with enough resolution in Wij is required to solve a TSP.  
It is particularly hard to solve the TSP using an Ising 
model architecture with fewer connections or lower 
resolution in Wij.  The proposed architecture has both 
fully connectable and 16-bit resolution Wij, making it 

well suited for solving TSPs.  It is also well suited for the 
max-cut problem, a standard graph problem for evalu-
ating the performance of algorithms, as such problems 
require much connectivity but very low resolution in Wij 
(i.e., −1, 0, or 1).

6. Benchmark results
The proposed architecture was implemented in an 

Altera Arria 10 GX FPGA with a 1-GB DDR4 SDRAM (dou-
ble-data-rate fourth-generation synchronous dynamic 
random-access memory) development board clocked 
at 100 MHz.  It took five clock cycles per trial phase, 
resulting in a search of 20.4 G (=1024×100 MHz/5) 
trials/s.  As a benchmark, time-to-solution metrics with 
99% confidence for 32-city TSPs were evaluated.  When 
the parallel trial and energy offsetting were not used, 
the system was about two times faster than ones using 
an in-house simulated annealing algorithm perform-
ing 13.7 M trials/s, running on a 3.5-GHz Intel Xeon 
E5-1620 v3 processor.  When the 1024-parallel trial 
scheme was applied, an additional speedup of about 
1,000 was obtained.  When the dynamic-energy off-
set scheme was used in addition to the parallel trial 
scheme, another speedup of about 6 was obtained, re-
sulting in a 12,000× speedup in processor performance 
(Figure 6).

7. Conclusion
Two schemes were developed for optimizing 

a fully connected 1024-bit Ising model and were 
implemented in an FPGA.  Testing demonstrated that 
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a system using this architecture can solve the 32-city 
traveling salesman problem 12,000 times faster than 
one running on a conventional CPU using the same 
algorithm.
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