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Fujitsu Laboratories of America has, over the course of many years, worked to 
develop the frontier of binary decision diagram (BDD) technology under a project 
called ParDD.  Our technology allows us to partition Boolean functions, represent 
them very compactly, and process them on a massively parallel computing platform.  
It has been used to create numerous applications in the field of electronic design 
automation.  Recently under this project we have developed a novel BDD library 
where the storage requirement of each node closely tracks the total size of the 
stored representation.  The compact nature of this data structure allows the solution 
of interesting problems to which BDDs have seldom been applied before.  For 
example, we have used our library to create a compact inverted index, an essential 
matrix for indexing documents in any corpus, including the World Wide Web.  We 
have also characterized its performance for Web query satisfaction in the context 
of Web searches as well as for the creation of compact representations of access 
control lists, a core component of Internet routers.

1. Introduction
In computer science, many problems can 

be formulated in terms of Boolean functions.  A 
binary decision diagram (BDD)1) is a directed 
acyclic graph used to compactly represent 
a Boolean function.  It includes two special 
“terminal” nodes that represent the Boolean 
functions 1 and 0.  Each non-terminal node, 
which corresponds to a subfunction f, is labeled 
by a Boolean variable v and has two outgoing 
edges.  Edge “1” points to the sub-BDD that 
represents function v· f, while edge “0” points 
to the sub-BDD for function v· f.  The two edges 
point to different nodes.

A reduced ordered BDD (ROBDD) is a BDD 
with two additional restrictions.  First, all paths 
from its root to the leaves examine variables in 
the same variable order2).  Second, there should 
be no isomorphic subgraphs.  These restrictions 
lead to a canonical representation for a given 

variable order.
BDD graphs can be manipulated efficiently.  

Any Boolean operation between two graphs can 
be completed in time that is at most quadratic in 
the size of the given graphs.  For a large variety 
of functions that naturally arise in real-life 
applications, their BDDs have been observed to 
be compact.  Compactness and efficiency have led 
to many BDD applications in areas such as design 
simulation, synthesis, verification, automatic test 
generation, artificial intelligence, data mining, 
software security, and fault tolerant computing.

ROBDDs provide efficient representations 
for many functions of practical interest.  
Unfortunately, some applications require the 
representation of functions that have only 
an exponential ROBDD size.  This limits the 
complexity of problems that can be attacked 
using ROBDDs.
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1.1 Partitioned ROBDDs
Fujitsu Laboratories of America (FLA) has 

developed a more efficient representation in its 
ParDD project through the use of partitioned 
ROBDDs (POBDDs)3)-5), which are especially 
effective for large designs.  In this approach, 
different partitions of the Boolean space are 
allowed to have different variable orderings, and 
only one partition needs to be in memory at any 
given time.

To handle the complexity of large 
industrial designs, we have proposed algorithms 
that modify the Boolean space partition of 
POBDDs at run-time, thus avoiding memory 
explosion.  Theoretical evidence5),6) suggests 
that representations using this approach can be 
exponentially more compact than ROBDDs as 
well as any approach using a fixed number of 
partitions.  

We incorporated this dynamic repartitioning 
scheme in reachability7) based invariant 
checking as well as model checking for a portion 
of computation tree logic.8),9) Because of the 
partitioned nature of POBDDs, FLA has been 
able to develop methods that allow efficient 
mathematical models10),11) as well as highly 
effective use of symmetric multiprocessor 
architectures12) and large computational grids13) 

where super-linear gains over classical approaches 
have been observed in proving falsification.  The 
adaptive nature of our partitioning approach 
also leads to order-of-magnitude more efficient 
runtime in proving design correctness.

1.2 Nano decision diagrams
In the ParDD project we have recently 

deviated from the classical BDD approach of 
a fixed data structure per vertex.  Instead, we 
maintain the necessary bookkeeping information 
as compactly as possible as a function of the 
OBDD size.

Let n be the number of variables and d be  
the number of nodes of a given BDD.  Then  
sn = [log (n)] bits are sufficient to index a variable.  

Moreover, if nodes are stored consecutively 
in memory, sd = [log (d)] bits are sufficient to 
identify their location.  On the basis of the above 
observations, each node is structured as follows:

variable: sn bits 1-edge: sd bits 0-edge: sd bits

For comparison, traditional decision 
diagram libraries specify conservative upper 
bounds for variable and index bits, typically  
24 and 32 bits, respectively.  To reflect the lighter 
memory footprint of our new decision diagram 
structure, we named it the nano decision diagram 
(nanoDD).

2. NDD library
Our nanoDD library (NDD library) provides 

an implementation of nanoDDs.  It has been 
designed and implemented from scratch to 
additionally support a variation of BDDs called 
zero-suppressed BDDs (ZDDs).14)  ZDDs have 
been shown to be more compact in terms of the 
number of nodes required to support a given 
Boolean function, provided that the function’s 
ON-set is relatively sparse.

The NDD library implements all classical 
2-operand operations, as well as the operations 
Constrain, Restrict, and ITE.  It implements 
variable reordering through the classical Sifting 
algorithm.  Another novel aspect of this library 
is that it supports the execution of all operations 
within a user-specified context.  Within each 
context, the user assigns 2-operand operations to 
variables.  Whenever the creation of a new node is 
requested, the library checks whether the variable 
of the new node is assigned to an operation.  If 
so, the assigned operation is applied to the new 
node’s children and the result is returned instead.  
Contexts seamlessly encapsulate universal 
and existential quantification schedules such 
that they can be used with all operations while 
maintaining a simple programming interface.
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3. BDD-based inverted index 
representation
An inverted index is a data structure that 

operates on a collection of documents and is used 
to efficiently identify the subset of documents that 
include a specific keyword.  It can be stored as a 
collection of lists, each of which corresponds to a 
unique keyword wi and includes the numerical 
identifiers of the documents that contain wi.  

The size of the inverted index can grow quite 
large, with direct implications for the required 
storage space and access time.  Therefore, in many 
cases, each list is stored in a compressed manner 
that allows it to be quickly and incrementally 
decompressed.  In this paper, we analyze 
nanoDDs for representing inverted indices.  
Below we give some background information 
about the mainstream list compression scheme 
and BDDs.  

For each list, the corresponding Boolean 
function is constructed and the BDD for it is 
built with a traditional BDD package using the 
ZDD representation.  There are two aspects to 
representing lists with decision diagrams.  The 
first concerns the mapping of list elements to a 
Boolean function and the second is related to the 
way the decision diagrams are stored on disk.

3.1 Encodings
3.1.1 Lists as Boolean functions

Let us represent list [23, 33, 37, 54] as a 
Boolean function.  In binary, the list elements 
are [010111, 100001, 100101, 110110].

3.1.2 Binary encoding
The Boolean function that represents the 

list with the minimum number of variables is 
obtained by simply assigning each variable to 
each significant bit weight.  For example, the 
above list corresponds to function 

f = x1x2x3x4x5x6 + x1x2x3x4x5x6 + x1x2x3x4x5x6 
+ x1x2x3x4x5x6.

3.1.3 Linear encoding
An alternative representation would be to 

assign a different variable for each document 
id.  However, this representation is impractical 
because the number of documents can be quite 
large.  Moreover, node sharing is no longer 
possible (unless multiple lists are represented by 
a single Boolean function.)

3.1.4 Base-2k encoding
Let us represent the list elements in a 2k   

base.  This allows linear and binary encoding to 
be combined.  For each of the base-2k digits, we 
use 2k distinct variables to represent them in a 
one-hot manner.  For example, assume that we 
want to encode number 54, which is 312 in base-
4.  Each of the digits is one-hot encoded, giving 
1000 : 0010 : 0100.  Therefore, element 54 is 
encoded as 

g = x1x2x3x4x5x6x7x8x9x10x11x12.  

This increase in the number of variables may 
initially appear inefficient, but in fact it leads to 
better sharing and more compact representation, 
especially when ZDDs are used.

3.2. Performance characterization
3.2.1 Corpus

In order to benchmark the NDD library, we 
created an inverted index for the largest possible 
set of Web pages available online.  This set, 
which was downloaded from Stanford’s WebBase 
project, contains more than 94 million Web pages.  
By comparison, the first Google implementation 
had only 25 million.

Table 1
Inverted index statistics. 

Processed pages 94 million

Unique terms 114 million

Processed terms 22 000 million

List-based inverted index 163 GB
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For each Web page, we extracted its text 
terms.  Every sequence of up to 50 characters 
was kept.  In total, almost 22 billion terms were 
processed.  For each unique term, we calculated 
the set of pages in which it appeared.  There were 
more than 114 million unique terms.

The collection of all sets of pages for all 
unique terms is the inverted index.  The size 
of the complete inverted index in the classic, 
uncompressed list implementation is 163 GB 
(Table 1).

3.2.2  NanoDD inverted index
We computed the complete nanoDD-based 

inverted index for the Stanford crawl.  The 
computation time was less than 25 hours.  By 
comparison, it took almost 4 days to parse the 
corpus and generate the list-based inverted 
index.  Therefore, while the time required to build 
the nanoDD inverted index is not negligible, we 
do not consider it to be an issue.  The resulting 
nanoDD inverted index was less than 25% of 
the size obtained using the classical list-based 
approach.  The clear major benefit of this result 
is the cost decrease emanating from the direct 
reduction of disk space required for storing the 
inverted index.

3.2.3 Comparison with existing BDD 
packages

To compare the performance of our NDD 
library with the state-of-the-art BDD package 
(Colorado University Decision Diagram, CUDD), 
we implemented a tool that generates a ZDD-

based inverted index using the open-source 
CUDD library.  Our results are as follows.

In terms of computation time, our nanoDD 
approach was almost 8 times as fast as the 
CUDD implementation.  In terms of memory 
requirements, our inverted index was less 
than 1/6 the size of the CUDD one.  Note that 
the decrease in size is not due to the structure 
of the obtained ZDDs because, by construction, 
they are canonical (and therefore the same in 
both approaches).  It is due to the structure of 
the nodes.  For CUDD, the size is at least 16 
bytes per node (depending on the version used) 
independent of the actual function stored.  For 
nanoDDs, the size varies depending on the 
nodes needed to store a given function and can 
range from 2 to 8 bytes.  In both approaches, the 
intermediate memory required for caches was 
not taken into account since the cache contents 
are not stored as part of the result.

We also compared our NDD library with 
CUDD15) and Cal16) on ACM/SIGDA combinational 
circuits.  We use static variable orders as 
computed by a depth-first search traversal of the 
circuit.  Only non-trivial circuits that could be 
completed in either of the libraries within 1800 s 
are shown.  The results are given in Table 2.

4. NanoDD-based Web searches
The major benefit of using nanoDD inverted 

indices for Web searches is that they maintain 
manipulability.  To achieve this, we designed 
special manipulation operations that are more 
suited to the task of Web searching.  In addition, 

Table 2
Comparison with CUDD 2.4.2 and Cal 2.1 on ACM/SIGDA circuits.  Time is given in seconds and memory (mem) in MB. 
Rt is the time ratio,  Rm is the space ratio, and  Rp = Rt * Rm.

Circuit NDD CUDD Cal

Name In Out Time Mem Time Mem  Rt Rm Rp Time Mem  Rt Rm Rp  

C3540 50 22 0.49 64.3 0.59 64 120% 100% 120% 1.05 52.1 214% 81% 174%

i10 257 224 0.5 63.2 0.62 74.2 124% 117% 146% 1.19 64.7 238% 102% 244%

C6288 32 32 225.17 5149.9 402.36 6312.6 179% 123% 219% 468.67 6278.2 208% 122% 254%

C2670 233 140 9.05 285.6 21.17 402.6 234% 141% 330% 22.79 564.2 252% 198% 497%
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we adapted the storage scheme of the nanoDDs 
to the application.

4.1. Operations
The basic operation performed between 

K ordered lists is a conjunction, which is 
implemented as a K-way merge.  Specifically, 
elements are read one at a time starting from the 
head of the lists until all common elements have 
been detected.

For example, let us detect the common 
elements between the following two lists.  

list1 : 10, 20, 23, 36, 47, 52

list2 : 16, 18, 23, 47

We maintain pointers p1, p2 to the list 
elements, which initially point to elements “10” 
and “16”, respectively.  Since p1 points to an 
element that is smaller than the one that p2 
points to, it moves forward to element “20”.  Now 
p2 points to a smaller element, so it advances 
to “18”.  Since “18” is also smaller than “20”, p2 

proceeds to “23”.  Now, p1 proceeds to “23” and 
this common element is output.  At this stage, 
the two pointers move forward to elements “47” 
and “47”, respectively.  Again, element “47” is 
output.  Since p2 has reached the end of list 2, no 
more common elements can be detected, so the 
process is complete.

We note that the basic operation 
implemented for traversing lists is essentially 
get_next_element (L).  In reality, the operation 
that we would like to implement efficiently for 
nanoDDs is get_next_element_greq (L, element) to 
detect the next element in list L that is greater 
than or equal to element.

 get_next_element_greq (L, element)
We maintain an array of variable 

assignments A that is updated while traversing 
the nanoDD.  The first element stored in the 
nanoDD is obtained by performing a depth-
first traversal starting from the root node and 

initially following 0-edges until terminal node 1 
is reached.

For each visited node, we monitor the 
variable id and the id of the edge that was 
followed.  Variables that do not appear in the 
path from the root to the terminal node 1 are 
initially assigned the value 0.

Whenever get_next_element_greq (L, element)  
is called, the binary representation of element 
is checked against array A, and the number of 
common variable assignments from the root is 
detected.  The algorithm backtracks until the 
first non-common variable from the top (or the 
root if there are no common assignments) and 
traverses the nanoDD according to the remaining 
assignments imposed by element.

Let us see how get_next_element_greq 
works for the simple decision diagram shown in  
Figure 1.

This decision diagram represents function  
f = x1x3x4 + x1x3x4, so it encodes list [8, 11, 12, 15] 
The first element is obtained by the traversal 
shown in Figure 2.

The variable assignments are therefore  
(x1, x2, x3, x4) = (1, 0, 0, 0), giving the first list 
element “8”.

If we wanted to access the next element in 
the list, we would search for the next element 
greater than “8” with get_next_element_greq 
(L, 9).  Then the algorithm would backtrack 
to variable x3, since the first three variable 
assignments between  (1, 0, 0, 0) and  (1, 0, 0, 1) 
are the same, and continue along the path shown 
in Figure 3.

The current variable assignments are  (1, 0, 
1, 1), giving us element “11”.  We can obtain the 
remaining list elements in a similar manner.

The power of decision diagrams in the 
context of searches stems from the fact that 
elements of the underlying list can be skipped 
over if their presence is of no importance.  Assume 
for example that the conjunction between lists  
[8, 11, 12, 15] and [7, 13, 15] is desired.

The first elements of both lists are obtained.  
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Since “8” is larger than “7”, the next element 
greater that or equal to “8” is searched for in 
the second list and element “13” is obtained.  
Next, get_next_element_greq (L, 13) is applied 
to the first list.  At this point, the algorithm 
detects that (1, 1, 0, 1) (corresponding to “13”) 
has only the first variable common with (1, 0, 0, 
0) (which corresponds to “8”).  Subsequently, it 
directly backtracks to variable x1 and traverses 
down the nanoDD, setting variables following 
x1 in a manner consistent with the requested 
assignment (1, 1, 0, 1) and eventually ending up 
at (1, 1, 1, 1).

4.2 Storage scheme
A single nanoDD node requires exactly 

2sd + sn bits.  Nodes are stored consecutively in 
memory or on disk in the order that the depth-
first traversal visits them, where 0-edges are 
followed before 1-edges.  In this way, we can 
incrementally extract information from a nanoDD 
on disk.  Terminal nodes need not be explicitly 
stored since they can be assigned fixed “virtual” 
positions.

4.3 Performance characterization 
4.3.1 AOL query data

AOL recently released anonymized 
information about actual search queries 
performed by its search engine, which is 
essentially a front-end for Google.  As these 
are actual user queries, they provide the best 
opportunity for benchmarking the performance 
of our operations.

4.3.2 Experimental results
We averaged the query times for a random set 

of 10 000 queries from the AOL query set, which 
are k-terms or longer, for k = [2 … 6 ] to investigate 
how the system performs for progressively more 
complex queries.  For each set of 10 000 queries, 
both the nanoDD-based manipulation code and the 
list-based manipulation code were executed.  The Figure 1

Example of simple decision diagram.
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performance ratio is given in Table 3.

4.4 Energy analysis
At an abstract level, the energy consumption 

of a typical computing node of a search engine 
comprises two components: the silicon factors 
(CPU, chipset, and memory) and the hard 
drive factor.  We will assume an average power 
dissipation of 60 W for the CPU and 8 W per 
hard drive.  Since the size of the inverted index 
is less than 25% of the size of the list-based 
representation, let us assume average power 
consumption of 92 W for the list-based inverted 
index setup and 68 W for the nanoDD-based 
setup.  This corresponds to a single hard drive 
node for nanoDDs and four hard drive nodes for 
explicit lists.  Thus, the power consumption of 
the nanoDD setup is 74% of the list-based setup.

If we factor in the benefits due to the higher 
query performance, we see that the energy 
consumption is reduced as listed in Table 4.  
The energy reduction is justified because the 
operations require less time to complete.

5. NanoDD-based access control 
list compression

5.1 Problem formulation
In its simplest incarnation, the problem 

of Internet router access control is as follows: 
A list of source/destination IP address tuples is 
maintained, which denotes the packets that are 
not allowed to be forwarded through the router.  
Let this list be L = {<IPs, IPd>i}.  IP addresses are 
typically 32-bit-long integers, so each tuple is 

characterized by a 64-bit number.  
For each tuple i we construct a minterm   

mi that depends on 64 variables.  For example, 
tuple 

11011110101011110010000000000111
00100000000001101101111010101111

is represented by minterm

x1x2x3x4x5 ··· x60x61x62x63x64.

Next, we construct function f, where 

f (x1,···,x64) = V|L|
i=1 mi.

We subsequently build the ZDD for function 
f and perform a depth-first search on the 
resulting directed acyclic graph to obtain a sum-
of-products representation for f in the form of  
f = V      pi.  Each product term pi depends on a 
subset of the 64 variables and can therefore be 
represented in positional notation by using three 
symbols (0, 1, X).  For example, product term 
x1x4x6 is represented in positional notation by 

1XX0X1XXX ··· XX.

When presented with a source/destination IP 
tuple T, the access control list (ACL) subsystem 
must decide whether or not the corresponding 
packet should be forwarded.  This operation 
is done by evaluating function f with variable 
assignments obtained from tuple T.  For example, 
if tuple T is 10011 ··· 10 in binary, then f (1, 0, 0, 

Table 3
Comparison of list-based and nanoDD-based 
manipulation times.

k
Performance ratio between  

nanoDDs and lists

2 115%

3 125%

4 130%

5 140%

6 150%

Table 4 
Energy consumption of nanoDDs as a percentage of list-
based approach.

k Energy as % of list-based approach

2 64%

3 59%

4 57%

5 53%

6 49%

|L|
i=1
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1, 1, ··· , 1, 0) is calculated.

5.2 Experimental evaluation
5.2.1 Border gateway protocol

The border gateway protocol (BGP) is the 
core routing protocol of the Internet.  It works by 
maintaining a table of IP networks or “prefixes” 
that designate network reachability among 
autonomous systems.  It is described as a path 
vector protocol.  BGP makes routing decisions 
based on path, network policies, and/or rulesets.  
For the purposes of our experimental evaluation, 
to construct function f, we collected 200 000 rules 
originating from AT&T’s network.  

5.2.2 Experimental results
We used our NDD library to compute and 

store function f.  The obtained compaction was 
more than 400%.  Naturally, our technique is 
useful mainly for the cases where there is no 
hardware acceleration for ACL support since 
the cost of extracting information from the BDD 
would otherwise outweigh the benefit of the 
obtained compaction.

6. Conclusion
At FLA, the ParDD project first focused 

on creating partitions of Boolean functions to 
represent them very compactly and process them 
efficiently on a massively parallel computing 
platform.  This technology was used to create 
numerous applications in the field of electronic 
design automation.  To find BDD applications 
in other fields, we were motivated to develop a 
novel BDD library whose node structure can 
be dynamically adjusted to match the size of 
the stored representation.  The compact nature 
of this data structure spawned solutions to 
interesting problems where BDDs have seldom 
been applied.

Apart from compact node size, and thus a 
smaller memory footprint, nanoDDs were found 
to yield significantly faster BDD manipulations, 
as demonstrated on ACM/SIGDA benchmark 

circuits as well as for Fujitsu proprietary designs.  
Given the wide variety of problems in which 
BDDs are used, gains in both space and time are 
a compelling proof of the significance of FLA’s 
ParDD project technology.
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