
34 FUJITSU Sci. Tech. J., Vol. 52, No. 1, pp. 34–40 (January 2016)

Exhaustive Test-case Generation using
Symbolic Execution

 Tadahiro Uehara

Software testing has been one of the major challenges in the development of software for en-
terprise systems because it accounts for 30% to 50% of the total development cost required.
Meanwhile, such testing has become increasingly important, because the upcoming paradigm
for information and communications technology (ICT) system development, such as test-driven
development and continuous integration, is directed at automated testing. Over a period,
Fujitsu Laboratories has pursued R&D of software testing, mainly focusing on the test-case
generation, which has a major impact on ensuring software quality and minimizing the de-
velopment cost required. Such test-case generation has been successfully realized in the test
function of the FUJITSU Software Interdevelop Designer—Fujitsu’s business application develop-
ment platform. We recognized early on the great potential of symbolic execution, a method
that has become a popular academic research topic today. This paper presents an exhaustive
test-case generation technology that utilizes symbolic execution. It also describes three is-
sues to be overcome for its practical application, aiming to improve the efficiency of program
unit testing and regression tests for version upgrades. This is followed by accounts of the ap-
proaches adopted to overcome these issues. This paper also introduces some cases in which we
evaluated its application to working software assets.

1.	 Introduction
Software testing has long been recognized as one

of the important themes in software engineering, and
many technological innovations have been achieved in
this area both in industry and in academia. However,
software testing accounts for 30% to 50% of software
development man-hours in current enterprise systems,
and thus remains a major challenge. Further, software
testing is becoming increasingly important as software
development paradigms predicated on the automa-
tion of testing, such as test-driven development, which
consists in creating tests before program development,
and continuous integration, which promotes early
detection and fixing of bugs through the daily and con-
tinuous execution of automated testing, are becoming
mainstream.

Table 1 lists the test automation technologies cur-
rently in practical use in the testing phase of business
application development. The testing phases are listed
along the vertical axis, and the tasks at each phase

along the horizontal axis.1) The tasks for which auto-
mation is making progress are test execution and test
management. For test execution, unit testing frame-
works, such as JUnit, have been developed for each
development language. Likewise for integration tests
and system tests, capture & replay type tools that, once
testing procedures have been recorded, can automati-
cally replay them later, are available as commercial
tools and as open-source software, providing essential
tools for modern development practices.

On the other hand, in the area of test analysis,
test design, and test implementation, in other words
test-case and test-data generation, automation has not
progressed. There are combination generation tools
based on the orthogonal array2) and the All-pairs test-
ing method,2) but determining which test conditions
need to be extracted, which directly affects test quality,
is done by humans. Fujitsu Laboratories is carrying out
research and development on how to extract these test
conditions to improve and standardize test quality.

35FUJITSU Sci. Tech. J., Vol. 52, No. 1 (January 2016)

T. Uehara: Exhaustive Test-case Generation using Symbolic Execution

This paper introduces the various technologies
related to test-case generation that the authors have
conducted research on so far. First, it introduces sym-
bolic execution, which is at the core of test technology.
Next, it describes technologies for generating test
cases for unit testing, and introduces technologies for
application to regression testing during program revi-
sions. Last, it discusses future initiatives and prospects.

2.	 Test-case generation using symbolic
execution
Symbolic execution is technology for the ex-

haustive extraction of paths executable by software.
Research on this technology has been conducted since
the 1970s,3) yielding various achievements in the
academic field, but owing to high computational cost,
no progress had been made in terms of practical use.
However, from the 2000s, thanks to rapid advances
in satisfiability problem (SAT)/satisfiability modulo the­
ories problem (SMT) techniques4) for quickly solving
the constraint satisfaction problem (problem of find-
ing a solution that satisfies given formulas), analysis
using symbolic execution for programs of a practical
scale became feasible in a reasonable computational
time period. At present, the generation of test cases
using symbolic execution is a major technology area
in software engineering being worked on by many
researchers.5) Early on, Fujitsu Laboratories became
interested in the possibility of applying symbolic execu-
tion testing to various tests, and has been conducting
research in this area.6) Research on one of these test
areas, the generation of test cases for unit testing, has
been carried to a practical application level, resulting

in provision as a test function for the FUJITSU Software
Interdevelop Designer, Fujitsuʼs development environ-
ment for business applications.7)

The principle of symbolic execution is explained
below. Symbolic execution is an execution method
that treats inputs as symbolic values without concrete
values. When determining the conditional branches
including symbols, both branches, namely true and
false, are executed respectively, recording conditional
expressions for symbols. At that time, taking into
consideration the conditional expressions (path condi-
tions) recorded up to that point, whether each case is
possible is judged using an SMT solver, and the process-
ing continues only the branch whose case is judged to
be possible. By repeating this procedure, it is possible
to extract all the executable paths of the program.

Application of symbolic execution to test-case
generation consists in treating the extracted paths as
test cases. If the given conditional expressions are pos-
sible, the SMT solver outputs sample concrete values for
the symbols. The executable test cases are obtained by
utilizing this value as input data for symbolic execution.

Let us illustrate this by using Figure 1 as an ex-
ample. Taking symbol Symx as argument x, there is
a branch evaluating the symbol variable on the line
2 and line 4 of the program to be tested, so the path
conditions are as follows.
1)	 (Symx=123)&(Symx+1<0)
2)	 (Symx=123)& not(Symx+1<0)
3)	 not(Symx=123)&(Symx<0)
4)	 not(Symx=123)& not(Symx<0)

However, in the case of 1), there is no value
for Symx that satisfies this path condition, and it is

Table 1
Test automation technologies in testing phase of business application development.

Test-case generation Test-data generation

Test level Test analysis Test design Test implementation Test execution Test management

Unit test Coverage measurement
tool Unit testing tool

Vendor tools, Jenkins
plugin, etc.

Integration test
State transition testing
tool, integration testing
tool

Capture & replay tool

System test
Performance testing
tool, Security testing
tool

Acceptance test

R e s e a r c h t a r g e t

36 FUJITSU Sci. Tech. J., Vol. 52, No. 1 (January 2016)

T. Uehara: Exhaustive Test-case Generation using Symbolic Execution

therefore judged to be a non-executable path and no
test case is output. On the other hand, for path condi-
tions 2), 3) and 4), the SMT solver generates 123, -2
and 3 respectively as a solution example, and treats
this as the input data of test cases. In other words,
three paths are extracted as in Figure 1, and executable
test cases are generated as input data for variable x.
As a result, all the paths that can be executed by the
program in Figure 1 can be extracted as test cases.
However, even using todayʼs symbol execution, the ex-
traction of test cases is not possible for all programs.
This is due to three main issues.
1)	 Issue 1: Data type limitation

The data types that can be handled as symbols
are limited to the numeric data type and string data
type, and variable-length data structures such as ar-
rays and lists are not supported. For this reason, it is
necessary to introduce some mechanism other than
symbolic execution in order to ensure test variations
for these data structures, for example by preparing
multiple fixed-length data structures before symbolic
execution. The same is required for object type data.
2)	 Issue 2: Increase in analysis time

The required analysis time grows explosively as
the scale of programs increases. Taking n as the num-
ber of conditional branches in a program, the number
of paths that can be executed by the program is 2n max-
imum, making analysis of programs of a practical scale

virtual impossible. To solve this problem, algorithms
designed to cover a large number of branch conditions
with few paths, such as directed automated random
testing (DART),8) can be used to allow analysis in a
practical amount of time. However, program structures
that are difficult to cover exist for each algorithm, and
therefore techniques for interrupting analysis along the
way, such as limiting the search depth or implement-
ing timeouts, are often used at the same time. In that
case, conditional branches that cannot be covered in
test cases remain.
3)	 Issue 3: Modeling of external world behavior

How to model the behavior of the external world
on which the program to be tested is dependent is an
issue. For example, most analysis engines that carry
out symbolic execution can analyze only programs
written in a particular development language. On the
other hand, the behaviors of libraries, networks, OSs,
database management system (DBMS), and so on,
called by that program cannot be analyzed. Today’s
software seldom complete all the required processing
with just one program, and thus it is essential that
analysis be carried out taking into consideration the
behavior of the external world upon which the program
depends.

How to solve the above issues is a challenge that
needs to be addressed to make practical application
possible.

Figure 1
Mechanism of symbolic execution.

Symbol value Symx

falsetrue

Path condition

true false true false

Path condition

No solution

Program to be tested

Application of SMT solver

x=Symx

Symx=123?

Symx=–2 Symx=3

Symx=123

(Symx=123)
& (Symx+1<0)

(Symx=123)
& not (Symx+1<0)

not (Symx=123)
& (Symx<0)

not (Symx=123)
& not (Symx<0)

Symx=123

x=Symx+1 not (Symx=123)

Symx<0?

x=–Symx

Symx+1<0?

1 int bad_abs (int x) {
2 if (x==123)
3 x++;
4 if (x<0)
5 x=–x;
6 return x;
7 }

37FUJITSU Sci. Tech. J., Vol. 52, No. 1 (January 2016)

T. Uehara: Exhaustive Test-case Generation using Symbolic Execution

Figure 2
Driver/stub preparation according to framework.

3.	 Efficiency improvement of unit
testing
The most obvious avenue to achieve test-case

generation using symbolic execution is to apply it to
unit testing. Unit testing is a fine-grained test car-
ried out during business application development.
Code coverage, which indicates the ratio of the parts
of the program that are executed by the test cases to
the entire program, is often used as a measure of the
completeness of a test. Test-case generation using
symbolic execution is highly compatible with unit test-
ing because it tends to increase code coverage. Of the
unit test tasks, test analysis, test design (identification
of test cases), test implementation (preparation of test
data), and test execution, are automated, which allows
develops to concentrate on the verification of execution
results, resulting in greater efficiency.

The challenge that remains regarding the applica-
tion of symbolic execution to unit testing is how to solve
the three aforementioned issues. To deal with these
issues, the authors adopted an approach constraining
the program to be tested itself in a predefined man-
ner and modeling the behavior of the external world
as a dummy program (stub) for symbolic execution
analysis. In todayʼs business application development,
the framework in charge of the system control portion
and the programs that implement business logics
are clearly separated. In terms of development man-
hours, development of the business logic portion is
most demanding by far, and the number of man-hours
required for testing is correspondingly large. Taking

note of this point, the authors decided to generate test
cases by focusing on business logic programs. In this
approach, the driver calling the business logic and the
stubs of the framework and the application program-
ming interface (API) of common parts called from the
business logic are prepared without carrying out frame-
work analysis. By carrying out analysis using symbolic
execution combining a business logic program with the
above, solving or mitigation of the above-noted issue is
sought (Figure 2).
1) 	 Solution for issue 1

As variable-length data structures cannot be
treated as symbols, test variations must be prepared
with a different mechanism than symbolic execution.
To address this issue, the authors adopted the approach
of preparing variations in terms of array and list length,
and the use or non-use of objects, in advance in the
drivers, stubs, and so on. For example, given methodA
of the program to be tested, as shown in Figure 3, the
generated testFunc driver method has two variations
based on the number of elements of the list variable,
which can be either 0 or 1. This is generated with a
structure that switches the number of elements accord-
ing to the value of boolean variable c. Actually, the
parts recognized by the symbolic execution engine as
branches that must be covered are the branches for
variable c. By generating two cases that cover True and
False for this branch condition, two cases are generated
as a result, namely the case when the number of ele-
ments of the list object is 0, and that when it is 1.

As only predetermined variations as drivers or

Common part stubs

Driver

Typical business application structure

Business logic

Framework

Business logic

Business logic

Common parts

Database

Files

Scope of analysis by symbolic execution

Driver Business logic Database
stubs

Common part stubs

File
stubs

38 FUJITSU Sci. Tech. J., Vol. 52, No. 1 (January 2016)

T. Uehara: Exhaustive Test-case Generation using Symbolic Execution

stubs are generated in this manner, a sufficient num-
ber of test cases cannot be generated for example
for a program that performs special processing only
when there are 5 elements. However, this approach
works well for most business logic such as repeating
some processing according to the number of elements.
Those parts that could not be covered can be handled
by adding test cases manually.
2)	 Solution for issue 2

The authors use search algorithms designed to
raise code coverage, such as DART, so as to prevent
explosive increase in analysis time. However, there
are cases when test cases that cover branches cannot
be discovered in loop structures such as “for.” In order
to eliminate such situations as much as possible, the
logic for processing loop structures is broken down into
components for reuse and implemented as APIs of the
framework and common parts. On the other hand, dur-
ing symbolic execution, analysis can be carried out by
replacing these APIs with stubs that do not have a loop
structure, which allows analysis of loop structures to be
greatly minimized.
3)	 Solution for issue 3

The role of frameworks in business application
development is to allow developers to concentrate

on business logic implementation. For that reason,
access to the external world, such as networks and da-
tabases, is provided by the framework in the form of
APIs. Modeling of the external world consists solely in
creating stubs for framework APIs, and is achieved by
preparing in advance stubs that reproduce the behavior
of framework APIs.

To verify the effectiveness of the approach
proposed by the authors, researchers in Fujitsu
Laboratories conducted an experiment using actual
project assets.9) The experiment was done using the
following procedure, and the coverage of generated
test cases and the man-hours required for each opera-
tion were evaluated.

1.	 Creation of framework stubs
2.	� Test-case generation and execution for task A

programs
3.	� Test-case generation and execution for task B

programs
1)	 Evaluation of coverage

Test cases with 100% code coverage were gener-
ated for 23 of the 26 functions of task A programs and
task B programs. Regarding the remaining three func-
tions, analysis of the parts that could not be covered
revealed that they consisted of dead code that could
not be executed regardless of the test case.
2)	 Evaluation of required man-hours

Table 2 lists the man-hours required for each
operation. In the test, steps 1 and 2 were executed
consecutively, and their man-hours are therefore com-
bined. Moreover, the results were compared with the
actual values when the same project assets were de-
veloped. Incidentally, in this development project, test
cases were extracted manually.

Because man-hours were required for the creation
of the stubs for the framework, the number of test man-
hours for task A programs was 173% (2.73 times) of the
actual value. However, the number of test man-hours
for task B programs, which was performed reusing the
already created framework stubs, was reduced by 39%
compared with the actual value. Based on these re-
sults, once the framework stubs have been created by
the developers of the framework, the number of man-
hours expended by the developers of the business logic
program can be expected to be reduced by 30% to 40%.

Figure 3
Example of generated driver.

static void methodA(OrderBean order){
 List items = order.getItems();

 for (Item item: items)
...
}

Public class SymbolicDriver{
 static boolean c;
 public void testFunc(){
 OrderBean p = new OrderBean();
 ArrayList l = new ArrayList();
 if (c){
 l.add(new Item());//
 } else {
 //
 }
 p.setItems(l);
 Target.methodA(p);
}

Program to be tested

Driver stub generation

Driver

Number of elements = 1

Number of elements = 0

39FUJITSU Sci. Tech. J., Vol. 52, No. 1 (January 2016)

T. Uehara: Exhaustive Test-case Generation using Symbolic Execution

4.	 Application to regression testing
As mentioned in the preceding section, it used

to be difficult to cover all conditions in a limited time,
but owing to the efficiency gain obtained with symbolic
execution, it has become possible to exhaustively gen-
erate test cases. As a result, the quality of unit tests can
be improved in approximately the same time as before.

Another promising aspect of test-case genera-
tion using symbolic execution is quality improvement
for regression testing. Regression tests are run when
creating revised versions of programs, in order to check
whether the modified program performs in the same
way as the previous program. Specifically, regression
testing consists in verifying whether, for a given test
input, the output produced by the modified program
is the same as that produced by the program before
modification. The exhaustive extraction of test cases
is very important for regression tests as well. This ap-
plies most particularly to when programs are modified,
because the developer of the original program is often
unavailable, making the identification of test case
more difficult.

In addition to exhaustively generating test cases
for pre-modification programs using symbolic execu-
tion, the automated method proposed by the authors
records the output produced when test cases are ex-
ecuted as the expected values of test cases. This allows
regression testing without manual labor by executing
these test cases with the modified program. In unit
testing, verification of the test execution results could
not be automated and remained as a manual task for
the developer. However, with regressive testing, result
verification too can be automated, which is expected to
yield dramatic returns in terms of improved efficiency.

To confirm the validity of this approach, an experi-
ment of the above-described method was performed

for the reconstruction of given product functions (C
language, approximately 19 000 steps).10) In this ex-
periment, following test execution by the developer,
test-case generation and execution was performed
using symbolic execution. Following the detection and
fixing of 27 bugs through the test performed by the
developer, testing by the proposed method was able
to detect an additional five bugs. This result indicates
that rare bugs that cannot be detected through manual
testing by a human operator can now be automatically
detected through exhaustive search using symbolic
execution.

5.	 Conclusion
This paper describes the various issues standing

in the way of the practical application of exhaustive
test-case generation using symbolic execution worked
on by Fujitsu Laboratories, their resolution, and their
application effect. At present, in addition to research
to further improvement in the Java, C/C++, and COBOL11)

environments, Fujitsu Laboratories is conducting re-
search and development work on test-case generation
for applications that combine JavaScript and HTML in
response to the great shift toward mobile in recent
years.12) Furthermore, beyond unit testing, Fujitsu
Laboratories is planning to expand its activities to the
area of integration testing for verifying system func-
tions that are offered in combination with modules.

References
1)	 Association of Software Test Engineering (ASTER)

Test tool Working group: Test Tool Beginning Guide
(Introduction) (in Japanese).

	 http://aster.or.jp/business/testtool_wg/pdf/
Testtool_beginningGuide_Version1.0.0.pdf

2)	 K. Akiyama: Special Features: Hot Topics on Software
Testing, 3. Combinatorial Designs for Testing Software.

Table 2
Man-hour reduction through test-case generation.

Number of code
lines to be tested Test time Test time per

1000 lines
Ratio to actual test

man-hours

Actual value for project 569 lines 13.0 h 22.8 h ―

1.	� Creation of framework
stubs

2.	� Test generation and
execution for task A

189 lines 11.8 h 62.4 h 173% increase
(62.4/22.8=273%)

3.	� Test generation and
execution for task B 57 lines 0.8 h 14.0 h 39% decrease

(14.0/22.8=61%)

http://aster.or.jp/business/testtool_wg/pdf/Testtool_beginningGuide_Version1.0.0.pdf

40 FUJITSU Sci. Tech. J., Vol. 52, No. 1 (January 2016)

T. Uehara: Exhaustive Test-case Generation using Symbolic Execution

Tadahiro Uehara
Fujitsu Laboratories Ltd.
Mr. Uehara is currently engaged in re-
search on software testing and Web API
development technologies.

IPSJ Magazine, Vol. 49, No. 2, pp. 140–146 (2008) (in
Japanese).

3)	 T. Tamai et al.: Symbolic Execution Systems. IPSJ
Magazine, Vol. 23, No. 1, pp. 18–28 (1982) (in
Japanese).

4)	 A. Umemura: SAT/SMT solvers and their applications.
Computer Software, Vol. 27, No. 3, pp. 24–35 (2010)
(in Japanese).

	 https://www.jstage.jst.go.jp/article/jssst/27/3/
27_3_3_24/_pdf

5)	 A. Orso et al.: Software Testing: A Research Travelogue
(2000–2014). 36th International Conference on
Software Engineering (2014).

6)	 Fujitsu Laboratories Ltd. et al.: Fujitsu Develops
Software Verification Technology for Practical-use Web
Applications.

	 http://www.fujitsu.com/global/about/resources/news/
press-releases/2008/0404-02.html

7)	 Fujitsu: Release of business program development tool
“Interdevelop Designer” (in Japanese).

	 http://pr.fujitsu.com/jp/news/2014/08/28-1.html
8)	 P. Godefroid et al.: DART: Directed Automated Random

Testing. Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation (PLDI ’05), pp. 213–223.

9)	 A. Katayama et al.: Symbolic execution verification trial
on business system. IPSJ/SIGSE Software Engineering
Symposium (SES2013) (in Japanese).

10)	 S. Tokumoto et al.: Enhancing Symbolic Execution
to Test the Compatibility of Re-engineered Industrial
Software. The 19th Asia-Pacific Software Engineering
Conference (APSEC 2012).

11)	 Y. Maeda et al.: Test Case Generation by COBOL Symbolic
Execution. 19th Foundation of Software Engineering
Workshop (FOSE 2012) (in Japanese).

12)	 H. Tanida et al.: Automatic Unit Test Generation and
Execution for JavaScript Program through Symbolic
Execution. The 9th International Conference on
Software Engineering Advances (ICSEA2014).

http://pr.fujitsu.com/jp/news/2014/08/28-1.html
http://www.fujitsu.com/global/about/resources/news/press-releases/2008/0404-02.html
https://www.jstage.jst.go.jp/article/jssst/27/3/27_3_3_24/_pdf

	名称未設定
	名称未設定

