
348 FUJITSU Sci. Tech. J., Vol. 48, No. 3, pp. 348–356 (July 2012)

Visualization Technology for the K computer

 Atsuji Ogasa  Hiroyuki Maesaka  Kiyotaka Sakamoto
 Sadanori Otagiri

Visualization technology makes images or videos from the results of numerical
computations performed by supercomputers. To visualize the results of parallel
computation on a super-large scale of a few to a few tens of thousands of parallel
processes, processing in which bulky computation result data are rendered at high
speeds is required. The conventional method of transferring computation result
data to a visualization server may give rise to many challenges that are difficult to
meet such as reassembly and transfer of extensive amounts of computation result
files. This paper presents technologies for solving these challenges to visualize
super-large-scale computations performed by the K computer and the results of
applying those technologies.

1. Introduction
The results of numerical computations

performed by supercomputers are obtained
as a series of digital numerical data on scales
that have recently come to exceed one billion.
Computer graphics (CG) can be used to render
these numerical data as images or videos to help
people intuitively understand them, which is a
technology called visualization.

This paper presents solutions to challenges
for visualizing super-large-scale computation
results with the K computernote)i and the
technologies applied.

2. Challenges in visualization
of large-scale parallel
computation
Generally, visualization is achieved by

note)i “K computer” is the English name
that RIKEN has been using for the
supercomputer of this project since July
2010. “K” comes from the Japanese word
“Kei,” which means ten peta or 10 to the
16th power.

transferring the numerical data computed on
numerical computation results obtained by
a supercomputer to a visualization server, in
which visualization software is used, as shown
in Figure 1. The number of parallel processes
performed in a server is often one to about a
dozen. In the past, numerical computations
were usually performed in a supercomputer on
scales of a few tens to a few hundreds of parallel
processes. And, for visualization, the obtained
data on numerical computation results were
reassembled into one to about a dozen files
depending on the number of parallel processes
performed by the visualization server. In the
K computer, however, numerical computation
takes place on scales of a few to a few tens of
thousands of parallel processes. Reassembling
the resultant data for visualization takes a
tremendous amount of time and trouble, and the
extensive size of the reassembled files give rise to
challenges:
1) Too much transfer time is required to

move the computation result data to the

349FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

visualization server. For example, the fi le
size of double precision scalar data with
computational grid points of the cube of
40963 is about 550 Gbytes, which requires
at least one hour for transfer even with a
1000BASE-T network.

2) Even if the computation result data are
successfully transferred, the visualization
server has insuffi cient memory to store the
computation result data. For example, the
memory size of PC workstations, which are
often used as visualization servers, is only
up to 192 Gbytes and the 550-Gbyte data
mentioned above cannot be stored even if
they are converted into single-precision
data.

3) Thinning grids out from computation result
data at regular intervals so as to reduce the
fi le size may cause important information
to be lost. Appropriate thinning requires
the characteristics of each type of data to be
taken into consideration, and this cannot be
handled in a general manner.
In this way, with large-scale parallel

computations such as those performed by
the K computer, there is a problem that
the conventional visualization technique of
reassembling computation result data for
transfer to the visualization server cannot be
employed.

3. Visualization library of the K
computer
The fundamental cause of the challenges in

visualizing the results of computations with the
K computer is that computation result data are
diffi cult to transfer and reassemble. The cause of
these challenges can be removed by the following
approaches.
1) Eliminating the need to transfer

computation result data by visualizing on a
node of the K computer

2) Eliminating the need to reassemble
computation result data by visualizing with
the same number of parallel processes as
the computation
In general, visualization processing is

often performed while interactively changing
parameters as in the sweeping of a cross-section
position or iso-surface value. On a node of the K
computer, however, even visualization processing
must be performed as a batch job for operational
reasons. For that reason, volume rendering,1)
which is suitable for grasping at a glance the
physical quantity distribution in the entire
3D computational space without interactive
processing such as cross-section sweeping, is
employed as a visualization technique for the
present development.

Based on these approaches, we have
developed visualization software that uses

Figure 1
Concept of visualization.

Data
transfer

Visualization server

Supercomputer

Results of numerical
calculation

Visualization result
Visualization

software

350 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

volume rendering, which effi ciently runs on a
node of the K computer even with the number of
parallel processes on a scale exceeding thousands
and a visualization library that includes tools
for assisting use of the visualization software.
Figure 2 shows the concept of visualization
with the K computer. Data on the results of
numerical computations are visualized on a node
of the K computer and the result of visualization
is output as an image fi le in JPEG or some other
format. The size of the image fi le depends on
the resolution of the image regardless of the
number of computational grid points, and is as
small as a few hundred Kbytes to a few Mbytes
in many cases, which means that the result of
visualization can be easily transferred to the
user’s terminal for viewing.

As interfaces for passing the computation
result data to the visualization library, we have
prepared program and fi le interfaces.

A program interface calls an application
programming interface (API) with C or
FORTRAN from the user program. Table 1
shows the APIs and data structures of the
visualization library. A program interface can be
used in two ways:

3.1 Program interface
1) To call an API from the program to read the

computation result data.
2) To call an API from the numerical

computation program.
One good point of the former is that

visualization can be achieved without modifying
the numerical computation program. An
example of program coding based on 1) is shown
in Figure 3.

The latter is advantageous in that the data
in the memory can be directly visualized, which
eliminates the data transfer cost from reading
fi les and makes it easier to visualize the process
of computation.

3.2 File interface
A fi le interface is intended for directly

reading the computation result data. File
interfaces are already prepared for some fi elds
of numerical computation performed by the K
computer. Simply by outputting computation
result data in a format compatible with the
fi le interface, the user can directly read the
computation result data to the visualization
library for visualization without having to use
APIs to create a program.

An image of using the visualization library
through program and fi le interfaces is shown in
Figure 4.

As tools to help people use visualization

Figure 2
Concept of visualization with the K computer.

Data
transfer

User terminal
K computer

Results of
numerical calculation

Visualization result
(still image, video)

Visualization
software

Visualization
result image

351FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

software, we have prepared a command library
and file splitter tool. The command library is a
tool for creating a visualization parameter file
that stores the point of view information and
transfer functions for volume rendering. It is
implemented as an interpreter by Python and
runs on the login node of the K computer. The file
splitter tool, which is used when the computation
result is output as a single file, is intended for
splitting the file into an arbitrary number of files
for the purpose of efficient parallel visualization.

4. Visualization software for
massively parallel processes
To provide visualization software that

works with massively parallel processes, we have

implemented volume rendering with a target of
achieving a parallelization efficiency of 80% or
higher on a scale of 1000 parallel processes. The
existing methods of implementing parallelization
by volume rendering include parallelization for
each pixel to be rendered and parallel volume
rendering for split computational domains in
order to composite rendered sub-images and

Table 1
APIs and data structures of visualization library.

Common API Description

CPBR_Init Initializes PBVR

CPBR_Get_imageinfo Acquires composite image information

CPBR_Run Runs PBVR

CPBR_Finalize Finalizes PBVR

CPBR_OutputJpeg
Outputs visualization result as a JPEG
file

CPBR_OutputPng
Outputs visualization result as a PNG
file

API for structured
grid data definition

Description

CPBR_Init_array_info
Initializes a structure that stores
structured grid data parameters

CPBR_Set_array_info
Registers a structure that stores
structured grid data parameters with
PBVR

API for unstructured
grid data definition

Description

CPBR_Init_ucd_info
Initializes a structure that stores
unstructured grid data parameters

CPBR_Set_ucd_info
Registers a structure that stores
unstructured grid data parameters
with PBVR

Viewer operation API Description

CPBR_Set_view
Rotates an object around the
specified axis

Structure for structured grid data: s_PBR_array_info

Member name Type Description

extent float[2][3]
Specification of existence domain
of entire model

datatype int Data type

datasize int[3] Grid size

coordtype int Coordinate type

coord float * Coordinate data

data void * Visualization data

Structure for unstructured grid data: s_PBR_cell_info

Member name Type Description

extent float[2][3]
Specification of existence domain
of entire model

node.n int Number of nodes

node.datatype int Data type

node.data void * Visualization data (node)

node.coord float * Coordinate data

cell.datatype int
Data type (common to all
elements)

cell.n_tet int Number of tetrahedral elements

cell.c_tet int *
Tetrahedral element connection
information

cell.d_tet void * Tetrahedral element data value

cell.n_pyr int Number of pyramidal elements

cell.c_pyr int *
Pyramidal element connection
information

cell.d_pyr void * Pyramidal element data value

cell.n_prism int
Number of triangular prism
elements

cell.c_prism int *
Triangular prism element
connection information

cell.d_prism void *
Triangular prism element data
value

cell.n_hex int Number of hexahedral elements

cell.c_hex int *
Hexahedral element connection
information

cell.d_hex int Hexahedral element data value

352 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

Figure 3
Example of coding with APIs.

Figure 4
Interfaces for using visualization library.

Note: In the original code, the part that follows the double slash “//” is written in Japanese.

API
PBVR

Image file

Program interface

Command library for
parameter generation

K computerLogin node
Computation code

Computation
 result

Visualization
parameters

Image file

PBVR

Login node K computer

Visualization
parameters

File interface

Computation
result

File read program

File
splitter

tool

Command library for
parameter generation

353FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

create an entire image. However, parallelization
for each pixel requires inter-node communication
between computation nodes to which the cells
to be visualized that are sorted along with
the line of sight penetrating the pixel are
distributed, resulting in lower efficiency with
massively parallel processes. In the method
of parallelization for each split computation
domain, sub-images must be composited by each
pixel in order from the point of view toward the
far side so as to obtain the penetration effect.
This means that inter-node communication may
be necessary in some cases to judge the order of
images. It also means that, depending on how

the computation domain is split, one of the split
domains may have another domain inserted
before or after along the direction of the line of
sight. These things may make it hard for people
to judge the order. In this case, the data on
numerical computation results must be further
split until it becomes possible to judge the order
before visualization can be performed.

Accordingly, we have adopted particle-based
volume rendering (PBVR)2) developed by the
Koyamada Laboratory of Kyoto University as a
general-purpose volume rendering technique for
massively parallel processes. Figure 5 shows a
processing block diagram of PBVR. For PBVR,

Compositing

Rank 0

Final image

Sub-image

Repeat by
number of cells

Rank

Data type conversion

Vertex coordinates
geometric transformation

Data gradien
computation

Computation of number
of generated particles

Particle generation

Particle projection

Data type conversion

Vertex coordinates
geometric transformation

Data gradient
computation

Computation of number
of generated particles

Particle generation

Particle projection

Compositing

Sub-image

Repeat by
number of cells

n-1

Figure 5
PBVR processing block.

354 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

parallelization is performed for each cell enclosed
in a computation grid, rather than each pixel or
split domain. While the amount of computation
required for cell rendering is larger than with
the existing techniques, the rendering process
for each cell can be carried out independently
without inter-node communication, which makes
it suitable for massively parallel processes. In
addition, compositing in PBVR is performed not
for each pixel but for each subpixel resulting
from pixel splitting, which eliminates the need
to consider the order of rendering to obtain the
penetration effect. Consequently, no inter-node
communication for judging the order takes place
and there is never a case in which the order
cannot be judged.

Meanwhile, visualization in a massively
parallel environment is known to cause a large
amount of inter-node communication due to
compositing, which decreases the processing
efficiency, even if the cell rendering efficiency
is improved.3) As compositing techniques, the
direct send and binary swap methods have
widely been used up to now. The former is
applicable to an arbitrary number of parallel
processes and easy to implement but inter-
node communication causes a bottleneck with
massively parallel processes, leading to a serious
degradation in speed. The latter features a low
communication cost but is only applicable to the
number of parallel processes that is a power of
two. Numerical computation is not necessarily
performed by parallel processes in a number that
is a power of two and the binary swap method
does not suit the purpose of visualizing without
reassembling the result data. For the present
development, the 2-3 swap method,4) which
is an improvement of binary swap to make it
applicable to an arbitrary number of parallel
processes, has been adopted and implemented as
a compositing technique.

5. Estimation of visualization
library performance
We have estimated the performance of the

visualization library with regard to large-scale
data on parallel computation results. First, we
used scalar data on grid points of a Cartesian grid
with a computational space resolution of 1024
× 1024 × 900 (approximately 900 million cells)
as inputs and used the K computer to measure
the processing performance of generation of a
volume-rendered image with a resolution of 1024
× 1024 with 1000 and 2000 parallel processes.
Based on the result of this measurement, we
estimated the visualization time for large-scale
data with a computational space resolution of
4096 × 4096 × 3600 (approximately 60.4 billion
pixels) with the number of parallel processes
changed from 1000 up to 80 000. The result of
the estimation is shown in Figure 6. With data
of this scale, the visualization time is estimated
to be almost linearly reducible with up to
20 000 parallel processes and, with over 20 000
parallel processes, visualization is estimated to
be achievable in an almost constant time. We
expect to achieve the purpose of the development
as shown below.
• By visualizing large-scale data on the

compute nodes it becomes unnecessary
to transfer a large amount of data to the
visualization server.

• By conducting visualization in a parallel
environment it becomes unnecessary to
rebuild the data.

• To work efficiently in a massively parallel
environment on a scale of several thousands
to several tens of thousands of parallel
processes in the K computer.

6. Future challenges
We plan to measure the visualization

performance with the visualization library on
a scale of a few tens of thousands of parallel
processes in line with the expansion of the system
scale of the K computer to verify the estimation

355FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

result. We also intend to select some cases
of massively parallel large-scale computation
actually performed by the K computer to test the
application of the visualization library, thereby
developing an environment and tools for making
the library even easier to use.

7. Conclusion
We have identified challenges and

developed a visualization library to solve them.
The K computer has been used to measure the
visualization time with the visualization library,
and the visualization time in a massively parallel
environment has been estimated. In this way, we
have verified that the result of massively parallel
large-scale computation can be visualized by
using the visualization library.

Lastly, we would like to extend our
sincerest gratitude to Mr. Motoyoshi Kurokawa
of RIKEN, who offered assistance and discussed
implementing the visualization library in the K
computer.

References
1) R. A. Drebin et al.: Volume Rendering. Computer

Graphics, Vol. 22, No. 4, SIGGRAPH ’88,
pp. 65–74, 1988.

2) N. Sakamoto et al.: Improvement of particle-
based volume rendering for visualizing irregular
volume data sets. Computers & Graphics,
Vol. 34, No. 1, pp. 34–42 (2010).

3) J. Nonaka et al.: Performance Evaluation of
Sort-Last Image Compositing in a Massively
Parallel System. Proceedings of the Symposium
on Computational Fluid Dynamics (CDROM).
(in Japanese) No. 22, Research Paper No. B4-1,
2008.

4) H. Yu et al.: Massively Parallel Volume
Rendering Using 2-3 Swap Image Compositing,
Proceedings of IEEE/ACM Supercomputing 2008
Conference, 1-11.

Figure 6
Estimated visualization time for 60.4 billion cells.

P
ro

ce
ss

in
g

tim
e

(s
)

Number of parallel processes

200

180

160

140

120

100

80

60

40

20

0
1000 2000 5000 10 000 20 000 40 000 60 000 80 000

356 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

A. Ogasa et al.: Visualization Technology for the K computer

Atsuji Ogasa
Fujitsu Ltd.
Mr. Ogasa is currently engaged
in development of applications for
visualization in the field of scientific
computation.

Hiroyuki Maesaka
Fujitsu Systems East Ltd.
Mr. Maesaka is currently engaged
in development of applications for
visualization in the field of scientific
computation.

Kiyotaka Sakamoto
Fujitsu Systems East Ltd.
Mr. Sakamoto is currently engaged
in development of applications for
visualization in the field of scientific
computation.

Sadanori Otagiri
Fujitsu Systems East Ltd.
Mr. Otagiri is currently engaged
in development of applications for
visualization in the field of scientific
computation.

