
8 FUJITSU Sci. Tech. J., Vol. 53, No. 5, pp. 8–13 (September 2017)

An Accelerator Architecture for Combinatorial
Optimization Problems

 Sanroku Tsukamoto Motomu Takatsu Satoshi Matsubara
 Hirotaka Tamura

In today’s world, there are many situations in which difficult decisions must be made under
such constraints as a limited resource and a limited amount of time. These situations in-
clude disaster response planning, economic policy decision-making, and investment portfolio
optimization. In such situations, it is often necessary to solve a “combinatorial optimization
problem,” which involves evaluating different combinations of various factors and selecting the
optimum combination. Since the number of combinations increases explosively as the number
of factors increases, it becomes difficult to find the best answer in a realistic amount of time
using a von Neumann type processor. To give a solution for such problems, we have developed
two schemes to speed up the 1024-bit Ising model and implemented them in a field-program-
mable gate array (FPGA). Testing demonstrated that a system using this architecture can solve
a 32-city traveling salesman problem 12,000 times faster than the same algorithm running on
a 3.5-GHz Intel Xeon E5-1620 v3 processor.

1. Introduction
Moore’s law, which has predicted the growth of

computer systems over the last 50 years by updating
the performance approximately 100-fold per decade,
will end within another decade.1),2) This implies that
something innovative computer architecture is needed
to maintain the progress without relying on semicon-
ductor device performance (Figure 1).

The architecture should feature scaling-indepen-
dent performance, power efficiency, and high speed.3)
For example, an architecture optimized for a specific
domain by using general-purpose computing on graph-
ics processing units (GPGPUs) or field-programmable
gate arrays (FPGAs) would be widely accepted for the
next ten years. After that, a non von-Neumann archi-
tecture will be applied to suppress data transfer and
memory access to achieve power efficient systems.
Neural networks are expected to be used in future
computing systems because of their superior power ef-
ficiency. Quantum computers and coherent computers
are expected to be applied to NP-hard problems, which
are basically combinatorial optimization problems,
because they are much faster than ones based on the
conventional von-Neumann architecture.

The search for ways to revolutionize optimization
computations in the post-Moore era, when von-
Neumann architectures may fail to provide efficient
solutions has led to increased interest in quantum-
annealing (QA) hardware,4) coherent computing,5) and
neural networks.6),7)

However, whether and for which problem in-
stances QA or its classical counterpart performs

Figure 1
Trend in computer performance.

1011

1010

109

108

107

106

105

104

[year]

×2/1.5year
(×100/decade)

Pe
rfo

rm
an

ce
[c

om
pu

ta
tio

ns
/s

ec
/c

om
pu

te
r]

1975 1985 1995 2005

9FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

S. Tsukamoto et al.: An Accelerator Architecture for Combinatorial Optimization Problems

better than conventional processors are still under
debate. Answering these questions and achieving
meaningful processor speedups by using system- and
architecture-level innovations are of great importance
to our ultimate goal, which is to enhance performance
so that the ever-increasing amount of data can be
handled with reasonable cost performance.

In this paper, we present an architecture for
optimizing a fully connected 1024-bit Ising model
implemented in an FPGA. A system using this archi-
tecture solved a 32-city traveling salesman problem
12,000 times faster than a simulated annealing pro-
gram running on a 3.5-GHz Intel Xeon E5-1620 v3
processor. This speedup can be increased by a factor
greater than 100 in the near future by using a hierarchy
of speed-up methods, ranging from ones for an optimi-
zation engine to those for a multi-ensemble system8)
composed of a multiple of such engines, each on a
custom-designed IC.

2. Operating principle
The architecture we propose consists of a PC and

multiple engines, each of which performs a Markov-
chain Monte Carlo (MCMC) stochastic search and
thereby minimizes the Ising energy:

E(X) = − ∑ Wij xi xj − ∑ bi xi ,
{i,j}

xi ∈{0,1} (i=1,2,···,N), Wij = Wji ,

i

(1)

where xi ∈{0,1} is the state variable or bit, N the num-
ber of bits, Wij the connection weight between xi and xj,
and bi the bias term (Figure 2). The operating cycle is
divided into two phases, a trial phase in which a state-
variable change that meets an acceptance criterion is
selected and an update phase in which the selected
variable is fl ipped and relevant signals that depend on
the variable are updated accordingly.

In the trial phase, in each neuron i that generates
state variable xi, the increment in energy E when the
state moves to a neighboring state X(i) is calculated.
Neighboring state X(i) is generated from current state
X=(x1, x2, ···, xN) by fl ipping state variable xi to 1−xi. The
resulting energy E(X) increment is given by

 ∆Ei = −(1−2xi) hi ,
 (2)

 hi = ∑ Wij xj + bi ,
j

 (3)

where hi is the local fi eld of the i-th neuron. We use
an architecture in which at most one state variable
changes its value during the update phase, and local
fi eld values hi (i=1,2,···,N) are stored in registers
(Figure 3). When a state variable is updated, each local

Figure 2
Optimizing Ising model using parallel trial scheme.

En
er

gy

X (1)

X (2)

X (N)

…

X (N−1)

X (j)

XOptimizer

…

j

i
N2

1

State
space X

W ij

State X

∆E1 ∆EN∆E2

Selector

Tr
ia

l
Up

da
te

W ij < 0

W ij > 0

10 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

S. Tsukamoto et al.: An Accelerator Architecture for Combinatorial Optimization Problems

field is updated accordingly by adding its increment δhi
to its current value. For example, when variable xj is
updated to 1−xj in the update phase, the resulting δhi
is

	
δhi

(j) = Wij(1−2xj) .
 (4)

In our design, the number of bits N on a chip is
1024. These 1024 bits are fully connected; i.e., any
two bits, xi and xj, among the 1024 bits can be con-
nected with weight Wij, independent of other bit-pair
connections. The weight values are expressed in 16-bit
fixed-point signed binary code, the local field hi in 27-
bit signed binary, and the bias term bi in 26-bit signed
binary. The bias term is implicitly given by setting the
initial values of hi and xi to satisfy Eq. (3).

The criterion used in the trial phase is selectable
from either Metropolis-Hastings or Gibbs ones:

A(∆Ei) = {min[1, exp(−β∆Ei)]
1/[1 + exp(β∆Ei)]

(Metropolis − Hastings)
(Gibbs)

where A(ΔEi) is the acceptance probability of xi flip-
ping to 1−xj, and β (=1⁄ T) is the inverse temperature.
In a parallel trial scheme, an acceptance decision block

(ADB) in each neuron compares the value of ΔEi with
a numerical noise value to produce a binary flag that
becomes “1” with the probability given by Eq. (5). The
numerical noise is generated by a table lookup from a
random number ri uniformly distributed between 0 and
1 so that the table outcome is A−1(ri) (Figure 3). The
resulting flag bit indicates whether the corresponding
state variable is a candidate that would change its
value if selected.

3. Acceleration scheme 1: parallel trials
The update selector selects a single state variable

from the state variables having a flag value of “1.” It
then generates a flag indicating whether there is a can-
didate bit or not and an index for the selected variable.
Ten stages of two-to-one selectors perform the selection
and the flag and index generation (Figure 4). If both
inputs of the two-to-one selection stage are eligible for
the next flip, one of them is randomly selected using a
random binary number. If there is no candidate for the
state-variable change, the last-stage selector produces
a flag value of “0,” and no update is made in the next
update phase. The index of the selected candidate is

,(5)

StateState variable update block

Selector

……

Updated-bit index j
xj

hi

Update selector

xi

ADB

Wi1 , Wi2 , … , WiN

ADB

1 i N

Table
A−1(r)

Rand
0 ≤ r ≤ 1

∆E

−1

Eoff

Decision
out

Eoff

flag Eoff

Reset-to-zero
R

D
Q

ADB

−1 1
1 0

−1 0
1 1

Eoff

gen.

∆Ei

∆E1 ∆Ei ∆EN

Figure 3
Optimizer architecture.

11FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

S. Tsukamoto et al.: An Accelerator Architecture for Combinatorial Optimization Problems

used to generate the new state.
This parallel trial scheme accelerates conver-

gence by increasing the probability of finding a state to
which the system can move in the next update phase.
Simulation showed that the number of cycles needed
to reach the global minimum for a 32-city traveling
salesman problem (TSP) is inversely proportional to the
parallelism of the trials [Figure 5(a)]. Since the trials

are executed in parallel for all 1024 variables, there
is no additional speed penalty due to serial execution
of multiple trials. Unlike a parallel update scheme in
which several state variables are updated in parallel,
this scheme guarantees convergence without requiring
knowledge of the problem structure.

Status signals from 1024 bits

Status output
flag bit +10-bit index

Random
bit gen.

Random
bit gen.

…

…

……

Random
bit gen.

Random
bit gen.

Figure 4
Update selector.

Parallel trial scheme
w/dynamic-Eoff scheme

Single trial w/o
dynamic-Eoff

1 10 100 1,000

Parallelism

Ite
ra

tio
ns

 fo
r c

on
ve

rg
en

ce

108

107

106

105

104

105

104

103

102

101

100

Inverse temperature

Av
er

ag
e

tim
e

at
 lo

ca
l m

in
. [

cy
cl

es
]

6 8 10 12 14 16 18 20

(a) (b)

Parallel trial scheme w/o
dynamic-Eoff scheme

Parallelism × trial = const.
(Ref.)

Measured results

Figure 5
Effects of using acceleration schemes: (a) speedup using parallel trial scheme and
(b) reduction in average time spent at local minimum.

12 FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

S. Tsukamoto et al.: An Accelerator Architecture for Combinatorial Optimization Problems

4. Acceleration scheme 2: dynamic
offset
When the state is at a local minimum of the Ising

energy function, the probability of moving to a new
state is much smaller than that even with the paral-
lel trial scheme. The system thus stays at the same
local-minimum state for many cycles, which slows con-
vergence. In the rejection-free Metropolis scheme used
by Zhu, et al.,9) the probability of moving to another
state is made equal to 1 by normalizing the state ac-
ceptance probability so that the sum of the normalized
acceptance probabilities is 1, resulting in a time-warp
feature whereby the number of cycles during which the
system stays at a local minimum is reduced to one.

Although this time-warp feature is effective,
the computational overhead for normalizing the ac-
ceptance probability is high. To reduce the overhead
while retaining the effects of the time-warp feature, we
implemented a scheme to subtract a positive offset Eoff
from the energy increment (Figure 3), which is approxi-
mately equivalent to multiplying a common constant
factor exp(β⋅Eoff) > 1 by the state-flip acceptance prob-
abilities. This scheme shortens the time the system
spends at a local minimum, as shown in Figure 5(b).
This is achieved by having an offset generator generate
the offset dynamically by adding a constant increment
to the offset value when there is no move to a new
state. When there is a state-variable flip, the flag out-
put from the update selector becomes one, resetting
the offset value to zero.

5. Connection between bits
To search for the shortest path using the pro-

posed architecture, the TSP is mapped onto an Ising
model. A 32-city TSP can be represented by a 32×32
matrix, in which the rows are the visiting order and the
columns are the cities. We thus need 1024 bits for a
32-city TSP. Wij represents the distance between two
cities. Penalties are used to restrict the visits to one per
city. Many connections between each bit are needed
to efficiently implement these constraint conditions. In
general, a large number of connections between bits
with enough resolution in Wij is required to solve a TSP.
It is particularly hard to solve the TSP using an Ising
model architecture with fewer connections or lower
resolution in Wij. The proposed architecture has both
fully connectable and 16-bit resolution Wij, making it

well suited for solving TSPs. It is also well suited for the
max-cut problem, a standard graph problem for evalu-
ating the performance of algorithms, as such problems
require much connectivity but very low resolution in Wij
(i.e., −1, 0, or 1).

6. Benchmark results
The proposed architecture was implemented in an

Altera Arria 10 GX FPGA with a 1-GB DDR4 SDRAM (dou-
ble-data-rate fourth-generation synchronous dynamic
random-access memory) development board clocked
at 100 MHz. It took five clock cycles per trial phase,
resulting in a search of 20.4 G (=1024×100 MHz/5)
trials/s. As a benchmark, time-to-solution metrics with
99% confidence for 32-city TSPs were evaluated. When
the parallel trial and energy offsetting were not used,
the system was about two times faster than ones using
an in-house simulated annealing algorithm perform-
ing 13.7 M trials/s, running on a 3.5-GHz Intel Xeon
E5-1620 v3 processor. When the 1024-parallel trial
scheme was applied, an additional speedup of about
1,000 was obtained. When the dynamic-energy off-
set scheme was used in addition to the parallel trial
scheme, another speedup of about 6 was obtained, re-
sulting in a 12,000× speedup in processor performance
(Figure 6).

7. Conclusion
Two schemes were developed for optimizing

a fully connected 1024-bit Ising model and were
implemented in an FPGA. Testing demonstrated that

0.1

1

10

100

1,000

10,000

1/2

1/1,000 1/12,000

1/6

Ti
m

e
to

 s
ol

ut
io

n
[s

]

Conventional
processor

Parallel trial
scheme

Single trial Parallel trial
scheme

+ dynamic-Eoff

scheme

Figure 6
Speed comparison for 32-city traveling salesman problem.

13FUJITSU Sci. Tech. J., Vol. 53, No. 5 (September 2017)

S. Tsukamoto et al.: An Accelerator Architecture for Combinatorial Optimization Problems

©2017 FUJITSU LIMITED

a system using this architecture can solve the 32-city
traveling salesman problem 12,000 times faster than
one running on a conventional CPU using the same
algorithm.

References
1) R. Colwell: The Chip Design Game at the End of Moore's

Law. Hot Chips, Vol. 27, 2015.
2) J. G. Koomey et al.: IEEE Annals of the History of

Computing, July–September, pp. 46–54, 2011.
3) M. Horowitz: Computing's Energy Problem: (and what

we can do about it). ISSCC2014, 1-1, 2014 (referring to
Markovic, EE292 Class, Stanford, 2013).

4) P. Bunyk et al.: Architectural Considerations in the
Design of a Superconducting Quantum Annealing
Processor. IEEE Trans. Applied Superconductivity, Vol.
24, No. 4, 2014.

5) S. Utsunomiya: Mapping of Ising models onto injection-
locked laser systems. Optics Express, Vol. 19, No. 19,
Sep. 2011.

6) P. A. Merolla et al.: A million spiking-neuron integrated
circuit with a scalable communication network and in-
terface. Science 8 August 2014, Vol. 345 No. 6197 pp.
668–673.

7) Y. Chen et al.: DaDianNao: A Machine-Learning
Supercomputer. 47th IEEE/ACM Int. Symp. on
Microarchitecture, pp. 609–622, 2014.

8) K. Hukushima and K. Nemoto: Exchange Monte Carlo
Method and Application to Spin Glass Simulations. J.
Phys. Soc. Jpn. Vol. 65, pp. 1604–1608, 1996.

9) H. Zhu et al.: A Boltzmann Machine with Non-rejective
Move. IEICE Trans. Fundamentals of Electronics, Vol.
E85-A, pp. 1229–1235, Jun. 2002.

Sanroku Tsukamoto
Fujitsu Laboratories Ltd.
Dr. Tsukamoto is currently engaged in
research and development on systems for
combinatorial optimization problems.

Satoshi Matsubara
Fujitsu Laboratories Ltd.
Mr. Matsubara is currently engaged in
research and development on systems for
combinatorial optimization problems.

Motomu Takatsu
Fujitsu Laboratories Ltd.
Dr. Takatsu is currently engaged in re-
search and development on systems for
combinatorial optimization problems.

Hirotaka Tamura
Fujitsu Laboratories Ltd.
Dr. Tamura is currently engaged in re-
search and development on systems for
combinatorial optimization problems.

