
SPARC64™ VII Extensions

Fujitsu Limited

Ver 1.0, 1 Jul. 2008

Fujitsu Limited

4-1-1 Kamikodanaka

Nakahara-ku, Kawasaki, 211-8588

Japan

Copyright© 2007, 2008 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki,

211-8588, Japan. All rights reserved.

This product and related documentation are protected by copyright and

distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of this product or related documentation may be

reproduced in any form by any means without prior written authorization of

Fujitsu Limited and its licensors, if any.

The product(s) described in this book may be protected by one or more U.S.

patents, foreign patents, or pending applications.

TRADEMARKS

SPARC® is a registered trademark of SPARC International, Inc. Products bearing

SPARC trademarks are based on an architecture developed by Sun Microsystems, Inc.

SPARC64™ is a registered trademark of SPARC International, Inc., licensed

exclusively to Fujitsu Limited.

UNIX is a registered trademark of The Open Group in the United States and

other countries.

Sun, Sun Microsystems, the Sun logo, Solaris, and all Solaris-related

trademarks and logos are registered trademarks of Sun Microsystems, Inc.

Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited.

This publication is provided “as is” without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of
merchantability, fitness for a particular purpose, or noninfringement. This
publication could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein; these changes will
be incorporated in new editions of the publication. Fujitsu Limited may make
improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

Contents

1. Overview 1

1.1 Navigating the SPARC64™ VII Extensions 1

1.2 Fonts and Notational Conventions 1

1.3 The SPARC64 VII processor 2

1.3.1 Component Overview 4

1.3.2 Instruction Control Unit (IU) 6

1.3.3 Execution Unit (EU) 6

1.3.4 Storage Unit (SU) 7

1.3.5 Secondary Cache and External Access Unit (SXU) 7

2. Definitions 9

3. Architectural Overview 13

4. Data Formats 14

5. Registers 15

5.1 Nonprivileged Registers 15

5.1.7 Floating-Point State Register (FSR) 15

5.1.9 Tick (TICK) Register 17

5.2 Privileged Registers 17

5.2.6 Trap State (TSTATE) Register 17

5.2.9 Version (VER) Register 18

5.2.11 Ancillary State Registers (ASRs) 18

5.2.12 Registers Referenced Through ASIs 20

Ver 1.0, 1 Jul. 2008 Contents 1

5.2.13	 Floating-Point Deferred-Trap Queue (FQ) 22

5.2.14	 IU Deferred-Trap Queue 23

6. Instructions 25

6.1 Instruction Execution 25

6.1.1	 Data Prefetch 25

6.1.2	 Instruction Prefetch 26

6.1.3	 Syncing Instructions 26

6.2 Instruction Formats and Fields 27

6.3 Instruction Categories 28

6.3.3	 Control-Transfer Instructions (CTIs) 28

6.3.7	 Floating-Point Operate (FPop) Instructions 29

6.3.8	 Implementation-Dependent Instructions 29

6.4 Processor Pipeline 30

6.4.1	 Instruction Fetch Stages 30

6.4.2	 Issue Stages 32

6.4.3	 Execution Stages 32

6.4.4	 Completion Stages 33

7. Traps 35

7.1 Processor States, Normal and Special Traps 35

7.1.1	 RED_state 36

7.1.2	 error_state 36

7.2 Trap Categories 37

7.2.2	 Deferred Traps 37

7.2.4	 Reset Traps 37

7.2.5	 Uses of the Trap Categories 37

7.3 Trap Control 38

7.3.1	 PIL Control 38

7.4 Trap-Table Entry Addresses 38

7.4.2	 Trap Type (TT) 38

7.4.4	 Details of Supported Traps 39

7.5 Trap Processing 39

7.6 Exception and Interrupt Descriptions 39

7.6.4	 SPARC V9 Implementation-Dependent, Optional Traps That Are

Mandatory in SPARC JPS1 39

SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 2

7.6.5 SPARC JPS1 Implementation-Dependent Traps 39

8. Memory Models 41

8.1 Overview 42

8.4 SPARC V9 Memory Model 42

8.4.5 Mode Control 42

8.4.7 Synchronizing Instruction and Data Memory 42

9. Multi-Threaded Processing 45

9.1 MTP structure 45

9.1.1 General MTP structure 45

9.1.2 MTP structure of SPARC64 VII 46

9.2 MTP Programming Model 47

9.2.1 Thread independency 47

9.2.2 How to control threads 48

9.2.3 Shared registers between threads 48

A. Instruction Definitions 49

A.4 Block Load and Store Instructions (VIS I) 51

A.12 Call and Link 53

A.24 Implementation-Dependent Instructions 54

A.24.1 Floating-Point Multiply-Add/Subtract 55

A.24.2 Suspend 59

A.24.3 Sleep 60

A.24.4 Integer Multiply-Add 61

A.25 Jump and Link 63

A.30 Load Quadword, Atomic [Physical] 64

A.35 Memory Barrier 66

A.42 Partial Store (VIS I) 68

A.48 Population Count 69

A.49 Prefetch Data 70

A.51 Read State Register 72

A.59 SHUTDOWN (VIS I) 73

A.70 Write State Register 74

A.71 Deprecated Instructions 75

A.71.10 Store Barrier 75

Ver 1.0, 1 Jul. 2008 Contents 3

B. IEEE Std. 754-1985 Requirements for SPARC-V9 77

B.1 Traps Inhibiting Results 77

B.6 Floating-Point Nonstandard Mode 77

B.6.1 fp_exception_other Exception (ftt=unfinished_FPop) 78

B.6.2 Operation Under FSR.NS = 1 81

C. Implementation Dependencies 86

C.1 Definition of an Implementation Dependency 86

C.2 Hardware Characteristics 86

C.3 Implementation Dependency Categories 87

C.4 List of Implementation Dependencies 87

D. Formal Specification of the Memory Models 98

E. Opcode Maps 100

F. Memory Management Unit 102

F.1 Virtual Address Translation 102

F.2 Translation Table Entry (TTE) 103

F.3.2 TSB Cacheabllity 105

F.3.3 TSB Organization 105

F.4.2 TSB Pointer Formation 105

F.5 Faults and Traps 106

F.8 Reset, Disable, and RED_state Behavior 108

F.10 Internal Registers and ASI Operations 109

F.10.1 Accessing MMU Registers 109

F.10.2 Context Registers 111

F.10.3 Instruction/Data MMU TLB Tag Access Registers 115

F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers 116

F.10.6 I/D TSB Base Registers 118

F.10.7 I/D TSB Extension Registers 118

F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR) 118

F.10.11 I/D MMU Demap 125

F.10.12 Synchronous Fault Physical Addresses 126

F.10.13 TSB Prefetch Registers 127

F.11 MMU Bypass 129

F.12 Translation Lookaside Buffer Hardware 129

SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 4

F.12.2 TLB Replacement Policy 130

G. Assembly Language Syntax 132

H. Software Considerations 133

I. Extending the SPARC V9 Architecture 134

J. Changes from SPARC V8 to SPARC V9 135

K. Programming with the Memory Models 136

L. Address Space Identifiers 137

L.3 SPARC64 VII ASI Assignments 137

L.3.2 Special Memory Access ASIs 139

L.3.3 Hardware Barrier 141

M. Cache Organization 147

M.1 Cache Types 147

M.1.1 Level-1 Instruction Cache (L1I Cache) 148

M.1.2 Level-1 Data Cache (L1D Cache) 149

M.1.3 Level-2 Unified Cache (L2 Cache) 149

M.2 Cache Coherency Protocols 150

M.3 Cache Control/Status Instructions 151

M.3.1 Flush Level-1 Instruction Cache (ASI_FLUSH_L1I) 151

M.3.2 Level-2 Cache Control Register (ASI_L2_CTRL) 152

M.3.3 Cache invalidation (ASI_CACHE_INV) 152

N. Interrupt Handling 155

N.1 Interrupt Dispatch 155

N.2 Interrupt Receive 157

N.3 Interrupt Global Registers 158

N.4 Interrupt-Related ASI Registers 158

N.4.2 Interrupt Vector Dispatch Register 158

N.4.3 Interrupt Vector Dispatch Status Register 158

N.4.5 Interrupt Vector Receive Register 158

N.5 How to identify an interrupt target 158

Ver 1.0, 1 Jul. 2008 Contents 5

O. Reset, RED_state, and error_state 161

O.1 Reset Types 161

O.1.1 Power-on Reset (POR) 161

O.1.2 Watchdog Reset (WDR) 162

O.1.3 Externally Initiated Reset (XIR) 162

O.1.4 Software-Initiated Reset (SIR) 162

O.2 RED_state and error_state 163

O.2.1 RED_state 164

O.2.2 error_state 164

O.2.3 CPU Fatal Error state 164

O.3 Processor State after Reset and in RED_state 165

O.3.1 Operating Status Register (OPSR) 169

P. Error Handling 171

P.1 Error Classes and Signalling 171

P.1.1 Fatal Error 172

P.1.2 error_state Transition Error 172

P.1.3 Urgent Error 173

P.1.4 Restrainable Error 176

P.1.5 instruction_access_error 177

P.1.6 data_access_error 177

P.2 Action and Error Control 178

P.2.1 Registers Related to Error Handling 178

P.2.2 Summary of Actions Upon Error Detection 179

P.2.3 Extent of Automatic Source Data Correction for Correctable Error 182

P.2.4 Error Marking for Cacheable Data Error 182

P.2.5 ASI_EIDR 185

P.2.6 Control of Error Action (ASI_ERROR_CONTROL) 185

P.3 Fatal Error and error_state Transition Error 187

P.3.1 ASI_STCHG_ERROR_INFO 187

P.3.2 Error_state Transition Error in Suspended Thread 188

P.4 Urgent Error 189

P.4.1 URGENT ERROR STATUS (ASI_UGESR) 189

P.4.2 Action of async_data_error (ADE) Trap 192

P.4.3 Instruction End-Method at ADE Trap 194

P.4.4 Expected Software Handling of ADE Trap 195

SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 6

P.5	 Instruction Access Errors 197

P.6	 Data Access Errors 197

P.7	 Restrainable Errors 198

P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR) 198

P.7.2 ASI_ASYNC_FAULT_ADDR_D1 199

P.7.3 ASI_ASYNC_FAULT_ADDR_U2 199

P.7.4 Expected Software Handling of Restrainable Errors 199

P.8	 Internal Register Error Handling 201

P.8.1 Nonprivileged and Privileged Registers Error Handling 201

P.8.2 ASR Error Handling 202

P.8.3 ASI Register Error Handling 203

P.9	 Cache Error Handling 208

P.9.1 Handling of a Cache Tag Error 208

P.9.2 Handling of an I1 Cache Data Error 209

P.9.3 Handling of a D1 Cache Data Error 209

P.9.4 Handling of a U2 Cache Data Error 211

P.9.5 Automatic Way Reduction of I1 Cache, D1 Cache, and U2 Cache 212

P.10	 TLB Error Handling 213

P.10.1 Handling of TLB Entry Errors 214

P.10.2 Automatic Way Reduction of sTLB 215

Q. Performance Instrumentation 217

Q.1	 Performance Monitor Overview 217

Q.1.1 Sample Pseudo-codes 217

Q.2	 Performance Event Description 219

Q.2.1 Instruction and trap Statistics 222

Q.2.2 MMU and L1 cache Event Counters 229

Q.2.3 L2 cache Event Counters 230

Q.2.4 Jupiter Bus Event Counters 232

Q.2.5 Multi-thread specific Event Counters 234

Q.3	 CPI analysis 236

Q.4	 Shared performance events between threads 237

Q.5	 Differences of Performance Events Between SPARC64 VI and SPARC64 VII

237

Ver 1.0, 1 Jul. 2008	 Contents 7

R. Jupiter Bus Programmer’s Model 239

R.3 Jupiter Bus Config Register 239

S. Summary Differences Between SPARC64 VI and SPARC64 VII 241

SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 8

F.CH AP TE R 1

Overview

1.1 Navigating the SPARC64™ VII Extensions
The SPARC64 VII processor fully implements the instruction set architecture that conforms
to Commonality.

■	 SPARC Joint Programming Specification 1 (JPS1): Commonality

This SPARC64 VII Extensions describes implementation specific portions of SPARC64 VII.
We suggest that you approach this specification as follows.

1.	 Familiarize yourself with the SPARC64 VII processor and its components by reading
the following sections in this specification:

■	 The SPARC64 VII processor on page 2
■	 Component Overview on page 4
■	 Processor Pipeline on page 30

2. Study the terminology in Chapter 2, Definitions.

3. For details of architectural changes, see the remaining chapters in this Specification as
your interests dictate.

1.2 Fonts and Notational Conventions

Please refer to Section 1.2 of Commonality for font and notational conventions.
Ver 1.0, 1 Jul. 2008	 F. Chapter 1 Overview 1

1.3 The SPARC64 VII processor

The SPARC64 VII processor is a high-performance, high-reliability, and high-integrity
processor that fully implements the instruction set architecture that conforms to SPARC V9,
as described in Commonality. In addition, the SPARC64 VII processor implements the
following features:

■ 64-bit virtual address space and 47-bit physical address space
■ Advanced RAS features that enable high-integrity error handling
■ Multi threaded Processing (MTP)

Microarchitecture for High Performance

The SPARC64 VII is an out-of-order execution superscalar processor that issues up to four
instructions per cycle. Instructions in the predicted path are issued in program order and are
stored temporarily in reservation stations until they are dispatched out of program order to
the appropriate execution units. Instructions commit in program order when no exceptions
occur during execution and all prior instructions commit (that is, the result of the instruction
execution becomes visible). Out-of-order execution in SPARC64 VII contributes to high
performance.

SPARC64 VII implements a large branch history buffer to predict its instruction path. The
history buffer is large enough to sustain a good prediction rate for large-scale programs such
as DBMS and to support the advanced instruction fetch mechanism of SPARC64 VII. This
instruction fetch scheme predicts the execution path beyond multiple conditional branches in
accordance with the branch history. It then tries to prefetch instructions on the predicted path
as much as possible to reduce the effect of the performance penalty caused by instruction
cache misses.

High Integration

SPARC64 VII integrates an on-board, associative, level-2 cache. The level-2 cache is unified
for instruction and data. It is the lowest layer in the cache hierarchy.

This integration contributes to both the performance and reliability of SPARC64 VII. It
enables shorter access time and more associativity and thus contributes to higher
performance. It contributes to higher reliability by eliminating the external connections for
level-2 cache.

High Reliability and High Integrity

SPARC64 VII implements the following advanced RAS features for reliability and integrity
beyond that of ordinary microprocessors.
SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 2

1. Advanced RAS features for caches

■	 Strong cache error protection:
■	 ECC protection for D1 (Data level 1) cache data, U2 (unified level 2) cache data, and

the U2 cache tag.
■	 Parity protection for I1 (Instruction level 1) cache data.
■	 Parity protection and duplication for the I1 cache tag and the D1 cache tag.

■	 Automatic correction of all types of single-bit error:
■	 Automatic single-bit error correction for the ECC protected data.
■	 Invalidation and refilling of I1 cache data for the I1 cache data parity error.
■	 Copying from duplicated tag for I1 cache tag and D1 cache tag parity errors.

■	 Dynamic way reduction while cache consistency is maintained.

■	 Error marking for cacheable data with uncorrectable errors:
■	 Special error-marking pattern for cacheable data with uncorrectable errors. The

identification of the module that first detects the error is embedded in the special
pattern.

■	 Error-source isolation with faulty module identification in the special error-marking.
The identification information enables the processor to avoid repetitive error logging
for the same error cause.

2. Advanced RAS features for the core

■	 Strong error protection:
■	 Parity protection for all data paths.
■	 Parity protection for most software-visible registers and internal, temporary registers.
■	 Parity prediction or residue checking for the accumulator output.

■	 Hardware instruction retry

■	 Support for software instruction retry (after failure of hardware instruction retry)

■	 Error isolation for software recovery:
■	 Error indication for each programmable register group.
■	 Indication of retryability of the trapped instruction.
■	 Use of different error traps to differentiate degrees of adverse effects on the CPU and

the system.

3. Extended RAS interface to software

■	 Error classification according to the severity of the effect on program execution:
■	 Urgent error (nonmaskable): Unable to continue execution without OS intervention;

reported through a trap.
■	 Restrainable error (maskable): OS controls whether the error is reported through a trap,

so error does not directly affect program execution.

■	 Isolated error indication to determine the effect on software

■	 Asynchronous data error (ADE) trap for additional errors:
■	 Relaxed instruction end method (precise, retryable, not retryable) for the

async_data_error exception to indicate how the instruction should end; depends on
the executing instruction and the detected error.
Ver 1.0, 1 Jul. 2008	 F. Chapter 1 Overview 3

■	 Some ADE traps that are deferred but retryable.
■	 Simultaneous reporting of all detected ADE errors at the error barrier for correct

handling of retryability.

Multi threaded Processing.

SPARC64 VII is an octuple threaded processor, which has four dual threaded physical cores.
The two threads belong to the same physical core sharing most of the physical resources,
while the four cores do not share physical resources except L2 Cache and system interface.

1.3.1 Component Overview

The SPARC64 VII processor contains these components.

■	 Instruction control Unit (IU)
■	 Execution Unit (EU)
■	 Storage Unit (SU)
■	 Secondary cache and eXternal access Unit (SXU)

FIGURE 1-1 illustrates the major units; the following subsections describe them.
SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 4

Jupiter Bus

JBUS Interface Logic

MoveIn Buffer MoveOut Buffer

SX-Unit

S-Unit Interface

ALUs

FLA

EXA
EXB

FLB
EAGA
EAGB

ALU

Output

Input
Registers

Registers

SX Order Queue Store Queue SX Interface

D-TLB tag data

2048
entry L1D Cache

64 KB, 2-way

S-Unit

and

Commit Stack Entry

Branch
History

PC
nPC
CCR
FSR

I-Unit

FPR

E-unit

Control
Logic

E-Unit

GPR

Duplicated to support MTP

I-TLB tag data

2048
entry L1I Cache

64 KB, 2-way
32 Entry 32 Entry

GUB FUB

CWR

Reservation Stations

Instruction
Fetch
Pipeline

Instruction
Buffer

U2 Cache
Tag

U2 Cache Data
6MB 12-Way

FIGURE 1-1 SPARC64 VII Block Diagram
Ver 1.0, 1 Jul. 2008 F. Chapter 1 Overview 5

1.3.2 Instruction Control Unit (IU)

The IU predicts the instruction execution path, fetches instructions on the predicted path,
distributes the fetched instructions to the appropriate reservation stations, and dispatches the
instructions to the execution pipeline. The instructions are executed out of order, and the IU
commits the instructions in order. Major blocks are defined in TABLE 1-1.

TABLE 1-1 Instruction Control Unit Major Blocks

Name	 Description

Instruction fetch pipeline	 Five stages: fetch address generation, iTLB tag access, I-Cache tag
match, I-Cache read, and a write to I-buffer.

Branch history	 A table to predict branch target and direction.

Instruction buffer	 A buffer to hold instructions fetched.

Reservation station	 Six reservation stations to hold instructions until they can execute:
RSBR for branch and the other control-transfer instructions; RSA for
load/store instructions; RSEA and RSEB for integer arithmetic
instructions; RSFA and RSFB for floating-point arithmetic and VIS
instructions.

Commit stack entries	 A buffer to hold information about instructions issued but not yet
committed.

PC, nPC, CCR, FSR	 Program-visible registers for instruction execution control.

1.3.3 Execution Unit (EU)

The EU carries out the execution of all integer arithmetic, logical, shift instructions, all
floating-point instructions, and all VIS graphic instructions. TABLE 1-2 describes the EU
major blocks.

TABLE 1-2 Execution Unit Major Blocks

Name Description

GUB General register (gr) renaming register file.

GPR Gr architecture register file.

FUB Floating-point (fr) renaming register file.

FPR Fr architecture register file.

EU control logic Controls the instruction execution stages: instruction selection,
register read, and execution.

Interface registers Input/output registers to other units.

Two integer execution pipelines 64-bit ALU and shifters.
(EXA, EXB)
SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 6

TABLE 1-2 Execution Unit Major Blocks (Continued)

Name	 Description

Two floating-point and graphics Each floating-point execution pipeline can execute floating point
execution pipelines (FLA, FLB) multiply, floating point add/sub, floating-point multiply and add,

floating point div/sqrt, and floating-point graphics instruction.

Two virtual address adders for Two 64-bit virtual addresses for load/store.

memory access pipeline (EAGA,

EAGB)

1.3.4 Storage Unit (SU)

The SU handles all sourcing and sinking of data for load and store instructions. TABLE 1-3

describes the SU major blocks.

TABLE 1-3 Storage Unit Major Blocks

Name	 Description

Instruction level-1 cache	 64-Kbyte, 2-way associative, 64-byte line; provides low latency
instruction source.

Data level-1 cache	 64-Kbyte, 2-way associative, 64-byte line, writeback; provides the low
latency data source for loads and stores.

Instruction Translation Buffer 2048 entries, 2-way associative TLB (sITLB).

32 entries, fully associative TLB (fITLB).

Data Translation Buffer	 2048 entries, 2-way associative TLB (sDTLB).

32 entries, fully associative TLB (fDTLB).

Store Buffer and Write Buffer Decouples the pipeline from the latency of store operations. Allows the
pipeline to continue flowing while the store waits for data, and
eventually writes into the data level 1 cache.

1.3.5 Secondary Cache and External Access Unit (SXU)

The SXU controls the operation of the unified level-2 caches and the external data access
interface (Jupiter Bus). TABLE 1-4 describes the major blocks of the SXU.

TABLE 1-4 Secondary Cache and External Access Unit Major Blocks

Name Description

Unified level-2 cache 6-Mbyte, 12-way associative, 256-byte line (four 64-byte sublines),
writeback; provides low latency data source for both instruction level-1
cache and data level-1 cache.

Movein buffer Catches returning data from the memory system in response to the
cache line read request.
Ver 1.0, 1 Jul. 2008	 F. Chapter 1 Overview 7

TABLE 1-4 Secondary Cache and External Access Unit Major Blocks

Name Description

Moveout buffer Holds writeback data to memory.

Jupiter Bus interface control Send/receive transaction packets to/from Jupiter Bus interface
logic connected to the system.
SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 8

F.CH AP TE R 2

Definitions

This chapter defines concepts unique to SPARC64 VII, the Fujitsu implementation of SPARC
JPS1. For definition of terms that are common to all implementations, please refer to Chapter
2 of Commonality.

committed Term applied to an instruction when it has completed without error and all prior
instructions have completed without error and have been committed. When an
instruction is committed, the state of the machine is permanently changed to reflect the
result of the instruction; the previously existing state is no longer needed and can be
discarded.

completed Term applied to an instruction after it has finished, has sent a non-error status to the
issue unit, and all of its source operands are non-speculative. Note: Although the state
of the machine has been temporarily altered by completion of an instruction, the state
has not yet been permanently changed and the old state can be recovered until the
instruction has been committed.

executed Term applied to an instruction that has been processed by an execution unit such as a
load unit. An instruction is in execution as long as it is still being processed by an
execution unit.

fetched Term applied to an instruction that is obtained from the I1 instruction cache or from the
on-chip internal buffer and sent to the issue unit.

finished Term applied to an instruction when it has completed execution in a functional unit and
has forwarded its result onto a result bus. Results on the result bus are transferred to
the register file, as are the waiting instructions in the instruction queues.

instruction initiated Term applied to an instruction when it has all of the resources that it needs (for
example, source operands) and has been selected for execution.

instruction dispatched Synonym: instruction initiated.

instruction issued Term applied to an instruction when it has been dispatched to a reservation station.
Ver 1.0, 1 Jul. 2008 F. Chapter 2 Definitions 9

instruction retired Term applied to an instruction when all machine resources (serial numbers, renamed
registers) have been reclaimed and are available for use by other instructions. An
instruction can only be retired after it has been committed.

instruction stall Term applied to an instruction that is not allowed to be issued. Not every instruction
can be issued in a given cycle. The SPARC64 VII implementation imposes certain
issue constraints based on resource availability and program requirements.

issue-stalling
instruction An instruction that prevents new instructions from being issued until it has committed.

machine sync The state of a machine when all previously executing instructions have committed; that
is, when no issued but uncommitted instructions are in the machine.

Memory Management
Unit (MMU) Refers to the address translation hardware in SPARC64 VII that translates a 64-bit

virtual address into physical address. The MMU is composed of the mITLB, mDTLB,
uITLB, uDTLB, and the ASI registers used to manage address translation.

mTLB Main TLB. Split into I and D, called mITLB and mDTLB, respectively. Contains
address translations for the uITLB and uDTLB. When the uITLB or uDTLB do not
contain a translation, they ask the mTLB for the translation. If the mTLB contains the
translation, it sends the translation to the respective uTLB. If the mTLB does not
contain the translation, it generates a fast access exception to a software translation
trap handler, which will load the translation information (TTE) into the mTLB and
retry the access. See also TLB.

uDTLB Micro Data TLB. A small, fully associative buffer that contains address translations for
data accesses. Misses in the uDTLB are handled by the mTLB.

uITLB Micro Instruction TLB. A small, fully associative buffer that contains address
translations for instruction accesses. Misses in the uTLB are handled by the mTLB.

MTP Multi Threaded Processor. A processor module containing more than one thread. (May
also be used as an acronym for Multi threaded Processing.)

non-speculative A distribution system whereby a result is guaranteed known correct or an operand state
is known to be valid. SPARC64 VII employs speculative distribution, meaning that
results can be distributed from functional units before the point at which guaranteed
validity of the result is known.

physical core A physical core includes an execution pipeline and associated structures, such as
caches, that are required for performing the execution of instructions from one or more
software threads. A physical core contains one or more threads. The physical core
provides the necessary resources for each thread to make forward progress at a
reasonable rate.

processor module A processor module is the unit on which a shared interface is provided to control the
configuration and execution of a collection of threads. A processor module contains
one or more physical cores, each of which contains one or more threads. On a more
10 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

physical side, a processor module is a physical module that plugs into a system. And a
processor module is expected to appear logically as a single agent on the system
interconnect fabric.

reclaimed The status when all instruction-related resources that were held until commit have been
released and are available for subsequent instructions. Instruction resources are usually
reclaimed a few cycles after they are committed.

rename registers A large set of hardware registers implemented by SPARC64 VII that are invisible to
the programmer. Before instructions are issued, source and destination registers are
mapped onto this set of rename registers. This allows instructions that normally would
be blocked, waiting for an architecture register, to proceed in parallel. When
instructions are committed, results in renamed registers are posted to the architecture
registers in the proper sequence to produce the correct program results.

reservation station A holding location that buffers dispatched instructions until all input operands are
available. SPARC64 VII implements dataflow execution based on operand availability.
When operands are available, the instructions in the reservation station are scheduled
for execution. Reservation stations also contain special tag-matching logic that
captures the appropriate operand data. Reservation stations are sometimes referred to
as queues (for example, the integer queue).

scan A method used to initialize all of the machine state within a chip. In a chip that has
been designed to be scannable, all of the machine state is connected in one or several
loops called “scan rings.” Initialization data can be scanned into the chip through the
scan rings. The state of the machine also can be scanned out through the scan rings.

sleeping Describes a thread that is suspended from operation. While sleeping, a thread is not
issuing instructions for execution but still maintains cache coherency. Unlike
suspended, a sleeping thread awakes automatically within limited number of cycles.

speculative A distribution system whereby a result is not guaranteed as known to be correct or an
operand state is not known to be valid. SPARC64 VII employs speculative distribution,
meaning results can be distributed from functional units before the point at which
guaranteed validity of the result is known.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle. SPARC64 VII issues up to 4 instructions per clock
cycle.

suspended Describes a thread that is suspended from operation. When suspended, a thread is not
issuing instructions for execution but still maintains cache coherency. Unlike sleeping,
a suspended thread does not awake automatically without certain stimuli.

sync Synonym: machine sync.

syncing instruction An instruction that causes a machine sync. Thus, before a syncing instruction is issued,
all previous instructions (in program order) must have been committed. At that point,
the syncing instruction is issued, executed, completed, and committed by itself.
Ver 1.0, 1 Jul. 2008 F. Chapter 2 Definitions 11

thread	 A term that identifies the hardware state used to hold a software thread in order to
execute it. A thread is specifically the software visible architecture state (PC, next PC,
general purpose registers, floating-point registers, condition codes, status registers,
ASRs, etc.) of a thread and any micro architecture state required by hardware for its
execution.
12 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.CH AP TE R 3

Architectural Overview

Please refer to Chapter 3 in Commonality.

Ver 1.0, 1 Jul. 2008 F. Chapter 3 Architectural Overview 13

F.CH AP TE R 4

Data Formats

Please refer to Chapter 4 in Commonality.

Ver 1.0, 1 Jul. 2008 F. Chapter 4 Data Formats 14

F.CH AP TE R 5

Registers

The SPARC64 VII processor includes two types of registers: general-purpose—that is,
working, data, control/status—and ASI registers.

The SPARC V9 architecture also defines two implementation-dependent registers: the IU
Deferred-Trap Queue and the Floating-Point Deferred-Trap Queue (FQ); SPARC64 VII does
not need or contain either queue. All processor traps caused by instruction execution are
precise, and there are several disrupting traps caused by asynchronous events, such as
interrupts, asynchronous error conditions, and RED_state entry traps.

For general information, please see parallel subsections of Chapter 5 in Commonality. For
easier referencing, this chapter follows the organization of Chapter 5 in Commonality.

For information on MMU registers, please refer to Section F.10, Internal Registers and ASI
Operations, on page 109.

The chapter contains these sections:

■ Nonprivileged Registers on page 15
■ Privileged Registers on page 17

5.1 Nonprivileged Registers
Most of the definitions for the registers are as described in the corresponding sections of
Commonality. Only SPARC64 VII-specific features are described in this section.

5.1.7 Floating-Point State Register (FSR)

Please refer to Section 5.1.7 of Commonality for the description of FSR.

The sections below describe SPARC64 VII-specific features of the FSR register.
Ver 1.0, 1 Jul. 2008 F. Chapter 5 Registers 15

FSR_nonstandard_fp (NS)

SPARC V9 defines the FSR.NS bit which, when set to 1, causes the FPU to produce
implementation-dependent results that may not conform to IEEE Std 754-1985.
SPARC64 VII implements this bit.

When FSR.NS = 1, denormalized input operands and denormalized results that would
otherwise trap are flushed to 0 of the same sign and an inexact exception is signalled (that
may be masked by FSR.TEM.NXM). See Section B.6, Floating-Point Nonstandard Mode, on
page 77 for details.

When FSR.NS = 0, the normal IEEE Std 754-1985 behavior is implemented.

FSR_version (ver)

For each SPARC V9 IU implementation (as identified by its VER.impl field), there may be
one or more FPU implementations or none. This field identifies the particular FPU
implementation present. For the first SPARC64 VII, FSR.ver = 0 (impl. dep. #19);
however, future versions of the architecture may set FSR.ver to other values. Consult the
SPARC64 VII Data Sheet for the setting of FSR.ver for your chipset.

FSR_floating-point_trap_type (ftt)

The complete conditions under which SPARC64 VII triggers fp_exception_other with trap
type unfinished_FPop is described in Section B.6, Floating-Point Nonstandard Mode, on
page 77 (impl. dep. #248).

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception
causes the corresponding bit to be cleared.

In SPARC64 VII, the cexc bits are set according to the following pseudocode:

if (<LDFSR or LDXFSR commits>)

<update using data from LDFSR or LDXFSR>;

else if (<FPop commits with ftt = 0>)

<update using value from FPU>

else if (<FPop commits with IEEE_754_exception>)

<set one bit in the CEXC field as supplied by FPU>;

else if (<FPop commits with unfinished_FPop error>)

<no change>;

else if (<FPop commits with unimplemented_FPop error>)

<no change>;

else

<no change>;

16 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

FSR Conformance

SPARC V9 allows the TEM, cexc, and aexc fields to be implemented in hardware in either
of two ways (both of which comply with IEEE Std 754-1985). SPARC64 VII follows case
(1); that is, it implements all three fields in conformance with IEEE Std 754-1985. See FSR
Conformance in Section 5.1.7 of Commonality for more information about other
implementation methods.

5.1.9 Tick (TICK) Register

SPARC64 VII implements TICK.counter register as a 63-bit register (impl. dep. #105).

Implementation Note – On SPARC64 VII, the counter part of the value returned when
the TICK register is read is the value of TICK.counter when the RDTICK instruction is
executed. The difference between the counter values read from the TICK register on two
reads reflects the number of processor cycles executed between the executions of the
RDTICK instructions, not their commits. In longer code sequences, the difference between
this value and the value that would have been obtained when the instructions are committed
would be small.

5.2 Privileged Registers
 Please refer to Section 5.2 of Commonality for the description of privileged registers.

5.2.6 Trap State (TSTATE) Register

SPARC64 VII implements only bits 2:0 of the TSTATE.CWP field. Writes to bits 4 and 3 are
ignored, and reads of these bits always return zeroes.

Note – Spurious setting of the PSTATE.RED bit by privileged software should not be
performed, since it will take the SPARC64 VII into RED_state without the required
sequencing.
Ver 1.0, 1 Jul. 2008 F. Chapter 5 Registers 17

5.2.9 Version (VER) Register

TABLE 5-1 shows the values for the VER register for SPARC64 VII.

TABLE 5-1 VER Register Encoding

Bits Field Value

63:48 manuf 000416 (impl. dep. #104)

47:32 impl 7

31:24 mask n (The value of n depends on the processor chip version)

15:8 maxtl 5

4:0 maxwin 7

The manuf field contains Fujitsu’s 8-bit JEDEC code in the lower 8 bits and zeroes in the
upper 8 bits. The manuf, impl, and mask fields are implemented so that they may change
in future SPARC64 processor versions. The mask field generally increases numerically with
successive releases of the processor, but does not necessarily increase by one for consecutive
releases.

5.2.11 Ancillary State Registers (ASRs)

Please refer to Section 5.2.11 of Commonality for details of the ASRs.

Performance Control Register (PCR) (ASR 16)

SPARC64 VII implements the PCR register as described in Commonality, with additional
features as described in this section.

In SPARC64 VII, the accessibility of PCR when PSTATE.PRIV = 0 is determined by
PCR.PRIV. If PSTATE.PRIV = 0 and PCR.PRIV = 1, an attempt to execute either RDPCR
or WRPCR will cause a privileged_action exception. If PSTATE.PRIV = 0 and
PCR.PRIV = 0, RDPCR operates without privilege violation and WRPCR causes a
privileged_action exception only when an attempt is made to change (that is, write 1 to)
PCR.PRIV (impl. dep. #250).

See Appendix Q for a detailed discussion of the PCR and PIC register usage and event count
definitions.
18 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

The Performance Control Register in SPARC64 VII is illustrated in FIGURE 5-1 and described
in TABLE 5-2.

63 16 10 9 4 0

OVF 0 SLSU0SC

171821

0NC

2224

0OVRO

26273132

0

4748

0

25

ULRO UT ST PRIV

1231120

FIGURE 5-1 SPARC64 VII Performance Control Register (PCR) (ASR 16)

TABLE 5-2 PCR Bit Description

Bit Field Description

47:32 OVF Overflow Clear/Set/Status. Used to read counter overflow status (via RDPCR) and clear or set
counter overflow status bits (via WRPCR). PCR.OVF is a SPARC64 VII-specific field (impl. dep.
#207).

The following figure depicts the bit layout of SPARC64 VII OVF field for four counter pairs.
Counter status bits are cleared on write of 0 to the appropriate OVF bit.

L0U0L1U10 L2U2L3U3

15 01234567

26 OVRO Overflow read-only. Write-only/read-as-zero field specifying PCR.OVF update behavior for
WRPCR. The OVRO field is implementation dependent (impl. dep. #207). WRPCR with
PCR.OVRO = 1 inhibits updating of PCR.OVF for the current write only. The intention of
PCR.OVRO is to write PCR while preserving current PCR.OVF value. PCR.OVF is maintained
internally by hardware, so a subsequent RDPCR returns accurate overflow status at the time.

24:22 NC Number of counter pairs. Three-bit, read-only field specifying the number of counter pairs,
encoded as 0–7 for 1–8 counter pairs (impl. dep. #207).

For SPARC64 VII, the hardcoded value of NC is 3 (indicating presence of 4 counter pairs).

20:18 SC Select PIC. In SPARC64 VII, three-bit field specifying which counter pair is currently selected
as PIC (ASR 17) and which SU/SL values are visible to software. On write, PCR.SC selects
which counter pair is updated. On read, currently selected PIC is returned.

16:11 SU Defined (as S1) in Commonality.

9:4 SL Defined (as S0) in Commonality.

3 ULRO Implementation-dependent field (impl. dep. #207) that specifies whether SU/SL are read-only. In
SPARC64 VII, this field is write-only/read-as-zero, specifying update behavior of SU/SL on
write. On a write with PCR.ULRO = 1, SU/SL are considered as read-only; the values set on
PCR.SU/PCR.SL are not written into SU/SL. When PCR.ULRO = 0, SU/SL are updated.
PCR.ULRO is intended to switch the visible PIC by writing PCR.SC, without affecting the
current selection of SU/SL for that PIC. On PCR read, PCR.SU/PCR.SL always shows the
current setting of the PIC regardless of PCR.ULRO.

2 UT Defined in Commonality.

1 ST Defined in Commonality.

0 PRIV Defined in Commonality, with the additional function of controlling PCR accessibility as
described above (impl. dep. #250).
Ver 1.0, 1 Jul. 2008 F. Chapter 5 Registers 19

Performance Instrumentation Counter (PIC) Register (ASR 17)

The PIC register is implemented as described in Commonality.

Four PICs are implemented in SPARC64 VII. Each is accessed through ASR 17, using
PCR.SC as a select field. Read/write access to the PIC will access the PICU/PICL counter
pair selected by PCR. For PICU/PICL encoding of specific event counters, see Appendix Q.

On overflow, counters wrap to 0, SOFTINT register bit 15 is set, and an interrupt level-15
exception is generated. The counter overflow trap is triggered on the transition from value
FFFF FFFF16 to value 0. If multiple overflows are generated simultaneously, then multiple
overflow status bits will be set. If overflow status bits are already set, then they remain set on
counter overflow.

Overflow status bits are cleared by software writing 0 to the appropriate bit of PCR.OVF and
may be set by writing 1 to the appropriate bit. Setting these bits by software does not
generate a level 15 interrupt.

Dispatch Control Register (DCR) (ASR 18)

The DCR is not implemented in SPARC64 VII. Zero is returned on read, and writes to the
register are ignored. The DCR is a privileged register; attempted access by nonprivileged
(user) code generates a privileged_opcode exception.

5.2.12 Registers Referenced Through ASIs

Data Cache Unit Control Register (DCUCR)

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 016.

The Data Cache Unit Control Register contains fields that control several memory-related
hardware functions. The functions include Instruction, Prefetch, write and data caches,
MMUs, and watchpoint setting. SPARC64 VII implements most of DCUCUR’s functions
described in Section 5.2.12 of Commonality.

After a power-on reset (POR), all fields of DCUCR, including implementation-dependent
fields, are set to 0. After a WDR, XIR, or SIR reset, all fields of DCUCR, including
implementation-dependent fields, are set to 0.
20 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

The Data Cache Unit Control Register is illustrated in FIGURE 5-2 and described in TABLE 5-3.
In the table, bits are grouped by function rather than by strict bit sequence.

— Implementation dependent WEAK_SPCA PM VM PR PW VR VW DM IM 0 00 0 —

63 50 49 48 47 42 41 40 33 32 25 24 23 22 21 20 4 3 2 1 0

FIGURE 5-2 DCU Control Register Access Data Format (ASI 4516)

TABLE 5-3 DCUCR Description

Bits Field Type Use — Description

49:48	 CP, CV RW Not implemented in SPARC64 VII (impl. dep. #232). It reads as 0 and writes to it are
ignored.

47:42 impl. dep.	 Not used. It reads as 0 and writes to it are ignored.

41 WEAK_SPCA RW	 Disable speculative memory access (impl. dep. #240). When setting weak_spca = 1,
the branch prediction mechanism is disabled and no load, store, or instruction fetches
in the speculative path are issued. Loads and stores after the CTI instruction are also
paused until the correct path is determined. Also, software prefetch instructions,
including strong prefetch, are lost.

Due to the absence of branch prediction, all CTI instructions are considered as not
taken, and subsequent instructions beyond CTI will be fetched. Instruction fetch is
eventually stopped by an internal resource limitation, so the memory area being
accessed beyond CTI is predictable.

L2 cache flush by supervisor software is always executed regardless of
DCUCR.WEAK_SPCA setting. Autonomous L2 cache flush by RAS is pending until
all DCUCR.WEAK_SPCA in a CPU module is set to 0.

In SPARC64 VII, the branch predection is disabled by setting weak_spca to 1 in
either of the threads. That is, even though a thread does not set weak_spca it may
sometimes with branch prediction disabled.

40:33 PM<7:0>	 Defined in Commonality.

32:25 VM<7:0> Defined in Commonality.

24, 23 PR, PW Defined in Commonality.

22, 21 VR, VW Defined in Commonality.

20:4 — Reserved.

3 DM Defined in Commonality.

2 IM Defined in Commonality.

1 DC RW Not implemented in SPARC64 VII (impl. dep. #252). It reads as 0 and writes to it are

ignored.

0 IC RW	 Not implemented in SPARC64 VII (impl. dep. #253). It reads as 0 and writes to it are
ignored.
Ver 1.0, 1 Jul. 2008	 F. Chapter 5 Registers 21

Implementation Note – When DCUCR.WEAK_SPCA = 1, the memory area being accessed
beyond CTI can not exceed 1KB of that CTI.

Programming Note – Supervisor software should issue membar #Sync immediately after
setting DCUCR.WEAK_SPCA = 1, to make sure no speculative memory access is issued
thereafter.

Programming Note – Changing IM(IMMU enable) and DM(DMMU Enable) in DCUCR
requires the following instruction sequence for SPARC64 VII to work correctly.

DCUCR.IM update
stxa DCUCR
flush

#DCUDR.DM update

stxa DCUCR

membar #sync

Data Watchpoint Registers

No implementation-dependent feature of SPARC64 VII reduces the reliability of data
watchpoints (impl. dep. #244).

SPARC64 VII employs a conservative check of the PA/VA watchpoint for partial store
instructions. See Section A.42, Partial Store (VIS I), on page 68 for details.

In SPARC64 VII, the PA/VA watchpoint register is shared by both threads in a core.

Instruction Trap Register

SPARC64 VII implements the Instruction Trap Register (impl. dep. #205).

In SPARC64 VII, the least significant 11 bits (bits 10:0) of a CALL or branch (BPcc,
FBPfcc, Bicc, BPr) instruction in the instruction cache are identical to their architectural
encoding (as it appears in main memory) (impl. dep. #245).

5.2.13 Floating-Point Deferred-Trap Queue (FQ)

SPARC64 VII does not contain a Floating-Point Deferred-trap Queue (impl. dep. #24). An
attempt to read FQ with an RDPR instruction generates an illegal_instruction exception (impl.
dep. #25).
22 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

5.2.14 IU Deferred-Trap Queue

SPARC64 VII neither has nor needs an IU deferred-trap queue (impl. dep. #16)
Ver 1.0, 1 Jul. 2008 F. Chapter 5 Registers 23

24 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.CH AP TE R 6

Instructions

This chapter presents SPARC64 VII implementation-specific instruction details and the
processor pipeline information in these subsections:

■ Instruction Execution on page 25
■ Instruction Formats and Fields on page 27
■ Instruction Categories on page 28
■ Processor Pipeline on page 30

For additional, general information, please see parallel subsections of Chapter 6 in
Commonality. For easy referencing, we follow the organization of Chapter 6 in
Commonality.

6.1 Instruction Execution
SPARC64 VII is an advanced superscalar implementation of SPARC V9. Several instructions
may be issued and executed in parallel. Although SPARC64 VII provides serial program
execution semantics, some of the implementation characteristics described below are part of
the architecture visible to software for correctness and efficiency.

6.1.1 Data Prefetch

SPARC64 VII employs speculative (out of program order) execution of instructions; in most
cases, the effect of these instructions can be undone if the speculation proves to be
incorrect.1 However, exceptions can occur because of speculative data prefetching. Formally,
SPARC64 VII employs the following rules regarding speculative prefetching:

1. An async_data_error may be signalled during speculative data prefetching.
Ver 1.0, 1 Jul. 2008 F. Chapter 6 Instructions 25

1. If a memory operation x resolves to a volatile memory address (location[x]),
SPARC64 VII will not speculatively prefetch location[x] for any reason; location[x] will
be fetched or stored to only when operation x is committable.

2. If a memory operation x resolves to a nonvolatile memory address (location[x]),
SPARC64 VII may speculatively prefetch location[x] subject, adhering to the following
sub-rules:

a.	 If an operation x can be speculatively prefetched according to the prior rule, operations
with store semantics are speculatively prefetched for ownership only if they are
prefetched to cacheable locations. Operations without store semantics are speculatively
prefetched even if they are noncacheable as long as they are not volatile.

b. Atomic operations (CAS(X)A, LDSTUB, SWAP) are never speculatively prefetched.

SPARC64 VII provides two mechanisms to avoid speculative execution of a load:

1. Avoid speculation by disallowing speculative accesses to certain memory pages or I/O
spaces. This can be done by setting the E (side-effect) bit in the PTE for all memory
pages that should not allow speculation. All accesses made to memory pages that have the
E bit set in their PTE will be delayed until they are no longer speculative or until they are
cancelled. See Appendix F for details.

2. Alternate space load instructions that force program order, such as
ASI_PHYS_BYPASS_WITH_EBIT[_L] (AS I = 1516, 1D16), will not be speculatively
executed.

6.1.2 Instruction Prefetch

The processor prefetches instructions to minimize cases where the processor must wait for
instruction fetch. In combination with branch prediction, prefetching may cause the processor
to access instructions that are not subsequently executed. In some cases, the speculative
instruction accesses will reference data pages. SPARC64 VII does not generate a trap for any
exception that is caused by an instruction fetch until all of the instructions before it (in
program order) have been committed.1

6.1.3 Syncing Instructions

SPARC64 VII has instructions called syncing instructions, that stop execution for the number
of cycles it takes to clear the pipeline and to synchronize the processor. There are two types
of synchronization, pre and post. A presyncing instruction waits for all previous instructions

1. Hardware errors and other asynchronous errors may generate a trap even if the instruction that caused the trap is never
committed.
26 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

to commit, commits by itself, and then issues successive instructions. A postsyncing
instruction issues by itself and prevents the successive instructions from issuing until it is
committed. Some instructions have both pre- and post-sync attributes.

In SPARC64 VII almost all instructions commit in order, but store instructions commit
before becoming globally visible. A few syncing instructions cause the processor to discard
prefetched instructions and to refetch the successive instructions.

6.2 Instruction Formats and Fields
Instructions are encoded in five major 32-bit formats and several minor formats. Please refer
to Section 6.2 of Commonality for illustrations of four major formats. FIGURE 6-1 illustrates
Format 5, unique to SPARC64 VII.

Format 5 (op = 2, op3 = 3716): FMADD, FMSUB, FNMADD, FNMSUB, FPMADDXHI, and FPMADDX
(in place of IMPDEP2A and IMPDEP2B)

op3 rdop rs1 rs3 rs2 var

31 14 1924 18 13 5 4 02530 29 9 7 68

size

FIGURE 6-1 Summary of Instruction Formats: Format 5

Instruction fields are those shown in Section 6.2 of Commonality. Three additional fields are
implemented in SPARC64 VII. They are described in TABLE 6-1.

TABLE 6-1 Instruction Fields Specific to SPARC64 VII

Bits Field Description

13:9	 rs3 This 5-bit field is the address of the third f register source operand for the
floating-point multiply-add and integer multiply-add instructions.

8:7	 var This 2-bit field specifies which specific operation (variation) to perform for the
floating-point multiply-add and integer multiply-add instructions

6:5	 size This 2-bit field specifies the size of the operands for the floating-point
multiply-add and integer multiply-add instructions.

Since size = 112 assumes quad operations but is not implemented in SPARC64 VII, an
instruction with size = 112 generates an illegal_instruction exception in SPARC64 VII.
Ver 1.0, 1 Jul. 2008	 F. Chapter 6 Instructions 27

6.3 Instruction Categories

SPARC V9 instructions comprise the categories listed below. All categories are described in
Section 6.3 of Commonality. Subsections in bold face are SPARC64 VII implementation
dependencies.

■ Memory access
■ Memory synchronization
■ Integer arithmetic
■ Control transfer (CTI)
■ Conditional moves
■ Register window management
■ State register access
■ Privileged register access
■ Floating-point operate (FPop)
■ Implementation-dependent

6.3.3 Control-Transfer Instructions (CTIs)

These are the basic control-transfer instruction types:

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
■ Unconditional branch
■ Call and link (CALL)
■ Jump and link (JMPL, RETURN)
■ Return from trap (DONE, RETRY)
■ Trap (Tcc)

Instructions other than CALL and JMPL are described in their entirety in Section 6.3.2 of
Commonality. SPARC64 VII implements CALL and JMPL as described below.

CALL and JMPL Instructions

SPARC64 VII writes all 64 bits of the PC into the destination register when
PSTATE.AM = 0. The upper 32 bits of r[15] (CALL) or of r[rd] (JMPL) are written as
zeroes when PSTATE.AM = 1 (impl. dep. #125).

SPARC64 VII implements JMPL and CALL return prediction hardware in the form of a
special stack, called the Return Address Stack (RAS). Whenever a CALL or JMPL that writes
to %o7 (r[15]) occurs, SPARC64 VII “pushes” the return address (%PC+8) onto the RAS.
When either of the synthetic instructions retl (JMPL [%o7+8]) or ret (JMPL [%i7+8]) are
subsequently executed, the return address is predicted to be the address stored on the top of
28 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

the RAS and the RAS is “popped.” If the prediction in the RAS is incorrect, SPARC64 VII
backs up and starts issuing instructions from the correct target address. This backup takes a
few extra cycles.

Programming Note – For maximum performance, software and compilers must take into
account how the RAS works. For example, tricks that do nonstandard returns in hopes of
boosting performance may require more cycles if they cause the wrong RAS value to be used
for predicting the address of the return. Heavily nested calls can also cause earlier entries in
the RAS to be overwritten by newer entries, since the RAS only has a limited number of
entries. Eventually, some return addresses will be mis-predicted because of the overflow of
the RAS.

6.3.7 Floating-Point Operate (FPop) Instructions

The complete conditions of generating an fp_exception_other exception with

FSR.ftt = unfinished_FPop are described in Section B.6, Floating-Point Nonstandard Mode,

on page 77.

The SPARC64 VII-specific FMADD, FMSUB, FPMADDXHI, and FPMADDX instructions

(described below) are also floating-point operations. They require the floating-point unit to

be enabled; otherwise, an fp_disabled trap is generated. The Floating-point multiply-add

instructionsalso affect the FSR, like FPop instructions, while integer multiply-add

instructions don’t. These instructions are not included in the FPop category and, hence,

reserved encodings in these opcodes generate an illegal_instruction exception, as defined in

Section 6.3.9 of Commonality.

6.3.8 Implementation-Dependent Instructions

SPARC64 VII uses the IMPDEP2 instruction to implement the floating-point multiply-add/
subtract , negative multiply-add/subtract and integer multiply-add instructions; these have an
op3 field = 3716 (IMPDEP2). See Section A.24.1, Floating-Point Multiply-Add/Subtract, on
page 55 and Section A.24.4, Integer Multiply-Add, on page 61 for full definitions of these
instructions. Opcode space is reserved in IMPDEP2 for the quad-precision forms of these
instructions. However, SPARC64 VII does not currently implement the quad-precision forms,
and the processor generates an illegal_instruction exception if a quad-precision form is
specified. Since these instructions are not part of the required SPARC V9 architecture, the
operating system does not supply software emulation routines for the quad versions of these
instructions.

SPARC64 VII uses the IMPDEP1 instruction to implement the graphics acceleration
instructions.
Ver 1.0, 1 Jul. 2008 F. Chapter 6 Instructions 29

6.4 Processor Pipeline

The pipeline of SPARC64 VII consists of fifteen stages, shown in FIGURE 6-2. Each stage is
referenced by one or two letters as follows:

IA IT IM IB IR

E D P B X U C W

Ps Ts Ms Bs Rs

FIGURE 6-2 SPARC64 VII pipeline stages

6.4.1 Instruction Fetch Stages
■ IA: Instruction Address generation
■ IT: Instruction TLB Tag access
■ IM: Instruction cache tag Match
■ IB: Instruction cache read to Buffer
■ IR: Instruction read Result

IA through IR stages are dedicated to instruction fetch. These stages work in concert with the
cache access unit to supply instructions to subsequent stages. The instructions fetched from
memory or cache are stored in the Instruction Buffer (I-buffer).

SPARC64 VII has a branch prediction mechanism and resources named BRHIS (BRanch
HIStory) and RAS (Return Address Stack). Instruction fetch stages use these resources to
determine fetch addresses.

Instruction fetch stages are designed so that they work independently of subsequent stages as
much as possible. And they can fetch instructions even when execution stages stall. These
stages fetch until the Instruction Buffer I-Buffer is full; further fetches are possible by
requesting prefetches to the L1 cache.
30 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

BRHIS iTLB

Instruction Buffer

RSFA RSFB RSEB RSEA RSA RSBR

L1I

dTLB L1D

FLA EXAFLB EXB EAGA EAGB

IWR

GUB

CWR

FUB

FPR PC nPC ccr fsr

IF EAG

LB

LR

RRRRRRRR

CSE

GPR

Ps

Ts

Ms

Bs

Rs

E

D

P

B

X

IA

IT

IM

IB

IR

U

C

W

FIGURE 6-3 SPARC64 VII Pipeline Diagram
Ver 1.0, 1 Jul. 2008 F. Chapter 6 Instructions 31

6.4.2 Issue Stages
■ E: Entry
■ D: Decode

SPARC64 VII is an out-of-order execution CPU. It has six execution units (two arithmetic
and logic units, two floating-point units, two load/store units). Every unit except the load/
store unit has its own reservation station. E and D stages are issue stages that decode
instructions and dispatch them to the target RS. SPARC64 VII can issue up to four
instructions per cycle.

The resources needed to execute an instruction are assigned in the issue stages. The resources
to be allocated include the following:

■ Commit stack entry (CSE)
■ Renaming registers of integer (GUB) and floating-point (FUB)
■ Entries of reservation stations
■ Memory access ports

Resources needed for an instruction are specific to the instruction, but all resources must be
assigned at these stages. In normal execution, assigned resources are released at the very last
stage of the pipeline, W-stage.1 Instructions between the E-stage and W-stage are considered
to be in-flight. When an exception is signalled, all in-flight instructions and the resources
used by them are released immediately. This behavior enables the decoder to restart issuing
instructions as quickly as possible.

6.4.3 Execution Stages
■ P: Priority
■ B: Buffer read
■ X: Execute
■ U: Update

Instructions in reservation stations will be executed when certain conditions are met, for
example, the values of source registers are known, the execution unit is available. Execution
latency varies from one to many cycles, depending on the instruction.

1. An entry in a reservation station is released at the X-stage.
32 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Execution Stages for Cache Access

Memory access requests are passed to the cache access pipeline after the target address is
calculated. Cache access stages work the same way as instruction fetch stages, except for the
handling of branch prediction. See Section 6.4.1, Instruction Fetch Stages, for details. Stages
in instruction fetch and cache access correspond as follows:

Instruction Fetch Stages Cache Access

IA Ps

IT Ts

IM Ms

IB Bs

IR Rs

When an exception is signalled, fetch ports and store ports used by memory access
instructions are released. The cache access pipeline itself remains working in order to
complete outgoing memory accesses. When data is returned, it is then stored to the cache.

6.4.4 Completion Stages
■	 W: Write
■	 After an out-of-order execution, execution reverts to program order to complete.

Exception handling is done in the completion stages. Exceptions occurring in execution
stages are not handled immediately but are signalled when the instruction is completed.1

1. RAS-related exception may be signalled before completion.
Ver 1.0, 1 Jul. 2008	 F. Chapter 6 Instructions 33

34 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.CH AP TE R 7

Traps

Please refer to Chapter 7 of Commonality. Section numbers in this chapter correspond to
those in Chapter 7 of Commonality.

This chapter adds SPARC64 VII-specific information in the following sections:

■ Processor States, Normal and Special Traps on page 35

■ RED_state on page 36

■ error_state on page 36

■ Trap Categories on page 37

■ Deferred Traps on page 37

■ Reset Traps on page 37

■ Uses of the Trap Categories on page 37

■ Trap Control on page 38

■ PIL Control on page 38

■ Trap-Table Entry Addresses on page 38

■ Trap Type (TT) on page 38

■ Details of Supported Traps on page 39

■ Exception and Interrupt Descriptions on page 39

7.1 Processor States, Normal and Special Traps
Please refer to Section 7.1 of Commonality.
Ver 1.0, 1 Jul. 2008 F. Chapter 7 Traps 35

7.1.1 RED_state

RED_state Trap Table

The RED_state trap vector is located at an implementation-dependent address referred to
as RSTVaddr. The value of RSTVaddr is a constant within each implementation; in
SPARC64 VII this virtual address is FFFF FFFF F000 000016, which translates to physical
address 0000 07FF F000 000016 in RED_state (impl. dep. #114).

RED_state Execution Environment

In RED_state, the processor is forced to execute in a restricted environment by overriding
the values of some processor controls and state registers.

Note – The values are overridden, not set, allowing them to be switched atomically.

SPARC64 VII has the following implementation-dependent behavior in RED_state (impl.
dep. #115):

■	 While in RED_state, all internal ITLB-based translation functions are disabled. DTLB-
based translations are disabled upon entry but may be re-enabled by software while in
RED_state. Regardless, ASI-based access functions to the TLBs are still available.

■	 While mTLBs and uTLBs are disabled, all accesses are assumed to be noncacheable and
strongly ordered for data access.

■	 XIR errors are not masked and can cause a trap.

Note – When RED_state is entered because of component failures, the handler should
attempt to recover from potentially catastrophic error conditions or to disable the failing
components. When RED_state is entered after a reset, the software should create the
environment necessary to restore the system to a running state.

7.1.2 error_state

The processor enters error_state when a trap occurs while the processor is already at its
maximum supported trap level (that is, when TL = MAXTL) (impl. dep. #39).

Although the standard behavior of the CPU upon an entry into error_state is to
internally generate a watchdog_reset (WDR), the CPU optionally stays halted upon an entry
to error_state depending on a setting in the OPSR register (impl. dep #40, #254).
36 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

7.2 Trap Categories

Please refer to Section 7.2 of Commonality.

An exception or interrupt request can cause any of the following trap types:

■ Precise trap
■ Deferred trap
■ Disrupting trap
■ Reset trap

7.2.2 Deferred Traps

Please refer to Section 7.2.2 of Commonality.

SPARC64 VII implements a deferred trap to signal certain error conditions (impl. dep. #32).
Please refer to the description of I_UGE error on “Relation between %tpc and the instruction
that caused the error” row in TABLE P-2 on page 179 for details. See also Instruction End-
Method at ADE Trap on page 194.

7.2.4 Reset Traps

Please refer to Section 7.2.4 of Commonality.

In SPARC64 VII, a watchdog reset (WDR) occurs when the processor has not committed an
instruction for 233 processor cycles.

7.2.5 Uses of the Trap Categories

Please refer to Section 7.2.5 of Commonality.

All exceptions that occur as the result of program execution are precise in SPARC64 VII
(impl. dep. #33).

An exception caused after the initial access of a multiple-access load or store instruction
(LDD(A), STD(A), LDSTUB, CASA, CASXA, or SWAP) that causes a catastrophic exception is
precise in SPARC64 VII.
Ver 1.0, 1 Jul. 2008 F. Chapter 7 Traps 37

7.3 Trap Control

Please refer to Section 7.3 of Commonality.

7.3.1 PIL Control

SPARC64 VII receives external interrupts from the Jupiter Bus. They cause an
interrupt_vector_trap (TT = 6016). The interrupt vector trap handler reads the interrupt
information and then schedules SPARC V9-compatible interrupts by writing bits in the
SOFTINT register. Please refer to Section 5.2.11 of Commonality for details.

During handling of SPARC V9-compatible interrupts by SPARC64 VII, the PIL register is
checked. If an interrupt has sufficient priority, SPARC64 VII will stop issuing new
instructions, will flush all uncommitted instructions, and then will pass to the trap handler.
The only exception to this process occurs when SPARC64 VII is processing a higher-priority
trap.

SPARC64 VII takes a normal disrupting trap upon receipt of an interrupt request.

7.4 Trap-Table Entry Addresses
Please refer to Section 7.4 of Commonality.

7.4.2 Trap Type (TT)

Please refer to Section 7.4.2 of Commonality.

SPARC64 VII implements all mandatory SPARC V9 and SPARC JPS1 exceptions, as
described in Chapter 7 of Commonality, plus the exception listed in TABLE 7-1, which is
specific to SPARC64 VII (impl. dep. #35; impl. dep. #36).

TABLE 7-1 Exceptions Specific to SPARC64 VII

Exception or Interrupt Request TT Priority

async_data_error 04016 2
38 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

7.4.4	 Details of Supported Traps

Please refer to Section 7.4.4 in Commonality.

SPARC64 VII Implementation-Specific Traps

SPARC64 VII supports the following implementation-specific trap type:

■	 async_data_error

7.5	 Trap Processing
Please refer to Section 7.5 of Commonality.

7.6	 Exception and Interrupt Descriptions
Please refer to Section 7.6 of Commonality.

7.6.4	 SPARC V9 Implementation-Dependent, Optional Traps
That Are Mandatory in SPARC JPS1

Please refer to Section 7.6.4 of Commonality.

SPARC64 VII implements all six traps that are implementation dependent in SPARC V9 but
mandatory in JPSI (impl. dep. #35). See Section 7.6.4 of Commonality for details.

7.6.5 SPARC JPS1 Implementation-Dependent Traps

Please refer to Section 7.6.5 of Commonality.

SPARC64 VII implements the following traps that are implementation dependent (impl. dep.
#35).

■	 async_data_error [tt = 04016] (Preemptive or disrupting) (impl. dep. #218) —
SPARC64 VII implements the async_data_error exception to signal the following errors.
■	 Uncorrectable errors in the internal architecture registers (general registers–gr,

floating-point registers–fr, ASR, ASI registers)
Ver 1.0, 1 Jul. 2008	 F. Chapter 7 Traps 39

■ Uncorrectable errors in the core pipeline
■ Watch dog time-out first time
■ TLB access error upon access by an ldxa or stxa instruction

Multiple errors may be reported in a single generation of the async_data_error exception.
Depending on the situation, the async_data_error trap becomes a precise trap, a
disrupting trap, or a preemptive trap upon error detection. The TPC and TNPC stacked by
the exception may indicate the exact instruction, the preceding instruction, or the
subsequent instruction inducing the error. See Appendix P for details of the
async_data_error exception in SPARC64 VII.
40 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.CH AP TE R 8

Memory Models

The SPARC V9 architecture is a model that specifies the behavior observable by software on
SPARC V9 systems. Therefore, access to memory can be implemented in any manner, as
long as the behavior observed by software conforms to that of the models described in
Chapter 8 of Commonality and defined in Appendix D, Formal Specification of the Memory
Models, also in Commonality.

The SPARC V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC V9
processors must provide Total Store Order (or a more strongly ordered model, for example,
Sequential Consistency) to ensure SPARC V8 compatibility.

Whether the PSO or RMO models are supported by SPARC V9 systems is implementation
dependent; SPARC64 VII behaves in a manner that guarantees adherence to whichever
memory model is currently in effect.

This chapter describes the following major SPARC64 VII-specific details of memory models.

■ SPARC V9 Memory Model on page 42

For general information, please see parallel subsections of Chapter 8 in Commonality. For
easier referencing, this chapter follows the organization of Chapter 8 in Commonality,
listing subsections whether or not there are implementation-specific details.
Ver 1.0, 1 Jul. 2008 F. Chapter 8 Memory Models 41

8.1 Overview

Note – The words “hardware memory model” denote the underlying hardware memory
models as differentiated from the “SPARC V9 memory model,” which is the memory model
the programmer selects in PSTATE.MM.

SPARC64 VII supports only one mode of memory handling to guarantee correct operation
under any of the three SPARC V9 memory ordering models (impl. dep. #113):

■	 Total Store Order — All loads are ordered with respect to loads, and all stores are
ordered with respect to loads and stores. This behavior is a superset of the requirements
for the SPARC V9 memory models TSO, PSO, and RMO. When PSTATE.MM selects
PSO or RMO, SPARC64 VII operates in this mode. Since programs written for PSO (or
RMO) will always work if run under Total Store Order, this behavior is safe but does not
take advantage of the reduced restrictions of PSO (or RMO).

8.4 SPARC V9 Memory Model
Please refer to Section 8.4 of Commonality.

In addition, this section describes SPARC64 VII-specific details about the processor/memory
interface model.

8.4.5 Mode Control

SPARC64 VII implements Total Store Ordering for all PSTATE.MM. Writing 112 into
PSTATE.MM also causes the machine to use TSO (impl. dep. #119). However, the encoding
112 should not be used, since future version of SPARC64 VII may use this encoding for a
new memory model.

8.4.7 Synchronizing Instruction and Data Memory

All caches in a SPARC64 VII-based system (uniprocessor or multiprocessor) have a unified
cache consistency protocol and implement strong coherence between instruction and data
caches. Writes to any data cache cause invalidations to the corresponding locations in all
42 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

http:PSTATE.MM
http:PSTATE.MM

instruction caches; references to any instruction cache cause the corresponding modified data
to be flushed and corresponding unmodified data to be invalidated from all data caches. The
flush operation is still operative in SPARC64 VII, however.
Ver 1.0, 1 Jul. 2008 F. Chapter 8 Memory Models 43

44 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.CH AP TE R 9

Multi-Threaded Processing

SPARC64 VII can process two threads in each of the four cores in the same processor
module to provide a dense, high throughput system. This chapter specifies the required
interface between hardware and software to handle multiple threads on the same processor
module.

9.1 MTP structure

9.1.1 General MTP structure

Three structures are known for Multi threaded Processing.

1. Chip Multi Processing

One processor module includes multiple physical cores, where each physical core is able
to run a single thread independently from other cores at any given time. This structure is
called Chip Multi-Processing (CMP).

2. Multi-thread (MT)

One processor module includes a single physical core. The core is able to run multiple
threads in parallel from the software’s point of view. Although there is only a single
physical core, the physical core behaves as if it were multiple virtual processors. This is
because the core includes multiple software visible resources (PC, next PC, general purpose
registers, floating-point registers, condition codes, status registers, ASRs, etc.). This virtual
processor is called a thread.

There are two types of Multi-thread implementations.

a. Vertical Multi-thread (VMT)
Ver 1.0, 1 Jul. 2008 F. Chapter 9 Multi-Threaded Processing 45

The physical core is able to run only a single thread at any given time. But multiple
threads can run in parallel from the software’s point of view by using time-sharing
techniques. That is, the core includes multiple software visible resources (PC, next PC,
general purpose registers, floating-point registers, condition codes, status registers, ASRs,
etc.), and hardware switches threads to run in a relatively-short time.

b. Simultaneous Multi-thread (SMT)

The physical core is able to run multiple threads at any given time. That is, the core
includes multiple software visible resources (PC, next PC, general purpose registers,
floating-point registers, condition codes, status registers, ASRs, etc.) as well as multiple
execution units, and multiple threads run at the same time.

9.1.2 MTP structure of SPARC64 VII

SPARC64 VII implements a combination of CMP and SMT. That is, it has four physical
cores where each core has two threads with an SMT structure. In other words, eight threads
are able to run in parallel. The two threads which belong to the same physical core share
most of the physical resources, while the four physical cores do not share any physical
resources except the L2 cache and system interface.

Threads execution in SPARC64 VII is illustrated in FIGURE 9-1. Basically two threads in a
core always active and execute instructions, but sometime stops due to cache miss, waiting
for internal resources, and so on. Gaps in a thread in FIGURE 9-1 represent such kind of
pause. Meanwhile, a thread can yield its execution priority with the help of software. See
How to control threads on page 48. for detail.

FIGURE 9-1 Multiple threads in SPARC64 VII

time

CORE0 thread0
thread1

thread0
thread1

thread0
thread1

thread0
thread1

CORE1

CORE2

CORE3
46 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

9.2 MTP Programming Model

9.2.1 Thread independency

In principle, because the software visible resources are not shared between threads, each
thread of SPARC64 VII is independent of each other like a conventional Symmetric Multi
Processor. Even for supervisor software, this is true except in the following cases:

Shared TLBs

Thread0 and thread1 belong to the same physical core and share fTLB and sTLB. See
Section F.12, Translation Lookaside Buffer Hardware, on page 129 for details.

Error handling

An error asynchronous to thread execution is always signalled to all related threads. See
Section P.1, Error Classes and Signalling, on page 171 for details.

Issue and Committ Stage Contention

Although each thread has its own hardware for issuing and committing instructions, only one
thread’s hardware may operate at a time. This means that in a single cycle, only one thread’s
hardware gets exclusive access to issue or commit instructions (up to 4). Each cycle with 2
active threads, the priority automatically switches between thread 0 and thread 1 for both
issuing and committing instructions.

Performance

Since each thread has its own software visible resources, they are independent of each other
from the programming model point of view. But this is not true for performance. Since
threads belonging to the same physical core share most of the physical resources, it is highly
recommended for the OS to schedule threads in the following manner:

■ Run threads belonging to the same process space on thread0 and thread1
■ Suspend thread1 to run a single threaded program at maximum speed

Note – Since threads belonging to different physical cores share none of physical resources
except the L2 cache and the system interface, it is not required to pay as much attention to
them.
Ver 1.0, 1 Jul. 2008 F. Chapter 9 Multi-Threaded Processing 47

9.2.2 How to control threads

When controlling MT operation, it is important to note that there are 3 different classification
states for a thread. A thread may be designated as one of the following:

■ active: currently in execution

■ empty: a thread is present but it is currently not undergoing execution

■ suspend/sleep: no thread is present

In a single core, if one of the threads is designated as suspend/sleep, the core will enter
single-thread mode. This is meant to enhance the execution performance of the lone thread
executing in the core.

When in single-thread mode, two important things happen. One is that certain resources
(invisibile to software) reserved for the second thread’s execution are aggregated to the lone
executing thread. The second is that the reamaining thread’s issue and commit functions
receive priority each cycle. This allows the remaining thread to achieve a greater instruction
thoroughput.

There are special instructions for switching the state of a threads. For more information on
relegating threads to a suspend/sleep state to halt their execution, see Section A.24.2,
Suspend, on page 59 and Section A.24.3, Sleep, on page 60 for details.

9.2.3 Shared registers between threads

 The following ASR and ASI registers are shared among all the threads within a processor
module.

■ PA/VA Watchpoint
■ ASI_SERIAL_ID
48 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX A

Instruction Definitions

This appendix describes the SPARC64 VII-specific implementation of the instructions in
Appendix A of Commonality. If an instruction is not described in this appendix, then no
SPARC64 VII implementation-dependency applies.

■	 See TABLE A-1 of Commonality for the location at which general information about the
instruction can be found.

■	 Section numbers refer to the parallel section numbers in Appendix A of Commonality.

TABLE A-1 lists eight instructions that are unique to SPARC64 VII.

TABLE A-1 Implementation-Specific Instructions

Operation Name Page

FMADD(s,d) Floating-point multiply add 55

FMSUB(s,d) Floating-point multiply subtract 55

FNMADD(s,d) Floating-point multiply negate add 55

FNMSUB(s,d) Floating-point multiply negate subtract 55

POPC Population Count 69

SUSPEND Suspend a thread 59

SLEEP Put a thread to sleep 60

FPMADDX, FPMADDXHI Integer multiply-add 61

Each instruction definition consists of these parts:

1. A table of the opcodes defined in the subsection with the values of the field(s) that
uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations a dash (—)
indicates that the field is reserved for future versions of the architecture and shall be 0 in
any instance of the instruction. If a conforming SPARC V9 implementation encounters
nonzero values in these fields, its behavior is undefined.

3. A list of the suggested assembly language syntax, as described in Appendix G.
Ver 1.0, 1 Jul. 2008	 F. Appendix A Instruction Definitions 49

4. A description of the features, restrictions, and exception-causing conditions.

5. A list of exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, fast_instruction_access_MMU_miss, async_data_error,
ECC_error, and interrupts are not listed because they can occur on any instruction.

Also, any instruction that is not implemented in hardware shall generate an

illegal_instruction exception (or fp_exception_other exception with

ftt = unimplemented_FPop for floating-point instructions) when it is executed.

The illegal_instruction trap can occur during chip debug on any instruction that has been
programmed into the processor’s IIU_INST_TRAP (ASI = 6016, VA = 0). These traps
are also not listed under each instruction.

The following traps never occur in SPARC64 VII:

■ instruction_access_MMU_miss
■ data_access_MMU_miss
■ data_access_protection
■ unimplemented_LDD
■ unimplemented_STD
■ LDQF_mem_address_not_aligned
■ STQF_mem_address_not_aligned
■ internal_processor_error
■ fp_exception_other (ftt = invalid_fp_register)

This appendix does not include any timing information (in either cycles or clock time).

The following SPARC64 VII-specific extensions are described.

■ Block Load and Store Instructions (VIS I) on page 51
■ Call and Link on page 53
■ Implementation-Dependent Instructions on page 54
■ Jump and Link on page 63
■ Load Quadword, Atomic [Physical] on page 64
■ Memory Barrier on page 66
■ Partial Store (VIS I) on page 68
■ Prefetch Data on page 70
■ Read State Register on page 72
■ SHUTDOWN (VIS I) on page 73
■ Write State Register on page 74
■ Deprecated Instructions on page 75
50 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.4 Block Load and Store Instructions (VIS I)

The following notes summarize behavior of block load/store instructions in SPARC64 VII.

1. Block load and store operations are not atomic, in that they are internally decomposed
into eight independent, 8-byte load/store operations in SPARC64 VII. Each load/store is
always issued and performed in the RMO memory model and obeys all prior MEMBAR and
atomic instruction-imposed ordering constraints.

2. Block load/store instructions are out of the scope of V9 memory models, meaning that
self-consistency of memory reference instruction is not always maintained if block load/
store instructions are involved in the execution flow. The following table describes the
implemented ordering constraints for block load/store instructions with respect to the
other memory reference instructions with an operand address conflict in SPARC64 VII:

Program Order for conflicting bld/bst/ld/st Ordered/
first next Out-of-Order

store blockstore Ordered

store blockload Ordered

load blockstore Ordered

load blockload Ordered

blockstore store Out-of-Order

blockstore load Out-of-Order

blockstore blockstore Out-of-Order

blockstore blockload Out-of-Order

blockload store Ordered

blockload load Ordered

blockload blockstore Ordered

blockload blockload Ordered

To maintain the memory ordering even for the memory address conflicts, MEMBAR

instructions shall be inserted into appropriate locations in the program.

Although self-consistency with respect to the block load/store and the other memory
reference instructions is not maintained in some cases, register conflicts between the other
instructions and block load/store instructions are maintained in SPARC64 VII. The read-
after-write, write-after-read, and write-after-write obstructions between a block load/store
instruction and the other arithmetic instructions are detected and handled appropriately.

3. Block load instructions operate on the cache if the operand is present.

4. The block store with commit instruction always stores the operand in main storage and
invalidates the line in the L1D and L2 cache if it is present.
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 51

5. The block store instruction stores the operand into main storage if it is not present in the
L1D and the status of the line is invalid, shared, or owned. In case the line is not present
in the L1D cache and is exclusive or modified in the L2 cache, the block store instruction
modifies only the line in L2 cache. If the line is present in the L1D and the status is either
clean/shared or clean/owned, the line is stored in main storage. If the line is present in the
L1D and the status is clean/exclusive, the line in the L1D is invalidated and the operand
is stored in the L2 cache. If the line is in the L1D and the status is modified/modified or
clean/modified, the operand is stored in the L1D or L2 with L1D invalidation,
respectively. The following table summarizes each cache status before block store and the
results of the block store. Blank cells mean that no action occurred in the corresponding
cache or memory, and the data, if it exists, is unchanged1.

Storage Status

Cache status L1 Invalid Valid
before bst L2 E, M I, S, O E M S, O

Action

L1

L2

Memory

—

update

—

—

—

update

invalidate

update

—

update/
invalidate

—/update

—

—

—

update

6. The block load and block store instructions on a page with TTE.E = 0 may signal a
fast_data_access_MMU_miss trap in the any 8-byte load or store in a 64-byte data
when the TTE being used is dropped by the other thread. On a block load, the
registers may contain new value or old value. The incompleted block load instructions
will be re-executed at the first 8-byte load after TLB miss handling is done. When the
trap is signalled on a block store, none of the registers value is written into the
memory or cache.

Exceptions	 fp_disabled
PA_watchpoint
VA_watchpoint
illegal_instruction (misaligned rd)
mem_address_not_aligned (see Block Load and Store ASIs on page 140)
data_access_exception (see Block Load and Store ASIs on page 140)
LDDF_mem_address_not_aligned (see Block Load and Store ASIs on page 140)
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

1. The inconsistency between memory and caches will eventually resolved by an invalidation request from the system.
52 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.12 Call and Link

SPARC64 VII clears the upper 32 bits of the PC value in r[15] when PSTATE.AM is set
(impl. dep. #125). The value written into r[15] is visible to the instruction in the delay slot.

SPARC64 VII has a special hardware table, called Return Address Stack, to predict the return
address from a subroutine. Though the return prediction stack achieves better performance in
normal cases, there is a special use of the CALL instruction (call.+8) that may have an
undesirable effect on the return address stack. In this case, the CALL instruction is used to
read the PC contents, not to call a subroutine. In SPARC64 VII, the return address of the
CALL (PC + 8) is not stored in its return address stack, to avoid a detrimental performance
effect. When a ret or retl is executed, the value in the return address stack is used to
predict the return address.
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 53

A.24 Implementation-Dependent Instructions

Opcode op3 Operation

IMPDEP1 11 0110 Implementation-Dependent Instruction 1

IMPDEP2 11 0111 Implementation-Dependent Instruction 2

The IMPDEP1 and IMPDEP2 instructions are completely implementation dependent.
Implementation-dependent aspects include their operation, the interpretation of bits 29–25
and 18–0 in their encoding, and which (if any) exceptions they may cause.

SPARC64 VII uses IMPDEP1 to encode VIS, SUSPEND, and SLEEP instructions (impl. dep.
#106), IMPDEP2A to encode the Integer Multiply-Add instructions, and IMPDEP2B to
encode the Floating-Point Multiply Add/Subtract instructions (impl. dep. #106).

See I.1.2, Implementation-Dependent and Reserved Opcodes, in Commonality for
information about extending the SPARC V9 instruction set by means of the implementation-
dependent instructions.

Compatibility Note – These instructions replace the CPopn instructions in SPARC V8.

Exceptions implementation-dependent
54 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.24.1 Floating-Point Multiply-Add/Subtract

SPARC64 VII uses IMPDEP2B opcode space to encode the Floating-Point Multiply Add/
Subtract instructions.

Opcode Variation Size†1 2 Operation

FMADDs 00 01 Multiply-Add Single

FMADDd 00 10 Multiply-Add Double

FMSUBs 01 01 Multiply-Subtract Single

FMSUBd 01 10 Multiply-Subtract Double

FNMSUBs 10 01 Negative Multiply-Subtract Single

FNMSUBd 10 10 Negative Multiply-Subtract Double

FNMADDs 11 01 Negative Multiply-Add Single

FNMADDd 11 10 Negative Multiply-Add Double

1.For an instruction with size = 00, see Section A.24.4, Integer Multiply-Add.

2.11 is reserved for quad precision.

Format (5)

10 110111 rs2 rd

31 1824 02530 29 19 4567891314

size var rs3 rs1

Operation Implementation

Multiply-Add rd ← rs1 × rs2 + rs3

Multiply-Subtract rd ← rs1 × rs2 − rs3

Negative Multiply-Subtract rd ← − rs1 × rs2 + rs3

Negative Multiply-Add rd ← − rs1 × rs2 − rs3

Assembly Language Syntax

fmadds fregrs1, fregrs2, fregrs3, fregrd

fmaddd fregrs1, fregrs2, fregrs3, fregrd

fmsubs fregrs1, fregrs2, fregrs3, fregrd

fmsubd fregrs1, fregrs2, fregrs3, fregrd

fnmadds fregrs1, fregrs2, fregrs3, fregrd

fnmaddd fregrs1, fregrs2, fregrs3, fregrd

fnmsubs fregrs1, fregrs2, fregrs3, fregrd

fnmsubd fregrs1, fregrs2, fregrs3, fregrd
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 55

Description	 The Floating-point Multiply-Add instructions multiply the register(s) specified by the rs1
field times the register(s) specified by the rs2 field, add that product to the register(s)
specified by the rs3 field, then write the result into the register(s) specified by the rd field.

The Floating-point Multiply-Subtract instructions multiply the register(s) specified by the
rs1 field times the register(s) specified by the rs2 field, subtract from that product the
register(s) specified by the rs3 field, and then write the result into the register(s) specified
by the rd field.

The Floating-point Negative Multiply-Add instructions multiply the register(s) specified by
the rs1 field times the register(s) specified by the rs2 field, negate the product, subtract
from that negated value the register(s) specified by the rs3 field, and then write the result
into the register(s) specified by the rd field.

The Floating-point Negative Multiply-Subtract instructions multiply the register(s) specified
by the rs1 field times the register(s) specified by the rs2 field, negate the product, add that
negated product to the register(s) specified by the rs3 field, and then write the result into the
register(s) specified by the rd field.

The instruction is treated as fused multiply and add/subtract operations on SPARC64 VII.
That is, a multiply operation is first performed with infinite precision without a rounding
step, and then an add/subtract operation is performed with a complete rounding step.
Consequently, at most one rounding error could be incurred.

Programming Note – SPARC64 V treats the instruction as separate multiply and add/

subtract operations. That is, a multiply operation is first performed with a complete rounding

step (as if it were a single multiply operation), and then an add/subtract operation is

performed with a complete rounding step (as if it were a single add/subtract operation).

Consequently, at most two rounding errors could be incurred.

Also fnmadd and fnmsub behavior with rs1=NaN or rs2=NaN is different between

SPARC64 V and SPARC64 VII. SPARC64 VII outputs one of the NaN inputs as it is, while

SPARC64 V outputs the one with the sign bit inverted.

The behavior of SPARC64 VII in handling traps in Floating-point Multiply-Add/Subtract
instructions is described in TABLE A-2. If a trapping invalid exception or a denormal source
operand with FSR.NS=1 is detected in the multiply part in the process of a Floating-point
Multiply-Add/Subtract instruction, the execution of the instruction is aborted, the exception
condition is recorded in FSR.cexc, the aexc is not modified, and the CPU traps with the
exception condition. The add/subtract part of the instruction is only performed when the
multiply-part of the instruction does not have a trapping invalid exception.

If there are trapping IEEE754 exception conditions in the add/subtract part, only the trapping
exception condition is recorded in the cexc, and the aexc is not modified. If there are no
trapping IEEE754 exception conditions, nontrapping exception condition of the add/subtract
part is written into the cexc and the cexc is accumulated into the aexc. The boundary
56 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

conditions of an unfinished_FPop trap for Floating-point Multiply-Add/Subtract instructions
are the same as the FMUL boundary conditions for the source operand 1 and 2, and the same
as the FADD ones for the source operand 3 and the destination.

TABLE A-2 IEEE754 Exceptions in Floating-Point Multiply-Add/Subtract Instructions

FMUL IEEE754 trap (inv or nx only) No trap No trap

FADD — IEEE754 trap No trap

cexc Exception condition of FMUL Exception condition of FADD Nontrapping exception conditions of FADD

aexc No change No change Logical OR of the cexc (above) and the
aexc

Detailed contents of cexc depending on the various conditions are described in TABLE A-3

and TABLE A-4. The following terminology is used: uf, of, inv, and nx are nontrapping IEEE
exception conditions—underflow, overflow, invalid operation, and inexact, respectively.

TABLE A-3 Non-Trapping cexc When FSR.NS = 0

FADD

none nx of nx inv

FMUL none none nx of nx inv

inv inv — — inv

TABLE A-4 Non-Trapping cexc When FSR.NS = 1

FADD

none nx of nx uf nx inv

FMUL none none nx of nx uf nx inv

inv inv — — — inv

nx nx nx of nx uf nx inv nx

In the tables, the conditions with “—” do not exist.

Programming Note – The Floating-point Multiply-Add instructions are encoded in the
SPARC V9 IMPDEP2 opcode space, and they are specific to the SPARC64 VII
implementation. They cannot be used in any programs that will be executed on any other
SPARC V9 processor, unless that implementation exactly matches the SPARC64 VII use of
the IMPDEP2 opcode.
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 57

Exceptions fp_disabled
fp_exception_ieee_754 (NV, NX, OF, UF)
illegal_instruction (size = 112) (fp_disabled is not checked for these encoding)

For an exception of size = 002, see Section A.24.4, Integer Multiply-Add.
fp_exception_other (unfinished_FPop)
58 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.24.2 Suspend

opcode opf operation

SUSPENDP 0 1000 0010 suspend a thread

Format (3)

10 110110 opf— ——

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

suspend

Description	 The instruction puts the thread executed it into the SUSPENDED state. The instruction sets
PSTATE.IE to “1”. Exit conditions from the SUSPENDED state are:

■ POR,WDR,XIR

■ interrupt_vector trap

■ interrupt_level_n trap

Exceptions:	 privileged_opcode
Ver 1.0, 1 Jul. 2008	 F. Appendix A Instruction Definitions 59

A.24.3 Sleep

opcode opf operation

SLEEP 0 1000 0011 put a thread to sleep

Format (3)

10 110110 opf— ——

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

sleep

Description The instruction puts the thread executed it to sleep. Conditions to wake up are:

■	 POR,WDR,XIR
■	 interrupt_vector trap
■	 interrupt_level_n trap
■	 After a certain period, where the period is implementation-dependent.

The value of SPARC64 VII is about 1.6 micro-seconds. The period is measured by clock
to SPARC64 VII; and the same clock is used to increment STICK.

■	 An update of a LBSY assigned to any of ASI_LBSYs of the thread.
An update of a LBSY that is not assigned to ASI_LBSY does not wake up the thread.

Note – When the instruction is executed with PSTATE.IE=0, the thread will not wake up
even if there is an interrupt_vector.

Implementation Note – If a LBSY is updated and a hardware thread that uses the LBSY
does not sleep, the next sleep instruction may not put the thread into sleep.

If a given thread (A) executes the SLEEP instruction while the other thread (B) in the same
core is already in the sleep state, then the thread (A) is relegated to the sleep state and the
thread (B) wakes up instead.

Exceptions: None
60 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.24.4	 Integer Multiply-Add

SPARC64 VII uses IMPDEP2A opcode space to encode the Integer Multiply-Add
instructions.

Opcode Variation Size1 Operation

FPMADDX 00 00 Unsigned Integer Multiply-Add for lower 8-byte

FPMADDXHI 01 00 Unsigned Integer Multiply-Add for upper 8-byte

1.For an instruction with size = 01, 10 and 11, see Section A.24.1, Floating-Point Multiply-Add/Sub
tract.

Format (5)

10 110111 var rs1 rs2 rd rs3 size

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0

Assembly Language Syntax

fpmaddx fregrs1, fregrs2, fregrs3, fregrd

fpmaddxhi fregrs1, fregrs2, fregrs3, fregrd

Description	 The Integer Multiply-Add instruction performs fused multiply and add instruction on the data
in double-precision floating-point registers that contains unsigned 8-byte integer values.

FPMADDX multiplies the register specified by the rs1 field and the rs2 field, adds that
product to the register specified by the rs3 field, then writes the lower 8-byte result into the
register specified by the rd field. rs1, rs2 and rs3 all contain unsigned 8-byte integer
values.

FPMADDXHI multiplies the register specified by the rs1 field and the rs2 field, adds that
product to the register specified by the rs3 field, then writes the upper 8-byte result into the
register specified by the rd field. rs1, rs2 and rs3 all contain unsigned 8-byte integer
values.

FPMADDX and FPMADDXHI never alter any bit of %fsr.

Although FPMADDX and FPMADDXHI are IMPDEP2 instructions, they are not counted by
Impdep2_instruction performance counter. See Section Q.2.1, Instruction and trap Statistics,
on page 222 for detail.
Ver 1.0, 1 Jul. 2008	 F. Appendix A Instruction Definitions 61

Exceptions:	 fp_disabled
illegal_instruction (var = 102 or 112)
For an exception of size = 012, 102, or 112, see Section A.24.1, Floating-Point Multiply-Add/
Subtract.
62 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.25 Jump and Link

SPARC64 VII clears the upper 32 bits of the PC value in r[rd] when PSTATE.AM is set
(impl. dep. #125). The value written into r[rd] is visible to the instruction in the delay slot.

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs. However, when the JMPL instruction causes a
mem_address_not_aligned trap, DSFSR and DSFAR are not updated (impl. dep. #237).

If the JMPL instruction has r[rd] = 15, SPARC64 VII stores PC + 8 in a hardware table
called the return address stack (RAS). When a RET (jmpl %i7+8, %g0) or RETL (jmpl
%o7+8, %g0) is executed, the value in the RAS is used to predict the return address.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is
“r[31] + 8” if a non leaf routine (one that uses the SAVE instruction) is entered by a
CALL instruction, or “r[15] + 8” if a leaf routine (one that does not use the SAVE
instruction) is entered by a CALL instruction or by a JMPL instruction with rd = 15.
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 63

A.30	 Load Quadword, Atomic [Physical]
The Load Quadword ASIs in this section are specific to SPARC64 VII, as an extension to
SPARC JPS1.

opcode imm_asi ASI value operation

LDDA ASI_QUAD_LDD_PHYS 3416 128-bit atomic load, physically
addressed

LDDA ASI_QUAD_LDD_PHYS_L 3C16 128-bit atomic load, little-endian,
physically addressed

Format (3) LDDA

rd11 010011 simm_13 rs1 i=1

rd11 010011 imm_asi rs1 rs2 i=0

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

ldda [reg_addr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

Description	 ASIs 3416 and 3C16 are used with the LDDA instruction to atomically read a 128-bit data item,
using physical addressing. The data are placed in an even/odd pair of 64-bit registers. The
lower-addressed 64 bits are placed in the even-numbered register; the higher-addressed 64
bits are placed in the odd-numbered register. The reference is made from the nucleus context.

In addition to the usual traps for LDDA using a privileged ASI, a data_access_exception
exception occurs for a noncacheable access or for the use of the quadword-load ASIs with
any instruction other than LDDA. A mem_address_not_aligned exception is generated if the
access is not aligned on a 16-byte boundary.

ASIs 3416 and 3C16 are supported in SPARC64 VII in addition to those for Load Quadword
Atomic for virtually addressed data (ASIs 2416 and 2C16).

The memory access for a load quad instruction with ASI_QUAD_LDD_PHYS{_L} behaves
as if the following TTE are set:

■ TTE.NFO	 = 0
■ TTE.CP	 = 1
■ TTE.CV	 = 0
64 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

■ TTE.E = 0
■ TTE.P = 1
■ TTE.W = 0

Note – TTE.IE depends on the endianness of the ASI. When the ASI is 03416,
TTE.IE = 0; TTE.IE = 1 when the ASI is 03C16.

Therefore, the atomic quad load physical instruction can only be applied to a cacheable
memory area. Semantically, ASI_QUAD_LDD_PHYS{_L} (03416 and 03C16) is a
combination of ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC.

With respect to little endian memory, a Load Quadword Atomic instruction behaves as if it
comprises two 64-bit loads, each of which is byte-swapped independently before being
written into its respective destination register.

Exceptions:	 privileged_action
PA_watchpoint (recognized on only the first 8 bytes of a transfer)
illegal_instruction (misaligned rd)
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
Ver 1.0, 1 Jul. 2008	 F. Appendix A Instruction Definitions 65

A.35	 Memory Barrier

Format (3)

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

67

cmask

Assembly Language Syntax

membar membar_mask

Description	 The memory barrier instruction, MEMBAR, has two complementary functions: to express
order constraints between memory references and to provide explicit control of memory-
reference completion. The membar_mask field in the suggested assembly language is the
concatenation of the cmask and mmask instruction fields.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-5 specifies the
order constraint that each bit of mmask (selected when set to 1) imposes on memory
references appearing before and after the MEMBAR. From zero to four mask bits can be
selected in the mmask field.

TABLE A-5 Order Constraints Imposed by mmask Bits

Mask Bit Name Description

mmask<3> #StoreStore The effects of all stores appearing before the MEMBAR instruction must be visible to all
processors before the effect of any stores following the MEMBAR. Equivalent to the
deprecated STBAR instruction. Has no effect on SPARC64 VII since all stores are
performed in program order.

mmask<2> #LoadStore All loads appearing before the MEMBAR instruction must have been performed before
the effects of any stores following the MEMBAR are visible to any other processor. This
has no effect on SPARC64 VII since all stores are performed in program order and
must occur after performance of any load.

mmask<1> #StoreLoad The effects of all stores appearing before the MEMBAR instruction must be visible to all
processors before loads following the MEMBAR may be performed.

mmask<0> #LoadLoad All loads appearing before the MEMBAR instruction must have been performed before
any loads following the MEMBAR may be performed. This has no effect on
SPARC64 VII since all loads are performed after any prior loads.
66 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,
described in TABLE A-6, specify additional constraints on the order of memory references and
the processing of instructions. If cmask is zero, then MEMBAR enforces the partial ordering
specified by the mmask field; if cmask is nonzero, then completion and partial order
constraints are applied.

TABLE A-6 Bits in the cmask Field

Mask Bit Function Name Description

cmask<2> Synchronization
barrier

#Sync All operations (including nonmemory reference operations)
appearing before the MEMBAR must have been performed, and the
effects of any exceptions become visible before any instruction after
the MEMBAR may be initiated.

cmask<1> Memory issue
barrier

#MemIssue All memory reference operations appearing before the MEMBAR must
have been performed before any memory operation after the
MEMBAR may be initiated. Equivalent to #Sync in SPARC64 VII.

cmask<0> Lookaside
barrier

#Lookaside A store appearing before the MEMBAR must complete before any load
following the MEMBAR referencing the same address can be initiated.
Equivalent to #Sync in SPARC64 VII.
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 67

A.42	 Partial Store (VIS I)
Please refer A.42 in Commonality for general details.

Watchpoint exceptions on partial store instructions occur conservatively on SPARC64 VII.
The DCUCR Data Watchpoint masks are only checked for nonzero value (watchpoint
enabled). The byte store mask (r[rs2]) in the partial store instruction is ignored, and a
watchpoint exception can occur even if the mask is zero (that is, no store will take place)
(impl. dep. #249).

Implementation Note – For a partial store instruction to a noncacheable area with
mask = 0, SPARC64 VII still issues a Jupiter Bus transaction with zero-byte mask.

Exceptions:	 fp_disabled
PA_watchpoint
VA_watchpoint
illegal_instruction (i = 1)
mem_address_not_aligned (see Partial Store ASIs on page 140)
data_access_exception (see Partial Store ASIs on page 140)
LDDF_mem_address_not_aligned (see Partial Store ASIs on page 140)
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
68 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.48 Population Count

opcode op3 operation

POPC 10 1110 Population Count

Format (3)

10 op3 0 0000 rs2 rd —i=0

10 op3 0 0000 rd simm13 i=1

31 30 29 25 24 19 18 14 13	 5 4 0

Assembly Language Syntax

popc reg_or_imm, regrd

Description	 POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not modify the
condition codes.

Note – Unlike SPARC64 V, SPARC64 VII implements the instruction in hardware.

Exceptions: illegal_instruction (instruction<18:14> ≠ 0)
Ver 1.0, 1 Jul. 2008	 F. Appendix A Instruction Definitions 69

A.49 Prefetch Data

Please refer to Section A.49, Prefetch Data, of Commonality for principal information.

The prefetcha instruction of SPARC64 VII works for the following ASIs.

■	 ASI_PRIMARY (08016), ASI_PRIMARY_LITTLE (08816)

■	 ASI_SECONDARY (08116), ASI_SECONDARY_LITTLE (08916)

■	 ASI_NUCLEUS (0416), ASI_NUCLEUS_LITTLE (0C16)

■	 ASI_PRIMARY_AS_IF_USER (01016), ASI_PRIMARY_AS_IF_USER_LITTLE
(01816)

■	 ASI_SECONDARY_AS_IF_USER (01116), ASI_SECONDARY_AS_IF_USER_LITTLE
(01916)

If an ASI other than the above is specified, prefetcha is executed as a nop.

TABLE A-7 describes prefetch variants implemented in SPARC64 VII.

TABLE A-7 Prefetch Variants

fcn Fetch to: Status Description

0 L1D S,E

1 L2 S,E

2 L1D M,E

3 L2 M,E

4 — — NOP

5-15 reserved (SPARC V9) illegal_instruction exception is signalled.

16-19 implementation NOP
dependent.

20 L1D S,E Strong Prefetch

21 L2 S,E Strong Prefetch

22 L1D M,E Strong Prefetch

23 L2 M,E Strong Prefetch

24-31 implementation NOP
dependent

Strong Prefetch

A prefetch with fcn = 20, 21, 22 or 23 is defined as a Strong Prefetch. In SPARC64 VII,
these prefetch are never lost in any case except a TLB miss and DCUCR.weak_spca = 1.
70 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Programming Note – While a not-strong prefetch sometimes loses due to lack of internal
resources, a strong prefetch is firmly executed in these cases. This will cause a negative
effect on subsequent loads and stores. Avoid using strong prefetch for unnecessary data.

SPARC64 VII does not cause a fast_data_access_MMU_miss miss on fcn = 20, 21, 22 or
23 (impl. dep. #103(2)).
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 71

A.51 Read State Register

In SPARC64 VII, an RDPCR instruction will generate a privileged_action exception if
PSTATE.PRIV = 0 and PCR.PRIV = 1. If PSTATE.PRIV = 0 and PCR.PRIV = 0,
RDPCR will not cause any access privilege violation exceptions (impl. dep. #250).
72 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.59 SHUTDOWN (VIS I)
In SPARC64 VII, SHUTDOWN acts as a NOP in privileged mode (impl. dep. #206).
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 73

A.70 Write State Register

In SPARC64 VII, a WRPCR instruction will cause a privileged_action exception if
PSTATE.PRIV = 0 and PCR.PRIV = 1. If PSTATE.PRIV = 0 and PCR.PRIV = 0,
WRPCR causes a privileged_action exception only when an attempt is made to change (that
is, write 1 to) PCR.PRIV (impl. dep. #250).
74 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

A.71 Deprecated Instructions

The deprecated instructions in A.71 of Commonality are provided only for compatibility
with previous versions of the architecture. They should not be used in new software.

A.71.10 Store Barrier

In SPARC64 VII, STBAR behaves as NOP since the hardware memory models always
enforce the semantics of these MEMBARs for all memory accesses.
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 75

76 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX B

IEEE Std. 754-1985 Requirements for
SPARC-V9

The IEEE Std. 754-1985 floating-point standard contains a number of implementation
dependencies.

Please see Appendix B of Commonality for choices for these implementation dependencies,
to ensure that SPARC V9 implementations are as consistent as possible.

Following is information specific to the SPARC64 VII implementation of SPARC V9 in
these sections:

■ Traps Inhibiting Results on page 77
■ Floating-Point Nonstandard Mode on page 77

B.1 Traps Inhibiting Results
Please refer to Section B.1 of Commonality.

The SPARC64 VII hardware, in conjunction with kernel or emulation code, produces the
results described in this section.

B.6 Floating-Point Nonstandard Mode
In this section, the hardware boundary conditions for the unfinished_FPop exception and the
nonstandard mode of SPARC64 VII floating-point hardware are discussed.
Ver 1.0, 1 Jul. 2008 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 77

SPARC64 VII floating-point hardware has its specific range of computation. If either the
values of input operands or the value of the intermediate result shows that the computation
may not fall in the range that hardware provides, SPARC64 VII generates an
fp_exception_other exception (tt = 02216) with FSR.ftt = 0216 (unfinished_FPop) and
the operation is taken over by software.

The kernel emulation routine completes the remaining floating-point operation in accordance
with the IEEE 754-1985 floating-point standard (impl. dep. #3).

SPARC64 VII implements a nonstandard mode, enabled when FSR.NS is set (see
FSR_nonstandard_fp (NS) on page 16). Depending on the setting in FSR.NS, the behavior
of SPARC64 VII with respect to the floating-point computation varies.

B.6.1 fp_exception_other Exception (ftt=unfinished_FPop)

SPARC64 VII may invoke an fp_exception_other (tt = 02216) exception with FSR.ftt =
unfinished_FPop (ftt = 0216) in FsTOd, FdTOs, FADD(s,d), FSUB(s,d),
FsMULd(s,d), FMUL(s,d), FDIV(s,d), FSQRT(s,d) floating-point instructions. In
addition, Floating-point Multiply-Add/Subtract instructions generate the exception, since the
instruction is the combination of a multiply and an add/subtract operation: FMADD(s,d),
FMSUB(s,d), FNMADD(s,d), and FNMADD(s,d).

The following basic policies govern the detection of boundary conditions:

1. When one of the operands is a denormalized number and the other operand is a normal
non-zero floating-point number (except for a NaN or an infinity), an fp_exception_other
with unfinished_FPop condition is signalled. The cases in which the result is a zero or an
overflow are excluded.

2. When all operands are denormalized numbers, except for the cases in which the result is a
zero or an overflow, an fp_exception_other with unfinished_FPop condition is signalled.

3. When all operands are normal, the result before rounding is a denormalized number and
TEM.UFM = 0, and fp_exception_other with unfinished_FPop condition is signalled,
except for the cases in which the result is a zero.

When the result is expected to be a constant, such as an exact zero or an infinity, and an
insignificant computation will furnish the result, SPARC64 VII tries to calculate the result
without signalling an unfinished_FPop exception.
78 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Implementation Note – Detecting the exact boundary conditions requires a large amount of
hardware. To avoid from such hardware cost, SPARC64 VII detects approximate boundary
conditions by calculating the exponent intermediate result (the exponent before rounding)
from input operands. Since the computation of the boundary conditions is approximate, the
detection of a zero result or an overflow result will be pessimistic. SPARC64 VII generates
an unfinished_FPop exception pessimistically.

The equations to calculate the result exponent to detect the boundary conditions from the
input exponents are presented in TABLE B-1, where Er is the approximation of the biased
result exponent before rounding and is calculated only from the input exponents (esrc1,
esrc2). Er is to be used for detecting the boundary condition for an unfinished_FPop.

TABLE B-1	 Result Exponent Approximation for Detecting unfinished_FPop Boundary
Conditions

Operation Formula

fmuls Er = esrc1 + esrc2 − 126

fmuld Er = esrc1 + esrc2 − 1022

fdivs Er = esrc1 - esrc2 + 126

fdivd Er = esrc1 - esrc2 + 1022

esrc1 and esrc2 are the biased exponents of the input operands. When the corresponding
input operand is a denormalized number, the value is 0.

From Er, eres is calculated. eres is a biased result exponent, after mantissa alignment and
before rounding, where the appropriate adjustment of the exponent is applied to the result
mantissa: left-shifting or right-shifting the mantissa to the implicit 1 at the left of the binary
point, subtracting or adding the shift-amount to the exponent. The result mantissa is assumed
to be 1.xxxx in calculating eres. If the result is a denormalized number, eres is less than zero.

TABLE B-2 describes the boundary condition of each floating-point instruction that generates
an unfinished_FPop exception.

TABLE B-2	 unfinished_FPop Boundary Conditions

Operation Boundary Conditions

FdTOs −25 < eres < 1 and TEM.UFM = 0.

FsTOd Second operand (rs2) is a denormalized number.

FADDs, FSUBs, FADDd, 1. One of the operands is a denormalized number, and the other operand is
FSUBd a normal, nonzero floating-point number (except for a NaN and an

infinity)1.
2.	 Both operands are denormalized numbers.
3.	 Both operands are normal nonzero floating-point numbers (except for a

NaN and an infinity), eres < 1, and TEM.UFM = 0.
Ver 1.0, 1 Jul. 2008	 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 79

TABLE B-2 unfinished_FPop Boundary Conditions (Continued)

Operation Boundary Conditions

FMULs, FMULd 1. One of the operands is a denormalized number, the other operand is a
normal, nonzero floating-point number (except for a NaN and an
infinity), and

single precision: -25 < Er
double precision: -54 < Er

2.	 Both operands are normal, nonzero floating-point numbers (except for a
NaN and an infinity), TEM.UFM = 0, and

single precision: −25 < eres < 1

double precision: −54 < eres < 1

FsMULd 1.	 One of the operands is a denormalized number, and the other operand is
a normal, nonzero floating-point number (except for a NaN and an
infinity).

2. Both operands are denormalized numbers.

FDIVs, FDIVd 1. The dividend (operand1; rs1) is a normal, nonzero floating-point
number (except for a NaN and an infinity), the divisor (operand2; rs2) is
a denormalized number, and

single precision: Er < 255
double precision: Er < 2047

2.	 The dividend (operand1; rs1) is a denormalized number, the divisor
(operand2; rs2) is a normal, nonzero floating-point number (except for a
NaN and an infinity), and

single precision: −25 < Er
double precision: −54 < Er

3.	 Both operands are denormalized numbers.
4.	 Both operands are normal, nonzero floating-point numbers (except for a

NaN and an infinity), TEM.UFM = 0 and
single precision: −25 < eres < 1
double precision: −54 < eres < 1

FSQRTs, FSQRTd The input operand (operand2; rs2) is a positive nonzero and is a
denormalized number.

FMADDs, FMADDd, Same as FMULs, FMULd for multiplication part, and same as FADDs,

FMSUBs, FMSUBd, FSUBs, FADDd, FSUBd for addition/subtraction part.

FNMADDs, FNMADDd,

FNMSUBs, FNMSUBd

1.Operation of zero and denormalized number generates a result in accordance with the IEEE754
1985 standard.

Pessimistic Zero

If a condition in TABLE B-3 is true, SPARC64 VII generates the result as a pessimistic zero,
meaning that the result is a minimum denormalized number or a zero, depending on the
rounding mode (FSR.RD).
80 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE B-3 Conditions for a Pessimistic Zero

Operations

Conditions

One operand is denormalized1 Both are denormalized Both are normal fp-number2

FdTOs always — eres ≤ -25

FMULs,
FMULd

single precision: Er ≤ −25

double precision: Er ≤ −54

Always single precision: eres ≤ −25

double precision: eres ≤ −54

FDIVs,
FDIVd

single precision: Er ≤ −25

double precision: Er ≤ −54

Never single precision: eres ≤ −25

double precision: eres ≤ −54

1.Both operands are non-zero, non-NaN, and non-infinity numbers.

2.Both may be zero, but both are non-NaN and non-infinity numbers.

Pessimistic Overflow

If a condition in TABLE B-4 is true, SPARC64 VII regards the operation as having an
overflow condition.

TABLE B-4 Pessimistic Overflow Conditions

Operations Conditions

FDIVs The divisor (operand2; rs2) is a denormalized number and, Er ≥ 255.

FDIVd The divisor (operand2; rs2) is a denormalized number and, E ≥ 2047.

B.6.2 Operation Under FSR.NS = 1

When FSR.NS = 1 (nonstandard mode), SPARC64 VII zeroes all the input denormalized
operands before the operation and signals an inexact exception if enabled. If the operation
generates a denormalized result, SPARC64 VII zeroes the result and also signals an inexact
exception if enabled. The following list defines the operation in detail.

■	 If either operand is a denormalized number and both operands are non-zero, non-NaN,
and non-infinity numbers, the input denormalized operand is replaced with a zero with
same sign, and the operation is performed. If enabled, an inexact exception is signalled;
an fp_exception_ieee_754 (tt = 02116) is generated, with nxc=1 in FSR.cexc
(FSR.ftt=0116; IEEE754_exception). However, if the operation is FDIV(s,d) and
either a division_by_zero or an invalid_operation condition is detected, or if the operation
is FSQRT(s,d) and an invalid_operation condition is detected, the inexact condition is
not reported.

■	 If the result before rounding is a denormalized number, the result is flushed to a zero with
the same sign and signals either an underflow exception or an inexact exception,
depending on FSR.TEM.

As observed from the preceding, when FSR.NS = 1, SPARC64 VII generates neither an
unfinished_FPop exception nor a denormalized number as a result. TABLE B-5 summarizes
the behavior of SPARC64 VII floating-point hardware depending on FSR.NS.
Ver 1.0, 1 Jul. 2008	 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 81

Note – The result and behavior of SPARC64 VII of the shaded column in the tables
Table B-5 and Table B-6 conform to IEEE754-1985 standard.

Note – Throughout Table B-5 and Table B-6, lowercase exception conditions such as nx, uf,
of, dv and nv are nontrapping IEEE 754 exceptions. Uppercase exception conditions such as
NX, UF, OF, DZ and NV are trapping IEEE 754 exceptions.

TABLE B-5 Floating-Point Exceptional Conditions and Results

FSR.NS
Input
Denorm1

Result
Denorm2

Pessimistic
Zero

Pessimistic
Overflow UFM OFM NXM Result

0

No
Yes

Yes —

1 — — UF

0

— 1 NX

— 0
uf + nx, a signed zero, or a signed
Dmin3

No —
1 — — UF

0 — — unfinished_FPop4

No — — — — — Conforms to IEEE754-1985

Yes n/a

Yes —

1 — — UF

0 —
1 NX

0 uf + nx, a signed zero, or a signed Dmin

No
Yes —

1 — OF

0

1 NX

0
of + nx, a signed infinity, or a signed
Nmax5

No — — — unfinished_FPop

1
No

Yes — —

1 — — UF

0 —
1 NX

0 uf + nx, a signed zero

No — — — — — Conforms to IEEE754-1985

Yes — — — — — — see TABLE B-6

1.One of the operands is a denormalized number, and the other operand is a normal or a denormalized number (non- zero, non-
NaN, and non-infinity).

2.The result before rounding turns out to be a denormalized number.

3.Dmin = denormalized minimum.

4.If the FPop is either FADD{s,d}, or FSUB{s,d} and the operands are zero and a denormalized number, SPARC64 VII
does not generate an unfinished_FPop and generates a result according to IEEE754-1985 standard.

5.Nmax = normalized maximum.
82 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE B-6 describes how SPARC64 VII behaves when FSR.NS = 1 (nonstandard mode).

TABLE B-6 Non arithmetic Operations Under FSR.NS = 1

Operations

Type of Value FSR.TEM

Result op1 op2 op3 UFM NXM DVM NVM

FsTOd
— Denorm — —

1 — — NX

0 — — nx, a signed zero

FdTOs 1 — — — UF

— Denorm — 1 — — NX
0

0 — — uf + nx, a signed zero

FADDs,
Denorm Normal —

1 — — NX
FSUBs,
FADDd,
FSUBd —

0 — — nx, op2

—
1 — — NX

Normal Denorm
0 — — nx, op1

Denorm Denorm —
1 — — NX

0 — — nx, a signed zero

FFMULs,
— —

1 — — NX

FMULd,
FsMULd

Denorm

—
0 — — nx, a signed zero

— Denorm —
1 — — NX

0 — — nx, a signed zero

FDIVs,
—

1 — — NX
FDIVd Denorm Normal

0 — — nx, a signed zero

Normal Denorm — — —
1 — DZ

0 — dz, a signed infinity

— — —
1 NV

Denorm Denorm
0 nv, dNaN1

FSQRTs, Denorm and
—

1 — — NX
FSQRTd op2 > 0 0 — — nx, zero

—
Denorm and

—
1 NV

op2 < 0
— — —

0 nv, dNaN1

FMADD{s,d}
Normal —

1 — — NX
FMSUB{s,d}
FNMADD{s,d}
FNMSUB{s,d}

Denorm —
0 — — nx, op3

Denorm —
1 — — NX

0 — — nx, a signed zero

— Denorm

Normal —
1 — — NX

0 — — nx, op3

Denorm —
1 — — NX

0 — — nx, a signed zero

Normal Normal Denorm —
1 — — NX

0 — — nx, op1 × op22
Ver 1.0, 1 Jul. 2008 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 83

1.A single precision dNaN is 7FFF.FFFF16, and a double precision dNaN is 7FFF.FFFF.FFFF.FFFF16.

2.When op1 × op2 falls into denormalized number, a zero with the same sign of op1 × op2 is returned as a result.
84 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Ver 1.0, 1 Jul. 2008 F. Appendix B IEEE Std. 754-1985 Requirements for SPARC-V9 85

F.AP PE ND IX C

Implementation Dependencies

This appendix summarizes implementation dependencies. In SPARC V9 and SPARC JPS1,
the notation “IMPL. DEP. #nn:” identifies the definition of an implementation dependency;
the notation “(impl. dep. #nn)” identifies a reference to an implementation dependency.
These dependencies are described by their number nn in TABLE C-1 on page 87. These
numbers have been removed from the body of this document for SPARC64 VII to make the
document more readable. TABLE C-1 has been modified to include descriptions of the manner
in which SPARC64 VII has resolved each implementation dependency.

Note – SPARC International maintains a document, Implementation Characteristics of
Current SPARC-V9-based Products, Revision 9.x, that describes the implementation-
dependent design features of all SPARC V9-compliant implementations. Contact SPARC
International for this document at

home page: www.sparc.org
email: info@sparc.org

C.1	 Definition of an Implementation
Dependency
Please refer to Section C.1 of Commonality.

C.2	 Hardware Characteristics
Please refer to Section C.2 of Commonality.
Ver 1.0, 1 Jul. 2008	 F. Appendix C Implementation Dependencies 86

mailto:info@sparc.org

C.3 Implementation Dependency Categories
Please refer to Section C.3 of Commonality.

C.4 List of Implementation Dependencies
TABLE C-1 provides a complete list of how each implementation dependency is treated in the
SPARC64 VII implementation.

TABLE C-1 SPARC64 VII Implementation Dependencies (1 of 11)

Nbr

1

2

3

4–5

6

7

8

9

10–12

13

14–15

16

SPARC64 VII Implementation Notes

Software emulation of instructions
The operating system emulates all instructions that generate illegal_instruction or
unimplemented_FPop exceptions.

Number of IU registers
SPARC64 VII supports eight register windows (NWINDOWS = 8).

SPARC64 VII supports an additional two global register sets (Interrupt globals and
MMU globals) for a total of 160 integer registers.

Incorrect IEEE Std. 754-1985 results
See Section B.6, Floating-Point Nonstandard Mode for details.

Reserved.

I/O registers privileged status
This dependency is beyond the scope of this publication. It should be defined in
each system that uses SPARC64 VII.

I/O register definitions
This dependency is beyond the scope of this publication. It should be defined in
each system that uses SPARC64 VII.

RDASR/WRASR target registers
SPARC64 VII does not define implementation dependent ASR registers.

RDASR/WRASR privileged status
SPARC64 VII does not define implementation dependent ASR registers.

Reserved.

VER.impl
VER.impl = 7 for the SPARC64 VII processor.

Reserved.

IU deferred-trap queue
SPARC64 VII neither has nor needs an IU deferred-trap queue.

Page

—

—

77

—

—

—

—

18

—

22
Ver 1.0, 1 Jul. 2008 F. Appendix C Implementation Dependencies 87

TABLE C-1 SPARC64 VII Implementation Dependencies (2 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

17	 Reserved. —

18	 Nonstandard IEEE 754-1985 results 16
SPARC64 VII flushes denormalized operands and results to zero when
FSR.NS = 1. For the treatment of denormalized numbers, please refer to
Section B.6, Floating-Point Nonstandard Mode for details.

19	 FPU version, FSR.ver 16
FSR.ver = 0 for SPARC64 VII.

20–21	 Reserved.

22	 FPU TEM, cexc, and aexc 15
SPARC64 VII implements all bits in the TEM, cexc, and aexc fields in hardware.

23	 Floating-point traps 22
In SPARC64 VII floating-point traps are always precise; no FQ is needed.

24	 FPU deferred-trap queue (FQ) 22
SPARC64 VII neither has nor needs a floating-point deferred-trap queue.

25	 RDPR of FQ with nonexistent FQ 23
Attempting to execute an RDPR of the FQ causes an illegal_instruction exception.

26–28	 Reserved. —

29	 Address space identifier (ASI) definitions —
The ASIs that are supported by SPARC64 VII are defined in Appendix L.

30	 ASI address decoding —
SPARC64 VII decodes all 8bit of ASI specifier.

31	 Catastrophic error exceptions 162
SPARC64 VII contains a watchdog timer that times out after no instruction has
been committed for a specified number of cycles. If the timer times out, the CPU
tries to invoke an async_data_error trap. If the counter continues and reaches 233,
the processor enters error_state. Upon an entry to error_state, the
processor optionally generates a WDR reset to recover from error_state.

32	 Deferred traps 37, 171
SPARC64 VII signals a deferred trap in a few of its severe error conditions.
SPARC64 VII does not contain a deferred trap queue.

33	 Trap precision 37
There are no deferred traps in SPARC64 VII other than the trap caused by a few
severe error conditions. All traps that occur as the result of program execution are
precise.

34	 Interrupt clearing 155
For details of interrupt handling see Appendix N.
88 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE C-1 SPARC64 VII Implementation Dependencies (3 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

35	 Implementation-dependent traps 39
SPARC64 VII supports the following traps that are implementation dependent:
• interrupt_vector_trap (tt = 06016)
• PA_watchpoint (tt = 06116)
• VA_watchpoint (tt = 06216)
• ECC_error (tt = 06316)
• fast_instruction_access_MMU_miss (tt = 06416 through 06716)
• fast_data_access_MMU_miss (tt = 06816 through 06B16)
• fast_data_access_protection (tt = 06C16 through 06F16)
• async_data_error (tt = 04016)

36	 Trap priorities 39
SPARC64 VII’s implementation-dependent traps have the following priorities:
• interrupt_vector_trap (priority =16)
• PA_watchpoint (priority =12)
• VA_watchpoint (priority=1)
• ECC_error (priority =33)
• fast_instruction_access_MMU_miss (priority = 2)
• fast_data_access_MMU_miss (priority = 12)
• fast_data_access_protection (priority = 12)
• async_data_error (priority = 2)

37 Reset trap 37
SPARC64 VII implements power-on reset (POR) and watchdog reset.

38 Effect of reset trap on implementation-dependent registers 163

See Section O.2, RED_state and error_state.

39	 Entering error_state on implementation-dependent errors 36
CPU watchdog timeout at 233 ticks, a normal trap, or an SIR at TL = MAXTL causes
the CPU to enter error_state.

40	 Error_state processor state 36
SPARC64 VII optionally takes a watchdog reset trap after entry to
error_state. Most error-logging register states will be preserved. (See also
impl. dep. #254.)

41	 Reserved.

42	 FLUSH instruction —
SPARC64 VII implements the FLUSH instruction in hardware.

43	 Reserved.

44	 Data access FPU trap —
The destination register(s) are unchanged if an access error occurs.

45–46	 Reserved.

47	 RDASR —
SPARC64 VII does not define this implementation dependent ASR register.

48	 WRASR —
SPARC64 VII does not define this implementation dependent ASR register.
Ver 1.0, 1 Jul. 2008	 F. Appendix C Implementation Dependencies 89

TABLE C-1 SPARC64 VII Implementation Dependencies (4 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

49–54	 Reserved.

55	 Floating-point underflow detection —
See FSR_underflow in Section 5.1.7 of Commonality for details.

56–100	 Reserved.

101	 Maximum trap level 18
MAXTL = 5.

102	 Clean windows trap —
SPARC64 VII generates a clean_window exception; register windows are cleaned
in software.

103	 Prefetch instructions 70
SPARC64 VII implements PREFETCH variations 0–3 and 20–23 with the
following implementation-dependent characteristics:
•	 The prefetches have observable effects in privileged code.
•	 All variants never cause a fast_data_access_MMU_miss trap.
•	 All prefetches are for 64-byte cache lines, which are aligned on a 64-byte

boundary.
•	 See Section A.49, Prefetch Data, for implemented variations and their

characteristics.
•	 Prefetches will work normally if the ASI is ASI_PRIMARY, ASI_SECONDARY,

or ASI_NUCLEUS, ASI_PRIMARY_AS_IF_USER,
ASI_SECONDARY_AS_IF_USER, and their little-endian pairs.

104	 VER.manuf 18
VER.manuf = 000416. The least significant 8 bits are Fujitsu’s JEDEC
manufacturing code.

105	 TICK register 17
SPARC64 VII implements 63 bits of the TICK register; it increments on every
clock cycle.

106	 IMPDEPn instructions 54
SPARC64 VII uses the IMPDEP1 opcode for SUSPEND and SLEEP instructions,
and the IMPDEP2 opcode for the Multiply Add/Subtract instructions.
SPARC64 VII also conforms to Sun’s specification for VIS-1 and VIS-2.

107	 Unimplemented LDD trap —
SPARC64 VII implements LDD in hardware.

108	 Unimplemented STD trap —
SPARC64 VII implements STD in hardware.

109	 LDDF_mem_address_not_aligned —
If the address is word aligned but not doubleword aligned, SPARC64 VII generates
the LDDF_mem_address_not_aligned exception. The trap handler software
emulates the instruction.
90 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE C-1 SPARC64 VII Implementation Dependencies (5 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

110	 STDF_mem_address_not_aligned —
If the address is word aligned but not doubleword aligned, SPARC64 VII generates
the STDF_mem_address_not_aligned exception. The trap handler software
emulates the instruction.

111	 LDQF_mem_address_not_aligned —
SPARC64 VII generates an illegal_instruction exception for all LDQFs. The
processor does not perform the check for fp_disabled. The trap handler software
emulates the instruction.

112	 STQF_mem_address_not_aligned —
SPARC64 VII generates an illegal_instruction exception for all STQFs. The
processor does not perform the check for fp_disabled. The trap handler software
emulates the instruction.

113	 Implemented memory models 41
SPARC64 VII implements Total Store Order (TSO) for all the memory models
specified in PSTATE.MM. See Chapter 8, Memory Models, for details.

114	 RED_state trap vector address (RSTVaddr) 36
RSTVaddr is a constant in SPARC64 VII, where:

VA=FFFF FFFF F000 000016 and

PA= 07FF F000 000016

115	 RED_state processor state 36
See RED_state on page 36 for details of implementation-specific actions in
RED_state.

116	 SIR_enable control flag —
See Section A.60 SIR in Commonality for details.

117	 MMU disabled prefetch behavior 108
When the MMU is disabled, prefetch comletes without memory access and
nonfaulting load causes an data_access_exception.

118	 Identifying I/O locations —
This dependency is beyond the scope of this publication. It should be defined in a
system that uses SPARC64 VII.

119	 Unimplemented values for PSTATE.MM 42
Writing 112 into PSTATE.MM causes the machine to use the TSO memory model.
However, the encoding 112 should not be used, since future versions of
SPARC64 VII may use this encoding for a new memory model.

120	 Coherence and atomicity of memory operations —
Although SPARC64 VII implements the Jupiter Bus based cache coherency
mechanism, this dependency is beyond the scope of this publication. It should be
defined in a system that uses SPARC64 VII.
Ver 1.0, 1 Jul. 2008	 F. Appendix C Implementation Dependencies 91

http:PSTATE.MM

TABLE C-1 SPARC64 VII Implementation Dependencies (6 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

121	 Implementation-dependent memory model —
SPARC64 VII implements TSO, PSO, and RMO memory models. See Chapter 8,
Memory Models, for details.

Accesses to pages with the E (Volatile) bit of their MMU page table entry set are
also made in program order.

122	 FLUSH latency —
Since the FLUSH instruction synchronizes the processor, its total latency varies
depending on many portions of the SPARC64 VII processor’s state. Assuming that
all prior instructions are completed, the latency of FLUSH is 18 processor cycles.

123	 Input /output (I/O) semantics —
This dependency is beyond the scope of this publication. It should be defined in a
system that uses SPARC64 VII.

124	 Implicit ASI when TL > 0 —
See Section 5.1.7 of Commonality for details.

125	 Address masking 28, 53,
When PSTATE.AM = 1, SPARC64 VII does mask out the high-order 32 bits of the 63
PC when transmitting it to the destination register.

126	 Register Windows State Registers width —
NWINDOWS for SPARC64 VII is 8; therefore, only 3 bits are implemented for the
following registers: CWP, CANSAVE, CANRESTORE, OTHERWIN. If an attempt is
made to write a value greater than NWINDOWS − 1 to any of these registers, the
extraneous upper bits are discarded. The CLEANWIN register contains 3 bits.

127–201 Reserved.

202	 fast_ECC_error trap —
fast_ECC_error trap is not implemented in SPARC64 VII.

203	 Dispatch Control Register bits 13:6 and 1 20
SPARC64 VII does not implement DCR.

204	 DCR bits 5:3 and 0 20
SPARC64 VII does not implement DCR.

205	 Instruction Trap Register 22
SPARC64 VII implements the Instruction Trap Register.

206	 SHUTDOWN instruction 73
In privileged mode, the SHUTDOWN instruction executes as a NOP in
SPARC64 VII.

207	 PCR register bits 47:32, 26:17, and bit 3 18
SPARC64 VII uses these bits for the following purposes:
• Bits 47:32 for set/clear/show status of overflow (OVF).
• Bit 26 for validity of OVF field (OVRO).

• Bits 24:22 for number of counter pair (NC).

• Bits 20:18 for counter selector (SC).

• Bit 3 for validity of SU/SL field (ULRO).

Other implementation-dependent bits are read as 0 and writes to them are ignored.

92 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE C-1 SPARC64 VII Implementation Dependencies (7 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

208	 Ordering of errors captured in instruction execution —
The order in which errors are captured during instruction execution is
implementation dependent. Ordering can be in program order or in order of
detection.

209	 Software intervention after instruction-induced error —
Precision of the trap to signal an instruction-induced error for which recovery
requires software intervention is implementation dependent.

210	 ERROR output signal —
The causes and the semantics of ERROR output signal are implementation
dependent.

211	 Error logging registers’ information —
The information that the error logging registers preserves beyond the reset induced
by an ERROR signal is implementation dependent.

212	 Trap with fatal error —
Generation of a trap along with ERROR signal assertion upon detection of a fatal
error is implementation dependent.

213	 AFSR.PRIV —
SPARC64 VII does not implement the AFSR.PRIV bit.

214	 Enable/disable control for deferred traps —
SPARC64 VII does not implement a control feature for deferred traps.

215	 Error barrier —
DONE and RETRY instructions may implicitly provide an error barrier function as
MEMBAR #Sync. Whether DONE and RETRY instructions provide an error barrier is
implementation dependent.

216	 data_access_error trap precision —
data_access_error trap is always precise in SPARC64 VII.

217	 instruction_access_error trap precision —
instruction_access_error trap is always precise in SPARC64 VII.

218	 async_data_error 39
async_data_error trap is implemented in SPARC64 VII, using tt = 4016. See
Appendix P for details.

219	 Asynchronous Fault Address Register (AFAR) allocation 199
SPARC64 VII does not implement an AFAR.

220	 Addition of logging and control registers for error handling —
SPARC64 VII implements various features for sustaining reliability. See
Appendix P for details.

221	 Special/signalling ECCs —
The method to generate “special” or “signalling” ECCs and whether processor-ID is
embedded into the data associated with special/signalling ECCs is implementation
dependent.
Ver 1.0, 1 Jul. 2008	 F. Appendix C Implementation Dependencies 93

TABLE C-1 SPARC64 VII Implementation Dependencies (8 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

222	 TLB organization 102
SPARC64 VII has the following TLB organization:
•	 Level-1 micro ITLB (uITLB), fully associative
•	 Level-1 micro DTLB (uDTLB), fully associative
•	 Level-2 IMMU-TLB—consisting of sITLB (set-associative Instruction TLB) and

fITLB (fully associative Instruction TLB).
•	 Level-2 DMMU-TLB—consisting of sDTLB (set-associative Data TLB) and

fDTLB (fully associative Data TLB).

223	 TLB multiple-hit detection 103
On SPARC64 VII, TLB multiple hit detection is supported. However, the multiple
hit is not detected at every TLB reference. When the micro-TLB (uTLB), which is
the cache of sTLB and fTLB, matches the virtual address, a multiple hit in sTLB
and fTLB is not detected. The multiple hit is detected only when the micro-TLB
misses and the main TLB is referenced.

224	 MMU physical address width 104
The SPARC64 VII MMU implements 47-bit physical addresses. The PA field of the
TTE holds a 47-bit physical address. The MMU translates virtual addresses into
47-bit physical addresses. Each cache tag holds bits 46:6 of the physical addresses.

225	 TLB locking of entries 104
In SPARC64 VII, when a TTE with its lock bit set is written into TLB through the
Data In register, the TTE is automatically written into the corresponding fully
associative TLB and locked in the TLB. Otherwise, the TTE is written into the
corresponding sTLB of fTLB, depending on its page size.

226	 TTE support for CV bit 104
SPARC64 VII does not support the CV bit in TTE. Since I1 and D1 are virtuall
indexed cache, and unaliasing is supported by hardware. See also impl. dep. #232.

227	 TSB number of entries 105
SPARC64 VII supports a maximum of 16 million entries in the common TSB and
a maximum of 32 million lines in the Split TSB.

228	 TSB_Hash supplied from TSB or context-ID register 105
TSB_Hash is generated from the context-ID register in SPARC64 VII.

229	 TSB_Base address generation 105
SPARC64 VII generates the TSB_Base address directly from the TLB Extension
Registers. By maintaining compatibility with UltraSPARC I/II, SPARC64 VII
provides mode flag MCNTL.JPS1_TSBP. When MCNTL.JPS1_TSBP = 0, the
TSB_Base register is used.

230	 data_access_exception trap 106
SPARC64 VII generates data_access_exception only for the causes listed in
Appendix F.5 of Commonality.

231	 MMU physical address variability 108
The width of a physical address is 47 bits in SPARC64 VII.
94 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE C-1 SPARC64 VII Implementation Dependencies (9 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

232	 DCU Control Register CP and CV bits 20, 108
SPARC64 VII does not implement CP and CV bits in the DCU Control Register.
See also impl. dep. #226.

233	 TSB_Hash field 109
SPARC64 VII does not implement TSB_Hash.

234	 TLB replacement algorithm 116
For fTLB, SPARC64 VII implements a pseudo-LRU. For sTLB, LRU is used. An
entry in the fTLB may also be replaced by a dropped TTE from the sTLB.

235	 TLB data access address assignment 116
VA of TLB Data Access register is described in Table F-8

236	 TSB_Size field width 118
In SPARC64 VII, TSB_Size is 4 bits wide, occupying bits 3:0 of the TSB
register. The maximum number of TSB entries is, therefore, 512 × 215 (16M
entries).

237	 DSFAR/DSFSR for JMPL/RETURN mem_address_not_aligned 63,
A mem_address_not_aligned exception that occurs during a JMPL or RETURN 106,
instruction does not update either the D-SFAR or D-SFSR register. 118

238	 TLB page offset for large page sizes 104
On SPARC64 VII, page offset data is discarded on a TLB write, and an arbitrary
data is returned on a read.

239	 Register access by ASIs 5516 and 5D16 109
In SPARC64 VII, VA<63:19> of IMMU ASI 5516 and DMMU ASI 5D16 are
ignored. An access to virtual addresses 4000016 to 60FF816 is treated as an access
0000016 to 20FF816

240	 DCU Control Register bits 47:41 20
SPARC64 VII uses bit 41 for WEAK_SPCA, which enables/disables memory access
on speculative paths.

241	 Address Masking and DSFAR ?
When PSTATE.AM = 1, SPARC64 VII writes zeroes to the most significant 32 bits
of DSFAR.

242	 TLB lock bit 104
In SPARC64 VII, only the fITLB and the fDTLB support the lock bit. The lock bit
in sITLB and sDTLB is read as 0 and writes to it are ignored.

243	 Interrupt Vector Dispatch Status Register BUSY/NACK pairs 158

In SPARC64 VII, 32 BUSY/NACK pairs are implemented in the Interrupt Vector
Dispatch Status Register.

244	 Data Watchpoint Reliability 22
No implementation-dependent features of SPARC64 VII reduce the reliability of
data watchpoints.
Ver 1.0, 1 Jul. 2008	 F. Appendix C Implementation Dependencies 95

TABLE C-1 SPARC64 VII Implementation Dependencies (10 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

245	 Call/Branch displacement encoding in I-Cache ?
In SPARC64 VII, the least significant 11 bits (bits 10:0) of a CALL or branch
(BPcc, FBPfcc, Bicc, BPr) instruction in an instruction cache are identical to the
architectural encoding (as they appear in main memory).

246	 VA<38:29> for Interrupt Vector Dispatch Register Access 158
SPARC64 VII ignores all 10 bits of VA<38:29> when the Interrupt Vector Dispatch
Register is written.

247	 Interrupt Vector Receive Register SID fields 158
SID_H and SID_L values are undefined.

248	 Conditions for fp_exception_other with unfinished_FPop 16
SPARC64 VII triggers fp_exception_other with trap type unfinished_FPop under
the standard conditions described in Commonality Section 5.1.7.

249	 Data watchpoint for Partial Store instruction 68
Watchpoint exceptions on Partial Store instructions occur conservatively on
SPARC64 VII. The DCUCR Data Watchpoint masks are only checked for nonzero
value (watchpoint enabled). The byte store mask (r[rs2]) in the Partial Store
instruction is ignored, and a watchpoint exception can occur even if the mask is
zero (that is, no store will take place).

250	 PCR accessibility when PSTATE.PRIV = 0 18, 20,
In SPARC64 VII, the accessibility of PCR when PSTATE.PRIV = 0 is determined 72
by PCR.PRIV. If PSTATE.PRIV = 0 and PCR.PRIV = 1, an attempt to execute
either RDPCR or WRPCR will cause a privileged_action exception. If
PSTATE.PRIV = 0 and PCR.PRIV = 0, RDPCR operates without privilege
violation and WRPCR generates a privileged_action exception only when an attempt
is made to change (that is, write 1 to) PCR.PRIV.

251	 Reserved. —

252	 DCUCR.DC (Data Cache Enable) 20
SPARC64 VII does not implement DCUCR.DC.

253	 DCUCR.IC (Instruction Cache Enable) 20
SPARC64 VII does not implement DCUCR.IC.

254	 Means of exiting error_state 36, 169
The standard behavior of a SPARC64 VII CPU upon entry into error_state is
to reset itself by internally generating a watchdog_reset (WDR). However, OPSR
can be set so that when error_state is entered, the processor remains halted in
error_state instead of generating a watchdog_reset.

255	 LDDFA with ASI E016 or E116 and misaligned destination register number 140
No exception is generated based on the destination register rd.
96 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

http:DCUCR.DC
http:DCUCR.IC

TABLE C-1 SPARC64 VII Implementation Dependencies (11 of 11)

Nbr SPARC64 VII Implementation Notes	 Page

256	 LDDFA with ASI E016 or E116 and misaligned memory address 140
For LDDFA with ASI E016 or E11 and a memory address aligned on a 2n-byte
boundary, a SPARC64 V processor behaves as follows:
n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is
generated.
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is
generated.
n ≤ 1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated.

257	 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address 140
For LDDFA with C016–C516 or C816–CD16 and a memory address aligned on a 2n
byte boundary, a SPARC64 V processor behaves as follows:
n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is
generated.
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is
generated.
n ≤ 1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated.

258	 ASI_SERIAL_ID 139
SPARC64 VII provides an identification code for each processor.
Ver 1.0, 1 Jul. 2008	 F. Appendix C Implementation Dependencies 97

F.AP PE ND IX D

Formal Specification of the Memory
Models

Please refer to Appendix D of Commonality.
Ver 1.0, 1 Jul. 2008 F. Appendix D Formal Specification of the Memory Models 98

Ver 1.0, 1 Jul. 2008 F. Appendix D Formal Specification of the Memory Models 99

F.AP PE ND IX E

Opcode Maps

Please refer to Appendix E in SPARC Joint Programming Specification 1 (JPS1):
Commonality. TABLE E-1 lists the opcode maps for the SPARC64 VII IMPDEP2 instructions,
and lists the one for the IMPDEP1 instructions.

TABLE E-1 IMPDEP2 (op = 2, op3 = 3716)

var (instruction <8:7>)

00 01 10 11

size
(instruction<6:5>)

00 FPMADDX FPMADDXHI (reserved)

01 FMADDs FMSUBs FNMSUBs FNMADDs

10 FMADDd FMSUBd FNMSUBd FNMADDd

11 (reserved for quad operations)
Ver 1.0, 1 Jul. 2008 F. Appendix E Opcode Maps 100

T
A

B
L

E
 E

-2
 I
M
P
D
E
P
1

:
o
p
f

<
8:

0>
 f

or
 V

IS
 o

pc
od

es
 (
o
p
 =
2

,
o
p
3
=
3
6
1
6
)

o
pf

 <
8:

4>

00

01

02

03

04

05

06

07

08

09
-1

F

o
pf

<3

:0
>

0
E
D
G
E
8

A
R
R
A
Y
8

F
C
M
P
L
E
1
6

—

—

F
P
A
D
D
1
6

F
Z
E
R
O

F
A
N
D

S
H
U
T
D
O
W
N

—

1
E
D
G
E
8
N

—

—

F
M
U
L

8
x
1
6

—

F
P
A
D
D
1
6
S

F
Z
E
R
O
S

F
A
N
D
S

S
I
A
M

—

2
E
D
G
E
8
L

A
R
R
A
Y
1
6

F
C
M
P
N
E
1
6

—

—

F
P
A
D
D
3
2

F
N
O
R

F
X
N
O
R

S
U
S
P
E
N
D

—

3
E
D
G
E
8
L
N

—

—

F
M
U
L

8
x
1
6
A
U

—

F
P
A
D
D
3
2
S

F
N
O
R
S

F
X
N
O
R
S

S
L
E
E
P

—

4
E
D
G
E
1
6

A
R
R
A
Y
3
2

F
C
M
P
L
E
3
2

—

—

F
P
S
U
B
1
6

F
A
N
D
N
O
T
2

F
S
R
C
1

—

—

5
E
D
G
E
1
6
N

—

—

F
M
U
L

8
x
1
6
A
L

—

F
P
S
U
B
1
6
S

F
A
N
D
N
O
T
2
S

F
S
R
C
1
S

—

—

6
E
D
G
E
1
6
L

—

F
C
M
P
N
E
3
2

F
M
U
L

8
S
U
x
1
6

—

F
P
S
U
B
3
2

F
N
O
T
2

F
O
R
N
O
T
2

—

—

7
E
D
G
E
1
6
L
N

—

—

F
M
U
L

8
U
L
x
1
6

—

F
P
S
U
B
3
2
S

F
N
O
T
2
S

F
O
R
N
O
T
2
S

—

—

8
E
D
G
E
3
2

A
L
I
G
N

A
D
D
R
E
S
S

F
C
M
P
G
T
1
6

F
M
U
L
D

8
S
U
x
1
6

F
A
L
I
G
N
D
A
T
A

—

F
A
N
D
N
O
T
1

F
S
R
C
2

—

—

9
E
D
G
E
3
2
N

B
M
A
S
K

—

F
M
U
L
D

8
U
L
x
1
6

—

—

F
A
N
D
N
O
T
1
S

F
S
R
C
2
S

—

—

A

E
D
G
E
3
2
L

A
L
I
G
N

A
D
D
R
E
S
S

_
L
I
T
T
L
E

F
C
M
P
E
Q
1
6

F
P
A
C
K
3
2

—

—

F
N
O
T
1

F
O
R
N
O
T
1

—

—

B

E
D
G
E
3
2
L
N

—

—

F
P
A
C
K
1
6

F
P
M
E
R
G
E

—

F
N
O
T
1
S

F
O
R
N
O
R
1
S

—

—

C

—

—

F
C
M
P
G
T
3
2

—

B
S
H
U
F
F
L
E

—

F
X
O
R

F
O
R

—

—

D

—

—

—

F
P
A
C
K
F
I
X

F
E
X
P
A
N
D

—

F
X
O
R
S

F
O
R
S

—

—

E

—

—

F
C
M
P
E
Q
3
2

P
D
I
S
T

—

—

F
N
A
N
D

F
O
N
E

—

—

F

—

—

—

—

—

—

F
N
A
N
D
S

F
O
N
E
S

—

—

F.AP PE ND IX F

Memory Management Unit

The Memory Management Unit (MMU) architecture of SPARC64 VII conforms to the MMU
architecture defined in Appendix F of Commonality but with some model dependency. See
Appendix F in Commonality for the basic definitions of the SPARC64 VII MMU.

Section numbers in this appendix correspond to those in Appendix F of Commonality.
Figures and tables, however, are numbered consecutively.

This appendix describes the implementation dependencies and other additional information
about the SPARC64 VII MMU. For SPARC64 VII implementations, we first list the
implementation dependency as given in TABLE C-1 of Commonality, then describe the
SPARC64 VII implementation.

F.1 Virtual Address Translation
IMPL. DEP. #222: TLB organization is JPS1 implementation dependent.

SPARC64 VII has the following TLB organization:

■	 Level-1 micro ITLB (uITLB), fully associative

■	 Level-1 micro DTLB (uDTLB), fully associative

■	 Level-2 IMMU-TLB consists of sITLB (set-associative Instruction TLB) and fITLB
(fully associative Instruction TLB).

■	 Level-2 DMMU-TLB consists of sDTLB (set-associative Data TLB) and fDTLB (fully
associative Data TLB).

TABLE F-1 shows the organization of SPARC64 VII TLBs.

The hardware contains micro-ITLB and micro-DTLB as the temporary memory of the
main TLBs, as shown in TABLE F-1. In contrast to the micro-TLBs, sTLB and fTLB are
called main TLBs.
Ver 1.0, 1 Jul. 2008	 F. Appendix F Memory Management Unit 102

The micro-TLBs are coherent to main TLBs and are not visible to software with the
exception of TLB multiple hit detection. Hardware maintains the consistency between
micro-TLBs and main TLBs.

No other details on micro-TLB are provided because software cannot execute direct
operations to micro-TLB and its configuration is invisible to software.

TABLE F-1 Organization of SPARC64 VII TLBs

Feature sITLB and sDTLB fITLB and fDTLB

Entries 2048 32

Associativity 2-way set associative Fully associative

Locked translation entry Not supported Supported

Unlocked translation entry Supported Supported

Miscellaneous Hashing not supported Also works as a victim cache of
sITLB and sDTLB

IMPL. DEP. #223: Whether TLB multiple-hit detections are supported in JPS1 is
implementation dependent.

On SPARC64 VII, TLB multiple hit detection is supported. However, the multiple hit is
not detected for every TLB reference. When the micro-TLB (uTLB), which is the cache
of sTLB and fTLB, matches the virtual address, the multiple hit in sTLB and fTLB is not
detected. The multiple hit is detected only when the micro-TLB mismatches and main
TLB is referenced.

F.2 Translation Table Entry (TTE)
The size field of TTE is extended from 2bits to 3bits on SPARC64 VII to support over 4M
pages. The MSB of the size is located at bit 48 of TTE.

TABLE F-2 TSB and TTE Bit Description

Bits Field Name Description

Data <48, 62:61> size The page size of the entry, encoded as shown below.
Size<2:0> Page Size
000 = 8 KB
001 = 64 KB
010 = 512 KB
011 = 4 MB
100 = 32 MB
101 = 256 MB

Data <46:13> PA The physical page number.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 103

IMPL DEP. in Commonality TABLE F-1: TTE_Data bits 46:43 are implementation
dependent.

On SPARC64 VII, TTE_Data bits 46:43 are used for PA<46:43>.

IMPL. DEP. #224: Physical address width support by the MMU is implementation dependent
in JPS1; minimum PA width is 43 bits.

The SPARC64 VII MMU implements 47-bit physical addresses. The PA field of the TTE
holds a 47-bit physical address. The MMU translates virtual addresses into 47-bit physical
addresses. Each cache tag holds bits 46:6 of physical addresses.

IMPL. DEP. #238: When page offset bits for larger page size (PA<15:13>, PA<18:13>, and
PA<21:13> for 64-Kbyte, 512-Kbyte, and 4-Mbyte, respectively) are stored in the TLB, it is
implementation dependent whether the data returned from those fields by a Data Access read
are zero or the data previously written to them.

On SPARC64 VII, the data returned from PA<15:13>, PA<18:13>, PA<21:13>,
PA<24:13>, and PA<27:13> for 64-Kbyte, 512-Kbyte, 4-Mbyte, 32-Mbyte, and 256
Mbyte pages, respectively, by a Data Access read is neither zero nor the data previously
written to them, but an arbitrary data is returned. Likewise, the corresponding VA bits of
a TLB Tag Read Register are read as arbitrary data.

IMPL. DEP. #225: The mechanism by which entries in TLB are locked is implementation
dependent in JPS1.

In SPARC64 VII, when a TTE with its lock bit set is written into TLB through the Data In
register, the TTE is automatically written into the corresponding fully associative TLB
and locked in the TLB. Otherwise, the TTE is written into the corresponding sTLB or
fTLB, depending on its page size.

IMPL. DEP. #242: An implementation containing multiple TLBs may implement the L
(lock) bit in all TLBs but is only required to implement a lock bit in one TLB for each page
size. If the lock bit is not implemented in a particular TLB, it is read as 0 and writes to it are
ignored.

In SPARC64 VII, only the fITLB and the fDTLB support the lock bit as described in

TABLE F-1. The lock bit in sITLB and sDTLB is read as 0 and writes to it are ignored.

IMPL. DEP. #226: Whether the CV bit is supported in TTE is implementation dependent in
JPS1. When the CV bit in TTE is not provided and the implementation has virtually indexed
caches, the implementation should support hardware unaliasing for the caches.

In SPARC64 VII, no TLB supports the CV bit in TTE. SPARC64 VII supports hardware
unaliasing for the caches. The CV bit in any TLB entry is read as 0 and writes to it are
ignored.
104 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.3.2 TSB Cacheabllity

Since the TSB is a normal data structure and therefore is cacheable, it is quite important to
performance whether the target entry is in cache or not when a TLB miss occurs. When a
TLB miss is signalled and a TSB access misses the caches in the miss handler, the CPU must
wait until the data returns from memory. The loss from this wait is considerably larger as the
memory latency is longer. To reduce the loss, SPARC64 VII implements automatic TSB
prefetch when a TLB miss is signalled.

F.3.3 TSB Organization

IMPL. DEP. #227: The maximum number of entries in a TSB is implementation dependent
in JPS1. See impl. dep. #228 for the limitation of TSB_size in TSB registers.

SPARC64 VII supports a maximum of 16 million lines in the common TSB and a
maximum 32 million lines in the split TSB. The maximum number N in FIGURE F-4 of
Commonality is 16 million (16 * 220).

F.4.2 TSB Pointer Formation

IMPL. DEP. #228: Whether TSB_Hash is supplied from a TSB Extension Register or from
a context-ID register is implementation dependent in JPS1. Only for cases of direct hash with
context-ID can the width of the TSB_size field be wider than 3 bits.

On SPARC64 VII, TSB_Hash is supplied from a context-ID register. The width of the
TSB_size field is 4 bits.

IMPL. DEP. #229: Whether the implementation generates the TSB Base address by
exclusive-ORing the TSB Base Register and a TSB Extension Register or by taking the
TSB_Base field directly from the TSB Extension Register is implementation dependent in
JPS1. This implementation dependency is only to maintain compatibility with the TLB miss
handling software of UltraSPARC I/II.

On SPARC64 VII, when ASI_MCNTL.JPS1_TSBP = 1, the TSB Base address is
generated by taking TSB_Base field directly from the TSB Extension Register.

TSB Pointer Formation

On SPARC64 VII, the number N in the following equations ranges from 0 to 15; N is defined
to be the TSB_Size field of the TSB Base or TSB Extension Register.

SPARC64 VII supports the TSB Base from TSB Extension Registers as follows when
ASI_MCNTL.JPS1_TSBP = 1.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 105

For a shared TSB (TSB Register split field = 0):

8K_POINTER = TSB_Extension[63:13+N] (VA[21+N:13] ⊕ TSB_Hash)
0000

64K_POINTER = TSB_Extension[63:13+N]
 (VA[24+N:16] ⊕ TSB_Hash)
0000

For a split TSB (TSB Register split field = 1):

8K_POINTER = TSB_Extension[63:14+N]
 0
 (VA[21+N:13] ⊕ TSB_Hash)
 0000

64K_POINTER = TSB_Extension[63:14+N]
 1
 (VA[24+N:16] ⊕
TSB_Hash) 0000

Value of TSB_Hash for both a shared TSB and a split TSB

When 0 <= N <= 4,

TSB_Hash = context_register[N+8:0]

Otherwise, when 5 <= N <= 15,

TSB_Hash[12:0] = context_register[12:0]

TSB_Hash[N+8:13] = 0 (N-4 bits zero)

F.5 Faults and Traps
IMPL. DEP. #230: The cause of a data_access_exception trap is implementation dependent
in JPS1, but there are several mandatory causes of a data_access_exception trap.

SPARC64 VII signals a data_access_exception for the causes, as defined in
Appendix F.5 in Commonality. However, caution is needed when dealing with an invalid
ASI. See Section F.10.9, I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR) for
details.

IMPL. DEP. #237: Whether the fault status and/or address (DSFSR/DSFAR) are captured
when mem_address_not_aligned is generated during a JMPL or RETURN instruction is
implementation dependent.

On SPARC64 VII, the fault status and address (DSFSR/DSFAR) are not captured when a
mem_address_not_aligned exception is generated during a JMPL or RETURN
instruction.
106 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Additional information: On SPARC64 VII, the two precise traps—
instruction_access_error and data_access_error—are recorded by the MMU in addition to
those in TABLE F-2 of Commonality. A modification (the two traps are added) of that table
is shown below.

TABLE F-3 MMU Trap Types, Causes, and Stored State Register Update Policy

Registers Updated
(Stored State in MMU)

I-MMU D-MMU
Tag D-SFSR, Tag

Ref #Trap Name Trap Cause I-SFSR Access SFAR Access Trap Type

1. fast_instruction_access_MMU_miss I-TLB miss X2 X	 6416–6716

2. instruction_access_exception Several (see below) X2 X	 0816

3. fast_data_access_MMU_miss D-TLB miss	 X3 X 6816–6B16

4. data_access_exception Several (see below)	 X3 X1 3016

5. fast_data_access_protection Protection violation	 X3 X 6C16-6F16

6. privileged_action	 Use of privileged ASI X3 3716

7. watchpoint	 Watchpoint hit X3 6116–6216

8. mem_address_not_aligned, Misaligned memory 	 (impl. 3516, 3616,
*_mem_address_not_aligned	 operation dep 3816, 3916

#237)

9. instruction_access_error Several (see below) X2 0A16

10 data_access_error Several (see below) X3 3216

■	 X1: The contents of the context field of the D-MMU Tag Access Register are undefined
after a data_access_exception.

■	 X2: I-SFSR is updated according to its update policy described in Section F.10.9
■	 X3: D-SFSR and D-SFAR are updated according to the update policy described in

Section F.10.9

The traps with Ref #1~8 in TABLE F-3 conform to the specification defined in Section F.5 of
Commonality.

The additional traps (Ref #9 and #10) are described below.

Ref 9: instruction_access_error — Signalled upon detection of at least one of the
following errors.

■	 An uncorrectable error is detected upon an instruction fetch reference.
■	 A bus error response from the Jupiter Bus is detected upon an instruction fetch reference.
■	 fITLB multiple hits are detected in a fITLB lookup for an instruction reference.
■	 An fITLB entry parity error is detected in an fTLB lookup for an instruction reference.

Ref 10: data_access_error — Signalled upon the detection of at least one of the following
errors.

■	 An uncorrectable error is detected upon an instruction operand access.
■	 A bus error response from the Jupiter Bus is detected upon an operand access.
Ver 1.0, 1 Jul. 2008	 F. Appendix F Memory Management Unit 107

■	 fDTLB multiple hits are detected in an fDTLB lookup for an operand access.
■	 An fDTLB entry parity error is detected in a fDTLB lookup for an instruction operand

access.

Note – A load request may not cause data_access_error when a store with the same address
is executed prior to the load and the data exists in the store buffer. In this case, a restrainable
error is reported instead. See also Appendix P.7.1.

F.8 Reset, Disable, and RED_state Behavior
IMPL. DEP. #231: The variability of the width of physical address is implementation
dependent in JPS1, and if variable, the initial width of the physical address after reset is also
implementation dependent in JPS1.

See impl. dep. #224 on page 104 for the variability of the width of the physical address.
The physical address width to pass to the Jupiter Bus interface is 47 bits.

IMPL. DEP. #232: Whether CP and CV bits exist in the DCU Control Register is
implementation dependent in JPS1.

On SPARC64 VII, CP and CV bits do not exist in the DCU Control Register.

When DMMU is disabled, the processor behaves as if the TTE bits were set as:
■	 TTE.IE ← 0
■	 TTE.P ← 0
■	 TTE.W ← 1
■	 TTE.NFO← 0
■	 TTE.CV ← 0
■	 TTE.CP ← 0
■	 TTE.E ← 1

IMPL. DEP. #117: Whether prefetch and nonfaulting loads always succeed when the MMU
is disabled is implementation dependent.

On SPARC64 VII, the PREFETCH instruction completes without memory access when the
DMMU is disabled.

A data_access_exception is generated at the execution of the nonfaulting load
instruction when the DMMU is disabled, as defined in Appendix F.5 of Commonality.
108 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.10 Internal Registers and ASI Operations

F.10.1 Accessing MMU Registers

IMPL. DEP. #233: Whether the TSB_Hash field is implemented in I/D Primary/Secondary/
Nucleus TSB Extension Register is implementation dependent in JPS1.

In SPARC64 VII, the TSB_Hash field is not implemented in the I/D Primary/Secondary/
Nucleus TSB Extension Register. See TSB Pointer Formation on page 105 for details.

IMPL. DEP. #239: The register(s) accessed by IMMU ASI 5516 and DMMU ASI 5D16 at
virtual addresses 4000016 to 60FF816 are implementation dependent.

See impl. dep. #235 in I/D TLB Data In, Data Access, and Tag Read Registers on page
116.

Additional information: The ASI_DCUCR register also affects the MMUs. ASI_DCUCR is
described in Section 5.2.12 of Commonality. The SPARC64 VII implementation dependency
in ASI_DCUCR is described in Data Cache Unit Control Register (DCUCR) on page 20.

SPARC64 VII also has an additional MMU internal register ASI_MCNTL (Memory Control
Register) that is shared between the IMMU and the DMMU. The register is illustrated in
FIGURE F-1 and described in TABLE F-4.

ASI_MCNTL (Memory Control Register)

ASI: 4516

VA: 0816

Access Modes: Supervisor read/write

reserved NC_
Cache

fw_
fITLB

fw_
fDTLB RMD 000

JPS1_
TSBP

mpg_
sITLB

mpg_
sDTLB 000000

63 17 16 15 14 13 12 11 9 8 7 6 5 0

FIGURE F-1 Format of ASI_MCNTL
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 109

TABLE F-4 MCNTL Field Description

Bits Field Name RW Description

Data <16> NC_Cache R/W Force instruction caching. When set, the instruction lines fetched from a
noncacheable area are cached in the instruction cache. The NC_Cache has no
effect on operand references. If MCNTL.NC_Cache = 1, the CPU fetches a
noncacheable line in four consecutive 16-byte fetches and stores the entire 64
bytes in the I-Cache. NC_Cache is provided for use by OBP, and OBP should
clear the bit before exiting.

A write to ASI_FLUSH_L1I must be performed before MCNTL.NC_CACHE =
0 is set. Otherwise, noncacheable instructions may remain in the L1 cache.

Data <15> fw_fITLB R/W Force write to fITLB. This is the mITLB version of fTLB force write. When
fw_fITLB = 1, a TTE write to mITLB through ITLB Data In Register is
directed to fITLB. fw_fITLB is provided for use by OBP to register the TTEs
that map the address translations themselves into fDTLB.

Data <14> fw_fDTLB R/W Force write to fDTLB. When fw_fDTLB = 1, a TTE write to mDTLB through
DTLB Data In Register is directed to fDTLB. fw_fDTLB is provided for use
by OBP to register the TTEs that map the address translations themselves into
fDTLB.

Data <13:12> RMD R TLB RAM MODE. The value is always 2. This field is read-only and writes to
this field are ignored.

Data <8> JPS1_TSBP R/W TSB-pointer context-hashing enable. When JPS1_TSBP = 0, SPARC64 VII
does not apply the context-ID hashing for 8-Kbyte or 64-Kbyte TSB pointer
generation. The pointer generation technique is compatible with UltraSPARC.
When JPS1_TSBP = 1, SPARC64 VII is in JPS1_TSBP mode, meaning that the
CPU applies the context-ID hashing to generate an 8-Kbyte or 64-Kbyte page
TSB pointer.

Data<7> mpg_sITLB RW This bit enables translating multiple page sizes on sITLBs.

When this bit is set, page size fields in the context register are activated, and the
sITLB can simultaneously have multiple page sizes dedicated for each context.
When this bit is cleared, the page size field in the context register and the
IMMU_TAG_ACCESS_EXT register are ignored and default page sizes (8K
for the first sTLB and 4M for the second) are used.

Data<6> mpg_sDTLB RW This bit enables translating multiple page sizes on the sDTLB.

When this bit is set, page size fields in the context register are activated, and the
sDTLB can simultaneously have multiple page sizes dedicated for each context.
When this bit is cleared, page size field in the context register and the
DMMU_TAG_ACCESS_EXT are ignored and default page sizes (8K for the
first sTLB and 4M for the second) are used.

Setting “10” into mpg_sITLB and mpg_sDTLB is not allowed. SPARC64 VII behavior is undefined with this setting.
110 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.10.2 Context Registers

sTLBs consist of two parts, where the first sTLB is 1024-entry two-way associative and the
second sTLB is 1024 entry two-way associative. Normally the first sTLB holds 8KB pages
and the second sTLB holds 4M pages for translations. ut software can program sTLBs to be
used for 8 KB, 64 KB, 512 KB, 4 MB, 32MB and 256MB page translations, by setting
MCNTL#mpg_sTLB. Each sTLB can hold any of the 6 page sizes, but are programmed to
only one page size at any given time. Each sTLB can be programmed to either the same or
different page sizes.

Each sTLB page size (PgSz) is programmable independently, one PgSz per context (Primary/
Secondary/ Nucleus). PgSz specified Kernel can set the PgSz fields in
ASI_PRIMARY_CONTEXT_REG and ASI_SECONDARY_CONTEXT_REG. PgSz specified in
ASI_PRIMARY_CONTEXT_REG are used for both sITLBs and sDTLBs. When both sDTLBs
are programmed to have identical page size, the behavior is a “single” 4-way 2048-entry
sDTLB.

The following is the page size bit encoding:
■	 000 = 8 KB
■	 001 = 64 KB
■	 010 = 512 KB
■	 011 = 4 MB
■	 100 = 32 MB
■	 101 = 256 MB

Note – SPARC64 VII behavior with undefined page size (110,111) is undefined.

In addition to the Primary, Secondary and Nucleus Context defined in Commonality, a
Shared Context is introduced in SPARC64 VII. Shared Context is a virtual address space
shared by two or more processes, to locate instructions or data which can be shared among
them. It is similar to the Secondary Context register in the point of enabling access to another
context from a context, but these are distinctly different in the following points:

■	 An explicit ASI load/store instruction is needed to use Secondary Context Register, while
Shared Context Register is used implicitly along with the memory access.

■	 The Shared Context Register is used both for instruction fetch and data access.

In the following description, the term ‘Effective Context’ is used. This term represents the
context ID used in MMU. The definition is as follows:

■	 PContext for instruction fetch and data access without explicit ASI designation on TL = 0.

■	 Nucleus Context Register value, which is always zero, for instruction fetch and data
access without explicit ASI designation on TL > 0.

■	 Value of the relevant context register for data access with an explicit ASI.
Ver 1.0, 1 Jul. 2008	 F. Appendix F Memory Management Unit 111

ASI_PRIMARY_CONTEXT

ASI: 5816
VA: 0816
Access Modes: Supervisor read/write

— PContext N_pgsz0 N_pgsz1 P_pgsz1 P_pgsz0 —N_Ipgsz0 N_Ipgsz1 P_Ipgsz1 P_Ipgsz0 —

63 61 60 58 55 53 52 50 29 27 26 24 21 19 18 16 15 13 12 0

FIGURE F-2 IMMU and DMMU Primary Context Registers

TABLE F-5 IMMU and DMMU Primary Context Registers

Bit Field Type Description

63:61 N_pgsz0 RW Nucleus context's page size at the first sDTLB

60:58 N_pgsz1 RW Nucleus context's page size at the second sDTLB

55:53 N_Ipgsz0 RW Nucleus context's page size at the first sITLB

52:50 N_Ipgsz1 RW Nucleus context's page size at the second sITLB

29:27 P_Ipgsz1 RW Primary context's page size at the second sITLB

26:24 P_Ipgsz0 RW Primary context's page size at the first sITLB

21:19 P_pgsz1 RW Primary context's page size at the second sDTLB

18:16 P_pgsz0 RW Primary context's page size at the first sDTLB

12:0 PContext RW Primary context

The value written to any of PgSz fields can be read regardless of MCNTL.mpg_sITLB/
mpg_sDTLB setting.

Programming Note – Mpgsz of a context must be consistent in the two threads in a given
core. Different mpgsz setting in the two threads to a context may create entries that cause
multiple-hit error.
112 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

0

ASI_SECONDARY_CONTEXT

ASI: 5816
VA: 1016
Access Modes: Supervisor read/write

— SContext S_pgsz1 S_pgsz0 —

63 21 19 18 16 15 13 12

FIGURE F-3 DMMU Secondary Context Register

TABLE F-6 DMMU Secondary Context Register

Bit Field Type Description

21:19 S_pgsz1 RW Secondary context's page size at the second sDTLB.

18:16 S_pgsz0 RW Secondary context's page size at the first sDTLB.

12:0 SContext RW Secondary context

The value written to any of PgSz fields can be read regardless of MCNTL.mpg_sITLB/
mpg_sDTLB setting.

Programming Note – Mpgsz of a context must be consistent in the two threads in a given
core. Different mpgsz setting in the two threads to a context may create entries that cause
multiple-hit error.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 113

ASI_SHARED_CONTEXT

ASI: 5816
VA: 6816
Access Modes: Supervisor read/write

— Dshared_Context DV—Ishared_Context —IV—

63 48 47 46 45 44 32 31 16 15 14 13 12 0

FIGURE F-4 IMMU and DMMU Primary Context Register

TABLE F-7 Shared Context Register

Bit Field	 Type Description

47 IV RW	 Valid for Ishared_Context. When IV = 1 and the
effective context is not 0, the value in Ishared_Context
is valid and used by the MMU for instruction fetch as
well as the effective context. When IV = 0 or the
effective context is 0, only the effective context is
used.

44:32	 Ishared_Context RW Context identifier of Shared Context for instruction
fetch.

15 DV RW	 Valid for Dshared_Context. When DV = 1 and the
effective context is not 0, the value in Dshared_Context
is valid and used by the MMU for data access as well
as the effective context. When DV = 0 or the effective
context is 0, only the effective context is used.

12:0 Dshared_Context RW	 Context identifier of Shared Context for data access.

The ASI_SHARED_CONTEXT register is used to enable or disable lookup with the shared
context id along with the effective context. The shared context id is used when IV or DV is
set to 1 and the effective context id is not 0. When the effective context id is 0, the shared
context id is not used regardless of IV or DV setting. For example, a load from alternate
space with ASI_AS_IF_USER_SECONDARY at %TL > 0 yields the SContext as the
effective context, therefore, the lookup with shared context id is determined by the value in
SContext.

The functionality of the shared context is the same as the effective context, except for
pagesize assignment. SPARC64 VII has two sITLBs and two sDTLBs, each sTLB can
contain TTEs of which pagesize is configurable per context id. But for the shared context,
the same pagesize of the effective context is used for lookup. Consequently, when
mcntl.mpg_sI/DTLB = 0, one sTLB has a 8-KB and the other one has a 4-MB page
entry, and when mcntl.mpg_sI/DTLB = 1, p_mpgsz_1/2 or s_mpgsz_1/2, depending on
the effective context value, is used for the pagesize of shared context.
114 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Note – n_pgsz0/1 is not used since the shared context is not valid when the effective
context is 0.

Programming Note – The efficient use of sTLB for shared context TTE is achieved by
assignment of the same p_pgsz0/1 among all contexts which uses the same shared context
id.

F.10.3 Instruction/Data MMU TLB Tag Access Registers

If Shared Context is enabled on an TLB miss, exception, or protection, the context identifier
of the effective context is indicated in the Context fields of TLB Tag Access Registers.

Programming Note – In order to store a shared context TTE, an explicit write of the
context identifier for a shared context to the TLB Tag Access Register is needed prior to TLB
Data In/Data Access.

ASI_I/DMMU_TAG_ACCESS_EXT

ASI: 5016(IMMU) / 5816(DMMU)
VA: 6016
Access Modes: Supervisor read/write

63 15 0

—pgsz1 pgsz0 —

21 19 18 16

FIGURE F-5 I/D MMU Tag Access Extension Register

When the MMU signals a trap due to a miss, exception, or protection, hardware
automatically saves the missing VA and context to the Tag Access Register (ASI_I/
DMMU_TAG_ACCESS). To ease indexing of the sTLBs when the TTE data is presented (via
STXA ASI_I/DTLB_DATA_IN_REG), the missing page size information of the sTLBs is
captured into a new Extension Register, called ASI_I/DMMU_TAG_ACCESS_EXT.

Note – If SIZE of TTE to be written is different from PgSz of the ASI register, the TTE is
written into fTLB rather than sTLB.

The ASI_I/DMMU_TAG_ACCESS_EXT register value on an instruction_access_exception
or a data_access_exception is not valid (undefined).
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 115

The register values are not valid (undefined) when the corresponding
ASI_MCNCTL#mpg_sI/DTLB value is zero.

F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers

IMPL. DEP. #234: The replacement algorithm of a TLB entry is implementation dependent
in JPS1.

For fTLB, SPARC64 VII implements a pseudo-LRU. For sTLB, LRU is used. An entry in
the fTLB may also be replaced by dropping a TTE from the sTLB.

IMPL. DEP. #235: The MMU TLB data access address assignment and the purpose of the
address are implementation dependent in JPS1.

The MMU TLB data access address assignment and the purpose of the address on
SPARC64 VII are shown in TABLE F-8.

TABLE F-8 MMU TLB Data Access Address Assignment

VA Bit Field Description

17:16 TLB#	 TLB to be accessed: fTLB or sTLB is designated as follows.
00: fTLB (32 entries)
01: reserved
10: sTLB(2048 entries of 8-Kbyte page and 4-Mbyte page)
11: reserved

15 ER	 Error insertion into mTLB: When set on a write, an entry with parity
error is inserted into a selected TLB location.

This field is ignored for a TLB entry read operation.

13:3	 TLB index Index number of the TLB. Specifies an index number for the TLB
reference. When fTLB is specified in TLB# field, the upper 6-bits of
the specified index are ignored.

When sTLB is specified in TLB# field,

Index 0-511 addresses way0 of 8K-byte page sTLB
Index 512-1023 addresses way1 of 8K-byte page sTLB
Index 1024-1535 addresses way0 of 4M-byte page sTLB
Index 1536-2047 addresses way1 of 4M-byte page sTLB

When the entry to be written has a lock bit set and the specified TLB is
the sTLB, the entry is written into the sTLB with its lock bit cleared.
When the entry is to be written into the fTLB, the entry is written
without lock bit modification.

Other Reserved	 Ignored.

sTLB index hash

Unlike SPARC64 VI, SPARC64 VII no longer supports index hashing in the sTLB.
116 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Note – Though the hashing is not supported, pages with TTE#G = 1 is always written into
fTLB on TLB Data In.

fTLB as a Victim Cache

In SPARC64 VII, fTLB may also work as a victim cache to mitigate the occurrence of
thrashing in the sTLB. A victim cache is generally a supplement to other caches by keeping
dropped entries in it. In SPARC64 VII, fTLB is one of the main TLB, a complement of
sTLB, and it may also work as a victim cache, saving dropped entries from sTLB.

Because of the existence of a victim cache, an entry originally found in sTLB is eventually
moved to fTLB. When a write of a TTE by TLB Data Access is made and a replacement of
that entry is confirmed with subsequent TLB Data Access, an access which uses that TTE
may still succeed without an exception.

Programming Note – Only the dropped entries from sTLB which would otherwise
disappear are moved to fTLB. No entry is moved without replacement in the sTLB.

I/D MMU TLB Tag Read Register

On SPARC64 VII, page offset bits in VA of the Tag Read Register return an arbitrary data on
read (impl. dep. #238).

I/D MMU TLB Tag Access Register

On an ASI store to the TLB Data Access or Data In Register, SPARC64 VII verifies the
consistency between the Tag Access Register and the data to be written. If their indices are
inconsistent, the TLB entry is not updated. However, SPARC64 VII does not verify the
consistency if TTE.V = 0 for the TTE to be written. This enables demapping of specified
TLB entries through the TLB Data Access Register. Software can use this feature to validate
faulty TLB entries.

Implementation Note – A read on a TTE.V = 0 entry returns all 0 value.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 117

F.10.6	 I/D TSB Base Registers

IMPL. DEP. #236: The width of the TSB_Size field in the TSB Base Register is
implementation dependent; the permitted range is from 2 to 6 bits. The least significant bit of
TSB_Size is always at bit 0 of the TSB Base Register. Any bits unimplemented at the most
significant end of TSB_Size read as 0, and writes to them are ignored.

On SPARC64 VII, the width of the TSB_Size field in the TSB Base Register is 4 bits.
The number of entries in the TSB ranges from 512 entries at TSB_Size = 0 (8 Kbyte for
common TSB, 16 Kbyte for split TSB), to 16 million entries at TSB_Size = 15 (256
Mbyte for common TSB, 512 Mbyte for split TSB).

F.10.7	 I/D TSB Extension Registers

IMPL DEP. in Commonality FIGURE F-13: Bits 11:3 in I/D TSB Extension Register are an
implementation-dependent field.

In SPARC64 VII, bits 11:0 in I/D TSB Extension Registers are assigned as follows.

■ Bits 11:4 — Reserved. Always read as 0, and writes to it are ignored.
■ Bits 3:0 — TSB_Size field is expanded to be a 4-bit field in SPARC64 VII.

F.10.9	 I/D Synchronous Fault Status Registers (I-SFSR, D
SFSR)

IMPL DEP. in Commonality FIGURE F-15 and TABLE F-12: Bits 63:25 in I/D
Synchronous Fault Status Registers (I-SFSR, D-SFSR) are an implementation-dependent
field.

The format of I/D-MMU SFSR in SPARC64 VII is shown in FIGURE F-6.

TLB # reserved index reserved MK EID UE BERR
BRTO

reserved mTLB NC

63 62 61 60 59 49 48 47 46 45	 32 31 30 29 28 27 26 25

NF ASI TM reserved FT E CT PR W OW FV

24 23 16 15 14 13 7 6 5 4 3 2 1 0

FIGURE F-6 MMU I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR)
118 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

The specification of bits 24:0 in the SPARC64 VII SFSR conforms to the specification
defined in Section F.10.9 in Commonality. Bits 63:25 in SPARC64 VII SFSR are
implementation dependent. TABLE F-9 describes the I-SFSR bits, and TABLE F-9 describes
the D-SFSR bits.

TABLE F-9 I-SFSR Bit Description

Bits Field Name RW Description

63:62 TLB# R/W Faulty TLB# log. Recorded upon an mITLB error to identify the faulty TLB
(fITLB: 002 or sITLB: 102). The priority of error logging for multiple error
conditions (parity error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB multihit
fTLB multihit low

59:49 index R/W Faulty TLB index log. Recorded upon an mITLB error and is the index number for
the faulty TLB. The priority of error logging for multiple error conditions (parity
error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB multihit
fTLB multihit low

On multiple hit error, any one of the index numbers is shown.

46 MK R/W Marked UE. In SPARC64 VII, all uncorrectable errors are reported as marked, so
this bit is always set whenever ISFSR.UE = 1.

See Appendix P.2.4, Error Marking for Cacheable Data Error for details.

45:32 EID R/W Error mark ID. Valid for a marked UE.

See Appendix P.2.4, Error Marking for Cacheable Data Error for
ERROR_MARK_ID.

31 UE R/W Instruction error status; uncorrectable error. When UE = 1, an uncorrectable error
in a fetched instruction word has been detected. Valid only for an
instruction_access_error exception.

30 BERR RW Bus error response has been received from an instruction fetch transaction. Valid
only for a instruction_access_error exception.

29 BRTO RW Bus time-out response has been received from an instruction fetch transaction.
Valid only for a instruction_access_error exception.

27:26 mITLB<1:0> R/W mITLB error status. Either a multiple-hit status (mITLB<1>) or a parity error
status (mITLB<0>) has been encountered upon a mITLB lookup. Valid only for an
instruction_access_error exception.

25 NC R/W Noncacheable reference. The reference that has invoked an exception is a
noncacheable reference. Valid for an instruction_access_error exception caused
by ISFSR.UE, ISFSR.BERR, or ISFSR.BRTO only. For other causes of the
trap, the value is unknown.

23:16 ASI<7:0> R/W ASI. The 8-bit address space identifier applied to the reference that has invoked an
exception. This field is valid for the exception in which the ISFSR.FV bit is set.

A recorded ASI is 8016(ASI_PRIMARY) or 0416 (ASI_NUCLEUS) depending on
the trap level (when TL > 0, the ASI is ASI_NUCLEUS.).
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 119

TABLE F-9 I-SFSR Bit Description

Bits Field Name RW Description

15 TM R/W Translation miss. When TM = 1, it signifies an occurrence of a mITLB miss upon
an instruction reference.

13:7 FT<6:0> R/W Fault type. Saves and indicates an exact condition that caused the recorded
exception. See TABLE F-10 for the field encoding.

In the IMMU, FT is valid only for an instruction_access_exception. The
ISFSR.FT always reads as 0 for a fast_instruction_access_MMU_miss and reads
0116 for an instruction_access_exception, since no other fault types apply.

5:4 CT<1:0> R/W Context type; Saves the context attribute for the reference that invokes an
exception. For nontranslating ASI or invalid ASI, ISFSR.CT = 1102.

0002: Primary
0102: Reserved
1002: Nucleus
1102: Reserved

Note that the context attribute for Shared Context is not indicated in any case.
When multiple hits involving a shared context are detected, the CT field indicates
the attribute of the effective context.

3 PR R/W Privileged. Indicates the CPU privilege status during the instruction reference that
generates the exception. This field is valid when ISFSR.FV = 1.

1 OW R/W Overwritten. Set when ISFSR.FV = 1 upon the detection of a exception. This
means that the fault valid bit is not yet cleared when another fault is detected.

0 FV R/W Fault valid. Set when the IMMU detects an exception. The bit is not set on an
IMMU miss. When the Fault Valid bit is not set, the values of the remaining fields
in the ISFSR are undefined, except for an IMMU miss.

TABLE F-10 describes the field encoding for ISFSR.FT.

TABLE F-10 Instruction Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Error Description

0116 Privilege violation. Set when TTE.P = 1 and PSTATE.PRIV = 0 for the
instruction reference.

0216 Reserved

0416 Reserved

0816 Reserved

1016 Reserved

2016 Reserved

4016 Reserved
120 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

ISFSR is updated either on an occurrence of a fast_instruction_access_MMU_miss, an
instruction_access_exception, or an instruction_access_error trap. TABLE F-11 shows the
detailed update policy of each field, and TABLE F-12 describes the fields.

TABLE F-11 ISFSR Update Policy

Field TLB#, index FV OW PR, CT1 FT TM ASI

UE, BERR,
BRTO,
mITLB, NC2

Fresh fault or miss3

Miss MMU miss — 0 0 V — 1 — —

Exception Access exception — 1 0 V V 0 V —

Error Access error V4 1 0 V — 0 V V

Overwrite policy5

Error on exception U4 1 1 U K K U U

Exception on error K 1 1 U U K U K

Error on miss U 1 K U K 1 U U

Exception on miss K 1 K U U 1 U K

Miss on exception/error K 1 K K K 1 K K

Miss on miss K K K U K 1 K K

1.The value of ISFSR.CT is 11 when the ASI is not a translating ASI. The value 11 is recorded in ISFSR.CT for an illegal
value in the ASI (0016–0316, 1216–1316, 1616–1716, 1A16–1B16, 1E16–2316, 2D16–2F16, and
3516–3B16).

2.Valid only for the instruction_access_error caused by ISFSR.UE, ISFSR.BERR, or ISFSR.BRTO.

3.Types: 0 – logical 0; 1 –logical 1; V– Valid field to be updated; “—” – not a valid field

4.Updated when multiple hit or parity error on mITLB is detected.

5.Types: 0 – logical 0; 1 – logical 1; K – keep; U – Update as per fault/miss

TABLE F-12 D-SFSR Bit Description (1 of 3)

Bits Field Name RW Description

63:62 TLB# R/W Faulty TLB# log. Recorded upon an mDTLB error to identify the faulty TLB
(fDTLB: 002 or sDTLB: 102). The priority of error logging for multiple error
conditions (parity error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB multihit
fTLB multihit low

59:49 index R/W Faulty TLB index log. Recorded upon an mDTLB error. This is index number for
the faulty TLB. The priority of error logging for multiple error conditions (parity
error and multiple-hit error) is as follows:

fTLB parity high
sTLB parity
sTLB multihit
fTLB-multihit low

On multiple hit error, any one of the index numbers is shown.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 121

http:ISFSR.UE

TABLE F-12 D-SFSR Bit Description (2 of 3)

Bits Field Name RW Description

46 MK R/W Marked UE. In SPARC64 VII, all uncorrectable errors are reported as marked, so
this bit is always set whenever DSFSR.UE = 1.

See Appendix P.2.4, Error Marking for Cacheable Data Error for details.

45:32 EID R/W Error-mark ID. Valid for a marked UE.

See Appendix P.2.4, Error Marking for Cacheable Data Error for details about
ERROR_MARK_ID.

31 UE R/W Operand access error status. Uncorrectable error. When UE = 1, it signifies an
occurrence of an uncorrectable error in an operand fetch reference. Valid only for
a data_access_error exception.

30 BERR RW Bus error response has been received from an operand fetch transaction. Valid
only for a data_access_error exception.

29 BRTO RW Bus time-out response has been received from an operand fetch transaction. Valid
only for a data_access_error exception.

27:26 mDTLB<1:0> R/W mDTLB error status. Either a multiple-hit status (mDTLB<1>) or a parity error
status (mDTLB<0>) has been encountered upon a mDTLB lookup. Valid only for
a data_access_error exception.

25 NC R/W Noncacheable reference. The reference that invoked an exception is a non
cacheable reference. This field indicates that the faulty reference is a non
cacheable operand access. Valid only for an data_access_error exception caused
by DSFSR.UE, DSFSR.BERR, or DSFSR.BRTO. For other causes of the trap, the
value is unknown.

24 NF R/W Nonfaulting load. The instruction which generated the exception was a nonfaulting
load instruction.

23:16 ASI<7:0> R/W ASI. The 8-bit address space identifier applied to the reference that has invoked an
exception. This field is valid for the exception in which the DSFSR.FV bit is set.
When the reference does not specify an ASI, the reference is regarded as with an
implicit ASI and a recorded ASI is as follows:
TL = 0, PSTATE.CLE = 0 8016 (ASI_PRIMARY)
TL = 0, PSTATE.CLE = 1 8816 (ASI_PRIMARY_LITTLE)
TL > 0, PSTATE.CLE = 0 0416 (ASI_NUCLEUS)
TL > 0, PSTATE.CLE = 1 0C16 (ASI_NUCLEUS_LITTLE)

15 TM R/W Translation miss. When TM = 1, it signifies an occurrence of a mDTLB miss upon
an operand reference.

13:7 FT<6:0> R/W Fault type. Saves and indicates an exact condition that caused the recorded
exception. The encoding of this field is described in TABLE F-13.

6 E R/W Side-effect page. Associated with faulting data access. The reference is mapped to
the translation with an E bit set, or the ASI for the reference was either 01516 or
01D16. Valid only for an data_access_error exception caused by DSFSR.UE,
DSFSR.BERR, or DSFSR.BRTO. For other causes of the trap, the value is
unknown.
122 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE F-12 D-SFSR Bit Description (3 of 3)

Bits Field Name RW Description

5:4 CT<1:0> R/W Context type. Saves the context attribute for the reference that invokes an
exception. For nontranslating ASI or invalid ASI, DSFSR.CT = 1102.

0002: Primary
0102: Secondary
1002: Nucleus
1102: Reserved

When a data_access_exception trap is caused by an invalid combination of an
ASI and an opcode (e.g., atomic load quad, block load/store, block commit store,
partial store, or short floating-point load/store instructions), the recording of the
DSFSR.CT field is based on the encoding of the ASI specified by the instruction.

Note that the context attribute for Shared Context is not indicated in any case.
When multiple hits involving a shared context are detected, the CT field indicates
the attribute of the effective context.

3 PR R/W Privileged. Indicates the CPU privilege status during the operand reference that
generates the exception. This field is valid when DSFSR.FV = 1.

2 W R/W Write. W = 1 if the reference is for an operand write operation (a store or atomic
load/store instruction).

1 OW R/W Overwritten. Set when DSFSR.FV = 1 upon detection of a exception. This means
that the fault valid bit is not yet cleared when another fault is detected.

0 FV R/W Fault valid. Set when the DMMU detects an exception. The bit is not set on a
DMMU miss. When the FV bit is not set, the values of the remaining fields in the
DSFSR and DSFAR are undefined, except for a DMMU miss.

TABLE F-13 defines the encoding of the FT<6:0> field.

TABLE F-13 MMU Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Error Description

0116 Privilege violation. An attempt was made to access a privileged page (TTE.P = 1)
under nonprivileged mode (PSTATE.PRIV = 0) or through a *_AS_IF_USER
ASI. This exception has priority over a fast_data_access_protection exception.

0216 Nonfaulting load instruction to page marked with the E bit. This bit is zero for internal
ASI accesses.

0416 An attempt was made to access a noncacheable page or an internal ASI by an atomic
instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA) or an atomic quad
load instruction (LDDA with ASI = 02416, 02C16, 03416, or 03C16).
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 123

TABLE F-13 MMU Synchronous Fault Status Register FT (Fault Type) Field (Continued)

FT<6:0> Error Description

0816 An attempt was made to access an alternate address space with an illegal ASI value, an
illegal VA, an invalid read/write attribute, or an illegally sized operand. If the quad load
ASI is used with an opcode other than LDDA, this bit is set.

Note: Since an illegal ASI check is done prior to a TTE unmatch check,
DSFSR.FT<3> = 1 causes the value of other bits of DSFSR.FT to be undetermined
and generates a data_access_exception exception (which otherwise has lower priority
than fast_data_access_MMU_miss).

Note, too, that a reference to an internal ASI may generate a
mem_address_not_aligned exception.

1016 Access other than an nonfaulting load was made to a page marked NFO. This bit is zero
for internal ASI accesses.

2016 Reserved

4016 Reserved

Multiple bits of DSFSR.FT may be set by a trap as long as the cause of the trap matches
multiply in TABLE F-13.

DSFSR is updated upon various traps, including fast_data_access_MMU_miss,
data_access_exception, fast_data_access_protection, PA_watchpoint, VA_watchpoint,
privileged_action, mem_address_not_aligned, and data_access_error traps. TABLE F-14

shows the detailed update policy of each field.

TABLE F-14 DSFSR Update Policy

Field TLB#,
index FV OW W, PR,

NF, CT1 FT TM ASI
UE, BERR,

BRTO,
mDTLB, NC2, E2

DSFAR

Fresh fault or miss3

Miss MMU miss — 0 0 V — 1 — — V

Exception Access exception — 1 0 V V 0 V — V

Faults

Access protection — 1 0 V — 0 V — V

PA watchpoint — 1 0 V — 0 V — V

VA watchpoint — 1 0 V — 0 V — V

Privileged action4 — 1 0 V — 0 V — V

Access misaligned — 1 0 V — 0 V — V

Access error V5 1 0 V — 0 V V V

Overwrite Policy6

Exception on fault K 1 1 U U K U K U

Fault on exception U4 1 1 U K K U U U

Exception on miss7 K 1 K U U 1 U K U

Fault on miss U4 1 K U K 1 U U U
124 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE F-14 DSFSR Update Policy

Field TLB#,
index FV OW W, PR,

NF, CT1 FT TM ASI
UE, BERR,

BRTO,
mDTLB, NC2, E2

DSFAR

Miss on fault/exception K 1 K K K 1 K K K

Miss on miss K K K U K 1 K K K

1.The value of DSFSR.CT is 11 when the ASI is not a translating ASI. The value 11 is recorded in DSFSR.CT for an illegal
value in ASI (0016–0316, 1216–1316, 1616–1716, 1A16–1B16, 1E16–2316, 2D16–2F16, or 3516–3B16).

2.Valid only for the data_access_error caused by DSFSR.UE,or DSFSR.BERR, or DSFSR.BRTO.
3.Types: 0 – logic 0; 1 – logic 1; V – Valid field to be updated; “—” – not a valid field
4.Memory reference instruction only.

5.Updated when multiple hit or parity error on mDTLB is detected.

6.Types: 0 – logic 0; 1 – logic 1; V– Valid field to be updated; “—” – not a valid field

7.Fault/exception on miss means the miss happened first, then a fault/exception was encountered before software had a

chance to clear the DSFSR register.

F.10.11 I/D MMU Demap

For Demap Page in sTLBs, the page size used to index sTLBs is derived based on the
Context bits (Primary/Secondary/Nucleus). Hardware will automatically select proper PgSz
bits based on the “context” field (Primary/Secondary/Nucleus) defined in ASI_I/
DMMU_DEMAP. These two PgSz fields are used to properly index the first sTLB and the
second sTLB.

In addition, the selected PgSz based on the context bits is used to check if the demap
operation is valid or not for Demap Page and Demap Context operations with sTLBs. That is,
if the PgSz is different from SIZE of the corresponding TLB entry, the TLB entry will not be
demapped.

Note – Valid context ID should be specified on Demap Page and Context operations. Demap
operation with non-existing Context ID (012 for IMMU and 112 for IMMU/DMMU) might
demap unexpected sTLB entries.

Demap All operations with sTLBs are straight forward.

There is no way to remove all TLB entries for a shared context by Demap Context.

Programming Note – To accomplish removing all shared context entries from TLB,
temporary use of the secondary context register is needed.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 125

F.10.12 Synchronous Fault Physical Addresses
This section describes how the IMMU and DMMU obtain a fault physical address.

IMMU Synchronous Fault Physical Address

The Instruction Synchronous Fault Physical Address Register is newly added to capture the
physical memory address of the fault recorded in the IMMU Synchronous Fault Status
Register (I-SFSR). The registers are updated on instruction_access_error exception, while
the value is valid only when corresponding ISFSR.MK = 1, ISFSR.UE = 1,
ISFSR.BERR = 1 or ISFSR.BRTO = 1.

The values of bits 2:0 are undefined.

ASI: 5016

VA: 7816

Access Modes: Supervisor read/write

Fault Address (PA<46:3>) — Undefined

63 47 46 3 2 0

FIGURE F-7 MMU Instruction Synchronous Fault Physical Address Register (I-SFPAR)

DMMU Synchronous Fault Physical Address

The Data Synchronous Fault Physical Address Register is newly added to capture the
physical memory address of the fault recorded in the DMMU Synchronous Fault Status
Register (D-SFSR). The registers are updated on data_access_error exception, while the
value is valid only when corresponding DSFSR.MK = 1, DSFSR.UE = 1, DSFSR.BERR = 1
or DSFSR.BRTO = 1.

The values of bits 2:0 are undefined.

ASI: 5816
VA: 7816
Access Modes: Supervisor read/write

63 0

Fault Address (PA<46:3>) —

47 46 3 2

Undefined

FIGURE F-8 MMU Data Synchronous Fault Physical Address Register (D-SFPAR)
126 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.10.13 TSB Prefetch Registers

When a fast_instruction_access_MMU_miss or a fast_data_access_MMU_miss is
signalled, the operating system software looks up a TSB with the help of hardware’s
automatic pointer calculation. TSB is an array of TTE located in memory, hence, it sometime
exists in the cache memory. When the data address calculated by hardware misses the
outermost cache, the performance of TLB miss handling degrades substantially. Generally,
use of software prefetch could be a solution. However, since the TSB index is known after
the exception is signalled, it must be the TLB miss handler that issues a software prefetch,
which does not help to hide memory access latency.

To deal with this difficulty, SPARC64 VII employs a TSB prefetch in hardware. When an
instruction fetch or a memory access misses the TLB, then the MMU calculates a possible
TSB index and then issues a prefetch request. The base address of the TSB is designated by
one of the TSB Prefetch Registers, chosen by context and access type. TABLE F-15 shows
all TSB Prefetch Registers.

TABLE F-15 ASI and VA assignment of TSB Prefetch Registers

IMMU DMMU Description

ASI = 6116, VA = 0016 ASI = 6216, VA = 0016 ctxnon0, 1st

ASI = 6116, VA = 0816 ASI = 6216, VA = 0816 ctxnon0, 2nd

ASI = 6116, VA = 4016 ASI = 6216, VA = 4016 ctx0, 1st

ASI = 6116, VA = 4816 ASI = 6216, VA = 4816 ctx0, 2nd

There are two registers each for four groups, instruction fetch in context 0 and non-0, data
access in context 0 and non-0. There is no distinction for each register in a group. They work
exactly the same. The format and bit description of the TSB Prefetch Register is similar to
the TSB Base Register. FIGURE F-9 shows the format of the TSB Prefetch Register.

VTSB_base<63:13> (physical) TSB_size—page_sz—

63 13 12 11 9 8 7 6 5 0

77
FIGURE F-9 TSB Prefetch Register
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 127

TABLE F-16 describes the bit description of the TSB Prefetch Register. Note that unused bits
are always read as 0 and write is ignored.

TABLE F-16 TSB Prefetch Register Bit Description

Bit Field Name RW Description

63:13 TSB_base R/W Base address of TSB array in physical address.

11:9 page_sz R/W Pagesize of the TSB. The encoding of pagesize is same as TTE.

00002 8KB
00102 64KB
01002 512KB
01102 4MB
10002 32MB
10102 256MB

8 V R/W Valid. When V = 1, TSB prefetch is performed on TLB miss, and when V = 0,
prefetch is not done.

5:0 TSB_size R/W This field is subjected IMPL.DEP.#236, same as the corresponding field in TSB
Base Register. In SPARC64 VII, the width of TSB_size is 4 bits. Bits 5:4 are read
as 0 and write is ignored. See Section F.10.6, I/D TSB Base Registers, on page 118
for more detail.

The size of the TSB. The number of entries in the TSB is 512 x 2TSB_size .

The major difference between the TSB Base Register and the TSB Prefetch Register is that
the base address is designated by a physical address in the TSB Prefetch Register. The result
of using a nonexistent physical address is undefined.

The pagesize of TTEs in a TSB is configurable by the TSB Prefetch Register, so system
software can provide TSBs of any of two pagesizes for each group at a given time. Since
there are two relevant registers for each group, system software can designate TSBs for two
important pagesizes, which could be stored in two sTLBs by the system software.

The prefetch begins when a TLB lookup fails, but not when an exception is signalled. Due to
the nature of the TSB Prefetch Register, the earlier the start of a prefetch the better.
SPARC64 VII prefetches a TSB for a TLB miss even on a speculative path.

Since the TSB Prefetch Register does not support index hashing or a shared/split, the TSB
pointer calculation is made as follows:

TSB_POINTER = TSB_Prefetch_Base[63:13+N]

VA[21+N+3*page_sz:13+3*page_sz]
0000

128 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.11 MMU Bypass

On SPARC64 VII, two additional ASIs are supported as DMMU bypass accesses:
ASI_ATOMIC_QUAD_LDD_PHYS (ASI 3416) and
ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE (ASI 3C16)

TABLE F-17 shows the bypass attribute bits on SPARC64 VII. The first four rows conform to
the bypass attribute bits defined in TABLE F-15 of Commonality.

TABLE F-17 Bypass Attribute Bits on SPARC64 VII

ASI ASI

NAME VALUE

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE

ASI_ATOMIC_QUAD_LDD_PHYS

ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE

1416

1C16

1516

1D16

3416

3C16

Attribute Bits

CP IE CV E P W NFO Size

1 0 0 0 0 1 0 8 Kbytes

0 0 0 1 0 1 0 8 Kbytes

1 0 0 0 0 0 0 8 Kbytes

F.12 Translation Lookaside Buffer Hardware
Unlike other software visible resources, thread0 and thread1 within the same core logically
share fTLBs and sTLBs. That is, a TLB entry written by one thread can be referenced by the
other thread.

Note – Threads belonging to different physical cores do not share TLBs.

If two identical TTEs are written, no multiple-hit error is detected during a virtual address
translation. Instead, one of the two TTEs is used for the translation. In other words, it is
allowed for both the threads to write identical contents into a TLB independently. Hardware
guarantees no multi-hit error will occur in this case.

However, it is not allowed to write two TTEs with the same VA and CONTEXT but different
page sizes into a TLB. This might result in a multi-hit error.
Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 129

F.12.2 TLB Replacement Policy

Automatic TLB Replacement Rule

On an automatic replacement write to the TLB, the MMU picks the entry to write according
to the following rules:

1. If the following conditions are satisfied—

■	 the new entry is unlocked or TTE.G = 0 ,

■	 and page size is either 8KB or 4MB when ASI_MCNTL.mpg_sITLB/
mpg_sDTLB = 0,
or page size matches either pgsz0/1 field of the relevant CONTEXT register when
ASI_MCNTL.mpg_sITLB/mpg_sDTLB = 1,

■	 and ASI_MCNTRL.fw_fITLB = 0 for IMMU automatic replacement,
■	 and ASI_MCNTRL.fw_fDTLB = 0 for DMMU automatic replacement,

—then the replacement is directed to the sTLB (2-way TLB). Otherwise, the replacement
occurs in the fully associative TLB (fTLB).

2. If replacement is directed to the 2-way TLB, then the replacement set index is generated
from the TLB Tag Access Register with bits determined by the page size.

3. If a replacement is directed to the fully associative TLB (fTLB), then the following
alternatives are evaluated:

a.	 The first invalid entry is replaced (measuring from entry 0). If there is no invalid entry,
then

b. the first unused, unlocked (LRU, but clear) entry will be replaced (measuring from
entry 0). If there is no unused unlocked entry, then

c.	 all used bits are reset, and the process is repeated from Step 3b.

If fTLB is the target of the automatic replacement and all entries in the fTLB have their
lock bit set, the automatic replacement operation is ignored and the entries in the target
fTLB remain unchanged.

Restriction of sTLB Entry Direct Replacement

In SPARC64 VII, no restriction check is applied to the stxa address and the contents of I/D
TLB Data Access Register.
130 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Ver 1.0, 1 Jul. 2008 F. Appendix F Memory Management Unit 131

F.AP PE ND IX G

Assembly Language Syntax

Please refer to Appendix G of Commonality.

Ver 1.0, 1 Jul. 2008 F. Appendix G Assembly Language Syntax 132

F.AP PE ND IX H

Software Considerations

Please refer to Appendix H of Commonality.

Ver 1.0, 1 Jul. 2008 F. Appendix H Software Considerations 133

F.AP PE ND IX I

Extending the SPARC V9 Architecture

Please refer to Appendix I of Commonality.

Ver 1.0, 1 Jul. 2008 F. Appendix I Extending the SPARC V9 Architecture 134

F.AP PE ND IX J

Changes from SPARC V8 to SPARC V9

Please refer to Appendix J of Commonality.

Ver 1.0, 1 Jul. 2008 F. Appendix J Changes from SPARC V8 to SPARC V9 135

F.AP PE ND IX K

Programming with the Memory Models

Please refer to Appendix K of Commonality.

Ver 1.0, 1 Jul. 2008 F. Appendix K Programming with the Memory Models 136

F.AP PE ND IX L

Address Space Identifiers

Every load or store address in a SPARC V9 processor has an 8-bit Address Space Identifier
(ASI) appended to the VA. The VA plus the ASI fully specifies the address. For instruction
loads and for data loads or stores that do not use the load or store alternate instructions, the
ASI is an implicit ASI generated by the hardware. If a load alternate or store alternate
instruction is used, the value of the ASI can be specified in the %asi register or as an
immediate value in the instruction. In practice, ASIs are not only used to differentiate address
spaces but are also used for other functions, such as referencing registers in the MMU unit.

This chapter summarizes SPARC64 VII enhanced ASIs. Please refer to Commonality for
Sections L.1 and L.2.

L.3 SPARC64 VII ASI Assignments
For SPARC64 VII, all accesses made with ASI values in the range 0016–7F16 when
PSTATE.PRIV = 0 cause a privileged_action exception.

Warning – The software should follow the ASI assignments and VA assignments in

TABLE L-1. Some illegal ASI or VA accesses will cause the machine to enter unknown states.

TABLE L-1 SPARC64 VII ASI Assignments (1 of 3)

Value ASI Name (Suggested Macro Syntax) Type VA16 Description Page

0016–3316 (JPS1)

3416 ASI_ATOMIC_QUAD_LDD_PHYS R — 64

3516–3B16 (JPS1)

3C16 ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE R — 64

3D16–4416 (JPS1)

Ver 1.0, 1 Jul. 2008 F. Appendix L Address Space Identifiers 137

TABLE L-1 SPARC64 VII ASI Assignments (2 of 3)

Value ASI Name (Suggested Macro Syntax) Type VA16 Description Page

4516 ASI_DCU_CONTROL_REG (ASI_DCUCR) RW 0016 20

4516 ASI_MEMORY_CONTROL_REG (ASI_MCNTL) RW 0816 109

4616–4916 (JPS1)

4A16 ASI_JB_CONFIG_REGISTER R 0016 239

4B16 (JPS1)

4C16 ASI_ASYNC_FAULT_STATUS RW 0016 118

4C16 ASI_URGENT_ERROR_STATUS R 0816 189
(ASI_UGESR)

4C16 ASI_ERROR_CONTROL RW 1016 185

4C16 ASI_STCHG_ERROR_INFO RW 1816 187

4D16 ASI_ASYNC_FAULT_ADDR_D1 R 0016 Always read as zero 199

4D16 ASI_ASYNC_FAULT_ADDR_U2 R 0816 Always read as zero 199

4E16 (JPS1)

4F16 ASI_SCRATCH_REG0 RW 0016 140

4F16 ASI_SCRATCH_REG1 RW 0816 140

4F16 ASI_SCRATCH_REG2 RW 1016 140

4F16 ASI_SCRATCH_REG3 RW 1816 140

4F16 ASI_SCRATCH_REG4 RW 2016 140

4F16 ASI_SCRATCH_REG5 RW 2816 140

4F16 ASI_SCRATCH_REG6 RW 3016 140

4F16 ASI_SCRATCH_REG7 RW 3816 140

5016 (JPS1) 0016-5816

5016 ASI_IMMU_TAG_ACCESS_EXT RW 6016 115

5016 ASI_IMMU_SFPAR RW 7816 126

5116–5716 (JPS1)

5816 ASI_DMMU_TAG_ACCESS_EXT RW 6016 115

5816 ASI_SHARED_CONTEXT_REG RW 6816 114

5816 ASI_DMMU_SFPAR RW 7816 126

5916–6016 (JPS1)

6116 ASI_ITSB_PREFETCH RW 0016, 0816, 127
4016, 4816

6216 ASI_DTSB_PREFETCH RW 0016, 0816, 127
4016, 4816
138 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE L-1 SPARC64 VII ASI Assignments (3 of 3)

Value ASI Name (Suggested Macro Syntax) Type VA16 Description Page

6316–6616 (JPS1)

6716 ASI_FLUSH_L1I W — 151

6816–6916 (JPS1)

6A16 ASI_L2_CTRL RW — 152

6D16 ASI_BARRIER_INIT RW 0016-3E016 143

6E16 ASI_ERROR_IDENT (ASI_EIDR) RW 0016 185

6F16 ASI_BARRIER_ASSIGN RW 0016-5016 144

7016–7316 (JPS1)

7416 ASI_CACHE_INV W — 152

7516–FD16 (JPS1)

FE16 ASI_LBSY, ASI_BST RW — 145

FF16 (JPS1)

L.3.2 Special Memory Access ASIs

Please refer to Section L.3.3 in Commonality.

In addition to the ASIs described in Commonality, SPARC64 VII supports the ASIs
described below.

ASI 5316 (ASI_SERIAL_ID)

SPARC64 VII provides an identification code for each processor. In other words, this ID is
unique for each processor chip. In conjunction with the Version Register (please refer to
Version (VER) Register on page 18), software can attain completely unique chip
identification code.

This register is defined as read-only. A write to this register causes data_access_exception.

Chip_ID<63:0>

63 0
Ver 1.0, 1 Jul. 2008 F. Appendix L Address Space Identifiers 139

ASI 4F16 (ASI_SCRATCH_REGx)

SPARC64 VII provides eight of 64-bit registers that can be used temporary storage for
supervisor software.

Data<63:0>

63	 0

[1] Register Name:	 ASI_SCRATCH_REGx (x = 0–7)
[2] ASI:	 4F16
[3]	 VA: VA<5:3> = register number

The other VA bits must be zero.
[4] RW:	 Supervisor read/write

Block Load and Store ASIs

ASIs E016 and E116 exist only for use with STDFA instructions as Block Store with Commit
operations (see Block Load and Store Instructions (VIS I) on page 51). Neither ASI E016 nor
ASI E116 should be used with LDDFA; however, if either is used, the LDDFA behaves as
follows:

1. No exception is generated based on the destination register rd (impl. dep. #255).

2. For LDDFA with ASI E016 or E11 and a memory address aligned on a 2n-byte boundary, a
SPARC64 VII processor behaves as follows (impl. dep. #256):

n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is
generated, but a data_access_exception is generated (see case 3, below).
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is generated.

n ≤1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated.

3. If the memory address is correctly aligned, a data_access_exception with an
DSFSR.FT = “invalid ASI” is generated.

Partial Store ASIs

ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction for Partial Store
operations (see Partial Store (VIS I) on page 68). None of these ASIs should be used with
LDDFA; however, if one of them is used, the LDDFA behaves as follows on a SPARC64 VII
processor (impl. dep. #257):

1. For LDDFA with C016–C516 or C816–CD16 and a memory address aligned on a 2n-byte
boundary, a SPARC64 VII processor behaves as follows:

n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is
generated.
140 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is generated.

n ≤ 1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated.

2. If the memory address is correctly aligned, SPARC64 VII generates a
data_access_exception with DSFSR.FT = “invalid ASI.”

L.3.3 Hardware Barrier

SPARC64 VII provides a hardware barrier mechanism which facilitates high speed
synchronization among threads in a CPU Chip. The barrier resources are located inside of the
CPU Chip and are shared with all executing threads. The BPU (Barrier Processing Unit) is
the main barrier resource. It consists of a BST (Barrier STatus) and some BBs (Barrier
Blades). FIGURE L-1 illustrates the barrier resources.

BST

BST_mask

LBSY

Barrier Blade #0

BST_mask

LBSY

Barrier Blade #11

BPU #0

BST

BST_mask

LBSY

Barrier Blade #0

BST_mask

LBSY

Barrier Blade #11

BPU #1

0 0 2323

FIGURE L-1 The Barrier Resources of SPARC64 VII
Ver 1.0, 1 Jul. 2008 F. Appendix L Address Space Identifiers 141

SPARC64 VII has two BPUs in a CPU chip. These two BPUs are functionally equivalent.
Each BPU contains a twenty-four bit BST and twelve Barrier Blades. A Barrier Blade
defines a logical barrier component shared among threads for synchronization. Each Barrier
Blade has a BST_mask to select bits in BST, and a LBSY (Last Barrier SYnchronization
status) which remembers the previous synchronization status of the Barrier Blade.

The barrier synchronization is established when all BST bits selected by the BST_mask are
set to the same value, either 1 or 0. When all bits become the same value, then the value is
copied into LBSY. Update of LBSY is done atomically so that a read of LBSY before
modifying a BST always returns the old value. Software threads that reach the barrier point
first modify a BST bit, then wait for an update of LBSY. This is usually done by a spin loop
with LBSY polling, which may negatively impact the other thread in a core. In
SPARC64 VII, an update of LBSY causes all threads which use that LBSY to wake up, so
the use of a sleep instruction in the spin loop achieves both high-speed synchronization and
efficient use of CPU resources by the other core’s thread.

Since LBSY keeps the last synchronization status of the barrier, threads can easily determine
the value to be used in the next synchronization by negating the current LBSY. When a
Barrier Blade is used repeatedly in one piece of software, such as in the middle of a loop,
threads set their BST bit to 1 once, then set it to 0 in the next iteration.

The user software may not operate on these resources directly. User software accesses them
through the window ASI. A hardware thread has six window ASIs. The window ASI is a
mechanism to ease the barrier handling for user threads, and isolate the resources from other
threads in order to minimize the possibility of destroying current barrier status.

The memory ordering between barrier resources or barrier resources and real memory
conforms to TSO as defined in Section 8 of Commonality. All kinds of memory accesses
except a store followed by a load are performed in that order. A member with #loadstore
is needed when a store through a window ASI and a subsequent load are to be performed in
this order.

Note – Hardware barrier resources in SPARC64 VII does not provide synchronization across
CPU Chips.
142 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Initialization and State Acquisition of Barrier Resources
(ASI_BARRIER_INIT)

ASI: 6D16
Access Modes: Supervisor read/write

VA:

—BB_num BPU_num —

63 10 9 8 5 4 0

DATA:

BST_value BST_mask LBSY —

63 49 48 47 24 23	 0

ASI_BARRIER_INIT initialize and get the current status of Barrier Blade determined by
BPU_num and BB_num in VA. Unused bits of VA are ignored. TABLE L-2 describes the
data bits of the ASI.

TABLE L-2 ASI_BARRIER_INIT Bit Description

Bit Field Type Description

48 LBSY RW The BST value of last synchronization.

47:24 BST_mask RW Mask bit of the BST.

23:0 BST_value RW BST value of the BPU to which the BB belongs.

Unused bits are read as undefined and a write is ignored.

■	 On read, the value of LBSY and BST_mask of the Barrier Blade designated by
BPU_num, BB_num in VA and BST value of the BPU to which the BB belongs are
returned. An arbitrary number is returned when BB_num > 1110 is designated.

■	 On write, the value of LBSY and BST_mask of the Barrier Blade designated by
BPU_num, BB_num in VA and BST value of the BPU to which the BB belongs are
updated. Only the bit in the BST corresponding to the specified bst_mask is updated.
The following formula describes the write process:

BST = (BST & ~BST_mask) | (BST_mask & BST_value)

A write with BB_num > 1110 is ignored and no exception is signalled.

After a write is completed, the hardware checks whether the Barrier Blade is synchronized or
not, then updates the LBSY accordingly. For example, a write with all bits in BST_mask and
BST_value to 1 and LBSY at 0 causes an immediate update of LBSY to 1. LBSY value after
a write with BST_mask = 0 are undefined.

A subsequent read of ASI_BARRIER_INIT after a write with bst_mask = 0 may return an
arbitrary LBSY value, but not a written value.
Ver 1.0, 1 Jul. 2008	 F. Appendix L Address Space Identifiers 143

Programming Note – Hardware does not track whether a Barrier Blade or BST is
designated as used. Software takes full responsibility for not initializing an in use BB.

Assignment of Barrier Resources (ASI_BARRIER_ASSIGN)

ASI: 6F16
VA: 0016, 1016, 2016, 3016, 4016, 5016
Access Modes: Supervisor read/write

DATA:

BST_bit BB_num —Valid BPU_num

63 62	 10 9 8 5 4 0

ASI_BARRIER_ASSIGN sets and gets the mapping of barrier resources to a window ASI
through which user programs can access it. There are six window ASIs in SPARC64 VII;
they are distinguished by VA. TABLE L-3 describes the data bits of the ASI.

TABLE L-3 ASI_BARRIER_ASSIGN Bit Description

Bit Field Type Description

63 Valid RW Valid bit. On read, the validity of a window ASI is
returned. On write, valid = 1 requests hardware to
make a new assignment, while valid = 0 releases the
existing assignment.

9 BPU_num RW Designation of BPU.

8:5 BB_num RW Designation of a BB in the BPU.

4:0 BST_bit RW Designation of a bit in the BST.

Unused bits are read as undefined and a write is ignored.

■	 On read, the assignment of a window ASI is returned. When the window ASI designated
by VA is assigned to specific barrier resources, valid is set to 1 and assignment is
shown in BPU_num, BB_num, and BST_bit. When the window ASI designated by VA
is not assigned, valid is set to 0 and other fields are meaningless.

■	 On write,

■	 When valid = 1, a new assignment is made to the window ASI. After completion of
this write, user software can write designated bit in the BST by a write to ASI_BST,
and the LBSY value is obtained by a read to ASI_LBSY. Note that a write operation
does not alter the corresponding bit of BST_mask in Barrier Blade.

■	 When valid = 0, the existing assignment is released. After completion of this write, a
write to ASI_BST is ignored and an undefined value is returned by a read to
ASI_LBSY.
144 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

If a nonexistent barrier resource is designated, such as BST_bit > 2310 or BB_num > 1110,
a write is ignored and no exception is signalled.

Hardware does not detect any discrepancy between initialization and assignment of barrier
resources. This includes things such as initialization of Barrier Blades currently being used,
assignment of a BST bit of which the corresponding bit in BST_mask is zero, or two or
more Barrier Blade sharing a specific BST bit. System Software takes responsibility for
avoiding these discrepancies.

Programming Note – System software should only assign a Barrier Blade after it has been
initialized. Assignment of a non-initialized Barrier Blade may cause unexpected results.

Window ASI for Barrier Resources (ASI_LBSY/BST)

ASI: EF16
VA: 0016, 1016, 2016, 3016, 4016, 5016
Access Modes: Read/Write

value —

63 1 0

ASI_LBSY/BST is a window ASI through which user programs can access barrier resources.
There are six window ASIs in SPARC64 VII; they are distinguished by VA. TABLE L-4
describes the data bits of the ASI.

TABLE L-4 ASI_LBSY/BST Bit Description

Bit Field	 Type Description

0 Value RW	 On read, LBSY of the Barrier Blade which is assigned
to the window is returned. On write, the value of the
BST bit which is assigned to the window is updated.

Unused bits are read as undefined and a write is ignored.

A read to an unassigned window ASI returns an unknown value and a write to an unassigned
window is ignored without signalling an exception.

Sample Code of Barrier Synchronization

/*
 * %r1: VA of a window ASI
 * %r2:, %r3: work

 */

Ver 1.0, 1 Jul. 2008	 F. Appendix L Address Space Identifiers 145

ldxa [%r1]ASI_LBSY, %r2 ! read current LBSY
not %r2 ! inverse LBSY
and %r2, 1, %r2 ! mask out reserved bits
stxa %r2, [%r1]ASI_BST ! update BST
membar #storeload ! to make sure stxa is complete

loop:
ldxa [%r1]ASI_LBSY, %r3 ! read LBSY
and %r3, 1, %r3 ! mask out reserved bits
subcc %r3, %r2, %g0 ! check if status changed
bne,a loop
sleep ! if not changed, sleep for a while
146 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX M

Cache Organization

This appendix describes SPARC64 VII cache organization in the following sections:

■	 Cache Types on page 147
■	 Cache Coherency Protocols on page 150
■	 Cache Control/Status Instructions on page 151

M.1 Cache Types
SPARC64 VII has two levels of on-chip caches, with these characteristics:

■	 Level-1 cache is split for instruction and data; level-2 cache is unified.

■	 Level-1 caches are virtually indexed, physically tagged (VIPT), and level-2 caches are
physically indexed, physically tagged (PIPT).

■	 Level-1 caches are 64 bytes in line size, and level-2 cache are 256 bytes in line size (4
64byte sub-line).

■	 All lines in the level-1 caches are included in the level-2 cache.

■	 Between level-1 caches, or level-1 and level-2 caches, coherency is maintained by
hardware. In other words,
■	 eviction of a cache line from a level-2 cache causes flush-and-invalidation of all level

1 caches, and
■	 self-modification of an instruction stream modifies a level-1 data cache with

invalidation of a level-1 instruction cache.

■	 Level-1 caches are shared by the two threads in the core, and Level-2 is shared by all the
threads in the processor module.
Ver 1.0, 1 Jul. 2008	 F. Appendix M Cache Organization 147

M.1.1 Level-1 Instruction Cache (L1I Cache)

TABLE M-1 shows the characteristics of a level-1 instruction cache.

TABLE M-1 L1I Cache Characteristics

Feature Value

Size 64 Kbytes

Associativity 2-way

Line Size 64-byte

Indexing Virtually indexed, physically tagged (VIPT)

Tag Protection Parity and duplicate

Data Protection Parity

Although an L1I cache is VIPT, TTE.CV is ineffective since SPARC64 VII has unaliasing
features in hardware.

Instruction fetches bypass the L1I cache when they are noncacheable accesses. Noncacheable
accesses occur under one of three conditions:

■ PSTATE.RED = 1
■ DCUCR.IM = 0
■ TTE.CP = 0

When MCNTL.NC_CACHE = 1, SPARC64 VII treats all instructions as cacheable, regardless
of the conditions listed above. See ASI_MCNTL (Memory Control Register) on page 109 for
details.

Programming Note – This feature is intended to be used by the OBP to facilitate
diagnostics procedures. When the OBP uses this feature, it must clear MCNTL.NC_CACHE
and invalidate all L1I data by ASI_FLUSH_L1I before it exits.
148 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

M.1.2 Level-1 Data Cache (L1D Cache)

The level-1 data cache is a writeback cache. Its characteristics are shown in TABLE M-2.

TABLE M-2 L1D Cache Characteristics

Feature Value

Size 64 Kbytes

Associativity 2-way

Line Size 64-byte

Indexing Virtually indexed, physically tagged (VIPT)

Tag Protection Parity and duplicate

Data Protection ECC

Although L1D cache is VIPT, TTE.CV is ineffective since SPARC64 VII has unaliasing
features in hardware.

Data accesses bypass the L1D cache when they are noncacheable accesses. Noncacheable
accesses occur under one of three conditions:

■	 The ASI used for the access is either ASI_PHYS_BYPASS_EC_WITH_E_BIT (1516) or
ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE (1D16).

■	 DCUCR.DM = 0
■	 TTE.CP = 0

Unlike the L1I cache, the L1D cache does not use MCNTL.NC_CACHE.

M.1.3 Level-2 Unified Cache (L2 Cache)

The level-2 unified cache is a writeback cache. Its characteristics are shown in TABLE M-3.

TABLE M-3 L2 Cache Characteristics

Feature Value

Size 6 Mbyte (max)

Associativity 12-way (max)

Line Size 256-byte consists of 4 64-byte sublines

Indexing Physically indexed, physically tagged (PIPT)

Tag Protection ECC

Data Protection ECC

The L2 cache is bypassed when the access is noncacheable. MCNTL.NC_CACHE is not used
in the L2 cache.
Ver 1.0, 1 Jul. 2008	 F. Appendix M Cache Organization 149

M.2 Cache Coherency Protocols

The CPU uses the enhanced MOESI cache-coherence protocol; these letters are acronyms for
cache line states as follows:

M Exclusive modified

O Shared modified (owned)

E Exclusive clean

S Shared clean

I Invalid

A subset of the MOESI protocol is used in the on-chip caches as well as the D-Tags in the
system controller. TABLE M-4 shows the relationships between the protocols.

TABLE M-4 Relationships Between Cache Coherency Protocols

L2-Cache L1D-Cache SAT (store ownership) L1I-Cache

Invalid (I) Invalid (I) Invalid (I) Invalid (I)

Shared Clean (S)

Invalid (I) or Clean (C)
Invalid (I) Invalid (I) or Valid (V)

Shared Modified (O)

Exclusive Clean (E)

Exclusive Modified (M)
Exclusive Modified (M) Valid (V) Invalid (I)

TABLE M-5 shows the encoding of the MOESI states in the L2 Cache.

TABLE M-5 L2 Cache MOESI States

Bit 2 (Valid) Bit 1 (Exclusive) Bit 0 (Modified) State

0 — — Invalid (I)

1 0 0 Shared clean (S)

1 1 0 Exclusive clean (E)

1 0 1 Shared modified (O)

1 1 1 Exclusive modified (M)
150 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

M.3 Cache Control/Status Instructions

Several ASI instructions are defined to manipulate the caches. The following conventions are
common to all of the load and store alternate instructions defined in this section:

1. The opcode of the instructions should be	 ldda, ldxa, lddfa, stda, stxa, or stdfa.
Otherwise, a data_access_exception exception with D-SFSR.FT = 0816 (Invalid ASI) is
generated.

2. No operand address translation is performed for these instructions.

3. VA<2:0> of all of the operand addresses should be 0. Otherwise, a
mem_address_not_aligned exception is generated.

4. The don’t-care bits (designated “—” in the format) in the VA of the load or store alternate
can be of any value. It is recommended that software use zero for these bits in the operand
address of the instruction.

5. The don’t-care bits (designated “—” in the format) in DATA are read as zero and ignored
on write.

6. The instruction operations are not affected by PSTATE.CLE. They are always treated as
big-endian.

Multiple Asynchronous Fault Address Registers are maintained in hardware, one for each
major source of asynchronous errors. These ASIs are described in
ASI_ASYNC_FAULT_STATUS (ASI_AFSR) on page 198. The following subsections describe
all other cache-related ASIs in detail.

M.3.1 Flush Level-1 Instruction Cache (ASI_FLUSH_L1I)

[1] Register Name: ASI_FLUSH_L1I

[2] ASI:	 6716
[3] VA:	 8-byte aligned any VA
[4] RW	 Supervisor write

ASI_FLUSH_L1I flushes and invalidates the entire level-1 instruction cache. VA can be
any value as long as it is aligned at 8-byte. A write to this ASI with any VA and any data
causes flushing and invalidation.
Ver 1.0, 1 Jul. 2008	 F. Appendix M Cache Organization 151

M.3.2 Level-2 Cache Control Register (ASI_L2_CTRL)

[1] Register Name: ASI_L2_CTRL

[2] ASI: 6A16
[3] VA: any
[4] RW Supervisor read/write

ASI_L2_CTRL is a control register for L2 training, interface, and size configuration. It is
illustrated below and described in TABLE M-6.

Reserved URGENT_ERROR_TRAP Reserved U2_FLUSH

63 25 24 23	 1 0

TABLE M-6 ASI_L2_CTRL Register Bits

Bit Field	 RW Description

24 URGENT_ERROR_TRAP RW1C	 This bit is set to 1 when one of the error exceptions
(instruction_access_error, data_access_error, or
asynchronous_data_error) is generated. The bit
remains set to 1 until supervisor software explicitly
clears it by writing 1 to the bit.

0 U2_FLUSH W	 Setting this bit to 1 causes the entire level-2 cache to
flush. Until the flushing of the level-2 cache
completes, the processor ceases operation and does
not perform further instruction execution.

Writing 0 to this bit is ignored.

Programming Note – To wait for completion of cache flush, a membar #sync is needed.

M.3.3 Cache invalidation (ASI_CACHE_INV)

[1] Register Name: ASI_CACHE_INV

[2] ASI:	 7416
[3] VA:	 Physical Address
[4] RW	 Supervisor write
152 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

ASI_CACHE_INV flushes and invalidates cache lines of all processor modules in the same
partition. The cache lines to be invalidated are specified by the VA field which keeps the
physical address (that is, ASI_CACHE_INV is bypass ASI). Thus PSTATE.AM is ignored.
Also the Physical Address Data Watchpoint Register (ASI 5816, VA=4016) is ignored unlike
other bypass ASIs.

The ASI is write-only and read to it causes data_access_exception with AFSR.FTYPE =
“invalid ASI”.

Note – DCUCR.WEAK_SPCA has to be set to “1” before executing the instruction.
Ver 1.0, 1 Jul. 2008 F. Appendix M Cache Organization 153

154 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX N

Interrupt Handling

Interrupt handling in SPARC64 VII is described in these sections:

■ Interrupt Dispatch on page 155
■ Interrupt Receive on page 157
■ Interrupt-Related ASI Registers on page 158

N.1 Interrupt Dispatch
When a processor wants to dispatch an interrupt to another processor, it first sets up the
interrupt data registers (ASI_INTR_W data 0-7) with the outgoing interrupt packet data by
using ASI instructions. It then performs an ASI_INTR_W (interrupt dispatch) write to
trigger delivery of the interrupt. The interrupt packet and the associated data are forwarded to
the target processor by the system controller. The processor polls the BUSY bit in the
INTR_DISPATCH_STATUS register to determine whether the interrupt has been dispatched
successfully.

FIGURE N-1 illustrates the steps required to dispatch an interrupt.
Ver 1.0, 1 Jul. 2008 F. Appendix N Interrupt Handling 155

read ASI_INTR_DISPATCH_STATUS

Error

PSTATE.IE ← 0

Busy?
Y

N

(begin atomic sequence)

Write ASI_INTR_W (data 0)
. . .

Write ASI_INTR_W (data 7)

Write ASI_INTR_W (interrupt

MEMBAR
dispatch)

read ASI_INTR_DISPATCH_STATUS

Busy?
Y

N

(end atomic sequence)
PSTATE.IE ← 1

Nack?
Y

N

dispatch complete

FIGURE N-1 Dispatching an Interrupt
156 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

N.2 Interrupt Receive

When an interrupt packet is received, eight interrupt data registers are updated with the
associated incoming data and the BUSY bit in the ASI_INTR_RECEIVE register is set. If
interrupts are enabled (PSTATE.IE = 1), then the processor enters a trap and the interrupt
data registers are read by the software to determine the appropriate trap handler. The handler
may reprioritize this interrupt packet to a lower priority.

If an incoming packet is marked as an error, the BUSY bit in the ASI_INTR_RECEIVE
register is not set. In this case, other interrupt related ASI registers may also be corrupted and
should not be accessed. See Section P.8.3, ASI Register Error Handling, on page 203 for
details.

FIGURE N-2 is an example of the interrupt receive flow.

read ASI_INTR_RECEIVE

Read ASI_INTR_R (data 0)
. . .

Read ASI_INTR_R (data 7)

Busy?
N

Y

clear ASI_INTR_RECEIVE

Error

Determine Trap Handler

Handle Interrupt or
re-prioritize via SOFTINT

clear ASI_INTR_RECEIVE

interrupt complete

FIGURE N-2 Interrupt Receive Flow
Ver 1.0, 1 Jul. 2008 F. Appendix N Interrupt Handling 157

N.3 Interrupt Global Registers
Please refer to Section N.3. of Commonality.

N.4 Interrupt-Related ASI Registers
Please refer to Section N.4 of Commonality for details of these registers.

N.4.2 Interrupt Vector Dispatch Register

SPARC64 VII ignores all 10 bits of VA<38:29> when the Interrupt Vector Dispatch Register
is written (impl. dep. #246).

N.4.3 Interrupt Vector Dispatch Status Register

In SPARC64 VII, 32 BUSY/NACK pairs are implemented in the Interrupt Vector Dispatch
Status Register (impl. dep. #243).

N.4.5 Interrupt Vector Receive Register

SPARC64 VII sets a 10-bit value in the SID_H and SID_L fields of the Interrupt Vector
Receive Register, but the value to be set is undefined. (impl. dep. #247).

N.5 How to identify an interrupt target
SPARC64 VII has multiple threads in a processor module. As a result, SPARC64 VII needs a
mechanism to identify which thread should receive a given interrupt (interrupt_vector).

ASI_EIDR is used to identify the thread to receive a given interrupt (interrupt_vector).

The firmware is supposed to initialize ASI_EIDR with the Interrupt Target Identifier (ITID) on boot.
The behavior of SPARC64 VII when it receives an interrupt packet is as follows.
158 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

a. If at least one of the ASI_EIDRs remain uninitialized, and none of the initialized
ASI_EIDR values are equal to the ITID value in the interrupt packet

The interrupt packet is sent to the thread specified by ITID<1:0> in the packet.

b.	 If all of the ASI_EIDRs have been initialized, but zero or more than one of the
ASI_EIDR values are equal to the ITID value in the interrupt packet

Which thread receives the packet or if none receives it is undefined. The sender sees
ASI_INTR_DISPATCH_STATUS#NACK=0 in both the cases, though.

c.	 If one but only one of the initialized ASI_EIDR values is equal to the ITID value in
the interrupt packet.

The interrupt packet is sent to the thread of which ASI_EIDR value matches with the
ITID value in the packet.
Ver 1.0, 1 Jul. 2008	 F. Appendix N Interrupt Handling 159

160 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX O

Reset, RED_state, and error_state

The appendix contains these sections:

■ Reset Types on page 161
■ RED_state and error_state on page 163
■ Processor State after Reset and in RED_state on page 165

O.1 Reset Types
This section describes the four reset types: power-on reset, watchdog reset, externally
initiated reset, and software-initiated reset.

POR and XIR are applied to all the threads within a processor module. In other words, all the
threads go through the same trap process. WDR, SIR, are RED_state are applied only to the
particular thread which invoked the reset. Other threads are unaffected and continue to run.

O.1.1 Power-on Reset (POR)

For execution of the power-on reset on SPARC64 VII, an external facility must issue the
required sequence of JTAG commands to the processor.

While the reset pin is asserted or the Power ready signal is de-asserted, the processor stops
and executes only the specified JTAG command. The processor does not change any
software-visible resources in the processor except the changes by JTAG command execution
and does not change any memory system state.

On POR, the processor enters RED_state with TT = 1 trap to RSTVaddr + 2016 and starts
the instruction execution.
Ver 1.0, 1 Jul. 2008 F. Appendix O Reset, RED_state, and error_state 161

O.1.2 Watchdog Reset (WDR)

The watchdog reset trap is generated internally in the following cases:

■ Second watchdog timeout detection while TL < MAXTL.
■ First watchdog timeout detection while TL = MAXTL
■ When a trap occurs while TL = MAXTL

When triggered by a watchdog timeout, a WDR trap has TT = 2 and control transfers to
RSTVaddr + 4016. Otherwise, the TT of the trap is preserved, causing an entry into
error_state.

O.1.3 Externally Initiated Reset (XIR)

When SPARC64 VII receives a packet requesting XIR through the Jupiter Bus, it generates a
trap of TT = 3 and causes the processor to transfer execution to RSTVaddr + 6016 and enter
RED_state.

O.1.4 Software-Initiated Reset (SIR)

Any processor can initiate a software-initiated reset with an SIR instruction.

If TL (Trap Level) < MAXTL (5), an SIR instruction causes a trap of TT = 4 and causes the
processor to execute instructions from RSTVaddr + 8016 and enter RED_state.

If a processor executes an SIR instruction while TL = 5, it enters error_state and
ultimately generates a watchdog reset trap.
162 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

O.2 RED_state and error_state

 The suspended_state is added to support MTP effectively. There is no way for a given thread
to tell if the other thread is in the suspended_state or not .

exec_state RED_state error_state**

DONE/RETRY
RED = 0

TRAP@MAXTL–1
SIR@<MAXTL

TRAP

RED = 1 TRAP@MAXTL
SIR@MAXTL

TRAP@<MAXTL
SIR@<MAXTL

TRAP@MAXTL
SIR@MAXTL @<MAXTL-1

POR

WDT1* WDT2**

XIR
Any State

Including Power Off

@<MAXTL-1

WDT1@MAXTL–1
WDT1@<MAXTL

WDT1@MAXTL

WDT2*

ErrorState trans Error

CPU Fatal
Error ***

Fatal Error

Fatal Error

WDR

suspended
@exec

SUSPEND

interrupt_level_n

suspended
@red

SUSPEND

@<MAXTL-1

****@MAXTL

****@<MAXTL

****@MAXTL-1

**** interrupt_vector

* WDT1 is the first watchdog timeout.

** WDT2 is the second watchdog timeout. WDT2 takes the CPU into error_state. In a normal setting, error_state
immediately generates a watchdog reset trap and brings the CPU into RED_state. Thus, the state is transient. When the
OPSR (Operation Status Register) specifies the stop on error_ state, an entry into error_state does not cause a
watchdog reset and the CPU remains in the error_state.

***CPU_fatal_error_state signals the detection of a fatal error to the system through P_FERR signal to the system, and
the system causes a FATAL reset. Soft POR will be applied to the all threads in the system at the FATAL reset.

FIGURE O-1 Processor State Diagram
Ver 1.0, 1 Jul. 2008 F. Appendix O Reset, RED_state, and error_state 163

O.2.1 RED_state

Once the processor enters RED_state for any reason except when a power-on reset (POR)
is performed, the software should not attempt to return to execute_state; if software
attempts a return, then the state of the processor is unpredictable.

When the processor processes a reset or a trap that enters RED_state, it enters a trap at an
offset relative to the RED_state trap table (RSTVaddr); in the processor, this is at virtual
address VA = FFFFFFFFF000000016 and physical address PA = 000007FFF000000016.

The following list further describes the processor behavior upon entry into RED_state, and
during RED_state:

■	 Whenever the processor enters RED_state, all fetch buffers are invalidated.

■	 When the processor enters RED_state because of a trap or reset, the DCUCR register is
updated by hardware to disable several hardware features. Software must set these bits
when required (for example, when the processor exits from RED_state).

■	 When the processor enters RED_state not because of a trap or reset (that is, when the
PSTATE.RED bit has been set by WRPR), these register bits are unchanged—unlike the
case above. The only side effect is the disabling of the instruction MMU.

■	 When the processor is in RED_state, it behaves as if the IMMU is disabled
(DCUCR.IM is clear), regardless of the actual values in the respective control register.

■	 Caches continue to snoop and maintain coherence while the processor is in RED_state.

O.2.2 error_state

The processor enters error_state when a trap occurs and TL = MAXTL (5) or when the
second watchdog time-out has occurred.

Under normal settings, the processor immediately generates a watchdog reset trap (WDR)
and transitions to RED_state. Otherwise, the OPSR (Operating Status Register) specifies
the stop on error_state, that is, the processor does not generate a watchdog reset after
error_state transition and remains in the error_state.

O.2.3 CPU Fatal Error state
The processor enters CPU fatal error state when a fatal error is detected in the processor. A
fatal error is one that breaks the cache coherency or the system data integrity.

The processor reports the fatal error detection to the system, and the system causes the fatal
reset. Soft POR will be applied to the all CPUs in the system at the fatal reset.
164 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

O.3 Processor State after Reset and in RED_state
TABLE O-1 shows the various processor states after resets and when entering RED_state.

In this table, it is assumed that RED_state entry happens as a result of resets or traps. If
RED_state entry occurs because the WRPR instruction sets the PSTATE.RED bit, no
processor state will be changed except the PSTATE.RED bit itself; the effects of this are
described in RED_state on page 164.

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state

RED_state
Name POR1 WDR2 XIR SIR

Unknown/Unchanged Unchanged

Floating Point registers

Integer registers

Unknown/Unchanged Unchanged

RSTV value VA = FFFF FFFF F000 000016
PA = 07FF F000 000016

PC
nPC

RSTV | 2016

RSTV | 2416

RSTV | 4016

RSTV | 4416

RSTV | 6016

RSTV | 6416

RSTV | 8016

RSTV | 8416

RSTV | A016

RSTV | A416

PSTATE AG
MG
IG
IE

1 (Alternate globals)
0 (MMU globals not selected)
0 (Interrupt globals not selected)
0 (Interrupt disable)

PRIV
AM
PEF
RED

1 (Privileged mode)
0 (Full 64-bit address)
1 (FPU on)
1 (Red_state)

MM 00 (TSO)

TLE
CLE

0
0

Unchanged
Copied from TLE

TBA<63:15> Unknown/Unchanged Unchanged

Y Unknown/Unchanged Unchanged

PIL Unknown/Unchanged Unchanged

CWP Unknown/Unchanged Unchanged
except for reg
ister window

Unchanged Unchanged Unchanged
except for reg
ister window

traps traps

TT[TL] 1 trap type
or 2

3 4 trap type

CCR Unknown/Unchanged Unchanged

ASI Unknown/Unchanged Unchanged

TL MAXTL min (TL + 1, MAXTL)

TPC[TL]
TNPC[TL]

Unknown/Unchanged
Unknown/Unchanged

PC
nPC
Ver 1.0, 1 Jul. 2008 F. Appendix O Reset, RED_state, and error_state 165

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state (Continued)

Name POR1 WDR2 XIR SIR RED_state

TSTATE CCR Unknown/Unchanged CCR

ASI ASI

PSTATE PSTATE

CWP CWP

PC
nPC

PC
nPC

TICK NPT 1 Unchanged Unchanged Unchanged

Counter Restart at 0 Count Restart at 0 Count

CANSAVE Unknown/Unchanged Unchanged

CANRESTORE Unknown/Unchanged Unchanged

OTHERWIN Unknown/Unchanged Unchanged

CLEARWIN Unknown/Unchanged Unchanged

WSTATE OTHER Unknown/Unchanged Unchanged

NORMAL Unknown/Unchanged Unchanged

VER MANUF 000416

IMPL
MASK

716

Mask dependent

MAXTL 516

MAXWIN 716

FSR 0 Unchanged

FPRS Unknown/Unchanged Unchanged

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when the reset sig
nal is asserted. Values are unchanged following soft POR.

2.The first watchdog time-out trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog time-out traps
as well as watchdog traps due to a trap @ TL = MAX_TL are taken in RED_state. See Section O.1.2, Watchdog Reset
(WDR), on page 162 for more details.

TABLE O-2 ASR State after Reset and in RED_state

ASR Name POR1 WDR2 XIR SIR RED_state

16 PCR UT
ST
Others

0
0
Unknown/Unchanged

Unchanged

17 PIC Unknown/Unchanged Unchanged

18 DCR Always 0

19 GSR IM
IRND
Others

0
0
Unknown/Unchanged

Unchanged
Unchanged
Unchanged

22 SOFTINT Unknown/Unchanged Unchanged
166 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE O-2 ASR State after Reset and in RED_state (Continued)

ASR Name POR1 WDR2 XIR SIR RED_state

23 TICK_COMPARE
INT_DIS
TICK_CMPR

1
0

Unchanged
Unchanged

24 STICK NPT
Counter

1
Restart at 0

Unchanged
Count

25 STICK_COMPARE
INT_DIS
TICK_CMPR

1
0

Unchanged
Unchanged

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when the reset signal
is asserted. Values are unchanged following soft POR.

2.The first watchdog time-out trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog time-out traps, as
well as watchdog traps due to a trap @ TL = MAX_TL, are taken in RED_state. See Section O.1.2, Watchdog Reset
(WDR), on page 162or more details

TABLE O-3 ASI Register State After Reset and in RED_state (1 of 3)

ASI VA Name POR1 WDR2 XIR SIR RED_state

45 00 DCUCR 0 0

45 08 MCNTL
RMD 2 2

Others 0 0

48 00 INTR_DISPATCH_STATUS 0 Unchanged

49 00 INTR_RECEIVE Unknown/Unchanged Unchanged

4A 00 JBUS_CONFIG
UC_S
UC_SW

Pre-defined/Unchanged
Pre-defined/Unchanged

Unchanged
Unchanged

CLK_MODE Pre-defined/Unchanged Unchanged
ITID Pre-defined/Unchanged Unchanged

4C 00 AFSR Unknown/Unchanged Unchanged

4C 08 UGESR Unknown/Unchanged Unchanged

4C 10 ERROR_CONTROL
WEAK_ED 1 1

Others Unknown/Unchanged Unchanged

4C 18 STCHG_ERR_INFO Unknown/Unchanged Unchanged

4D 00 AFAR_D1 Constant Value Constant Value

4D 08 AFAR_U2 Constant Value Constant Value

4F 00–38 SCRATCH_REGs Unknown/Unchanged Unchanged

50 00 IMMU_TAG_TARGET Unknown/Unchanged Unchanged

50 18 IMMU_SFSR Unknown/Unchanged Unchanged

50 28 IMMU_TSB_BASE Unknown/Unchanged Unchanged

50 30 IMMU_TAG_ACCESS Unknown/Unchanged Unchanged
Ver 1.0, 1 Jul. 2008 F. Appendix O Reset, RED_state, and error_state 167

TABLE O-3 ASI Register State After Reset and in RED_state (2 of 3)

ASI VA Name POR1 WDR2 XIR SIR RED_state

50 48 IMMU_TAG_TSB_PEXT Unknown/Unchanged Unchanged

50 58 IMMU_TAG_TSB_NEXT Unknown/Unchanged Unchanged

50 60 IMMU_TAG_ACCESS_EXT Unknown/Unchanged Unchanged

50 78 IMMU_SFPAR Unknown/Unchanged Unchanged

51 — IMMU_TSB_8KB_PTR Unknown/Unchanged Unchanged

52 — IMMU_TSB_64KB_PTR Unknown/Unchanged Unchanged

53 — SERIAL_ID Constant value Constant value

54 — ITLB_DATA_IN Unknown/Unchanged Unchanged

55 — ITLB_DATA_ACCESS Unknown/Unchanged Unchanged

56 — ITLB_TAG_READ Unknown/Unchanged Unchanged

57 — ITLB_DEMAP Unknown/Unchanged Unchanged

58 00 DMMU_TAG_TARGET Unknown/Unchanged Unchanged

58 08 PRIMARY_CONTEXT Unknown/Unchanged Unchanged

58 10 SECONDARY_CONTEXT Unknown/Unchanged Unchanged

58 18 DMMU_SFSR Unknown/Unchanged Unchanged

58 20 DMMU_SFAR Unknown/Unchanged Unchanged

58 28 DMMU_TSB_BASE Unknown/Unchanged Unchanged

58 30 DMMU_TAG_ACCESS Unknown/Unchanged Unchanged

58 38 DMMU_VA_WATCHPOINT Unknown/Unchanged Unchanged

58 40 DMMU_PA_WATCHPOINT Unknown/Unchanged Unchanged

58 48 DMMU_TSB_PEXT Unknown/Unchanged Unchanged

58 50 DMMU_TSB_SEXT Unknown/Unchanged Unchanged

58 58 DMMU_TSB_NEXT Unknown/Unchanged Unchanged

58 60 SHARED_CONTEXT Unknown/Unchanged Unchanged

58 68 DMMU_TAG_ACCESS_EXT Unknown/Unchanged Unchanged

58 78 DMMU_SFPAR Unknown/Unchanged Unchanged

59 — DMMU_TSB_8KB_PTR Unknown/Unchanged Unchanged

5A — DMMU_TSB_64KB_PTR Unknown/Unchanged Unchanged

5B — DMMU_TSB_DIRECT_PTR Unknown/Unchanged Unchanged

5C — DTLB_DATA_IN Unknown/Unchanged Unchanged

5D — DTLB_DATA_ACCESS Unknown/Unchanged Unchanged

5E — DTLB_TAG_READ Unknown/Unchanged Unchanged

5F — DMMU_DEMAP Unknown/Unchanged Unchanged

60 — IIU_INST_TRAP 0 Unchanged

61 00, 08,
40, 48

ITSB_PREFETCH 0/Unchanged Unchanged

62 00, 08,
40, 48

DTSB_PREFETCH 0/Unchanged Unchanged
168 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE O-3 ASI Register State After Reset and in RED_state (3 of 3)

ASI VA Name POR1 WDR2 XIR SIR RED_state

6D — BARRIER_INIT 0 Unchanged

6E — EIDR 0/Unchanged Unchanged

6F 00-50 BARRIER_ASSIGN 0 Unchanged

77 40:68 INTR_DATA0:5_W Unknown/Unchanged Unchanged

77 70 INTR_DISPATCH_W Unknown/Unchanged Unchanged

77 80:88 INTR_DATA6:7_W Unknown/Unchanged Unchanged

7F 40:88 INTR_DATA0:7_R Unknown/Unchanged Unchanged

EF 00-50 LBSY, BST 0 Unchanged

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when the reset signal
is asserted. Values are unchanged following soft POR

2.The first watchdog time-out trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog time-out traps as
well as watchdog traps due to a trap @ TL = MAX_TL, are taken in RED_state. See Section O.1.2, Watchdog Reset (WDR),
on page 162 for more details.

O.3.1 Operating Status Register (OPSR)

OPSR is the control register in the CPU that is scanned in during the hardware power-on
reset sequence before the CPU starts running.

The value of the OPSR is specified outside of the CPU and is never changed by software.
OPSR is set by scan-in during hardware power-on reset and by a JTAG command after
hardware POR.

Most of the OPSR settings are not visible to the software.
Ver 1.0, 1 Jul. 2008 F. Appendix O Reset, RED_state, and error_state 169

170 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX P

Error Handling

This appendix describes the processor behavior to a programmer writing an operating
system, firmware, or recovery code for SPARC64 VII. Section headings differ from those of
Appendix P of Commonality.

P.1 Error Classes and Signalling
On SPARC64 VII, an error is classified into one of the following four categories, depending
on the degree to which it obstructs program execution:

■ 1.Fatal error
■ 2.Error state transition error
■ 3.Urgent error
■ 4.Restrainable error

SPARC64 VII includes four COREs in the same processor module, where each core contains
two threads. When an error is detected, how to identify the threads where an error is logged
and gets reported depends on the error type.

An error detected in the course of an instruction or occurring in a resource specific to a
thread (ex. IUG_%R) are called synchronous to thread execution. In this case, the error is
logged and reported to the thread executing the instruction or the thread includes the resource
with the error. By their nature, instruction_access_error and data_access_error belong to
this category.

An error independent from instruction execution or occurring in the shared resources
between multiple threads is called asynchronous to tread execution. In this case, the error is
logged and reported to all the threads related to the resource causing the error.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 171

Error marking is essentially asynchronous to thread execution. When an L1$ or an L2$ raw
uncorrectable error is detected, ASI_EIDR of the valid (that is, not degraded) threads with
the smallest thread ID (core0-thread0 < core0-thread1 < core1-thread0 ... < core3-thread1)
related to that cache is used for error marking.

Another issue is how to log and report an error when a corresponding thread is in the
suspended state. Except for fatal errors, the error logging and report are postponed until the
corresponding thread exits from the suspended state.

P.1.1 Fatal Error

A fatal error is one of the following errors that damages the entire system.

a. Error breaking data integrity in the system

All errors that break cache coherency are in this category.

b.	 Invalid system control flow is detected and therefore validity of the subsequent
system behavior cannot be guaranteed.

When the CPU detects a fatal error, the CPU enters FATAL error_state and reports the
fatal error occurrence to the system controller. The system controller transfers the entire
system state to the FATAL state and stops the system. After the system stops, a FATAL reset,
which is a type of power-on reset, will be issued to the whole system.

All fatal errors are asynchronous to thread execution. If a fatal error is detected in a given
thread, all the threads within the processor module log the cause into
ASI_STCHG_ERROR_INFO and go through the POR sequence even if they are in the
suspended state.

P.1.2 error_state Transition Error

An error_state transition error is a serious error that prevents the CPU from reporting
the error by generating a trap. However, any damage caused by the error is limited to within
the CPU.

When the CPU detects an error_state transition error, it enters error_state. The
CPU exits error_state by causing a watchdog reset, entering RED_state, and starting
instruction execution at the watchdog reset trap handler.
172 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

EE asynchronous to thread execution

The following error_state transition errors are asynchronous to thread execution. If such an
EE is detected in a given thread, both the threads within the core which caused the error log
it into ASI_STCHG_ERROR_INFO and go through WDR, unless they are in the suspended
state. The threads in the other core are unaffected.

■ EE_TRAP_ADR_UE

■ EE_OTHER

EE synchronous to thread execution

The following error_state transition errors are synchronous to thread execution. If such an EE
is detected in a given thread, only that thread logs the cause of the error into
ASI_STCHG_ERROR_INFO and goes through WDR. All the other threads are unaffected.

■ EE_SIR_IN_MAXTL

■ EE_TRAP_IN_MAXTL

■ EE_WDT_IN_MAXTL

■ EE_SECOND_WDT

P.1.3 Urgent Error

An urgent error (UGE) is an error that requires immediate processing by privileged software,
which is reported by an error trap. The types of urgent errors are listed below and then
described in further detail.

■ Instruction-obstructing error

■ I_UGE: Instruction urgent error

■ IAE: Instruction access error

■ DAE: Data access error

■ Urgent error that is independent of the instruction execution

■ A_UGE: Autonomous urgent error
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 173

Instruction-Obstructing Error
An instruction-obstructing error is one that is detected by instruction execution and results in
the instruction being unable to complete.

When the instruction-obstructing error is detected while
ASI_ERROR_CONTROL.WEAK_ED = 0 (as set by privileged software for a normal program
execution environment), then an exception is generated to report the error. This trap is
nonmaskable.

Otherwise, when ASI_ERROR_CONTROL.WEAK_ED = 1, as with multiple errors or a
POST/OBP reset routine, one of the following actions occurs:

■	 Whenever possible, the CPU writes an unpredictable value to the target of the damaged
instruction and the instruction ends.

■	 Otherwise, an error exception is generated and the damaged instruction is executed as
when ASI_ERROR_CONTROL.WEAK_ED = 0 is set.

The three types of instruction-obstructing errors are described below.

■	 I_UGE (instruction urgent error) — All of the instruction-obstructing errors except IAE

(instruction access error) and DAE (data access error). There are two categories of I_UGEs.

■	 An uncorrectable error in an internal program-visible register that obstructs
instruction execution.
An uncorrectable error in the PSTATE, PC, NPC, CCR, ASI, FSR, or GSR register is
treated as an I_UGE that obstructs the execution of any instruction. See Appendix P.8.1
and P.8.2 for details.

The first-time watchdog time-out is also treated as this type of I_UGE.

■	 An error in the hardware unit executing the instruction, other than an error in a
program-visible register.
Among these errors are ALU output errors, errors in temporary registers during
instruction execution, CPU internal data bus errors, and so forth.

I_UGE is a preemptive error with the characteristics shown in TABLE P-2.

■	 IAE (instruction access error) — The instruction_access_error exception, as specified
in JPS1 Commonality. On SPARC64 VII, only an uncorrectable error in the cache or
main memory during instruction fetch is reported to software as an IAE.

IAE is a precise error.

■	 DAE (data access error) — The data_access_error exception, as specified in JPS1
Commonality. On SPARC64 VII, only an uncorrectable error in the cache or main
memory during access by a load, store, or load-store instruction is reported to software as
a DAE.

DAE is a precise error.
174 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Urgent Error Independent of Instruction Execution
■	 A_UGE (Autonomous Urgent Error) — An error that requires immediate processing and

that occurs independently of instruction execution.

In normal program execution, ASI_ERROR_CONTROL.WEAK_ED = 0 is specified by
privileged software. In this case, the A_UGE trap is suppressed only in the trap handler
used to process UGE (that is, the async_data_error trap handler).

Otherwise, in special program execution such as the handling of the occurrence of
multiple errors or the POST/OBP reset routine, ASI_ERROR_CONTROL.WEAK_ED = 1
is specified by the program. In this case, no A_UGE generates an exception.

There are two categories of A_UGEs:

■	 An error in an important resource that will cause a fatal error or error_state
transition error when the resource is used.

When the resource with the error is used, the program cannot continue execution, and
an error_state transition error or a fatal error is detected.

■	 The error in an important resource that is expected to invoke the operating
system “panic” process

The operating system panic process is expected when this error is detected because the
normal processing cannot be expected to continue after this error occurs.

The A_UGE is a disrupting error with the following deviations.

■	 The trap for A_UGE is not masked by PSTATE.IE.

■	 The instruction designated by TPC may not end precisely. The instruction end-method
is reported in the trap status register for A_UGE.

Traps for Urgent Errors

When an urgent error is detected and not masked, the error is reported to privileged software
by the following exceptions:

■	 I_UGE, A_UGE: async_data_error exception
■	 IAE: instruction_access_error exception
■	 DAE: data_access_error exception

Urgent error asynchronous to thread execution

The following urgent errors are asynchronous to thread execution. If such an urgent error is
detected in a given thread, both of the threads within the core which caused the error log it
into ASI_UGESR and activate an async_data_error trap, unless they are in the suspended
state. The threads in the other cores are unaffected.

■	 IAUG_CRE
■	 IAUG_TSBCTXT
■	 IUG_TSBP
■	 IUG_PSTATE
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 175

http:PSTATE.IE

■	 IUG_TSTATE
■	 IUG_%F (except %fn parity error)
■	 IUR_%R (except %rn and Y parity error)
■	 IUG_WDT
■	 IUG_DTLB
■	 IUG_ITLB
■	 IUG_COREERR

Urgent error synchronous to thread execution

The following urgent errors are synchronous to thread execution. If such an urgent error is
detected in a given thread, only that thread logs the cause of the error into ASI_UGESR and
activates an async_data_error trap, unless it is in the suspended state. All the other threads
are unaffected.

■	 IUG_%F (%fn parity error only)

■	 IUR_%R (%rn and Y parity error only)

P.1.4 Restrainable Error

A restrainable error is one that does not adversely affect the currently executing program and
that does not require immediate handling by privileged software. A restrainable error causes
a disrupting trap with low priority.

There are three types of restrainable errors.

■	 Correctable Error (CE), corrected by hardware

Upon detecting the CE, the hardware uses the data corrected by hardware. So a CE has no
deleterious effect on the CPU.

When a CE is detected, data seen by the CPU is always corrected by hardware. But it
depends on the CE type whether the source data containing the CE is corrected or not.

■	 Uncorrectable error without direct damage to the currently executing instruction sequence.

An error detected in cache line writeback or copyback data is of this type.

■	 Degradation

SPARC64 VII can isolate an internal hardware resource that generates frequent errors and
continue processing without deleterious effect to the software during program execution.
However, performance is degraded by the resource isolation. This degradation is reported
as a restrainable error.

The restrainable error can be reported to privileged software by the ECC_error trap.

When PSTATE.IE = 1 and the trap enable mask for any restrainable error is 1, the
ECC_error exception is generated for the restrainable error.
176 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

DG_U2$, DG_U2$x, UE_RAW_L2$INSD

DG_U2$, DG_U2$x, and UE_RAW_L2$INSID are asynchronous to thread execution. If
such an error is detected, all the threads within the processor module log the cause of the
error into ASI_AFSR and activate an ECC_error trap, unless they are in the suspended state.

DG_D1$sTLB, UE_RAW_D1$INSD

These restrainable errors are asynchronous to thread execution. If such an error is detected,
both the threads within the core which caused the error log it into ASI_AFSR and activate an
ECC_error trap, unless they are in the suspended state. The threads in the other cores are
unaffected.

UE_DST_BETO

An UE_DST_BETO error is synchronous to thread execution. If such an error is detected in
a given thread, only that thread logs the cause of the error into ASI_AFSR and activates an
ECC_error trap, unless it is in the suspended state. All the other threads in the other cores
are unaffected.

P.1.5 instruction_access_error

instruction_access_error is synchronous to thread execution. If such an error is detected in a
given thread, only that thread logs the cause of the error into ASI_ISFSR, TPC, and
ASI_ISFPAR, and activates an instruction_access_error trap. All the other threads are
unaffected.

P.1.6 data_access_error

data_access_error is synchronous to thread execution. If such an error is detected in a given
thread, only that thread logs the cause of the error into ASI_DSFSR, ASI_DSFAR, and
ASI_DSFPAR, and activates an data_access_error trap. All the other threads are
unaffected.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 177

P.2 Action and Error Control

P.2.1 Registers Related to Error Handling

The following registers are related to the error handling.

■	 ASI registers: Indicate an error. All ASI registers in TABLE P-1 except ASI_EIDR and
ASI_ERROR_CONTROL are used to specify the nature of an error to privileged software.

■	 ASI_ERROR_CONTROL: Controls error action. This register designates error detection
masks and error trap enable masks.

■	 ASI_EIDR: Marks errors. This register identifies the error source ID for error marking.

TABLE P-1 lists the registers related to the error handling.

TABLE P-1 Registers Related to Error Handling

ASI VA R/W Checking Code Name Defined in

4C16 0016 RW1C None ASI_ASYNC_FAULT_STATUS P.7.1

4C16 0816 R None ASI_URGENT_ERROR_STATUS P.4.1

4C16 1016 RW Parity ASI_ERROR_CONTROL P.2.1

4C16 1816 R,W1AC None ASI_STCHG_ERROR_INFO P.3.1

5016 1816 RW None ASI_IMMU_SFSR F.10.9

5816 1816 RW None ASI_DMMU_SFSR F.10.9

5816 2016 RW Parity ASI_DMMU_SFAR F.10.10 of Commonality

6E16 0016 RW Parity ASI_EIDR P.2.5
178 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

P.2.2 Summary of Actions Upon Error Detection

TABLE P-2 summarizes what happens when an error is detected.

TABLE P-2 Action Upon Detection of an Error (1 of 3)

Fatal Error (FE)
Error State Transition

Error (EE) Urgent Error (UGE) Restrainable Error (RE)

Error detection
mask (the
condition to
suppress error
detection)

None When
ASI_ECR.WEAK_E
D = 1, the error
detection is suppressed
incompletely.

I_UGE, IAE, DAE
When
ASI_ECR.WEAK_ED = 1 or
in the SUSPENDED state,
error detection is suppressed
incompletely.

A_UGE
In the SUSPENDED state,
error detection is suppressed
incompletely.
Error detection except in register
usage is suppressed when
ASI_ECR.WEAK_ED = 1 or
upon a condition unique to each
error.
Error detection in the register
usage is suppressed by
conditions unique to each error.
Only some A_UGEs have the
above unique conditions to
suppress error detection; most do
not.

None

Trap mask (the
condition to
suppress the error
trap occurrence)

None None I_UGE, IAE, IAE
the SUSPENDED state.

A_UGE
ASI_ECR.UGE_HANDLER =
1

or
ASI_ECR.WEAK_ED = 1
The A_UGE detected during the
trap is suppressed, is kept
pending in the hardware, and
causes the async_data_error
trap when the trap is enabled

or
the SUSPENDED state.

ASI_ECR.UGE_HANDLER =
1

or
ASI_ECR.WEAK_ED = 1

or
PSTATE.IE = 0

or
ASI_ECR.RTE_xx = 0, where
RTE_xx is the trap enable mask
for each error group.
RTE_xx is RTE_CEDG or
RTE_UE

or
the SUSPENDED state.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 179

TABLE P-2 Action Upon Detection of an Error (2 of 3)

Fatal Error (FE)
Error State Transition

Error (EE) Urgent Error (UGE) Restrainable Error (RE)

Action upon the
error detection

1. CPU enters
CPU fatal state.

2. CPU informs
the system of
fatal error
occurrence.

3. The FATAL
reset (which is a
form of POR
reset) is issued
to the whole
system.

4. POR is sent to
all CPUs in the
system.

1. CPU enters
error_state.

2. Watchdog reset
(WDR) is set on the
CPU.

Detection of I_UGE
When
ASI_ECR.UGE_HANDLER =
0, a single-ADE trap is set.
Otherwise, when
ASI_ECR.UGE_HANDLER =
1, a multiple-ADE trap is set.

Detection of A_UGE
When the trap is enabled, a
single-ADE trap is set.
When the trap is disabled, the
trap condition is kept pending in
hardware.

Detection of IAE
When
ASI_ECR.UGE_HANDLER =
0, an IAE trap is set. Otherwise, a
multiple-ADE trap is set.

Detection of DAE
When
ASI_ECR.UGE_HANDLER =
0, a DAE trap is set. Otherwise, a
multiple-ADE trap is set.

An ECC_error trap can occur
even though ASI_AFSR does
not indicate any detected
error(s) corresponding to any
trap-enable bit (RTE_UE or
RTE_CEDG) set to 1 in
ASI_ECR, in the following
cases:
1. A pending detected error is

erased from ASI_ASFR (by
writing 1 to ASI_AFSR)
after the error is detected but
before the ECC_error trap is
generated.

2. A pending CE or DG is
erased by writing 1 to
ASI_AFSR after the
ECC_error trap is set by the
UE error detection.

3. A pending UE is erased by
writing 1 to ASI_AFSR
after the ECC_error trap is
set by CE or DG detection.

Privileged software should
ignore an ECC_error trap
when the AFSR contains no
errors corresponding to those
enabled in ASI_ECR to cause
a trap.

Priority of action
when multiple
types of errors are
simultaneously
detected

1 — CPU fatal
state

2 — error_state 3 — async_data_error trap

4 — data_access_error trap

5 — instruction_access_error
trap

6 — ECC_error trap

tt (trap type) 1 (RED_state) 2 (RED_state) async_data_error: 4016

data_access_error: 3216

instruction_access_error: 0A16

6316

Trap priority 1 1 async_data_error — 2
data_access_error — 12
instruction_access_error — 3

32

End-method of
trapped
instruction

Abandoned Abandoned. ADE trap
Precise, retryable or
nonretryable. See P.4.3.

IAE trap, DAE trap
Precise.

Precise
180 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE P-2 Action Upon Detection of an Error (3 of 3)

Fatal Error (FE)
Error State Transition

Error (EE) Urgent Error (UGE) Restrainable Error (RE)

Relation
between TPC
and instruction
that caused the
error

None None I_UGE
For errors other than TLB write
errors, the error was caused by
the instruction pointed to by TPC
or by the instruction subsequent
in the control flow to the one
indicated by TPC.

For a TLB write error, the
instruction pointed to by TPC or
the already executed instruction
previous in the control flow to
the one indicated by TPC wrote a
TLB entry and the TLB write
failed. The TLB write error is
detected after the instruction
execution and before any trap,
RETRY, or DONE instruction.

A_UGE
None.

IAE, DAE
The instruction pointed to by
TPC caused the error.

None

Register that
indicates the error

ASI_STCHG_
ERROR_INFO

ASI_STCHG_
ERROR_INFO

I_UGE, A_UGE

ASI_UGESR
IAE

ASI_ISFSR
DAE

ASI_DSFSR

ASI_AFSR

Number of errors
indicated at trap

All FEs are
detected and
accumulated in
ASI_STCHG_
ERROR_INFO

All EEs are detected
and accumulated in
ASI_STCHG_
ERROR_INFO

Single-ADE trap

All I_UGEs and A_UGEs
detected at trap.

Multiple-ADE trap

The multiple-ADE indication +
UGEs at first ADE trap.

IAE

One error
DAE

One error

All restrainable errors
detected and accumulated in
ASI_AFSR.

Error address
indication register

None None I_UGE, A_UGE: None
IAE: TPC
DAE: ASI_DFAR

ASI_AFAR_D1

ASI_AFAR_U2
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 181

P.2.3	 Extent of Automatic Source Data Correction for
Correctable Error

Upon detection of the following correctable errors (CE), the CPU corrects the input data and
uses the corrected data; however, the source data with the CE is not corrected automatically.

■	 CE in memory (DIMM)
■	 CE in ASI_INTR_DATA_R

Upon detection of other correctable errors, the CPU automatically corrects the source data
containing the CE.

For correctable errors in ASI_INTR_DATA, no special action is required by privileged
software because the erroneous data will be overwritten when the next interrupt is received.
For CE in memory (DIMM), it is expected that privileged software will correct the error in
memory.

P.2.4	 Error Marking for Cacheable Data Error

Error Marking for Cacheable Data

Error marking for cacheable data involves the following action:

■	 When a hardware unit first detects an uncorrected error in the cacheable data, the
hardware unit replaces the data and ECC of the cacheable data with a special pattern that
identifies the original error source and signifies that the data is already marked.

The error marking helps identify the error source and prevents multiple error reports by a
single error even after several cache lines transfer with uncorrected data.

The following data are protected by the single-bit error correction and double-bit error
detection ECC code attached to every doubleword:

■	 Main memory (DIMM)
■	 Jupiter Bus packet data containing cache line data and interrupt packet data
■	 U2 (unified level 2) cache data
■	 D1 cache data
■	 The cacheable area block held by the channel

The ECC applied to these data is the ECC specified for Jupiter Bus.

When the CPU and channel detect an uncorrected error in the above cacheable data that is
not yet marked, the CPU and channel execute error marking for the data block with an UE.
182 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Whether the data with UE is marked or not is determined by the syndrome of the doubleword
data, as shown in TABLE P-3.

TABLE P-3 Syndrome for Data Marked for Error

Syndrome Error Marking Status Type of Uncorrected Error

7F16 Marked Marked UE

Multibit error pattern except for 7F16 Not marked yet Raw UE

The syndrome 7F16 indicates a 3-bit error in the specified location in the doubleword. The
error marking replaces the original data and ECC to the data and ECC, as described in the
following section. The probability of syndrome 7F16 occurrence other than the error marking
is considered to be zero.

The Format of Error-Marking Data

When the raw UE is detected in the cacheable data doubleword, the erroneous doubleword
and its ECC are replaced in the data by error marking, as listed in TABLE P-4.

TABLE P-4 Format of Error-Marked Data

Data/ECC Bit Value

data 63 Error bit. The value is unpredictable.

62:56 0 (7 bits).

55:42 ERROR_MARK_ID (14 bits).

41:36 0 (6 bits).

35 Error bit. The value is unpredictable.

34:23 0 (12 bits).

22 Error bit. The value is unpredictable.

21:14 0 (8 bits).

13:0 ERROR_MARK_ID (14 bits).

ECC The pattern indicates 3-bit error in bits 63, 35, and 22, that is, the pattern
causing the 7F16 syndrome.

The ERROR_MARK_ID (14 bits wide) identifies the error source. The hardware unit that
detects the error provides the error source_ID and sets the ERROR_MARK_ID value.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 183

The format of ERROR_MARK_ID<13:0> is defined in TABLE P-5.

TABLE P-5 ERROR_MARK_ID Bit Description

Bit Value

13:12 Module_ID: Indicates the type of error source hardware as follows:

 002: Memory system including DIMM

 012: Channel

 102: CPU

 112: Reserved

11:0 Source_ID: When Module_ID = 002, the 12-bit Source_ID field is always set to 0.
Otherwise, the identification number of each Module type is set to Source ID.

ERROR_MARK_ID Set by CPU

TABLE P-6 shows the ERROR_MARK_ID set by the CPU.

TABLE P-6 ERROR_MARK_ID Set by CPU

Type of data with RAW UE Module_ID value (binary) Source_ID value

Incoming data from Jupiter Bus 002 (Memory system) 0

Outgoing data to Jupiter Bus ASI_EIDR<13:12>. 102 (CPU) is expected. ASI_EIDR (Identifier of self CPU)

U2 cache data, D1 cache data ASI_EIDR<13:12>. 102 (CPU) is expected. ASI_EIDR (Identifier of self CPU)
184 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

P.2.5 ASI_EIDR

The ASI_EIDR register designates the source ID in the ERROR_MARK_ID of the CPU.

[1] Register name:	 ASI_EIDR
[2] ASI:	 6E16

[3] VA:	 0016

[4] Error checking:	 Parity.
[5] Format & function:	 See TABLE P-7.

TABLE P-7 ASI_EIDR Bit Description

Bit Name RW Description

63:14 Reserved R Always 0.

13:0 ERROR_MARK_ID RW ERROR_MARK_ID for the error caused by the CPU.

P.2.6 Control of Error Action (ASI_ERROR_CONTROL)

Error detection masking and the action after error detection are controlled by the value in
ASI_ERROR_CONTROL, as defined in TABLE P-8.

[1] Register name:	 ASI_ERROR_CONTROL (ASI_ECR)
[2] ASI:	 4C16

[3] VA:	 1016

[4] Error checking:	 None

[5] Format & function:	 See TABLE P-8.

[6]	 Initial value at reset: Hard POR: ASI_ERROR_CONTROL.WEAK_ED is set to 1. Other
fields are set to 0.
Other resets: After UGE_HANDLER and WEAK_ED are copied into
ASI_STCHG_ERROR_INFO, all fields in
ASI_ERROR_CONTROL are set to 0.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 185

The ASI_ERROR_CONTROL register controls error detection masking, error trap occurrence
masking, and the multiple-ADE trap occurrence. The register fields are described in
TABLE P-8.

TABLE P-8 ASI_ERROR_CONTROL Bit Description

Bit Name RW Description

9 RTE_UE RW Restrainable Error Trap Enable submask for UE and Raw UE.
The bit works as defined in TABLE P-2.

8 RTE_CEDG RW Restrainable Error Trap Enable submask for Corrected Error
(CE) and Degradation (DG). The bit works as defined in
TABLE P-2.

1 WEAK_ED RW Weak Error Detection. Controls whether the detection of I_UGE
and DAE is suppressed:

When WEAK_ED = 0, error detection is not suppressed.

When WEAK_ED = 1, error detection is suppressed if the
CPU can continue processing.

When I_UGE or DAE is detected during instruction execution
while WEAK_ED = 1, the value of the output register or the
store target memory location becomes unpredictable.

Even if WEAK_ED = 1, I_UGE or DAE is detected and the
corresponding trap is set when the CPU cannot continue
processing by ignoring the error.

WEAK_ED is the trap disabling mask for A_UGE and
restrainable errors, as defined in TABLE P-2.

When a multiple-ADE trap is set (I_UGE, IAE, or DAE detection
while ASI_ERROR_CONTROL.UGE_HANDLER = 1),
WEAK_ED is set to 1 by hardware.

0 UGE_HANDLER RW Designates whether hardware can expect a UGE handler to run
in privileged software (operating system) when a UGE error
occurs:

0: Hardware recognizes that the privileged software UGE
handler does not run.
1: Hardware expects that the privileged software UGE
handler runs.

UGE_HANDLER is the trap disabling mask for A_UGE and
restrainable errors, as defined in TABLE P-2.

The value of UGE_HANDLER determines whether a multiple-
ADE trap is caused or not upon detection of I_UGE, IAE, and
DAE.

When an async_data_error trap occurs, UGE_HANDLER is set
to 1.

When a RETRY or DONE instruction is completed,
UGE_HANDLER is set to 0.

Othe Reserved R Always reads as 0.
r
186 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

P.3	 Fatal Error and error_state Transition
Error

P.3.1	 ASI_STCHG_ERROR_INFO

The ASI_STCHG_ERROR_INFO register stores detected FATAL error and error_state
transition error information, for access by OBP (Open Boot PROM) software.

[1] Register name:	 ASI_STCHG_ERROR_INFO
[2] ASI:	 4C16

[3] VA:	 1816

[4] Error checking:	 None
[5] Format & function:	 See TABLE P-9

[6]	 Initial value at reset: Hard POR: All fields are set to 0.

Other resets: Values are unchanged.
[7]	 Update policy: Upon detection of each related error, the corresponding bit in

ASI_STCHG_ERROR_INFO is set to 1. Writing 1 to bit 0 erases all
error indications in ASI_STCHG_ERROR_INFO (sets all bits in the
register, including bit 0, to 0).

TABLE P-9 describes the fields in the ASI_STCHG_ERROR_INFO register.

TABLE P-9 ASI_STCHG_ERROR_INFO bit description

Bit Name RW Description

63:34 Reserved R Always 0.

33 ECR_WEAK_ED R ASI_ERROR_CONTROL.WEAK_ED is copied into this field
at the beginning of a POR or watchdog reset.

32 ECR_UGE_HANDLER R ASI_ERROR_CONTROL.UGE_HANDLER is copied into
this field at the beginning of the POR or watchdog reset.

31:24 Reserved R Always 0.

23 EE_MODULE RW Error state transient error requires module degradation,
Sticky

22 EE_CORE RW Error state transient error requires core degradation, Sticky

21 EE_THREAD RW Error state transient error requires thread degradation, Sticky

20 UGE_MODULE RW Urgent error requires module degradation, Sticky

19 UGE_CORE RW Urgent error requires core degradation, Sticky

18 UGE_THREAD RW Urgent error requires thread degradation, Sticky

17 rawUE_MODULE RW RawUE detected in L2$, sticky

16 rawUE_CORE RW RawUE detected in L1$, sticky
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 187

TABLE P-9 ASI_STCHG_ERROR_INFO bit description

Bit Name	 RW Description

15	 EE_DCUCR_MCNTL_EC R Uncorrectable error in any of the following:
R (A) ASI_DCUCR

(A) ASI_MCNTL
(A) ASI_ECR

14 EE_OTHER R Set to 1 upon detection of error_state transition errors
not listed elsewhere. The field is always 0 for SPARC64 VII.

13 EE_TRAP_ADR_UE R When hardware calculated the trap address to cause a trap,
the valid address could not be obtained because of a UE in
%tba, a UE in %tt, or a UE in the address calculator.

12 FE_OPSR An uncorrectable error occurred in OPSR (Operation Status
Register); valid CPU operation after such an error cannot be
guaranteed. OPSR is the hardware mode-setting register.
OSPR is not visible to software and is set by a JTAG
command.

11 EE_WDT_IN_MAXTL R A watchdog time-out occurred while TL = MAXTL.

10 EE_SECOND_WDT R A second watchdog time-out was detected after an
async_data_error exception with watchdog time-out
indication (first watchdog time-out) was generated.

9 EE_SIR_IN_MAXTL R An SIR occurred while TL = MAXTL.

8 EE_TRAP_IN_MAXTL R A trap occurred while TL = MAXTL.

7:3 Reserved R Always 0.

2 FE_OTHER R Set to 1 upon detection of urgent errors not listed elsewhere.

1 FE_U2TAG_UE R Upon detection of the corresponding error, set to 1.

0 FE_JBUS_UE RW An uncorrected error in the Jupiter bus.

Writing 1 to this bit sets all fields in this register to 0.

Compatibility Note – EE_OPSR in SPARC64 V is changed to FE_OPSR in SPARC64 VII.
There are no changes in the other error_state transition errors.

P.3.2 Error_state Transition Error in Suspended Thread

SPARC64 VII allows itself to enter the suspend state by means of a suspend instruction.
Only POR, WDR, XDR, interrupt_vector and interrupt_level_n exceptions can return it back
to the running state. If an error occurred in the resources related to those exceptions, the
thread stays suspended forever. To prevent this situation, an urgent error regarding the
following registers is reported as error_state transition error in suspended state.

■ ASI_EIDR

■ STICK, STICK_CMPR
188 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

■ TICK, TICK_CMPR

In this case, ASI_STCHG_ERROR_INFO.UGE_CORE, along with corresponding bit of
ASI_UGESR is set to 1.

P.4 Urgent Error
This section presents details about urgent errors: status monitoring, actions, and end-
methods.

P.4.1 URGENT ERROR STATUS (ASI_UGESR)

[1] Register name:	 ASI_URGENT_ERROR_STATUS
[2] ASI:	 4C16

[3] VA:	 0816

[4] Error checking:	 None
[5] Format & function:	 See TABLE P-10.
[6]	 Initial value at reset: Hard POR: All fields are set to 0.

Other resets: The values of all ASI_UGESR fields are unchanged.

The ASI_UGESR register contains the following information when an async_data_error
(ADE) exception is generated.

■ Detected I_UGEs and A_UGEs, and related information
■ The type of second error to cause multiple async_data_error traps

TABLE P-10 describes the fields of the ASI_UGESR register. In the table, the prefixes in the
name field have the following meaning:

■ IUG_ Instruction Urgent error
■ IAG_ Autonomous Urgent error
■ IAUG_ The error detected as both I_UGE and A_UGE

TABLE P-10 ASI_UGESR Bit Description (1 of 4)

Bit Name RW Description

Each bit in ASI_UGESR<22:8> indicates the occurrence of its corresponding error in a single-ADE
trap as follows:

0: The error is not detected.
1: The error is detected.

Each bit in ASI_UGESR<22:16> indicates an error in a CPU register. The error detection conditions
for these errors are defined in Internal Register Error Handling on page 201.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 189

TABLE P-10 ASI_UGESR Bit Description (2 of 4)

Bit Name RW Description

22 IAUG_CRE R Uncorrectable error in any of the following:
(IA) ASI_EIDR
(IA) ASI_PA_WATCH_POINT when enabled
(IA) ASI_VA_WATCH_POINT when enabled
(I) ASI_AFAR_D1
(I) ASI_AFAR_U2
(I) ASI_INTR_R
(A) ASI_INTR_DISPATCH_W (UE at store)
(IA) SOFTINT
(IA) STICK
(IA) STICK_COMP

21 IAUG_TSBCTXT R Uncorrectable error in any of the following:
(IA) ASI_DMMU_TSB_BASE
(IA) ASI_DMMU_TSB_PEXT
(IA) ASI_DMMU_TSB_SEXT
(IA) ASI_DMMU_TSB_NEXT
(IA) ASI_PRIMARY_CONTEXT
(IA) ASI_SECONDARY_CONTEXT
(IA) ASI_SHARED_CONTEXT
(IA) ASI_IMMU_TSB_BASE
(IA) ASI_IMMU_TSB_PEXT
(IA) ASI_IMMU_TSB_NEXT

20 IUG_TSBP R Uncorrectable error in any of the following:
(I) ASI_DMMU_TAG_TARGET
(I) ASI_DMMU_TAG_ACCESS
(I) ASI_DMMU_TSB_8KB_PTR
(I) ASI_DMMU_TSB_64KB_PTR
(I) ASI_DMMU_TSB_DIRECT_PTR
(I) ASI_IMMU_TAG_TARGET
(I) ASI_IMMU_TAG_ACCESS
(I) ASI_IMMU_TSB_8KB_PTR
(I) ASI_IMMU_TSB_64KB_PTR

19 IUG_PSTATE R Uncorrectable error in any of the following: %pstate, %pc,
%npc, %cwp, %cansave, %canrestore, %otherwin,
%cleanwin, %pil, %wstate

18 IUG_TSTATE R Uncorrectable error in any of %tstate, %tpc, %tnpc.

17 IUG_%F R Uncorrectable error in any floating-point register or in the FPRS,
FSR, or GSR register.

16 IUG_%R R Uncorrectable error in any general-purpose (integer) register, or in
the Y, CCR, or ASI register.

14 IUG_WDT R Watchdog timeout first time. Indicates the first watchdog timeout. If
IUG_WDT = 1 when a single-ADE trap occurs, the instruction
pointed to by TPC is abandoned and its result is unpredictable.
190 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE P-10 ASI_UGESR Bit Description (3 of 4)

Bit Name RW	 Description

10 IUG_DTLB R	 Uncorrectable error in DTLB during load, store, or demap. Indicates
that one of the following errors was detected during a data TLB
access:
•	 An uncorrectable error in TLB data or TLB tag was detected

when an LDXA instruction attempted to read
ASI_DTLB_DATA_ACCESS or ASI_DTLB_TAG_ACCESS.
TPC indicates either the instruction causing the error or the
previous instruction.

•	 A store to the data TLB or a demap of the data TLB failed. TPC
indicates either the instruction causing the error or the instruction
following the one that caused the error.

9	 IUG_ITLB R Uncorrectable error in ITLB during load, store, or demap. Indicates
that one of the following errors was detected during an instruction
TLB access:
•	 An uncorrectable error in TLB data or TLB tag was detected

when an LDXA instruction attempted to read
ASI_ITLB_DATA_ACCESS or ASI_ITLB_TAG_ACCESS.
TPC indicates either the instruction causing the error or the
previous instruction.

•	 A store to the instruction TLB or a demap of the instruction TLB
failed. TPC indicates either the instruction causing the error or the
following instruction.

8 IUG_COREERR R	 CPU core error. Indicates an uncorrectable error in a CPU internal
resource used to execute instructions.

When there is an uncorrectable error in a program-visible register

and the instruction reading the register with UE is executed, the

error in the register is always indicated. In this case,

IUG_COREERR may or may not be indicated simultaneously with

the register error.

5:4	 INSTEND R Trapped instruction end-method. Upon a single async_data_error
trap without watchdog time-out detection, INSTEND indicates the
instruction end-method of the trapped instruction pointed to by TPC
as follows:

002: Precise
012: Retryable but not precise
102: Reserved
112: Not retryable

See Section P.4.3 for the instruction end-method for the
async_data_error trap. When a watchdog time-out is detected, the
instruction end-method is undefined.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 191

TABLE P-10 ASI_UGESR Bit Description (4 of 4)

Bit Name RW Description

3 PRIV R Privileged mode. Upon a single async_data_error trap, the PRIV
field is set as follows:

When the value of PSTATE.PRIV immediately before the single-
ADE trap is unknown because of an uncorrectable error in PSTATE,
ASI_UGESR.PRIV is set to 1. Otherwise, the value of
PSTATE.PRIV immediately before the single-ADE trap is copied
to ASI_UGESR.PRIV.

2 MUGE_DAE R Multiple UGEs caused by DAE. Upon a single-ADE, MUGE_DAE is
set to 0. Upon a multiple-ADE trap caused by a DAE, MUGE_DAE is
set to 1. Upon a multiple-ADE trap not caused by a DAE,
MUGE_DAE is unchanged.

1 MUGE_IAE R Multiple UGEs caused by IAE. Upon a single-ADE trap, MUGE_IAE
is set to 0. Upon a multiple-ADE trap caused by an IAE, MUGE_IAE
is set to 1. Upon a multiple-ADE trap not caused by an IAE,
MUGE_IAE is unchanged.

0 MUGE_IUGE R Multiple UGEs caused by I_UGE. Upon a single-ADE trap,
MUGE_IUGE is set to 0. Upon a multiple-ADE trap caused by an
I_UGE, MUGE_IUGE is set to 1. Upon a multiple-ADE trap not
caused by an I_UGE, MUGE_IUGE is unchanged.

Other Reserved R Always 0.

P.4.2 Action of async_data_error (ADE) Trap

The single-ADE trap and the multiple-ADE trap are generated upon the conditions defined in
TABLE P-2 on page 179. The actions upon their occurrence are defined in more detail in this
section. For convenience, the shorthand ADE is used to refer to async_data_error.

1. Conditions that cause an ADE trap:

An ADE trap occurs when one of the following conditions is satisfied:

■	 When ASI_ERROR_CONTROL.UGE_HANDLER = 0 and I_UGEs and/or A_UGEs are
detected, a single-ADE trap is generated.

■	 When ASI_ERROR_CONTROL.UGE_HANDLER = 1 and I_UGEs, IAE, and/or DAE are
detected, a multiple-ADE trap is generated.

2. State change, trap target address calculation, and TL manipulation.

The following actions are executed in this order:

a. State transition

if (TL = MAXTL), the CPU enters error_state and abandons the ADE trap;

else if (CPU is in execution state && (TL = MAXTL − 1)), then the CPU enters
RED_state.
192 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

b. Trap target address calculation

When the CPU is in execution state, trap target address is calculated by %tba, %tt, and
%tl.

Otherwise, the CPU is in RED_state and the trap target address is set to
RSTVaddr + A016.

c. TL increases: TL ← TL + 1.

3. Save the old value into TSTATE, TPC, and TNPC.

PSTATE, PC, and NPC immediately before the ADE trap are copied into TSTATE, TPC,
and TNPC, respectively. If the copy source register contains an uncorrectable error, the
copy target register also contains the UE.

4. Set the specific register setting:

The following three sets of registers are updated:

a. Update and validation of specific registers.

Hardware writes the registers listed in TABLE P-11.

TABLE P-11 Registers Written for Update and Validation

Register Condition For Writing Value Written

PSTATE Always AG = 1, MG = 0, IG = 0, IE = 0, PRIV = 1, AM = 0, PEF = 1,
RED = 0 (or 1 depending on the CPU status), MM = 00, TLE = 0,
CLE = 0.

PC Always ADE trap address.

nPC Always ADE trap address + 4.

CCR When the register contains UE 0.

FSR, GSR When the register contains UE If either FSR or GSR contains a UE, 0 is written to that register.
When 0 is written to FSR and/or GSR upon a single-ADE trap,
ASI_UGESR.IUG_%F is set to 1.

CWP, CANSAVE, When the register contains UE Any register among CWP, CANSAVE, CANRESTORE, OTHERWIN,
CANRESTORE, and CLEANWIN that contains a UE is written to 0. When 0 is
OTHERWIN, written to one of these registers upon a single-ADE trap,
CLEANWIN ASI_UGESR.IUG_PSTATE = 1 is set to 1.

TICK When the register contains UE NPT = 1, Counter = 0.

TICK_COMPARE When the register contains UE INT_DIS = 1, TICK_CMPR = 0.

The error(s) in a written register are removed by setting the correct value to the error
checking (parity) code during the full write of the register.

Errors in registers other than those listed above and any errors in the TLB entry
remain.

b. Update of ASI_UGESR, as shown in TABLE P-12.

c. Update of ASI_ERROR_CONTROL
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 193

TABLE P-12 ASI_UGESR Update for Single and Multiple-ADE Exceptions

Bit Field Update upon a Single-ADE Trap Update upon a Multiple-ADE Traps

63:6 Error indication	 All bits in this field are updated. Unchanged.

All I_UGEs and A_UGEs detected at the trap
are indicated simultaneously.

5:4	 INSTEND The instruction end-method of the Unchanged.
instruction referenced by TPC is set.

2 MUGE_DAE Set to 0.	 If the multiple-ADE trap was caused by a
DAE, MUGE_DAE is set to 1.
Otherwise, MUGE_DAE is unchanged.

1 MUGE_IAE Set to 0.	 If the multiple-ADE trap was caused by an
IAE, MUGE_IAE is set to 1.
Otherwise, MUGE_IAE is unchanged.

0	 MUGE_IUGE Set to 0. If the multiple-ADE trap was caused by an
I_UGE, MUGE_IUGE is set to 1.
Otherwise, MUGE_IUGE is unchanged.

Upon a single-ADE trap, ASI_ERROR_CONTROL.UGE_HANDLER is set to 1. During
the period after the single-ADE trap occurs and before a RETRY or DONE instruction is
executed, UGE_HANDLER = 1 tells hardware that the urgent error handler is running.

Upon a multiple async_data_error trap, ASI_ERROR_CONTROL.WEAK_ED is set to 1
and the CPU starts running in the weak error detection state.

5. Set ASI_ERROR_CONTROL.UGE_HANDLER to 0.

Upon completion of a RETRY or DONE instruction,

ASI_ERROR_CONTROL.UGE_HANDLER is set to 0.

P.4.3 Instruction End-Method at ADE Trap

In SPARC64 VII, upon occurrence of the ADE trap, the trapped instruction referenced by
TPC ends by using one of the following instruction end-methods:

■ Precise
■ Retryable but not precise (not included in JPS1)
■ Not retryable (not included in JPS1)

Upon a single-ADE trap, the trapped instruction end-method is indicated in
ASI_UGESR.INSTEND.
194 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE P-13 defines each instruction end-method after an ADE trap.

TABLE P-13 Instruction End-Method After async_data_error Exception

Precise Retryable But Not Precise Not Retryable

Instructions executed after the
last ADE, IAE, or DAE trap and
before the trapped instruction
referenced by TPC.

Ended (Committed).

The instructions without UGE complete as defined in the architecture. The instruction with
UGE has unpredictable value at its output (destination register or, in the case of a store
instruction, destination memory location).

The trapped instruction
referenced by TPC

Not executed. The output of the instruction is
incomplete.

Part of the output may be changed,
or the invalid value may be written
to the instruction output. However,
the modification to the invalid target
that is not defined as instruction
output is not executed.

The following modifications are not
executed:
• Store to the cacheable area

including cache.
• Store to the noncacheable area.
• Output to the source register of the

instruction (destructive overlap)

The output of the instruction is
incomplete.

Part of the output may be changed,
or the invalid value may be written
to the instruction output. However,
the modification to the invalid target
that is not defined as instruction
output is not executed.

A store to an invalid address is not
executed. (Store to a valid address
with uncorrected data may be
executed.)

Instructions to be executed
after the instruction referenced
by TPC

Not executed. Not executed. Not executed.

The possibility of resuming the
trapped program by executing
the RETRY instruction to the
%tpc when the trapped
program is not damaged at the
single-ADE trap

Possible. Possible. Impossible.

P.4.4 Expected Software Handling of ADE Trap

The expected software handling of an ADE trap is described by the pseudo C code below. The
main purpose of this flow is to recover from the following errors as much as possible:

■ An error in the CPU internal RAM or register file
■ An error in the accumulator
■ An error in the CPU internal temporary registers and data bus

void

expected_software_handling_of_ADE_trap()

{

/* Only %r0-%r7 can be used from here to Point#1 because the register window

control registers may not have valid value until Point#1. It is

Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 195

recommended that only %r0-%r7 are used as general-purpose registers (GPR)

in the whole single-ADE trap handler, if possible. */

ASI_SCRATCH_REGp ← %rX;
ASI_SCRATCH_REGq ← %rY;
%rX ← ASI_UGESR;

if ((%rX && 0x07) ≠ 0) {
 /* multiple-ADE trap occurrence */

 invoke panic routine and take system dump as much as possible

 with the running environment of ASI_ERROR_CONTROL.WEAK_ED == 1;

}

if (%rX.IUG_%R == 1) {
 %r1-%r31 except %rX and %rY ← %r0;
 %y ← %r0;
 %tstate.pstate ← %r0; /* because ccr or asi field in %tstate.pstate

 contains the error */

}

else {

 save required %r1-%r7 to the ADE trap save area, using %rX, %rY,

 ASI_SCRATCH_REGp and ASI_SCRATCH_REGq;
 /* whole %r save and restore is required to retry the context

with PSTATE.AG == 1 */
}

if (ASI_UGESR.IUG_PSTATE == 1) {
 %tstate.pstate ← %r0;
 %tpc ← %r0;
 %pil ← %r0;
 %wstate ← %r0;

 All general-purpose registers in the register window ← %r0;
 Set the register window control registers

 (CWP, CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN) to appropriate values;

}

/* Point#1: Program can use the general-purpose registers except %r0-%r7

after this because the register window control registers were validated

in the above step. */

if ((ASI_UGESR.IAUG_CRE == 1) ||(ASI_UGESR.IAUG_TSBCTXT == 1) ||

 (ASI_UGESR.IUG_TSBP == 1) || (ASI_UGESR.IUG_TSTATE == 1) ||

(ASI_UGESR.IUG_%F==1)) {

 Write to each register with an error indication, to erase as many

 register errors as possible;

}

if (ASI_UGESR.IUG_DTLB == 1) {

 execute demap_all for DTLB;

 /* A locked fDTLB entry with uncorrectable error is not removed by this

operation. A locked fDTLB entry with UE never detects its tag match or

causes the data_access_error trap when its tag matches at the DTLB

reference for address translation. */

}

if (ASI_UGESR.IUG_ITLB == 1) {

196 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

 execute demap_all for ITLB;

/* A locked fITLB entry with uncorrectable error is not removed by this

operation. A locked fITLB entry with UE never detects its tag match

or causes the data access error trap when its tag matches at the ITLB

reference for address translation. */

}

if ((ASI_UGESR.bits22:14 == 0) &&

((ASI_UGESR.INSTEND == 0) || (ASI_UGESR.INSTEND == 1))) {

 ++ADE_trap_retry_per_unit_of_time;

 if (ADE_trap_retry_per_unit_of_time < threshold)

 resume the trapped context by use of the RETRY instruction;

 else

 invoke panic routine because of too many ADE trap retries;

}

else if ((ASI_UGESR.bits22:18 == 0) &&

(ASI_UGESR.bits15:14 == 0) &&

(ASI_UGESR.PRIV == 0)) {

 ++ADE_trap_kill_user_per_unit_of_time;

 if (ADE_trap_kill_user_per_unit_of_time < threshold)

 kill one user process trapped and continue system operation;

 else

 invoke panic routine because of too may ADE trap user kill;

}

else

 invoke panic routine because of unrecoverable urgent error;

}

P.5 Instruction Access Errors
See Appendix F for details.

P.6 Data Access Errors
See Appendix F for details.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 197

P.7 Restrainable Errors

This section describes the registers—ASI_ASYNC_FAULT_STATUS,
ASI_ASYNC_FAULT_ADDR_D1, and ASI_ASYNC_FAULT_ADDR_U2—that define the
restrainable errors and explains how software handles these errors.

P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR)

[1] Register name:	 ASI_ASYNC_FAULT_STATUS (ASI_AFSR)
[2] ASI:	 4C16

[3] VA:	 0016

[4] Error checking:	 None
[5] Format & function:	 See TABLE P-14

[6]	 Initial value at reset: Hard POR: All fields in ASI_AFSR are set to 0.

Other resets: Values in ASI_AFSR are unchanged.

The ASI_ASYNC_FAULT_STATUS register holds the detected restrainable error sticky bits.
TABLE P-14 describes the fields of this register. In the table, the prefixes in the name field
have the following meaning:

■ DG_ Degradation error
■ CE_ Correctable Error
■ UE_ Uncorrectable Error

TABLE P-14 ASI_ASYNC_FAULT_STATUS Bit Description

Bit Name RW Description

12 DG_U2$x RW1C Degradation in U2$. This bit is set when automatic way
reduction is applied in U2$ due to U2$ tag errors in
system.

11 DG_U2$ RW1C Degradation in U2$. This bit is set when automatic way
reduction is applied in U2$ due to U2$ errors in CPU or
System.

10 DG_D1$sTLB RW1C Degradation in L1$ and sTLB. This bit is set when
automatic way reduction is applied in I1$, D1$, sITLB,
sDTLB, uITLB and uDTLB

9 Reserved R Always reads as 0; writes are ignored.

3 UE_DST_BETO RW1C Disrupting store JBUS bus error or time-out.

2 Reserved R Always reads as 0; writes are ignored.

1 UE_RAW_L2$INSD RW1C Raw UE in L2 cache inside data.
198 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE P-14 ASI_ASYNC_FAULT_STATUS Bit Description

Bit Name	 RW Description

0 UE_RAW_D1$INSD RW1C Raw UE in D1 cache inside data.

Other Reserved R Always reads as 0; writes are ignored.

Note – Disrupting store bus error or time-out is reported as either AFSR.UE_DST_BETO,
DSFSR.BERR, or DSFSR.RTO exclusively.

Note – A load followed by a store with the same address which causes UE_DST_BETO may
not signals data_access_error. In this case the data is returned from the store buffer, and
AFSR.UE_DST_BETO is set eventually.

P.7.2 ASI_ASYNC_FAULT_ADDR_D1

The register is always reads as 0; write to this register is ignored in SPARC64 VII.

P.7.3 ASI_ASYNC_FAULT_ADDR_U2

The register is always read as 0; write to this register is ignored in SPARC64 VII.

P.7.4 Expected Software Handling of Restrainable Errors

Error recording and information is expected for all restrainable errors.

The expected software recovery from each type of each restrainable error is described below.

■	 DG_L1$, DG_U2$, DG_U2$x — The following status of the CPU is reported:

■	 Performance is degraded by the way reduction in I1$, D1$, U2$, sITLB, or sDTLB.

■	 CPU availability may be slightly decreased. If only one way facility is available among
I1$, D1$, U2$, sITLB, and sDTLB and further way reduction is detected for this
facility, the error_state transition error is detected.

Software stops the use of the CPU, if required.

■	 UE_DST_BETO — This error is caused by either:

■	 Invalid DTLB entry is specified, or

■	 Invalid memory access instruction when a physical address access ASI is executed in
privileged software.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 199

This error is always caused by a mistake in privileged software. Record the error and
correct the erroneous privileged software.

■	 UE_RAW_L2$INSD, and UE_RAW_D1$INSD — Software handles these errors as follows:

■	 Correct the cache line data containing the uncorrected error by executing a block store
with commit instruction, if possible. Note that the original data is deleted by this
operation.

■	 For UE_RAW_L2$FILL, avoid using the memory block with the UE as much as
possible.

■	 No error indication in ASI_AFSR at ECC_error trap — Ignore the ECC_error trap.

This situation may occur at the condition described in the TABLE P-2 on page 179 (see the
third row, last column”).
200 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

P.8 Internal Register Error Handling
This section describes error handling for the following registers.

■ Nonprivileged and Privileged registers
■ ASR registers
■ ASI registers

P.8.1 Nonprivileged and Privileged Registers Error Handling

The terminology used in TABLE P-15 is defined as follows:

Column Term Meaning

Error Detect
Condition

InstAccess The error is detected when the instruction accesses the register.

Correction W The error indication is removed when an instruction performs a full
write to the register

ADE trap The error is removed by a full write to the register in the
async_data_error hardware trap sequence.

TABLE P-15 shows error handling for nonprivileged and privileged registers.

TABLE P-15 Nonprivileged and Privileged Registers Error Handling

Error
Register Name RW Protect Error Detect Condition Error Type Correction

%rn RW Parity InstAccess IUG_%R W

%fn RW Parity InstAccess IUG_%F W

PC Parity Always IUG_PSTATE ADE trap

nPC Parity Always IUG_PSTATE ADE trap

PSTATE RW Parity Always IUG_PSTATE ADE trap, W

TBA RW Parity PSTATE.RED = 0 error_state W (by OBP)

PIL RW Parity PSTATE.IE = 1 IUG_CORE W
InstAccess IUG_PSTATE

CWP, CANSAVE, RW Parity Always IUG_PSTATE ADE trap, W
CANRESTORE,
OTHERWIN,
CLEANWIN

TT RW None — — —

TL RW Parity PSTATE.RED = 0 error_state W (by OBP)

TPC RW Parity InstAccess IUG_TSTATE W
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 201

TABLE P-15 Nonprivileged and Privileged Registers Error Handling

Error
Register Name RW Protect Error Detect Condition Error Type Correction

TNPC RW Parity InstAccess IUG_TSTATE W

TSTATE RW Parity InstAccess IUG_TSTATE W

WSTATE RW Parity Always IUG_PSTATE W

VER R None — — —

FSR RW Parity Always IUG_%F ADE trap, W

Y RW Parity InstAccess IUG_%R W

CCR RW Parity Always IUG_%R ADE trap, W

ASI RW Parity Always IUG_%R ADE trap, W

TICK RW Parity AUG Always1 IUG_COREERR ADE trap2, W

FPRS RW Parity Always IUG_%F ADE trap, W

1.Notified as error_state transition error in suspended state.

2.TICK, TICK_COMPARE are set to 0x8000_0000_0000_0000 on ADE trap for correction.

P.8.2 ASR Error Handling

The terminology used in TABLE P-16 is defined as follows:

Column Term Meaning

Error Detect AUG always	 The error is detected while
Condition	 (ASI_ERROR_CONTROL.UGE_HANDLER = 0) &&

(ASI_ERROR_CONTROL.WEAK_ED = 0)

InstAccess The error is detected when the instruction accesses the register.

Error Type (I)AUG_xxx The error is indicated by ASI_UGESR.IAUG_xxx = 1, and the
error is an autonomous urgent error.

I(A)UG_xxx The error is indicated by ASI_UGESR.IAUG_xxx = 1, and the
error is an instruction urgent error.

Correction W The error is removed by a full write to the register by an
instruction.

ADE trap The error is removed by a full write to the register in the
async_data_error hardware trap sequence.

TABLE P-16 shows the handling of ASR errors.

STICK Behavior upon Error

When error is occurred in %stick register, countup is stopped regardless of the error detect
condition described in TABLE P-16.
202 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE P-16 ASR Error Handling

ASR
Number Register Name RW Error Protect Error Detect Condition Error Type Correction

16 PCR RW None — — —

17 PIC RW None — — —

18 DCR R None — — —

19 GSR RW Parity Always IUG_%F ADE trap, W

20 SET_SOFTINT W None — — —

21 CLEAR_SOFTINT W None — — —

22 SOFTINT RW None — — —

23 TICK_COMPARE RW Parity AUG Always1 IUG_COREERR ADE trap, W

24 STICK RW Parity AUG always1 (I)AUG_CRE W

InstAccess I(A)UG_CRE W

25 STICK_COMPARE RW Parity AUG always1 (I)AUG_CRE W

InstAccess I(A)UG_CRE W

1.Notified as error_state transition error in suspended state.

P.8.3 ASI Register Error Handling

The terminology used in TABLE P-17 is defined as follows:

Column Term

Error Protect

Meaning

Parity

ECC

Parity protected.

ECC (double-bit error detection, single-bit error correction)
protected.

Gecc Generated ECC.

PP Parity propagation. The parity error in the input registers to
calculate the register value is propagated.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 203

Column Term Meaning

Error Detect Always Error is always checked.
Condition AUG always Error is checked when

(ASI_ERROR_CONTROL.UGE_HANDLER = 0) &&
(ASI_ERROR_CONTROL.WEAK_ED = 0).

LDXA Error is checked when the register is read by LDXA instruction.

LDXA #I Error is checked when the register is read by LDXA instruction.

Also, the register is used for the calculation of
IMMU_TSB_8KB_PTR and IMMU_TSB_64KB_PTR. When the
register has a UE and the register is used for the calculation of
ASI_IMMU_TSB_PTR registers, the UE is propagated to the
ASI_IMMU_TSB_PTR registers. Upon execution of the LDXA
instruction to read ASI_IMMU_TSB_PTR with the propagated
UE, the IUG_TSBP error is detected.

LDXA #D Error is checked when the register is read by LDXA instruction.

Also, the register is used for the calculation of
DMMU_TSB_8KB_PTR, DMMU_TSB_64KB_PTR, and
DMMU_TSB_DIRECT_PTR. When the register has a UE and the
register is used for the calculation of ASI_DMMU_TSB_PTR
registers, the UE is propagated to the ASI_DMMU_TSB_PTR
registers. Upon execution of the LDXA instruction to read
ASI_DMMU_TSB_PTR with the propagated UE, the IUG_TSBP
error is detected.

ITLB write Error is checked at the ITLB update timing after completion of
the STXA instruction to write or demap an ITLB entry.

DTLB write Error is checked at the DTLB update timing after the completion
of the STXA instruction to write or demap a DTLB entry.

Use for TLB Error is checked when the register is used for a TLB reference.

Enabled Error is checked when the facility is enabled.

intr_receive Error is checked when the Jupiter Bus interrupt packet is
received. When an uncorrectable error is detected in the
received interrupt packet, the vector interrupt trap is caused but
ASI_INTR_RECEIVE.BUSY = 0 is set. In this case, a new
interrupt packet can be received after software writes
ASI_INTR_RECEIVE.BUSY = 0.

BV interface Uncorrected error in the Barrier Variable transfer interface
between the processor and the memory system is checked during
the AUG_always period.

Error Type error_state error_state transition error.

(I)AUG_xxxx The error is indicated by ASI_UGESR.IAUG_xxxx = 1, and the
error class is autonomous urgent error.

I(A)UG_xxxx The error is indicated by ASI_UGESR.IAUG_xxxx = 1, and the
error class is instruction urgent error.

Others The name of the bit set to 1 in ASI_UGESR indicates the error
type.
204 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Column Term Meaning

Correction RED trap The whole register is updated and corrected when a
RED_state trap occurs.

W The whole register is updated and corrected by use of an STXA
instruction to write the register.

W1AC The whole register is updated and corrected by use of an STXA
instruction to write 1 to the specified bit in the register.

WotherI The register is corrected by a full update of all of the following
ASI registers:
• ASI_IMMU_TAG_ACCESS
• plus, when ASI_UGESR.IAUG_TSBCTXT = 1 is indicated in

a single-ADE trap: ASI_IMMU_TSB_BASE,
ASI_IMMU_TSB_PEXT, ASI_PRIMARY_CONTEXT,
ASI_SECONDARY_CONTEXT, ASI_SHARED_CONTEXT

IMMU_TSB_8KB_PTR and IMMU_TSB_64KB_PTR are
corrected only when a
fast_instruction_access_MMU_miss trap occurs.

WotherD The register is corrected by a full update of all of the following
ASI registers:
• ASI_DMMU_TAG_ACCESS
• plus, when ASI_UGESR.IAUG_TSBCTXT = 1 is indicated in

a single-ADE trap: ASI_DMMU_TSB_BASE,
ASI_DMMU_TSB_PEXT, ASI_DMMU_TSB_SEXT,
ASI_PRIMARY_CONTEXT, ASI_SECONDARY_CONTEXT,
ASI_SHARED_CONTEXT

DMMU_TSB_8KB_PTR and DMMU_TSB_64KB_PTR are
corrected only when a fast_data_access_MMU_miss
trap occurs.

DemapAll The error is corrected by the demap all operation for the TLB
with the error. Note that the demap all operation does not
remove the locked TLB entry with uncorrectable error.

Interrupt receive The register is corrected when the Jupiter Bus interrupt packet is
received.

TABLE P-17 shows the handling of ASI register errors.

TABLE P-17 Handling of ASI Register Errors

ASI VA
Register Name RW

Error
Protect

Error Detect
Condition Error Type Correction

4516 0016 DCU_CONTROL RW Parity Always error_state RED trap

0816 MEMORY_CONTROL RW Parity Always error_state RED trap

4816 0016 INTR_DISPATCH_STATUS R Gecc LDXA I(A)UG_CRE (UE) None

ignored (CE)

4916 0016 INTR_RECEIVE RW Gecc LDXA I(A)UG_CRE (UE) None

ignored (CE)

4A16 — JB_CONFIG_REGISTER R None — — —
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 205

TABLE P-17 Handling of ASI Register Errors

ASI VA Error Error Detect
Register Name RW Protect Condition Error Type Correction

4C16 0016 ASYNC_FAULT_STATUS RW1C None — — —

4C16 0816 URGENT_ERROR_STATUS R None — — —

4C16 1016 ERROR_CONTROL RW Parity Always error_state RED trap

4C16 1816 STCHG_ERROR_INFO R,W1AC None — — —

4D16 0016 AFAR_D1 R,WAC Parity LDXA I(A)UG_CRE WAC

4D16 0816 AFAR_U2 R,WAC Parity LDXA I(A)UG_CRE WAC

5016 0016 IMMU_TAG_TARGET R Parity LDXA #I IUG_TSBP WotherI

5016 1816 IMMU_SFSR RW None — — —

5016 2816 IMMU_TSB_BASE RW Parity LDXA #I I(A)UG_TSBCTXT W

5016 3016 IMMU_TAG_ACCESS RW Parity LDXA #I IUG_TSBP W (WotherI)

5016 4816 IMMU_TSB_PEXT RW Parity = ITSB_BASE IAUG_TSBCTXT W

5016 5816 IMMU_TSB_NEXT R Parity = ITSB_BASE IAUG_TSBCTXT W

5016 6016 IMMU_TAG_ACCESS_EXT RW Parity LDXA #I IUG_TSBP W

5016 7816 IMMU_SFPAR RW Parity LDXA #I I(A)UG_CRE W

5116 — IMMU_TSB_8KB_PTR R PP LDXA IUG_TSBP WotherI

5216 — IMMU_TSB_64KB_PTR R PP LDXA IUG_TSBP WotherI

5316 — SERIAL_ID R None — — —

5416 — ITLB_DATA_IN W Parity ITLB write IUG_ITLB DemapAll

5516 — ITLB_DATA_ACCESS RW Parity LDXA IUG_ITLB DemapAll

ITLB write IUG_ITLB DemapAll

5616 — ITLB_TAG_READ R Parity LDXA IUG_ITLB DemapAll

5716 — IMMU_DEMAP W Parity ITLB write IUG_ITLB DemapAll

5816 0016 DMMU_TAG_TARGET R Parity LDXA #D IUG_TSBP WotherD

5816 0816 PRIMARY_CONTEXT RW Parity LDXA #I, I(A)UG_TSBCTXT W
LDXA #D

Use for TLB I(A)UG_TSBCTXT W

AUG always (I)AUG_TSBCTXT W

5816 1016 SECONDARY_CONTEXT RW Parity = P_CONTEXT IAUG_TSBCTXT W

5816 1816 DMMU_SFSR RW None — — —

5816 2016 DMMU_SFAR RW Parity LDXA IAUG_CRE W

5816 2816 DMMU_TSB_BASE RW Parity LDXA #D I(A)UG_TSBCTXT W

5816 3016 DMMU_TAG_ACCESS RW Parity LDXA #D IUG_TSBP W (WotherD)

5816 3816 DMMU_VA_WATCHPOINT RW Parity Enabled (I)AUG_CRE W

LDXA I(A)UG_CRE W

5816 4016 DMMU_PA_WATCHPOINT RW Parity Enabled (I)AUG_CRE W

LDXA I(A)UG_CRE W

5816 4816 DMMU_TSB_PEXT RW Parity = DTSB_BASE I(A)UG_TSBCTXT W
206 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE P-17 Handling of ASI Register Errors

ASI VA Error Error Detect
Register Name RW Protect Condition Error Type Correction

5816 5016 DMMU_TSB_SEXT RW Parity = DTSB_BASE I(A)UG_TSBCTXT W

5816 5816 DMMU_TSB_NEXT R Parity = DTSB_BASE I(A)UG_TSBCTXT W

5816 6016 DMMU_TAG_ACCCESS_EXT RW Parity LDXA #D IUG_TSBP W

5816 6816 SHARED_CONTEXT RW Parity = P_CONTEXT (I)AUG_TSBCTXT W

5816 7816 DMMU_SFPAR RW Parity LDXA #D I(A)UG_CRE W

5916 — DMMU_TSB_8KB_PTR R PP LDXA IUG_TSBP WotherD

5A16 — DMMU_TSB_64KB_PTR R PP LDXA IUG_TSBP WotherD

5B16 — DMMU_TSB_DIRECT_PTR R PP LDXA IUG_TSBP WotherD

5C16 — DTLB_DATA_IN W Parity DTLB write IUG_DTLB DemapAll

5D16 — DTLB_DATA_ACCESS RW Parity LDXA IUG_DTLB DemapAll

DTLB write IUG_DTLB DemapAll

5E16 — DTLB_TAG_READ R Parity LDXA IUG_DTLB DemapAll

5F16 — DMMU_DEMAP W Parity DTLB write IUG_DTLB DemapAll

6016 — IIU_INST_TRAP RW Parity LDXA No match at error W

6116 0016, ITSB_PREFETCH RW Parity LDXA I(A)UG_TSBP W
0816,
4016,
4816

6216 0016, DTSB_PREFETCH RW Parity LDXA I(A)UG_TSBP W
0816,
4016,
4816

6D16 0016 - BARRIER_INIT RW Parity Always if Fatal Error —
3E016 assigned

or LDXA#D

6E16 0016 EIDR RW Parity Always1 IAUG_CRE W

6F16 0016 - BARRIER_ASSIGN RW Parity Always if Fatal Error —
5016 assigned

7416 addr CACHE_INV W None — — —

7716 4016 – INTR_DATA0:7_W W Gecc None — W
8816 INTR_DISPATCH_W W Gecc store (I)AUG_CRE W

7F16 4016 – INTR_DATA0:7_R R ECC LDXA IAUG_CRE Interrupt
8816 intr_receive BUSY = 0 Receive

EF16 0016 - LBSY, BST RW Parity Always if Fatal Error —
5016 assigned

1.Notified as error_state transition error in suspended state.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 207

P.9 Cache Error Handling

In this section, handling of cache errors of the following types is specified:

■ Cache tag errors
■ Cache data errors in I1, D1, and U2 caches

This section concludes with the specification of automatic way reduction in the I1, D1, and
U2 caches.

P.9.1 Handling of a Cache Tag Error

Error in D1 Cache Tag and I1 Cache Tag

Both the D1 cache (Data level 1) and the I1 cache (Instruction level 1) maintain a copy of
their cache tags in the U2 (unified level 2) cache. The D1 cache tags, the D1 cache tags copy,
the I1 cache tags, and the I1 cache tags copy are each protected by parity.

When a parity error is detected in a D1 cache tag entry or in a D1 cache tag copy entry,
hardware automatically corrects the error by copying the correct tag entry from the other
copy of the tag entry. If the error can be corrected in this way, program execution is
unaffected.

Similarly, when a parity error is detected in an I1 cache tag entry or in a I1 cache tag copy
entry, hardware automatically corrects the error by copying the correct tag entry from the
other copy of the tag entry. If the error can be corrected in this way, program execution is
unaffected.

When the error in the level-1 cache tag or tag copy is not corrected by the tag copying
operation, the tag copying is repeated. If the error is permanent, a watchdog timeout or a
FATAL error is then detected.

Error in U2 (Unified Level 2) Cache Tag

The U2 cache tag is protected by double-bit error detection and single-bit error correction
ECC code.

When a correctable error is detected in a U2 cache tag, hardware automatically corrects the
error by rewriting the corrected data into the U2 cache tag entry. The error is not reported to
software.

When an uncorrectable error is detected in a U2 cache tag, a fatal error is detected and the
CPU enters the CPU fatal error state.
208 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

P.9.2 Handling of an I1 Cache Data Error

I1 cache data is protected by parity attached to every doubleword.

When a parity error is detected in I1 cache data during an instruction fetch, hardware
executes the following sequence:

1. Reread the I1 cache line containing the parity error from the U2 cache.

The read data from U2 cache must contain only the doubleword without error or the
doubleword with the marked UE, because error marking is only applied to U2 cache
outgoing data.

2. For each doubleword read from U2 cache:

a.	 When the doubleword does not have a UE, save the correct data in the I1 cache
doubleword without parity error and supply the data for instruction fetch if required.

There is no direct report to software for an I1 cache error corrected by refilling data.

b. When the doubleword has a marked UE, set the parity bit in the I1 cache doubleword
to indicate a parity error and supply the parity error data for the instruction fetch if
required.

3. Treat a fetched instruction with an error as follows:

When the instruction with a parity error is fetched but not executed in any way visible
to software, the fetched instruction with the error is discarded.

Otherwise, fetch and execute the instruction with the indicated parity error. When the
execution of the instruction is complete, an instruction_access_error exception will be
generated (precise trap), and the marked UE detection and its ERROR_MARK_ID will
be indicated in ASI_ISFSR.

P.9.3 Handling of a D1 Cache Data Error

D1 cache data is protected by 2-bit error detection and 1-bit error correction ECC, attached
to every doubleword.

Correctable Error in D1 Cache Data

When a correctable error is detected in D1 cache data, the data is corrected automatically by
hardware. There is no direct report to software for a D1 cache correctable error.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 209

Marked Uncorrectable Error in D1 Cache Data

When a marked uncorrectable error (UE) in D1 cache data is detected during the D1 cache
line writeback to the U2 cache, the D1 cache data and its ECC are written to the target U2
cache data and its ECC without modification. That is, a marked UE in D1 cache is
propagated into the U2 cache. Such an error is not reported to software.

When a marked UE in D1 cache data is detected during access by a load or store (excluding
doubleword store) instruction, the data access error is detected. The data_access_error
exception is generated precisely and the marked UE detection and its ERROR_MARK_ID are
indicated in ASI_DSFSR.

Raw Uncorrectable Error in D1 Cache Data During D1 Cache Line
Writeback

When a raw (unmarked) UE is detected in D1 cache data during the D1 cache line writeback
to the U2 cache, error marking is applied to the doubleword containing the raw UE with
ERROR_MARK_ID = ASI_EIDR. Only the correct doubleword or the doubleword with
marked UE is written into the target U2 cache line.

The restrainable error ASI_AFSR.UE_RAW_D1$INSD is detected.

Raw Uncorrectable Error in D1 Cache Data on Access by Load or
Store Instruction

When a raw (unmarked) UE is detected in D1 cache data during access by a load or store
instruction, hardware executes the following sequence:

1. Hardware writes back the D1 cache line and refills it from U2 cache. The D1 cache line
containing the raw UE, whether it is clean or dirty, is always written back to the U2 cache.
During this D1 cache line writeback to U2 cache, error marking is applied for the
doubleword containing the raw UE with ERROR_MARK_ID = ASI_EIDR. The D1 cache
line is refilled from the U2 cache and the restrainable error ASI_AFSR.UE_RAW_D1$INSD

is detected.

2. Normally, hardware changes the raw UE in the D1 cache data to a marked UE. However,
yet another error may introduce a raw UE into the same doubleword again. When a raw
UE is detected again, step 1 is repeated until the D1 cache way reduction is applied.

3. At this point, hardware changes the raw UE in the D1 cache data to a marked UE. The
load or store instruction accesses the doubleword with the marked UE. The marked UE is
detected during execution of the load or store instruction, as described in Raw
Uncorrectable Error in D1 Cache Data During D1 Cache Line Writeback, above.
210 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

P.9.4 Handling of a U2 Cache Data Error

U2 cache data is protected by 2-bit error detection and 1-bit error correction ECC, attached
to every doubleword.

Correctable Error in U2 Cache Data

When a correctable error is detected in the incoming U2 cache fill data from Jupiter Bus, the
data is corrected by hardware, stored into U2 cache. No exception is signalled.

When a correctable error is detected in the data from U2 cache for I1 cache fill, D1 cache
fill, copyback to Jupiter Bus, or writeback to Jupiter Bus, both the transfer data and source
data in U2 cache are corrected by hardware. The error is not reported to software.

Marked Uncorrectable Error in U2 Cache Data

For U2 cache data, a doubleword with marked UE is treated the same as a correct
doubleword. No error is reported when the marked UE in U2 cache data is detected.

When a marked uncorrectable error (UE) is detected in incoming U2 cache fill data from
Jupiter Bus, the doubleword with the marked UE is stored without modification in the target
U2 cache line.

When a marked uncorrectable error is detected in incoming data from the D1 cache to
writeback D1 cache line, the doubleword with the marked UE is stored without modification
in target U2 cache line. Note that there is no raw UE in D1 writeback data because error
marking is applied for D1 writeback data, as described in Handling of a D1 Cache Data
Error on page 209.

When a marked UE is detected in the data read from the U2 cache for an I1 cache fill, D1
cache fill, copyback to Jupiter Bus, or writeback to Jupiter Bus, the doubleword with the
marked UE is transferred without modification.

Raw Uncorrectable Error in U2 Cache Data

When a raw (unmarked) UE is detected in incoming U2 cache fill data, error marking is
applied for the doubleword with the raw UE, using ERROR_MARK_ID = 0. The doubleword
and its ECC are changed to the marked UE data, the changed data is stored in the target U2
cache line. No exception is signalled.

When a raw UE is detected in data read from U2 cache, such as for I1 cache fill, D1 cache
fill, copyback to Jupiter Bus, or writeback to Jupiter Bus, then error marking is applied for
the doubleword with the raw UE, using ERROR_MARK_ID = ASI_EIDR. Both the
doubleword and its ECC in the read data and those in the source U2 cache line are changed
to marked UE data. The restrainable error ASI_AFSR.UE_RAW_L2$INSD is detected.
Ver 1.0, 1 Jul. 2008 F. Appendix P Error Handling 211

P.9.5	 Automatic Way Reduction of I1 Cache, D1 Cache, and
U2 Cache

When frequent errors occur in the I1, D1, or U2 cache, hardware automatically detects that
condition and reduces the way, maintaining cache consistency.

Way Reduction Condition

Hardware counts the sum of the following error occurrences for each way of each cache:

■ For each way of the I1 cache:
■ Parity error in I1 cache tag or I1 cache tag copy
■ I1 cache data parity error

■ For each way of the D1 cache:
■ Parity error in D1 cache tag or D1 cache tag copy
■ Correctable error in D1 cache data
■ Raw UE in D1 cache data

■ For each way of U2 cache:
■ Correctable error and uncorrectable error in U2 cache tag
■ Correctable error in U2 cache data
■ Raw UE in U2 cache data

If an error count per unit of time for one way of a cache exceeds a predefined threshold,
hardware recognizes a cache way reduction condition and takes the actions described below.

I1 Cache Way Reduction

When a way reduction condition is recognized for the I1 cache way W (W = 0 or 1), the
following way reduction procedure is executed:

1. When only one way in I1 cache is active because of previous way reduction:

■ All entries in I1 cache way W are invalidated.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

2. Otherwise:

■ All entries in I1 cache way W are invalidated and the way W will never be refilled.

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

D1 Cache Way Reduction

When a way reduction condition is recognized for the D1 cache way W (W = 0 or 1), the
following way reduction procedure is executed:

1. When only one way in D1 cache is active because of previous way reduction:
212 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

■	 All entries in D1 cache way W are invalidated. On invalidation of each dirty D1 cache
entry, the D1 cache line is written back to its corresponding U2 cache line.

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

2. Otherwise:

■	 All entries in D1 cache way W are invalidated and the way W will never be refilled.
On invalidation of each dirty D1 cache entry, the D1 cache line is written back to its
corresponding U2 cache line.

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

U2 Cache Way Reduction

When a way reduction condition is recognized for a U2 cache way, the U2 cache way
reduction procedure is executed as follows:

1. When ASI_L2CTL.WEAK_SPCA = 0,

the U2 cache way reduction procedure (below) is started immediately.

2. Otherwise, when ASI_L2CTL.WEAK_SPCA = 1 is set,

the U2 cache way reduction procedure (below) becomes pending until

ASI_L2CTL.WEAK_SPCA is changed to 0. When ASI_L2CTL.WEAK_SPCA is

changed to 0, the U2 cache way reduction procedure will be started.

The U2 cache way W (W=0, 1, 2, or 3) reduction procedure:

1. When only one way in U2 cache is active because of previous way reductions:

■	 All entries in U2 cache way W are at once invalidated (that is, all active U2 cache
entries are invalidated) and U2 cache way W remains as the only available U2 cache
way. The U2 cache data is invalidated to retain system consistency.

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software, even though
the available U2 cache configuration is not changed as a result of the error.

2. Otherwise:

■	 All entries in available U2 cache ways, including way W, are invalidated to retain
system consistency.

■	 Way W becomes unavailable and is never refilled.

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.

P.10 TLB Error Handling

This section describes how TLB entry errors and sTLB way reduction are handled.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 213

P.10.1 Handling of TLB Entry Errors

Error protection and error detection in TLB entries are described in
TABLE P-18.

TABLE P-18 Error Protection and Detection of TLB Entries

TLB type Field Error Protection Detectable Error

sITLB and sDTLB tag Parity Parity error (Uncorrectable)

sITLB and sDTLB data Parity Parity error (Uncorrectable)

fITLB and fDTLB lock bit Triplicated None; the value is determined by
majority

fITLB and fDTLB tag except lock bit Parity Parity error (Uncorrectable)

fITLB and fDTLB data Parity Parity error

Errors can occur during the following events:

■ Access by LDXA instruction
■ Virtual address translation (sTLB)
■ Virtual address translation (fTLB)

Error in TLB Entry Detected on LDXA Instruction Access

If a parity error is detected in a DTLB entry when an LDXA instruction attempts to read
ASI_DTLB_DATA_ACCESS or ASI_DTLB_TAG_ACCESS, hardware automatically
demaps the entry and an instruction urgent error is indicated in ASI_UGESR.IUG_DTLB.

When a parity error is detected in an ITLB entry when an LDXA instruction attempts to read
ASI_ITLB_DATA_ACCESS or ASI_ITLB_TAG_ACCESS, hardware automatically
demaps the entry and an instruction urgent error is indicated in ASI_UGESR.IUG_ITLB.

Error in sTLB Entry Detected During Virtual Address Translation

When a parity error is detected in the sTLB entry during a virtual address translation,
hardware automatically demaps the entry and does not report the error to software.

Error in fTLB Entry Detected During Virtual Address Translation

When an fTLB tag has a parity error, the fTLB entry never matches any virtual address. An
fTLB tag error in a locked entry causes a TLB miss for the virtual address already registered
as the locked TLB entry.

A parity error in fTLB entry data is detected only when the tag of the fTLB entry matches a
virtual address.
214 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

When a parity error in the fITLB is detected at the time of an instruction fetch, a precise
instruction_access_error exception is generated. The parity error in the fITLB entry and
the fITLB entry index is indicated in ASI_ISFSR.

When a parity error in fDTLB is detected for the memory access of a load or store
instruction, a precise data_access_error exception is generated. The parity error in the
fDTLB entry and the fDTLB entry index is indicated in ASI_DSFSR.

P.10.2 Automatic Way Reduction of sTLB

When frequent errors occur in sITLB and sDTLB, hardware automatically detects that
condition and reduces the way, with no adverse effects on software.

Way Reduction Condition

Hardware counts TLB entry parity error occurrences for each sITLB way and sDTLB way.
If the error count per unit of time exceeds a predefined threshold, hardware recognizes an
sTLB way reduction condition.

sTLB Way Reduction

When a way reduction condition is recognized for the sTLB way W (W = 0 or 1), hardware
executes the following way reduction procedures:

1. When only one way in sTLB is active because of previous way reductions:

■	 The previously reduced way is reactivated.

2. Regardless of how many ways were previously active, way reduction occurs:

■	 Hardware reduces the way and invalidates all entries in sTLB way W. Way W will
never be refilled.

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software.
Ver 1.0, 1 Jul. 2008	 F. Appendix P Error Handling 215

216 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX Q

Performance Instrumentation

This appendix describes and specifies performance monitors that have been implemented in
the SPARC64 VII processor. The appendix contains these sections:

■ Performance Monitor Overview on page 217

■ Performance Event Description on page 219

■ Instruction and trap Statistics on page 222

■ MMU and L1 cache Event Counters on page 229

■ L2 cache Event Counters on page 230

■ Multi-thread specific Event Counters on page 234

Q.1 Performance Monitor Overview
For the definitions of performance counter registers, please refer to Performance Control
Register (PCR) (ASR 16) on page 18 and Performance Instrumentation Counter (PIC)
Register (ASR 17) on page 20.

Q.1.1 Sample Pseudo-codes

Counter Clear/Set

The PICs are read/write registers. Writing zero will clear the counter; writing any other value
will set that value. The following pseudocode procedure clears all PICs (assuming privileged
access):
Ver 1.0, 1 Jul. 2008 F. Appendix Q Performance Instrumentation 217

/* clear pics without altering sl/su values */

pic_init = 0x0;

pcr = rd_pcr();

pcr.ulro = 0x1; /* don’t change su/sl on write */

pcr.ovf = 0x0; /* clear overflow bits also */

pcr.ut = 0x0;

pcr.st = 0x0; /* disable counts for good measure */

for (i=0; i<=pcr.nc; i++) {

/* select the pic to be written */

pcr.sc = i;

wr_pcr(pcr);

wr_pic(pic_init);/* clear pic i */

}

Counter Event Selection and Start

Counter events are selected through PCR.SC and PCR.SU/PCR.SL fields. The following
pseudocode selects events and enables counters (assuming privileged access):

pcr.ut = 0x0; /* initially disable user counts */

pcr.st = 0x0; /* initially disable system counts */

pcr.ulro = 0x0; /* make sure read-only disabled */

pcr.ovro = 0x1; /* do not modify overflow bits */

/* select the events without enabling counters */

for(i=0; i<=pcr.nc; i++) {

pcr.sc = i;

pcr.sl = select an event;

pcr.su = select an event;

wr_pcr(pcr);

}

/* start counting */

pcr.ut = 0x1;

pcr.st = 0x1;

pcr.ulro = 0x1; /* for not changing the last su/sl */

/* resetting of overflow bits can be done here */

wr_pcr(pcr);

Counter Stop and Read

 The following pseudocode disables and reads counters (assuming privileged access):

pcr.ut = 0x0; /* disable counts */

pcr.st = 0x0; /* disable counts */

pcr.ulro = 0x1; /* enable sl/su read-only */

pcr.ovro = 0x1; /* do not modify overflow bits */

for(i=0; i<=pcr.nc; i++) {

/* assume rest of pcr data has been preserved */

218 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

pcr.sc = i;

wr_pcr(pcr);

pic = rd_pic();

picl[i] = pic.picl;

picu[i] = pic.picu;

}

Q.2 Performance Event Description
The performance events can be divided into the following groups:

1. Instruction and Trap statistics
2. MMU and L1 cache event counters
3. L2 cache event counters
4. Jupiter Bus transaction event counters
5. Multi-thread specific event counters

There are two types of performance events, basic and extended in SPARC64 VII.

Basic performance events are documented in JPS (Joint Programmer’s Specification) and
verification have been verified.

Extended events are not documented in JPS, and they are intended to provide information for
debugging the hardware. Users of these extended events should be aware of the following
rules.

a. Verification of the extended events is not necessarily completed. In other words,
the counters might not work as expected.

b.	 Definition of the extended events may change without notice. Compatibility is not
guaranteed between future SPARC64 generations.

All event counters implemented in SPARC64 VII are listed in TABLE Q-1. The events in
shadow are extended. The details of the performance counters are described in the following
sections. They are speculatively updated, unless specially noted.

TABLE Q-1 Events and Encoding of Performance Monitor

Encoding
Counter

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3

000000 cycle_counts

000001 instruction_counts
Ver 1.0, 1 Jul. 2008	 F. Appendix Q Performance Instrumentation 219

TABLE Q-1 Events and Encoding of Performance Monitor (Continued)

Encoding
Counter

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3

000010 instruction_fl
ow_counts

only_this_thr
ead_active

single_mode_
cycle_counts

single_mode_
instructions

instruction_fl
ow_counts

d_move_wait cse_priority_
wait

xma_inst

000011 iwr_empty w_cse_windo
w_empty

w_eu_comp_
wait

w_branch_co
mp_wait

iwr_empty w_op_stv_wa
it

w_d_move w_0endop

000100 Reserved w_op_stv_wa
it_nc_pend

w_op_stv_wa
it_sxmiss

w_op_stv_wa
it_sxmiss_ex

Reserved w_fl_comp_w
ait

w_cse_windo
w_empty_sp_
full

w_op_stv_wa
it_ex

000101 op_stv_wait

000110 Reserved

000111 Reserved

001000 load_store_instructions

001001 branch_instructions

001010 floating_instructions

001011 impdep2_instructions

001100 prefetch_instructions

001101 Reserved

001110 Reserved

001111 Reserved

010000 Reserved

010001 Reserved

010010 rs1 flush_rs Reserved

010011 1iid_use 2iid_use 3iid_use 4iid_use Reserved sync_intlk regwin_intlk Reserved

010100 Reserved

010101 Reserved toq_rsbr_pha
ntom

Reserved flush_rs Reserved rs1 Reserved

010110 trap_all trap_int_vec
tor

trap_int_lev
el

trap_spill trap_fill trap_trap_in
st

trap_IMMU_
miss

trap_DMMU
_miss

010111 Reserved

011000 only_this_thr
ead_active

both_threads
_active

both_threads
_empty

Reserved

011001 Reserved

011010 Reserved

011011 rsf_pmmi Reserved op_stv_wait_
nc_pend

0iid_use flush_rs Reserved decall_intlk

011100 Reserved

011101 act_thread_s
uspend

op_stv_wait_
sxmiss

op_stv_wait_
sxmiss_ex

op_stv_wait_
nc_pend

cse_window_
empty_sp_full

Reserved both_threads
_suspended

Reserved

011110 cse_window_
empty

eu_comp_wai
t

branch_comp
_wait

0endop op_stv_wait_
ex

fl_comp_wait 1endop 2endop
220 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

TABLE Q-1 Events and Encoding of Performance Monitor (Continued)

Encoding
Counter

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3

011111 inh_cmit_gpr
_2write

Reserved 3endop Reserved op_stv_wait_
sxmiss_ex

op_stv_wait_
sxmiss

100000 Reserved write_if_uTL
B

write_op_uT
LB

if_r_iu_req_
mi_go

op_r_iu_req
_mi_go

if_wait_all op_wait_all

100001 Reserved

100010 Reserved

100011 if_l1_thrashi
ng

op_l1_thrashi
ng

Reserved

100100 swpf_success
_all

swpf_fail_all Reserved swpf_lbs_hit Reserved

100101 Reserved

100110 Reserved

100111 Reserved

110000 sx_miss_wait
_dm

sx_miss_wai
t_pf

sx_miss_co
unt_dm

sx_miss_co
unt_pf

sx_read_co
unt_dm

sx_read_co
unt_pf

dvp_count_
dm

dvp_count_
pf

110001 jbus_bi_count jbus_cpi_co
unt

jbus_cpb_co
unt

jbus_cpd_co
unt

jbus_reqbus
_busy

jbus_odrbus
_busy

Reserved

110010 Reserved snres_256 snres_64 Reserved

110011 Reserved sx_btc_count sx_miss_coun
t_dm_if

sx_miss_coun
t_dm_opsh

sx_miss_coun
t_dm_opex

110100 lost_softpf_pf
p_full

Reserved lost_softpf_by
_abort

Reserved

110101 Reserved

110110 jbus_reqbus0
_busy

jbus_reqbus1
_busy

jbus_reqbus2
_busy

jbus_reqbus3
_busy

jbus_odrbus0
_busy

jbus_odrbus1
_busy

jbus_odrbus2
_busy

jbus_odrbus3
_busy

111111 Disabled (No PIC is counted up)
Ver 1.0, 1 Jul. 2008 F. Appendix Q Performance Instrumentation 221

Q.2.1 Instruction and trap Statistics

Basic events

1	 cycle_counts
Counts the cycles when the performance monitor is enabled. This counter is similar to
the %tick register but can separate user cycles from system cycles, based on PCR.UT
and PCR.ST selection.

2	 instruction_counts (non-speculative)
Counts the number of committed instructions. For user or system mode counts, this
counter is exact. Combined with the cycle_counts, it provides instructions per cycle.

IPC = instruction_counts / cycle_counts

If Instruction_counts and cycle_counts are both collected for user or system mode, IPC
in user or system mode can be derived.

3	 load_store_instructions (non-speculative)
Counts the committed load/store instructions. Also counts atomic load-store instructions.

4	 branch_instructions (non-speculative)
Counts the committed branch instructions. Also counts CALL, JMPL, and RETURN
instructions.

5	 floating_instructions (non-speculative)
Counts the committed floating-point operations (FPop1 and FPop2). Does not count
Floating-Point Multiply-and-Add instructions.

6	 impdep2_instructions (non-speculative)
Counts the committed Floating Multiply-and-Add instructions.

Contrary to its name, FPMADDX and FPMADDXHI are not counted by this counter. See
xma_inst counter for detail.

7	 prefetch_instructions (non-speculative)

Counts the committed prefetch instructions.

8	 trap_all (non-speculative)
Counts all trap events. The value is equivalent to the sum of type-specific traps counters.
222 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

9	 trap_int_vector (non-speculative)
Counts the occurrences of interrupt_vector_trap.

10	 trap_int_level (non-speculative)
Counts the occurrences of interrupt_level_n.

11	 trap_spill (non-speculative)
Counts the occurrences of spill_n_normal, spill_n_other.

12	 trap_fill (non-speculative)
Count the occurrences of fill_n_normal, fill_n_other.

13	 trap_trap_inst (non-speculative)
Counts the occurrences of Tcc instructions.

14	 trap_IMMU_miss (non-speculative)
Counts the occurrences of fast_instruction_access_MMU_miss.

15	 trap_DMMU_miss (non-speculative)
Counts the occurrences of fast_data_instruction_access_MMU_miss.

Extended events

16	 xma_inst (non-speculative)
Counts the committed FPMADDX and FPMADDXHI instructions.

17	 instruction_flow_counts (non-speculative)

Number of committed instruction flow during measuring period. In SPARC64 VII, for
specific instructions, an instruction may be internally represented as a set of instructions,
and executed as if it were multiple instructions. instruction_flow_count measures the
number of internal instructions during measuring period.

18	 iwr_empty

Number of cycles that IWR (Issue Word Register) is empty. IWR is a four-entry register
that holds instructions while the decoder is processing. IWR empty may be caused on
instruction cache miss. Note that the IWR is shared between both threads in a core.
Ver 1.0, 1 Jul. 2008	 F. Appendix Q Performance Instrumentation 223

19 rs1 (non-speculative)

The number of cycles that normal execution is halted in order to service one of the
following:

■ trap, interrupt
■ update of privileged registers
■ assurance of memory order
■ hardware retry (RAS initiated)

20 flush_rs (non-speculative)

Number of pipeline flushes due to mis-prediction. Since SPARC64 VII employs
speculative execution, it may execute instructions that should have not been executed due
to mis-prediction. When the predict path is found to be wrong, all instructions in the
pipeline are aborted and execution of the correct path is started. A pipeline flush occurrs
at this time.

 mis-prediction rate = flush_rs / branch_instructions

21 0iid_use

No instruction is issued in a cycle. SPARC64 VII issues up to four instructions. 0iid_use
is incremented when no instruction is issued. In SPARC64 VII, for specific instructions,
an instruction may be internally represented as a set of instructions. If an instruction is
represented internally by multiple smaller instructions, each sub-instruction is measured.

22 1iid_use

One instruction is issued in a cycle.

23 2iid_use

Two instructions are issued in a cycle.

24 3iid_use

Three instructions are issued in a cycle.

25 4iid_use

Four instructions are issued in a cycle.

26 sync_intlk

Number of cycles that prevent issuing instructions due to pre-sync and post-sync.
224 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

27 regwin_intlk

Number of cycles that prevent issuing instructions due to CWR switch. CWR holds the
value of window register (%r8 - %r31), and its neighbors. Replacing the contents of CWR
is caused by a save/restore or trap. Replacement is usually done concurrently in the
background, but it can sometimes cause an interlock such as successive save/restore.

28 decall_intlk

Number of cycles that prevent issuing instructions due to any static inter-lock conditions
at the decode stage. decall_intlk includes sync_intlk and regwin_intlk, but it does not
count stall cycles due to dynamic conditions such as reservation station full.

29 toq_rsbr_phantom

Counts when an instruction predicted as a taken branch is actually not a branch
instruction. This may happen in SPARC64 VII since branch prediction is done prior to
decode of the instruction.

30 op_stv_wait (non-speculative)

Number of cycles that instruction commit is not done due to data wait. SPARC64 VII has
a resource named CSE (Commit Stack Entry), which holds information of in-flight
instructions. CSE is a fifo, and information is registered in-order. op_stv_wait is measured
if the top entry of CSE (TOQ: Top of Queue) is a memory access instruction and data is
not ready.

op_stv_wait does not count memory access latency for a store instruction (however,
memory access latency for an atomic instruction is counted). This is due to a feature of
which SPARC64 VII employs for performance improvement. SPARC64 VII commits a
store instruction before data is written to L2 cache.

Caution is needed because not all data cache miss latency is measured by op_stv_wait.
When a data cache miss occurrs, and after all instructions prior to that instruction have
committed, the latency of that instruction is measured.

Also caution is needed because the event is counted regardless of a given thread having
priority to commit. To measure the event in the prioritized cycles, use w_op_stv_wait.

31 op_stv_wait_nc_pend (non-speculative)

op_stv_wait due to non-cache accesses regardless of a given thread having commit
priority.
Ver 1.0, 1 Jul. 2008 F. Appendix Q Performance Instrumentation 225

32 op_stv_wait_ex (non-speculative)

No instruction is committed waiting for an integer load instruction in TOQ to complete,
regardless of a given thread having commit priority.

33 op_stv_wait_sxmiss (non-speculative)

op_stv_wait due to L2$ miss regardless of a given thread having commit priority.

34 op_stv_wait_sxmiss_ex (non-speculative)

op_stv_wait_ex due to L2$ miss regardless of a given thread having commit priority.

35 cse_window_empty_sp_full (non-speculative)

No instruction is committed because CSE is empty while the Store Port is full, regardless
of a given thread having commit priority.

36 cse_window_empty (non-speculative)

No instruction is committed because CSE is empty, regardless of a given thread having
commit priority.

37 branch_comp_wait (non-speculative)

No instruction is committed waiting for a branch instruction in TOQ to complete. Its
priority is lower than eu_comp_wait, regardless of a given thread having commit priority.

38 eu_comp_wait (non-speculative)

No instruction is committed waiting for an integer and floating-point instruction in TOQ
to complete. Its priority is higher than branch_comp_wait, regardless of a given thread
having commit priority.

39 fl_comp_wait (non-speculative)

No instruction is committed waiting for a floating-point instruction in TOQ to complete,
regardless of a given thread having commit priority.

40 d_move_wait (non-speculative)

No instruction is committed waiting for register window, regardless of a given thread
having commit priority.
226 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

41 cse_priority_wait

No instruction is committed because the thread is waiting for commit priority. In
SPARC64 VII, only one thread can commit instructions in a given cycle, and the priority
is swithed every cycle as long as the other thread is active. cse_priority_wait counts the
number of cycles the thread is ready to commit but does not have the right to do so. The
event is counted only when there is an instruction to be committed for the thread.

42 0endop (non-speculative)

No instruction is committed regardless of whether the given thread has commit priority.

43 1endop (non-speculative)

One instruction is committed.

44 2endop (non-speculative)

Two instructions are committed.

45 3endop (non-speculative)

Number of cycles three instructions are committed.

46 inh_cmit_gpr_2write (non-speculative)

Less than four instructions are committed due to lack of GPR write ports.

47 w_op_stv_wait (non-speculative)

Number of cycles op_stv_wait is observed for the thread that has commit priority.

48 w_op_stv_wait_nc_pend (non-speculative)

Number of cycles op_stv_wait_nc_pend is observed for the thread that has commit
priority.

49 w_op_stv_wait_ex (non-speculative)

Number of cycles op_stv_wait_ex is observed for the thread that has commit priority.

50 w_op_stv_wait_sxmiss (non-speculative)

Number of cycles op_stv_wait_sxmiss is observed for the thread that has commit priority.
Ver 1.0, 1 Jul. 2008 F. Appendix Q Performance Instrumentation 227

51 w_op_stv_wait_sxmiss_ex (non-speculative)

Number of cycles op_stv_wait_sxmiss_ex is observed for the thread that has commit
priority.

52 w_cse_window_empty_sp_full (non-speculative)

Number of cycles cse_window_empty_sp_full is observed for the thread that has commit
priority.

53 w_cse_window_empty (non-speculative)

Number of cycles cse_window_empty is observed for the thread that has commit priority.

54 w_branch_comp_wait (non-speculative)

Number of cycles branch_comp_wait is observed for the thread that has commit priority.

55 w_eu_comp_wait (non-speculative)

Number of cycles eu_comp_wait is observed for the thread that has commit priority.

56 w_fl_comp_wait (non-speculative)

Number of cycles fl_comp_wait is observed for the thread that has commit priority.

57 w_d_move_wait

Number of cycles d_move_wait is observed on the thread which has no right to commit.

58 w_0endop (non-speculative)

Number of cycles 0endop is observed on the thread which has no right to commit.

59 rsf_pmmi (non-speculative)

Number of cycles where the processor was mixing single and double precision.
228 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Q.2.2 MMU and L1 cache Event Counters

Basic events

1	 write_if_uTLB
Counts the occurrences of instruction uTLB misses.

2	 write_op_uTLB
Counts the occurrences of data uTLB misses.

Note – Occurrences of main TLB misses are counted by trap_IMMU_miss/
trap_DMMU_miss.

3	 if_r_iu_req_mi_go
Counts the occurrences of I1 cache misses.

4	 op_r_iu_req_mi_go
Counts the occurrences of D1 cache misses.

5	 if_wait_all
Counts the total latency of I1 cache misses. Sum of if_wait=xxx is shown. Caution must
be taken as it does not represent L1 instruction cache miss latency. Events measured in
if_wait=xxx are mutually exclusive, thus, at most one of if_wait=xxx is counted up in a
cycle. SPARC64 VII can process multiple cache misses in parallel since it employs a
non-blocking cache, but only one (TOQ) of those accesses is measured.

6	 op_wait_all
Counts the total latency of D1 cache misses. Sum of op_wait=xxx is shown. Caution
must be taken as it does not represent L1 instruction cache miss latency. Events
measured in op_wait=xxx are mutually exclusive, thus, at most one of op_wait=xxx is
counted up in a cycle. SPARC64 VII can process multiple cache misses in parallel since
it employs a non-blocking cache, but only one (TOQ) of those accesses is measured. The
condition where an access becomes a TOQ is beyond the scope of this document, but
suffice it to say that a prefetch instruction can never become a TOQ.
Ver 1.0, 1 Jul. 2008	 F. Appendix Q Performance Instrumentation 229

Extended events

7 swpf_success_all

Number of prefetch instructions not lost in SU and sent to SX successfully.

8 swpf_fail_all

Number of prefetch instructions lost in SU.

9 swpf_lbs_hit

Number of prefetch instructions resulting in a L1-cache hit.

The number of prefetch instructions sent to SU
= swpf_success_all + swpf_fail_all + swpf_lbs_hit

10 if_l1_thrashing

Counts the occurrences of a read port issuing a move-in request twice for a cache line
before releasing the port. This could happen when an L1 instruction cache miss occurs,
data is obtained, but then pushed out before reading.

11 op_l1_thrashing

Counts the occurrences of a read port issuing a move-in request twice for a cache line
before releasing the port. This could happen when an L1 data cache miss occurs, data is
obtained, but then pushed out before reading.

Q.2.3 L2 cache Event Counters

Most L2 cache access related counters are categorized as dm (demand) and pf (prefetch), but
for these counters, it does not always correspond to load/store/atomic or prefetch
instructions. This is because:

a.	 If a load/store/atomic instruction can not be processed due to starvation of L1 cache
resources, these requests are handled as if they were prefetches to L2 cache, which
does not use L1 cache resources. These requests are treated as 'prefetch' in the L2
cache access related counters.

b. SPARC64 VII employs hardware to prefetch data for a sequential access. A hardware
prefetch request is treated as 'prefetch' in the L2 cache access related counters.
230 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Basic events

1	 sx_miss_wait_dm

Counts the number of cycles from the occurrence of an L2 cache miss to data returned,
caused by demand access.

2	 sx_miss_wait_pf
Counts the number of cycles from the occurrence of an L2 cache miss to data returned,
caused by both software prefetch and hardware prefetch access.

3	 sx_miss_count_dm

Counts the occurrences of L2 cache miss by demand access. A Request to the same line
of outstanding access (not yet completed) is considered to be "hit" and not counted in this
counter.

4	 sx_miss_count_pf
Counts the occurrences of L2 cache miss by both software prefetch and hardware
prefetch access.

5	 sx_read_count_dm

Counts L2 cache references by demand read access. A cache access may be aborted for
many reasons such as contention of resources. sx_read_count_dm does not measure a
retry of cache accesses. It double-counts multi-flow operations. Therefore the following
equation is approximately true (but not precise):

sx_read_count_dm + sx_read_count_pf =

number of cache misses by L1I and L1D + number of non-lost hardware prefetch +

number of physical address access which bypass the L1 cache (ASI:0x14, 0x1c, 0x34,

0x3c)

Requests from other CPUs (copyback/invalidate request) are not measured by this
counter.

6	 sx_read_count_pf
Counts L2 cache references by both software prefetch and hardware prefetch access.

7	 dvp_count_dm
Counts the occurrences of L2 cache miss by demand with writeback request.
Ver 1.0, 1 Jul. 2008	 F. Appendix Q Performance Instrumentation 231

8	 dvp_count_pf
Counts the occurrences of L2 cache miss by both software prefetch and hardware
prefetch, with writeback request.

Extended events

9 sx_miss_count_dm_if

Count of L2 cache miss by demand request for instruction fetch

10 sx_miss_count_dm_opsh

Count of L2 cache misses by demand request of shared type for operand access.

11 sx_miss_count_dm_opex

Count of L2 cache misses by demand request of exclusive type for operand access.

12	 sx_btc_count

Number of requests of exclusive type while the line exists in SX with the S or O
attributes.

13 lost_softpf_pfp_full

Number of software prefetch requests lost due to PF port full.

14 lost_softpf_by_abort

Number of software prefetch requests lost due to SX pipe abort.

Q.2.4 Jupiter Bus Event Counters

Basic events

1	 jbus_bi_count
Counts the number of invalidation requests received.

2	 jbus_cpi_count
Counts the number of copy and invalidate requests received.
232 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

3	 jbus_cpb_count
Counts the number of copyback requests received.

4	 jbus_cpd_count
Counts the number of block-load requests and reqd requests from IOs.

Extended events

5	 sn_res_64

The number of SC replies which indicate 1 subline (64 byte) will be transferred to the
CPU.

6	 sn_res_256

The number of SC replies which indicate 4 sublines (256byte) will be transferred to the
CPU.

7 jbus_odrbus_busy

Counts the number of busy cycles for order buses from the SCs to the CPU in Jupiter Bus
cycles. There are four order buses (maximum) connecting SCs and a CPU with dedicated
event counters. jbus_odrbus_busy summarizes these counters.

jbus_odrbus_busy = jbus_odrbus0_busy + jbus_odrbus1_busy + jbus_odrbus2_busy +
jbus_odrbus3_busy

8 jbus_reqbus_busy

Counts the number of busy cycles for request buses from the CPU to SCs in CPU cycles.
There are four request buses (maximum) connecting a CPU and SCs with dedicated event
counters. jbus_reqbus_busy summarizes these counters.

jbus_reqbus_busy = jbus_reqbus0_busy + jbus_reqbus1_busy + jbus_reqbus2_busy +
jbus_reqbus3_busy

9 jbus_odrbus0_busy

Counts the number of busy cycles for the bus from SC0 to the CPU.

10 jbus_reqbus0_busy

Counts the number of busy cycles for the bus the CPU to SC0.
Ver 1.0, 1 Jul. 2008	 F. Appendix Q Performance Instrumentation 233

SP
11 jbus_odrbus1_busy

Counts the number of busy cycles for the bus from SC1 to the CPU.

12 jbus_reqbus1_busy

Counts the number of busy cycles for the bus from the CPU to SC1.

13 jbus_odrbus2_busy

Counts the number of busy cycles for the bus from SC2 to the CPU.

14 jbus_reqbus2_busy

Counts the number of busy cycles for the bus from the CPU to SC2.

15 jbus_odrbus3_busy

Counts the number of busy cycles for the bus from SC3 to the CPU.

16 jbus_reqbus3_busy

Counts the number of busy cycles for the bus from the CPU to SC3.

Q.2.5 Multi-thread specific Event Counters

Extended events

1 single_mode_cycle_counts

Number of cycles the thread is active in single threaded mode.

2 single_mode_instructions

Number of committed instructions in single threaded mode.

3 both_threads_active

Number of cycles both of the threads in a core are active and at least one entry of CSE in
both threads are used.
234 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

4 both_threads_empty

Number of cycles both of the threads in a core are active, but the CSE in both threads are
empty.

5 both_threads_suspended

Number of cycles when both of the threads in a core are in the suspended state.

6 only_this_thread_active

Number of cycles only this thread in a core is active and the other thread is in the

suspended state.

7 act_thread_suspend

Number of cycles that this thread is in the suspended state.
Ver 1.0, 1 Jul. 2008 F. Appendix Q Performance Instrumentation 235

Q.3 CPI analysis
A common way to identify a performance bottleneck in SPARC64 VII is to measure the
number of stall cycles and the cause of the stall for each instruction. This is called CPI
(Cycle Per Instruction) analysis. The performance events shown in Table Q-2 are useful for
CPI analysis on a thread-base and a core-base. Note that using a sum of events for both
threads leads to a core-based analysis. These events are all counted at the commit stage.

TABLE Q-2 Performance events useful for CPI analysis

Number of instructions
and cycles committed Factors to prevent the next instruction from committing

Inst. Cycle Thread-based analysis Core-based analysis1

4 cycle_counts
- 3endop - 2endop
- 1endop - 0endop

N/A (Four instructions are committed in a cycle)

3 3endop inh_cmit_gpr_2write + misc.

 misc. = 2endop + 3endop - inh_cmit_gpr_2write 2 2endop

1 1endop misc. = 1endop

0 0endop Others 0endop
- d_move_wait
- cse_priority_wait
- op_stv_wait
- cse_window_empy
- eu_comp_wait
- branch_comp_wait
-(instruction_flow_counts

- instruction_counts)

w_0endop
- w_d_move

- w_op_stv_wait
- w_cse_window_empy
- w_eu_comp_wait
- w_branch_comp_wait
-(instruction_flow_counts

- instruction_counts)

wait for commit
priority

cse_priority_wait

Execution eu_comp_wait
+ branch_comp_wait

w_eu_comp_wait
+ w_branch_comp_wait

Fetch miss cse_window_empy w_cse_window_empy

L1D cache miss op_stv_wait
- L2 cache miss

w_op_stv_wait
- L2 cache miss

L2 cache miss op_stv_wait_sxmiss
+ op_stv_wait_nc_pend

w_op_stv_wait_sxmiss
+ w_op_stv_wait_nc_pend

1.Use sum of events in both threads.
236 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Q.4 Shared performance events between threads

The performance counters (PCR and PIC) are not shared between threads. This is true for
performance events as well. In other words, a given performance event increments a
performance counter of one and only one thread which has triggered the event.

But there are some exceptions. The following performance events are shared among all eight
threads. That is, each event increments PICs for all of the threads.

■ cycle_counts
■ Jupiter Bus events

These performance events are shared by two threads in a core.

■ both_threads_active, both_threads_empty, both_threads_suspended

Q.5	 Differences of Performance Events
Between SPARC64 VI and SPARC64 VII
As defined in Section Q.2, Performance Event Description, on page 219, extended events
may change in definition, or even existence, without notice. Some events found in
SPARC64 VI no longer exist in SPARC64 VII. This section summarize the difference of
extended events in these CPUs.

Encoding Counter SPARC64 VI SPARC64 VII Reason

0000102 picl0 Reserved only_this_thread_ac
tive

Add SMT event

0000102 picu1 Reserved single_mode_cycle_
counts

Add SMT event

0000102 picl1 Reserved single_mode_instruc
tions

Add SMT event

0000102 picl2 Reserved d_move_wait Microarchitecture design
changed

0000102 picu3 Reserved cse_priority_wait Add SMT event

0000102 picl3 Reserved xma_inst New Instruction

0000112 picl0 Reserved w_cse_window_emp
ty

Add SMT event
Ver 1.0, 1 Jul. 2008	 F. Appendix Q Performance Instrumentation 237

Encoding Counter SPARC64 VI SPARC64 VII Reason

0000112 picu1 Reserved w_eu_comp_wai Add SMT event

0000112 picl1 Reserved w_branch_comp_wa
it

Add SMT event

0000112 picl2 Reserved w_op_stv_wait Add SMT event

0000112 picu3 Reserved w_d_move Add SMT event

0000112 picl3 Reserved w_0endop Add SMT event

0001002 picl0 Reserved w_op_stv_wait_nc_p
end

Add SMT event

0001002 picu1 Reserved w_op_stv_wait_sxmi
ss

Add SMT event

0001002 picl1 Reserved w_op_stv_wait_sxmi
ss_ex

Add SMT event

0001002 picl2 Reserved w_fl_comp_wait Add SMT event

0001002 picu3 Reserved w_cse_window_emp
ty_sp_full

Add SMT event

0001002 picl3 Reserved w_op_stv_wait_ex Add SMT event

0110002 picu0 thread_switch_all only_this_thread_ac
tive

VMT to SMT

0110002 picl0 ts_by_sxmiss both_threads_active VMT to SMT

0110002 picu1 ts_by_data_arrive both_threads_empty VMT to SMT

0110002 picl1 ts_by_timer Reserved Remove VMT event

0110002 picu2 ts_by_intr Reserved Remove VMT event

0110002 picl2 ts_by_if Reserved Remove VMT event

0110002 picl3 ts_by_suspend Reserved Remove VMT event

0110012 picl3 ts_by_other Reserved Remove VMT event

0110102 all active_cycle_count Reserved Remove VMT event

0111012 picl3 Reserved both_threads_suspen
ded

Add SMT event

1000112 picu0 Reserved if_l1_thrashing Enhance Microarchitecture

1000112 picl0 Reserved op_l1_thrashing Enhance Microarchitecture
238 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX R

Jupiter Bus Programmer’s Model

This chapter describes the programmers model of the Jupiter Bus interface of the
SPARC64 VII. The registers for the Jupiter Bus interface and the access method for those
registers are described.

R.3 Jupiter Bus Config Register
The Jupiter Bus Config Register is an implementation-specific ASI read-only register. This
register is accessible in the ASI 4A16 space from the processor.

[1] Register Name: ASI_JB_CONFIG_REGISTER

[2] ASI: 4A16
[3] VA: 0
[4] RW Supervisor read, a write is ignored.
[5] Data

The Jupiter Bus Config Register is illustrated below and described in TABLE R-1.

Reserved UC_S UC_SW CLK_MODE Reserved ITID

63 20 19 17 16 15 11 10 9 0

TABLE R-1

Bits

63:20

19:17

Jupiter Bus Config Register Description

Field RW Description

— R Reserved. Read as 0.

UC_S R U2 cache size:

1002: 4 MB
 1012: 5 MB

1102: 6 MB
Ver 1.0, 1 Jul. 2008 F. Appendix R Jupiter Bus Programmer’s Model 239

TABLE R-1 Jupiter Bus Config Register Description (Continued)

Bits Field RW Description

16 UC_SW R U2 cache size per way

0: 0.5 MB
1: 1 MB

15:11	 CLK_MODE R Specify the ratio between CPU clock and JBUS clock.
000002 – 010112: Reserved
011002: 3:1
011012: 3.25:1
011102: 3.5:1
...
111102: 7.5:1

9:0 ITID R This field shows ITID (Interrupt Target ID) of the thread.
240 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

F.AP PE ND IX S

Summary Differences Between

SPARC64 VI and SPARC64 VII

The following table summarizes differences between SPARC64 VI and SPARC64 VII ISA.
This list is a summary, not an exhaustive list.

SPARC64 VI SPARC64 VII
SPARC64 VII
page

C
hi

p Chip
Architecture

2CORE x 2VMT
128KB(I) + 128KB(D) L1-Cache/core

4CORE x 2SMT
64KB(I) + 64KB(D) L1-Cache /core

2, 45
148

M
M

U

Newly Added
Features

N/A fTLB as a victim cache
Shared Context
TSB Prefetch

117
114
127

Removed
Features

sTLB hash N/A 116

In
st

ru
ct

io
n Modified

Instructions
N/A sleep

prefetch
60
70

Newly Added
Instructions

Newly Added
Registers

N/A FPMADDXHI, FPMADDX 61

R
eg

is
te

r

N/A SHARED_CONTEXT
I/DTSB_PREFETCH
BARRIER_INIT
BARRIER_ASSIGN
LBSY, BST

114
127
143
144
145

Removed
Registers

L2_DIAG_TAG_READ
L2_DIAG_TAG_READ_REG

N/A N/A

Modified
Registers

VER VER 18
Ver 1.0, 1 Jul. 2008 F. Appendix S Summary Differences Between SPARC64 VI and SPARC64 VII 241

242 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

Index

A
A_UGE

categories 175

error detection action 180

error detection mask 179

specification of 175

address mask (AM) field of PSTATE register 53

address space identifier (ASI)

complete list 137

ADE

conditions causing 192

end-method 194

registers written for update/validation 193

software handling 195

state transition 192

see also async_data_error

ASI_AFAR_D1 167, 190, 199, 206

ASI_AFAR_U2 167, 190, 199, 206

ASI_AFSR, see ASI_ASYNC_FAULT_STATUS

ASI_ASYNC_FAULT_STATUS 178, 198, 198, 206

ASI_ATOMIC_QUAD_LDD_PHYS 64, 129, 137, 138

ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE 64, 129,

ASI_DCU_CONTROL_REGISTER 138

ASI_DCUCR 138

ASI_DMMU_SFAR 178

ASI_DMMU_SFSR 178

ASI_DMMU_TAG_ACCESS 190

ASI_DMMU_TAG_TARGET 190

ASI_DMMU_TSB_64KB_PTR 190

ASI_DMMU_TSB_8KB_PTR 190

ASI_DMMU_TSB_BASE 190

ASI_DMMU_TSB_DIRECT_PTR 190

ASI_DMMU_TSB_NEXT 190

ASI_DMMU_TSB_PEXT 190

ASI_DMMU_TSB_PTR 204

ASI_DMMU_TSB_SEXT 190

ASI_DSFSR

FTYPE field 140, 141

ASI_DTLB_DATA_ACCESS 214

ASI_DTLB_TAG_ACCESS 214

ASI_ECR 185

UGE_HANDLER 180

ASI_EIDR 178, 185, 188, 190, 207, 210

ASI_ERROR_CONTROL 178, 185

UGE_HANDLER 192

update after ADE 193

WEAK_ED 174

ASI_FLUSH_L1I 148, 151, 152

ASI_IESR 138

ASI_IMMU_SFSR 178

ASI_IMMU_TAG_ACCESS 190

ASI_IMMU_TAG_TARGET 190

ASI_IMMU_TSB_64KB_PTR 190

137
Ver 1.0, 1 Jul. 2008 Index 243

ASI_IMMU_TSB_8KB_PTR 190

ASI_IMMU_TSB_BASE 190

ASI_IMMU_TSB_PEXT 190

ASI_IMMU_TSB_SEXT 190

ASI_INT_ERROR_CONTROL 138

ASI_INT_ERROR_RECOVERY 138

ASI_INT_ERROR_STATUS 138

ASI_INTR_DISPATCH_STATUS 156

ASI_INTR_DISPATCH_W 190

ASI_INTR_R 157, 190

ASI_INTR_RECEIVE 157

ASI_INTR_W 155, 156

ASI_ITLB_DATA_ACCESS 214

ASI_ITLB_TAG_ACCESS 214

ASI_JB_CONFIG_REGISTER 205, 239

ASI_L2_CTRL 152

ASI_MCNTL 109

JPS1_TSBP 105

ASI_MEMORY_CONTROL_REG 138

ASI_NUCLEUS 70, 119, 122

ASI_NUCLEUS_LITTLE 70, 122

ASI_PA_WATCH_POINT 188, 190

ASI_PHYS_BYPASS_EC_WITH_E_BIT 149

ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE 149

ASI_PHYS_BYPASS_WITH_EBIT 26

ASI_PRIMARY 70, 119, 122

ASI_PRIMARY_AS_IF_USER 70

ASI_PRIMARY_AS_IF_USER_LITTLE 70

ASI_PRIMARY_CONTEXT 190

ASI_PRIMARY_LITTLE 70, 122

ASI_SCRATCH 140

ASI_SECONDARY 70

ASI_SECONDARY_AS_IF_USER 70

ASI_SECONDARY_AS_IF_USER_LITTLE 70

ASI_SECONDARY_CONTEXT 190

ASI_SECONDARY_LITTLE 70

ASI_SERIAL_ID 48, 139

ASI_STCHG_ERROR_INFO 178

ASI_UGESR 189

IUG_DTLB 214

ASI_UPA_CONFIGURATION_REGISTER 138

ASI_URGENT_ERROR_STATUS 178, 189

ASI_VA_WATCH_POINT 188, 190

ASRs 18

async_data_error exception 3, 25, 38, 39, 39, 39, 40, 50,

88, 89, 93, 175, 176, 179, 180, 186, 188, 189, 191,

192, 192

asynchronous error 15

atomic

load quadword 64

load-store instructions

compare and swap 37

B
block

block store with commit 140

load instructions 140

store instructions 140

blocked instructions 11

branch history buffer 2, 2, 6, 30

branch instructions 22

BRHIS, see branch history buffer 30

bypass attribute bits 129

C
cache

coherence 150, 164

data

cache tag error handling 208

characteristics 149

data error detection 209

description 7

modification 147

protection 209

uncorrectable data error 210

way reduction 212

error protection 3

event counting ??–232

instruction
244 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

characteristics 148

data protection 209

description 7

error handling 209

fetched 9

flushing/invalidation 151

invalidation 147

way reduction 212

level-1

characteristics 147

level-2

characteristics 147

control register 152

unified 149

use 2

snooping 164

synchronizing 42

unified

characteristics 149

description 7

CALL instruction 22, 28, 63

CANRESTORE register 190

CANSAVE register 190

CASA instruction 26, 37, 123

CASXA instruction 26, 37, 123

catastrophic_error exception 37

CE

correction 182

counting in D1 cache data 212

in D1 cache data 209

in U2 cache tag 208

Chip Multi Processing 45

CLEANWIN register 92, 190

CLEAR_SOFTINT register 203

cmask field 67

CMP 46

CMP, see Chip Multi Processing

Commit Stack Entry 6, 32, 225

committed, definition 9, 10, 11, 12

compare and swap instructions 37

completed, definition 9

context ID hashing 110

core 3, 4, 10, 40, 45, 46, 47

counter

disabling/reading 218

enabling 218

overflow (in PIC) 20

CPopn instructions (SPARC V8) 54

CSE, see Commit Stack Entry

current exception (cexc) field of FSR register 16

CWP register 92, 190

D
DAE

error detection action 180, 186

error detection mask 179

reporting 174

data

cacheable
doubleword error marking 183

error marking 182

error protection 182

prefetch 25

data_access_error exception 65, 107, 124, 152, 175

data_access_exception exception 64, 107, 123, 124, 140,

151

data_access_MMU_miss exception 50

data_access_protection exception 50, 65

data_breakpoint exception 89

DCR

error handling 203

nonprivileged access 20

DCU_CONTROL register 205

DCUCR

access data format 21

CP (cacheability) field 21

CV (cacheability) field 21

data watchpoint masks 68

DC (data cache enable) field 21

DM (DMMU enable) field 21

field setting after POR 20

IC (instruction cache enable) field 21

IM field 148, 164

Ver 1.0, 1 Jul. 2008 Index 245

IMI (IMMU enable) field 21

PM (PA data watchpoint mask) field 21

PR/PW (PA watchpoint enable) fields 21

updating 164

VM (VA data watchpoint mask) field 21

VR/VW (VA data watchpoint enable) fields 21

WEAK_SPCA field 21

deferred trap 37

deferred-trap queue

floating-point (FQ) 15, 22

integer unit (IU) 11, 15, 23, 87

denormalized

operands 16

results 16

DG_L1$L2$STLB error 213

DG_L1$U2$STLB error 213

dispatch (instruction) 9

disrupting traps 15, 37

distribution

nonspeculative 10

speculative 11

D-MMU

Secondary Context Register 113, 115

DMMU

access bypassing 129

disabled 108

internal register (ASI_MCNTL) 109

registers accessed 109

Synchronous Fault Status Register 118

Tag Access Register 107

DMMU_DEMAP register 207

DMMU_PA_WATCHPOINT register 206

DMMU_SFAR register 206

DMMU_SFSR register 206

DMMU_TAG_ACCESS register 206

DMMU_TAG_TARGET register 206

DMMU_TSB_64KB_PTR register 207

DMMU_TSB_8KB_PTR register 207

DMMU_TSB_BASE register 206

DMMU_TSB_DIRECT_PTR register 207

DMMU_TSB_NEXT register 207

DMMU_TSB_PEXT register 206

DMMU_TSB_SEXT register 207

DMMU_VA_WATCHPOINT register 206

DSFAR

on JMPL instruction error 63

update during MMU trap 107

DSFSR

bit description 121

format 118

FT field 123, 124, 151

on JMPL instruction error 63

UE field 122

update during MMU trap 107

update policy 124

DTLB_DATA_ACCESS register 207

DTLB_DATA_IN register 207

DTLB_TAG_READ register 207

E
E bit of PTE 26

ECC_error exception 50, 176, 180, 200

ee_second_watch_dog_timeout 188

ee_sir_in_maxtl 188

ee_trap_addr_uncorrected_error 188

ee_trap_in_maxtl 188

ee_watch_dog_timeout_in_maxtl 188

error

asynchronous 15

categories 171

classification 3

correctable 176, 208

correction, for single-bit errors 3

D1 cache data 209

fatal 172

handling

ASI errors 205

ASR errors 202

246 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

most registers 201

isolation 3

restrainable 176

source identification 183

transition 172

U2 cache tag 208

uncorrectable 208

D1 cache data 210

without direct damage 176

urgent 173

ERROR_CONTROL register 206

ERROR_MARK_ID 183, 184, 210

error_state 36, 89, 162, 164, 180, 192

exceptions

catastrophic 37

data_access_error 65

data_access_protection 65

data_breakpoint 89

fp_exception_ieee_754 58, 81

fp_exception_other 78, 96

illegal_instruction 29, 58, 62, 68, 87, 88, 91

LDDF_mem_address_not_aligned 97, 140

mem_address_not_aligned 97, 140

persistence 38

privileged_action 96

statistics monitoring ??–223

unfinished_FPop 78, 81

execute_state 164

executed, definition 9

execution

EU (execution unit) 6

out-of-order 25

speculative 25

F
fast_data_access_MMU_miss exception 107

fast_data_access_protection exception 107, 123

fast_data_instruction_access_MMU_miss exception 223

fast_instruction_access_MMU_miss exception 50, 107,

120, 121, 223

fatal error

behavior of CPU 172

cache tag 208

definition 172

detection 187

U2 cache tag 208

fDTLB 94, 102, 108

fe_other 188

fe_upa_addr_uncorrected_error 188

fetched, definition 9

fill_n_normal exception 223

fill_n_other exception 223

finished, definition 9

fITLB 94, 102, 107

floating-point

deferred-trap queue (FQ) 15, 22

denormalized operands 16

denormalized results 16

operate (FPop) instructions 16

trap types

fp_disabled 52, 58, 68, 91

unimplemented_FPop 87

FLUSH instruction 87, 89

FMADD instruction 29, 49, 55

FMSUB instruction 29, 49, 55

FNMADD instruction 49, 55

FNMSUB instruction 49, 55

formats, instruction 27

fp_disabled exception 29, 52, 58, 68, 91

fp_exception_ieee_754 exception 58, 81

fp_exception_other exception 50, 78, 96

FQ 15, 22

FSR

aexc field 17

cexc field 16, 17

conformance 17

NS field 78

TEM field 17

VER field 16

Ver 1.0, 1 Jul. 2008 Index 247

fTLB 95, 104, 107, 115, 116, 117, 119, 121, 129, 130,

214

G
GSR register 203

I

I_UGE

definition 174

error detection action 180, 186

error detection mask 179

type 173

IAE

error detection action 180

error detection mask 179

reporting 174

IEEE Std 754-1985 16, 77

IIU_INST_TRAP register 50, 207

illegal_instruction exception 22, 29, 58, 62, 68, 87, 88, 91

IMMU

internal register (ASI_MCNTL) 109

registers accessed 109

Synchronous Fault Status Register 118

IMMU_DEMAP register 206

IMMU_SFSR register 206

IMMU_TAG_ACCESS register 206, 207

IMMU_TAG_TARGET register 206

IMMU_TSB_64KB_PTR register 206

IMMU_TSB_8KB_PTR register 206

IMMU_TSB_BASE register 206, 207

IMMU_TSB_NEXT register 206

IMMU_TSB_PEXT register 206

IMPDEP1 instruction 29, 54, 90

IMPDEP1 instructions 101

IMPDEP2 instruction 29, 54, 57, 90, 100

IMPDEP2A instruction 61

IMPDEP2B instruction 27, 55

IMPDEPn instructions 54, 55

impl field of VER register 16

implementation number (impl) field of VER register 87

initiated, definition 9

instruction

execution 25

formats 27

prefetch 26

instruction fields, reserved 49

instruction_access_error exception 50, 107, 119, 121,

152, 175, 215

instruction_access_exception exception 50, 107, 120, 121

instruction_access_MMU_miss exception 50

instructions

atomic load-store 37

blocked 11

cache manipulation 151–??

cacheable 148

committed, definition 9, 10, 11, 12

compare and swap 37

completed, definition 9

control unit (IU) 6

count, committed instructions 222

executed, definition 9

fetched, definition 9

fetched, with error 209

finished, definition 9

floating-point operate (FPop) 16

FLUSH 89

IMPDEP2 90

implementation-dependent (IMPDEP2) 29

implementation-dependent (IMPDEPn) 54, 55

initiated, definition 9

issued, definition 9

LDDFA 97

prefetch 108

reserved fields 49

stall 10

timing 50

integer unit (IU) deferred-trap queue 11, 15, 23, 87

248 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

internal ASI, reference to 124
interrupt

causing trap 15

dispatch 155

level 15 20

Interrupt Vector Dispatch Register 158

Interrupt Vector Receive Register 158

interrupt_level_n exception 223

interrupt_level_n exception 60

interrupt_vector_trap exception 38, 60, 223

INTR_DATA0:7_R register, error handling 207

INTR_DATA0:7_W register, error handling 207

INTR_DISPATCH_STATUS register 155, 205

INTR_DISPATCH_W register 207

INTR_RECEIVE register 205

I-SFSR

update during MMU trap 107

ISFSR

bit description 119

format 118

FT field 120

update policy 121

issue unit 9

issued (instruction) 9

issue-stalling instruction

instructions

issue-stalling 10

ITLB_DATA_ACCESS register 206

ITLB_DATA_IN register 206

ITLB_TAG_READ register 206

J
JEDEC manufacturer code 18

JMPL instruction 28, 63

JPS1_TSBP mode 110

JTAG command 188

Jupiter Bus 7, 8, 38, 68, 91, 107, 108, 162, 182, 184, 188,

204, 205, 211, 219, 232, 237, 239

Jupiter Bus Config Register 239

L
LDD instruction 37

LDDA instruction 37, 64, 123, 124

LDDF_mem_address_not_aligned exception 97, 140

LDDFA instruction 97, 140

LDQF_mem_address_not_aligned exception 50

LDSTUB instruction 26, 37, 123

LDSTUBA instruction 123

LDXA instruction 214

le 46

load quadword atomic 64

LoadLoad MEMBAR relationship 66

load-store instructions

compare and swap 37

D1 cache data errors 210

memory model 51

LoadStore MEMBAR relationship 66

Lookaside MEMBAR relationship 67

M
machine sync 10

MAXTL 36, 90, 162, 164

MCNTL.NC_CACHE 148, 149

mem_address_not_aligned exception 64, 97, 107, 124,

140, 151

MEMBAR

#LoadLoad 66

#LoadStore 66

#Lookaside 67

#MemIssue 67

#StoreLoad 66

#Sync 67

blockload and blockstore 51

functions 66

in interrupt dispatch 156

instruction 66

partial ordering enforcement 67

membar_mask field 66

memory model

Ver 1.0, 1 Jul. 2008 Index 249

PSO 41

RMO 41

store order (STO) 91

TSO 41, 42

MEMORY_CONTROL register 205

mmask field 66

MMU

disabled 108

event counting 229, 230

exceptions recorded 107

Memory Control Register 109

physical address width 104

registers accessed 109

Synchronous Fault Address Registers 126, 163

TLB data access address assignment 116

TLB organization 102

MOESI cache-coherence protocol 150

MT, see Multi-thread

Multi-thread 2, 4, 45, 45, 46

N
noncacheable access 64, 148

nonleaf routine 63

nonspeculative distribution 10

nonstandard floating-point (NS) field of FSR register 16,

88

nonstandard floating-point mode 16, 78

O
OBP

facilitating diagnostics 148

notification of error 187

resetting WEAK_ED 174

validating register error handling 201

with urgent error 175

Operating Status Register (OPSR) 36, 164

OTHERWIN register 92, 190

out-of-order execution 25

P
panic process 175

parity error

counting in D1 cache 212

D1 cache tag 208

fDTLB lookup 108

I1 cache data 209

I1 cache tag 208

partial ordering, specification 67

partial store instruction

watchpoint exceptions 68

partial store instructions 140

partial store order (PSO) memory model 41

PC register 45, 46, 193

PCR

accessibility 18

counter events, selection 218

error handling 203

NC field 19

OVF field 19

OVRO field 19

PRIV field 18, 72, 74

SC field 19, 218

SL field 218

ST field 222

SU field 218

UT field 222

performance monitor

events/encoding 219

groups 219

pessimistic overflow 81

pessimistic zero 80

PIC register

clearing 217

counter overflow 20

error handling 203

nonprivileged access 20

OVF field 20

PIL register 38

250 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

POPC instruction 49, 69

POR reset 180, 185, 187, 198

power-on reset (POR)

DCUCR settings 20

implementation dependency 89

RED_state 164

precise traps 15, 37

prefetch

data 25

instruction 26, 108

variants 70

prefetcha instruction 70

PRIMARY_CONTEXT register 206

privileged registers 17

privileged_action exception 18, 96, 107, 124, 137

PCR access 72, 74

privileged_opcode exception 20

processor states

after reset 165

error_state 36, 89, 164

execute_state 164

RED_state 36, 164

program counter (PC) register 92

program order 26

PSTATE register

AM field 28, 53, 92

IE field 156, 157

MM field 42

PRIV field 18, 72, 74

RED field 17, 148, 164, 165

PTE

E field 26

Q
quadword-load ASI 64

queues 11

R
RAS, see Return Stack Address 28, 29, 30, 63

RDPCR instruction 18, 72

RDTICK instruction 17

reclaimed status 11

RED_state 180, 193

entry after failure/reset 36

entry after SIR 162

entry after WDR 164

entry after XIR 162

entry trap 15

processor states 164, 165

restricted environment 36

setting of PSTATE.RED 17

trap vector 36

trap vector address (RSTVaddr) 91

registers

clean windows (CLEANWIN) 92

clock-tick (TICK) 90

current window pointer (CWP) 92

Data Cache Unit Control (DCUCR) 21

other windows (OTHERWIN) 92

privileged 17

renaming 11

restorable windows (CANRESTORE) 92

savable windows (CANSAVE) 92

relaxed memory order (RMO) memory model 41

reservation station 11

reserved fields in instructions 49

reset

externally_initiated_reset (XIR) 162

power_on_reset (POR) 89

software_initiated_reset (SIR) 162

resets

POR 180, 185, 187, 198

WDR 180, 187

restorable windows (CANRESTORE) register 92

restrainable error

definitions 176

handling

ASI_AFSR.UE_DST_BETO 199

ASI_AFSR.UE_RAW_L2$FILL 200

Ver 1.0, 1 Jul. 2008 Index 251

UE_RAW_D1$INSD 200

UE_RAW_L2$INSD 200

software handling 199

types 176

Return Address Stack 28, 30, 53, 63

return prediction hardware 28

RMO, see relaxed memory ordering

rs3 field of instructions 27

RSTVaddr 36, 91, 162, 164

S
S_CPB_REQ packets received count 233

S_CPD_REQ packets received count 233

S_CPI_REQ packets received count 232

S_INV_REQ packets received count 232

savable windows (CANSAVE) register 92

SAVE instruction 63

scan

definition 11

ring 11

sDTLB 94, 102

SECONDARY_CONTEXT register 206

SERIAL_ID register 206

SET_SOFTINT register 203

SHARD_CONTEXT register 207

SHUTDOWN instruction 73

Simultaneous Multi-thread 46

SIR instruction 162

sITLB 94, 102, 107

size field of instructions 27

SLEEP instruction 49, 54, 90, 101

SMT 46, 241

SMT, see Simultaneous Multi-Thread

SOFTINT register 38, 157, 190, 203

speculative

distribution 11

execution 25

spill_n_normal exception 223

spill_n_other exception 223

stall (instruction) 10

STBAR instruction 75

STCHG_ERROR_INFO register 206

STD instruction 37

STDA instruction 37

STDFA instruction 140

STICK 60

STICK register 190, 203

STICK_COMP register 190

STICK_COMPARE register 203

sTLB 7, 94, 95, 102, 103, 104, 110, 111, 115, 116, 119,

121, 125, 129, 130, 198, 213, 214, 215

Store Buffer 7

store order (STO) memory model 91

StoreLoad MEMBAR relationship 66

StoreStore MEMBAR relationship 66

STQF_mem_address_not_aligned exception 50

superscalar 11, 25

SUSPEND instruction 49, 54, 90, 101

suspended state 48, 59, 172, 173, 175, 176, 177, 179, 235

SWAP instruction 26, 37, 123

SWAPA instruction 123

sync (machine) 11

Sync MEMBAR relationship 67

synchronizing caches 42

syncing instruction 11

T
Tag Access Register 117

Tcc instruction, counting 223

Thread 46

thread 4, 11, 12, 45, 46, 47, 48

Threads 46

threads 46

TICK register 17, 90

TICK_COMPARE register 203

TL register 162, 164

TLB
252 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

CP field 148

data

characteristics 94

in TLB organization 102

data access address 116

Data Access/Data In Register 117

index 116

instruction

characteristics 94

in TLB organization 102

main 10, 36

multiple hit detection 103

replacement algorithm 116

TNP register 190

total store order (TSO) memory model 41, 42

TPC register 190

transition error 172

traps

deferred 37

disrupting 15, 37

precise 15

TSB

Base Register 118

Extension Register 118

size 118

TSB Prefetch 105

TSB Prefetch Registers 127

TSTATE register

CWP field 17

error bit in ASI_UCESR register 190

TTE

CV field 148

U
U2 cache

operation control (SXU) 7

tag error protection 208

uncorrectable data error 211

way reduction 213

uDTLB 10, 102

UE_RAW_D1$INSD error 210

uITLB 10, 102, 107

uncorrectable error 176, 191

unfinished_FPop exception 78, 81

unimplemented_FPop floating-point trap type 87

unimplemented_LDD exception 50

unimplemented_STD exception 50

urgent error

definition 173

types

A_UGE 173

DAE 173

IAE 173

instruction-obstructing 173

URGENT_ERROR_STATUS register 206

uTLB 10, 36, 103

V

VA_watchpoint exception 124

var field of instructions 27

VER register 18, 139

version (ver) field of FSR register 88

Vertical Multi-thread 45

virtual 45

Virtual Processor 45

VIS instructions

encoding 101

VMT 46, 241

VMT, see Vertical Multi-thread

W
watchdog timeout 188, 190, 208

watchdog_reset (WDR) 37, 96, 164

watchpoint exception

on block load-store 52

on partial store instructions 68

quad-load physical instruction 65

WDR reset 180, 187

Write Buffer 7

Ver 1.0, 1 Jul. 2008 Index 253

writeback cache 149

WRPCR instruction 18, 74

WRPR instruction 164, 165

254 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008

	Overview
	1.1 Navigating the SPARC64™ VII Extensions
	1.2 Fonts and Notational Conventions
	1.3 The SPARC64�VII processor
	1.3.1 Component Overview
	1.3.2 Instruction Control Unit (IU)
	1.3.3 Execution Unit (EU)
	1.3.4 Storage Unit (SU)
	1.3.5 Secondary Cache and External Access Unit (SXU)

	Definitions
	Architectural Overview
	Data Formats
	Registers
	5.1 Nonprivileged Registers
	5.1.7 Floating-Point State Register (FSR)
	5.1.9 Tick (TICK) Register

	5.2 Privileged Registers
	5.2.6 Trap State (TSTATE) Register
	5.2.9 Version (VER) Register
	5.2.11 Ancillary State Registers (ASRs)
	5.2.12 Registers Referenced Through ASIs
	5.2.13 Floating-Point Deferred-Trap Queue (FQ)
	5.2.14 IU Deferred-Trap Queue

	Instructions
	6.1 Instruction Execution
	6.1.1 Data Prefetch
	6.1.2 Instruction Prefetch
	6.1.3 Syncing Instructions

	6.2 Instruction Formats and Fields
	6.3 Instruction Categories
	6.3.3 Control-Transfer Instructions (CTIs)
	6.3.7 Floating-Point Operate (FPop) Instructions
	6.3.8 Implementation-Dependent Instructions

	6.4 Processor Pipeline
	6.4.1 Instruction Fetch Stages
	6.4.2 Issue Stages
	6.4.3 Execution Stages
	6.4.4 Completion Stages

	Traps
	7.1 Processor States, Normal and Special Traps
	7.1.1 RED_state
	7.1.2 error_state

	7.2 Trap Categories
	7.2.2 Deferred Traps
	7.2.4 Reset Traps
	7.2.5 Uses of the Trap Categories

	7.3 Trap Control
	7.3.1 PIL Control

	7.4 Trap-Table Entry Addresses
	7.4.2 Trap Type (TT)
	7.4.4 Details of Supported Traps

	7.5 Trap Processing
	7.6 Exception and Interrupt Descriptions
	7.6.4 SPARC V9 Implementation-Dependent, Optional Traps That Are Mandatory in SPARC JPS1
	7.6.5 SPARC JPS1 Implementation-Dependent Traps

	Memory Models
	8.1 Overview
	8.4 SPARC V9 Memory Model
	8.4.5 Mode Control
	8.4.7 Synchronizing Instruction and Data Memory

	Multi-Threaded Processing
	9.1 MTP structure
	9.1.1 General MTP structure
	9.1.2 MTP structure of SPARC64�VII

	9.2 MTP Programming Model
	9.2.1 Thread independency
	9.2.2 How to control threads
	9.2.3 Shared registers between threads

	Instruction Definitions
	A.4 Block Load and Store Instructions (VIS I)
	A.12 Call and Link
	A.24 Implementation-Dependent Instructions
	A.24.1 Floating-Point Multiply-Add/Subtract
	A.24.2 Suspend
	A.24.3 Sleep
	A.24.4 Integer Multiply-Add

	A.25 Jump and Link
	A.30 Load Quadword, Atomic [Physical]
	A.35 Memory Barrier
	A.42 Partial Store (VIS I)
	A.48 Population Count
	A.49 Prefetch Data
	A.51 Read State Register
	A.59 SHUTDOWN (VIS I)
	A.70 Write State Register
	A.71 Deprecated Instructions
	A.71.10 Store Barrier

	IEEE Std. 754-1985 Requirements for SPARC-V9
	B.1 Traps Inhibiting Results
	B.6 Floating-Point Nonstandard Mode
	B.6.1 fp_exception_other Exception (ftt=unfinished_FPop)
	B.6.2 Operation Under FSR.NS = 1

	Implementation Dependencies
	C.1 Definition of an Implementation Dependency
	C.2 Hardware Characteristics
	C.3 Implementation Dependency Categories
	C.4 List of Implementation Dependencies

	Formal Specification of the Memory Models
	Opcode Maps
	Memory Management Unit
	F.1 Virtual Address Translation
	F.2 Translation Table Entry (TTE)
	F.3.2 TSB Cacheabllity
	F.3.3 TSB Organization
	F.4.2 TSB Pointer Formation

	F.5 Faults and Traps
	F.8 Reset, Disable, and RED_state Behavior
	F.10 Internal Registers and ASI Operations
	F.10.1 Accessing MMU Registers
	F.10.2 Context Registers
	F.10.3 Instruction/Data MMU TLB Tag Access Registers
	F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers
	F.10.6 I/D TSB Base Registers
	F.10.7 I/D TSB Extension Registers
	F.10.9 I/D Synchronous Fault Status Registers (I-SFSR, D- SFSR)
	F.10.11 I/D MMU Demap
	F.10.12 Synchronous Fault Physical Addresses
	F.10.13 TSB Prefetch Registers

	F.11 MMU Bypass
	F.12 Translation Lookaside Buffer Hardware
	F.12.2 TLB Replacement Policy

	Assembly Language Syntax
	Software Considerations
	Extending the SPARC V9 Architecture
	Changes from SPARC V8 to SPARC V9
	Programming with the Memory Models
	Address Space Identifiers
	L.3 SPARC64�VII ASI Assignments
	L.3.2 Special Memory Access ASIs
	L.3.3 Hardware Barrier

	Cache Organization
	M.1 Cache Types
	M.1.1 Level-1 Instruction Cache (L1I Cache)
	M.1.2 Level-1 Data Cache (L1D Cache)
	M.1.3 Level-2 Unified Cache (L2 Cache)

	M.2 Cache Coherency Protocols
	M.3 Cache Control/Status Instructions
	M.3.1 Flush Level-1 Instruction Cache (ASI_FLUSH_L1I)
	M.3.2 Level-2 Cache Control Register (ASI_L2_CTRL)
	M.3.3 Cache invalidation (ASI_CACHE_INV)

	Interrupt Handling
	N.1 Interrupt Dispatch
	N.2 Interrupt Receive
	N.3 Interrupt Global Registers
	N.4 Interrupt-Related ASI Registers
	N.4.2 Interrupt Vector Dispatch Register
	N.4.3 Interrupt Vector Dispatch Status Register
	N.4.5 Interrupt Vector Receive Register

	N.5 How to identify an interrupt target

	Reset, RED_state, and error_state
	O.1 Reset Types
	O.1.1 Power-on Reset (POR)
	O.1.2 Watchdog Reset (WDR)
	O.1.3 Externally Initiated Reset (XIR)
	O.1.4 Software-Initiated Reset (SIR)

	O.2 RED_state and error_state
	O.2.1 RED_state
	O.2.2 error_state
	O.2.3 CPU Fatal Error state

	O.3 Processor State after Reset and in RED_state
	O.3.1 Operating Status Register (OPSR)

	Error Handling
	P.1 Error Classes and Signalling
	P.1.1 Fatal Error
	P.1.2 error_state Transition Error
	P.1.3 Urgent Error
	P.1.4 Restrainable Error
	P.1.5 instruction_access_error
	P.1.6 data_access_error

	P.2 Action and Error Control
	P.2.1 Registers Related to Error Handling
	P.2.2 Summary of Actions Upon Error Detection
	P.2.3 Extent of Automatic Source Data Correction for Correctable Error
	P.2.4 Error Marking for Cacheable Data Error
	P.2.5 ASI_EIDR
	P.2.6 Control of Error Action (ASI_ERROR_CONTROL)

	P.3 Fatal Error and error_state Transition Error
	P.3.1 ASI_STCHG_ERROR_INFO
	P.3.2 Error_state Transition Error in Suspended Thread

	P.4 Urgent Error
	P.4.1 URGENT ERROR STATUS (ASI_UGESR)
	P.4.2 Action of async_data_error (ADE) Trap
	P.4.3 Instruction End-Method at ADE Trap
	P.4.4 Expected Software Handling of ADE Trap

	P.5 Instruction Access Errors
	P.6 Data Access Errors
	P.7 Restrainable Errors
	P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR)
	P.7.2 ASI_ASYNC_FAULT_ADDR_D1
	P.7.3 ASI_ASYNC_FAULT_ADDR_U2
	P.7.4 Expected Software Handling of Restrainable Errors

	P.8 Internal Register Error Handling
	P.8.1 Nonprivileged and Privileged Registers Error Handling
	P.8.2 ASR Error Handling
	P.8.3 ASI Register Error Handling

	P.9 Cache Error Handling
	P.9.1 Handling of a Cache Tag Error
	P.9.2 Handling of an I1 Cache Data Error
	P.9.3 Handling of a D1 Cache Data Error
	P.9.4 Handling of a U2 Cache Data Error
	P.9.5 Automatic Way Reduction of I1 Cache, D1 Cache, and U2 Cache

	P.10 TLB Error Handling
	P.10.1 Handling of TLB Entry Errors
	P.10.2 Automatic Way Reduction of sTLB

	Performance Instrumentation
	Q.1 Performance Monitor Overview
	Q.1.1 Sample Pseudo-codes

	Q.2 Performance Event Description
	Q.2.1 Instruction and trap Statistics
	Q.2.2 MMU and L1 cache Event Counters
	Q.2.3 L2 cache Event Counters
	Q.2.4 Jupiter Bus Event Counters
	Q.2.5 Multi-thread specific Event Counters

	Q.3 CPI analysis
	Q.4 Shared performance events between threads
	Q.5 Differences of Performance Events Between SPARC64�VI and SPARC64�VII

	Jupiter Bus Programmer’s Model
	R.3 Jupiter Bus Config Register

	Summary Differences Between SPARC64�VI and SPARC64�VII
	Index

