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Cloud-connected Battery Management 
System Supporting e-Mobility

 Tetsu Tanizawa      Takayuki Suzumiya      Kazuto Ikeda

Electric vehicles have evolved along with a reduction in the size and weight of batteries.  This 
has led to the development of bicycles, motorcycles, and small vehicles suitable for short dis-
tances that are driven by batteries small enough to be replaced by the user.  Once batteries 
become readily replaceable even when away from the home or office, problems such as lengthy 
charging times and limited running distances will be overcome, and the practicality of electric 
vehicles will further increase.  Since it would be difficult for users to carry replacement batter-
ies with them or to store them at convenient locations, a battery-sharing system is essential.  
Fujitsu aims to establish a mechanism for grasping the status of shared batteries that will 
enable users to replace batteries with peace of mind and with no perceived degradation in bat-
tery quality.  This cloud-connected battery management system will maximize the value of the 
shared batteries by using a location data cloud to continuously connect to the batteries, man-
age the state of their charge, and monitor changes in their characteristics.  This paper presents 
the technology to be used to achieve this system and discusses how it will create new value.

1.	 Introduction
It is said that the reduction of CO2 emissions is 

a matter of urgency as a countermeasure to global 
warming and that the powering of vehicles by electri-
cal means is essential.  However, a number of problems 
would arise if electric vehicles (EVs) were made that 
could cover the same distances as gasoline-powered 
vehicles.  For example, the battery would be about half 
the weight of the vehicle, the charging time would be 
long, and the charging facilities would be large in scale.

EVs include electric bicycles and electric scooters 
used mostly for short distances.  These types of vehicles 
can be made using relatively compact and light bat-
teries that can be easily recharged and/or replaced at 
home, and they have found widespread use as a result. 
In addition, the acceleration performance and running 
distances of some EVs are finally reaching the point 
where the EVs are practical.1)

If an EV is run until the battery is almost fully 
discharged, the battery must be quickly recharged or 
replaced with a charged battery.  As batteries evolve 
and energy density increases, it will be necessary to 

ubiquitously deploy more powerful charging facilities or 
implement a system for replacing discharged batteries 
with charged batteries.  The latter alternative is obvi-
ously more cost effective.

As an information technology company, Fujitsu 
aims to create a mechanism for handling battery- 
related information essential to achieving such a bat-
tery replacement system that will push e-mobility into 
a new stage. This paper describes the key concepts and 
technologies for achieving an “e-mobility society.”

2.	 Battery replacement system for 
small EVs
Most everyday driving is done to go shopping or 

perform errands.  In other words, cars are generally 
used for short rides on a nearly daily basis.  The distance 
traveled per trip is considered to be about 10–20 km 
in Japan (meaning an average running distance per 
month within 300 km2)).  These usage conditions mean 
that EVs can be given a compact configuration with a 
battery module that is relatively small and light and 
replaceable as well.  With this in mind, we envision the 
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following usage scenario for EVs: in addition to provid-
ing facilities to charge batteries that are running low on 
power, charged batteries can be placed at key locations 
throughout a community so that discharged batteries 
can be replaced with charged ones as needed. This sce-
nario corresponds to a new way of using EVs as part of 
an e-mobility society.

The following summarizes a battery replacement 
system applicable to an e-mobility society.
1)	 Small and light replacement batteries for use in 

an e-mobility society
Batteries that are small enough and light enough 

to be replaced manually by the user are needed to es-
tablish a battery replacement system.  Three sizes are 
envisioned for a vehicle-mounted lithium-ion battery.
•	 1 kWh (8–10 kg): size of a briefcase
•	 2 kWh (15–18 kg): size of an airplane carry-on 

bag
•	 4 kWh (30–36 kg): size of a golf bag

Even the largest of these three sizes (4 kWh) falls 
within the range of batteries that can be manually re-
placed.  As for the size of vehicles that can be driven by 
these lithium-ion batteries, a 1-kWh battery can drive 
vehicles from a two-wheeled moped to those having 
power close to that of a three-wheeled scooter in the 
125-cc class, and a 4-kWh battery can drive a three- or 
four-wheeled lightweight vehicle.
2)	 Reduction/Elimination of facility investment

Storing charged batteries or installing charging 
lockers within the service area of a battery replace-
ment system (a “cloud-connected battery management 
system”) enables the construction of power stations 
in accordance with demand without having to make a 
major investment.  While the rental of EVs in sightsee-
ing areas or at tourist attractions can be treated as a 
form of business based on EVs, demand can fluctuate 
in no small way on weekends, by the season, or when 
events are being held.  A cloud-connected battery man-
agement system is the most practical way to deal with 
such fluctuation in a flexible manner with the lowest 
cost and thereby promote the spread of the e-mobility 
society.

3.	 Technologies for managing battery 
information toward e-mobility
To make e-mobility practical, it is essential that 

the driver of an EV be accurately informed of the 

battery’s remaining charge and the remaining distance 
that the vehicle can travel.  In this section, we introduce 
Fujitsu’s approach to making more accurate predictions 
of an EV’s running distance.  We examine battery-
replacement technologies for small EVs while referring 
to experimental data on remaining charge, i.e., state 
of charge (SOC), and EV running data for existing stan-
dard-size EVs and light EVs.

3.1	 SOC and running distance
To gain a better understanding of the present 

state of EVs and batteries, we performed an experiment 
using a commercially available Japan-manufactured 
EV.  In this experiment, we attempted to drive up a 
mountain road with four adult passengers on a clear 
day in spring with the air conditioner set to “light.”  This 
uphill road had a maximum slope of 8.8%, and at the 
start point of the course (foot of the hill), the vehicle 
indicated a predicted running distance of 60 km.  Since 
the actual driving distance for this experiment was set 
to about 9.5 km, this value represented a considerable 
margin of about six times, which was initially thought 
to be more than sufficient.  In actuality, however, the 
predicted running distance decreased about 1 km 
every 100 m or so, which meant that power was being 
consumed about ten times faster than when driving 
on level ground.  Nevertheless, by turning off the air 
conditioner along the way and continuing on, we even-
tually made it up the mountain with more than 10 km 
of predicted running distance to spare but not without 
some anxiety.

In other words, the predicted running distance 
with this EV fluctuated greatly, and a sense of unease 
began as soon as the SOC dropped by more than half 
and the predicted value fell below 60 km.  Of course, 
gasoline-powered vehicles also suffer from degraded 
fuel consumption on an uphill road, but with a 10-L 
reserve tank and fuel consumption of 5–10 km/L, the 
ability to drive an additional 50–100 km alleviates any 
concerns.  In short, the situation for gasoline-powered 
vehicles differs from that for EVs in terms of distance 
margin.

A detailed comparison of EVs and gasoline-
powered vehicles shows that the energy efficiency of 
internal combustion engines is 20–30% while that of 
electric motors is 70% or greater, which means that 
the energy efficiency of EVs is about three times that 
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of gasoline-powered vehicles.  An EV is also capable of 
energy regeneration during deceleration, recovering 
about twice the amount of energy used by a gasoline-
powered vehicle.  As a result, an EV can be driven by 
3–5 times less energy than a gasoline-powered vehicle 
in total. 

However, the energy needed to run an air condi-
tioner is the same in both cases, so if fuel consumption 
worsens by 10% when using air conditioning in a 
gasoline-powered vehicle, power consumption would 
worsen by 30–50% in an EV.  Apart from this, the effect 
of weight such as that of passengers and luggage is 
related to vehicle weight.  For small EVs and e-bikes, for 
example, the effect on power consumption can double 
to the extent that adding one passenger can degrade 
power consumption by 10–30%.  These deteriorations 
in power consumption are not as bad as that caused 
by driving on an incline, but they must be taken into 
consideration.

The constituent elements of the equation “run-
ning distance = SOC × full charge energy [kWh] / power 
consumption [kWh per km]” are shown in Figure 1. 
Both SOC and power consumption are dependent on 
many parameters that can fluctuate widely, making 
them difficult to use.

Furthermore, while improvements can be made 
to some of these constituent elements, obtaining an 
accurate understanding of SOC and the state of health 

(SOH), which indicates the degree of SOC degradation, 
is basic to this effort.  An accurate SOC value is also es-
sential to vehicle control.

3.2	 Life Expectancy Visualization (LEV) 
technology
The battery of an EV undergoes discharging and 

charging during a trip, resulting in current that can 
fluctuate in a very complicated manner.  This current 
acts on internal resistance, generating complicated 
drops and rises in voltage.  As a result, the voltage, 
current, and temperature data measured at the battery 
terminals can differ greatly from static characteristics 
obtained in the laboratory.  In addition, heat gen-
eration can significantly alter characteristics.  Thus, 
attempting to determine exactly how much charge 
is left from either a chemical-reaction or electrical 
perspective by measurement alone is futile.  What 
is needed, rather, is procedure-based, full-scale cor-
rective calculations technology.  To this end, we have 
developed LEV technology, which can estimate with 
high accuracy a battery’s SOC and SOH through correc-
tive calculations and compute the battery’s degree of 
degradation.

The flow of SOC and SOH calculation is shown in 
Figure 2. The first step in this process is to perform a 
corrective conversion to estimate the terminal open cir-
cuit voltage (OCV) with the effects of internal resistance 

Figure 1
Constituent elements of “running distance = SOC × power consumption.”
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and current variation removed.  This conversion makes 
use of battery characteristic data (internal imped-
ance, full charge capacity, temperature variation, etc.) 
obtained beforehand.  The relationship between OCV 
and SOC is also measured beforehand as characteristic 
data for each battery, and SOC is estimated from OCV 
using statistical processing, look-up tables, or other 
techniques.  In lithium-ion batteries, the change in OCV 
with respect to a change in SOC is small, so it is easy for 
an error to appear in the SOC estimation calculation.  In 
addition, these characteristic data vary from battery to 
battery and can be affected by heat and usage condi-
tions.  In short, it is exceedingly difficult to minimize 
estimation error solely on the basis of this technique.

Another method for estimating SOC is Coulomb 
counting.  In this method, however, the error associ-
ated with the current sensor and the error resulting 
from the inability to completely track current variation 
in a realistic measurement interval are accumulated 
and magnified.  Thus, sufficient accuracy cannot be ob-
tained with this method either. 

The basic concept of the SOC estimation algo-
rithm in the LEV technology that we developed is as 
follows.  The SOC value obtained by OCV conversion in 
real time is progressively revised using the two SOC cal-
culation methods described above: one based on OCV 
conversion and one based on Coulomb counting (in-
cluding errors).  Convergence calculations applying the 
Kalman filter (KF) algorithm are used for estimating 
the state of a dynamic system using measured values 
having error.  In the conversion to OCV from terminal 
voltage, we use a simple resistor-capacitor equivalent 
circuit to reproduce the transient characteristics of 
voltage accompanied by current variation.  While this 
model cannot fully reproduce battery characteristics, it 

is sufficient for estimating SOC with a somewhat small 
amount of error.  In the model, the basic approach is 
to perform short-term calculations of SOC while trust-
ing the values obtained by Coulomb counting and to 
then revise as needed whenever the error generated is 
deemed to be large on the basis of the converted OCV. 
Which of the OCV and Coulomb counting methods to 
trust and give priority to can be adjusted by setting the 
KF parameters.  Additionally, to deal with error resulting 
from the incompleteness of the battery model for per-
forming OCV conversion, we incorporated a mechanism 
for suppressing correction based on OCV conversion 
during times in battery operation when the effects of 
such incompleteness are prominent.  This strategy pre-
vents an infinite accumulation of error.

With reference to the “Guidelines for Converted 
Electric Vehicles,” published in 2011 by the Association 
for the Promotion of Electric Vehicles, the results of 
estimating SOC by simulation are shown in Figure 3. 
They are based on JC08-mode measurement data for 
an EV converted from a commercially available Japan-
manufactured light automobile.  For this simulation, 
we used a lithium ion battery using iron phosphate for 
the positive electrode.  Among lithium ion batteries, 
this type is particularly prone to error in estimating SOC 
since the change in OCV is especially small with respect 
to a change in SOC.  Nevertheless, our LEV technology 
estimated the SOC with a high level of accuracy (maxi-
mum absolute error under 2%; average absolute error 
under 1%).

The SOH is estimated on the basis of battery usage 
conditions (charge/discharge state: SOC, voltage, cur-
rent, temperature).  Typical of degradation phenomena 
in which battery capacity decreases are a degrada-
tion mode determined by SOC and temperature (shelf 

Figure 2
Flow of SOC and SOH calculation.
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mode) and a degradation mode determined by accu-
mulated current and temperature (current degradation 
mode).  For each of these modes, the relationship 
between the speed of degradation and the parameters 
can be obtained beforehand as characteristic battery 
degradation data.  Temperature, in particular, is an 
important parameter for both modes.  It is the bat-
tery’s internal temperature out of which degradation 
phenomena actually arise, and it can change from 
moment to moment.  In an actual system, a battery’s 
internal temperature cannot be directly measured, so 
we devised an algorithm for estimating it on the basis 
of the charging status and external temperature and 
incorporated the algorithm in our LEV technology.

The results of estimating capacity degradation 
by using LEV technology when applying envisioned 
current patterns continuously for two months and 
performing observations are shown in Figure 4.  The 
actually measured change-in-capacity could be repro-
duced well by fitting internal-temperature estimation 
parameters against battery-degradation characteristic 
data obtained beforehand.

It is therefore possible to estimate SOH in the 
above way by using LEV technology.  However, in 
reality, the battery degradation characteristics can 
suddenly change, preventing such estimation from 
being performed.  We can improve responsiveness to 
the battery’s actual SOH by using SOH estimation as 
a supplement to gauging degradation through actual 
measurements of battery capacity. 

3.3	 Power consumption as an uncertain 
index
Once SOC is obtained, it would appear that 

the running distance could be estimated from SOC 
and average power consumption, much as fuel con-
sumption is used to determine running distance in a 
gasoline-powered vehicle.  In actuality, however, this 
method cannot be used because the result could be 
too uncertain, which would create an element of risk.  
Unlike a gasoline-powered vehicle, there is no margin 
of energy reserves; moreover, energy regeneration, the 
key power saver, is highly variable because it depends 
on the driving style and traffic conditions.  It takes only 
an approaching hill to throw off the power consump-
tion calculations by an order of magnitude.  Power 
consumption is also sensitive to air conditioning use, 
headwinds, fluctuating vehicle loads, etc.

In short, a good index in the form of “actual aver-
age power consumption” cannot be created.  A better 
approach is to clarify reachability; that is, “can the 
vehicle reach its destination?” It is more important to 
display an indicator such as “destination is definitely 
reachable” than “power consumption value.”  This holds 
true for the e-mobility society that we envision.

Given that the effects of an uphill stretch of road 
can be significant, we considered it essential that map 
data be incorporated in LEV technology and decided 
that an EV should be connected at all times to a loca-
tion data cloud by wireless means.  This makes possible 
various types of driver support such as color-coding of a 
map screen to show the vehicle’s definite driving range 

Figure 3
SOC simulation results.
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and/or the range that could be achieved by eco-friendly 
driving techniques.  Providing such support can con-
tribute to a more convenient and stress-free e-mobility 
society.3)

4. Calculation of running distance on 
the cloud
The process fl ow for calculating running distance 

is shown in Figure 5.  The value of distance traveled 
divided by the amount of power consumed, that is, 
the rate at which power is being consumed (power 
consumption), includes a variety of elements, making 
prediction diffi cult.  On the other hand, actual measure-
ment is simple.

For this reason, we begin by measuring power 
consumption at fi xed intervals.  Then, by comparing 
those measurements with GPS and map data, the ef-
fects of road gradients can be well understood.  For 
example, once average power consumption values 
have been obtained for fl at interval A, uphill interval B, 
and steep-uphill interval C, they can be compared, and 
physical formulas can be used to determine the rela-
tionships between power consumption and road rolling 
resistance, road gradient, etc.  These results can be re-
corded, so fairly accurate running-distance predictions 

can be calculated when traveling on the same routes. 
The same results can even be used for predicting run-
ning distance on roads with different gradients.  In this 
regard, we investigated the continuous connection of 
batteries to a location data cloud and the application of 
big data processing using the following techniques as a 
new approach to predicting running distance.
1) Actual measurement of data + table look-up

This technique collects a huge volume of actual 
driving data for diverse parameters such as vehicle 
type, weight, and speed, temperature, wind speed, 
road gradient, and road interval and forms a database 
consisting of look-up tables.  It predicts running dis-
tance by interpolating between actual measurements.  
This technique, though simple in concept, is not consid-
ered to be practical given the amounts of data needed 
and costs involved.
2) Creation of simulation models 

This technique analyzes driving data and creates 
simulation models to enable calculation of running 
distance.  They include resistance models that consider 
rolling resistance at different locations on a road as 
well as vehicle speed, headwinds, etc. and relational 
models that link weight, running distance, and power 
consumption.  This technique is practical as long as the 
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underlying conditions remain simple, but for locations 
or situations in which conditions become complicated 
and intertwined, the above types of models cannot be 
adequately separated.  Additionally, if the parameters 
determining such conditions cannot be input when 
using the models, calculations will not be possible.  On 
the other hand, driving experiments in which some 
parameters can be reliably set can be used to produce 
average models or to show how those parameters af-
fect running distance.  This can be a useful method of 
analysis for obtaining a deeper understanding of target 
phenomena.
3)	 Adaptive correction of a power consumption map

This technique continuously obtains data while 
the vehicle is running, calculates an interval-based 
power consumption model for the current location on 
that day from recent data, i.e., data several minutes 
or several tens of minutes old, and, using that model, 
performs corrective predictions on what distance or lo-
cation can be reached several minutes or several tens of 
minutes into the future.  In this way, running distance 
can be predicted even without map data into the near 
future, which corresponds to a time period in which the 
probability of conditions changing is low.  Nevertheless, 
to improve reliability and accuracy, we can create a 
power consumption map linked to map data to record 
power consumption values along the routes traveled.  
Then, by looking for road-interval data, preferably from 
recent interval data corresponding to the same gradi-
ent as that of roads to be traveled, we can calculate 
and predict power consumption for each such interval. 
Running distance can then be calculated by integrating 
the results for power consumption obtained in this way 
for the actual road to be traveled.  In addition, compar-
ing the running distances so obtained with average 
values for the same model of vehicle and with one’s 
own vehicle history can uncover practical and useful 
information.

In performing detailed calculations, model cal-
culation processing that takes the current driving 
state into account may be performed in proximity to 
the battery while analysis-system calculations such as 
checking against power consumption history or updat-
ing the power consumption map can be performed by 
intermittently connecting to the cloud (Figure 5).

Technique 3) above is more practical than tech-
niques 1) and 2).  It requires minimal preparation and 

can be used even if an extensive data set and models 
have yet to be prepared.  This is because predictions for 
a point in time about five minutes into the near future 
can be made from data obtained from measurements 
performed five minutes earlier during a trip.  If such 
data from actual measurements are stored, calcula-
tion efficiency is raised and reliability and accuracy are 
improved.  It is sufficient to use only typical values 
obtained from statistical processing as information to 
be accumulated and saved.  In addition, organizing 
and storing universal potential energy values and the 
amount of work needed for movement per interval  
(= accumulated loss less potential energy difference), 
for example, will also facilitate calculations while ex-
panding the applicability of this technique since such 
values can be used by other vehicles and batteries. 
This technique is also flexible since predictions can be 
calculated using general values without modification in 
cases where the effects of various parameters cannot 
be fully understood.

Given a situation in which the vehicle’s load, for 
example, differs from past loads, the average work 
needed for moving the vehicle in the last 1–5 minutes 
or the work needed to move the vehicle along a short 
interval in the road can be compared with statistical 
values such as movement-related work obtained from 
the vehicle’s history.  In this way, a general coefficient 
can be obtained that indicates the extent to which 
interval values on the route being traveled should be 
corrected.  For example, if even a somewhat general 
value expressed in the form of “1.4 times worse than 
usual” can be obtained, past values plotted on a map 
can be multiplied by 1.4 and running distance pre-
dicted.  Even if all relevant parameters or conditions 
cannot be rigorously determined, the capability of 
outputting predictions at least for the near future is still 
useful and practical.

In addition to the effects of uphill roads and rain 
and wind, technique 3) can incorporate changes in the 
amount of luggage, number of passengers, etc. during 
a trip, thereby enabling more accurate predictions to be 
made.

Furthermore, establishing a continuous cloud 
connection with a location data platform makes it pos-
sible to store and classify pieces of data such as how 
the battery is used or how it changes at what locations 
and under what situations.  In short, a cloud connection 
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would greatly increase the possibility of obtaining use-
ful feedback for developing a better understanding of 
cause-and-effect relationships in battery operation and 
improving the performance of both batteries and EVs.

5.	 Future developments
Economic benefits and low barriers to imple-

mentation are important factors in the spread of a 
“cloud-connected battery management system” that 
connects shared batteries to the cloud.  Such a system 
has several advantages and possibilities.
1)	 The system can quickly and flexibly supply elec-

trical energy to places like outlying regions or 
sightseeing areas with no transmission lines, 
where power and EV demand can fluctuate, and 
to areas affected by a natural disaster.  At the 
same time, it can reduce CO2 emissions and fa-
cilitate energy management by quantifying that 
reduction, thereby making it a good match for the 
needs of the times for both developing and devel-
oped countries.

2)	 The system can determine the status of dispersed 
batteries on an individual basis, including the way 
in which each battery is being used and the state 
of degradation of each battery.  This means that 
information indicating the value of a battery can 
be clearly presented at all times, which opens up 
a variety of possibilities, as touched upon below.

•	 In contrast to having individuals purchase expen-
sive batteries on their own and keep them at their 
homes, a business model can be envisioned that 
enables batteries to be shared by many users 
and stored in a dispersed manner and that has 
users pay only for what they use or consume.  This 
model will enable individual EV users to use their 
EVs anywhere in a much more convenient man-
ner while enjoying a low cost of introduction to EV 
use.  It will also enable sharing-service providers 
to obtain a quantitative understanding of their 
good customers and reward them appropriately 
for their patronage.

•	 The overall value of shared battery assets can be 
determined and optimized, depreciation can be 
systematically managed, and anti-crime mea-
sures can be enhanced.

•	 The replacement time of batteries can be thor-
oughly managed since each battery’s state of 

degradation is known, and the total cost of 
battery assets can therefore be optimized.  For ex-
ample, any one battery can be exchanged when 
its remaining capacity has reached a predeter-
mined value such as 80%.  In the past, batteries 
were replaced on the basis of total usage time or 
total number of charges with no regard to indi-
vidual variation, which meant that even batteries 
with no degradation could be thrown out and 
value lost.  A cloud-connected battery manage-
ment system can reduce this type of economic 
loss to nearly zero.  This effect is greater the more 
expensive the batteries.

•	 Visualizing the way in which each battery is used 
and the extent of its degradation makes it possi-
ble to determine the actual value of each battery.   
As a result, a battery can be assigned a sales price 
appropriate to its remaining lifetime when it is 
sent to a secondary battery market such as for 
stationary applications.  In this way, the nature 
of the business model and the sense of product 
value can be expected to change. 

6.	 Conclusion
Electric vehicles, deemed essential to reducing 

CO2 emissions, are on the path toward expanded use.  
Two keys to this expansion are a battery replacement 
system and a location data cloud.  A “cloud-connected 
battery management system” that links this replace-
ment system and data cloud and manages individual 
replacement batteries enables an e-mobility society 
and new business models that will revolutionize the 
usage scenarios and values of EVs and batteries.  In ad-
dition, technologies for determining where and by how 
much energy is being used and CO2 emissions are being 
reduced can be envisioned through cloud-connected  
batteries.
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