Servers for Big Data Era

- Insight with Big Data Analysis + Real Time Processing
- Strive to survive and thrive beyond the competition

Requirements on Servers:
- High Performance
- Flexibility and Expandability
- Data Integrity
Fujitsu M10 Meets Any Business Needs

High Performance
- 14 World Records in Standard Benchmark\(^*1\)
- OS/DB Performance Improvement with Software on Chip

Flexibility and Expandability
- Max 1024 core / 32TB Memory
- CPU Core Activation / Building Block / DR\(^*2\)

Data Integrity
- Mainframe RAS

Fujitsu M10 Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Components</th>
<th>Scalability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujitsu M10-1</td>
<td>1 socket (Max: 16 cores)</td>
<td>1BB</td>
</tr>
<tr>
<td>Fujitsu M10-4</td>
<td>4 sockets (Max: 64 cores)</td>
<td>4BB</td>
</tr>
<tr>
<td>Fujitsu M10-4S</td>
<td>4-socket Building Block can scale up to 64 sockets (Max: 1,024 cores)</td>
<td>16BB</td>
</tr>
</tbody>
</table>

\(^*1\): Except supercomputing, \(^*2\): Dynamic Reconfiguration
Fujitsu M10 Benchmark Test Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM</td>
<td></td>
</tr>
<tr>
<td>TRIAD*¹</td>
<td></td>
</tr>
<tr>
<td>SPECint_rate2006*¹</td>
<td></td>
</tr>
<tr>
<td>SPECfp_rate2006*¹</td>
<td></td>
</tr>
<tr>
<td>SPECjbb2005</td>
<td></td>
</tr>
<tr>
<td>SPECjbb2013</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>Critical</td>
</tr>
<tr>
<td>SAP</td>
<td></td>
</tr>
</tbody>
</table>

*1: Except supercomputing
SAP SD Benchmark

Performance

IBM Power 795

126,063 users

Fujitsu M10

153,000 users WIN!
Fujitsu M10: Proven #1 response performance with real applications
Fujitsu #1
Among All Computers
(168,127 critical-jOPS, 16CPU)

Fujitsu M10: Proven #1 response performance with real applications
Facts:
- High Performance / High Reliability Processor
- 16 core, 2 thread/core, Max 2,048 threads/system
- L1$ per core: 64KB (I) + 64KB (D)
- L2$ per CPU chip: up to 24MB
- 28nm
- Rich Software on Chip Features
- System on Chip: integrated Memory and I/O controllers
- Oracle VM server for SPARC support (sun4v)
- Robust RAS

Important because:
- High performance, x7.5 faster compared to SPARC64 VII+ (SPECint_rate)
- Mainframe class high reliability
Software on Chip

- **Facts:**
 - Software operations moved to *specialized* CPU hardware
 - Database Accelerator Engines
 - Supports decimal floating-point processing
 - Direct decimal execution of Oracle NUMBER by hardware
 - SIMD (Single Instruction Multiple Data)
 - High speed data processing
 - Encryption/Decryption Engines
 - Supported algorithms: AES, DES, 3DES, RSA, and SHA

- **Important because:**
 - Large performance gains
 - Up to +25% Performance Improvement with DB12c patch and custom Fujitsu benchmark
 - Encrypt: 5x, Decrypt 12x (on Solaris11)
Software on Chip: Performance Acceleration of In-Memory DB

- With focusing on business use, high speed vector operation is enhanced from one for supercomputer
- By hardware, faster processing of columnar in-memory DB, which was announced in OOW2013

- Non SIMD requires 16 instruction cycles
- Vector SIMD = 1 instruction cycle
CPU Core Activation

Facts:

- Purchase core activations 2-by-2.
- Expand without interrupting your business
- Core activations can be moved between M10 systems
- Core auto-replacement

Important because:

- Optimized investment: “start small and grow big”
- Lower initial cost for hardware and software
- Buy only what you need with fine granularity for better resource utilization
- Adapt CPU cores to changes in your business dynamically
- Inactive cores are hot spare cores
Building Block ("BB") Architecture

Facts:
- One Building Block = 4 CPU sockets, 64 DIMMs
- Compact 4U BB Chassis
- Expandability: from 1BB (64cores) to 16BBs (1,024cores)
- Linear performance gain as the configuration grows
- XB redundancy in any configuration

Important because:
- Efficient investment: “start small and grow big”
- Space saving
- High Availability with Dynamic Reconfiguration
- Mid-size configurations cost effective with direct BB-to-BB cabling
High-Speed Interconnect

Facts:
- Fujitsu's state-of-the-art transmission technology
- High speed 14.5Gbps x 8 lanes Serial Interface
 - 14.5GB/s x 5 ports per SPARC64 X
- Up to 4 BBs, Interconnects all in-Chassis
- Low latency data processing
- Linear performance scalability up to max configuration (16BB)
- Mainframe RAS: Fujitsu DNA (Mainframe Heritage)
 - Redundancy built-in

Important because:
- High performance
- High availability
- Invisible to software
Hybrid Cooling with LLC

Facts:
- Air Cooling + Liquid Cooling
 Coolant circulates heat from CPUs to a radiator to be air-cooled
- Self-contained liquid cooling for System-on-Chip CPU
- Anti-freeze-like liquid flows through plates, tubes, tanks, and radiator
- 4CPU x6 (5+1 redundant) inline micro-pumps per Building Block
- Shorten distance between CPU and memory

Important because:
- Heatsink-less design allows components to be densely placed
- Saves 3U of space in each 4-socket Building Block
- 80% reduction of memory latency → performance improvement
- Self-contained cooling for the life of the system and no external pipes/hoses enable maintenance free.

LLC: Liquid Loop Cooling
Dynamic Reconfiguration

- **Facts:**
 - Building Block add/remove without interrupting your business
 - Expand CPU, Memory and IO* with DR
 (* some restrictions exist for DR of IO)

- **Important because:**
 - Business demands change and DR allows the M10 to match requirements on the fly.
 - CPU Core Activation + BB + DR provide extreme flexibility
 - Hardware failure impact greatly reduced with hot swappable Building Blocks
Fujitsu M10

- **Enhanced Fujitsu M10**
 - SPARC64 X+:
 - 3.5GHz+, 16core, 32thread
 - >1.3x Throughput
 - >1.3x Thread Strength
 - CMI, Software on Chip+
 - Faster interconnect (25Gbps)

Next Generation Fujitsu M10

- **Next Generation Fujitsu M10**
 - SPARC64:
 - 4.5GHz+, 24core, 96thread
 - >2x Throughput
 - >1.5x Thread Strength
 - FAST μArch
 - Data corruption prevention/
 Software on Chip++
 - Faster Interconnect

Delivered

- Fujitsu M10
 - SPARC64 X:
 - 3.0GHz, 16core, 32thread
 - System on Chip
 - Software on Chip
 - Fast Interconnect (14.5Gbps)

Copyright 2013 FUJITSU LIMITED
Fujitsu’s next SPARC processor for enhanced M10

Facts:
- 20% increase in single thread performance and system throughput
- Higher clock speed: 3.5GHz+
- Large memory: Max512GB/Socket
- 32TB memory/System
- Scalability: from 1 to 64CPU Sockets (1024 cores)
- Software on Chip+
- Extensive RAS features
- High-speed interconnect up to 25Gbps

Important because:
- “Next Generation SPARC64” is planned, SPARC64 X+ is not the end of SPARC64. Far from it!
- SWoC enhancements push application performance further