
317FUJITSU Sci. Tech. J., Vol. 48, No. 3, pp. 317–323 (July 2012)

Compiler Technology That Demonstrates
Ability of the K computer

 Koutarou Taki Manabu Matsuyama Hitoshi Murai
 Kazuo Minami

We developed SPARC64 VIIIfx, a new CPU for constructing a huge computing
system on a scale of 10 PFLOPS. To make the best use of the features of this
CPU, we developed a language package called “Parallelnavi Technical Computing
Language.” This paper presents compilers for Fortran/C/C++ included in the
language package. In these compilers, we enhanced the optimization function for
sequential processing (sequential optimization) and the function of the compilers to
automatically generate thread parallel processing codes (automatic parallelization)
to bring out the best of SPARC64 VIIIfx. Moreover, we have provided a hybrid
parallel execution model that combines thread parallel execution and process
parallel execution to realize high execution performance in a large-scale system.
This model supports the latest industry-standard language specifications, and so it
has allowed us to compile a wider range of programs.

1. Introduction
The demand for large-scale, ultra-high-speed

computing in the field of scientific computation is
ever increasing. In a national project as a joint
development with the Institute of Physical and
Chemical Research (RIKEN), a target was set
to build a system with a LINPACK performance
of 10 PFLOPS (a system scale of ten quadrillion
[ten thousand trillion] operations per second),
which is almost 100 times the performance of
conventional systems. To build such a system,
we developed a CPU with proprietary extensions
to the SPARC architecture.

To maximize the performance of a
CPU, it is important to make the most of its
features. To that end, we adopted a compiler
technology closely linked with CPU architecture
enhancement. The CPU performance has been
brought out by implementing a new compiler
technology in addition to taking advantage of the
existing optimization technology.

The K computer,note 1) which has been
promoted by the Ministry of Education, Culture,
Sports, Science and Technology and under
development by the RIKEN and Fujitsu, is a
massive system with more than 80 000 multi-
core CPUs connected together. To achieve high
execution efficiency in such a large system, we
have provided support for a hybrid execution
model combining thread parallel and process
parallel execution.

This paper presents the technologies adopted
for the compilers intended for the K computer
and our approach to improving its performance.
The following sections give descriptions with
the focus on 1) language specification (support
for new standards and industry standards), 2)
hardware feature, 3) optimization for sequential

note 1) “K computer” is the English name
that RIKEN has been using for the
supercomputer of this project since July
2010. “K” comes from the Japanese word
“Kei,” which means ten peta or 10 to the
16th power.

318 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Taki et al.: Compiler Technology That Demonstrates Ability of the K computer

processing that makes use of SPARC64
VIIIfx (sequential optimization), 4) automatic
parallelization technology and hybrid parallel
execution model and 5) debugging function.

2. Features concerning language
specification
For the K computer, we have developed

three compilers: Fortran, C and C++ compilers.
In the development of these compilers, we paid
attention to the following points in relation to
language specification.
1) Adoption of new standards

Programming language standards are
not invariable. They have been revised
once every few years so as to improve the
description efficiency based on past experiences
of programming engineering. It is important
to support new standards so as to reduce the
entire research period including the period of
application program development.
2) Support for industry standards

In today’s program development, well-
developed open-source software (OSS) is
generally used, thereby reducing the development
person-hours to focus on the core of the problem
to be solved. Accordingly, support for industry
standard specifications used in OSS is essential.
3) Hardware optimization

It is important to have libraries and
optimization mechanisms that allow the
performance of the target platform to be
maximized. We need to offer appropriate support
for the new functions introduced in SPARC64
VIIIfx.

To satisfy these three requirements, we
established the following language specification.
• Fortran compiler

Adopted major Fortran 2003 standards.
Provided conformity to OpenMP 3.0.
• C compiler

Provided conformity to the C99 standard.
Provided support for some of the C language
extension specifications implemented in GNU

C compiler version 4.1.2. Prepared built-in
functions capable of directly handling the single
instruction multiple data (SIMD) instructions
added in High Performance Computing -
Arithmetic Computational Extensions (HPC-
ACE). Provided conformity to OpenMP 3.0.
• C++ compiler

Provided conformity to C++03 standard.
Prepared GNU extension specification and
built-in functions capable of directly handling
SIMD instructions equivalent to those of the C
compiler mentioned above. Provided conformity
to OpenMP 3.0.

For the three compilers above, we prepared
BLAS, LAPACK and ScaLAPACK, industry-
standard math libraries optimized for the K
computer and our math libraries SSL II, C-SSL
II and SSL II/MPI.

As a means of inter-node parallelization, we
have provided XPFortran, Fujitsu’s proprietary
parallel programming language, in addition to
the Message Passing Interface (MPI) library.
XPFortran has grammar with Fortran extended
with directives and allows hybrid parallel
(automatic thread parallel and MPI process
parallel) execution by combining with sequential
optimization and automatic parallelization,
which will be described later.

3. Hardware features
This section gives a description of HPC-

ACE, a set of extensions to SPARC64 VIIIfx, and
Virtual Single Processor by Integrated Multicore
Parallel Architecture (VISIMPACT), which
has already been used for the Fujitsu SPARC
architecture.

3.1 HPC-ACE
HPC-ACE is an architecture based on the

conventional SPARC architecture extended
for supercomputers. HPC-ACE includes the
following four extensions.
1) Register expansion

With reference to the conventional SPARC

319FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Taki et al.: Compiler Technology That Demonstrates Ability of the K computer

architecture, the number of integer registers has
been expanded to 188 from 156 and the number
of floating-point registers to 256 from 32. This
provides potential for improved instruction-
level parallelism and reduces the number of
data backups and restorations to and from the
memory resulting from insufficient registers,
which leads to faster applications.
2) Addition of SIMD instructions

SIMD provides a mechanism for performing
the same operation on multiple pieces of data
simultaneously with one instruction. HPC-ACE
allows two operations to be executed at the same
time in one instruction.
3) Addition of new instructions

New instructions often used in scientific
computation have been provided including
reciprocal approximation, trigonometric function
auxiliary, masked substitute and maximum/
minimum value instructions. Reciprocal
approximation instruction does not interrupt
pipeline operation and high computational
throughput can be maintained. With a simple
division program, use of reciprocal approximation
instruction reduces the runtime to one-third
or less. The introduction of masked substitute
instruction allows the conditional branches (IF
statements) in loop processing to be reduced,
which accelerates the optimization of loop
processing.
4) Sector cache

Sector cache is a function in which cache is
divided into two fields to separate reusable data
from temporary data so that the reusable data is
cached as much as possible. This improves the
cache hit ratio, and allows applications to speed
up.

3.2 VISIMPACT
VISIMPACT is an architecture that allows

the user to handle multiple cores as one high-
speed CPU. This mechanism can be used to
speed up thread parallel processing and hybrid
parallel processing in multi-core CPUs.

Two important technologies have been
realized with VISIMPACT.
1) Shared L2 cache

The structure of sharing the L2 cache
between all cores of the CPU mitigates the
impact of false sharingnote 2) and suppresses the
degradation of application performance.
2) Inter-core hardware barrier

It may be necessary to synchronize between
threads to allow for inter-core thread parallel
processing. Inter-core hardware barrier
processing is approximately ten times faster
than software barrier processing; even when
the scale of the problem is small (parallelism is
fine-grained), high-efficiency inter-core thread
parallel processing can be achieved.

4. Sequential optimization
technology
Of the enhancements to compilers for

hardware features mentioned in the previous
section, this section describes the technology for
sequential optimization.

4.1 Register expansion and SIMD
The registers expanded by HPC-ACE can be

shared with registers defined by SPARC-V9 for
use. This means that the number of registers to
be allocated by compilers has simply increased.

While non-SIMD instructions can access all
arbitrary registers, SIMD instructions perform
simultaneous operation on a pair of basic and
extended registers. There is a restriction that
an extended register number is fixed to be the
corresponding basic register number plus 256.
For example, a SIMD operation instruction
performs operation simultaneously on f[0] and
f[256]. Because of this restriction, analyzing and

note 2) In a system composed of multiple cores with
respective caches, when non-shared data
specific to cores are on the same cache line,
false sharing is a phenomenon in which
writing to the data concerned causes the
cache line to be invalidated and inter-cache
data transfer occurs.

320 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Taki et al.: Compiler Technology That Demonstrates Ability of the K computer

optimizing dependencies become complicated
when SIMD and non-SIMD instructions are
mixed together. Still, it has a significant effect
of allocating registers with minimum waste. For
example, if a non-SIMD instruction allocates f[0]
and f[2], the number of registers that can be used
by a SIMD instruction is decreased by two but, if
f[0] and f[256] are allocated, the decrease in the
number of registers that a SIMD instruction can
use is only one.

When there is any restriction to the registers
to be allocated, data are generally transferred
to registers that satisfy the restriction but data
transfer is minimized to improve the execution
performance. However, if register allocation is
performed simultaneously with optimization
through minimizing the number of transfer
instructions, the complexity of processing
increases, which means a lot of time and memory
is required for compilation.

We have taken an approach of generating
transfer instructions before register allocation
to allocate the same registers before and after
transfer as much as possible. Data transfer
instructions with the same registers before
and after transfer can be deleted after register
allocation, and so generation and execution
of more transfer instructions than required is
avoided. In this way, the optimum register
allocation has been achieved within a practicable
range of time and memory amount.

4.2 Extraction of instruction-level
parallelism
Instruction-level parallelism is an indicator

of how much of processing can be executed in
parallel in an instruction sequence. Higher
parallelism means the computing units are idle
for a shorter time and are kept busy, which
leads to faster execution of applications. A
compiler makes use of optimization such as
instruction scheduler and software pipelining to
rearrange the order of instructions and generate
an instruction sequence so as to achieve higher

parallelism. With improved instruction-level
parallelism, however, the need for temporarily
holding data in registers also increases, resulting
in a larger number of registers used. For
this reason, the maximum instruction-level
parallelism could not always be extracted with
the conventional architecture.

With HPC-ACE, the larger number of
registers allows enhanced instruction scheduler
and software pipelining to be positively
applied. Combining such optimization with
reciprocal approximation and masked substitute
instructions has led to the achievement of even
higher instruction-level parallelism than before.

4.3 Effect of HPC-ACE
We have evaluated the performance of the

compiler sequential optimization that makes use
of register expansion and SIMD instructions,
which are features of HPC-ACE. To do so,
we used 146 Fortran performance evaluation
programs owned by our division (Figure 1).
The vertical axis of the figure indicates the
performance ratio (improvement rate) with
reference to the performance with only the basic
registers allocated and no SIMD instructions
used as performance value 1. The result showed
that a performance improvement of 1.26 times
on average and 4.03 times at the maximum has
been confirmed with only expanded registers

Figure 1
Results of evaluating register expansion and SIMD.

Effect of register expansion

Effect of register expansion and SIMD

Benchmark programs (146 programs)

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t r

at
e

6

5

4

3

2

1

0

321FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Taki et al.: Compiler Technology That Demonstrates Ability of the K computer

used (and no SIMD instructions used). With
both expanded registers and SIMD instructions
used, a performance improvement of 1.66 times
on average and 5.62 times at the maximum has
been confirmed.

5. Automatic parallelization
technology and execution
model
Of the technologies implemented for

enhancing the existing automatic parallelization,
this section describes variable privatization,
utilization of the hardware barrier function and
an execution model that combines thread parallel
and process parallel processing (hybrid parallel
model).

5.1 Variable privatization
Privatizing intra-loop variables has allowed

automatic parallelization of loops that could not
be automatically parallelized in the past and
expansion of the range of parallelization, which
has led to an improved parallelization rate.
With this function, automatic parallelization
has become possible for all loops with OpenMP
directives in the NAS Parallel Benchmarks
(Table 1). That is, with programs like the NAS
Parallel Benchmarks, manual program analysis
and addition of OpenMP directives are not
required but equivalent parallelization can be
expected by means of automatic parallelization.

5.2 Utilization of hardware barrier function
The hardware barrier function enhanced

in SPARC64 VIIIfx has been used in the thread
parallelization runtime library to improve
the overhead in parallel execution to 350 ns
from 750 ns. This improvement has allowed
parallelization of fine-grained loops, which were
not parallelized because the parallelization
effect was not obtained with the conventional
technology, and the execution performance has
been improved.

5.3 Hybrid parallel execution model
For a parallel application that runs on

a PC cluster or such like, flat MPI (a parallel
execution model that uses MPI also for parallel
execution between cores) is often used in a
multi-core configuration as well. With flat
MPI, the number of running parallel processes
increases as the number of CPU cores used
by the parallel application increases. The
usage of buffer memory for communication
between parallel processes and the number of
communications required increase according
to the number of entities at the other end of
communication, or parallel processes. This limits
the amount of memory that can be used by the
application. In addition, the limit to the amount
of communication buffer may cause degraded
communication performance. For these reasons,
the execution efficiency may be reduced.

For the K computer, which aims to achieve
high performance by ultra-high parallelization,
a hybrid programming model is provided:
Process parallel execution is used for inter-node
parallelization and thread parallel execution
that makes use of VISIMPACT for intra-node
parallelization. In this way, the increase in the
number of parallel processes is minimized to
avoid reducing the amount of usable memory, by
which parallel programs on many nodes can be
executed (Figure 2).

Table 1
Automatic parallelization performance with NPB 3.3.

Number of loops with
OpenMP

Number of loops
to be automatically

parallelized

CG 25 25

FT 13 13

MG 22 22

BT 38 38

SP 74 74

LU 64 64

322 FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Taki et al.: Compiler Technology That Demonstrates Ability of the K computer

Figure 2
Hybrid parallel model.

Figure 3
Runtime of new built-in debugging function.

6. Debugging function
In addition to debugging with the

conventional tools, Fujitsu’s compilers provide
a runtime checking function, which checks a
program at the time of compilation and running
and gives a warning if there is any deviation from
the language specification. This function allows
application developers to detect errors to some
extent by translating and running programs.
With the existing compilers, however, enabling
this checking function caused the runtime to
increase by a few tens to a few hundreds of times.

For the compilers of the K computer, this
function has been revised and implemented as a
“built-in debugging function” that runs at high
speed. This built-in debugging function conducts
minimum checking such as procedural parameter
and subscript range checks. For detecting any
undefined variable, a function has been provided
in which not a number (NaN) is set as the initial
value and any invalid operation is detected as an
exception. A simplified version that only outputs

line numbers and error types as error messages
and a detailed version that additionally outputs
variable names and procedure names have been
made selectable as required.

The built-in debugging function developed
is available with C/C++ compilers in addition
to Fortran and can also be combined with
thread parallelization (OpenMP and automatic
parallelization).

The impact of the debugging function on
execution performance has been evaluated by
using the Fortran program for HPC performance
evaluation owned by our division (Figure 3).
As the optimization option, -Kfast has been
specified. It has been found that using the new
built-in debugging function requires 1) 8.4 times
as much time for error check + detailed message
output, 2) 5.6 times as much time for error check
with NaN + detailed message output and 3) 2.7
times as much time for error check with NaN +
simplified message output. As compared with
the existing debugging functions, which required

Flat MPI programming model

CPUCPU
PPPP

C

T

C

T

C

T

C

T

Interconnect

Hybrid programming model

CPUCPU

P

C

T

C

T

C

T

C

T

CPUCPU

P

C

T

C

T

C

T

C

T

Interconnect

CPUCPU
PPPP

C

T

C

T

C

T

C

T

P CT: Process : Thread : Core

R
un

tim
e

(s
)

Not
 u

se
d

Erro
r c

he
ck

 a
nd

de
ta

ile
d

m
es

sa
ge

 o
ut

pu
t

Erro
r c

he
ck

 w
ith

 N
sN

 a
nd

de
ta

ile
d

m
es

sa
ge

 o
ut

pu
t

Erro
r c

he
ck

 w
ith

 N
sN

 a
nd

sim
pl

ifie
d

m
es

sa
ge

 o
ut

pu
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

323FUJITSU Sci. Tech. J., Vol. 48, No. 3 (July 2012)

K. Taki et al.: Compiler Technology That Demonstrates Ability of the K computer

a few tens to a few hundreds of times as much
time, the performance has signifi cantly improved
and debugging takes only 2.7 times as much at
the shortest, which we believe has reached a
practical level.

7. Conclusion
To allow thread parallel processing,

Fujitsu compilers have long provided automatic
parallelization to which the vectorization
function of compilers for VPP machines is applied.
Thanks to the accumulation of technologies over
the years, the change due to the increase of the
number of cores to eight with SPARC64 VIIIfx
is small, and this has allowed us to focus on
enhancing the automatic parallelization itself,
and high parallelization effi ciency has been
successfully achieved.

Fujitsu has announced 16-core SPARC64

IXfx architecture, a successor to SPARC64 VIIIfx,
and has already started to offer PRIMEHPC
FX10, a system incorporating this CPU.
Our division has implemented the compiler
technology that has been commercialized with
the language package for the K computer also in
a product for PRIMEHPC FX10 called Technical
Computing Suite.

The demand for faster supercomputers is
ever increasing and the extension and expansion
of hardware specifi cations will unavoidably
continue in the future. We can expect future
high performance supercomputers to have even
more cores. Fundamental breakthroughs will
eventually become necessary. Based on the
successful experience of becoming the world’s
number one with the K computer, we intend to
overcome these challenges and continue to offer
systems and products that meet users’ needs.

Koutarou Taki
Fujitsu Ltd.
Mr. Taki is currently engaged in
compiler optimization development.

Hitoshi Murai
RIKEN
Dr. Murai is engaged in research
and development of programming
environment.

Manabu Matsuyama
Fujitsu Ltd.
Mr. Matsuyama is currently engaged
in compiler C/C++ language front-end
development.

Kazuo Minami
RIKEN
Mr. Minami is engaged in research and
development of application software
for high parallelization and high
performance.

