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F.CH AP TE R 1 

Overview


1.1 Navigating the SPARC64™ VII Extensions 
The SPARC64 VII processor fully implements the instruction set architecture that conforms 
to Commonality. 

■	 SPARC Joint Programming Specification 1 (JPS1): Commonality 

This SPARC64 VII Extensions describes implementation specific portions of SPARC64 VII. 
We suggest that you approach this specification as follows. 

1.	 Familiarize yourself with the SPARC64 VII processor and its components by reading 
the following sections in this specification: 

■	 The SPARC64 VII processor on page 2 
■	 Component Overview on page 4 
■	 Processor Pipeline on page 30 

2. Study the terminology in Chapter 2, Definitions. 

3. For details of architectural changes, see the remaining chapters in this Specification as 
your interests dictate. 

1.2 Fonts and Notational Conventions

Please refer to Section 1.2 of Commonality for font and notational conventions. 
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1.3 The SPARC64 VII processor

The SPARC64 VII processor is a high-performance, high-reliability, and high-integrity 
processor that fully implements the instruction set architecture that conforms to SPARC V9, 
as described in Commonality. In addition, the SPARC64 VII processor implements the 
following features: 

■ 64-bit virtual address space and 47-bit physical address space 
■ Advanced RAS features that enable high-integrity error handling 
■ Multi threaded Processing (MTP) 

Microarchitecture for High Performance 

The SPARC64 VII is an out-of-order execution superscalar processor that issues up to four 
instructions per cycle. Instructions in the predicted path are issued in program order and are 
stored temporarily in reservation stations until they are dispatched out of program order to 
the appropriate execution units. Instructions commit in program order when no exceptions 
occur during execution and all prior instructions commit (that is, the result of the instruction 
execution becomes visible). Out-of-order execution in SPARC64 VII contributes to high 
performance. 

SPARC64 VII implements a large branch history buffer to predict its instruction path. The 
history buffer is large enough to sustain a good prediction rate for large-scale programs such 
as DBMS and to support the advanced instruction fetch mechanism of SPARC64 VII. This 
instruction fetch scheme predicts the execution path beyond multiple conditional branches in 
accordance with the branch history. It then tries to prefetch instructions on the predicted path 
as much as possible to reduce the effect of the performance penalty caused by instruction 
cache misses. 

High Integration 

SPARC64 VII integrates an on-board, associative, level-2 cache. The level-2 cache is unified 
for instruction and data. It is the lowest layer in the cache hierarchy. 

This integration contributes to both the performance and reliability of SPARC64 VII. It 
enables shorter access time and more associativity and thus contributes to higher 
performance. It contributes to higher reliability by eliminating the external connections for 
level-2 cache. 

High Reliability and High Integrity 

SPARC64 VII implements the following advanced RAS features for reliability and integrity 
beyond that of ordinary microprocessors. 
SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 2 



1. Advanced RAS features for caches 

■	 Strong cache error protection: 
■	 ECC protection for D1 (Data level 1) cache data, U2 (unified level 2) cache data, and 

the U2 cache tag. 
■	 Parity protection for I1 (Instruction level 1) cache data. 
■	 Parity protection and duplication for the I1 cache tag and the D1 cache tag. 

■	 Automatic correction of all types of single-bit error: 
■	 Automatic single-bit error correction for the ECC protected data. 
■	 Invalidation and refilling of I1 cache data for the I1 cache data parity error. 
■	 Copying from duplicated tag for I1 cache tag and D1 cache tag parity errors. 

■	 Dynamic way reduction while cache consistency is maintained. 

■	 Error marking for cacheable data with uncorrectable errors: 
■	 Special error-marking pattern for cacheable data with uncorrectable errors. The 

identification of the module that first detects the error is embedded in the special 
pattern. 

■	 Error-source isolation with faulty module identification in the special error-marking. 
The identification information enables the processor to avoid repetitive error logging 
for the same error cause. 

2. Advanced RAS features for the core 

■	 Strong error protection: 
■	 Parity protection for all data paths. 
■	 Parity protection for most software-visible registers and internal, temporary registers. 
■	 Parity prediction or residue checking for the accumulator output. 

■	 Hardware instruction retry 

■	 Support for software instruction retry (after failure of hardware instruction retry) 

■	 Error isolation for software recovery: 
■	 Error indication for each programmable register group. 
■	 Indication of retryability of the trapped instruction. 
■	 Use of different error traps to differentiate degrees of adverse effects on the CPU and 

the system. 

3. Extended RAS interface to software 

■	 Error classification according to the severity of the effect on program execution: 
■	 Urgent error (nonmaskable): Unable to continue execution without OS intervention; 

reported through a trap. 
■	 Restrainable error (maskable): OS controls whether the error is reported through a trap, 

so error does not directly affect program execution. 

■	 Isolated error indication to determine the effect on software 

■	 Asynchronous data error (ADE) trap for additional errors: 
■	 Relaxed instruction end method (precise, retryable, not retryable) for the 

async_data_error  exception to indicate how the instruction should end; depends on 
the executing instruction and the detected error. 
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■	 Some ADE traps that are deferred but retryable. 
■	 Simultaneous reporting of all detected ADE errors at the error barrier for correct 

handling of retryability. 

Multi threaded Processing. 

SPARC64 VII is an octuple threaded processor, which has four dual threaded physical cores. 
The two threads belong to the same physical core sharing most of the physical resources, 
while the four cores do not share physical resources except L2 Cache and system interface. 

1.3.1 Component Overview 

The SPARC64 VII processor contains these components. 

■	 Instruction control Unit (IU) 
■	 Execution Unit (EU) 
■	 Storage Unit (SU) 
■	 Secondary cache and eXternal access Unit (SXU) 

FIGURE 1-1 illustrates the major units; the following subsections describe them. 
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1.3.2 Instruction Control Unit (IU) 

The IU predicts the instruction execution path, fetches instructions on the predicted path, 
distributes the fetched instructions to the appropriate reservation stations, and dispatches the 
instructions to the execution pipeline. The instructions are executed out of order, and the IU 
commits the instructions in order. Major blocks are defined in TABLE 1-1. 

TABLE 1-1 Instruction Control Unit Major Blocks 

Name	 Description 

Instruction fetch pipeline	 Five stages: fetch address generation, iTLB tag access, I-Cache tag 
match, I-Cache read, and a write to I-buffer. 

Branch history	 A table to predict branch target and direction. 

Instruction buffer	 A buffer to hold instructions fetched. 

Reservation station	 Six reservation stations to hold instructions until they can execute: 
RSBR for branch and the other control-transfer instructions; RSA for 
load/store instructions; RSEA and RSEB for integer arithmetic 
instructions; RSFA and RSFB for floating-point arithmetic and VIS 
instructions. 

Commit stack entries	 A buffer to hold information about instructions issued but not yet 
committed. 

PC, nPC, CCR, FSR	 Program-visible registers for instruction execution control. 

1.3.3 Execution Unit (EU) 

The EU carries out the execution of all integer arithmetic, logical, shift instructions, all 
floating-point instructions, and all VIS graphic instructions. TABLE 1-2 describes the EU 
major blocks. 

TABLE 1-2 Execution Unit Major Blocks 

Name Description 

GUB General register (gr) renaming register file. 

GPR Gr architecture register file. 

FUB Floating-point (fr) renaming register file. 

FPR Fr architecture register file. 

EU control logic Controls the instruction execution stages: instruction selection, 
register read, and execution. 

Interface registers Input/output registers to other units. 

Two integer execution pipelines 64-bit ALU and shifters. 
(EXA, EXB) 
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TABLE 1-2 Execution Unit Major Blocks (Continued) 

Name	 Description 

Two floating-point and graphics Each floating-point execution pipeline can execute floating point 
execution pipelines (FLA, FLB) multiply, floating point add/sub, floating-point multiply and add, 

floating point div/sqrt, and floating-point graphics instruction. 

Two virtual address adders for Two 64-bit virtual addresses for load/store.

memory access pipeline (EAGA, 

EAGB)


1.3.4 Storage Unit (SU) 

The SU handles all sourcing and sinking of data for load and store instructions. TABLE 1-3 

describes the SU major blocks. 

TABLE 1-3 Storage Unit Major Blocks 

Name	 Description 

Instruction level-1 cache	 64-Kbyte, 2-way associative, 64-byte line; provides low latency 
instruction source. 

Data level-1 cache	 64-Kbyte, 2-way associative, 64-byte line, writeback; provides the low 
latency data source for loads and stores. 

Instruction Translation Buffer 2048 entries, 2-way associative TLB (sITLB). 

32 entries, fully associative TLB (fITLB). 

Data Translation Buffer	 2048 entries, 2-way associative TLB (sDTLB). 

32 entries, fully associative TLB (fDTLB). 

Store Buffer and Write Buffer Decouples the pipeline from the latency of store operations. Allows the 
pipeline to continue flowing while the store waits for data, and 
eventually writes into the data level 1 cache. 

1.3.5 Secondary Cache and External Access Unit (SXU) 

The SXU controls the operation of the unified level-2 caches and the external data access 
interface (Jupiter Bus). TABLE 1-4 describes the major blocks of the SXU. 

TABLE 1-4 Secondary Cache and External Access Unit Major Blocks 

Name Description 

Unified level-2 cache 6-Mbyte, 12-way associative, 256-byte line (four 64-byte sublines), 
writeback; provides low latency data source for both instruction level-1 
cache and data level-1 cache. 

Movein buffer Catches returning data from the memory system in response to the 
cache line read request. 
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TABLE 1-4 Secondary Cache and External Access Unit Major Blocks 

Name Description 

Moveout buffer Holds writeback data to memory. 

Jupiter Bus interface control Send/receive transaction packets to/from Jupiter Bus interface 
logic connected to the system. 
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F.CH AP TE R 2 

Definitions


This chapter defines concepts unique to SPARC64 VII, the Fujitsu implementation of SPARC 
JPS1. For definition of terms that are common to all implementations, please refer to Chapter 
2 of Commonality. 

committed Term applied to an instruction when it has completed without error and all prior 
instructions have completed without error and have been committed. When an 
instruction is committed, the state of the machine is permanently changed to reflect the 
result of the instruction; the previously existing state is no longer needed and can be 
discarded. 

completed Term applied to an instruction after it has finished, has sent a non-error status to the 
issue unit, and all of its source operands are non-speculative. Note: Although the state 
of the machine has been temporarily altered by completion of an instruction, the state 
has not yet been permanently changed and the old state can be recovered until the 
instruction has been committed. 

executed Term applied to an instruction that has been processed by an execution unit such as a 
load unit. An instruction is in execution as long as it is still being processed by an 
execution unit. 

fetched Term applied to an instruction that is obtained from the I1 instruction cache or from the 
on-chip internal buffer and sent to the issue unit. 

finished Term applied to an instruction when it has completed execution in a functional unit and 
has forwarded its result onto a result bus. Results on the result bus are transferred to 
the register file, as are the waiting instructions in the instruction queues. 

instruction initiated Term applied to an instruction when it has all of the resources that it needs (for 
example, source operands) and has been selected for execution. 

instruction dispatched Synonym: instruction initiated. 

instruction issued Term applied to an instruction when it has been dispatched to a reservation station. 
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instruction retired Term applied to an instruction when all machine resources (serial numbers, renamed 
registers) have been reclaimed and are available for use by other instructions. An 
instruction can only be retired after it has been committed. 

instruction stall Term applied to an instruction that is not allowed to be issued. Not every instruction 
can be issued in a given cycle. The SPARC64 VII implementation imposes certain 
issue constraints based on resource availability and program requirements. 

issue-stalling 
instruction An instruction that prevents new instructions from being issued until it has committed. 

machine sync The state of a machine when all previously executing instructions have committed; that 
is, when no issued but uncommitted instructions are in the machine. 

Memory Management 
Unit (MMU) Refers to the address translation hardware in SPARC64 VII that translates a 64-bit 

virtual address into physical address. The MMU is composed of the mITLB, mDTLB, 
uITLB, uDTLB, and the ASI registers used to manage address translation. 

mTLB Main TLB. Split into I and D, called mITLB and mDTLB, respectively. Contains 
address translations for the uITLB and uDTLB. When the uITLB or uDTLB do not 
contain a translation, they ask the mTLB for the translation. If the mTLB contains the 
translation, it sends the translation to the respective uTLB. If the mTLB does not 
contain the translation, it generates a fast access exception to a software translation 
trap handler, which will load the translation information (TTE) into the mTLB and 
retry the access. See also TLB. 

uDTLB Micro Data TLB. A small, fully associative buffer that contains address translations for 
data accesses. Misses in the uDTLB are handled by the mTLB. 

uITLB Micro Instruction TLB. A small, fully associative buffer that contains address 
translations for instruction accesses. Misses in the uTLB are handled by the mTLB. 

MTP Multi Threaded Processor. A processor module containing more than one thread. (May 
also be used as an acronym for Multi threaded Processing.) 

non-speculative A distribution system whereby a result is guaranteed known correct or an operand state 
is known to be valid. SPARC64 VII employs speculative distribution, meaning that 
results can be distributed from functional units before the point at which guaranteed 
validity of the result is known. 

physical core A physical core includes an execution pipeline and associated structures, such as 
caches, that are required for performing the execution of instructions from one or more 
software threads. A physical core contains one or more threads. The physical core 
provides the necessary resources for each thread to make forward progress at a 
reasonable rate. 

processor module A processor module is the unit on which a shared interface is provided to control the 
configuration and execution of a collection of threads. A processor module contains 
one or more physical cores, each of which contains one or more threads. On a more 
10 SPARC64 VII Extensions • Ver 1.0,  1 Jul. 2008 



physical side, a processor module is a physical module that plugs into a system. And a 
processor module is expected to appear logically as a single agent on the system 
interconnect fabric. 

reclaimed The status when all instruction-related resources that were held until commit have been 
released and are available for subsequent instructions. Instruction resources are usually 
reclaimed a few cycles after they are committed. 

rename registers A large set of hardware registers implemented by SPARC64 VII that are invisible to 
the programmer. Before instructions are issued, source and destination registers are 
mapped onto this set of rename registers. This allows instructions that normally would 
be blocked, waiting for an architecture register, to proceed in parallel. When 
instructions are committed, results in renamed registers are posted to the architecture 
registers in the proper sequence to produce the correct program results. 

reservation station A holding location that buffers dispatched instructions until all input operands are 
available. SPARC64 VII implements dataflow execution based on operand availability. 
When operands are available, the instructions in the reservation station are scheduled 
for execution. Reservation stations also contain special tag-matching logic that 
captures the appropriate operand data. Reservation stations are sometimes referred to 
as queues (for example, the integer queue). 

scan A method used to initialize all of the machine state within a chip. In a chip that has 
been designed to be scannable, all of the machine state is connected in one or several 
loops called “scan rings.” Initialization data can be scanned into the chip through the 
scan rings. The state of the machine also can be scanned out  through the scan rings. 

sleeping Describes a thread that is suspended from operation. While sleeping, a thread  is not 
issuing instructions for execution but still maintains cache coherency. Unlike 
suspended, a sleeping thread awakes automatically within limited number of cycles. 

speculative A distribution system whereby a result is not guaranteed as known to be correct or an 
operand state is not known to be valid. SPARC64 VII employs speculative distribution, 
meaning results can be distributed from functional units before the point at which 
guaranteed validity of the result is known. 

superscalar An implementation that allows several instructions to be issued, executed, and 
committed in one clock cycle. SPARC64 VII issues up to 4 instructions per clock 
cycle. 

suspended Describes a thread that is suspended from operation. When suspended, a thread  is not 
issuing instructions for execution but still maintains cache coherency. Unlike sleeping, 
a suspended thread does not awake automatically without certain stimuli. 

sync Synonym: machine sync. 

syncing instruction An instruction that causes a machine sync. Thus, before a syncing instruction is issued, 
all previous instructions (in program order) must have been committed. At that point, 
the syncing instruction is issued, executed, completed, and committed by itself. 
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thread	 A term that identifies the hardware state used to hold a software thread in order to 
execute it. A thread is specifically the software visible architecture state (PC, next PC, 
general purpose registers, floating-point registers, condition codes, status registers, 
ASRs, etc.) of a thread and any micro architecture state required by hardware for its 
execution. 
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F.CH AP TE R 3 

Architectural Overview


Please refer to Chapter 3 in Commonality. 
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F.CH AP TE R 4 

Data Formats


Please refer to Chapter 4 in Commonality. 
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F.CH AP TE R 5 

Registers


The SPARC64 VII processor includes two types of registers: general-purpose—that is, 
working, data, control/status—and ASI registers. 

The SPARC V9 architecture also defines two implementation-dependent registers: the IU 
Deferred-Trap Queue and the Floating-Point Deferred-Trap Queue (FQ); SPARC64 VII does 
not need or contain either queue. All processor traps caused by instruction execution are 
precise, and there are several disrupting traps caused by asynchronous events, such as 
interrupts, asynchronous error conditions, and RED_state entry traps. 

For general information, please see parallel subsections of Chapter 5 in Commonality. For 
easier referencing, this chapter follows the organization of Chapter 5 in Commonality. 

For information on MMU registers, please refer to Section F.10, Internal Registers and ASI 
Operations, on page 109. 

The chapter contains these sections: 

■ Nonprivileged Registers on page 15 
■ Privileged Registers on page 17 

5.1 Nonprivileged Registers 
Most of the definitions for the registers are as described in the corresponding sections of 
Commonality. Only SPARC64 VII-specific features are described in this section. 

5.1.7 Floating-Point State Register (FSR) 

Please refer to Section 5.1.7 of Commonality  for the description of FSR. 

The sections below describe SPARC64 VII-specific features of the FSR register. 
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FSR_nonstandard_fp (NS) 

SPARC V9 defines the FSR.NS bit which, when set to 1, causes the FPU to produce 
implementation-dependent results that may not conform to IEEE Std 754-1985. 
SPARC64 VII implements this bit. 

When FSR.NS = 1, denormalized input operands and denormalized results that would 
otherwise trap are flushed to 0 of the same sign and an inexact exception is signalled (that 
may be masked by FSR.TEM.NXM). See Section B.6, Floating-Point Nonstandard Mode, on 
page 77 for details. 

When FSR.NS = 0, the normal IEEE Std 754-1985 behavior is implemented. 

FSR_version (ver) 

For each SPARC V9 IU implementation (as identified by its VER.impl field), there may be 
one or more FPU implementations or none. This field identifies the particular FPU 
implementation present. For the first SPARC64 VII, FSR.ver = 0 (impl. dep. #19); 
however, future versions of the architecture may set FSR.ver to other values. Consult the 
SPARC64 VII Data Sheet for the setting of FSR.ver for your chipset. 

FSR_floating-point_trap_type (ftt) 

The complete conditions under which SPARC64 VII triggers fp_exception_other with trap 
type unfinished_FPop is described in Section B.6, Floating-Point Nonstandard Mode, on 
page 77 (impl. dep. #248). 

FSR_current_exception (cexc) 

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were 
generated by the most recently executed FPop instruction. The absence of an exception 
causes the corresponding bit to be cleared. 

In SPARC64 VII, the cexc bits are set according to the following pseudocode: 

if (<LDFSR or LDXFSR commits>)

<update using data from LDFSR or LDXFSR>;


else if (<FPop commits with ftt = 0>)

<update using value from FPU>


else if (<FPop commits with IEEE_754_exception>)

<set one bit in the CEXC field as supplied by FPU>;


else if (<FPop commits with unfinished_FPop error>)

<no change>;


else if (<FPop commits with unimplemented_FPop error>)

<no change>;


else

<no change>;
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FSR Conformance     

SPARC V9 allows the TEM, cexc, and aexc fields to be implemented in hardware in either 
of two ways (both of which comply with IEEE Std 754-1985). SPARC64 VII follows case 
(1); that is, it implements all three fields in conformance with IEEE Std 754-1985. See FSR 
Conformance in Section 5.1.7 of Commonality for more information about other 
implementation methods. 

5.1.9 Tick (TICK) Register 

SPARC64 VII implements TICK.counter register as a 63-bit register (impl. dep. #105). 

Implementation Note – On SPARC64 VII, the counter part of the value returned when 
the TICK register is read is the value of TICK.counter when the RDTICK instruction is 
executed. The difference between the counter values read from the TICK register on two 
reads reflects the number of processor cycles executed between the executions of the 
RDTICK instructions, not their commits. In longer code sequences, the difference between 
this value and the value that would have been obtained when the instructions are committed 
would be small. 

5.2 Privileged Registers
 Please refer to Section 5.2 of Commonality for the description of privileged registers. 

5.2.6 Trap State (TSTATE) Register 

SPARC64 VII implements only bits 2:0 of the TSTATE.CWP field. Writes to bits 4 and 3 are 
ignored, and reads of these bits always return zeroes. 

Note – Spurious setting of the PSTATE.RED bit by privileged software should not be 
performed, since it will take the SPARC64 VII into RED_state without the required 
sequencing. 
Ver 1.0, 1 Jul. 2008 F. Chapter 5 Registers 17 



5.2.9 Version (VER) Register 

TABLE 5-1 shows the values for the VER register for SPARC64 VII. 

TABLE 5-1 VER Register Encoding 

Bits Field Value 

63:48 manuf 000416 (impl. dep. #104) 

47:32 impl 7 

31:24 mask n (The value of n depends on the processor chip version) 

15:8 maxtl 5 

4:0 maxwin 7 

The manuf field contains Fujitsu’s 8-bit JEDEC code in the lower 8 bits and zeroes in the 
upper 8 bits. The manuf, impl, and mask fields are implemented so that they may change 
in future SPARC64 processor versions. The mask field generally increases numerically with 
successive releases of the processor, but does not necessarily increase by one for consecutive 
releases. 

5.2.11 Ancillary State Registers (ASRs) 

Please refer to Section 5.2.11 of Commonality for details of the ASRs. 

Performance Control Register (PCR) (ASR 16) 

SPARC64 VII implements the PCR register as described in Commonality, with additional 
features as described in this section. 

In SPARC64 VII, the accessibility of PCR when PSTATE.PRIV = 0 is determined by 
PCR.PRIV. If PSTATE.PRIV = 0 and PCR.PRIV = 1, an attempt to execute either RDPCR 
or WRPCR will cause a privileged_action exception. If PSTATE.PRIV = 0 and 
PCR.PRIV = 0,  RDPCR operates without privilege violation and WRPCR causes a 
privileged_action exception only when an attempt is made to change (that is, write 1 to) 
PCR.PRIV (impl. dep. #250). 

See Appendix Q for a detailed discussion of the PCR and PIC register usage and event count 
definitions. 
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The Performance Control Register in SPARC64 VII is illustrated in FIGURE 5-1 and described 
in TABLE 5-2. 

63 16 10 9 4 0 

OVF 0 SLSU0SC 

171821 

0NC 

2224 

0OVRO 

26273132 

0 

4748 

0 

25 

ULRO UT ST PRIV 

1231120 

FIGURE 5-1 SPARC64 VII Performance Control Register (PCR) (ASR 16) 

TABLE 5-2 PCR Bit Description 

Bit Field Description 

47:32 OVF Overflow Clear/Set/Status. Used to read counter overflow status (via RDPCR) and clear or set 
counter overflow status bits (via WRPCR). PCR.OVF is a SPARC64 VII-specific field (impl. dep. 
#207). 

The following figure depicts the bit layout of SPARC64 VII OVF field for four counter pairs. 
Counter status bits are cleared on write of 0 to the appropriate OVF bit. 

L0U0L1U10 L2U2L3U3 

15 01234567 

26 OVRO Overflow read-only. Write-only/read-as-zero field specifying PCR.OVF update behavior for 
WRPCR. The OVRO field is implementation dependent (impl. dep. #207). WRPCR with 
PCR.OVRO = 1 inhibits updating of PCR.OVF for the current write only. The intention of 
PCR.OVRO is to write PCR while preserving current PCR.OVF value. PCR.OVF is maintained 
internally by hardware, so a subsequent RDPCR returns accurate overflow status at the time. 

24:22 NC Number of counter pairs. Three-bit, read-only field specifying the number of counter pairs, 
encoded as 0–7 for 1–8 counter pairs (impl. dep. #207). 

For SPARC64 VII, the hardcoded value of NC is 3 (indicating presence of 4 counter pairs). 

20:18 SC Select PIC. In SPARC64 VII, three-bit field specifying which counter pair is currently selected 
as PIC (ASR 17) and which SU/SL values are visible to software. On write, PCR.SC selects 
which counter pair is updated. On read, currently selected PIC is returned. 

16:11 SU Defined (as S1) in Commonality. 

9:4 SL Defined (as S0) in Commonality. 

3 ULRO Implementation-dependent field (impl. dep. #207) that specifies whether SU/SL are read-only. In 
SPARC64 VII, this field is write-only/read-as-zero, specifying update behavior of SU/SL on 
write. On a write with PCR.ULRO = 1, SU/SL are considered as read-only; the values set on 
PCR.SU/PCR.SL are not written into SU/SL. When PCR.ULRO = 0, SU/SL are updated. 
PCR.ULRO is intended to switch the visible PIC by writing PCR.SC, without affecting the 
current selection of SU/SL for that PIC. On PCR read, PCR.SU/PCR.SL always shows the 
current setting of the PIC regardless of PCR.ULRO. 

2 UT Defined in Commonality. 

1 ST Defined in Commonality. 

0 PRIV Defined in Commonality, with the additional function of controlling PCR accessibility as 
described above (impl. dep. #250). 
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Performance Instrumentation Counter (PIC) Register (ASR 17) 

The PIC register is implemented as described in Commonality. 

Four PICs are implemented in SPARC64 VII. Each is accessed through ASR 17, using 
PCR.SC as a select field. Read/write access to the PIC will access the PICU/PICL counter 
pair selected by PCR. For PICU/PICL encoding of specific event counters, see Appendix Q. 

On overflow, counters wrap to 0, SOFTINT register bit 15 is set, and an interrupt level-15 
exception is generated. The counter overflow trap is triggered on the transition from value 
FFFF FFFF16 to value 0. If multiple overflows are generated simultaneously, then multiple 
overflow status bits will be set. If overflow status bits are already set, then they remain set on 
counter overflow. 

Overflow status bits are cleared by software writing 0 to the appropriate bit of PCR.OVF and 
may be set by writing 1 to the appropriate bit. Setting these bits by software does not 
generate a level 15 interrupt. 

Dispatch Control Register (DCR) (ASR 18) 

The DCR is not implemented in SPARC64 VII. Zero is returned on read, and writes to the 
register are ignored. The DCR is a privileged register; attempted access by nonprivileged 
(user) code generates a privileged_opcode exception. 

5.2.12 Registers Referenced Through ASIs 

Data Cache Unit Control Register (DCUCR) 

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 016. 

The Data Cache Unit Control Register contains fields that control several memory-related 
hardware functions. The functions include Instruction, Prefetch, write and data caches, 
MMUs, and watchpoint setting. SPARC64 VII implements most of DCUCUR’s functions 
described in Section 5.2.12 of Commonality. 

After a power-on reset (POR), all fields of DCUCR, including implementation-dependent 
fields, are set to 0. After a WDR, XIR, or SIR reset, all fields of DCUCR, including 
implementation-dependent fields, are set to 0. 
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The Data Cache Unit Control Register is illustrated in FIGURE 5-2 and described in TABLE 5-3. 
In the table, bits are grouped by function rather than by strict bit sequence. 

— Implementation dependent WEAK_SPCA PM VM PR PW VR VW DM IM 0 00 0 — 

63 50 49 48 47 42 41 40 33 32 25 24 23 22 21 20 4 3 2 1 0 

FIGURE 5-2 DCU Control Register Access Data Format (ASI 4516) 

TABLE 5-3 DCUCR Description 

Bits Field Type Use — Description 

49:48	 CP, CV RW Not implemented in SPARC64 VII (impl. dep. #232). It reads as 0 and writes to it are 
ignored. 

47:42 impl. dep.	 Not used. It reads as 0 and writes to it are ignored. 

41 WEAK_SPCA RW	 Disable speculative memory access (impl. dep. #240). When setting weak_spca = 1, 
the branch prediction mechanism is disabled and no load, store, or instruction fetches 
in the speculative path are issued. Loads and stores after the CTI instruction are also 
paused until the correct path is determined. Also, software prefetch instructions, 
including strong prefetch, are lost. 

Due to the absence of branch prediction, all CTI instructions are considered as not 
taken, and subsequent instructions beyond CTI will be fetched. Instruction fetch is 
eventually stopped by an internal resource limitation, so the memory area being 
accessed beyond CTI is predictable. 

L2 cache flush by supervisor software is always executed regardless of 
DCUCR.WEAK_SPCA setting. Autonomous L2 cache flush by RAS is pending until 
all DCUCR.WEAK_SPCA in a CPU module is set to 0. 

In SPARC64 VII, the branch predection is disabled by setting weak_spca to 1 in 
either of the threads. That is, even though a thread does not set weak_spca it may 
sometimes with branch prediction disabled. 

40:33 PM<7:0>	 Defined in Commonality.


32:25 VM<7:0> Defined in Commonality.


24, 23 PR, PW Defined in Commonality.


22, 21 VR, VW Defined in Commonality.


20:4 — Reserved.


3 DM Defined in Commonality.


2 IM Defined in Commonality.


1 DC RW Not implemented in SPARC64 VII (impl. dep. #252). It reads as 0 and writes to it are 

ignored. 

0 IC RW	 Not implemented in SPARC64 VII (impl. dep. #253). It reads as 0 and writes to it are 
ignored. 
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Implementation Note – When DCUCR.WEAK_SPCA = 1, the memory area being accessed 
beyond CTI can not exceed 1KB of that CTI. 

Programming Note – Supervisor software should issue membar #Sync immediately after 
setting DCUCR.WEAK_SPCA = 1, to make sure no speculative memory access is issued 
thereafter. 

Programming Note – Changing IM(IMMU enable) and DM(DMMU Enable) in DCUCR 
requires the following instruction sequence for SPARC64 VII to work correctly. 

# DCUCR.IM update 
stxa DCUCR 
flush 

#DCUDR.DM update

stxa DCUCR

membar #sync


Data Watchpoint Registers 

No implementation-dependent feature of SPARC64 VII reduces the reliability of data 
watchpoints (impl. dep. #244). 

SPARC64 VII employs a conservative check of the PA/VA watchpoint for partial store 
instructions. See Section A.42, Partial Store (VIS I), on page 68 for details. 

In SPARC64 VII, the PA/VA watchpoint register is shared by both threads in a core. 

Instruction Trap Register 

SPARC64 VII implements the Instruction Trap Register (impl. dep. #205). 

In SPARC64 VII, the least significant 11 bits (bits 10:0) of a CALL or branch (BPcc, 
FBPfcc, Bicc, BPr) instruction in the instruction cache are identical to their architectural 
encoding (as it appears in main memory) (impl. dep. #245). 

5.2.13 Floating-Point Deferred-Trap Queue (FQ) 

SPARC64 VII does not contain a Floating-Point Deferred-trap Queue (impl. dep. #24). An 
attempt to read FQ with an RDPR instruction generates an illegal_instruction exception (impl. 
dep. #25). 
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5.2.14 IU Deferred-Trap Queue 

SPARC64 VII neither has nor needs an IU deferred-trap queue (impl. dep. #16) 
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F.CH AP TE R 6 

Instructions


This chapter presents SPARC64 VII implementation-specific instruction details and the 
processor pipeline information in these subsections: 

■ Instruction Execution on page 25 
■ Instruction Formats and Fields on page 27 
■ Instruction Categories on page 28 
■ Processor Pipeline on page 30 

For additional, general information, please see parallel subsections of Chapter 6 in 
Commonality. For easy referencing, we follow the organization of Chapter 6 in 
Commonality. 

6.1 Instruction Execution 
SPARC64 VII is an advanced superscalar implementation of SPARC V9. Several instructions 
may be issued and executed in parallel. Although SPARC64 VII provides serial program 
execution semantics, some of the implementation characteristics described below are part of 
the architecture visible to software for correctness and efficiency. 

6.1.1 Data Prefetch 

SPARC64 VII employs speculative (out of program order) execution of instructions; in most 
cases, the effect of these instructions can be undone if the speculation proves to be 
incorrect.1 However, exceptions can occur because of speculative data prefetching. Formally, 
SPARC64 VII employs the following rules regarding speculative prefetching: 

1. An async_data_error may be signalled during speculative data prefetching. 
Ver 1.0, 1 Jul. 2008 F. Chapter 6 Instructions 25 



1. If a memory operation x resolves to a volatile memory address (location[x]), 
SPARC64 VII will not speculatively prefetch location[x] for any reason; location[x] will 
be fetched or stored to only when operation x is committable. 

2. If a memory operation x resolves to a nonvolatile memory address (location[x]), 
SPARC64 VII may speculatively prefetch location[x] subject, adhering to the following 
sub-rules: 

a.	 If an operation x can be speculatively prefetched according to the prior rule, operations 
with store semantics are speculatively prefetched for ownership only if they are 
prefetched to cacheable locations. Operations without store semantics are speculatively 
prefetched even if they are noncacheable as long as they are not volatile. 

b. Atomic operations (CAS(X)A, LDSTUB, SWAP) are never speculatively prefetched. 

SPARC64 VII provides two mechanisms to avoid speculative execution of a load: 

1. Avoid speculation by disallowing speculative accesses to certain memory pages or I/O 
spaces. This can be done by setting the E (side-effect) bit in the PTE for all memory 
pages that should not allow speculation. All accesses made to memory pages that have the 
E bit set in their PTE will be delayed until they are no longer speculative or until they are 
cancelled. See Appendix F for details. 

2. Alternate space load instructions that force program order, such as 
ASI_PHYS_BYPASS_WITH_EBIT[_L] (AS I = 1516, 1D16), will not be speculatively 
executed. 

6.1.2 Instruction Prefetch 

The processor prefetches instructions to minimize cases where the processor must wait for 
instruction fetch. In combination with branch prediction, prefetching may cause the processor 
to access instructions that are not subsequently executed. In some cases, the speculative 
instruction accesses will reference data pages. SPARC64 VII does not generate a trap for any 
exception that is caused by an instruction fetch until all of the instructions before it (in 
program order) have been committed.1 

6.1.3 Syncing Instructions 

SPARC64 VII has instructions called syncing instructions, that stop execution for the number 
of cycles it takes to clear the pipeline and to synchronize the processor. There are two types 
of synchronization, pre and post. A presyncing instruction waits for all previous instructions 

1. Hardware errors and other asynchronous errors may generate a trap even if the instruction that caused the trap is never 
committed. 
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to commit, commits by itself, and then issues successive instructions. A postsyncing 
instruction issues by itself and prevents the successive instructions from issuing until it is 
committed. Some instructions have both pre- and post-sync attributes. 

In SPARC64 VII almost all instructions commit in order, but store instructions commit 
before becoming globally visible. A few syncing instructions cause the processor to discard 
prefetched instructions and to refetch the successive instructions. 

6.2 Instruction Formats and Fields 
Instructions are encoded in five major 32-bit formats and several minor formats. Please refer 
to Section 6.2 of Commonality for illustrations of four major formats. FIGURE 6-1 illustrates 
Format 5, unique to SPARC64 VII. 

Format 5 (op =  2, op3 =  3716): FMADD, FMSUB, FNMADD, FNMSUB, FPMADDXHI, and FPMADDX 
(in place of IMPDEP2A and IMPDEP2B) 

op3 rdop rs1 rs3 rs2 var 

31 14 1924 18 13 5 4 02530 29 9 7 68 

size 

FIGURE 6-1 Summary of Instruction Formats: Format 5 

Instruction fields are those shown in Section 6.2 of Commonality. Three additional fields are 
implemented in SPARC64 VII. They are described in TABLE 6-1. 

TABLE 6-1 Instruction Fields Specific to SPARC64 VII 

Bits Field Description 

13:9	 rs3 This 5-bit field is the address of the third f register source operand for the 
floating-point multiply-add and integer multiply-add instructions. 

8:7	 var This 2-bit field specifies which specific operation (variation) to perform for the 
floating-point multiply-add and integer multiply-add instructions 

6:5	 size This 2-bit field specifies the size of the operands for the floating-point 
multiply-add and integer multiply-add instructions. 

Since size = 112 assumes quad operations but is not implemented in SPARC64 VII, an 
instruction with size = 112 generates an illegal_instruction exception in SPARC64 VII. 
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6.3 Instruction Categories

SPARC V9 instructions comprise the categories listed below. All categories are described in 
Section 6.3 of Commonality. Subsections in bold face are SPARC64 VII implementation 
dependencies. 

■ Memory access 
■ Memory synchronization 
■ Integer arithmetic 
■ Control transfer (CTI) 
■ Conditional moves 
■ Register window management 
■ State register access 
■ Privileged register access 
■ Floating-point operate (FPop) 
■ Implementation-dependent 

6.3.3 Control-Transfer Instructions (CTIs) 

These are the basic control-transfer instruction types: 

■ Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc) 
■ Unconditional branch 
■ Call and link (CALL) 
■ Jump and link (JMPL, RETURN) 
■ Return from trap (DONE, RETRY) 
■ Trap (Tcc) 

Instructions other than CALL and JMPL are described in their entirety in Section 6.3.2 of 
Commonality. SPARC64 VII implements CALL and JMPL as described below. 

CALL and JMPL Instructions 

SPARC64 VII writes all 64 bits of the PC into the destination register when 
PSTATE.AM = 0. The upper 32 bits of r[15] (CALL) or of r[rd] (JMPL) are written as 
zeroes when PSTATE.AM = 1 (impl. dep. #125). 

SPARC64 VII implements JMPL and CALL return prediction hardware in the form of a 
special stack, called the Return Address Stack (RAS). Whenever a CALL or JMPL that writes 
to %o7  (r[15]) occurs, SPARC64 VII “pushes” the return address (%PC+8) onto the RAS. 
When either of the synthetic instructions retl (JMPL [%o7+8]) or ret (JMPL [%i7+8]) are 
subsequently executed, the return address is predicted to be the address stored on the top of 
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the RAS and the RAS is “popped.” If the prediction in the RAS is incorrect, SPARC64 VII 
backs up and starts issuing instructions from the correct target address. This backup takes a 
few extra cycles. 

Programming Note – For maximum performance, software and compilers must take into 
account how the RAS works. For example, tricks that do nonstandard returns in hopes of 
boosting performance may require more cycles if they cause the wrong RAS value to be used 
for predicting the address of the return. Heavily nested calls can also cause earlier entries in 
the RAS to be overwritten by newer entries, since the RAS only has a limited number of 
entries. Eventually, some return addresses will be mis-predicted because of the overflow of 
the RAS. 

6.3.7 Floating-Point Operate (FPop) Instructions 

The complete conditions of generating an fp_exception_other exception with

FSR.ftt = unfinished_FPop are described in Section B.6, Floating-Point Nonstandard Mode, 

on page 77.


The SPARC64 VII-specific FMADD, FMSUB, FPMADDXHI, and FPMADDX instructions

(described below) are also floating-point operations. They require the floating-point unit to

be enabled; otherwise, an fp_disabled trap is generated. The Floating-point multiply-add 

instructionsalso affect the FSR, like FPop instructions, while integer multiply-add 

instructions don’t. These instructions are not included in the FPop category and, hence,

reserved encodings in these opcodes generate an illegal_instruction exception, as defined in

Section 6.3.9 of Commonality.


6.3.8 Implementation-Dependent Instructions 

SPARC64 VII uses the IMPDEP2 instruction to implement the floating-point multiply-add/ 
subtract , negative multiply-add/subtract and integer multiply-add instructions; these have an 
op3 field = 3716 (IMPDEP2). See Section A.24.1, Floating-Point Multiply-Add/Subtract, on 
page 55 and Section A.24.4, Integer Multiply-Add, on page 61 for full definitions of these 
instructions. Opcode space is reserved in IMPDEP2 for the quad-precision forms of these 
instructions. However, SPARC64 VII does not currently implement the quad-precision forms, 
and the processor generates an illegal_instruction exception if a quad-precision form is 
specified. Since these instructions are not part of the required SPARC V9 architecture, the 
operating system does not supply software emulation routines for the quad versions of these 
instructions. 

SPARC64 VII uses the IMPDEP1 instruction to implement the graphics acceleration 
instructions. 
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6.4 Processor Pipeline

The pipeline of SPARC64 VII consists of fifteen stages, shown in FIGURE 6-2. Each stage is 
referenced by one or two letters as follows: 

IA IT IM IB IR 

E D P B X U C W 

Ps Ts Ms Bs Rs 

FIGURE 6-2 SPARC64 VII pipeline stages 

6.4.1 Instruction Fetch Stages 
■ IA: Instruction Address generation 
■ IT: Instruction TLB Tag access 
■ IM: Instruction cache tag Match 
■ IB: Instruction cache read to Buffer 
■ IR: Instruction read Result 

IA through IR stages are dedicated to instruction fetch. These stages work in concert with the 
cache access unit to supply instructions to subsequent stages. The instructions fetched from 
memory or cache are stored in the Instruction Buffer (I-buffer). 

SPARC64 VII has a branch prediction mechanism and resources named BRHIS (BRanch 
HIStory) and RAS (Return Address Stack). Instruction fetch stages use these resources to 
determine fetch addresses. 

Instruction fetch stages are designed so that they work independently of subsequent stages as 
much as possible. And they can fetch instructions even when execution stages stall. These 
stages fetch until the Instruction Buffer I-Buffer is full; further fetches are possible by 
requesting prefetches to the L1 cache. 
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FIGURE 6-3 SPARC64 VII Pipeline Diagram 
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6.4.2 Issue Stages 
■ E: Entry 
■ D: Decode 

SPARC64 VII is an out-of-order execution CPU. It has six execution units (two arithmetic 
and logic units, two floating-point units, two load/store units). Every unit except the load/ 
store unit has its own reservation station. E and D stages are issue stages that decode 
instructions and dispatch them to the target RS. SPARC64 VII can issue up to four 
instructions per cycle. 

The resources needed to execute an instruction are assigned in the issue stages. The resources 
to be allocated include the following: 

■ Commit stack entry (CSE) 
■ Renaming registers of integer (GUB) and floating-point (FUB) 
■ Entries of reservation stations 
■ Memory access ports 

Resources needed for an instruction are specific to the instruction, but all resources must be 
assigned at these stages. In normal execution, assigned resources are released at the very last 
stage of the pipeline, W-stage.1 Instructions between the E-stage and W-stage are considered 
to be in-flight. When an exception is signalled, all in-flight instructions and the resources 
used by them are released immediately. This behavior enables the decoder to restart issuing 
instructions as quickly as possible. 

6.4.3 Execution Stages 
■ P: Priority 
■ B: Buffer read 
■ X: Execute 
■ U: Update 

Instructions in reservation stations will be executed when certain conditions are met, for 
example, the values of source registers are known, the execution unit is available. Execution 
latency varies from one to many cycles, depending on the instruction. 

1. An entry in a reservation station is released at the X-stage. 
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Execution Stages for Cache Access 

Memory access requests are passed to the cache access pipeline after the target address is 
calculated. Cache access stages work the same way as instruction fetch stages, except for the 
handling of branch prediction. See Section 6.4.1, Instruction Fetch Stages, for details. Stages 
in instruction fetch and cache access correspond as follows: 

Instruction Fetch Stages Cache Access 

IA Ps 

IT Ts 

IM Ms 

IB Bs 

IR Rs 

When an exception is signalled, fetch ports and store ports used by memory access 
instructions are released. The cache access pipeline itself remains working in order to 
complete outgoing memory accesses. When data is returned, it is then stored to the cache. 

6.4.4 Completion Stages 
■	 W: Write 
■	 After an out-of-order execution, execution reverts to program order to complete. 

Exception handling is done in the completion stages. Exceptions occurring in execution 
stages are not handled immediately but are signalled when the instruction is completed.1 

1. RAS-related exception may be signalled before completion. 
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F.CH AP TE R 7 

Traps


Please refer to Chapter 7 of Commonality. Section numbers in this chapter correspond to 
those in Chapter 7 of Commonality. 

This chapter adds SPARC64 VII-specific information in the following sections: 

■ Processor States, Normal and Special Traps on page 35

■ RED_state on page 36

■ error_state on page 36


■ Trap Categories on page 37

■ Deferred Traps on page 37

■ Reset Traps on page 37

■ Uses of the Trap Categories on page 37


■ Trap Control on page 38

■ PIL Control on page 38


■ Trap-Table Entry Addresses on page 38

■ Trap Type (TT) on page 38

■ Details of Supported Traps on page 39


■ Exception and Interrupt Descriptions on page 39


7.1 Processor States, Normal and Special Traps 
Please refer to Section 7.1 of Commonality. 
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7.1.1 RED_state 

RED_state Trap Table 

The RED_state trap vector is located at an implementation-dependent address referred to 
as RSTVaddr. The value of RSTVaddr is a constant within each implementation; in 
SPARC64 VII this virtual address is FFFF FFFF F000 000016, which translates to physical 
address 0000 07FF F000 000016 in RED_state (impl. dep. #114). 

RED_state Execution Environment 

In RED_state, the processor is forced to execute in a restricted environment by overriding 
the values of some processor controls and state registers. 

Note – The values are overridden, not set, allowing them to be switched atomically. 

SPARC64 VII has the following implementation-dependent behavior in RED_state (impl. 
dep. #115): 

■	 While in RED_state, all internal ITLB-based translation functions are disabled. DTLB-
based translations are disabled upon entry but may be re-enabled by software while in 
RED_state. Regardless, ASI-based access functions to the TLBs are still available. 

■	 While mTLBs and uTLBs are disabled, all accesses are assumed to be noncacheable and 
strongly ordered for data access. 

■	 XIR errors are not masked and can cause a trap. 

Note – When RED_state is entered because of component failures, the handler should 
attempt to recover from potentially catastrophic error conditions or to disable the failing 
components. When RED_state is entered after a reset, the software should create the 
environment necessary to restore the system to a running state. 

7.1.2 error_state 

The processor enters error_state when a trap occurs while the processor is already at its 
maximum supported trap level (that is, when TL = MAXTL) (impl. dep. #39). 

Although the standard behavior of the CPU upon an entry into error_state is to 
internally generate a watchdog_reset (WDR), the CPU optionally stays halted upon an entry 
to error_state depending on a setting in the OPSR register (impl. dep #40, #254). 
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7.2 Trap Categories

Please refer to Section 7.2 of Commonality. 

An exception or interrupt request can cause any of the following trap types: 

■ Precise trap 
■ Deferred trap 
■ Disrupting trap 
■ Reset trap 

7.2.2 Deferred Traps 

Please refer to Section 7.2.2 of Commonality. 

SPARC64 VII implements a deferred trap to signal certain error conditions (impl. dep. #32). 
Please refer to the description of I_UGE error on “Relation between %tpc and the instruction 
that caused the error” row in TABLE P-2 on page 179 for details. See also Instruction End-
Method at ADE Trap on page 194. 

7.2.4 Reset Traps 

Please refer to Section 7.2.4 of Commonality. 

In SPARC64 VII, a watchdog reset (WDR) occurs when the processor has not committed an 
instruction for 233 processor cycles. 

7.2.5 Uses of the Trap Categories 

Please refer to Section 7.2.5 of Commonality. 

All exceptions that occur as the result of program execution are precise in SPARC64 VII 
(impl. dep. #33). 

An exception caused after the initial access of a multiple-access load or store instruction 
(LDD(A), STD(A), LDSTUB, CASA, CASXA, or SWAP) that causes a catastrophic exception is 
precise in SPARC64 VII. 
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7.3 Trap Control

Please refer to Section 7.3 of Commonality. 

7.3.1 PIL Control 

SPARC64 VII receives external interrupts from the Jupiter Bus. They cause an 
interrupt_vector_trap  (TT = 6016). The interrupt vector trap handler reads the interrupt 
information and then schedules SPARC V9-compatible interrupts by writing bits in the 
SOFTINT register. Please refer to Section 5.2.11 of Commonality for details. 

During handling of SPARC V9-compatible interrupts by SPARC64 VII, the PIL register is 
checked. If an interrupt has sufficient priority, SPARC64 VII will stop issuing new 
instructions, will flush all uncommitted instructions, and then will pass to the trap handler. 
The only exception to this process occurs when SPARC64 VII is processing a higher-priority 
trap. 

SPARC64 VII takes a normal disrupting trap upon receipt of an interrupt request. 

7.4 Trap-Table Entry Addresses 
Please refer to Section 7.4 of Commonality. 

7.4.2 Trap Type (TT) 

Please refer to Section 7.4.2 of Commonality. 

SPARC64 VII implements all mandatory SPARC V9 and SPARC JPS1 exceptions, as 
described in Chapter 7 of Commonality, plus the exception listed in TABLE 7-1, which is 
specific to SPARC64 VII (impl. dep. #35; impl. dep. #36). 

TABLE 7-1 Exceptions Specific to SPARC64 VII 

Exception or Interrupt Request TT Priority 

async_data_error 04016 2 
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7.4.4	 Details of Supported Traps 

Please refer to Section 7.4.4 in Commonality. 

SPARC64 VII Implementation-Specific Traps 

SPARC64 VII supports the following implementation-specific trap type: 

■	 async_data_error 

7.5	 Trap Processing 
Please refer to Section 7.5 of Commonality. 

7.6	 Exception and Interrupt Descriptions 
Please refer to Section 7.6 of Commonality. 

7.6.4	 SPARC V9 Implementation-Dependent, Optional Traps 
That Are Mandatory in SPARC JPS1 

Please refer to Section 7.6.4 of Commonality. 

SPARC64 VII implements all six traps that are implementation dependent in SPARC V9 but 
mandatory in JPSI (impl. dep. #35). See Section 7.6.4 of Commonality for details. 

7.6.5  SPARC JPS1 Implementation-Dependent Traps 

Please refer to Section 7.6.5 of Commonality. 

SPARC64 VII implements the following traps that are implementation dependent (impl. dep. 
#35). 

■	 async_data_error  [tt = 04016] (Preemptive or disrupting) (impl. dep. #218) — 
SPARC64 VII implements the async_data_error exception to signal the following errors. 
■	 Uncorrectable errors in the internal architecture registers (general registers–gr, 

floating-point registers–fr, ASR, ASI registers) 
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■ Uncorrectable errors in the core pipeline 
■ Watch dog time-out first time 
■ TLB access error upon access by an ldxa or stxa instruction 

Multiple errors may be reported in a single generation of the async_data_error exception. 
Depending on the situation, the async_data_error trap becomes a precise trap, a 
disrupting trap, or a preemptive trap upon error detection. The TPC and TNPC stacked by 
the exception may indicate the exact instruction, the preceding instruction, or the 
subsequent instruction inducing the error. See Appendix P for details of the 
async_data_error exception in SPARC64 VII. 
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F.CH AP TE R 8 

Memory Models


The SPARC V9 architecture is a model that specifies the behavior observable by software on 
SPARC V9 systems. Therefore, access to memory can be implemented in any manner, as 
long as the behavior observed by software conforms to that of the models described in 
Chapter 8 of Commonality and defined in Appendix D, Formal Specification of the Memory 
Models, also in Commonality. 

The SPARC V9 architecture defines three different memory models: Total Store Order 
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). All SPARC V9 
processors must provide Total Store Order (or a more strongly ordered model, for example, 
Sequential Consistency) to ensure SPARC V8 compatibility. 

Whether the PSO or RMO models are supported by SPARC V9 systems is implementation 
dependent; SPARC64 VII behaves in a manner that guarantees adherence to whichever 
memory model is currently in effect. 

This chapter describes the following major SPARC64 VII-specific details of memory models. 

■ SPARC V9 Memory Model on page 42 

For general information, please see parallel subsections of Chapter 8 in Commonality. For 
easier referencing, this chapter follows the organization of Chapter 8 in Commonality, 
listing subsections whether or not there are implementation-specific details. 
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8.1 Overview


Note – The words “hardware memory model” denote the underlying hardware memory 
models as differentiated from the “SPARC V9 memory model,” which is the memory model 
the programmer selects in PSTATE.MM. 

SPARC64 VII supports only one mode of memory handling to guarantee correct operation 
under any of the three SPARC V9 memory ordering models (impl. dep. #113): 

■	 Total Store Order — All loads are ordered with respect to loads, and all stores are 
ordered with respect to loads and stores. This behavior is a superset of the requirements 
for the SPARC V9 memory models TSO, PSO, and RMO. When PSTATE.MM selects 
PSO or RMO, SPARC64 VII operates in this mode. Since programs written for PSO (or 
RMO) will always work if run under Total Store Order, this behavior is safe but does not 
take advantage of the reduced restrictions of PSO (or RMO). 

8.4 SPARC V9 Memory Model 
Please refer to Section 8.4 of Commonality. 

In addition, this section describes SPARC64 VII-specific details about the processor/memory 
interface model. 

8.4.5 Mode Control 

SPARC64 VII implements Total Store Ordering for all PSTATE.MM. Writing 112 into 
PSTATE.MM also causes the machine to use TSO (impl. dep. #119). However, the encoding 
112 should not be used, since future version of SPARC64 VII may use this encoding for a 
new memory model. 

8.4.7 Synchronizing Instruction and Data Memory 

All caches in a SPARC64 VII-based system (uniprocessor or multiprocessor) have a unified 
cache consistency protocol and implement strong coherence between instruction and data 
caches. Writes to any data cache cause invalidations to the corresponding locations in all 
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instruction caches; references to any instruction cache cause the corresponding modified data 
to be flushed and corresponding unmodified data to be invalidated from all data caches. The 
flush operation is still operative in SPARC64 VII, however. 
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F.CH AP TE R 9 

Multi-Threaded Processing


SPARC64 VII can process two threads in each of the four cores in the same processor 
module to provide a dense, high throughput system. This chapter specifies the required 
interface between hardware and software to handle multiple threads on the same processor 
module. 

9.1 MTP structure 

9.1.1 General MTP structure 

Three structures are known for Multi threaded Processing. 

1. Chip Multi Processing 

One processor module includes multiple physical cores, where each physical core is able 
to run a single thread independently from other cores at any given time. This structure is 
called Chip Multi-Processing (CMP). 

2. Multi-thread (MT) 

One processor module includes a single physical core. The core is able to run multiple 
threads in parallel from the software’s point of view. Although there is only a single 
physical core, the physical core behaves as if it were multiple virtual processors. This is 
because the core includes multiple software visible resources (PC, next PC, general purpose 
registers, floating-point registers, condition codes, status registers, ASRs, etc.). This virtual 
processor is called a thread. 

There are two types of Multi-thread implementations. 

a. Vertical Multi-thread (VMT) 
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The physical core is able to run only a single thread at any given time. But multiple 
threads can run in parallel from the software’s point of view by using time-sharing 
techniques. That is, the core includes multiple software visible resources (PC, next PC, 
general purpose registers, floating-point registers, condition codes, status registers, ASRs, 
etc.), and hardware switches threads to run in a relatively-short time. 

b. Simultaneous Multi-thread (SMT) 

The physical core is able to run multiple threads at any given time. That is, the core 
includes multiple software visible resources (PC, next PC, general purpose registers, 
floating-point registers, condition codes, status registers, ASRs, etc.) as well as multiple 
execution units, and multiple threads run at the same time. 

9.1.2 MTP structure of SPARC64 VII 

SPARC64 VII implements a combination of CMP and SMT. That is, it has four physical 
cores where each core has two threads with an SMT structure. In other words, eight threads 
are able to run in parallel. The two threads which belong to the same physical core share 
most of the physical resources, while the four physical cores do not share any physical 
resources except the L2 cache and system interface. 

Threads execution in SPARC64 VII is illustrated in FIGURE 9-1. Basically two threads in a 
core always active and execute instructions, but sometime stops due to cache miss, waiting 
for internal resources, and so on. Gaps in a thread in FIGURE 9-1 represent such kind of 
pause. Meanwhile, a thread can yield its execution priority with the help of software. See 
How to control threads on page 48. for detail. 

FIGURE 9-1 Multiple threads in SPARC64 VII 
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9.2 MTP Programming Model 

9.2.1 Thread independency 

In principle, because the software visible resources are not shared between threads, each 
thread of SPARC64 VII is independent of each other like a conventional Symmetric Multi 
Processor. Even for supervisor software, this is true except in the following cases: 

Shared TLBs 

Thread0 and thread1 belong to the same physical core and share fTLB and sTLB. See 
Section F.12, Translation Lookaside Buffer Hardware, on page 129 for details. 

Error handling 

An error asynchronous to thread execution is always signalled to all related threads. See 
Section P.1, Error Classes and Signalling, on page 171 for details. 

Issue and Committ Stage Contention 

Although each thread has its own hardware for issuing and committing instructions, only one 
thread’s hardware may operate at a time. This means that in a single cycle, only one thread’s 
hardware gets exclusive access to issue or commit instructions (up to 4). Each cycle with 2 
active threads, the priority automatically switches between thread 0 and thread 1 for both 
issuing and committing instructions. 

Performance 

Since each thread has its own software visible resources, they are independent of each other 
from the programming model point of view. But this is not true for performance. Since 
threads belonging to the same physical core share most of the physical resources, it is highly 
recommended for the OS to schedule threads in the following manner: 

■ Run threads belonging to the same process space on thread0 and thread1 
■ Suspend thread1 to run a single threaded program at maximum speed 

Note – Since threads belonging to different physical cores share none of physical resources 
except the L2 cache and the system interface, it is not required to pay as much attention to 
them. 
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9.2.2 How to control threads 

When controlling MT operation, it is important to note that there are 3 different classification 
states for a thread. A thread may be designated as one of the following: 

■ active: currently in execution 

■ empty: a thread is present but it is currently not undergoing execution 

■ suspend/sleep: no thread is present 

In a single core, if one of the threads is designated as suspend/sleep, the core will enter 
single-thread mode. This is meant to enhance the execution performance of the lone thread 
executing in the core. 

When in single-thread mode, two important things happen. One is that certain resources 
(invisibile to software) reserved for the second thread’s execution are aggregated to the lone 
executing thread. The second is that the reamaining thread’s issue and commit functions 
receive priority each cycle. This allows the remaining thread to achieve a greater instruction 
thoroughput. 

There are special instructions for switching the state of a threads. For more information on 
relegating threads to a suspend/sleep state to halt their execution, see Section A.24.2, 
Suspend, on page 59 and Section A.24.3, Sleep, on page 60 for details. 

9.2.3 Shared registers between threads

 The following ASR and ASI registers are shared among all the threads within a processor 
module. 

■ PA/VA Watchpoint 
■ ASI_SERIAL_ID 
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F.AP PE ND IX A 

Instruction Definitions


This appendix describes the SPARC64 VII-specific implementation of the instructions in 
Appendix A of Commonality. If an instruction is not described in this appendix, then no 
SPARC64 VII implementation-dependency applies. 

■	 See TABLE A-1 of Commonality for the location at which general information about the 
instruction can be found. 

■	 Section numbers refer to the parallel section numbers in Appendix A of Commonality. 

TABLE A-1 lists eight instructions that are unique to SPARC64 VII. 

TABLE A-1 Implementation-Specific Instructions 

Operation Name Page 

FMADD(s,d) Floating-point multiply add 55 

FMSUB(s,d) Floating-point multiply subtract 55 

FNMADD(s,d) Floating-point multiply negate add 55 

FNMSUB(s,d) Floating-point multiply negate subtract 55 

POPC Population Count 69 

SUSPEND Suspend a thread 59 

SLEEP Put a thread to sleep 60 

FPMADDX, FPMADDXHI Integer multiply-add 61 

Each instruction definition consists of these parts: 

1. A table of the opcodes defined in the subsection with the values of the field(s) that 
uniquely identify the instruction(s). 

2. An illustration of the applicable instruction format(s). In these illustrations a dash (—) 
indicates that the field is reserved for future versions of the architecture and shall be 0 in 
any instance of the instruction. If a conforming SPARC V9 implementation encounters 
nonzero values in these fields, its behavior is undefined. 

3. A list of the suggested assembly language syntax, as described in Appendix G. 
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4. A description of the features, restrictions, and exception-causing conditions. 

5. A list of exceptions that can occur as a consequence of attempting to execute the 
instruction(s). Exceptions due to an instruction_access_error, 
instruction_access_exception, fast_instruction_access_MMU_miss, async_data_error, 
ECC_error, and interrupts are not listed because they can occur on any instruction. 

Also, any instruction that is not implemented in hardware shall generate an 

illegal_instruction exception (or fp_exception_other exception with

ftt = unimplemented_FPop for floating-point instructions) when it is executed.


The illegal_instruction trap can occur during chip debug on any instruction that has been 
programmed into the processor’s IIU_INST_TRAP (ASI = 6016, VA = 0). These traps 
are also not listed under each instruction. 

The following traps never occur in SPARC64 VII: 

■ instruction_access_MMU_miss 
■ data_access_MMU_miss 
■ data_access_protection 
■ unimplemented_LDD 
■ unimplemented_STD 
■ LDQF_mem_address_not_aligned 
■ STQF_mem_address_not_aligned 
■ internal_processor_error 
■ fp_exception_other  (ftt = invalid_fp_register) 

This appendix does not include any timing information (in either cycles or clock time). 

The following SPARC64 VII-specific extensions are described. 

■ Block Load and Store Instructions (VIS I) on page 51 
■ Call and Link on page 53 
■ Implementation-Dependent Instructions on page 54 
■ Jump and Link on page 63 
■ Load Quadword, Atomic [Physical] on page 64 
■ Memory Barrier on page 66 
■ Partial Store (VIS I) on page 68 
■ Prefetch Data on page 70 
■ Read State Register on page 72 
■ SHUTDOWN (VIS I) on page 73 
■ Write State Register on page 74 
■ Deprecated Instructions on page 75 
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A.4 Block Load and Store Instructions (VIS I)

The following notes summarize behavior of block load/store instructions in SPARC64 VII. 

1. Block load and store operations are not atomic, in that they are internally decomposed 
into eight independent, 8-byte load/store operations in SPARC64 VII. Each load/store is 
always issued and performed in the RMO memory model and obeys all prior MEMBAR and 
atomic instruction-imposed ordering constraints. 

2. Block load/store instructions are out of the scope of V9 memory models, meaning that 
self-consistency of memory reference instruction is not always maintained if block load/ 
store instructions are involved in the execution flow. The following table describes the 
implemented ordering constraints for block load/store instructions with respect to the 
other memory reference instructions with an operand address conflict in SPARC64 VII: 

Program Order for conflicting bld/bst/ld/st Ordered/ 
first next Out-of-Order 

store blockstore Ordered 

store blockload Ordered 

load blockstore Ordered 

load blockload Ordered 

blockstore store Out-of-Order 

blockstore load Out-of-Order 

blockstore blockstore Out-of-Order 

blockstore blockload Out-of-Order 

blockload store Ordered 

blockload load Ordered 

blockload blockstore Ordered 

blockload blockload Ordered 

To maintain the memory ordering even for the memory address conflicts, MEMBAR

instructions shall be inserted into appropriate locations in the program.


Although self-consistency with respect to the block load/store and the other memory 
reference instructions is not maintained in some cases, register conflicts between the other 
instructions and block load/store instructions are maintained in SPARC64 VII. The read-
after-write, write-after-read, and write-after-write obstructions between a block load/store 
instruction and the other arithmetic instructions are detected and handled appropriately. 

3. Block load instructions operate on the cache if the operand is present. 

4. The block store with commit instruction always stores the operand in main storage and 
invalidates the line in the L1D and L2 cache if it is present. 
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5. The block store instruction stores the operand into main storage if it is not present in the 
L1D and the status of the line is invalid, shared, or owned. In case the line is not present 
in the L1D cache and is exclusive or modified in the L2 cache, the block store instruction 
modifies only the line in L2 cache. If the line is present in the L1D and the status is either 
clean/shared or clean/owned, the line is stored in main storage. If the line is present in the 
L1D and the status is clean/exclusive, the line in the L1D is invalidated and the operand 
is stored in the L2 cache. If the line is in the L1D and the status is modified/modified or 
clean/modified, the operand is stored in the L1D or L2 with L1D invalidation, 
respectively. The following table summarizes each cache status before block store and the 
results of the block store. Blank cells mean that no action occurred in the corresponding 
cache or memory, and the data, if it exists, is unchanged1. 

Storage Status 

Cache status L1 Invalid Valid 
before bst L2 E, M I, S, O E M S, O 

Action 

L1 

L2 

Memory 

— 

update 

— 

— 

— 

update 

invalidate 

update 

— 

update/ 
invalidate 

—/update 

— 

— 

— 

update 

6. The block load and block store instructions on a page with TTE.E = 0 may signal a 
fast_data_access_MMU_miss trap in the any 8-byte load or store in a 64-byte data 
when the TTE being used is dropped by the other thread. On a block load, the 
registers may contain new value or old value. The incompleted block load instructions 
will be re-executed at the first 8-byte load after TLB miss handling is done. When the 
trap is signalled on a block store, none of the registers value is written into the 
memory or cache. 

Exceptions	 fp_disabled 
PA_watchpoint 
VA_watchpoint 
illegal_instruction (misaligned rd) 
mem_address_not_aligned (see Block Load and Store ASIs on page 140) 
data_access_exception (see Block Load and Store ASIs on page 140) 
LDDF_mem_address_not_aligned (see Block Load and Store ASIs on page 140) 
data_access_error 
fast_data_access_MMU_miss 
fast_data_access_protection 

1. The inconsistency between memory and caches will eventually resolved by an invalidation request from the system. 
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A.12 Call and Link

SPARC64 VII clears the upper 32 bits of the PC value in r[15] when PSTATE.AM is set 
(impl. dep. #125). The value written into r[15] is visible to the instruction in the delay slot. 

SPARC64 VII has a special hardware table, called Return Address Stack, to predict the return 
address from a subroutine. Though the return prediction stack achieves better performance in 
normal cases, there is a special use of the CALL instruction (call.+8) that may have an 
undesirable effect on the return address stack. In this case, the CALL instruction is used to 
read the PC contents, not to call a subroutine. In SPARC64 VII, the return address of the 
CALL  (PC + 8) is not stored in its return address stack, to avoid a detrimental performance 
effect. When a ret or retl is executed, the value in the return address stack is used to 
predict the return address. 
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A.24 Implementation-Dependent Instructions


Opcode op3 Operation 

IMPDEP1 11 0110 Implementation-Dependent Instruction 1


IMPDEP2 11 0111 Implementation-Dependent Instruction 2


The IMPDEP1 and IMPDEP2 instructions are completely implementation dependent. 
Implementation-dependent aspects include their operation, the interpretation of bits 29–25 
and 18–0 in their encoding, and which (if any) exceptions they may cause. 

SPARC64 VII uses IMPDEP1 to encode VIS, SUSPEND, and SLEEP instructions (impl. dep. 
#106), IMPDEP2A to encode the Integer Multiply-Add instructions, and IMPDEP2B to 
encode the Floating-Point Multiply Add/Subtract instructions (impl. dep. #106). 

See I.1.2, Implementation-Dependent and Reserved Opcodes, in Commonality for 
information about extending the SPARC V9 instruction set by means of the implementation-
dependent instructions. 

Compatibility Note – These instructions replace the CPopn instructions in SPARC V8. 

Exceptions implementation-dependent 
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A.24.1 Floating-Point Multiply-Add/Subtract 

SPARC64 VII uses IMPDEP2B opcode space to encode the Floating-Point Multiply Add/ 
Subtract instructions. 

Opcode Variation Size†1 2 Operation 

FMADDs 00 01 Multiply-Add Single 

FMADDd 00 10 Multiply-Add Double 

FMSUBs 01 01 Multiply-Subtract Single 

FMSUBd 01 10 Multiply-Subtract Double 

FNMSUBs 10 01 Negative Multiply-Subtract Single 

FNMSUBd 10 10 Negative Multiply-Subtract Double 

FNMADDs 11 01 Negative Multiply-Add Single 

FNMADDd 11 10 Negative Multiply-Add Double 

1.For an instruction with size = 00, see Section A.24.4, Integer Multiply-Add. 

2.11 is reserved for quad precision. 

Format (5) 

10 110111 rs2 rd 

31 1824 02530 29 19 4567891314 

size var rs3 rs1 

Operation Implementation 

Multiply-Add rd ← rs1 × rs2 + rs3 

Multiply-Subtract rd ← rs1 × rs2 − rs3 

Negative Multiply-Subtract rd ← − rs1 × rs2 + rs3 

Negative Multiply-Add rd ← − rs1 × rs2 − rs3 

Assembly Language Syntax 

fmadds fregrs1, fregrs2, fregrs3, fregrd 

fmaddd fregrs1, fregrs2, fregrs3, fregrd 

fmsubs fregrs1, fregrs2, fregrs3, fregrd 

fmsubd fregrs1, fregrs2, fregrs3, fregrd 

fnmadds fregrs1, fregrs2, fregrs3, fregrd 

fnmaddd fregrs1, fregrs2, fregrs3, fregrd 

fnmsubs fregrs1, fregrs2, fregrs3, fregrd 

fnmsubd fregrs1, fregrs2, fregrs3, fregrd 
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Description	 The Floating-point Multiply-Add instructions multiply the register(s) specified by the rs1 
field times the register(s) specified by the rs2 field, add that product to the register(s) 
specified by the rs3 field, then write the result into the register(s) specified by the rd field. 

The Floating-point Multiply-Subtract instructions multiply the register(s) specified by the 
rs1 field times the register(s) specified by the rs2 field, subtract from that product the 
register(s) specified by the rs3 field, and then write the result into the register(s) specified 
by the rd field. 

The Floating-point Negative Multiply-Add instructions multiply the register(s) specified by 
the rs1 field times the register(s) specified by the rs2 field, negate the product, subtract 
from that negated value the register(s) specified by the rs3 field, and then write the result 
into the register(s) specified by the rd field. 

The Floating-point Negative Multiply-Subtract instructions multiply the register(s) specified 
by the rs1 field times the register(s) specified by the rs2 field, negate the product, add that 
negated product to the register(s) specified by the rs3 field, and then write the result into the 
register(s) specified by the rd field. 

The instruction is treated as fused multiply and add/subtract operations on SPARC64 VII. 
That is, a multiply operation is first performed with infinite precision without a rounding 
step, and then an add/subtract operation is performed with a complete rounding step. 
Consequently, at most one rounding error could be incurred. 

Programming Note – SPARC64 V treats the instruction as separate multiply and add/

subtract operations. That is, a multiply operation is first performed with a complete rounding 

step (as if it were a single multiply operation), and then an add/subtract operation is

performed with a complete rounding step (as if it were a single add/subtract operation).

Consequently, at most two rounding errors could be incurred.

Also fnmadd and fnmsub behavior with rs1=NaN or rs2=NaN is different between 

SPARC64 V and SPARC64 VII. SPARC64 VII outputs one of  the NaN inputs as it is, while 

SPARC64 V outputs the one with the sign bit inverted.


The behavior of SPARC64 VII in handling traps in Floating-point Multiply-Add/Subtract 
instructions is described in TABLE A-2. If a trapping invalid exception or a denormal source 
operand with FSR.NS=1 is detected in the multiply part in the process of a Floating-point 
Multiply-Add/Subtract instruction, the execution of the instruction is aborted, the exception 
condition is recorded in FSR.cexc, the aexc is not modified, and the CPU traps with the 
exception condition. The add/subtract part of the instruction is only performed when the 
multiply-part of the instruction does not have a trapping invalid exception. 

If there are trapping IEEE754 exception conditions in the add/subtract part, only the trapping 
exception condition is recorded in the cexc, and the aexc is not modified. If there are no 
trapping IEEE754 exception conditions, nontrapping exception condition of the add/subtract 
part is written into the cexc and the cexc is accumulated into the aexc. The boundary 
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conditions of an unfinished_FPop trap for Floating-point Multiply-Add/Subtract instructions 
are the same as the FMUL boundary conditions for the source operand 1 and 2,  and the same 
as the FADD ones for the source operand 3 and the destination. 

TABLE A-2 IEEE754 Exceptions in Floating-Point Multiply-Add/Subtract Instructions 

FMUL IEEE754 trap (inv or nx only) No trap No trap 

FADD — IEEE754 trap No trap 

cexc Exception condition of FMUL Exception condition of FADD Nontrapping exception conditions of FADD 

aexc No change No change Logical OR of the cexc (above) and the 
aexc 

Detailed contents of cexc depending on the various conditions are described in TABLE A-3 

and TABLE A-4. The following terminology is used: uf, of, inv, and nx are nontrapping IEEE 
exception conditions—underflow, overflow, invalid operation, and inexact, respectively. 

TABLE A-3 Non-Trapping cexc When FSR.NS = 0  

FADD 

none nx of nx inv 

FMUL none none nx of nx inv 

inv inv — — inv 

TABLE A-4 Non-Trapping cexc When FSR.NS = 1  

FADD 

none nx of nx uf nx inv 

FMUL none none nx of nx uf nx inv 

inv inv — — — inv 

nx nx nx of nx uf nx inv nx 

In the tables, the conditions with “—” do not exist. 

Programming Note – The Floating-point Multiply-Add instructions are encoded in the 
SPARC V9 IMPDEP2 opcode space, and they are specific to the SPARC64 VII 
implementation. They cannot be used in any programs that will be executed on any other 
SPARC V9 processor, unless that implementation exactly matches the SPARC64 VII use of 
the IMPDEP2 opcode. 
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Exceptions fp_disabled 
fp_exception_ieee_754 (NV, NX, OF, UF) 
illegal_instruction (size = 112) (fp_disabled is not checked for these encoding) 

For an exception of size = 002, see Section A.24.4, Integer Multiply-Add. 
fp_exception_other  (unfinished_FPop) 
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A.24.2 Suspend 

opcode opf operation 

SUSPENDP 0 1000 0010 suspend a thread 

Format (3) 

10 110110 opf— —— 

31 30 29 25 24 19 18 14 13	 5 4 0 

Assembly Language Syntax 

suspend


Description	 The instruction puts the thread executed it into the SUSPENDED state. The instruction sets 
PSTATE.IE to “1”. Exit conditions from the SUSPENDED state are: 

■ POR,WDR,XIR 

■ interrupt_vector trap 

■ interrupt_level_n trap 

Exceptions:	 privileged_opcode 
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A.24.3 Sleep 

opcode opf operation 

SLEEP 0 1000 0011 put a thread to sleep 

Format (3) 

10 110110 opf— —— 

31 30 29 25 24 19 18 14 13	 5 4 0 

Assembly Language Syntax 

sleep


Description The instruction puts the thread executed it to sleep. Conditions to wake up are: 

■	 POR,WDR,XIR 
■	 interrupt_vector trap 
■	 interrupt_level_n trap 
■	 After a certain period, where the period is implementation-dependent. 

The value of SPARC64 VII is about 1.6 micro-seconds. The period is measured by clock 
to SPARC64 VII; and the same clock is used to increment STICK. 

■	 An update of a LBSY assigned to any of ASI_LBSYs of the thread. 
An update of a LBSY that is not assigned to ASI_LBSY does not wake up the thread. 

Note – When the instruction is executed with PSTATE.IE=0, the thread will not wake up 
even if there is an interrupt_vector. 

Implementation Note – If a LBSY is updated and a hardware thread that uses the LBSY 
does not sleep, the next sleep instruction may not put the thread into sleep. 

If a given thread (A) executes the SLEEP instruction while the other thread (B) in the same 
core is already in the sleep state, then the thread (A) is relegated to the sleep state and the 
thread (B) wakes up instead. 

Exceptions: None 
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A.24.4	 Integer Multiply-Add 

SPARC64 VII uses IMPDEP2A opcode space to encode the Integer Multiply-Add 
instructions. 

Opcode Variation Size1 Operation 

FPMADDX 00 00 Unsigned Integer Multiply-Add for lower 8-byte 

FPMADDXHI 01 00 Unsigned Integer Multiply-Add for upper 8-byte 

1.For an instruction with size = 01, 10 and 11, see Section A.24.1, Floating-Point Multiply-Add/Sub
tract. 

Format (5) 

10 110111 var rs1 rs2 rd rs3 size 

31 30 29 25 24 19 18 14 13 9 8 7 6 5 4 0 

Assembly Language Syntax 

fpmaddx fregrs1, fregrs2, fregrs3, fregrd 

fpmaddxhi fregrs1, fregrs2, fregrs3, fregrd 

Description	 The Integer Multiply-Add instruction performs fused multiply and add instruction on the data 
in double-precision floating-point registers that contains unsigned 8-byte integer values. 

FPMADDX multiplies the register specified by the rs1 field and the rs2 field, adds that 
product to the register specified by the rs3 field, then writes the lower 8-byte result into the 
register specified by the rd field. rs1, rs2 and rs3 all contain unsigned 8-byte integer 
values. 

FPMADDXHI multiplies the register specified by the rs1 field and the rs2 field, adds that 
product to the register specified by the rs3 field, then writes the upper 8-byte result into the 
register specified by the rd field. rs1, rs2 and rs3 all contain unsigned 8-byte integer 
values. 

FPMADDX and FPMADDXHI never alter any bit of %fsr. 

Although FPMADDX and FPMADDXHI are IMPDEP2 instructions, they are not counted by 
Impdep2_instruction performance counter. See Section Q.2.1, Instruction and trap Statistics, 
on page 222 for detail. 
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Exceptions:	 fp_disabled 
illegal_instruction (var = 102 or 112) 
For an exception of size = 012, 102, or 112, see Section A.24.1, Floating-Point Multiply-Add/ 
Subtract. 
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A.25 Jump and Link

SPARC64 VII clears the upper 32 bits of the PC value in r[rd] when PSTATE.AM is set 
(impl. dep. #125). The value written into r[rd] is visible to the instruction in the delay slot. 

If either of the low-order two bits of the jump address is nonzero, a 
mem_address_not_aligned exception occurs. However, when the JMPL instruction causes a 
mem_address_not_aligned trap, DSFSR and DSFAR are not updated (impl. dep. #237). 

If the JMPL instruction has r[rd] = 15, SPARC64 VII stores PC + 8 in a hardware table 
called the return address stack (RAS). When a RET (jmpl %i7+8, %g0) or RETL (jmpl 
%o7+8, %g0) is executed, the value in the RAS is used to predict the return address. 

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is 
“r[31] + 8” if a non leaf routine (one that uses the SAVE instruction) is entered by a 
CALL instruction, or “r[15] + 8” if a leaf routine (one that does not use the SAVE 
instruction) is entered by a CALL instruction or by a JMPL instruction with rd = 15.  
Ver 1.0, 1 Jul. 2008 F. Appendix A Instruction Definitions 63 



A.30	 Load Quadword, Atomic [Physical] 
The Load Quadword ASIs in this section are specific to SPARC64 VII, as an extension to 
SPARC JPS1. 

opcode imm_asi ASI value operation 

LDDA ASI_QUAD_LDD_PHYS 3416 128-bit atomic load, physically 
addressed 

LDDA ASI_QUAD_LDD_PHYS_L 3C16 128-bit atomic load, little-endian, 
physically addressed 

Format (3) LDDA 

rd11 010011 simm_13 rs1 i=1 

rd11 010011 imm_asi rs1 rs2 i=0 

31 30 29 25 24 19 18 14 13	 5 4 0 

Assembly Language Syntax 

ldda [reg_addr] imm_asi, regrd 

ldda [reg_plus_imm] %asi, regrd 

Description	 ASIs 3416 and 3C16 are used with the LDDA instruction to atomically read a 128-bit data item, 
using physical addressing. The data are placed in an even/odd pair of 64-bit registers. The 
lower-addressed 64 bits are placed in the even-numbered register; the higher-addressed 64 
bits are placed in the odd-numbered register. The reference is made from the nucleus context. 

In addition to the usual traps for LDDA using a privileged ASI, a data_access_exception 
exception occurs for a noncacheable access or for the use of the quadword-load ASIs with 
any instruction other than LDDA. A mem_address_not_aligned exception is generated if the 
access is not aligned on a 16-byte boundary. 

ASIs 3416 and 3C16 are supported in SPARC64 VII in addition to those for Load Quadword 
Atomic for virtually addressed data (ASIs 2416 and 2C16). 

The memory access for a load quad instruction with ASI_QUAD_LDD_PHYS{_L} behaves 
as if the following TTE are set: 

■ TTE.NFO	 = 0 
■ TTE.CP	 = 1 
■ TTE.CV	 = 0 
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■ TTE.E = 0 
■ TTE.P = 1 
■ TTE.W = 0 

Note – TTE.IE depends on the endianness of the ASI. When the ASI is 03416, 
TTE.IE = 0;  TTE.IE = 1 when the ASI is 03C16. 

Therefore, the atomic quad load physical instruction can only be applied to a cacheable 
memory area. Semantically, ASI_QUAD_LDD_PHYS{_L} (03416 and 03C16) is a 
combination of ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC. 

With respect to little endian memory, a Load Quadword Atomic instruction behaves as if it 
comprises two 64-bit loads, each of which is byte-swapped independently before being 
written into its respective destination register. 

Exceptions:	 privileged_action 
PA_watchpoint (recognized on only the first 8 bytes of a transfer) 
illegal_instruction (misaligned rd) 
mem_address_not_aligned 
data_access_exception 
data_access_error 
fast_data_access_MMU_miss 
fast_data_access_protection 
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A.35	 Memory Barrier 

Format (3) 

31 141924 18 13 12 02530 29 

10 0 op3 0 1111 i=1 — 

4 3  

mmask 

67 

cmask 

Assembly Language Syntax 

membar membar_mask 

Description	 The memory barrier instruction, MEMBAR, has two complementary functions: to express 
order constraints between memory references and to provide explicit control of memory-
reference completion. The membar_mask field in the suggested assembly language is the 
concatenation of the cmask and mmask instruction fields. 

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-5 specifies the 
order constraint that each bit of mmask (selected when set to 1) imposes on memory 
references appearing before and after the MEMBAR. From zero to four mask bits can be 
selected in the mmask field. 

TABLE A-5 Order Constraints Imposed by mmask Bits 

Mask Bit Name Description 

mmask<3> #StoreStore The effects of all stores appearing before the MEMBAR instruction must be visible to all 
processors before the effect of any stores following the MEMBAR. Equivalent to the 
deprecated STBAR instruction. Has no effect on SPARC64 VII since all stores are 
performed in program order. 

mmask<2> #LoadStore All loads appearing before the MEMBAR instruction must have been performed before 
the effects of any stores following the MEMBAR are visible to any other processor. This 
has no effect on SPARC64 VII since all stores are performed in program order and 
must occur after performance of any load. 

mmask<1> #StoreLoad The effects of all stores appearing before the MEMBAR instruction must be visible to all 
processors before loads following the MEMBAR may be performed. 

mmask<0> #LoadLoad All loads appearing before the MEMBAR instruction must have been performed before 
any loads following the MEMBAR may be performed. This has no effect on 
SPARC64 VII since all loads are performed after any prior loads. 
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The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field, 
described in TABLE A-6, specify additional constraints on the order of memory references and 
the processing of instructions. If cmask is zero, then MEMBAR enforces the partial ordering 
specified by the mmask field; if cmask is nonzero, then completion and partial order 
constraints are applied. 

TABLE A-6 Bits in the cmask Field 

Mask Bit Function Name Description 

cmask<2> Synchronization 
barrier 

#Sync All operations (including nonmemory reference operations) 
appearing before the MEMBAR must have been performed, and the 
effects of any exceptions become visible before any instruction after 
the MEMBAR may be initiated. 

cmask<1> Memory issue 
barrier 

#MemIssue All memory reference operations appearing before the MEMBAR must 
have been performed before any memory operation after the 
MEMBAR may be initiated. Equivalent to #Sync in SPARC64 VII. 

cmask<0> Lookaside 
barrier 

#Lookaside A store appearing before the MEMBAR must complete before any load 
following the MEMBAR referencing the same address can be initiated. 
Equivalent to #Sync in SPARC64 VII. 
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A.42	 Partial Store (VIS I) 
Please refer A.42 in Commonality for general details. 

Watchpoint exceptions on partial store instructions occur conservatively on SPARC64 VII. 
The DCUCR Data Watchpoint masks are only checked for nonzero value (watchpoint 
enabled). The byte store mask (r[rs2]) in the partial store instruction is ignored, and a 
watchpoint exception can occur even if the mask is zero (that is, no store will take place) 
(impl. dep. #249). 

Implementation Note – For a partial store instruction to a noncacheable area with 
mask = 0, SPARC64 VII still issues a Jupiter Bus transaction with zero-byte mask. 

Exceptions:	 fp_disabled 
PA_watchpoint 
VA_watchpoint 
illegal_instruction  (i = 1)  
mem_address_not_aligned (see Partial Store ASIs on page 140) 
data_access_exception (see Partial Store ASIs on page 140) 
LDDF_mem_address_not_aligned (see Partial Store ASIs on page 140) 
data_access_error 
fast_data_access_MMU_miss 
fast_data_access_protection 
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A.48 Population Count


opcode op3 operation 

POPC 10 1110 Population Count 

Format (3) 

10 op3 0 0000 rs2 rd —i=0 

10 op3 0 0000 rd simm13 i=1 

31 30 29 25 24 19 18 14 13	 5 4 0 

Assembly Language Syntax 

popc reg_or_imm, regrd 

Description	 POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in 
sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not modify the 
condition  codes. 

Note – Unlike SPARC64 V,  SPARC64 VII implements the instruction in hardware. 

Exceptions: illegal_instruction (instruction<18:14> ≠ 0) 
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A.49 Prefetch Data

Please refer to Section A.49, Prefetch Data, of Commonality for principal information. 

The prefetcha instruction of SPARC64 VII works for the following ASIs. 

■	 ASI_PRIMARY (08016), ASI_PRIMARY_LITTLE (08816) 

■	 ASI_SECONDARY (08116), ASI_SECONDARY_LITTLE (08916) 

■	 ASI_NUCLEUS (0416), ASI_NUCLEUS_LITTLE (0C16) 

■	 ASI_PRIMARY_AS_IF_USER (01016), ASI_PRIMARY_AS_IF_USER_LITTLE 
(01816) 

■	 ASI_SECONDARY_AS_IF_USER (01116), ASI_SECONDARY_AS_IF_USER_LITTLE 
(01916) 

If an ASI other than the above is specified, prefetcha is executed as a nop. 

TABLE A-7 describes prefetch variants implemented in SPARC64 VII. 

TABLE A-7 Prefetch Variants 

fcn Fetch to: Status Description 

0  L1D  S,E  

1  L2  S,E  

2  L1D  M,E  

3  L2  M,E  

4 — — NOP 

5-15 reserved (SPARC V9) illegal_instruction exception is signalled. 

16-19 implementation NOP 
dependent. 

20 L1D S,E Strong Prefetch 

21 L2 S,E Strong Prefetch 

22 L1D M,E Strong Prefetch 

23 L2 M,E Strong Prefetch 

24-31 implementation NOP 
dependent 

Strong Prefetch 

A prefetch with fcn = 20, 21, 22 or 23 is defined as a Strong Prefetch. In SPARC64 VII, 
these prefetch are never lost in any case except a TLB miss and DCUCR.weak_spca = 1.  
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Programming Note – While a not-strong prefetch sometimes loses due to lack of internal 
resources, a strong prefetch is firmly executed in these cases. This will cause a negative 
effect on subsequent loads and stores. Avoid using strong prefetch for unnecessary data. 

SPARC64 VII does not cause a fast_data_access_MMU_miss miss on fcn = 20, 21, 22 or 
23 (impl. dep. #103(2)). 
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A.51 Read State Register

In SPARC64 VII, an RDPCR instruction will generate a privileged_action exception if 
PSTATE.PRIV = 0 and PCR.PRIV = 1. If  PSTATE.PRIV = 0 and PCR.PRIV = 0,  
RDPCR will not cause any access privilege violation exceptions (impl. dep. #250). 
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A.59 SHUTDOWN (VIS I) 
In SPARC64 VII, SHUTDOWN acts as a NOP in privileged mode (impl. dep. #206). 
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A.70 Write State Register

In SPARC64 VII, a WRPCR instruction will cause a privileged_action exception if 
PSTATE.PRIV = 0 and PCR.PRIV = 1. If  PSTATE.PRIV = 0 and PCR.PRIV = 0,  
WRPCR causes a privileged_action exception only when an attempt is made to change (that 
is, write 1 to) PCR.PRIV (impl. dep. #250). 
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A.71 Deprecated Instructions

The deprecated instructions in A.71 of Commonality are provided only for compatibility 
with previous versions of the architecture. They should not be used in new software. 

A.71.10 Store Barrier 

In SPARC64 VII, STBAR behaves as NOP since the hardware memory models always 
enforce the semantics of these MEMBARs for all memory accesses. 
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F.AP PE ND IX B 

IEEE Std. 754-1985 Requirements for 
SPARC-V9 

The IEEE Std. 754-1985 floating-point standard contains a number of implementation 
dependencies. 

Please see Appendix B of Commonality for choices for these implementation dependencies, 
to ensure that SPARC V9 implementations are as consistent as possible. 

Following is information specific to the SPARC64 VII implementation of SPARC V9 in 
these sections: 

■ Traps Inhibiting Results on page 77 
■ Floating-Point Nonstandard Mode on page 77 

B.1 Traps Inhibiting Results 
Please refer to Section B.1 of Commonality. 

The SPARC64 VII hardware, in conjunction with kernel or emulation code, produces the 
results described in this section. 

B.6 Floating-Point Nonstandard Mode 
In this section, the hardware boundary conditions for the unfinished_FPop exception and the 
nonstandard mode of SPARC64 VII floating-point hardware are discussed. 
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SPARC64 VII floating-point hardware has its specific range of computation. If either the 
values of input operands or the value of the intermediate result shows that the computation 
may not fall in the range that hardware provides, SPARC64 VII generates an 
fp_exception_other exception (tt = 02216) with FSR.ftt = 0216 (unfinished_FPop) and 
the operation is taken over by software. 

The kernel emulation routine completes the remaining floating-point operation in accordance 
with the IEEE 754-1985 floating-point standard (impl. dep. #3). 

SPARC64 VII implements a nonstandard mode, enabled when FSR.NS is set (see 
FSR_nonstandard_fp (NS) on page 16). Depending on the setting in FSR.NS, the behavior 
of SPARC64 VII with respect to the floating-point computation varies. 

B.6.1 fp_exception_other Exception (ftt=unfinished_FPop) 

SPARC64 VII may invoke an fp_exception_other  (tt = 02216) exception with FSR.ftt = 
unfinished_FPop  (ftt = 0216) in FsTOd, FdTOs, FADD(s,d), FSUB(s,d), 
FsMULd(s,d), FMUL(s,d), FDIV(s,d), FSQRT(s,d) floating-point instructions. In 
addition, Floating-point Multiply-Add/Subtract instructions generate the exception, since the 
instruction is the combination of a multiply and an add/subtract operation: FMADD(s,d), 
FMSUB(s,d), FNMADD(s,d), and FNMADD(s,d). 

The following basic policies govern the detection of boundary conditions: 

1. When one of the operands is a denormalized number and the other operand is a normal 
non-zero floating-point number (except for a NaN or an infinity), an fp_exception_other 
with unfinished_FPop condition is signalled. The cases in which the result is a zero or an 
overflow are excluded. 

2. When all operands are denormalized numbers, except for the cases in which the result is a 
zero or an overflow, an fp_exception_other with unfinished_FPop condition is signalled. 

3. When all operands are normal, the result before rounding is a denormalized number and 
TEM.UFM = 0, and fp_exception_other with unfinished_FPop condition is signalled, 
except for the cases in which the result is a zero. 

When the result is expected to be a constant, such as an exact zero or an infinity, and an 
insignificant computation will furnish the result, SPARC64 VII tries to calculate the result 
without signalling an unfinished_FPop exception. 
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Implementation Note – Detecting the exact boundary conditions requires a large amount of 
hardware. To avoid from such hardware cost, SPARC64 VII detects approximate boundary 
conditions by calculating the exponent intermediate result (the exponent before rounding) 
from input operands. Since the computation of the boundary conditions is approximate, the 
detection of a zero result or an overflow result will be pessimistic. SPARC64 VII generates 
an unfinished_FPop exception pessimistically. 

The equations to calculate the result exponent to detect the boundary conditions from the 
input exponents are presented in TABLE B-1, where Er is the approximation of the biased 
result exponent before rounding and is calculated only from the input exponents (esrc1, 
esrc2). Er is to be used for detecting the boundary condition for an unfinished_FPop. 

TABLE B-1	 Result Exponent Approximation for Detecting unfinished_FPop Boundary 
Conditions 

Operation Formula 

fmuls Er = esrc1 + esrc2 − 126 

fmuld Er = esrc1 + esrc2 − 1022 

fdivs Er = esrc1 - esrc2 + 126 

fdivd Er = esrc1 - esrc2 + 1022 

esrc1 and esrc2 are the biased exponents of the input operands. When the corresponding 
input operand is a denormalized number, the value is 0. 

From Er, eres is calculated. eres is a biased result exponent, after mantissa alignment and 
before rounding, where the appropriate adjustment of the exponent is applied to the result 
mantissa: left-shifting or right-shifting the mantissa to the implicit 1 at the left of the binary 
point, subtracting or adding the shift-amount to the exponent. The result mantissa is assumed 
to be 1.xxxx in calculating eres. If the result is a denormalized number, eres is less than zero. 

TABLE B-2 describes the boundary condition of each floating-point instruction that generates 
an unfinished_FPop exception. 

TABLE B-2	 unfinished_FPop Boundary Conditions 

Operation Boundary Conditions 

FdTOs −25 < eres < 1 and TEM.UFM = 0. 

FsTOd Second operand (rs2) is a denormalized number. 

FADDs, FSUBs, FADDd, 1. One of the operands is a denormalized number, and the other operand is 
FSUBd a normal, nonzero floating-point number (except for a NaN and an 

infinity)1. 
2.	 Both operands are denormalized numbers. 
3.	 Both operands are normal nonzero floating-point numbers (except for a 

NaN and an infinity), eres < 1, and TEM.UFM = 0. 
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TABLE B-2 unfinished_FPop Boundary Conditions  (Continued) 

Operation Boundary Conditions 

FMULs, FMULd 1. One of the operands is a denormalized number, the other operand is a 
normal, nonzero floating-point number (except for a NaN and an 
infinity), and 

single precision: -25 < Er 
double precision: -54 < Er 

2.	 Both operands are normal, nonzero floating-point numbers (except for a 
NaN and an infinity), TEM.UFM = 0, and


single precision: −25 < eres < 1

double precision: −54 < eres < 1


FsMULd 1.	 One of the operands is a denormalized number, and the other operand is 
a normal, nonzero floating-point number (except for a NaN and an 
infinity). 

2. Both operands are denormalized numbers. 

FDIVs, FDIVd 1. The dividend (operand1; rs1) is a normal, nonzero floating-point 
number (except for a NaN and an infinity), the divisor (operand2; rs2) is 
a denormalized number, and 

single precision: Er < 255 
double precision: Er < 2047 

2.	 The dividend (operand1; rs1) is a denormalized number, the divisor 
(operand2; rs2) is a normal, nonzero floating-point number (except for a 
NaN and an infinity), and 

single precision: −25 < Er 
double precision: −54 < Er 

3.	 Both operands are denormalized numbers. 
4.	 Both operands are normal, nonzero floating-point numbers (except for a 

NaN and an infinity), TEM.UFM = 0 and 
single precision: −25 < eres < 1 
double precision: −54 < eres < 1 

FSQRTs, FSQRTd The input operand (operand2; rs2) is a positive nonzero and is a 
denormalized number. 

FMADDs, FMADDd, Same as FMULs, FMULd for multiplication part, and same as FADDs, 


FMSUBs, FMSUBd, FSUBs, FADDd, FSUBd for addition/subtraction part.


FNMADDs, FNMADDd, 

FNMSUBs, FNMSUBd


1.Operation of zero and denormalized number generates a result in accordance with the IEEE754
1985 standard. 

Pessimistic Zero 

If a condition in TABLE B-3 is true, SPARC64 VII generates the result as a pessimistic zero, 
meaning that the result is a minimum denormalized number or a zero, depending on the 
rounding mode (FSR.RD). 
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TABLE B-3 Conditions for a Pessimistic Zero 

Operations 

Conditions 

One operand is denormalized1 Both are denormalized Both are normal fp-number2 

FdTOs always — eres ≤ -25 

FMULs, 
FMULd 

single precision: Er ≤ −25 

double precision: Er ≤ −54 

Always single precision: eres ≤ −25 

double precision: eres ≤ −54 

FDIVs, 
FDIVd 

single precision: Er ≤ −25 

double precision: Er ≤ −54 

Never single precision: eres ≤ −25 

double precision: eres ≤ −54 

1.Both operands are non-zero, non-NaN, and non-infinity numbers. 

2.Both may be zero, but both are non-NaN and non-infinity numbers. 

Pessimistic Overflow 

If a condition in TABLE B-4 is true, SPARC64 VII regards the operation as having an 
overflow condition. 

TABLE B-4 Pessimistic Overflow Conditions 

Operations Conditions 

FDIVs The divisor (operand2; rs2) is a denormalized number and, Er ≥ 255. 

FDIVd The divisor (operand2; rs2) is a denormalized number and, E ≥ 2047. 

B.6.2 Operation Under FSR.NS = 1 

When FSR.NS = 1 (nonstandard mode), SPARC64 VII zeroes all the input denormalized 
operands before the operation and signals an inexact exception if enabled. If the operation 
generates a denormalized result, SPARC64 VII zeroes the result and also signals an inexact 
exception if enabled. The following list defines the operation in detail. 

■	 If either operand is a denormalized number and both operands are non-zero, non-NaN, 
and non-infinity numbers, the input denormalized operand is replaced with a zero with 
same sign, and the operation is performed. If enabled, an inexact exception is signalled; 
an fp_exception_ieee_754 (tt = 02116) is generated, with nxc=1 in FSR.cexc 
(FSR.ftt=0116; IEEE754_exception). However, if the operation is FDIV(s,d) and 
either a division_by_zero or an invalid_operation condition is detected, or if the operation 
is FSQRT(s,d) and an invalid_operation condition is detected, the inexact condition is 
not reported. 

■	 If the result before rounding is a denormalized number, the result is flushed to a zero with 
the same sign and signals either an underflow exception or an inexact exception, 
depending on FSR.TEM. 

As observed from the preceding, when FSR.NS = 1, SPARC64 VII generates neither an 
unfinished_FPop exception nor a denormalized number as a result. TABLE B-5 summarizes 
the behavior of SPARC64 VII floating-point hardware depending on FSR.NS. 
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Note – The result and behavior of SPARC64 VII of the shaded column in the tables 
Table B-5 and Table B-6 conform to IEEE754-1985 standard. 

Note – Throughout Table B-5 and Table B-6, lowercase exception conditions such as nx, uf, 
of, dv and nv are nontrapping IEEE 754 exceptions. Uppercase exception conditions such as 
NX, UF, OF, DZ and NV are trapping IEEE 754 exceptions. 

TABLE B-5 Floating-Point Exceptional Conditions and Results 

FSR.NS 
Input 
Denorm1 

Result 
Denorm2 

Pessimistic 
Zero 

Pessimistic 
Overflow UFM OFM NXM Result 

0 

No 
Yes 

Yes — 

1 — — UF 

0 

— 1 NX 

— 0 
uf + nx, a signed zero, or a signed 
Dmin3 

No — 
1 — — UF 

0 — — unfinished_FPop4 

No  —  —  —  —  —  Conforms to IEEE754-1985 

Yes n/a 

Yes — 

1 — — UF 

0 — 
1 NX 

0 uf + nx, a signed zero, or a signed Dmin 

No 
Yes — 

1 — OF 

0 

1 NX 

0 
of + nx, a signed infinity, or a signed 
Nmax5 

No — — — unfinished_FPop 

1 
No 

Yes — — 

1 — — UF 

0 — 
1  NX  

0 uf + nx, a signed zero 

No  —  —  —  —  —  Conforms to IEEE754-1985 

Yes  —  —  —  —  —  —  see TABLE  B-6  

1.One of the operands is a denormalized number, and the other operand is a normal or a denormalized number (non- zero, non-
NaN, and non-infinity). 

2.The result before rounding turns out to be a denormalized number. 

3.Dmin = denormalized minimum. 

4.If the FPop is either FADD{s,d}, or FSUB{s,d} and the operands are zero and a denormalized number, SPARC64 VII 
does not generate an unfinished_FPop and generates a result according to IEEE754-1985 standard. 

5.Nmax = normalized maximum. 
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TABLE B-6 describes how SPARC64 VII behaves when FSR.NS = 1 (nonstandard mode). 

TABLE B-6 Non arithmetic Operations Under FSR.NS = 1 

Operations 

Type of Value FSR.TEM 

Result op1 op2 op3 UFM NXM DVM NVM 

FsTOd 
— Denorm — — 

1  —  —  NX  

0 — — nx, a signed zero 

FdTOs 1 — — — UF 

— Denorm — 1 — — NX 
0 

0 — — uf + nx, a signed zero 

FADDs, 
Denorm Normal — 

1  —  —  NX  
FSUBs, 
FADDd, 
FSUBd — 

0 — — nx, op2 

— 
1  —  —  NX  

Normal Denorm 
0 — — nx, op1 

Denorm Denorm — 
1  —  —  NX  

0 — — nx, a signed zero 

FFMULs, 
— — 

1  —  —  NX  

FMULd, 
FsMULd 

Denorm 

— 
0 — — nx, a signed zero 

— Denorm — 
1  —  —  NX  

0 — — nx, a signed zero 

FDIVs, 
— 

1  —  —  NX  
FDIVd Denorm Normal 

0 — — nx, a signed zero 

Normal Denorm — — — 
1  —  DZ  

0 — dz, a signed infinity 

— — — 
1  NV  

Denorm Denorm 
0  nv, dNaN1 

FSQRTs, Denorm and 
— 

1  —  —  NX  
FSQRTd op2 > 0 0 — — nx, zero 

— 
Denorm and 

— 
1 NV 

op2 < 0 
— — — 

0 nv, dNaN1 

FMADD{s,d} 
Normal — 

1  —  —  NX  
FMSUB{s,d} 
FNMADD{s,d} 
FNMSUB{s,d} 

Denorm — 
0 — — nx, op3 

Denorm — 
1  —  —  NX  

0 — — nx, a signed zero 

— Denorm 

Normal — 
1  —  —  NX  

0 — — nx, op3 

Denorm — 
1  —  —  NX  

0 — — nx, a signed zero 

Normal Normal Denorm — 
1  —  —  NX  

0 — — nx, op1 × op22 
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1.A single precision dNaN is 7FFF.FFFF16, and a double precision dNaN is 7FFF.FFFF.FFFF.FFFF16. 

2.When op1 × op2  falls into denormalized number, a zero with the same sign of op1 × op2 is returned as a result. 
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F.AP PE ND IX C 

Implementation Dependencies


This appendix summarizes implementation dependencies. In SPARC V9 and SPARC JPS1, 
the notation “IMPL. DEP. #nn:” identifies the definition of an implementation dependency; 
the notation “(impl. dep. #nn)” identifies a reference to an implementation dependency. 
These dependencies are described by their number nn in TABLE C-1 on page 87. These 
numbers have been removed from the body of this document for SPARC64 VII to make the 
document more readable. TABLE C-1 has been modified to include descriptions of the manner 
in which SPARC64 VII has resolved each implementation dependency. 

Note – SPARC International maintains a document, Implementation Characteristics of 
Current SPARC-V9-based Products, Revision 9.x, that describes the implementation-
dependent design features of all SPARC V9-compliant implementations. Contact SPARC 
International for this document at 

home page: www.sparc.org 
email: info@sparc.org 

C.1	 Definition of an Implementation 
Dependency 
Please refer to Section C.1 of Commonality. 

C.2	 Hardware Characteristics 
Please refer to Section C.2 of Commonality. 
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C.3 Implementation Dependency Categories 
Please refer to Section C.3 of Commonality. 

C.4 List of Implementation Dependencies 
TABLE C-1 provides a complete list of how each implementation dependency is treated in the 
SPARC64 VII implementation. 

TABLE C-1 SPARC64 VII Implementation Dependencies  (1 of 11) 

Nbr 

1 

2 

3 

4–5 

6 

7 

8 

9 

10–12 

13 

14–15 

16 

SPARC64 VII Implementation Notes 

Software emulation of instructions 
The operating system emulates all instructions that generate illegal_instruction or 
unimplemented_FPop exceptions. 

Number of IU registers 
SPARC64 VII supports eight register windows (NWINDOWS = 8).  

SPARC64 VII supports an additional two global register sets (Interrupt globals and 
MMU globals) for a total of 160 integer registers. 

Incorrect IEEE Std. 754-1985 results 
See Section B.6, Floating-Point Nonstandard Mode for details. 

Reserved. 

I/O registers privileged status 
This dependency is beyond the scope of this publication. It should be defined in 
each system that uses SPARC64 VII. 

I/O register definitions 
This dependency is beyond the scope of this publication. It should be defined in 
each system that uses SPARC64 VII. 

RDASR/WRASR target registers 
SPARC64 VII does not define implementation dependent ASR registers. 

RDASR/WRASR privileged status 
SPARC64 VII does not define implementation dependent ASR registers. 

Reserved. 

VER.impl 
VER.impl = 7 for the SPARC64 VII processor. 

Reserved. 

IU deferred-trap queue 
SPARC64 VII neither has nor needs an IU deferred-trap queue. 

Page 

— 

— 

77 

— 

— 

— 

— 

18 

— 

22 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (2 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

17	 Reserved. — 

18	 Nonstandard IEEE 754-1985 results 16 
SPARC64 VII flushes denormalized operands and results to zero when 
FSR.NS = 1. For the treatment of denormalized numbers, please refer to 
Section B.6, Floating-Point Nonstandard Mode for details. 

19	 FPU version, FSR.ver 16 
FSR.ver = 0 for SPARC64 VII. 

20–21	 Reserved. 

22	 FPU TEM, cexc, and aexc 15 
SPARC64 VII implements all bits in the TEM, cexc, and aexc fields in hardware. 

23	 Floating-point traps 22 
In SPARC64 VII floating-point traps are always precise; no FQ is needed. 

24	 FPU deferred-trap queue (FQ) 22 
SPARC64 VII neither has nor needs a floating-point deferred-trap queue. 

25	 RDPR of FQ with nonexistent FQ 23 
Attempting to execute an RDPR of the FQ causes an illegal_instruction exception. 

26–28	 Reserved. — 

29	 Address space identifier (ASI) definitions — 
The ASIs that are supported by SPARC64 VII are defined in Appendix L. 

30	 ASI address decoding — 
SPARC64 VII decodes all 8bit of ASI specifier. 

31	 Catastrophic error exceptions 162 
SPARC64 VII contains a watchdog timer that times out after no instruction has 
been committed for a specified number of cycles. If the timer times out, the CPU 
tries to invoke an async_data_error trap. If the counter continues and reaches 233, 
the processor enters error_state. Upon an entry to error_state, the 
processor optionally generates a WDR reset to recover from error_state. 

32	 Deferred traps 37, 171 
SPARC64 VII signals a deferred trap in a few of its severe error conditions. 
SPARC64 VII does not contain a deferred trap queue. 

33	 Trap precision 37 
There are no deferred traps in SPARC64 VII other than the trap caused by a few 
severe error conditions. All traps that occur as the result of program execution are 
precise. 

34	 Interrupt clearing 155 
For details of interrupt handling see Appendix N. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (3 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

35	 Implementation-dependent traps 39 
SPARC64 VII supports the following traps that are implementation dependent: 
• interrupt_vector_trap  (tt = 06016) 
• PA_watchpoint  (tt = 06116) 
• VA_watchpoint (tt = 06216) 
• ECC_error (tt = 06316) 
• fast_instruction_access_MMU_miss (tt = 06416 through 06716) 
• fast_data_access_MMU_miss (tt = 06816 through 06B16) 
• fast_data_access_protection (tt = 06C16 through 06F16) 
• async_data_error (tt = 04016) 

36	 Trap priorities 39 
SPARC64 VII’s implementation-dependent traps have the following priorities: 
• interrupt_vector_trap (priority =16) 
• PA_watchpoint (priority =12) 
• VA_watchpoint (priority=1) 
• ECC_error (priority =33) 
• fast_instruction_access_MMU_miss (priority = 2) 
• fast_data_access_MMU_miss (priority = 12) 
• fast_data_access_protection (priority = 12) 
• async_data_error (priority = 2) 

37 Reset trap 37 
SPARC64 VII implements power-on reset (POR) and watchdog reset. 

38 Effect of reset trap on implementation-dependent registers 163 

See Section O.2, RED_state and error_state. 

39	 Entering error_state on implementation-dependent errors 36 
CPU watchdog timeout at 233 ticks, a normal trap, or an SIR at TL = MAXTL causes 
the CPU to enter error_state. 

40	 Error_state processor state 36 
SPARC64 VII optionally takes a watchdog reset trap after entry to 
error_state. Most error-logging register states will be preserved. (See also 
impl. dep. #254.) 

41	 Reserved. 

42	 FLUSH instruction — 
SPARC64 VII implements the FLUSH instruction in hardware. 

43	 Reserved. 

44	 Data access FPU trap — 
The destination register(s) are unchanged if an access error occurs. 

45–46	 Reserved. 

47	 RDASR — 
SPARC64 VII does not define this implementation dependent ASR register. 

48	 WRASR — 
SPARC64 VII does not define this implementation dependent ASR register. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (4 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

49–54	 Reserved. 

55	 Floating-point underflow detection — 
See FSR_underflow in Section 5.1.7 of Commonality for details. 

56–100	 Reserved. 

101	 Maximum trap level 18 
MAXTL = 5.  

102	 Clean windows trap — 
SPARC64 VII generates a clean_window exception; register windows are cleaned 
in software. 

103	 Prefetch instructions 70 
SPARC64 VII implements PREFETCH variations 0–3 and 20–23 with the 
following implementation-dependent characteristics: 
•	 The prefetches have observable effects in privileged code. 
•	 All variants never cause a fast_data_access_MMU_miss trap. 
•	 All prefetches are for 64-byte cache lines, which are aligned on a 64-byte 

boundary. 
•	 See Section A.49, Prefetch Data, for implemented variations and their 

characteristics. 
•	 Prefetches will work normally if the ASI is ASI_PRIMARY, ASI_SECONDARY, 

or ASI_NUCLEUS, ASI_PRIMARY_AS_IF_USER, 
ASI_SECONDARY_AS_IF_USER, and their little-endian pairs. 

104	 VER.manuf 18 
VER.manuf = 000416. The least significant 8 bits are Fujitsu’s JEDEC 
manufacturing code. 

105	 TICK register 17 
SPARC64 VII implements 63 bits of the TICK register; it increments on every 
clock cycle. 

106	 IMPDEPn instructions 54 
SPARC64 VII uses the IMPDEP1 opcode for SUSPEND and SLEEP instructions, 
and the IMPDEP2 opcode for the Multiply Add/Subtract instructions. 
SPARC64 VII also conforms to Sun’s specification for VIS-1 and VIS-2. 

107	 Unimplemented LDD trap — 
SPARC64 VII implements LDD in hardware. 

108	 Unimplemented STD trap — 
SPARC64 VII implements STD in hardware. 

109	 LDDF_mem_address_not_aligned — 
If the address is word aligned but not doubleword aligned, SPARC64 VII generates 
the LDDF_mem_address_not_aligned exception. The trap handler software 
emulates the instruction. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (5 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

110	 STDF_mem_address_not_aligned — 
If the address is word aligned but not doubleword aligned, SPARC64 VII generates 
the STDF_mem_address_not_aligned exception. The trap handler software 
emulates the instruction. 

111	 LDQF_mem_address_not_aligned — 
SPARC64 VII generates an illegal_instruction exception for all LDQFs. The 
processor does not perform the check for fp_disabled. The trap handler software 
emulates the instruction. 

112	 STQF_mem_address_not_aligned — 
SPARC64 VII generates an illegal_instruction exception for all STQFs. The 
processor does not perform the check for fp_disabled. The trap handler software 
emulates the instruction. 

113	 Implemented memory models 41 
SPARC64 VII implements Total Store Order (TSO) for all the memory models 
specified in PSTATE.MM. See Chapter 8, Memory Models, for details. 

114	 RED_state trap vector address (RSTVaddr) 36 
RSTVaddr is a constant in SPARC64 VII, where:

VA=FFFF FFFF F000 000016 and

PA= 07FF F000 000016


115	 RED_state processor state 36 
See RED_state on page 36 for details of implementation-specific actions in 
RED_state. 

116	 SIR_enable control flag — 
See Section A.60 SIR in Commonality for details. 

117	 MMU disabled prefetch behavior 108 
When the MMU is disabled, prefetch comletes without memory access and 
nonfaulting load causes an data_access_exception. 

118	 Identifying I/O locations — 
This dependency is beyond the scope of this publication. It should be defined in a 
system that uses SPARC64 VII. 

119	 Unimplemented values for PSTATE.MM 42 
Writing 112 into PSTATE.MM causes the machine to use the TSO memory model. 
However, the encoding 112 should not be used, since future versions of 
SPARC64 VII may use this encoding for a new memory model. 

120	 Coherence and atomicity of memory operations — 
Although SPARC64 VII implements the Jupiter Bus based cache coherency 
mechanism, this dependency is beyond the scope of this publication. It should be 
defined in a system that uses SPARC64 VII. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (6 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

121	 Implementation-dependent memory model — 
SPARC64 VII implements TSO, PSO, and RMO memory models. See Chapter 8, 
Memory Models, for details. 

Accesses to pages with the E (Volatile) bit of their MMU page table entry set are 
also made in program order. 

122	 FLUSH latency — 
Since the FLUSH instruction synchronizes the processor, its total latency varies 
depending on many portions of the SPARC64 VII processor’s state. Assuming that 
all prior instructions are completed, the latency of FLUSH is 18 processor cycles. 

123	 Input /output (I/O) semantics — 
This dependency is beyond the scope of this publication. It should be defined in a 
system that uses SPARC64 VII. 

124	 Implicit ASI when TL > 0  — 
See Section 5.1.7 of Commonality for details. 

125	 Address masking 28, 53, 
When PSTATE.AM = 1,  SPARC64 VII does mask out the high-order 32 bits of the 63 
PC when transmitting it to the destination register. 

126	 Register Windows State Registers width — 
NWINDOWS for SPARC64 VII is 8; therefore, only 3 bits are implemented for the 
following registers: CWP, CANSAVE, CANRESTORE, OTHERWIN. If an attempt is 
made to write a value greater than NWINDOWS − 1 to any of these registers, the 
extraneous upper bits are discarded. The CLEANWIN register contains 3 bits. 

127–201 Reserved. 

202	 fast_ECC_error trap — 
fast_ECC_error trap is not implemented in SPARC64 VII. 

203	 Dispatch Control Register bits 13:6 and 1 20 
SPARC64 VII does not implement DCR. 

204	 DCR bits 5:3 and 0 20 
SPARC64 VII does not implement DCR. 

205	 Instruction Trap Register 22 
SPARC64 VII implements the Instruction Trap Register. 

206	 SHUTDOWN instruction 73 
In privileged mode, the SHUTDOWN instruction executes as a NOP in 
SPARC64 VII. 

207	 PCR register bits 47:32, 26:17, and bit 3 18 
SPARC64 VII uses these bits for the following purposes: 
• Bits 47:32 for set/clear/show status of overflow (OVF). 
• Bit 26 for validity of OVF field (OVRO).

• Bits 24:22 for number of counter pair (NC).

• Bits 20:18 for counter selector (SC).

• Bit 3 for validity of SU/SL field (ULRO).


Other implementation-dependent bits are read as 0 and writes to them are ignored.
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TABLE C-1 SPARC64 VII Implementation Dependencies  (7 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

208	 Ordering of errors captured in instruction execution — 
The order in which errors are captured during instruction execution is 
implementation dependent. Ordering can be in program order or in order of 
detection. 

209	 Software intervention after instruction-induced error — 
Precision of the trap to signal an instruction-induced error for which recovery 
requires software intervention is implementation dependent. 

210	 ERROR output signal — 
The causes and the semantics of ERROR output signal are implementation 
dependent. 

211	 Error logging registers’ information — 
The information that the error logging registers preserves beyond the reset induced 
by an ERROR signal is implementation dependent. 

212	 Trap with fatal error — 
Generation of a trap along with ERROR signal assertion upon detection of a fatal 
error is implementation dependent. 

213	 AFSR.PRIV — 
SPARC64 VII does not implement the AFSR.PRIV bit. 

214	 Enable/disable control for deferred traps — 
SPARC64 VII does not implement a control feature for deferred traps. 

215	 Error barrier — 
DONE and RETRY instructions may implicitly provide an error barrier function as 
MEMBAR #Sync. Whether DONE and RETRY instructions provide an error barrier is 
implementation dependent. 

216	 data_access_error trap precision — 
data_access_error trap is always precise in SPARC64 VII. 

217	 instruction_access_error trap precision — 
instruction_access_error trap is always precise in SPARC64 VII. 

218	 async_data_error 39 
async_data_error trap is implemented in SPARC64 VII, using tt = 4016. See 
Appendix P for details. 

219	 Asynchronous Fault Address Register (AFAR) allocation 199 
SPARC64 VII does not implement an AFAR. 

220	 Addition of logging and control registers for error handling — 
SPARC64 VII implements various features for sustaining reliability. See 
Appendix P for details. 

221	 Special/signalling ECCs — 
The method to generate “special” or “signalling” ECCs and whether processor-ID is 
embedded into the data associated with special/signalling ECCs is implementation 
dependent. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (8 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

222	 TLB organization 102 
SPARC64 VII has the following TLB organization: 
•	 Level-1 micro ITLB (uITLB), fully associative 
•	 Level-1 micro DTLB (uDTLB), fully associative 
•	 Level-2 IMMU-TLB—consisting of sITLB (set-associative Instruction TLB) and 

fITLB (fully associative Instruction TLB). 
•	 Level-2 DMMU-TLB—consisting of sDTLB (set-associative Data TLB) and 

fDTLB (fully associative Data TLB). 

223	 TLB multiple-hit detection 103 
On SPARC64 VII, TLB multiple hit detection is supported. However, the multiple 
hit is not detected at every TLB reference. When the micro-TLB (uTLB), which is 
the cache of sTLB and fTLB, matches the virtual address, a multiple hit in sTLB 
and fTLB is not detected. The multiple hit is detected only when the micro-TLB 
misses and the main TLB is referenced. 

224	 MMU physical address width 104 
The SPARC64 VII MMU implements 47-bit physical addresses. The PA field of the 
TTE holds a 47-bit physical address. The MMU translates virtual addresses into 
47-bit physical addresses. Each cache tag holds bits 46:6 of the physical addresses. 

225	 TLB locking of entries 104 
In SPARC64 VII, when a TTE with its lock bit set is written into TLB through the 
Data In register, the TTE is automatically written into the corresponding fully 
associative TLB and locked in the TLB. Otherwise, the TTE is written into the 
corresponding sTLB of fTLB, depending on its page size. 

226	 TTE support for CV bit 104 
SPARC64 VII does not support the CV bit in TTE. Since I1 and D1 are virtuall
indexed cache, and unaliasing is supported by hardware. See also impl. dep. #232. 

227	 TSB number of entries 105 
SPARC64 VII supports a maximum of 16 million entries in the common TSB and 
a maximum of 32 million lines in the Split TSB. 

228	 TSB_Hash supplied from TSB or context-ID register 105 
TSB_Hash is generated from the context-ID register in SPARC64 VII. 

229	 TSB_Base address generation 105 
SPARC64 VII generates the TSB_Base address directly from the TLB Extension 
Registers. By maintaining compatibility with UltraSPARC I/II, SPARC64 VII 
provides mode flag MCNTL.JPS1_TSBP. When MCNTL.JPS1_TSBP = 0, the  
TSB_Base register is used. 

230	 data_access_exception trap 106 
SPARC64 VII generates data_access_exception only for the causes listed in 
Appendix F.5 of Commonality. 

231	 MMU physical address variability 108 
The width of a physical address is 47 bits in SPARC64 VII. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (9 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

232	 DCU Control Register CP and CV bits 20, 108 
SPARC64 VII does not implement CP and CV bits in the DCU Control Register. 
See also impl. dep. #226. 

233	 TSB_Hash field 109 
SPARC64 VII does not implement TSB_Hash. 

234	 TLB replacement algorithm 116 
For fTLB, SPARC64 VII implements a pseudo-LRU. For sTLB, LRU is used. An 
entry in the fTLB may also be replaced by a dropped TTE from the sTLB. 

235	 TLB data access address assignment 116 
VA of TLB Data Access register is described in Table F-8 

236	 TSB_Size field width 118 
In SPARC64 VII, TSB_Size is 4 bits wide, occupying bits 3:0 of the TSB 
register. The maximum number of TSB entries is, therefore, 512 ×  215 (16M 
entries). 

237	 DSFAR/DSFSR for JMPL/RETURN mem_address_not_aligned 63, 
A mem_address_not_aligned exception that occurs during a JMPL or RETURN 106, 
instruction does not update either the D-SFAR or D-SFSR register. 118 

238	 TLB page offset for large page sizes 104 
On SPARC64 VII, page offset data is discarded on a TLB write, and an arbitrary 
data is returned on a read. 

239	 Register access by ASIs 5516 and 5D16 109 
In SPARC64 VII, VA<63:19> of IMMU ASI 5516 and DMMU ASI 5D16 are 
ignored. An access to virtual addresses 4000016 to 60FF816 is treated as an access 
0000016 to 20FF816 

240	 DCU Control Register bits 47:41 20 
SPARC64 VII uses bit 41 for WEAK_SPCA, which enables/disables memory access 
on speculative paths. 

241	 Address Masking and DSFAR ? 
When PSTATE.AM = 1, SPARC64 VII writes zeroes to the most significant 32 bits 
of DSFAR. 

242	 TLB lock bit 104 
In SPARC64 VII, only the fITLB and the fDTLB support the lock bit. The lock bit 
in sITLB and sDTLB is read as 0 and writes to it are ignored. 

243	 Interrupt Vector Dispatch Status Register BUSY/NACK pairs 158 

In SPARC64 VII, 32 BUSY/NACK pairs are implemented in the Interrupt Vector 
Dispatch Status Register. 

244	 Data Watchpoint Reliability 22 
No implementation-dependent features of SPARC64 VII reduce the reliability of 
data watchpoints. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (10 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

245	 Call/Branch displacement encoding in I-Cache ? 
In SPARC64 VII, the least significant 11 bits (bits 10:0) of a CALL or branch 
(BPcc, FBPfcc, Bicc, BPr) instruction in an instruction cache are identical to the 
architectural encoding (as they appear in main memory). 

246	 VA<38:29> for Interrupt Vector Dispatch Register Access 158 
SPARC64 VII ignores all 10 bits of VA<38:29> when the Interrupt Vector Dispatch 
Register is written. 

247	 Interrupt Vector Receive Register SID fields 158 
SID_H and SID_L values are undefined. 

248	 Conditions for fp_exception_other with unfinished_FPop 16 
SPARC64 VII triggers fp_exception_other with trap type unfinished_FPop under 
the standard conditions described in Commonality Section 5.1.7. 

249	 Data watchpoint for Partial Store instruction 68 
Watchpoint exceptions on Partial Store instructions occur conservatively on 
SPARC64 VII. The DCUCR Data Watchpoint masks are only checked for nonzero 
value (watchpoint enabled). The byte store mask (r[rs2]) in the Partial Store 
instruction is ignored, and a watchpoint exception can occur even if the mask is 
zero (that is, no store will take place). 

250	 PCR accessibility when PSTATE.PRIV = 0 18, 20, 
In SPARC64 VII, the accessibility of PCR when PSTATE.PRIV = 0 is determined 72 
by PCR.PRIV. If PSTATE.PRIV = 0 and PCR.PRIV = 1, an attempt to execute 
either RDPCR or WRPCR will cause a privileged_action exception. If 
PSTATE.PRIV = 0 and PCR.PRIV = 0,  RDPCR operates without privilege 
violation and WRPCR generates a privileged_action exception only when an attempt 
is made to change (that is, write 1 to) PCR.PRIV. 

251	 Reserved. — 

252	 DCUCR.DC (Data Cache Enable) 20 
SPARC64 VII does not implement DCUCR.DC. 

253	 DCUCR.IC (Instruction Cache Enable) 20 
SPARC64 VII does not implement DCUCR.IC. 

254	 Means of exiting error_state 36, 169 
The standard behavior of a SPARC64 VII CPU upon entry into error_state is 
to reset itself by internally generating a watchdog_reset (WDR). However, OPSR 
can be set so that when error_state is entered, the processor remains halted in 
error_state instead of generating a watchdog_reset. 

255	 LDDFA with ASI E016 or E116 and misaligned destination register number 140 
No exception is generated based on the destination register rd. 
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TABLE C-1 SPARC64 VII Implementation Dependencies  (11 of 11) 

Nbr SPARC64 VII Implementation Notes	 Page 

256	 LDDFA with ASI E016 or E116 and misaligned memory address 140 
For LDDFA with ASI E016 or E11 and a memory address aligned on a 2n-byte 
boundary, a SPARC64 V processor behaves as follows: 
n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is 
generated. 
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is 
generated. 
n ≤ 1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated. 

257	 LDDFA with ASI C016–C516 or C816–CD16 and misaligned memory address 140 
For LDDFA with C016–C516 or C816–CD16 and a memory address aligned on a 2n
byte boundary, a SPARC64 V processor behaves as follows: 
n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is 
generated. 
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is 
generated. 
n ≤ 1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated. 

258	 ASI_SERIAL_ID 139 
SPARC64 VII provides an identification code for each processor. 
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F.AP PE ND IX D 

Formal Specification of the Memory 
Models 

Please refer to Appendix D of Commonality. 
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F.AP PE ND IX E 

Opcode Maps


Please refer to Appendix E in SPARC Joint Programming Specification 1 (JPS1): 
Commonality. TABLE E-1 lists the opcode maps for the SPARC64 VII IMPDEP2 instructions, 
and lists the one for the IMPDEP1 instructions. 

TABLE E-1 IMPDEP2 (op = 2, op3 = 3716) 

var (instruction <8:7>) 

00 01 10 11 

size 
(instruction<6:5>) 

00 FPMADDX FPMADDXHI (reserved) 

01 FMADDs FMSUBs FNMSUBs FNMADDs 

10 FMADDd FMSUBd FNMSUBd FNMADDd 

11 (reserved for quad operations) 
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F.AP PE ND IX F 

Memory Management Unit


The Memory Management Unit (MMU) architecture of SPARC64 VII conforms to the MMU 
architecture defined in Appendix F of Commonality but with some model dependency. See 
Appendix F in Commonality for the basic definitions of the SPARC64 VII MMU. 

Section numbers in this appendix correspond to those in Appendix F of Commonality. 
Figures and tables, however, are numbered consecutively. 

This appendix describes the implementation dependencies and other additional information 
about the SPARC64 VII MMU. For SPARC64 VII implementations, we first list the 
implementation dependency as given in TABLE C-1 of Commonality, then describe the 
SPARC64 VII implementation. 

F.1 Virtual Address Translation 
IMPL. DEP. #222: TLB organization is JPS1 implementation dependent. 

SPARC64 VII has the following TLB organization: 

■	 Level-1 micro ITLB (uITLB), fully associative 

■	 Level-1 micro DTLB (uDTLB), fully associative 

■	 Level-2 IMMU-TLB consists of sITLB (set-associative Instruction TLB) and fITLB 
(fully associative Instruction TLB). 

■	 Level-2 DMMU-TLB consists of sDTLB (set-associative Data TLB) and fDTLB (fully 
associative Data TLB). 

TABLE F-1 shows the organization of SPARC64 VII TLBs. 

The hardware contains micro-ITLB and micro-DTLB as the temporary memory of the 
main TLBs, as shown in TABLE F-1. In contrast to the micro-TLBs, sTLB and fTLB are 
called main TLBs. 
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The micro-TLBs are coherent to main TLBs and are not visible to software with the 
exception of TLB multiple hit detection. Hardware maintains the consistency between 
micro-TLBs and main TLBs. 

No other details on micro-TLB are provided because software cannot execute direct 
operations to micro-TLB and its configuration is invisible to software. 

TABLE F-1 Organization of SPARC64 VII TLBs 

Feature sITLB and sDTLB fITLB and fDTLB 

Entries 2048 32 

Associativity 2-way set associative Fully associative 

Locked translation entry Not supported Supported 

Unlocked translation entry Supported Supported 

Miscellaneous Hashing not supported Also works as a victim cache of 
sITLB and sDTLB 

IMPL. DEP. #223: Whether TLB multiple-hit detections are supported in JPS1 is 
implementation dependent. 

On SPARC64 VII, TLB multiple hit detection is supported. However, the multiple hit is 
not detected for every TLB reference. When the micro-TLB (uTLB), which is the cache 
of sTLB and fTLB, matches the virtual address, the multiple hit in sTLB and fTLB is not 
detected. The multiple hit is detected only when the micro-TLB mismatches and main 
TLB is referenced. 

F.2 Translation Table Entry (TTE) 
The size field of TTE is extended from 2bits to 3bits on SPARC64 VII to support over 4M 
pages. The MSB of the size is located at bit 48 of TTE. 

TABLE F-2 TSB and TTE Bit Description 

Bits Field Name Description 

Data <48, 62:61> size The page size of the entry, encoded as shown below. 
Size<2:0> Page Size 
000 = 8 KB 
001 = 64 KB 
010 = 512 KB 
011 = 4 MB 
100 = 32 MB 
101 = 256 MB 

Data <46:13> PA The physical page number. 
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IMPL DEP. in Commonality TABLE F-1: TTE_Data bits 46:43 are implementation 
dependent. 

On SPARC64 VII, TTE_Data bits 46:43 are used for PA<46:43>. 

IMPL. DEP. #224: Physical address width support by the MMU is implementation dependent 
in JPS1; minimum PA width is 43 bits. 

The SPARC64 VII MMU implements 47-bit physical addresses. The PA field of the TTE 
holds a 47-bit physical address. The MMU translates virtual addresses into 47-bit physical 
addresses. Each cache tag holds bits 46:6 of physical addresses. 

IMPL. DEP. #238: When page offset bits for larger page size (PA<15:13>, PA<18:13>, and 
PA<21:13> for 64-Kbyte, 512-Kbyte, and 4-Mbyte, respectively) are stored in the TLB, it is 
implementation dependent whether the data returned from those fields by a Data Access read 
are zero or the data previously written to them. 

On SPARC64 VII, the data returned from PA<15:13>, PA<18:13>, PA<21:13>, 
PA<24:13>, and PA<27:13> for 64-Kbyte, 512-Kbyte, 4-Mbyte, 32-Mbyte, and 256
Mbyte pages, respectively, by a Data Access read is neither zero nor the data previously 
written to them, but an arbitrary data is returned. Likewise, the corresponding VA bits of 
a TLB Tag Read Register are read as arbitrary data. 

IMPL. DEP. #225: The mechanism by which entries in TLB are locked is implementation 
dependent in JPS1. 

In SPARC64 VII, when a TTE with its lock bit set is written into TLB through the Data In 
register, the TTE is automatically written into the corresponding fully associative TLB 
and locked in the TLB. Otherwise, the TTE is written into the corresponding sTLB or 
fTLB, depending on its page size. 

IMPL. DEP. #242: An implementation containing multiple TLBs may implement the L 
(lock) bit in all TLBs but is only required to implement a lock bit in one TLB for each page 
size. If the lock bit is not implemented in a particular TLB, it is read as 0 and writes to it are 
ignored. 

In SPARC64 VII, only the fITLB and the fDTLB support the lock bit as described in

TABLE F-1. The lock bit in sITLB and sDTLB is read as 0 and writes to it are ignored.


IMPL. DEP. #226: Whether the CV bit is supported in TTE is implementation dependent in 
JPS1. When the CV bit in TTE is not provided and the implementation has virtually indexed 
caches, the implementation should support hardware unaliasing for the caches. 

In SPARC64 VII, no TLB supports the CV bit in TTE. SPARC64 VII supports hardware 
unaliasing for the caches. The CV bit in any TLB entry is read as 0 and writes to it are 
ignored. 
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F.3.2 TSB Cacheabllity 

Since the TSB is a normal data structure and therefore is cacheable, it is quite important to 
performance whether the target entry is in cache or not when a TLB miss occurs. When a 
TLB miss is signalled and a TSB access misses the caches in the miss handler, the CPU must 
wait until the data returns from memory. The loss from this wait is considerably larger as the 
memory latency is longer. To reduce the loss, SPARC64 VII implements automatic TSB 
prefetch when a TLB miss is signalled. 

F.3.3 TSB Organization 

IMPL. DEP. #227: The maximum number of entries in a TSB is implementation dependent 
in JPS1. See impl. dep. #228 for the limitation of TSB_size in TSB registers. 

SPARC64 VII supports a maximum of 16 million lines in the common TSB and a 
maximum 32 million lines in the split TSB. The maximum number N in FIGURE F-4 of 
Commonality is 16 million (16 * 220). 

F.4.2 TSB Pointer Formation 

IMPL. DEP. #228: Whether TSB_Hash is supplied from a TSB Extension Register or from 
a context-ID register is implementation dependent in JPS1. Only for cases of direct hash with 
context-ID can the width of the TSB_size field be wider than 3 bits. 

On SPARC64 VII, TSB_Hash is supplied from a context-ID register. The width of the 
TSB_size field is 4 bits. 

IMPL. DEP. #229: Whether the implementation generates the TSB Base address by 
exclusive-ORing the TSB Base Register and a TSB Extension Register or by taking the 
TSB_Base field directly from the TSB Extension Register is implementation dependent in 
JPS1. This implementation dependency is only to maintain compatibility with the TLB miss 
handling software of UltraSPARC I/II. 

On SPARC64 VII, when ASI_MCNTL.JPS1_TSBP = 1, the TSB Base address is 
generated by taking TSB_Base field directly from the TSB Extension Register. 

TSB Pointer Formation 

On SPARC64 VII, the number N in the following equations ranges from 0 to 15; N is defined 
to be the TSB_Size field of the TSB Base or TSB Extension Register. 

SPARC64 VII supports the TSB Base from TSB Extension Registers as follows when 
ASI_MCNTL.JPS1_TSBP = 1. 
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For a shared TSB (TSB Register split field = 0): 

8K_POINTER = TSB_Extension[63:13+N] (VA[21+N:13] ⊕ TSB_Hash)  
0000


64K_POINTER = TSB_Extension[63:13+N]
 (VA[24+N:16] ⊕ TSB_Hash)  
0000


For a split TSB (TSB Register split field = 1): 

8K_POINTER = TSB_Extension[63:14+N] 
 0
 (VA[21+N:13] ⊕ TSB_Hash)
 0000


64K_POINTER = TSB_Extension[63:14+N]
  1
 (VA[24+N:16] ⊕ 
TSB_Hash)  0000


Value of TSB_Hash for both a shared TSB and a split TSB 

When 0 <= N <= 4,


TSB_Hash = context_register[N+8:0]


Otherwise, when 5 <= N <= 15,


TSB_Hash[12:0] = context_register[12:0]


TSB_Hash[N+8:13] = 0 (N-4 bits zero)


F.5 Faults and Traps 
IMPL. DEP. #230: The cause of a data_access_exception trap is implementation dependent 
in JPS1, but there are several mandatory causes of a data_access_exception trap. 

SPARC64 VII signals a data_access_exception for the causes, as defined in 
Appendix F.5 in Commonality. However, caution is needed when dealing with an invalid 
ASI. See Section F.10.9, I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR) for 
details. 

IMPL. DEP. #237: Whether the fault status and/or address (DSFSR/DSFAR) are captured 
when mem_address_not_aligned is generated during a JMPL or RETURN instruction is 
implementation dependent. 

On SPARC64 VII, the fault status and address (DSFSR/DSFAR) are not captured when a 
mem_address_not_aligned exception is generated during a JMPL or RETURN 
instruction. 
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Additional information: On SPARC64 VII, the two precise traps— 
instruction_access_error and data_access_error—are recorded by the MMU in addition to 
those in TABLE F-2 of Commonality. A modification (the two traps are added) of that table 
is shown below. 

TABLE F-3 MMU Trap Types, Causes, and Stored State Register Update Policy 

Registers Updated 
(Stored State in MMU) 

I-MMU D-MMU 
Tag D-SFSR, Tag 

Ref #Trap Name Trap Cause I-SFSR Access SFAR Access Trap Type 

1. fast_instruction_access_MMU_miss I-TLB miss X2 X	 6416–6716 

2. instruction_access_exception Several (see below) X2 X	 0816 

3. fast_data_access_MMU_miss D-TLB miss	 X3 X 6816–6B16 

4. data_access_exception Several (see below)	 X3 X1 3016 

5. fast_data_access_protection Protection violation	 X3 X 6C16-6F16 

6. privileged_action	 Use of privileged ASI X3 3716 

7. watchpoint	 Watchpoint hit X3 6116–6216 

8. mem_address_not_aligned, Misaligned memory 	 (impl. 3516, 3616, 
*_mem_address_not_aligned	 operation dep 3816, 3916 

#237) 

9. instruction_access_error Several (see below) X2 0A16 

10 data_access_error Several (see below) X3 3216 

■	 X1: The contents of the context field of the D-MMU Tag Access Register are undefined 
after a data_access_exception. 

■	 X2: I-SFSR is updated according to its update policy described in Section F.10.9 
■	 X3: D-SFSR and D-SFAR are updated according to the update policy described in 

Section F.10.9 

The traps with Ref #1~8 in TABLE F-3 conform to the specification defined in Section F.5 of 
Commonality. 

The additional traps (Ref #9 and #10) are described below. 

Ref 9: instruction_access_error — Signalled upon detection of at least one of the 
following errors. 

■	 An uncorrectable error is detected upon an instruction fetch reference. 
■	 A bus error response from the Jupiter Bus is detected upon an instruction fetch reference. 
■	 fITLB multiple hits are detected in a fITLB lookup for an instruction reference. 
■	 An fITLB entry parity error is detected in an fTLB lookup for an instruction reference. 

Ref 10: data_access_error — Signalled upon the detection of at least one of the following 
errors. 

■	 An uncorrectable error is detected upon an instruction operand access. 
■	 A bus error response from the Jupiter Bus is detected upon an operand access. 
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■	 fDTLB multiple hits are detected in an fDTLB lookup for an operand access. 
■	 An fDTLB entry parity error is detected in a fDTLB lookup for an instruction operand 

access. 

Note – A load request may not cause data_access_error when a store with the same address 
is executed prior to the load and the data exists in the store buffer. In this case, a restrainable 
error is reported instead. See also Appendix P.7.1. 

F.8 Reset, Disable, and RED_state Behavior 
IMPL. DEP. #231: The variability of the width of physical address is implementation 
dependent in JPS1, and if variable, the initial width of the physical address after reset is also 
implementation dependent in JPS1. 

See impl. dep. #224 on page 104 for the variability of the width of the physical address. 
The physical address width to pass to the Jupiter Bus interface is 47 bits. 

IMPL. DEP. #232: Whether CP and CV bits exist in the DCU Control Register is 
implementation dependent in JPS1. 

On SPARC64 VII, CP and CV bits do not exist in the DCU Control Register. 

When DMMU is disabled, the processor behaves as if the TTE bits were set as: 
■	 TTE.IE ←  0 
■	 TTE.P ←  0 
■	 TTE.W ← 1 
■	 TTE.NFO← 0 
■	 TTE.CV ←  0 
■	 TTE.CP ←  0 
■	 TTE.E ←  1 

IMPL. DEP. #117: Whether prefetch and nonfaulting loads always succeed when the MMU 
is disabled is implementation dependent. 

On SPARC64 VII, the PREFETCH instruction completes without memory access when the 
DMMU is disabled. 

A data_access_exception is generated at the execution of the nonfaulting load 
instruction when the DMMU is disabled, as defined in Appendix F.5 of Commonality. 
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F.10 Internal Registers and ASI Operations 

F.10.1 Accessing MMU Registers 

IMPL. DEP. #233: Whether the TSB_Hash field is implemented in I/D Primary/Secondary/ 
Nucleus TSB Extension Register is implementation dependent in JPS1. 

In SPARC64 VII, the TSB_Hash field is not implemented in the I/D Primary/Secondary/ 
Nucleus TSB Extension Register. See TSB Pointer Formation on page 105 for details. 

IMPL. DEP. #239: The register(s) accessed by IMMU ASI 5516 and DMMU ASI 5D16 at 
virtual addresses 4000016 to 60FF816 are implementation dependent. 

See impl. dep. #235 in I/D TLB Data In, Data Access, and Tag Read Registers on page 
116. 

Additional information: The ASI_DCUCR register also affects the MMUs. ASI_DCUCR is 
described in Section 5.2.12 of Commonality. The SPARC64 VII implementation dependency 
in ASI_DCUCR is described in Data Cache Unit Control Register (DCUCR) on page 20. 

SPARC64 VII also has an additional MMU internal register ASI_MCNTL (Memory Control 
Register) that is shared between the IMMU and the DMMU. The register is illustrated in 
FIGURE F-1 and described in TABLE F-4. 

ASI_MCNTL (Memory Control Register) 

ASI: 4516

VA: 0816

Access Modes: Supervisor read/write


reserved NC_ 
Cache 

fw_ 
fITLB 

fw_ 
fDTLB RMD 000 

JPS1_ 
TSBP 

mpg_ 
sITLB 

mpg_ 
sDTLB 000000 

63 17 16 15 14 13 12 11 9 8 7 6 5 0 

FIGURE F-1 Format of ASI_MCNTL 
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TABLE F-4 MCNTL Field Description 

Bits Field Name RW Description 

Data <16> NC_Cache R/W Force instruction caching. When set, the instruction lines fetched from a 
noncacheable area are cached in the instruction cache. The NC_Cache has no 
effect on operand references. If MCNTL.NC_Cache = 1, the CPU fetches a 
noncacheable line in four consecutive 16-byte fetches and stores the entire 64 
bytes in the I-Cache. NC_Cache is provided for use by OBP, and OBP should 
clear the bit before exiting. 

A write to ASI_FLUSH_L1I must be performed before MCNTL.NC_CACHE = 
0 is set. Otherwise, noncacheable instructions may remain in the L1 cache. 

Data <15> fw_fITLB R/W Force write to fITLB. This is the mITLB version of fTLB force write. When 
fw_fITLB = 1, a TTE write to mITLB through ITLB Data In Register is 
directed to fITLB. fw_fITLB is provided for use by OBP to register the TTEs 
that map the address translations themselves into fDTLB. 

Data <14> fw_fDTLB R/W Force write to fDTLB. When fw_fDTLB = 1, a TTE write to mDTLB through 
DTLB Data In Register is directed to fDTLB. fw_fDTLB is provided for use 
by OBP to register the TTEs that map the address translations themselves into 
fDTLB. 

Data <13:12> RMD R TLB RAM MODE. The value is always 2. This field is read-only and writes to 
this field are ignored. 

Data <8> JPS1_TSBP R/W TSB-pointer context-hashing enable. When JPS1_TSBP =  0, SPARC64 VII 
does not apply the context-ID hashing for 8-Kbyte or 64-Kbyte TSB pointer 
generation. The pointer generation technique is compatible with UltraSPARC. 
When JPS1_TSBP =  1, SPARC64 VII is in JPS1_TSBP mode, meaning that the 
CPU applies the context-ID hashing to generate an 8-Kbyte or 64-Kbyte page 
TSB pointer. 

Data<7> mpg_sITLB RW This bit enables translating multiple page sizes on sITLBs. 

When this bit is set, page size fields in the context register are activated, and the 
sITLB can simultaneously have multiple page sizes dedicated for each context. 
When this bit is cleared, the page size field in the context register and the 
IMMU_TAG_ACCESS_EXT register are ignored and default page sizes (8K 
for the first sTLB and 4M for the second) are used. 

Data<6> mpg_sDTLB RW This bit enables translating multiple page sizes on the sDTLB. 

When this bit is set, page size fields in the context register are activated, and the 
sDTLB can simultaneously have multiple page sizes dedicated for each context. 
When this bit is cleared, page size field in the context register and the 
DMMU_TAG_ACCESS_EXT are ignored and default page sizes (8K for the 
first sTLB and 4M for the second) are used. 

Setting  “10”  into mpg_sITLB and mpg_sDTLB is not allowed. SPARC64 VII behavior is undefined with this setting. 
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F.10.2 Context Registers


sTLBs consist of two parts, where the first sTLB is 1024-entry two-way associative and the 
second sTLB is 1024 entry two-way associative. Normally the first sTLB holds 8KB pages 
and the second sTLB holds 4M pages for translations.  ut software can program sTLBs to be 
used for 8 KB, 64 KB, 512 KB, 4 MB, 32MB and 256MB page translations, by setting 
MCNTL#mpg_sTLB. Each sTLB can hold any of the 6 page sizes, but are programmed to 
only one page size at any given time. Each sTLB can be programmed to either the same or 
different page sizes. 

Each sTLB page size (PgSz) is programmable independently, one PgSz per context (Primary/ 
Secondary/ Nucleus). PgSz specified Kernel can set the PgSz fields in 
ASI_PRIMARY_CONTEXT_REG and ASI_SECONDARY_CONTEXT_REG. PgSz specified in 
ASI_PRIMARY_CONTEXT_REG are used for both sITLBs and sDTLBs. When both sDTLBs 
are programmed to have identical page size, the behavior is a “single” 4-way 2048-entry 
sDTLB. 

The following is the page size bit encoding: 
■	 000 = 8 KB 
■	 001 = 64 KB 
■	 010 = 512 KB 
■	 011 = 4 MB 
■	 100 = 32 MB 
■	 101 = 256 MB 

Note –  SPARC64 VII behavior with undefined page size (110,111) is undefined. 

In addition to the Primary, Secondary and Nucleus Context defined in Commonality, a 
Shared Context is introduced in SPARC64 VII. Shared Context is a virtual address space 
shared by two or more processes, to locate instructions or data which can be shared among 
them. It is similar to the Secondary Context register in the point of enabling access to another 
context from a context, but these are distinctly different in the following points: 

■	 An explicit ASI load/store instruction is needed to use Secondary Context Register, while 
Shared Context Register is used implicitly along with the memory access. 

■	 The Shared Context Register is used both for instruction fetch and data access. 

In the following description, the term ‘Effective Context’ is used. This term represents the 
context ID used in MMU. The definition is as follows: 

■	 PContext for instruction fetch and data access without explicit ASI designation on TL = 0. 

■	 Nucleus Context Register value, which is always zero, for instruction fetch and data 
access without explicit ASI designation on TL > 0. 

■	 Value of the relevant context register for data access with an explicit ASI. 
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ASI_PRIMARY_CONTEXT


ASI: 5816 
VA: 0816 
Access Modes: Supervisor read/write 

— PContext N_pgsz0 N_pgsz1 P_pgsz1 P_pgsz0 —N_Ipgsz0 N_Ipgsz1 P_Ipgsz1 P_Ipgsz0 — 

63 61 60 58 55      53 52      50 29 27 26  24 21        19 18   16  15 13 12 0 

FIGURE F-2 IMMU and DMMU Primary Context Registers 

TABLE F-5 IMMU and DMMU Primary Context Registers 

Bit Field Type Description 

63:61 N_pgsz0 RW Nucleus context's page size at the first sDTLB 

60:58 N_pgsz1 RW Nucleus context's page size at the second sDTLB 

55:53 N_Ipgsz0 RW Nucleus context's page size at the first sITLB 

52:50 N_Ipgsz1 RW Nucleus context's page size at the second sITLB 

29:27 P_Ipgsz1 RW Primary context's page size at the second sITLB 

26:24 P_Ipgsz0 RW Primary context's page size at the first sITLB 

21:19 P_pgsz1 RW Primary context's page size at the second sDTLB 

18:16 P_pgsz0 RW Primary context's page size at the first sDTLB 

12:0 PContext RW Primary context 

The value written to any of PgSz fields can be read regardless of MCNTL.mpg_sITLB/ 
mpg_sDTLB setting. 

Programming Note – Mpgsz of a context must be consistent in the two threads in a given 
core. Different mpgsz setting in the two threads to a context may create entries that cause 
multiple-hit error. 
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ASI_SECONDARY_CONTEXT


ASI: 5816 
VA: 1016 
Access Modes: Supervisor read/write 

— SContext S_pgsz1 S_pgsz0 — 

63 21 19 18 16  15 13 12 

FIGURE F-3 DMMU Secondary Context Register 

TABLE F-6 DMMU Secondary Context Register 

Bit Field Type Description 

21:19 S_pgsz1 RW Secondary context's page size at the second sDTLB. 

18:16 S_pgsz0 RW Secondary context's page size at the first sDTLB. 

12:0 SContext RW Secondary context 

The value written to any of PgSz fields can be read regardless of MCNTL.mpg_sITLB/ 
mpg_sDTLB setting. 

Programming Note – Mpgsz of a context must be consistent in the two threads in a given 
core. Different mpgsz setting in the two threads to a context may create entries that cause 
multiple-hit error. 
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ASI_SHARED_CONTEXT


ASI: 5816 
VA: 6816 
Access Modes: Supervisor read/write 

— Dshared_Context DV—Ishared_Context —IV— 

63 48 47 46 45 44 32 31 16 15 14 13 12 0 

FIGURE F-4 IMMU and DMMU Primary Context Register 

TABLE F-7 Shared Context Register 

Bit Field	 Type Description 

47 IV RW	 Valid for Ishared_Context. When IV = 1 and the 
effective context is not 0, the value in Ishared_Context 
is valid and used by the MMU for instruction fetch as 
well as the effective context. When IV = 0 or the 
effective context is 0, only the effective context is 
used. 

44:32	 Ishared_Context RW Context identifier of Shared Context for instruction 
fetch. 

15 DV RW	 Valid for Dshared_Context. When DV = 1 and the 
effective context is not 0, the value in Dshared_Context 
is valid and used by the MMU for data access as well 
as the effective context. When DV = 0 or the effective 
context is 0, only the effective context is used. 

12:0 Dshared_Context RW	 Context identifier of Shared Context for data access. 

The ASI_SHARED_CONTEXT register is used to enable or disable lookup with the shared 
context id along with the effective context. The shared context id is used when IV or DV is 
set to 1 and the effective context id is not 0. When the effective context id is 0, the shared 
context id is not used regardless of IV or DV setting. For example, a load from alternate 
space with ASI_AS_IF_USER_SECONDARY at %TL > 0 yields the SContext as the 
effective context, therefore, the lookup with shared context id is determined by the value in 
SContext. 

The functionality of the shared context is the same as the effective context, except for 
pagesize assignment. SPARC64 VII has two sITLBs and two sDTLBs, each sTLB can 
contain TTEs of which pagesize is configurable per context id. But for the shared context, 
the same pagesize of the effective context is used for lookup. Consequently, when 
mcntl.mpg_sI/DTLB = 0, one sTLB has a 8-KB and the other one has a 4-MB page 
entry, and when mcntl.mpg_sI/DTLB = 1, p_mpgsz_1/2 or s_mpgsz_1/2, depending on 
the effective context value, is used for the pagesize of shared context. 
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Note – n_pgsz0/1 is not used since the shared context is not valid when the effective 
context is 0. 

Programming Note – The efficient use of sTLB for shared context TTE is achieved by 
assignment of the same p_pgsz0/1 among all contexts which uses the same shared context 
id. 

F.10.3 Instruction/Data MMU TLB Tag Access Registers 

If Shared Context is enabled on an TLB miss, exception, or protection, the context identifier 
of the effective context is indicated in the Context fields of TLB Tag Access Registers. 

Programming Note – In order to store a shared context TTE, an explicit write of the 
context identifier for a shared context to the TLB Tag Access Register is needed prior to TLB 
Data In/Data Access. 

ASI_I/DMMU_TAG_ACCESS_EXT


ASI: 5016(IMMU) / 5816(DMMU) 
VA: 6016 
Access Modes: Supervisor read/write 

63  15 0 

—pgsz1 pgsz0 — 

21 19 18 16 

FIGURE F-5 I/D MMU Tag Access Extension Register 

When the MMU signals a trap due to a miss, exception, or protection, hardware 
automatically saves the missing VA and context to the Tag Access Register (ASI_I/ 
DMMU_TAG_ACCESS). To ease indexing of the sTLBs when the TTE data is presented (via 
STXA ASI_I/DTLB_DATA_IN_REG), the missing page size information of the sTLBs is 
captured into a new Extension Register, called ASI_I/DMMU_TAG_ACCESS_EXT. 

Note – If SIZE of TTE to be written is different from PgSz of the ASI register, the TTE is 
written into fTLB rather than sTLB. 

The ASI_I/DMMU_TAG_ACCESS_EXT register value on an instruction_access_exception 
or a data_access_exception is not valid (undefined). 
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The register values are not valid (undefined) when the corresponding 
ASI_MCNCTL#mpg_sI/DTLB value is zero. 

F.10.4 I/D TLB Data In, Data Access, and Tag Read Registers 

IMPL. DEP. #234: The replacement algorithm of a TLB entry is implementation dependent 
in JPS1. 

For fTLB, SPARC64 VII implements a pseudo-LRU. For sTLB, LRU is used. An entry in 
the fTLB may also be replaced by dropping a TTE from the sTLB. 

IMPL. DEP. #235: The MMU TLB data access address assignment and the purpose of the 
address are implementation dependent in JPS1. 

The MMU TLB data access address assignment and the purpose of the address on 
SPARC64 VII are shown in TABLE F-8. 

TABLE F-8 MMU TLB Data Access Address Assignment 

VA Bit Field Description 

17:16 TLB#	 TLB to be accessed:  fTLB or sTLB is designated as follows. 
00: fTLB (32 entries) 
01: reserved 
10: sTLB(2048 entries of 8-Kbyte page and 4-Mbyte page) 
11: reserved 

15 ER	 Error insertion into mTLB: When set on a write, an entry with parity 
error is inserted into a selected TLB location. 

This field is ignored for a TLB entry read operation. 

13:3	 TLB index Index number of the TLB. Specifies an index number for the TLB 
reference. When fTLB is specified in TLB# field, the upper 6-bits of 
the specified index are ignored. 

When sTLB is specified in TLB# field, 

Index 0-511 addresses way0 of 8K-byte page sTLB 
Index 512-1023 addresses way1 of 8K-byte page sTLB 
Index 1024-1535 addresses way0 of 4M-byte page sTLB 
Index 1536-2047 addresses way1 of 4M-byte page sTLB 

When the entry to be written has a lock bit set and the specified TLB is 
the sTLB, the entry is written into the sTLB with its lock bit cleared. 
When the entry is to be written into the fTLB, the entry is written 
without lock bit modification. 

Other Reserved	 Ignored. 

sTLB index hash 

Unlike SPARC64 VI, SPARC64 VII no longer supports index hashing in the sTLB. 
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Note – Though the hashing is not supported, pages with TTE#G = 1 is always written into 
fTLB on TLB Data In. 

fTLB as a Victim Cache 

In SPARC64 VII, fTLB may also work as a victim cache to mitigate the occurrence of 
thrashing in the sTLB. A victim cache is generally a supplement to other caches by keeping 
dropped entries in it. In SPARC64 VII, fTLB is one of the main TLB, a complement of 
sTLB, and it may also work as a victim cache, saving dropped entries from sTLB. 

Because of the existence of a victim cache, an entry originally found in sTLB is eventually 
moved to fTLB. When a write of a TTE by TLB Data Access is made and a replacement of 
that entry is confirmed with subsequent TLB Data Access, an access which uses that TTE 
may still succeed without an exception. 

Programming Note – Only the dropped entries from sTLB which  would otherwise 
disappear are moved to fTLB. No entry is moved without replacement in the sTLB. 

I/D MMU TLB Tag Read Register 

On SPARC64 VII, page offset bits in VA of the Tag Read Register return an arbitrary data on 
read (impl. dep. #238). 

I/D MMU TLB Tag Access Register 

On an ASI store to the TLB Data Access or Data In Register, SPARC64 VII verifies the 
consistency between the Tag Access Register and the data to be written. If their indices are 
inconsistent, the TLB entry is not updated. However, SPARC64 VII does not verify the 
consistency if TTE.V = 0 for the TTE to be written. This enables demapping of specified 
TLB entries through the TLB Data Access Register. Software can use this feature to validate 
faulty TLB entries. 

Implementation Note – A read on a TTE.V = 0 entry returns all 0 value. 
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F.10.6	 I/D TSB Base Registers 

IMPL. DEP. #236: The width of the TSB_Size field in the TSB Base Register is 
implementation dependent; the permitted range is from 2 to 6 bits. The least significant bit of 
TSB_Size is always at bit 0 of the TSB Base Register. Any bits unimplemented at the most 
significant end of TSB_Size read as 0, and writes to them are ignored. 

On SPARC64 VII, the width of the TSB_Size field in the TSB Base Register is 4 bits. 
The number of entries in the TSB ranges from 512 entries at TSB_Size = 0 (8 Kbyte for 
common TSB, 16 Kbyte for split TSB), to 16 million entries at TSB_Size = 15 (256 
Mbyte for common TSB, 512 Mbyte for split TSB). 

F.10.7	 I/D TSB Extension Registers 

IMPL DEP. in Commonality FIGURE F-13: Bits 11:3 in I/D TSB Extension Register are an 
implementation-dependent field. 

In SPARC64 VII, bits 11:0 in I/D TSB Extension Registers are assigned as follows. 

■ Bits 11:4 — Reserved. Always read as 0, and writes to it are ignored. 
■ Bits 3:0 — TSB_Size field is expanded to be a 4-bit field in SPARC64 VII. 

F.10.9	 I/D Synchronous Fault Status Registers (I-SFSR, D
SFSR) 

IMPL DEP. in Commonality FIGURE F-15 and TABLE F-12: Bits 63:25 in I/D 
Synchronous Fault Status Registers (I-SFSR, D-SFSR) are an implementation-dependent 
field. 

The format of I/D-MMU SFSR in SPARC64 VII is shown in FIGURE F-6. 

TLB # reserved index reserved MK EID UE BERR 
BRTO 

reserved mTLB NC 

63 62 61 60 59 49 48 47 46 45	 32 31 30 29 28 27 26 25 

NF ASI TM reserved FT E CT PR W OW FV 

24 23 16 15 14 13 7 6 5 4 3 2 1 0 

FIGURE F-6 MMU I/D Synchronous Fault Status Registers (I-SFSR, D-SFSR) 
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The specification of bits 24:0 in the SPARC64 VII SFSR conforms to the specification 
defined in Section F.10.9 in Commonality. Bits 63:25 in SPARC64 VII SFSR are 
implementation dependent. TABLE F-9 describes the I-SFSR bits, and TABLE F-9 describes 
the D-SFSR bits. 

TABLE F-9 I-SFSR Bit Description 

Bits Field Name RW Description 

63:62 TLB# R/W Faulty TLB# log. Recorded upon an mITLB error to identify the faulty TLB 
(fITLB: 002 or sITLB: 102). The priority of error logging for multiple error 
conditions (parity error and multiple-hit error) is as follows: 

fTLB parity high 
sTLB parity 
sTLB multihit 
fTLB multihit low 

59:49 index R/W Faulty TLB index log. Recorded upon an mITLB error and is the index number for 
the faulty TLB. The priority of error logging for multiple error conditions (parity 
error and multiple-hit error) is as follows: 

fTLB parity high 
sTLB parity 
sTLB multihit 
fTLB multihit low 

On multiple hit error, any one of the index numbers is shown. 

46 MK R/W Marked UE. In SPARC64 VII, all uncorrectable errors are reported as marked, so 
this bit is always set whenever ISFSR.UE = 1.  

See Appendix P.2.4, Error Marking for Cacheable Data Error for details. 

45:32 EID R/W Error mark ID. Valid for a marked UE. 

See Appendix P.2.4, Error Marking for Cacheable Data Error for 
ERROR_MARK_ID. 

31 UE R/W Instruction error status; uncorrectable error. When UE = 1, an uncorrectable error 
in a fetched instruction word has been detected. Valid only for an 
instruction_access_error exception. 

30 BERR RW Bus error response has been received from an instruction fetch transaction. Valid 
only for a instruction_access_error exception. 

29 BRTO RW Bus time-out response has been received from an instruction fetch transaction. 
Valid only for a instruction_access_error exception. 

27:26 mITLB<1:0> R/W mITLB error status. Either a multiple-hit status (mITLB<1>) or a parity error 
status (mITLB<0>) has been encountered upon a mITLB lookup. Valid only for an 
instruction_access_error exception. 

25 NC R/W Noncacheable reference. The reference that has invoked an exception is a 
noncacheable reference. Valid for an instruction_access_error exception caused 
by ISFSR.UE, ISFSR.BERR, or ISFSR.BRTO only. For other causes of the 
trap, the value is unknown. 

23:16 ASI<7:0> R/W ASI. The 8-bit address space identifier applied to the reference that has invoked an 
exception. This field is valid for the exception in which the ISFSR.FV bit is set. 

A recorded ASI is 8016(ASI_PRIMARY) or 0416 (ASI_NUCLEUS) depending on 
the trap level (when TL > 0, the ASI is ASI_NUCLEUS.). 
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TABLE F-9 I-SFSR Bit Description 

Bits Field Name RW Description 

15 TM R/W Translation miss. When TM = 1, it signifies an occurrence of a mITLB miss upon 
an instruction reference. 

13:7 FT<6:0> R/W Fault type. Saves and indicates an exact condition that caused the recorded 
exception. See TABLE F-10 for the field encoding. 

In the IMMU, FT is valid only for an instruction_access_exception. The 
ISFSR.FT always reads as 0 for a fast_instruction_access_MMU_miss and reads 
0116 for an instruction_access_exception, since no other fault types apply. 

5:4 CT<1:0> R/W Context type; Saves the context attribute for the reference that invokes an 
exception. For nontranslating ASI or invalid ASI, ISFSR.CT = 1102. 

0002: Primary 
0102: Reserved 
1002:  Nucleus  
1102: Reserved 

Note that the context attribute for Shared Context is not indicated in any case. 
When multiple hits involving a shared context are detected, the CT field indicates 
the attribute of the effective context. 

3 PR R/W Privileged. Indicates the CPU privilege status during the instruction reference that 
generates the exception. This field is valid when ISFSR.FV = 1.  

1 OW R/W Overwritten. Set when ISFSR.FV = 1 upon the detection of a exception. This 
means that the fault valid bit is not yet cleared when another fault is detected. 

0 FV R/W Fault valid. Set when the IMMU detects an exception. The bit is not set on an 
IMMU miss. When the Fault Valid bit is not set, the values of the remaining fields 
in the ISFSR are undefined, except for an IMMU miss. 

TABLE F-10 describes the field encoding for ISFSR.FT. 

TABLE F-10 Instruction Synchronous Fault Status Register FT (Fault Type) Field 

FT<6:0> Error Description 

0116 Privilege violation. Set when TTE.P = 1 and PSTATE.PRIV = 0 for the 
instruction reference. 

0216 Reserved 

0416 Reserved 

0816 Reserved 

1016 Reserved 

2016 Reserved 

4016 Reserved 
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ISFSR is updated either on an occurrence of a fast_instruction_access_MMU_miss, an 
instruction_access_exception, or an instruction_access_error trap. TABLE F-11 shows the 
detailed update policy of each field, and TABLE F-12 describes the fields. 

TABLE F-11 ISFSR Update Policy 

Field TLB#, index FV OW PR, CT1 FT TM ASI 

UE, BERR, 
BRTO, 
mITLB, NC2 

Fresh fault or miss3 

Miss MMU miss — 0 0 V — 1 — — 

Exception Access exception — 1 0 V V 0 V — 

Error Access error V4 1 0 V — 0 V V 

Overwrite policy5 

Error on exception U4 1 1 U K K U U 

Exception on error K 1 1 U U K U K 

Error on miss  U  1  K  U  K  1  U  U  

Exception on miss K 1 K U U 1 U K 

Miss on exception/error K 1 K K K 1 K K 

Miss on miss K K K U K 1 K K 

1.The value of ISFSR.CT is 11 when the ASI is not a translating ASI. The value 11 is recorded in ISFSR.CT for an illegal 
value in the ASI (0016–0316, 1216–1316, 1616–1716, 1A16–1B16, 1E16–2316, 2D16–2F16, and 
3516–3B16). 

2.Valid only for the instruction_access_error caused by ISFSR.UE, ISFSR.BERR, or ISFSR.BRTO. 

3.Types: 0 – logical 0; 1 –logical 1; V– Valid field to be updated; “—” – not a valid field

4.Updated when multiple hit or parity error on mITLB is detected.

5.Types: 0 – logical 0; 1 – logical 1; K – keep; U – Update as per fault/miss


TABLE F-12 D-SFSR Bit Description (1 of 3) 

Bits Field Name RW Description 

63:62 TLB# R/W Faulty TLB# log. Recorded upon an mDTLB error to identify the faulty TLB 
(fDTLB: 002 or sDTLB: 102). The priority of error logging for multiple error 
conditions (parity error and multiple-hit error) is as follows: 

fTLB parity high 
sTLB parity 
sTLB multihit 
fTLB multihit low 

59:49 index R/W Faulty TLB index log. Recorded upon an mDTLB error. This is index number for 
the faulty TLB. The priority of error logging for multiple error conditions (parity 
error and multiple-hit error) is as follows: 

fTLB parity high 
sTLB parity 
sTLB multihit 
fTLB-multihit low 

On multiple hit error, any one of the index numbers is shown. 
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TABLE F-12 D-SFSR Bit Description (2 of 3) 

Bits Field Name RW Description 

46 MK R/W Marked UE. In SPARC64 VII, all uncorrectable errors are reported as marked, so 
this bit is always set whenever DSFSR.UE = 1.  

See Appendix P.2.4, Error Marking for Cacheable Data Error for details. 

45:32 EID R/W Error-mark ID. Valid for a marked UE. 

See Appendix P.2.4, Error Marking for Cacheable Data Error for details about 
ERROR_MARK_ID. 

31 UE R/W Operand access error status. Uncorrectable error. When UE = 1, it signifies an 
occurrence of an uncorrectable error in an operand fetch reference. Valid only for 
a data_access_error exception. 

30 BERR RW Bus error response has been received from an operand fetch transaction. Valid 
only for a data_access_error exception. 

29 BRTO RW Bus time-out response has been received from an operand fetch transaction. Valid 
only for a data_access_error exception. 

27:26 mDTLB<1:0> R/W mDTLB error status. Either a multiple-hit status (mDTLB<1>) or a parity error 
status (mDTLB<0>) has been encountered upon a mDTLB lookup. Valid only for 
a data_access_error exception. 

25 NC R/W Noncacheable reference. The reference that invoked an exception is a non
cacheable reference. This field indicates that the faulty reference is a non
cacheable operand access. Valid only for an data_access_error exception caused 
by DSFSR.UE, DSFSR.BERR, or DSFSR.BRTO. For other causes of the trap, the 
value is unknown. 

24 NF R/W Nonfaulting load. The instruction which generated the exception was a nonfaulting 
load instruction. 

23:16 ASI<7:0> R/W ASI. The 8-bit address space identifier applied to the reference that has invoked an 
exception. This field is valid for the exception in which the DSFSR.FV bit is set. 
When the reference does not specify an ASI, the reference is regarded as with an 
implicit ASI and a recorded ASI is as follows: 
TL = 0, PSTATE.CLE = 0  8016 (ASI_PRIMARY) 
TL = 0, PSTATE.CLE = 1  8816 (ASI_PRIMARY_LITTLE) 
TL > 0, PSTATE.CLE = 0  0416 (ASI_NUCLEUS) 
TL > 0, PSTATE.CLE = 1  0C16 (ASI_NUCLEUS_LITTLE) 

15 TM R/W Translation miss. When TM = 1, it signifies an occurrence of a mDTLB miss upon 
an operand reference. 

13:7 FT<6:0> R/W Fault type. Saves and indicates an exact condition that caused the recorded 
exception. The encoding of this field is described in TABLE F-13. 

6 E R/W Side-effect page. Associated with faulting data access. The reference is mapped to 
the translation with an E bit set, or the ASI for the reference was either 01516 or 
01D16. Valid only for an data_access_error exception caused by DSFSR.UE, 
DSFSR.BERR, or DSFSR.BRTO. For other causes of the trap, the value is 
unknown. 
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TABLE F-12 D-SFSR Bit Description (3 of 3) 

Bits Field Name RW Description 

5:4 CT<1:0> R/W Context type. Saves the context attribute for the reference that invokes an 
exception. For nontranslating ASI or invalid ASI, DSFSR.CT = 1102. 

0002: Primary 
0102: Secondary 
1002: Nucleus 
1102: Reserved 

When a data_access_exception trap is caused by an invalid combination of an 
ASI and an opcode (e.g., atomic load quad, block load/store, block commit store, 
partial store, or short floating-point load/store instructions), the recording of the 
DSFSR.CT field is based on the encoding of the ASI specified by the instruction. 

Note that the context attribute for Shared Context is not indicated in any case. 
When multiple hits involving a shared context are detected, the CT field indicates 
the attribute of the effective context. 

3 PR R/W Privileged. Indicates the CPU privilege status during the operand reference that 
generates the exception. This field is valid when DSFSR.FV = 1.  

2 W R/W Write. W = 1 if the reference is for an operand write operation (a store or atomic 
load/store instruction). 

1 OW R/W Overwritten. Set when DSFSR.FV = 1 upon detection of a exception. This means 
that the fault valid bit is not yet cleared when another fault is detected. 

0 FV R/W Fault valid. Set when the DMMU detects an exception. The bit is not set on a 
DMMU miss. When the FV bit is not set, the values of the remaining fields in the 
DSFSR and DSFAR are undefined, except for a DMMU miss. 

TABLE F-13 defines the encoding of the FT<6:0> field.


TABLE F-13 MMU Synchronous Fault Status Register FT (Fault Type) Field 


FT<6:0> Error Description 

0116 Privilege violation. An attempt was made to access a privileged page (TTE.P = 1)  
under nonprivileged mode (PSTATE.PRIV = 0) or through a *_AS_IF_USER 
ASI. This exception has priority over a fast_data_access_protection exception. 

0216 Nonfaulting load instruction to page marked with the E bit. This bit is zero for internal 
ASI accesses. 

0416 An attempt was made to access a noncacheable page or an internal ASI by an atomic 
instruction (CASA, CASXA, SWAP, SWAPA, LDSTUB, LDSTUBA) or an atomic quad 
load instruction (LDDA with ASI = 02416, 02C16, 03416, or 03C16). 
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TABLE F-13 MMU Synchronous Fault Status Register FT (Fault Type) Field  (Continued) 

FT<6:0> Error Description 

0816 An attempt was made to access an alternate address space with an illegal ASI value, an 
illegal VA, an invalid read/write attribute, or an illegally sized operand. If the quad load 
ASI is used with an opcode other than LDDA, this bit is set. 

Note: Since an illegal ASI check is done prior to a TTE unmatch check, 
DSFSR.FT<3> = 1 causes the value of other bits of DSFSR.FT to be undetermined 
and generates a data_access_exception exception (which otherwise has lower priority 
than fast_data_access_MMU_miss). 

Note, too, that a reference to an internal ASI may generate a 
mem_address_not_aligned exception. 

1016 Access other than an nonfaulting load was made to a page marked NFO. This bit is zero 
for internal ASI accesses. 

2016 Reserved 

4016 Reserved 

Multiple bits of DSFSR.FT may be set by a trap as long as the cause of the trap matches 
multiply in TABLE F-13. 

DSFSR is updated upon various traps, including fast_data_access_MMU_miss, 
data_access_exception, fast_data_access_protection, PA_watchpoint, VA_watchpoint, 
privileged_action, mem_address_not_aligned, and data_access_error traps. TABLE F-14 

shows the detailed update policy of each field. 

TABLE F-14 DSFSR Update Policy 

Field TLB#, 
index FV OW W, PR, 

NF, CT1 FT TM ASI 
UE, BERR, 

BRTO, 
mDTLB, NC2, E2 

DSFAR 

Fresh fault or miss3 

Miss MMU miss — 0 0 V — 1 — — V 

Exception Access exception — 1 0 V V 0 V — V 

Faults 

Access protection — 1 0 V — 0 V — V 

PA watchpoint — 1 0 V — 0 V — V 

VA watchpoint — 1 0 V — 0 V — V 

Privileged action4 — 1 0 V — 0 V — V 

Access misaligned — 1 0 V — 0 V — V 

Access error V5 1 0 V — 0 V V V 

Overwrite Policy6 

Exception on fault K 1 1 U U K U K U 

Fault on exception U4 1 1 U K K U U U 

Exception on miss7 K 1 K U U 1 U K U 

Fault on miss U4 1 K U K 1 U U U 
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TABLE F-14 DSFSR Update Policy 

Field TLB#, 
index FV OW W, PR, 

NF, CT1 FT TM ASI 
UE, BERR, 

BRTO, 
mDTLB, NC2, E2 

DSFAR 

Miss on fault/exception K 1 K K K 1 K K K 

Miss on miss K K K U K 1 K K K 

1.The value of DSFSR.CT is 11 when the ASI is not a translating ASI. The value 11 is recorded in DSFSR.CT for an illegal 
value in ASI (0016–0316, 1216–1316, 1616–1716, 1A16–1B16, 1E16–2316, 2D16–2F16, or 3516–3B16). 

2.Valid only for the data_access_error caused by DSFSR.UE,or DSFSR.BERR, or DSFSR.BRTO. 
3.Types: 0 – logic 0; 1 – logic 1; V – Valid field to be updated; “—” – not a valid field 
4.Memory reference instruction only.

5.Updated when multiple hit or parity error on mDTLB is detected.

6.Types: 0 – logic 0; 1 – logic 1; V– Valid field to be updated; “—” – not a valid field

7.Fault/exception on miss means the miss happened first, then a fault/exception was encountered before software had a 

chance to clear the DSFSR register. 

F.10.11 I/D MMU Demap 

For Demap Page in sTLBs, the page size used to index sTLBs is derived based on the 
Context bits (Primary/Secondary/Nucleus). Hardware will automatically select proper PgSz 
bits based on the “context” field (Primary/Secondary/Nucleus) defined in ASI_I/ 
DMMU_DEMAP. These two PgSz fields are used to properly index the first sTLB and the 
second sTLB. 

In addition, the selected PgSz based on the context bits is used to check if the demap 
operation is valid or not for Demap Page and Demap Context operations with sTLBs. That is, 
if the PgSz is different from SIZE of the corresponding TLB entry, the TLB entry will not be 
demapped. 

Note – Valid context ID should be specified on Demap Page and Context operations. Demap 
operation with non-existing Context ID (012 for IMMU and 112 for IMMU/DMMU) might 
demap unexpected sTLB entries. 

Demap All operations with sTLBs are straight forward.


There is no way to remove all TLB entries for a shared context by Demap Context.


Programming Note – To accomplish removing all shared context entries from TLB, 
temporary use of the secondary context register is needed. 
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F.10.12 Synchronous Fault Physical Addresses 
This section describes how the IMMU and DMMU obtain a fault physical address. 

IMMU Synchronous Fault Physical Address 

The Instruction Synchronous Fault Physical Address Register is newly added to capture the 
physical memory address of the fault recorded in the IMMU Synchronous Fault Status 
Register (I-SFSR). The registers are updated on instruction_access_error exception, while 
the value is valid only when corresponding ISFSR.MK = 1,  ISFSR.UE = 1,  
ISFSR.BERR = 1 or  ISFSR.BRTO = 1.  

The values of bits 2:0 are undefined. 

ASI: 5016

VA: 7816

Access Modes: Supervisor read/write


Fault Address (PA<46:3>) — Undefined 

63 47 46 3 2 0 

FIGURE F-7 MMU Instruction Synchronous Fault Physical Address Register (I-SFPAR) 

DMMU Synchronous Fault Physical Address 

The Data Synchronous Fault Physical Address Register is newly added to capture the 
physical memory address of the fault recorded in the DMMU Synchronous Fault Status 
Register (D-SFSR). The registers are updated on data_access_error exception, while the 
value is valid only when corresponding DSFSR.MK = 1,  DSFSR.UE = 1,  DSFSR.BERR = 1  
or DSFSR.BRTO = 1.  

The values of bits 2:0 are undefined. 

ASI: 5816 
VA: 7816 
Access Modes: Supervisor read/write 

63 0 

Fault Address (PA<46:3>) — 

47 46 3 2 

Undefined 

FIGURE F-8 MMU Data Synchronous Fault Physical Address Register (D-SFPAR) 
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F.10.13 TSB Prefetch Registers 

When a fast_instruction_access_MMU_miss or a fast_data_access_MMU_miss is 
signalled, the operating system software looks up a TSB with the help of hardware’s 
automatic pointer calculation. TSB is an array of TTE located in memory, hence, it sometime 
exists in the cache memory. When the data address calculated by hardware misses the 
outermost cache, the performance of TLB miss handling degrades substantially. Generally, 
use of software prefetch could be a solution. However, since the TSB index is known after 
the exception is signalled,  it must be the TLB miss handler that issues a software prefetch, 
which does not help to hide memory access latency. 

To deal with this difficulty, SPARC64 VII employs a TSB prefetch in hardware. When an 
instruction fetch or a memory access misses the TLB, then the MMU calculates a possible 
TSB index and then issues a prefetch request. The base address of the TSB is designated by 
one of the TSB Prefetch Registers, chosen by context and access type. TABLE F-15 shows 
all TSB Prefetch Registers. 

TABLE F-15 ASI and VA assignment of TSB Prefetch Registers 

IMMU DMMU Description 

ASI = 6116, VA = 0016 ASI = 6216, VA = 0016 ctxnon0, 1st 

ASI = 6116, VA = 0816 ASI = 6216, VA = 0816 ctxnon0, 2nd 

ASI = 6116, VA = 4016 ASI = 6216, VA = 4016 ctx0, 1st 

ASI = 6116, VA = 4816 ASI = 6216, VA = 4816 ctx0, 2nd 

There are two registers each for four groups, instruction fetch in context 0 and non-0, data 
access in context 0 and non-0. There is no distinction for each register in a group. They work 
exactly the same. The format and bit description of the TSB Prefetch Register is similar to 
the TSB Base Register. FIGURE F-9 shows the format of the TSB Prefetch Register. 

VTSB_base<63:13> (physical) TSB_size—page_sz— 

63 13 12 11 9 8 7 6 5 0 

77
FIGURE F-9 TSB Prefetch Register 
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TABLE F-16 describes the bit description of the TSB Prefetch Register. Note that unused bits 
are always read as 0 and write is ignored. 

TABLE F-16 TSB Prefetch Register Bit Description 

Bit Field Name RW Description 

63:13 TSB_base R/W Base address of TSB array in physical address. 

11:9 page_sz R/W Pagesize of the TSB. The encoding of pagesize is same as TTE. 

00002 8KB 
00102 64KB 
01002 512KB 
01102 4MB 
10002 32MB 
10102 256MB 

8 V R/W Valid. When V = 1, TSB prefetch is performed on TLB miss, and when V = 0, 
prefetch is not done. 

5:0 TSB_size R/W This field is subjected IMPL.DEP.#236, same as the corresponding field in TSB 
Base Register. In SPARC64 VII, the width of TSB_size is 4 bits. Bits 5:4 are read 
as 0 and write is ignored. See Section F.10.6, I/D TSB Base Registers, on page 118 
for more detail. 

The size of the TSB. The number of entries in the TSB is 512 x 2TSB_size . 

The major difference between the TSB Base Register and the TSB Prefetch Register is that 
the base address is designated by a physical address in the TSB Prefetch Register. The result 
of using a nonexistent physical address is undefined. 

The pagesize of TTEs in a TSB is configurable by the TSB Prefetch Register, so system 
software can provide TSBs of any of two pagesizes for each group at a given time. Since 
there are two relevant registers for each group, system software can designate TSBs for two 
important pagesizes, which could be stored in two sTLBs by the system software. 

The prefetch begins when a TLB lookup fails, but not when an exception is signalled. Due to 
the nature of the TSB Prefetch Register, the earlier the start of a prefetch  the better. 
SPARC64 VII prefetches a TSB for a TLB miss even on a speculative path. 

Since the TSB Prefetch Register does not support index hashing or a shared/split, the TSB 
pointer calculation is made as follows: 

TSB_POINTER = TSB_Prefetch_Base[63:13+N]


VA[21+N+3*page_sz:13+3*page_sz]  
0000
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F.11 MMU Bypass

On SPARC64 VII, two additional ASIs are supported as DMMU bypass accesses: 
ASI_ATOMIC_QUAD_LDD_PHYS (ASI 3416) and 
ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE (ASI 3C16) 

TABLE F-17 shows the bypass attribute bits on SPARC64 VII. The first four rows conform to 
the bypass attribute bits defined in TABLE F-15 of Commonality. 

TABLE F-17 Bypass Attribute Bits on SPARC64 VII 

ASI ASI 

NAME  VALUE  

ASI_PHYS_USE_EC


ASI_PHYS_USE_EC_LITTLE


ASI_PHYS_BYPASS_EC_WITH_EBIT


ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE


ASI_ATOMIC_QUAD_LDD_PHYS


ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE


1416 

1C16 

1516 

1D16 

3416 

3C16 

Attribute Bits 

CP  IE  CV  E  P  W  NFO  Size  

1 0 0 0 0 1 0 8 Kbytes

0 0 0 1 0 1 0 8 Kbytes

1 0 0 0 0 0 0 8 Kbytes

F.12 Translation Lookaside Buffer Hardware 
Unlike other software visible resources, thread0 and thread1 within the same core logically 
share fTLBs and sTLBs. That is, a TLB entry written by one thread can be referenced by the 
other thread. 

Note – Threads belonging to different physical cores do not share TLBs. 

If two identical TTEs are written, no multiple-hit error is detected during a virtual address 
translation. Instead, one of the two TTEs is used for the translation. In other words, it is 
allowed for both the threads to write identical contents into a TLB independently. Hardware 
guarantees no multi-hit error will occur in this case. 

However, it is not allowed to write two TTEs with the same VA and CONTEXT but different 
page sizes into a TLB. This might result in a multi-hit error. 
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F.12.2 TLB Replacement Policy 

Automatic TLB Replacement Rule 

On an automatic replacement write to the TLB, the MMU picks the entry to write according 
to the following rules: 

1. If the following conditions are satisfied— 

■	 the new entry is unlocked or TTE.G = 0 , 

■	 and page size is either 8KB or 4MB when ASI_MCNTL.mpg_sITLB/ 
mpg_sDTLB = 0,  
or page size matches either pgsz0/1 field of the relevant CONTEXT register when 
ASI_MCNTL.mpg_sITLB/mpg_sDTLB = 1,  

■	 and ASI_MCNTRL.fw_fITLB = 0 for IMMU automatic replacement, 
■	 and ASI_MCNTRL.fw_fDTLB = 0 for DMMU automatic replacement, 

—then the replacement is directed to the sTLB (2-way TLB). Otherwise, the replacement 
occurs in the fully associative TLB (fTLB). 

2. If replacement is directed to the 2-way TLB, then the replacement set index is generated 
from the TLB Tag Access Register with bits determined by the page size. 

3. If a replacement is directed to the fully associative TLB (fTLB), then the following 
alternatives are evaluated: 

a.	 The first invalid entry is replaced (measuring from entry 0). If there is no invalid entry, 
then 

b. the first unused, unlocked (LRU, but clear) entry will be replaced (measuring from 
entry 0). If there is no unused unlocked entry, then 

c.	 all used bits are reset, and the process is repeated from Step 3b. 

If fTLB is the target of the automatic replacement and all entries in the fTLB have their 
lock bit set, the automatic replacement operation is ignored and the entries in the target 
fTLB remain unchanged. 

Restriction of sTLB Entry Direct Replacement 

In SPARC64 VII, no restriction check is applied to the stxa address and the contents of I/D 
TLB Data Access Register. 
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F.AP PE ND IX G 

Assembly Language Syntax


Please refer to Appendix G of Commonality. 
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F.AP PE ND IX H 

Software Considerations


Please refer to Appendix H of Commonality. 

Ver 1.0, 1 Jul. 2008 F. Appendix H Software Considerations 133 



F.AP PE ND IX I 

Extending the SPARC V9 Architecture


Please refer to Appendix I of Commonality. 
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F.AP PE ND IX J 

Changes from SPARC V8 to SPARC V9


Please refer to Appendix J of Commonality. 
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F.AP PE ND IX K 

Programming with the Memory Models


Please refer to Appendix K of Commonality. 
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F.AP PE ND IX L 

Address Space Identifiers


Every load or store address in a SPARC V9 processor has an 8-bit Address Space Identifier 
(ASI) appended to the VA. The VA plus the ASI fully specifies the address. For instruction 
loads and for data loads or stores that do not use the load or store alternate instructions, the 
ASI is an implicit ASI generated by the hardware. If a load alternate or store alternate 
instruction is used, the value of the ASI can be specified in the %asi register or as an 
immediate value in the instruction. In practice, ASIs are not only used to differentiate address 
spaces but are also used for other functions, such as referencing registers in the MMU unit. 

This chapter summarizes SPARC64 VII enhanced ASIs. Please refer to Commonality for 
Sections L.1 and L.2. 

L.3 SPARC64 VII ASI Assignments 
For SPARC64 VII, all accesses made with ASI values in the range 0016–7F16 when 
PSTATE.PRIV = 0 cause a privileged_action exception. 

Warning – The software should follow the ASI assignments and VA assignments in

TABLE L-1. Some illegal ASI or VA accesses will cause the machine to enter unknown states.


TABLE L-1 SPARC64 VII ASI Assignments  (1 of 3) 

Value ASI Name (Suggested Macro Syntax) Type VA16 Description Page 

0016–3316 (JPS1)


3416 ASI_ATOMIC_QUAD_LDD_PHYS R —  64 


3516–3B16 (JPS1)


3C16 ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE R —  64 


3D16–4416 (JPS1)
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TABLE L-1 SPARC64 VII ASI Assignments  (2 of 3) 

Value ASI Name (Suggested Macro Syntax) Type VA16 Description Page 

4516 ASI_DCU_CONTROL_REG (ASI_DCUCR) RW 0016 20 

4516 ASI_MEMORY_CONTROL_REG (ASI_MCNTL) RW 0816 109 

4616–4916 (JPS1) 

4A16 ASI_JB_CONFIG_REGISTER R  0016 239 

4B16 (JPS1) 

4C16 ASI_ASYNC_FAULT_STATUS RW 0016 118 

4C16 ASI_URGENT_ERROR_STATUS R  0816 189 
(ASI_UGESR) 

4C16 ASI_ERROR_CONTROL RW 1016 185 

4C16 ASI_STCHG_ERROR_INFO RW 1816 187 

4D16 ASI_ASYNC_FAULT_ADDR_D1 R  0016 Always read as zero 199 

4D16 ASI_ASYNC_FAULT_ADDR_U2 R  0816 Always read as zero 199 

4E16 (JPS1) 

4F16 ASI_SCRATCH_REG0 RW 0016 140 

4F16 ASI_SCRATCH_REG1 RW 0816 140 

4F16 ASI_SCRATCH_REG2 RW 1016 140 

4F16 ASI_SCRATCH_REG3 RW 1816 140 

4F16 ASI_SCRATCH_REG4 RW 2016 140 

4F16 ASI_SCRATCH_REG5 RW 2816 140 

4F16 ASI_SCRATCH_REG6 RW 3016 140 

4F16 ASI_SCRATCH_REG7 RW 3816 140 

5016 (JPS1) 0016-5816 

5016 ASI_IMMU_TAG_ACCESS_EXT RW 6016 115 

5016 ASI_IMMU_SFPAR RW 7816 126 

5116–5716 (JPS1) 

5816 ASI_DMMU_TAG_ACCESS_EXT RW 6016 115 

5816 ASI_SHARED_CONTEXT_REG RW 6816 114 

5816 ASI_DMMU_SFPAR RW 7816 126 

5916–6016 (JPS1) 

6116 ASI_ITSB_PREFETCH RW 0016, 0816, 127 
4016, 4816 

6216 ASI_DTSB_PREFETCH RW 0016, 0816, 127 
4016, 4816 
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TABLE L-1 SPARC64 VII ASI Assignments  (3 of 3) 

Value ASI Name (Suggested Macro Syntax) Type VA16 Description Page 

6316–6616 (JPS1) 

6716 ASI_FLUSH_L1I W — 151 

6816–6916 (JPS1) 

6A16 ASI_L2_CTRL RW — 152 

6D16 ASI_BARRIER_INIT RW 0016-3E016 143 

6E16 ASI_ERROR_IDENT (ASI_EIDR) RW 0016 185 

6F16 ASI_BARRIER_ASSIGN RW 0016-5016 144 

7016–7316 (JPS1) 

7416 ASI_CACHE_INV W — 152 

7516–FD16 (JPS1) 

FE16 ASI_LBSY, ASI_BST RW — 145 

FF16 (JPS1) 

L.3.2 Special Memory Access ASIs 

Please refer to Section L.3.3 in Commonality. 

In addition to the ASIs described in Commonality, SPARC64 VII supports the ASIs 
described below. 

ASI 5316 (ASI_SERIAL_ID) 

SPARC64 VII provides an identification code for each processor. In other words, this ID is 
unique for each processor chip. In conjunction with the Version Register (please refer to 
Version (VER) Register on page 18), software can attain completely unique chip 
identification code. 

This register is defined as read-only. A write to this register causes data_access_exception. 

Chip_ID<63:0> 

63 0 
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ASI 4F16 (ASI_SCRATCH_REGx) 

SPARC64 VII provides eight of 64-bit registers that can be used temporary storage for 
supervisor software. 

Data<63:0> 

63	 0 

[1] Register Name:	 ASI_SCRATCH_REGx  (x = 0–7) 
[2] ASI:	 4F16 
[3]	 VA: VA<5:3> = register number 

The other VA bits must be zero. 
[4] RW:	 Supervisor read/write 

Block Load and Store ASIs 

ASIs E016 and E116 exist only for use with STDFA instructions as Block Store with Commit 
operations (see Block Load and Store Instructions (VIS I) on page 51). Neither ASI E016 nor 
ASI E116 should be used with LDDFA; however, if either is used, the LDDFA behaves as 
follows: 

1. No exception is generated based on the destination register rd (impl. dep. #255). 

2. For LDDFA with ASI E016 or E11 and a memory address aligned on a 2n-byte boundary, a 
SPARC64 VII processor behaves as follows (impl. dep. #256): 

n ≥ 3 (≥ 8-byte alignment): no exception related to memory address alignment is 
generated, but a data_access_exception is generated (see case 3, below). 
n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is generated. 

n ≤1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated. 

3. If the memory address is correctly aligned, a data_access_exception with an 
DSFSR.FT = “invalid ASI” is generated. 

Partial Store ASIs 

ASIs C016–C516 and C816–CD16 exist for use with the STDFA instruction for Partial Store 
operations (see Partial Store (VIS I) on page 68). None of these ASIs should be used with 
LDDFA; however, if one of them is used, the LDDFA behaves as follows on a SPARC64 VII 
processor (impl. dep. #257): 

1. For LDDFA with C016–C516 or C816–CD16 and a memory address aligned on a 2n-byte 
boundary, a SPARC64 VII processor behaves as follows: 

n ≥ 3 (≥ 8-byte alignment): no  exception related to memory address alignment is 
generated. 
140 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 



 

n = 2 (4-byte alignment): LDDF_mem_address_not_aligned exception is generated. 

n ≤ 1 (≤ 2-byte alignment): mem_address_not_aligned exception is generated. 

2. If the memory address is correctly aligned, SPARC64 VII generates a 
data_access_exception with DSFSR.FT = “invalid ASI.” 

L.3.3 Hardware Barrier 

SPARC64 VII provides a hardware barrier mechanism which facilitates high speed 
synchronization among threads in a CPU Chip. The barrier resources are located inside of the 
CPU Chip and are shared with all executing threads. The BPU (Barrier Processing Unit) is 
the main barrier resource. It consists of a BST (Barrier STatus) and some BBs (Barrier 
Blades). FIGURE L-1 illustrates the barrier resources. 

BST 

BST_mask 

LBSY 

Barrier Blade #0 

BST_mask 

LBSY 

Barrier Blade #11 

BPU #0 

BST 

BST_mask 

LBSY 

Barrier Blade #0 

BST_mask 

LBSY 

Barrier Blade #11 

BPU #1 

0 0  2323 

FIGURE L-1 The Barrier Resources of SPARC64 VII 
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SPARC64 VII has two BPUs in a CPU chip. These two BPUs are functionally equivalent. 
Each BPU contains a twenty-four bit BST and twelve Barrier Blades. A Barrier Blade 
defines a logical barrier component shared among threads for synchronization. Each Barrier 
Blade has a BST_mask to select bits in BST, and a LBSY (Last Barrier SYnchronization 
status) which remembers the previous synchronization status of the Barrier Blade. 

The barrier synchronization is established when all BST bits selected by the BST_mask are 
set to the same value, either 1 or 0. When all bits become the same value, then the value is 
copied into LBSY. Update of LBSY is done atomically so that a read of LBSY before 
modifying a BST always returns the old value. Software threads that reach the barrier point 
first modify a BST bit, then wait for an update of LBSY. This is usually done by a spin loop 
with LBSY polling, which may negatively impact the other thread in a core. In 
SPARC64 VII, an update of LBSY causes all threads which use that LBSY to wake up, so 
the use of a sleep instruction in the spin loop achieves both high-speed synchronization and 
efficient use of CPU resources by the other core’s thread. 

Since LBSY keeps the last synchronization status of the barrier, threads can easily determine 
the value to be used in the next synchronization by negating the current LBSY. When a 
Barrier Blade is used repeatedly in one piece of software, such as in the middle of a loop, 
threads set their BST bit to 1 once, then set it to 0 in the next iteration. 

The user software may not operate on these resources directly. User software accesses them 
through the window ASI. A hardware thread has six window ASIs. The window ASI is a 
mechanism to ease the barrier handling for user threads, and isolate the resources from other 
threads in order to minimize the possibility of destroying current barrier status. 

The memory ordering between barrier resources or barrier resources and real memory 
conforms to TSO as defined in Section 8 of Commonality. All kinds of memory accesses 
except a store followed by a load are performed in that order. A member with #loadstore 
is needed when a store through a window ASI and a subsequent load are to be performed in 
this order. 

Note – Hardware barrier resources in SPARC64 VII does not provide synchronization across 
CPU Chips. 
142 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 



Initialization and State Acquisition of Barrier Resources 
(ASI_BARRIER_INIT) 

ASI: 6D16 
Access Modes: Supervisor read/write 

VA: 

—BB_num BPU_num — 

63 10 9 8 5 4 0 

DATA: 

BST_value BST_mask LBSY — 

63 49 48 47 24 23	 0 

ASI_BARRIER_INIT initialize and get the current status of Barrier Blade determined by 
BPU_num and BB_num in VA. Unused bits of VA are ignored. TABLE L-2 describes the 
data bits of the ASI. 

TABLE L-2 ASI_BARRIER_INIT Bit Description 

Bit Field Type Description 

48 LBSY RW The BST value of last synchronization. 

47:24 BST_mask RW Mask bit of the BST. 

23:0 BST_value RW BST value of the BPU to which the BB belongs. 

Unused bits are read as undefined and a write is ignored. 

■	 On read, the value of LBSY and BST_mask of the Barrier Blade designated by 
BPU_num, BB_num in VA and BST value of the BPU to which the BB belongs are 
returned. An arbitrary number is returned when BB_num > 1110 is designated. 

■	 On write, the value of LBSY and BST_mask of the Barrier Blade designated by 
BPU_num, BB_num in VA and BST value of the BPU to which the BB belongs are 
updated. Only the bit in the BST corresponding to the specified bst_mask is updated. 
The following formula describes the write process: 

BST = (BST & ~BST_mask) | (BST_mask & BST_value)

A write with BB_num > 1110 is ignored and no exception is signalled.


After a write is completed, the hardware checks whether the Barrier Blade is synchronized or 
not, then updates the LBSY accordingly. For example, a write with all bits in BST_mask and 
BST_value to 1 and LBSY at 0 causes an immediate update of LBSY to 1. LBSY value after 
a write with BST_mask = 0 are undefined. 

A subsequent read of ASI_BARRIER_INIT after a write with bst_mask = 0 may return an 
arbitrary LBSY value, but not a written value. 
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Programming Note – Hardware does not track whether a Barrier Blade or BST is 
designated as used. Software takes full responsibility for not initializing an in use BB. 

Assignment of Barrier Resources (ASI_BARRIER_ASSIGN) 

ASI: 6F16 
VA: 0016, 1016, 2016, 3016, 4016, 5016 
Access Modes: Supervisor read/write 

DATA: 

BST_bit BB_num —Valid BPU_num 

63 62	 10 9 8 5 4  0 

ASI_BARRIER_ASSIGN sets and gets the mapping of barrier resources to a window ASI 
through which user programs can access it. There are six window ASIs in SPARC64 VII; 
they are distinguished by VA. TABLE L-3 describes the data bits of the ASI. 

TABLE L-3 ASI_BARRIER_ASSIGN Bit Description 

Bit Field Type Description 

63 Valid RW Valid bit. On read, the validity of a window ASI is 
returned. On write, valid = 1 requests hardware to 
make a new assignment, while valid = 0 releases the 
existing assignment. 

9 BPU_num RW Designation of BPU. 

8:5 BB_num RW Designation of a BB in the BPU. 

4:0 BST_bit RW Designation of a bit in the BST. 

Unused bits are read as undefined and a write is ignored. 

■	 On read, the assignment of a window ASI is returned. When the window ASI designated 
by VA is assigned to specific barrier resources, valid is set to 1 and assignment is 
shown in BPU_num, BB_num, and BST_bit. When the window ASI designated by VA 
is not assigned, valid is set to 0 and other fields are meaningless. 

■	 On write, 

■	 When valid = 1, a new assignment is made to the window ASI. After completion of 
this write, user software can write designated bit in the BST by a write to ASI_BST, 
and the LBSY value is obtained by a read to ASI_LBSY. Note that a write operation 
does not alter the corresponding bit of BST_mask in Barrier Blade. 

■	 When valid = 0, the existing assignment is released. After completion of this write, a 
write to ASI_BST is ignored and an undefined value is returned by a read to 
ASI_LBSY. 
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If a nonexistent barrier resource is designated, such as BST_bit > 2310 or BB_num > 1110, 
a write is ignored and no exception is signalled. 

Hardware does not detect any discrepancy between initialization and assignment of barrier 
resources. This includes things such as initialization of Barrier Blades currently being used, 
assignment of a BST bit of which the corresponding bit in BST_mask is zero, or two or 
more Barrier Blade sharing a specific BST bit. System Software takes responsibility for 
avoiding these discrepancies. 

Programming Note – System software should only assign a Barrier Blade after it has been 
initialized. Assignment of a non-initialized Barrier Blade may cause unexpected results. 

Window ASI for Barrier Resources (ASI_LBSY/BST) 

ASI: EF16 
VA: 0016, 1016, 2016, 3016, 4016, 5016 
Access Modes: Read/Write 

value — 

63 1 0 

ASI_LBSY/BST is a window ASI through which user programs can access barrier resources. 
There are six window ASIs in SPARC64 VII; they are distinguished by VA. TABLE L-4 
describes the data bits of the ASI. 

TABLE L-4 ASI_LBSY/BST Bit Description 

Bit Field	 Type Description 

0 Value RW	 On read, LBSY of the Barrier Blade which is assigned 
to the window is returned. On write, the value of the 
BST bit which is assigned to the window is updated. 

Unused bits are read as undefined and a write is ignored. 

A read to an unassigned window ASI returns an unknown value and a write to an unassigned 
window is ignored without signalling an exception. 

Sample Code of Barrier Synchronization 

/*
 * %r1: VA of a window ASI
 * %r2:, %r3: work

 */
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ldxa [%r1]ASI_LBSY, %r2 ! read current LBSY 
not %r2 ! inverse LBSY 
and %r2, 1, %r2 ! mask out reserved bits 
stxa %r2, [%r1]ASI_BST ! update BST 
membar #storeload ! to make sure stxa is complete 

loop: 
ldxa [%r1]ASI_LBSY, %r3 ! read LBSY 
and %r3, 1, %r3 ! mask out reserved bits 
subcc %r3, %r2, %g0 ! check if status changed 
bne,a loop 
sleep ! if not changed, sleep for a while 
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F.AP PE ND IX M 

Cache Organization


This appendix describes SPARC64 VII cache organization in the following sections: 

■	 Cache Types on page 147 
■	 Cache Coherency Protocols on page 150 
■	 Cache Control/Status Instructions on page 151 

M.1 Cache Types 
SPARC64 VII has two levels of on-chip caches, with these characteristics: 

■	 Level-1 cache is split for instruction and data; level-2 cache is unified. 

■	 Level-1 caches are virtually indexed, physically tagged (VIPT), and level-2 caches are 
physically indexed, physically tagged (PIPT). 

■	 Level-1 caches are 64 bytes in line size, and level-2 cache are 256 bytes in line size (4 
64byte sub-line). 

■	 All lines in the level-1 caches are included in the level-2 cache. 

■	 Between level-1 caches, or level-1 and level-2 caches, coherency is maintained by 
hardware. In other words, 
■	 eviction of a cache line from a level-2 cache causes flush-and-invalidation of all level

1 caches, and 
■	 self-modification of an instruction stream modifies a level-1 data cache with 

invalidation of a level-1 instruction cache. 

■	 Level-1 caches are shared by the two threads in the core, and Level-2 is shared by all the 
threads in the processor module. 
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M.1.1 Level-1 Instruction Cache (L1I Cache) 

TABLE M-1 shows the characteristics of a level-1 instruction cache. 

TABLE M-1 L1I Cache Characteristics 

Feature Value 

Size 64 Kbytes 

Associativity 2-way 

Line Size 64-byte 

Indexing Virtually indexed, physically tagged (VIPT) 

Tag Protection Parity and duplicate 

Data Protection Parity 

Although an L1I cache is VIPT, TTE.CV is ineffective since SPARC64 VII has unaliasing 
features in hardware. 

Instruction fetches bypass the L1I cache when they are noncacheable accesses. Noncacheable 
accesses occur under one of three conditions: 

■ PSTATE.RED = 1  
■ DCUCR.IM = 0  
■ TTE.CP = 0  

When MCNTL.NC_CACHE = 1, SPARC64 VII treats all instructions as cacheable, regardless 
of the conditions listed above. See ASI_MCNTL (Memory Control Register) on page 109 for 
details. 

Programming Note – This feature is intended to be used by the OBP to facilitate 
diagnostics procedures. When the OBP uses this feature, it must clear MCNTL.NC_CACHE 
and invalidate all L1I data by ASI_FLUSH_L1I before it exits. 
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M.1.2 Level-1 Data Cache (L1D Cache) 

The level-1 data cache is a writeback cache. Its characteristics are shown in TABLE M-2. 

TABLE M-2 L1D Cache Characteristics 

Feature Value 

Size 64 Kbytes 

Associativity 2-way 

Line Size 64-byte 

Indexing Virtually indexed, physically tagged (VIPT) 

Tag Protection Parity and duplicate 

Data Protection ECC 

Although L1D cache is VIPT, TTE.CV is ineffective since SPARC64 VII has unaliasing 
features in hardware. 

Data accesses bypass the L1D cache when they are noncacheable accesses. Noncacheable 
accesses occur under one of three conditions: 

■	 The ASI used for the access is either ASI_PHYS_BYPASS_EC_WITH_E_BIT (1516) or 
ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE (1D16). 

■	 DCUCR.DM = 0  
■	 TTE.CP = 0  

Unlike the L1I cache, the L1D cache does not use MCNTL.NC_CACHE. 

M.1.3 Level-2 Unified Cache (L2 Cache) 

The level-2 unified cache is a writeback cache. Its characteristics are shown in TABLE M-3. 

TABLE M-3 L2 Cache Characteristics 

Feature Value 

Size 6 Mbyte (max)


Associativity 12-way (max)


Line Size 256-byte consists of 4 64-byte sublines


Indexing Physically indexed, physically tagged (PIPT)


Tag Protection ECC


Data Protection ECC


The L2 cache is bypassed when the access is noncacheable. MCNTL.NC_CACHE is not used 
in the L2 cache. 
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M.2 Cache Coherency Protocols 

The CPU uses the enhanced MOESI cache-coherence protocol; these letters are acronyms for 
cache line states as follows: 

M Exclusive modified


O Shared modified (owned)


E Exclusive clean


S Shared clean


I Invalid


A subset of the MOESI protocol is used in the on-chip caches as well as the D-Tags in the 
system controller. TABLE M-4 shows the relationships between the protocols. 

TABLE M-4 Relationships Between Cache Coherency Protocols 

L2-Cache L1D-Cache SAT (store ownership) L1I-Cache 

Invalid (I) Invalid (I) Invalid (I) Invalid (I) 

Shared Clean (S) 

Invalid (I) or Clean (C) 
Invalid (I) Invalid (I) or Valid (V) 

Shared Modified (O) 

Exclusive Clean (E) 

Exclusive Modified (M) 
Exclusive Modified (M) Valid (V) Invalid (I) 

TABLE M-5 shows the encoding of the MOESI states in the L2 Cache. 

TABLE M-5 L2 Cache MOESI States 

Bit 2 (Valid) Bit 1 (Exclusive) Bit 0 (Modified) State 

0 — — Invalid (I) 

1 0 0 Shared clean (S) 

1 1 0 Exclusive clean (E) 

1 0 1 Shared modified (O) 

1 1 1 Exclusive modified (M) 
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M.3 Cache Control/Status Instructions

Several ASI instructions are defined to manipulate the caches. The following conventions are 
common to all of the load and store alternate instructions defined in this section: 

1. The opcode of the instructions should be	 ldda, ldxa, lddfa, stda, stxa, or stdfa. 
Otherwise, a data_access_exception exception with D-SFSR.FT = 0816 (Invalid ASI) is 
generated. 

2. No operand address translation is performed for these instructions. 

3. VA<2:0> of all of the operand addresses should be 0. Otherwise, a 
mem_address_not_aligned exception is generated. 

4. The don’t-care bits (designated “—” in the format) in the VA of the load or store alternate 
can be of any value. It is recommended that software use zero for these bits in the operand 
address of the instruction. 

5. The don’t-care bits (designated “—” in the format) in DATA are read as zero and ignored 
on write. 

6. The instruction operations are not affected by PSTATE.CLE. They are always treated as 
big-endian. 

Multiple Asynchronous Fault Address Registers are maintained in hardware, one for each 
major source of asynchronous errors. These ASIs are described in 
ASI_ASYNC_FAULT_STATUS (ASI_AFSR) on page 198. The following subsections describe 
all other cache-related ASIs in detail. 

M.3.1 Flush Level-1 Instruction Cache (ASI_FLUSH_L1I) 

[1] Register Name: ASI_FLUSH_L1I 

[2] ASI:	 6716 
[3] VA:	 8-byte aligned any VA 
[4] RW	 Supervisor write 

ASI_FLUSH_L1I flushes and invalidates the entire level-1 instruction cache. VA can be 
any value as long as it is aligned at 8-byte. A write to this ASI with any VA and any data 
causes flushing and invalidation. 
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M.3.2 Level-2 Cache Control Register (ASI_L2_CTRL)


[1] Register Name: ASI_L2_CTRL 

[2] ASI: 6A16 
[3] VA: any 
[4] RW Supervisor read/write 

ASI_L2_CTRL is a control register for L2 training, interface, and size configuration. It is 
illustrated below and described in TABLE M-6. 

Reserved URGENT_ERROR_TRAP Reserved U2_FLUSH 

63 25 24 23	 1 0 

TABLE M-6 ASI_L2_CTRL Register Bits 

Bit Field	 RW Description 

24 URGENT_ERROR_TRAP RW1C	 This bit is set to 1 when one of the error exceptions 
(instruction_access_error, data_access_error, or 
asynchronous_data_error) is generated. The bit 
remains set to 1 until supervisor software explicitly 
clears it by writing 1 to the bit. 

0 U2_FLUSH W	 Setting this bit to 1 causes the entire level-2 cache to 
flush. Until the flushing of the level-2 cache 
completes, the processor ceases operation and does 
not perform further instruction execution. 

Writing 0 to this bit is ignored. 

Programming Note – To wait for completion of cache flush, a membar #sync is needed. 

M.3.3 Cache invalidation (ASI_CACHE_INV) 

[1] Register Name: ASI_CACHE_INV 

[2] ASI:	 7416 
[3] VA:	 Physical Address 
[4] RW	 Supervisor write 
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ASI_CACHE_INV flushes and invalidates cache lines of all processor modules in the same 
partition. The cache lines to be invalidated are specified by the VA field which keeps the 
physical address (that is, ASI_CACHE_INV is bypass ASI). Thus PSTATE.AM is ignored. 
Also the Physical Address Data Watchpoint Register (ASI 5816, VA=4016) is ignored unlike 
other bypass ASIs. 

The ASI is write-only and read to it causes data_access_exception with AFSR.FTYPE = 
“invalid ASI”. 

Note – DCUCR.WEAK_SPCA has to be set to “1” before executing the instruction. 
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Interrupt Handling


Interrupt handling in SPARC64 VII is described in these sections: 

■ Interrupt Dispatch on page 155 
■ Interrupt Receive on page 157 
■ Interrupt-Related ASI Registers on page 158 

N.1 Interrupt Dispatch 
When a processor wants to dispatch an interrupt to another processor, it first sets up the 
interrupt data registers (ASI_INTR_W data 0-7) with the outgoing interrupt packet data by 
using ASI instructions. It then performs an ASI_INTR_W (interrupt dispatch) write to 
trigger delivery of the interrupt. The interrupt packet and the associated data are forwarded to 
the target processor by the system controller. The processor polls the BUSY bit in the 
INTR_DISPATCH_STATUS register to determine whether the interrupt has been dispatched 
successfully. 

FIGURE N-1 illustrates the steps required to dispatch an interrupt. 
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read ASI_INTR_DISPATCH_STATUS 

Error 

PSTATE.IE ← 0 

Busy? 
Y 

N 

(begin atomic sequence) 

Write ASI_INTR_W (data 0) 
. . . 

Write ASI_INTR_W (data 7) 

Write ASI_INTR_W (interrupt 

MEMBAR 
dispatch) 

read ASI_INTR_DISPATCH_STATUS 

Busy? 
Y 

N 

(end atomic sequence) 
PSTATE.IE ← 1 

Nack? 
Y 

N 

dispatch complete 

FIGURE N-1 Dispatching an Interrupt 
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N.2 Interrupt Receive

When an interrupt packet is received, eight interrupt data registers are updated with the 
associated incoming data and the BUSY bit in the ASI_INTR_RECEIVE register is set. If 
interrupts are enabled (PSTATE.IE = 1), then the processor enters a trap and the interrupt 
data registers are read by the software to determine the appropriate trap handler. The handler 
may reprioritize this interrupt packet to a lower priority. 

If an incoming packet is marked as an error, the BUSY bit in the ASI_INTR_RECEIVE 
register is not set. In this case, other interrupt related ASI registers may also be corrupted and 
should not be accessed. See Section P.8.3, ASI Register Error Handling, on page 203 for 
details. 

FIGURE N-2 is an example of the interrupt receive flow. 

read ASI_INTR_RECEIVE 

Read ASI_INTR_R (data 0) 
. . . 

Read ASI_INTR_R (data 7) 

Busy? 
N 

Y 

clear ASI_INTR_RECEIVE 

Error 

Determine Trap Handler 

Handle Interrupt or 
re-prioritize via SOFTINT 

clear ASI_INTR_RECEIVE 

interrupt complete 

FIGURE N-2 Interrupt Receive Flow 
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N.3 Interrupt Global Registers 
Please refer to Section N.3. of Commonality. 

N.4 Interrupt-Related ASI Registers 
Please refer to Section N.4 of Commonality for details of these registers. 

N.4.2 Interrupt Vector Dispatch Register 

SPARC64 VII ignores all 10 bits of VA<38:29> when the Interrupt Vector Dispatch Register 
is written (impl. dep. #246). 

N.4.3 Interrupt Vector Dispatch Status Register 

In SPARC64 VII, 32 BUSY/NACK pairs are implemented in the Interrupt Vector Dispatch 
Status Register (impl. dep. #243). 

N.4.5 Interrupt Vector Receive Register 

SPARC64 VII sets a 10-bit value in the SID_H and SID_L fields of the Interrupt Vector 
Receive Register, but the value to be set is undefined. (impl. dep. #247). 

N.5 How to identify an interrupt target 
SPARC64 VII has multiple threads in a processor module. As a result, SPARC64 VII needs a 
mechanism to identify which thread should receive a given interrupt (interrupt_vector). 

ASI_EIDR is used to identify the thread to receive a given interrupt (interrupt_vector). 

The firmware is supposed to initialize ASI_EIDR with the Interrupt Target Identifier (ITID) on boot. 
The behavior of SPARC64 VII when it receives an interrupt packet is as follows. 
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a. If at least one of the ASI_EIDRs remain uninitialized, and none of the initialized 
ASI_EIDR values are equal to the ITID value in the interrupt packet 

The interrupt packet is sent to the thread specified by ITID<1:0> in the packet. 

b.	 If all of the ASI_EIDRs have been initialized, but zero or more than one of the 
ASI_EIDR values are equal to the ITID value in the interrupt packet 

Which thread receives the packet or if none receives it is undefined. The sender sees 
ASI_INTR_DISPATCH_STATUS#NACK=0  in both the cases, though. 

c.	 If one but only one of the initialized ASI_EIDR values is equal to the ITID value in 
the interrupt packet. 

The interrupt packet is sent to the thread of which ASI_EIDR value matches with the 
ITID value in the packet. 
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Reset, RED_state, and error_state


The appendix contains these sections: 

■ Reset Types on page 161 
■ RED_state and error_state on page 163 
■ Processor State after Reset and in RED_state on page 165 

O.1 Reset Types 
This section describes the four reset types: power-on reset, watchdog reset, externally 
initiated reset, and software-initiated reset. 

POR and XIR are applied to all the threads within a processor module. In other words, all the 
threads go through the same trap process. WDR, SIR, are RED_state are applied only to the 
particular thread which invoked the reset. Other threads are unaffected and continue to run. 

O.1.1 Power-on Reset (POR) 

For execution of the power-on reset on SPARC64 VII, an external facility must issue the 
required sequence of JTAG commands to the processor. 

While the reset pin is asserted or the Power ready signal is de-asserted, the processor stops 
and executes only the specified JTAG command. The processor does not change any 
software-visible resources in the processor except the changes by JTAG command execution 
and does not change any memory system state. 

On POR, the processor enters RED_state with TT = 1 trap to RSTVaddr + 2016 and starts 
the instruction execution. 
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O.1.2 Watchdog Reset (WDR) 

The watchdog reset trap is generated internally in the following cases: 

■ Second watchdog timeout detection while TL < MAXTL. 
■ First watchdog timeout detection while TL = MAXTL 
■ When a trap occurs while TL = MAXTL 

When triggered by a watchdog timeout, a WDR trap has TT = 2 and control transfers to 
RSTVaddr + 4016. Otherwise, the TT of the trap is preserved, causing an entry into 
error_state. 

O.1.3 Externally Initiated Reset (XIR) 

When SPARC64 VII receives a packet requesting XIR through the Jupiter Bus, it generates a 
trap of TT = 3 and causes the processor to transfer execution to RSTVaddr + 6016 and enter 
RED_state. 

O.1.4 Software-Initiated Reset (SIR) 

Any processor can initiate a software-initiated reset with an SIR instruction. 

If TL (Trap Level) < MAXTL (5), an SIR instruction causes a trap of TT = 4 and causes the 
processor to execute instructions from RSTVaddr + 8016 and enter RED_state. 

If a processor executes an SIR instruction while TL = 5, it enters  error_state and 
ultimately generates a watchdog reset trap. 
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O.2 RED_state and error_state

 The suspended_state is added to support MTP effectively. There is no way for a given thread 
to tell if the other thread is in the suspended_state or not . 

exec_state RED_state error_state** 

DONE/RETRY 
RED = 0 

TRAP@MAXTL–1 
SIR@<MAXTL 

TRAP 

RED = 1 TRAP@MAXTL 
SIR@MAXTL 

TRAP@<MAXTL 
SIR@<MAXTL 

TRAP@MAXTL 
SIR@MAXTL @<MAXTL-1 

POR 

WDT1* WDT2** 

XIR 
Any State 

Including Power Off 

@<MAXTL-1 

WDT1@MAXTL–1 
WDT1@<MAXTL 

WDT1@MAXTL 

WDT2* 

ErrorState trans Error 

CPU Fatal 
Error *** 

Fatal Error 

Fatal Error 

WDR 

suspended 
@exec 

SUSPEND 

interrupt_level_n 

**** 

suspended 
@red 

SUSPEND 

@<MAXTL-1 

****@MAXTL 

****@<MAXTL 

****@MAXTL-1 

**** interrupt_vector 

* WDT1 is the first watchdog timeout. 

** WDT2 is the second watchdog timeout. WDT2 takes the CPU into error_state. In a normal setting, error_state 
immediately generates a watchdog reset trap and brings the CPU into RED_state. Thus, the state is transient. When the 
OPSR (Operation Status Register) specifies the stop on error_ state, an entry into error_state does not cause a 
watchdog reset and the CPU remains in the error_state. 

***CPU_fatal_error_state  signals the detection of a fatal error to the system through P_FERR signal to the system, and 
the system causes a FATAL reset. Soft POR will be applied to the all threads in the system at the FATAL reset. 

FIGURE O-1 Processor State Diagram 
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O.2.1 RED_state 

Once the processor enters RED_state for any reason except when a power-on reset (POR) 
is performed, the software should not attempt to return to execute_state; if software 
attempts a return, then the state of the processor is unpredictable. 

When the processor processes a reset or a trap that enters RED_state, it enters a trap at an 
offset relative to the RED_state trap table (RSTVaddr); in the processor, this is at virtual 
address VA = FFFFFFFFF000000016 and physical address PA = 000007FFF000000016. 

The following list further describes the processor behavior upon entry into RED_state, and 
during RED_state: 

■	 Whenever the processor enters RED_state, all fetch buffers are invalidated. 

■	 When the processor enters RED_state because of a trap or reset, the DCUCR register is 
updated by hardware to disable several hardware features. Software must set these bits 
when required (for example, when the processor exits from RED_state). 

■	 When the processor enters RED_state not because of a trap or reset (that is, when the 
PSTATE.RED bit has been set by WRPR), these register bits are unchanged—unlike the 
case above. The only side effect is the disabling of the instruction MMU. 

■	 When the processor is in RED_state, it behaves as if the IMMU is disabled 
(DCUCR.IM is clear), regardless of the actual values in the respective control register. 

■	 Caches continue to snoop and maintain coherence while the processor is in RED_state. 

O.2.2 error_state 

The processor enters error_state when a trap occurs and TL = MAXTL (5) or when the 
second watchdog time-out has occurred. 

Under normal settings, the processor immediately generates a watchdog reset trap (WDR) 
and transitions to RED_state. Otherwise, the OPSR (Operating Status Register) specifies 
the stop on error_state, that is, the processor does not generate a watchdog reset after 
error_state transition and remains in the error_state. 

O.2.3 CPU Fatal Error state 
The processor enters CPU fatal error state when a fatal error is detected in the processor. A 
fatal error is one that breaks the cache coherency or the system data integrity. 

The processor reports the fatal error detection to the system, and the system causes the fatal 
reset. Soft POR will be applied to the all CPUs in the system at the fatal reset. 
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O.3 Processor State after Reset and in RED_state 
TABLE O-1 shows the various processor states after resets and when entering RED_state. 

In this table, it is assumed that RED_state entry happens as a result of resets or traps. If 
RED_state entry occurs because the WRPR instruction sets the PSTATE.RED bit, no 
processor state will be changed except the PSTATE.RED bit itself; the effects of this are 
described in RED_state on page 164. 

TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state 

RED_state
Name POR1 WDR2 XIR SIR 

Unknown/Unchanged Unchanged 

Floating Point registers 

Integer registers 

Unknown/Unchanged Unchanged 

RSTV value VA = FFFF FFFF F000 000016 
PA = 07FF F000 000016 

PC 
nPC 

RSTV | 2016 

RSTV | 2416 

RSTV | 4016 

RSTV | 4416 

RSTV | 6016 

RSTV | 6416 

RSTV | 8016 

RSTV | 8416 

RSTV | A016 

RSTV | A416 

PSTATE AG 
MG 
IG 
IE 

1 (Alternate globals) 
0   (MMU globals not selected) 
0   (Interrupt globals not selected) 
0   (Interrupt disable) 

PRIV 
AM 
PEF 
RED 

1   (Privileged mode) 
0   (Full 64-bit address) 
1   (FPU on) 
1   (Red_state) 

MM 00 (TSO) 

TLE 
CLE 

0 
0 

Unchanged 
Copied from TLE 

TBA<63:15> Unknown/Unchanged Unchanged 

Y Unknown/Unchanged Unchanged 

PIL Unknown/Unchanged Unchanged 

CWP Unknown/Unchanged Unchanged 
except for reg
ister window 

Unchanged Unchanged Unchanged 
except for reg
ister window 

traps traps 

TT[TL] 1 trap type 
or 2 

3 4 trap type 

CCR Unknown/Unchanged Unchanged 

ASI Unknown/Unchanged Unchanged 

TL MAXTL min (TL + 1, MAXTL) 

TPC[TL] 
TNPC[TL] 

Unknown/Unchanged 
Unknown/Unchanged 

PC 
nPC 
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TABLE O-1 Nonprivileged and Privileged Register State after Reset and in RED_state (Continued) 

Name POR1 WDR2 XIR SIR RED_state 

TSTATE CCR Unknown/Unchanged CCR 

ASI ASI 

PSTATE PSTATE 

CWP CWP 

PC 
nPC 

PC 
nPC 

TICK NPT 1 Unchanged Unchanged Unchanged 

Counter Restart at 0 Count Restart at 0 Count 

CANSAVE Unknown/Unchanged Unchanged 

CANRESTORE Unknown/Unchanged Unchanged 

OTHERWIN Unknown/Unchanged Unchanged 

CLEARWIN Unknown/Unchanged Unchanged 

WSTATE OTHER Unknown/Unchanged Unchanged 

NORMAL Unknown/Unchanged Unchanged 

VER MANUF 000416 

IMPL 
MASK 

716 

Mask dependent 

MAXTL 516 

MAXWIN 716 

FSR 0 Unchanged 

FPRS Unknown/Unchanged Unchanged 

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when the reset sig
nal  is asserted. Values are unchanged following soft POR. 

2.The first watchdog time-out trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog time-out traps 
as well as watchdog traps due to a trap @ TL = MAX_TL are taken in RED_state. See Section O.1.2, Watchdog Reset 
(WDR), on page 162 for more details. 

TABLE O-2 ASR State after Reset and in RED_state 

ASR Name POR1 WDR2 XIR SIR RED_state 

16 PCR UT 
ST 
Others 

0 
0 
Unknown/Unchanged 

Unchanged 

17 PIC Unknown/Unchanged Unchanged 

18 DCR Always 0 

19 GSR IM 
IRND 
Others 

0 
0 
Unknown/Unchanged 

Unchanged 
Unchanged 
Unchanged 

22 SOFTINT Unknown/Unchanged Unchanged 
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TABLE O-2 ASR State after Reset and in RED_state (Continued) 

ASR Name POR1 WDR2 XIR SIR RED_state 

23 TICK_COMPARE 
INT_DIS 
TICK_CMPR 

1 
0 

Unchanged 
Unchanged 

24 STICK NPT 
Counter 

1 
Restart at 0 

Unchanged 
Count 

25 STICK_COMPARE 
INT_DIS 
TICK_CMPR 

1 
0 

Unchanged 
Unchanged 

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when the reset signal 
is asserted. Values are unchanged following soft POR. 

2.The first watchdog time-out trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog time-out traps, as 
well as watchdog traps due to a trap @ TL = MAX_TL, are taken in RED_state. See Section O.1.2, Watchdog Reset 
(WDR), on page 162or more details 

TABLE O-3 ASI Register State After Reset and in RED_state (1 of 3) 

ASI VA Name POR1 WDR2 XIR SIR RED_state 

45 00 DCUCR 0 0 

45 08 MCNTL 
RMD 2 2 

Others 0 0 

48 00 INTR_DISPATCH_STATUS 0 Unchanged 

49 00 INTR_RECEIVE Unknown/Unchanged Unchanged 

4A 00 JBUS_CONFIG 
UC_S 
UC_SW 

Pre-defined/Unchanged 
Pre-defined/Unchanged 

Unchanged 
Unchanged 

CLK_MODE Pre-defined/Unchanged Unchanged 
ITID Pre-defined/Unchanged Unchanged 

4C 00 AFSR Unknown/Unchanged Unchanged 

4C 08 UGESR Unknown/Unchanged Unchanged 

4C 10 ERROR_CONTROL 
WEAK_ED 1 1 

Others Unknown/Unchanged Unchanged 

4C 18 STCHG_ERR_INFO Unknown/Unchanged Unchanged 

4D 00 AFAR_D1 Constant Value Constant Value 

4D 08 AFAR_U2 Constant Value Constant Value 

4F 00–38 SCRATCH_REGs Unknown/Unchanged Unchanged 

50 00 IMMU_TAG_TARGET Unknown/Unchanged Unchanged 

50 18 IMMU_SFSR Unknown/Unchanged Unchanged 

50 28 IMMU_TSB_BASE Unknown/Unchanged Unchanged 

50 30 IMMU_TAG_ACCESS Unknown/Unchanged Unchanged 
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TABLE O-3 ASI Register State After Reset and in RED_state (2 of 3) 

ASI VA Name POR1 WDR2 XIR SIR RED_state 

50 48 IMMU_TAG_TSB_PEXT Unknown/Unchanged Unchanged 

50 58 IMMU_TAG_TSB_NEXT Unknown/Unchanged Unchanged 

50 60 IMMU_TAG_ACCESS_EXT Unknown/Unchanged Unchanged 

50 78 IMMU_SFPAR Unknown/Unchanged Unchanged 

51 — IMMU_TSB_8KB_PTR Unknown/Unchanged Unchanged 

52 — IMMU_TSB_64KB_PTR Unknown/Unchanged Unchanged 

53 — SERIAL_ID Constant value Constant value 

54 — ITLB_DATA_IN Unknown/Unchanged Unchanged 

55 — ITLB_DATA_ACCESS Unknown/Unchanged Unchanged 

56 — ITLB_TAG_READ Unknown/Unchanged Unchanged 

57 — ITLB_DEMAP Unknown/Unchanged Unchanged 

58 00 DMMU_TAG_TARGET Unknown/Unchanged Unchanged 

58 08 PRIMARY_CONTEXT Unknown/Unchanged Unchanged 

58 10 SECONDARY_CONTEXT Unknown/Unchanged Unchanged 

58 18 DMMU_SFSR Unknown/Unchanged Unchanged 

58 20 DMMU_SFAR Unknown/Unchanged Unchanged 

58 28 DMMU_TSB_BASE Unknown/Unchanged Unchanged 

58 30 DMMU_TAG_ACCESS Unknown/Unchanged Unchanged 

58 38 DMMU_VA_WATCHPOINT Unknown/Unchanged Unchanged 

58 40 DMMU_PA_WATCHPOINT Unknown/Unchanged Unchanged 

58 48 DMMU_TSB_PEXT Unknown/Unchanged Unchanged 

58 50 DMMU_TSB_SEXT Unknown/Unchanged Unchanged 

58 58 DMMU_TSB_NEXT Unknown/Unchanged Unchanged 

58 60 SHARED_CONTEXT Unknown/Unchanged Unchanged 

58 68 DMMU_TAG_ACCESS_EXT Unknown/Unchanged Unchanged 

58 78 DMMU_SFPAR Unknown/Unchanged Unchanged 

59 — DMMU_TSB_8KB_PTR Unknown/Unchanged Unchanged 

5A — DMMU_TSB_64KB_PTR Unknown/Unchanged Unchanged 

5B — DMMU_TSB_DIRECT_PTR Unknown/Unchanged Unchanged 

5C — DTLB_DATA_IN Unknown/Unchanged Unchanged 

5D — DTLB_DATA_ACCESS Unknown/Unchanged Unchanged 

5E — DTLB_TAG_READ Unknown/Unchanged Unchanged 

5F — DMMU_DEMAP Unknown/Unchanged Unchanged 

60 — IIU_INST_TRAP 0 Unchanged 

61 00, 08, 
40, 48 

ITSB_PREFETCH 0/Unchanged Unchanged 

62 00, 08, 
40, 48 

DTSB_PREFETCH 0/Unchanged Unchanged 
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TABLE O-3 ASI Register State After Reset and in RED_state (3 of 3) 

ASI VA Name POR1 WDR2 XIR SIR RED_state 

6D — BARRIER_INIT 0 Unchanged 

6E — EIDR 0/Unchanged Unchanged 

6F 00-50 BARRIER_ASSIGN 0 Unchanged 

77 40:68 INTR_DATA0:5_W Unknown/Unchanged Unchanged 

77 70 INTR_DISPATCH_W Unknown/Unchanged Unchanged 

77 80:88 INTR_DATA6:7_W Unknown/Unchanged Unchanged 

7F 40:88 INTR_DATA0:7_R Unknown/Unchanged Unchanged 

EF 00-50 LBSY, BST 0 Unchanged 

1.Hard POR occurs when power is cycled. Values are unknown following hard POR. Soft POR occurs when  the reset signal 
is asserted. Values are unchanged following soft POR 

2.The first watchdog time-out trap is taken in execute_state (i.e. PSTATE.RED = 0), subsequent watchdog time-out traps as 
well as watchdog traps due to a trap @ TL = MAX_TL, are taken in RED_state. See Section O.1.2, Watchdog Reset (WDR), 
on page 162 for more details. 

O.3.1 Operating Status Register (OPSR) 

OPSR is the control register in the CPU that is scanned in during the hardware power-on 
reset sequence before the CPU starts running. 

The value of the OPSR is specified outside of the CPU and is never changed by software. 
OPSR is set by scan-in during hardware power-on reset and by a JTAG command after 
hardware POR. 

Most of the OPSR settings are not visible to the software. 
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F.AP PE ND IX P 

Error Handling


This appendix describes the processor behavior to a programmer writing an operating 
system, firmware, or recovery code for SPARC64 VII. Section headings differ from those of 
Appendix P of Commonality. 

P.1 Error Classes and Signalling 
On SPARC64 VII, an error is classified into one of the following four categories, depending 
on the degree to which it obstructs program execution: 

■ 1.Fatal error 
■ 2.Error state transition error 
■ 3.Urgent error 
■ 4.Restrainable error 

SPARC64 VII includes four COREs in the same processor module, where each core contains 
two threads. When an error is detected, how to identify the threads where an error is logged 
and gets reported depends on the error type. 

An error detected in the course of an instruction or occurring in a resource specific to a 
thread (ex. IUG_%R) are called synchronous to thread execution. In this case, the error is 
logged and reported to the thread executing the instruction or the thread includes the resource 
with the error. By their nature, instruction_access_error and data_access_error belong to 
this category. 

An error independent from instruction execution or occurring in the shared resources 
between multiple threads is called asynchronous to tread execution. In this case, the error is 
logged and reported to all the threads related to the resource causing the error. 
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Error marking is essentially asynchronous to thread execution. When an L1$ or an L2$ raw 
uncorrectable error is detected, ASI_EIDR of the valid (that is, not degraded) threads with 
the smallest thread ID (core0-thread0 < core0-thread1 < core1-thread0 ... < core3-thread1) 
related to that cache is used for error marking. 

Another issue is how to log and report an error when a corresponding thread is in the 
suspended state. Except for fatal errors, the error logging and report are postponed until the 
corresponding thread exits from the suspended state. 

P.1.1 Fatal Error 

A fatal error is one of the following errors that damages the entire system. 

a. Error breaking data integrity in the system 

All errors that break cache coherency are in this category. 

b.	 Invalid system control flow is detected and therefore validity of the subsequent 
system behavior cannot be guaranteed. 

When the CPU detects a fatal error, the CPU enters FATAL error_state and reports the 
fatal error occurrence to the system controller. The system controller transfers the entire 
system state to the FATAL state and stops the system. After the system stops, a FATAL reset, 
which is a type of power-on reset, will be issued to the whole system. 

All fatal errors are asynchronous to thread execution. If a fatal error is detected in a given 
thread, all the threads within the processor module log the cause into 
ASI_STCHG_ERROR_INFO and go through the POR sequence even if they are in the 
suspended state. 

P.1.2 error_state Transition Error 

An error_state transition error is a serious error that prevents the CPU from reporting 
the error by generating a trap. However, any damage caused by the error is limited to within 
the CPU. 

When the CPU detects an error_state transition error, it enters error_state. The 
CPU exits error_state by causing a watchdog reset, entering RED_state, and starting 
instruction execution at the watchdog reset trap handler. 
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EE asynchronous to thread execution 

The following error_state transition errors are asynchronous to thread execution. If such an 
EE is detected in a given thread, both the threads within the core which caused the error log 
it into ASI_STCHG_ERROR_INFO and go through WDR, unless they are in the suspended 
state. The threads in the other core are unaffected. 

■ EE_TRAP_ADR_UE 

■ EE_OTHER 

EE synchronous to thread execution 

The following error_state transition errors are synchronous to thread execution. If such an EE 
is detected in a given thread, only that thread logs the cause of the error into 
ASI_STCHG_ERROR_INFO and goes through WDR. All the other threads are unaffected. 

■ EE_SIR_IN_MAXTL 

■ EE_TRAP_IN_MAXTL 

■ EE_WDT_IN_MAXTL 

■ EE_SECOND_WDT 

P.1.3 Urgent Error 

An urgent error (UGE) is an error that requires immediate processing by privileged software, 
which is reported by an error trap. The types of urgent errors are listed below and then 
described in further detail. 

■ Instruction-obstructing error 

■ I_UGE: Instruction urgent error 

■ IAE: Instruction access error 

■ DAE: Data access error 

■ Urgent error that is independent of the instruction execution 

■ A_UGE: Autonomous urgent error 
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Instruction-Obstructing Error 
An instruction-obstructing error is one that is detected by instruction execution and results in 
the instruction being unable to complete. 

When the instruction-obstructing error is detected while 
ASI_ERROR_CONTROL.WEAK_ED = 0 (as set by privileged software for a normal program 
execution environment), then an exception is generated to report the error. This trap is 
nonmaskable. 

Otherwise, when ASI_ERROR_CONTROL.WEAK_ED = 1, as with multiple errors or a 
POST/OBP reset routine, one of the following actions occurs: 

■	 Whenever possible, the CPU writes an unpredictable value to the target of the damaged 
instruction and the instruction ends. 

■	 Otherwise, an error exception is generated and the damaged instruction is executed as 
when ASI_ERROR_CONTROL.WEAK_ED = 0 is set. 

The three types of instruction-obstructing errors are described below. 

■	 I_UGE (instruction urgent error) — All of the instruction-obstructing errors except IAE 

(instruction access error) and DAE (data access error). There are two categories of I_UGEs. 

■	 An uncorrectable error in an internal program-visible register that obstructs 
instruction execution. 
An uncorrectable error in the PSTATE, PC, NPC, CCR, ASI, FSR, or GSR register is 
treated as an I_UGE that obstructs the execution of any instruction. See Appendix P.8.1 
and P.8.2 for details. 

The first-time watchdog time-out is also treated as this type of I_UGE. 

■	 An error in the hardware unit executing the instruction, other than an error in a 
program-visible register. 
Among these errors are ALU output errors, errors in temporary registers during 
instruction execution, CPU internal data bus errors, and so forth. 

I_UGE is a preemptive error with the characteristics shown in TABLE P-2. 

■	 IAE (instruction access error) — The instruction_access_error exception, as specified 
in JPS1 Commonality. On SPARC64 VII, only an uncorrectable error in the cache or 
main memory during instruction fetch is reported to software as an IAE. 

IAE is a precise error. 

■	 DAE (data access error) — The data_access_error exception, as specified in JPS1 
Commonality. On SPARC64 VII, only an uncorrectable error in the cache or main 
memory during access by a load, store, or load-store instruction is reported to software as 
a DAE. 

DAE is a precise error. 
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Urgent Error Independent of Instruction Execution 
■	 A_UGE (Autonomous Urgent Error) — An error that requires immediate processing and 

that occurs independently of instruction execution. 

In normal program execution, ASI_ERROR_CONTROL.WEAK_ED = 0 is specified by 
privileged software. In this case, the A_UGE trap is suppressed only in the trap handler 
used to process UGE (that is, the async_data_error trap handler). 

Otherwise, in special program execution such as the handling of the occurrence of 
multiple errors or the POST/OBP reset routine, ASI_ERROR_CONTROL.WEAK_ED = 1  
is specified by the program. In this case, no A_UGE generates an exception. 

There are two categories of A_UGEs: 

■	 An error in an important resource that will cause a fatal error or error_state 
transition error when the resource is used. 

When the resource with the error is used, the program cannot continue execution, and 
an error_state transition error or a fatal error is detected. 

■	 The error in an important resource that is expected to invoke the operating 
system “panic” process 

The operating system panic process is expected when this error is detected because the 
normal processing cannot be expected to continue after this error occurs. 

The A_UGE is a disrupting error with the following deviations. 

■	 The trap for A_UGE is not masked by PSTATE.IE. 

■	 The instruction designated by TPC may not end precisely. The instruction end-method 
is reported in the trap status register for A_UGE. 

Traps for Urgent Errors 

When an urgent error is detected and not masked, the error is reported to privileged software 
by the following exceptions: 

■	 I_UGE, A_UGE: async_data_error exception 
■	 IAE: instruction_access_error exception 
■	 DAE: data_access_error exception 

Urgent error asynchronous to thread execution 

The following urgent errors are asynchronous to thread execution. If such an urgent error is 
detected in a given thread, both of the threads within the core which caused the error log it 
into ASI_UGESR and activate an async_data_error trap, unless they are in the suspended 
state. The threads in the other cores are unaffected. 

■	 IAUG_CRE 
■	 IAUG_TSBCTXT 
■	 IUG_TSBP 
■	 IUG_PSTATE 
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■	 IUG_TSTATE 
■	 IUG_%F (except %fn parity error) 
■	 IUR_%R (except %rn and Y parity error) 
■	 IUG_WDT 
■	 IUG_DTLB 
■	 IUG_ITLB 
■	 IUG_COREERR 

Urgent error synchronous to thread execution 

The following urgent errors are synchronous to thread execution. If such an urgent error is 
detected in a given thread, only that thread logs the cause of the error into ASI_UGESR and 
activates an async_data_error trap, unless it is in the suspended state. All the other threads 
are unaffected. 

■	 IUG_%F (%fn parity error only) 

■	 IUR_%R (%rn and Y parity error only) 

P.1.4 Restrainable Error 

A restrainable error is one that does not adversely affect the currently executing program and 
that does not require immediate handling by privileged software. A restrainable error causes 
a disrupting trap with low priority. 

There are three types of restrainable errors. 

■	 Correctable Error (CE), corrected by hardware 

Upon detecting the CE, the hardware uses the data corrected by hardware. So a CE has no 
deleterious effect on the CPU. 

When a CE is detected, data seen by the CPU is always corrected by hardware. But it 
depends on the CE type whether the source data containing the CE is corrected or not. 

■	 Uncorrectable error without direct damage to the currently executing instruction sequence. 

An error detected in cache line writeback or copyback data is of this type. 

■	 Degradation 

SPARC64 VII can isolate an internal hardware resource that generates frequent errors and 
continue processing without deleterious effect to the software during program execution. 
However, performance is degraded by the resource isolation. This degradation is reported 
as a restrainable error. 

The restrainable error can be reported to privileged software by the ECC_error trap. 

When PSTATE.IE = 1 and the trap enable mask for any restrainable error is 1, the 
ECC_error exception is generated for the restrainable error. 
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DG_U2$, DG_U2$x, UE_RAW_L2$INSD 

DG_U2$, DG_U2$x, and UE_RAW_L2$INSID are asynchronous to thread execution. If 
such an error is detected,  all the threads within the processor module log the cause of the 
error into ASI_AFSR and activate an ECC_error trap, unless they are in the suspended state. 

DG_D1$sTLB, UE_RAW_D1$INSD 

These restrainable errors are asynchronous to thread execution. If such an error is detected, 
both the threads within the core which caused the error log it into ASI_AFSR and activate an 
ECC_error trap, unless they are in the suspended state. The threads in the other cores are 
unaffected. 

UE_DST_BETO 

An UE_DST_BETO error is synchronous to thread execution. If such an error is detected in 
a given thread, only that thread logs the cause of the error into ASI_AFSR and activates an 
ECC_error trap, unless it is in the suspended state. All the other threads in the other cores 
are unaffected. 

P.1.5 instruction_access_error 

instruction_access_error is synchronous to thread execution. If such an error is detected in a 
given thread, only that thread logs the cause of the error into ASI_ISFSR, TPC, and 
ASI_ISFPAR, and activates an instruction_access_error trap. All the other threads are 
unaffected. 

P.1.6 data_access_error 

data_access_error is synchronous to thread execution. If such an error is detected in a given 
thread, only that thread logs the cause of the error into ASI_DSFSR, ASI_DSFAR, and 
ASI_DSFPAR, and activates an data_access_error trap. All the other threads are 
unaffected. 
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P.2 Action and Error Control 

P.2.1 Registers Related to Error Handling 

The following registers are related to the error handling. 

■	 ASI registers: Indicate an error. All ASI registers in TABLE P-1 except ASI_EIDR and 
ASI_ERROR_CONTROL are used to specify the nature of an error to privileged software. 

■	 ASI_ERROR_CONTROL: Controls error action. This register designates error detection 
masks and error trap enable masks. 

■	 ASI_EIDR: Marks errors. This register identifies the error source ID for error marking. 

TABLE P-1 lists the registers related to the error handling. 

TABLE P-1 Registers Related to Error Handling 

ASI VA R/W Checking Code Name Defined in 

4C16 0016 RW1C None ASI_ASYNC_FAULT_STATUS P.7.1 

4C16 0816 R None ASI_URGENT_ERROR_STATUS P.4.1 

4C16 1016 RW Parity ASI_ERROR_CONTROL P.2.1 

4C16 1816 R,W1AC None ASI_STCHG_ERROR_INFO P.3.1 

5016 1816 RW None ASI_IMMU_SFSR F.10.9 

5816 1816 RW None ASI_DMMU_SFSR F.10.9 

5816 2016 RW Parity ASI_DMMU_SFAR F.10.10 of Commonality 

6E16 0016 RW Parity ASI_EIDR P.2.5 
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P.2.2 Summary of Actions Upon Error Detection 

TABLE P-2 summarizes what happens when an error is detected. 

TABLE P-2 Action Upon Detection of an Error  (1 of 3) 

Fatal Error (FE) 
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE) 

Error detection 
mask (the 
condition to 
suppress error 
detection) 

None When 
ASI_ECR.WEAK_E 
D = 1, the error 
detection is suppressed 
incompletely. 

I_UGE, IAE, DAE 
When 
ASI_ECR.WEAK_ED = 1 or  
in the SUSPENDED state, 
error detection is suppressed 
incompletely. 

A_UGE 
In the SUSPENDED state, 
error detection is suppressed 
incompletely. 
Error detection except in register 
usage is suppressed when 
ASI_ECR.WEAK_ED = 1 or  
upon a condition unique to each 
error. 
Error detection in the register 
usage is suppressed by 
conditions unique to each error. 
Only some A_UGEs have the 
above unique conditions to 
suppress error detection; most do 
not. 

None 

Trap mask (the 
condition to 
suppress the error 
trap occurrence) 

None None I_UGE, IAE, IAE 
the SUSPENDED state. 

A_UGE 
ASI_ECR.UGE_HANDLER = 
1 

or 
ASI_ECR.WEAK_ED = 1  
The A_UGE detected during the 
trap is suppressed, is kept 
pending in the hardware, and 
causes the async_data_error 
trap when the trap is enabled 

or 
the SUSPENDED state. 

ASI_ECR.UGE_HANDLER = 
1 

or 
ASI_ECR.WEAK_ED = 1  

or 
PSTATE.IE = 0  

or 
ASI_ECR.RTE_xx = 0, where 
RTE_xx is the trap enable mask 
for each error group. 
RTE_xx is RTE_CEDG or 
RTE_UE 

or 
the SUSPENDED state. 
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TABLE P-2 Action Upon Detection of an Error  (2 of 3) 

Fatal Error (FE) 
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE) 

Action upon the 
error detection 

1. CPU enters 
CPU fatal state. 

2. CPU informs 
the system of 
fatal error 
occurrence. 

3. The FATAL 
reset (which is a 
form of POR 
reset) is issued 
to the whole 
system. 

4. POR is sent to 
all CPUs in the 
system. 

1. CPU enters 
error_state. 

2. Watchdog reset 
(WDR) is set on the 
CPU. 

Detection of I_UGE 
When 
ASI_ECR.UGE_HANDLER = 
0, a single-ADE trap is set. 
Otherwise, when 
ASI_ECR.UGE_HANDLER = 
1, a multiple-ADE trap is set. 

Detection of A_UGE 
When the trap is enabled, a 
single-ADE trap is set. 
When the trap is disabled, the 
trap condition is kept pending in 
hardware. 

Detection of IAE 
When 
ASI_ECR.UGE_HANDLER = 
0, an IAE trap is set. Otherwise, a 
multiple-ADE trap is set. 

Detection of DAE 
When 
ASI_ECR.UGE_HANDLER = 
0, a DAE trap is set. Otherwise, a 
multiple-ADE trap is set. 

An ECC_error trap can occur 
even though ASI_AFSR does 
not indicate any detected 
error(s) corresponding to any 
trap-enable bit (RTE_UE or 
RTE_CEDG) set to 1 in 
ASI_ECR, in the following 
cases: 
1. A pending detected error is 

erased from ASI_ASFR (by 
writing 1 to ASI_AFSR) 
after the error is detected but 
before the ECC_error trap is 
generated. 

2. A pending CE or DG is 
erased by writing 1 to 
ASI_AFSR after the 
ECC_error trap is set by the 
UE error detection. 

3. A pending UE is erased by 
writing 1 to ASI_AFSR 
after the ECC_error trap is 
set by CE or DG detection. 

Privileged software should 
ignore an ECC_error trap 
when the AFSR contains no 
errors corresponding to those 
enabled in ASI_ECR to cause 
a trap. 

Priority of action 
when multiple 
types of errors are 
simultaneously 
detected 

1 — CPU fatal 
state 

2 — error_state 3 — async_data_error trap 

4 — data_access_error trap 

5 — instruction_access_error 
trap 

6 — ECC_error trap 

tt (trap type) 1 (RED_state) 2 (RED_state) async_data_error: 4016 

data_access_error: 3216 

instruction_access_error: 0A16 

6316 

Trap priority 1 1 async_data_error — 2 
data_access_error — 12 
instruction_access_error — 3 

32 

End-method of 
trapped 
instruction 

Abandoned Abandoned. ADE trap 
Precise, retryable or 
nonretryable. See P.4.3. 

IAE trap, DAE trap 
Precise. 

Precise 
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TABLE P-2 Action Upon Detection of an Error  (3 of 3) 

Fatal Error (FE) 
Error State Transition 

Error (EE) Urgent Error (UGE) Restrainable Error (RE) 

Relation 
between TPC 
and instruction 
that caused the 
error 

None None I_UGE 
For errors other than TLB write 
errors, the error was caused by 
the instruction pointed to by TPC 
or by the instruction subsequent 
in the control flow to the one 
indicated by TPC. 

For a TLB write error, the 
instruction pointed to by TPC or 
the already executed instruction 
previous in the control flow to 
the one indicated by TPC wrote a 
TLB entry and the TLB write 
failed. The TLB write error is 
detected after the instruction 
execution and before any trap, 
RETRY, or DONE instruction. 

A_UGE 
None. 

IAE, DAE 
The instruction pointed to by 
TPC caused the error. 

None 

Register that 
indicates the error 

ASI_STCHG_ 
ERROR_INFO 

ASI_STCHG_ 
ERROR_INFO 

I_UGE, A_UGE 

ASI_UGESR 
IAE 

ASI_ISFSR 
DAE 

ASI_DSFSR 

ASI_AFSR 

Number of errors 
indicated at trap 

All FEs are 
detected and 
accumulated in 
ASI_STCHG_ 
ERROR_INFO 

All EEs are detected 
and accumulated in 
ASI_STCHG_ 
ERROR_INFO 

Single-ADE trap 

All I_UGEs and A_UGEs 
detected at trap. 

Multiple-ADE trap 

The multiple-ADE indication + 
UGEs at first ADE trap. 

IAE 

One error 
DAE 

One error 

All restrainable errors 
detected and accumulated in 
ASI_AFSR. 

Error address 
indication register 

None None I_UGE, A_UGE: None 
IAE: TPC 
DAE: ASI_DFAR 

ASI_AFAR_D1 

ASI_AFAR_U2 
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P.2.3	 Extent of Automatic Source Data Correction for 
Correctable Error 

Upon detection of the following correctable errors (CE), the CPU corrects the input data and 
uses the corrected data; however, the source data with the CE is not corrected automatically. 

■	 CE in memory (DIMM) 
■	 CE in ASI_INTR_DATA_R 

Upon detection of other correctable errors, the CPU automatically corrects the source data 
containing the CE. 

For correctable errors in ASI_INTR_DATA, no special action is required by privileged 
software because the erroneous data will be overwritten when the next interrupt is received. 
For CE in memory (DIMM), it is expected that privileged software will correct the error in 
memory. 

P.2.4	 Error Marking for Cacheable Data Error 

Error Marking for Cacheable Data 

Error marking for cacheable data involves the following action: 

■	 When a hardware unit first detects an uncorrected error in the cacheable data, the 
hardware unit replaces the data and ECC of the cacheable data with a special pattern that 
identifies the original error source and signifies that the data is already marked. 

The error marking helps identify the error source and prevents multiple error reports by a 
single error even after several cache lines transfer with uncorrected data. 

The following data are protected by the single-bit error correction and double-bit error 
detection ECC code attached to every doubleword: 

■	 Main memory (DIMM) 
■	 Jupiter Bus packet data containing cache line data and interrupt packet data 
■	 U2 (unified level 2) cache data 
■	 D1 cache data 
■	 The cacheable area block held by the channel 

The ECC applied to these data is the ECC specified for Jupiter Bus. 

When the CPU and channel detect an uncorrected error in the above cacheable data that is 
not yet marked, the CPU and channel execute error marking for the data block with an UE. 
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Whether the data with UE is marked or not is determined by the syndrome of the doubleword 
data, as shown in TABLE P-3. 

TABLE P-3 Syndrome for Data Marked for Error 

Syndrome Error Marking Status Type of Uncorrected Error 

7F16 Marked Marked UE 

Multibit error pattern except for 7F16 Not marked yet Raw UE 

The syndrome 7F16 indicates a 3-bit error in the specified location in the doubleword. The 
error marking replaces the original data and ECC to the data and ECC, as described in the 
following section. The probability of syndrome 7F16 occurrence other than the error marking 
is considered to be zero. 

The Format of Error-Marking Data 

When the raw UE is detected in the cacheable data doubleword, the erroneous doubleword 
and its ECC are replaced in the data by error marking, as listed in TABLE P-4. 

TABLE P-4 Format of Error-Marked Data 

Data/ECC Bit Value 

data 63 Error bit. The value is unpredictable. 

62:56 0 (7 bits). 

55:42 ERROR_MARK_ID (14 bits). 

41:36 0 (6 bits). 

35 Error bit. The value is unpredictable. 

34:23 0 (12 bits). 

22 Error bit. The value is unpredictable. 

21:14 0 (8 bits). 

13:0 ERROR_MARK_ID (14 bits). 

ECC The pattern indicates 3-bit error in bits 63, 35, and 22, that is, the pattern 
causing the 7F16 syndrome. 

The ERROR_MARK_ID (14 bits wide) identifies the error source. The hardware unit that 
detects the error provides the error source_ID and sets the ERROR_MARK_ID value. 
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The format of ERROR_MARK_ID<13:0> is defined in TABLE P-5. 

TABLE P-5 ERROR_MARK_ID Bit Description 

Bit Value 

13:12 Module_ID: Indicates the type of error source hardware as follows:

      002: Memory system including DIMM

      012: Channel

      102: CPU

      112: Reserved 

11:0 Source_ID: When Module_ID = 002, the 12-bit Source_ID field is always set to 0. 
Otherwise, the identification number of each Module type is set to Source ID. 

ERROR_MARK_ID Set by CPU 

TABLE P-6 shows the ERROR_MARK_ID set by the CPU. 

TABLE P-6 ERROR_MARK_ID Set by CPU 

Type of data with RAW UE Module_ID value (binary) Source_ID value 

Incoming data from Jupiter Bus 002 (Memory system) 0 

Outgoing data to Jupiter Bus ASI_EIDR<13:12>. 102 (CPU) is expected. ASI_EIDR (Identifier of self CPU) 

U2 cache data, D1 cache data ASI_EIDR<13:12>. 102 (CPU) is expected. ASI_EIDR (Identifier of self CPU) 
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P.2.5 ASI_EIDR 

The ASI_EIDR register designates the source ID in the ERROR_MARK_ID of the CPU. 

[1] Register name:	 ASI_EIDR 
[2] ASI:	 6E16 

[3] VA:	 0016 

[4] Error checking:	 Parity. 
[5] Format & function:	 See TABLE P-7. 

TABLE P-7 ASI_EIDR Bit Description 

Bit Name RW Description 

63:14 Reserved R  Always 0.  

13:0 ERROR_MARK_ID RW ERROR_MARK_ID for the error caused by the CPU. 

P.2.6 Control of Error Action (ASI_ERROR_CONTROL) 

Error detection masking and the action after error detection are controlled by the value in 
ASI_ERROR_CONTROL, as defined in TABLE P-8. 

[1] Register name:	 ASI_ERROR_CONTROL (ASI_ECR) 
[2] ASI:	 4C16 

[3] VA:	 1016 

[4] Error checking:	 None 

[5] Format & function:	 See TABLE P-8. 

[6]	 Initial value at reset: Hard POR: ASI_ERROR_CONTROL.WEAK_ED is set to 1. Other 
fields are set to 0. 
Other resets: After UGE_HANDLER and WEAK_ED are copied into 
ASI_STCHG_ERROR_INFO, all fields in 
ASI_ERROR_CONTROL are set to 0. 
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The ASI_ERROR_CONTROL register controls error detection masking, error trap occurrence 
masking, and the multiple-ADE trap occurrence. The register fields are described in 
TABLE P-8. 

TABLE P-8 ASI_ERROR_CONTROL Bit Description 

Bit Name RW Description 

9 RTE_UE RW Restrainable Error Trap Enable submask for UE and Raw UE. 
The bit works as defined in TABLE P-2. 

8 RTE_CEDG RW Restrainable Error Trap Enable submask for Corrected Error 
(CE) and Degradation (DG). The bit works as defined in 
TABLE P-2. 

1 WEAK_ED RW Weak Error Detection. Controls whether the detection of I_UGE 
and DAE is suppressed: 

When WEAK_ED = 0, error detection is not suppressed. 

When WEAK_ED = 1, error detection is suppressed if the 
CPU can continue processing. 

When I_UGE or DAE is detected during instruction execution 
while WEAK_ED = 1, the value of the output register or the 
store target memory location becomes unpredictable. 

Even if WEAK_ED = 1, I_UGE or DAE is detected and the 
corresponding trap is set when the CPU cannot continue 
processing by ignoring the error. 

WEAK_ED is the trap disabling mask for A_UGE and 
restrainable errors, as defined in TABLE P-2. 

When a multiple-ADE trap is set (I_UGE, IAE, or DAE detection 
while ASI_ERROR_CONTROL.UGE_HANDLER = 1),  
WEAK_ED is set to 1 by hardware. 

0 UGE_HANDLER RW Designates whether hardware can expect a UGE handler to run 
in privileged software (operating system) when a UGE error 
occurs: 

0: Hardware recognizes that the privileged software UGE 
handler does not run. 
1: Hardware expects that the privileged software UGE 
handler runs. 

UGE_HANDLER is the trap disabling mask for A_UGE and 
restrainable errors, as defined in TABLE P-2. 

The value of UGE_HANDLER determines whether a multiple-
ADE trap is caused or not upon detection of I_UGE, IAE, and 
DAE. 

When an async_data_error trap occurs, UGE_HANDLER is set 
to 1. 

When a RETRY or DONE instruction is completed, 
UGE_HANDLER is set to 0. 

Othe Reserved R Always reads as 0. 
r 
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P.3	 Fatal Error and error_state Transition 
Error 

P.3.1	 ASI_STCHG_ERROR_INFO 

The ASI_STCHG_ERROR_INFO register stores detected FATAL error and error_state 
transition error information, for access by OBP (Open Boot PROM) software. 

[1] Register name:	 ASI_STCHG_ERROR_INFO 
[2] ASI:	 4C16 

[3] VA:	 1816 

[4] Error checking:	 None 
[5] Format & function:	 See TABLE P-9 

[6]	 Initial value at reset: Hard POR: All fields are set to 0. 

Other resets: Values are unchanged. 
[7]	 Update policy: Upon detection of each related error, the corresponding bit in 

ASI_STCHG_ERROR_INFO is set to 1. Writing 1 to bit 0 erases all 
error indications in ASI_STCHG_ERROR_INFO (sets all bits in the 
register, including bit 0, to 0). 

TABLE P-9 describes the fields in the ASI_STCHG_ERROR_INFO register. 

TABLE P-9 ASI_STCHG_ERROR_INFO bit description 

Bit Name RW Description 

63:34 Reserved R  Always 0.  

33 ECR_WEAK_ED R ASI_ERROR_CONTROL.WEAK_ED is copied into this field 
at the beginning of a POR or watchdog reset. 

32 ECR_UGE_HANDLER R ASI_ERROR_CONTROL.UGE_HANDLER is copied into 
this field at the beginning of the POR or watchdog reset. 

31:24 Reserved R  Always 0.  

23 EE_MODULE RW Error state transient error requires module degradation, 
Sticky 

22 EE_CORE RW Error state transient error requires core degradation, Sticky 

21 EE_THREAD RW Error state transient error requires thread degradation, Sticky 

20 UGE_MODULE RW Urgent error requires module degradation, Sticky 

19 UGE_CORE RW Urgent error requires core degradation, Sticky 

18 UGE_THREAD RW Urgent error requires thread degradation, Sticky 

17 rawUE_MODULE RW RawUE detected in L2$, sticky 

16 rawUE_CORE RW RawUE detected in L1$, sticky 
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TABLE P-9 ASI_STCHG_ERROR_INFO bit description 

Bit Name	 RW Description 

15	 EE_DCUCR_MCNTL_EC R Uncorrectable error in any of the following: 
R (A) ASI_DCUCR 

(A) ASI_MCNTL 
(A) ASI_ECR 

14 EE_OTHER R Set to 1 upon detection of error_state transition errors 
not listed elsewhere. The field is always 0 for SPARC64 VII. 

13 EE_TRAP_ADR_UE R When hardware calculated the trap address to cause a trap, 
the valid address could not be obtained because of a UE in 
%tba, a UE in %tt, or a UE in the address calculator. 

12 FE_OPSR An uncorrectable error occurred in OPSR (Operation Status 
Register); valid CPU operation after such an error cannot be 
guaranteed. OPSR is the hardware mode-setting register. 
OSPR is not visible to software and is set by a JTAG 
command. 

11 EE_WDT_IN_MAXTL R A watchdog time-out occurred while TL = MAXTL. 

10 EE_SECOND_WDT R A second watchdog time-out was detected after an 
async_data_error exception with watchdog time-out 
indication (first watchdog time-out) was generated. 

9 EE_SIR_IN_MAXTL R An SIR occurred while TL = MAXTL. 

8 EE_TRAP_IN_MAXTL R A trap occurred while TL = MAXTL. 

7:3 Reserved R  Always 0. 


2 FE_OTHER R Set to 1 upon detection of urgent errors not listed elsewhere.


1 FE_U2TAG_UE R Upon detection of the corresponding error, set to 1.


0 FE_JBUS_UE RW An uncorrected error in the Jupiter bus.


Writing 1 to this bit sets all fields in this register to 0. 

Compatibility Note – EE_OPSR in SPARC64 V is changed to FE_OPSR in SPARC64 VII. 
There are no changes in the other error_state transition errors. 

P.3.2 Error_state Transition Error in Suspended Thread 

SPARC64 VII allows itself to enter the suspend state by means of a suspend instruction. 
Only POR, WDR, XDR, interrupt_vector and interrupt_level_n exceptions can return it back 
to the running state. If an error occurred in the resources related to those exceptions, the 
thread stays suspended forever. To prevent this situation, an urgent error regarding the 
following registers is reported as error_state transition error in suspended state. 

■ ASI_EIDR 

■ STICK, STICK_CMPR 
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■ TICK, TICK_CMPR 

In this case, ASI_STCHG_ERROR_INFO.UGE_CORE, along with corresponding bit of 
ASI_UGESR is set to 1. 

P.4 Urgent Error 
This section presents details about urgent errors: status monitoring, actions, and end-
methods. 

P.4.1 URGENT ERROR STATUS (ASI_UGESR) 

[1] Register name:	 ASI_URGENT_ERROR_STATUS 
[2] ASI:	 4C16 

[3] VA:	 0816 

[4] Error checking:	 None 
[5] Format & function:	 See TABLE P-10. 
[6]	 Initial value at reset: Hard POR: All fields are set to 0. 

Other resets: The values of all ASI_UGESR fields are unchanged. 

The ASI_UGESR register contains the following information when an async_data_error 
(ADE) exception is generated. 

■ Detected I_UGEs and A_UGEs, and related information 
■ The type of second error to cause multiple async_data_error traps 

TABLE P-10 describes the fields of the ASI_UGESR register. In the table, the prefixes in the 
name field have the following meaning: 

■ IUG_ Instruction Urgent error 
■ IAG_ Autonomous Urgent error 
■ IAUG_ The error detected as both I_UGE and A_UGE 

TABLE P-10 ASI_UGESR Bit Description (1 of 4) 

Bit Name RW Description 

Each bit in ASI_UGESR<22:8> indicates the occurrence of its corresponding error in a single-ADE 
trap as follows: 

0: The error is not detected. 
1: The error is detected. 

Each bit in ASI_UGESR<22:16> indicates an error in a CPU register. The error detection conditions 
for these errors are defined in Internal Register Error Handling on page 201. 
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TABLE P-10 ASI_UGESR Bit Description (2 of 4) 

Bit Name RW Description 

22 IAUG_CRE R Uncorrectable error in any of the following: 
(IA) ASI_EIDR 
(IA) ASI_PA_WATCH_POINT when enabled 
(IA) ASI_VA_WATCH_POINT when enabled 
(I) ASI_AFAR_D1 
(I) ASI_AFAR_U2 
(I) ASI_INTR_R 
(A) ASI_INTR_DISPATCH_W (UE at store) 
(IA) SOFTINT 
(IA) STICK 
(IA) STICK_COMP 

21 IAUG_TSBCTXT R Uncorrectable error in any of the following: 
(IA) ASI_DMMU_TSB_BASE 
(IA) ASI_DMMU_TSB_PEXT 
(IA) ASI_DMMU_TSB_SEXT 
(IA) ASI_DMMU_TSB_NEXT 
(IA) ASI_PRIMARY_CONTEXT 
(IA) ASI_SECONDARY_CONTEXT 
(IA) ASI_SHARED_CONTEXT 
(IA) ASI_IMMU_TSB_BASE 
(IA) ASI_IMMU_TSB_PEXT 
(IA) ASI_IMMU_TSB_NEXT 

20 IUG_TSBP R Uncorrectable error in any of the following: 
(I) ASI_DMMU_TAG_TARGET 
(I) ASI_DMMU_TAG_ACCESS 
(I) ASI_DMMU_TSB_8KB_PTR 
(I) ASI_DMMU_TSB_64KB_PTR 
(I) ASI_DMMU_TSB_DIRECT_PTR 
(I) ASI_IMMU_TAG_TARGET 
(I) ASI_IMMU_TAG_ACCESS 
(I) ASI_IMMU_TSB_8KB_PTR 
(I) ASI_IMMU_TSB_64KB_PTR 

19 IUG_PSTATE R Uncorrectable error in any of the following: %pstate, %pc, 
%npc, %cwp, %cansave, %canrestore, %otherwin, 
%cleanwin, %pil, %wstate 

18 IUG_TSTATE R Uncorrectable error in any of %tstate, %tpc, %tnpc. 

17 IUG_%F R Uncorrectable error in any floating-point register or in the FPRS, 
FSR, or GSR register. 

16 IUG_%R R Uncorrectable error in any general-purpose (integer) register, or in 
the Y, CCR, or ASI register. 

14 IUG_WDT R Watchdog timeout first time. Indicates the first watchdog timeout. If 
IUG_WDT = 1 when a single-ADE trap occurs, the instruction 
pointed to by TPC is abandoned and its result is unpredictable. 
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TABLE P-10 ASI_UGESR Bit Description (3 of 4) 

Bit Name RW	 Description 

10 IUG_DTLB R	 Uncorrectable error in DTLB during load, store, or demap. Indicates 
that one of the following errors was detected during a data TLB 
access: 
•	 An uncorrectable error in TLB data or TLB tag was detected 

when an LDXA instruction attempted to read 
ASI_DTLB_DATA_ACCESS or ASI_DTLB_TAG_ACCESS. 
TPC indicates either the instruction causing the error or the 
previous instruction. 

•	 A store to the data TLB or a demap of the data TLB failed. TPC 
indicates either the instruction causing the error or the instruction 
following the one that caused the error. 

9	 IUG_ITLB R Uncorrectable error in ITLB during load, store, or demap. Indicates 
that one of the following errors was detected during an instruction 
TLB access: 
•	 An uncorrectable error in TLB data or TLB tag was detected 

when an LDXA instruction attempted to read 
ASI_ITLB_DATA_ACCESS or ASI_ITLB_TAG_ACCESS. 
TPC indicates either the instruction causing the error or the 
previous instruction. 

•	 A store to the instruction TLB or a demap of the instruction TLB 
failed. TPC indicates either the instruction causing the error or the 
following instruction. 

8 IUG_COREERR R	 CPU core error. Indicates an uncorrectable error in a CPU internal 
resource used to execute instructions.


When there is an uncorrectable error in a program-visible register

and the instruction reading the register with UE is executed, the 

error in the register is always indicated. In this case,

IUG_COREERR may or may not be indicated simultaneously with

the register error.


5:4	 INSTEND R Trapped instruction end-method. Upon a single async_data_error 
trap without watchdog time-out detection, INSTEND indicates the 
instruction end-method of the trapped instruction pointed to by TPC 
as follows: 

002: Precise 
012: Retryable but not precise 
102: Reserved 
112: Not retryable 

See Section P.4.3 for the instruction end-method for the 
async_data_error trap. When a watchdog time-out is detected, the 
instruction end-method is undefined. 
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TABLE P-10 ASI_UGESR Bit Description (4 of 4) 

Bit Name RW Description 

3 PRIV R Privileged mode. Upon a single async_data_error trap, the PRIV 
field is set as follows: 

When the value of PSTATE.PRIV immediately before the single-
ADE trap is unknown because of an uncorrectable error in PSTATE, 
ASI_UGESR.PRIV is set to 1. Otherwise, the value of 
PSTATE.PRIV immediately before the single-ADE trap is copied 
to ASI_UGESR.PRIV. 

2 MUGE_DAE R Multiple UGEs caused by DAE. Upon a single-ADE, MUGE_DAE is 
set to 0. Upon a multiple-ADE trap caused by a DAE, MUGE_DAE is 
set to 1. Upon a multiple-ADE trap not caused by a DAE, 
MUGE_DAE is unchanged. 

1 MUGE_IAE R Multiple UGEs caused by IAE. Upon a single-ADE trap, MUGE_IAE 
is set to 0. Upon a multiple-ADE trap caused by an IAE, MUGE_IAE 
is set to 1. Upon a multiple-ADE trap not caused by an IAE, 
MUGE_IAE is unchanged. 

0 MUGE_IUGE R Multiple UGEs caused by I_UGE. Upon a single-ADE trap, 
MUGE_IUGE is set to 0. Upon a multiple-ADE trap caused by an 
I_UGE, MUGE_IUGE is set to 1. Upon a multiple-ADE trap not 
caused by an I_UGE, MUGE_IUGE is unchanged. 

Other Reserved R  Always 0.  

P.4.2 Action of async_data_error  (ADE) Trap 

The single-ADE trap and the multiple-ADE trap are generated upon the conditions defined in 
TABLE P-2 on page 179. The actions upon their occurrence are defined in more detail in this 
section. For convenience, the shorthand ADE is used to refer to async_data_error. 

1. Conditions that cause an ADE trap: 

An ADE trap occurs when one of the following conditions is satisfied: 

■	 When ASI_ERROR_CONTROL.UGE_HANDLER = 0 and I_UGEs and/or A_UGEs are 
detected, a single-ADE trap is generated. 

■	 When ASI_ERROR_CONTROL.UGE_HANDLER = 1 and I_UGEs, IAE, and/or DAE are 
detected, a multiple-ADE trap is generated. 

2. State change, trap target address calculation, and TL manipulation. 

The following actions are executed in this order: 

a. State transition 

if (TL = MAXTL), the CPU enters error_state and abandons the ADE trap; 

else if (CPU is in execution state && (TL = MAXTL − 1)), then the CPU enters 
RED_state. 
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b. Trap target address calculation 

When the CPU is in execution state, trap target address is calculated by %tba, %tt, and 
%tl. 

Otherwise, the CPU is in RED_state and the trap target address is set to 
RSTVaddr + A016. 

c. TL increases: TL ← TL + 1.  

3. Save the old value into TSTATE, TPC, and TNPC. 

PSTATE, PC, and NPC immediately before the ADE trap are copied into TSTATE, TPC, 
and TNPC, respectively. If the copy source register contains an uncorrectable error, the 
copy target register also contains the UE. 

4. Set the specific register setting: 

The following three sets of registers are updated: 

a. Update and validation of specific registers. 

Hardware writes the registers listed in TABLE P-11. 

TABLE P-11 Registers Written for Update and Validation 

Register Condition For Writing Value Written 

PSTATE Always AG = 1,  MG = 0,  IG = 0,  IE = 0,  PRIV = 1,  AM = 0,  PEF = 1,  
RED = 0 (or 1 depending on the CPU status), MM = 00, TLE = 0,  
CLE = 0.  

PC Always ADE trap address. 

nPC Always ADE trap address + 4. 

CCR When the register contains UE 0. 

FSR, GSR When the register contains UE If either FSR or GSR contains a UE, 0 is written to that register. 
When 0 is written to FSR and/or GSR upon a single-ADE trap, 
ASI_UGESR.IUG_%F is set to 1. 

CWP, CANSAVE, When the register contains UE Any register among CWP, CANSAVE, CANRESTORE, OTHERWIN, 
CANRESTORE, and CLEANWIN that contains a UE is written to 0. When 0 is 
OTHERWIN, written to one of these registers upon a single-ADE trap, 
CLEANWIN ASI_UGESR.IUG_PSTATE = 1 is set to 1. 

TICK When the register contains UE NPT = 1, Counter = 0. 

TICK_COMPARE When the register contains UE INT_DIS = 1, TICK_CMPR = 0. 

The error(s) in a written register are removed by setting the correct value to the error 
checking (parity) code during the full write of the register. 

Errors in registers other than those listed above and any errors in the TLB entry 
remain. 

b. Update of ASI_UGESR, as shown in TABLE P-12. 

c. Update of ASI_ERROR_CONTROL 
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TABLE P-12 ASI_UGESR Update for Single and Multiple-ADE Exceptions 

Bit Field Update upon a Single-ADE Trap Update upon a Multiple-ADE Traps 

63:6 Error indication	 All bits in this field are updated. Unchanged. 

All I_UGEs and A_UGEs detected at the trap 
are indicated simultaneously. 

5:4	 INSTEND The instruction end-method of the Unchanged. 
instruction referenced by TPC is set. 

2 MUGE_DAE Set to 0.	 If the multiple-ADE trap was caused by a 
DAE, MUGE_DAE is set to 1. 
Otherwise, MUGE_DAE is unchanged. 

1 MUGE_IAE Set to 0.	 If the multiple-ADE trap was caused by an 
IAE, MUGE_IAE is set to 1. 
Otherwise, MUGE_IAE is unchanged. 

0	 MUGE_IUGE Set to 0. If the multiple-ADE trap was caused by an 
I_UGE, MUGE_IUGE is set to 1. 
Otherwise, MUGE_IUGE is unchanged. 

Upon a single-ADE trap, ASI_ERROR_CONTROL.UGE_HANDLER is set to 1. During 
the period after the single-ADE trap occurs and before a RETRY or DONE instruction is 
executed, UGE_HANDLER = 1 tells hardware that the urgent error handler is running. 

Upon a multiple async_data_error trap, ASI_ERROR_CONTROL.WEAK_ED is set to 1 
and the CPU starts running in the weak error detection state. 

5. Set ASI_ERROR_CONTROL.UGE_HANDLER to 0. 

Upon completion of a RETRY or DONE instruction,

ASI_ERROR_CONTROL.UGE_HANDLER is set to 0.


P.4.3 Instruction End-Method at ADE Trap 

In SPARC64 VII, upon occurrence of the ADE trap, the trapped instruction referenced by 
TPC ends by using one of the following instruction end-methods: 

■ Precise 
■ Retryable but not precise (not included in JPS1) 
■ Not retryable (not included in JPS1) 

Upon a single-ADE trap, the trapped instruction end-method is indicated in 
ASI_UGESR.INSTEND. 
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TABLE P-13 defines each instruction end-method after an ADE trap. 

TABLE P-13 Instruction End-Method After async_data_error Exception 

Precise Retryable But Not Precise Not Retryable 

Instructions executed after the 
last ADE, IAE, or DAE trap and 
before the trapped instruction 
referenced by TPC. 

Ended (Committed). 

The instructions without UGE complete as defined in the architecture. The instruction with 
UGE has unpredictable value at its output (destination register or, in the case of a store 
instruction, destination memory location). 

The trapped instruction 
referenced by TPC 

Not executed. The output of the instruction is 
incomplete. 

Part of the output may be changed, 
or the invalid value may be written 
to the instruction output. However, 
the modification to the invalid target 
that is not defined as instruction 
output is not executed. 

The following modifications are not 
executed: 
• Store to the cacheable area 

including cache. 
• Store to the noncacheable area. 
• Output to the source register of the 

instruction (destructive overlap) 

The output of the instruction is 
incomplete. 

Part of the output may be changed, 
or the invalid value may be written 
to the instruction output. However, 
the modification to the invalid target 
that is not defined as instruction 
output is not executed. 

A store to an invalid address is not 
executed. (Store to a valid address 
with uncorrected data may be 
executed.) 

Instructions to be executed 
after the instruction referenced 
by TPC 

Not executed. Not executed. Not executed. 

The possibility of resuming the 
trapped program by executing 
the RETRY instruction to the 
%tpc when the trapped 
program is not damaged at the 
single-ADE trap 

Possible. Possible. Impossible. 

P.4.4 Expected Software Handling of ADE Trap 

The expected software handling of an ADE trap is described by the pseudo C code below. The 
main purpose of this flow is to recover from the following errors as much as possible: 

■ An error in the CPU internal RAM or register file 
■ An error in the accumulator 
■ An error in the CPU internal temporary registers and data bus 

void

expected_software_handling_of_ADE_trap()

{

/* Only %r0-%r7 can be used from here to Point#1 because the register window 


control registers may not have valid value until Point#1. It is 
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recommended that only %r0-%r7 are used as general-purpose registers (GPR) 

in the whole single-ADE trap handler, if possible. */ 

ASI_SCRATCH_REGp ← %rX; 
ASI_SCRATCH_REGq ← %rY; 
%rX ← ASI_UGESR; 

if ((%rX && 0x07) ≠ 0) {
 /* multiple-ADE trap occurrence */


     invoke panic routine and take system dump as much as possible 

     with the running environment of ASI_ERROR_CONTROL.WEAK_ED == 1;

}


if (%rX.IUG_%R == 1) {
 %r1-%r31 except %rX and %rY ← %r0;
 %y ← %r0;
 %tstate.pstate ← %r0; /* because ccr or asi field in %tstate.pstate

 contains the error */

}

else {

    save required %r1-%r7 to the ADE trap save area, using %rX, %rY,

 ASI_SCRATCH_REGp and ASI_SCRATCH_REGq;
    /* whole %r save and restore is required to retry the context          

with PSTATE.AG == 1 */ 
} 

if (ASI_UGESR.IUG_PSTATE == 1) {
 %tstate.pstate ← %r0;
 %tpc ← %r0;
 %pil ← %r0;
 %wstate ← %r0;

    All general-purpose registers in the register window ← %r0;
    Set the register window control registers

 (CWP, CANSAVE, CANRESTORE, OTHERWIN, CLEANWIN) to appropriate values;

}


/* Point#1: Program can use the general-purpose registers except %r0-%r7 

after this because the register window control registers were validated  

in the above step. */


if ((ASI_UGESR.IAUG_CRE == 1) ||( ASI_UGESR.IAUG_TSBCTXT == 1) || 

  (ASI_UGESR.IUG_TSBP == 1) || (ASI_UGESR.IUG_TSTATE == 1) ||


(ASI_UGESR.IUG_%F==1)) {

    Write to each register with an error indication, to erase as many

        register errors as possible;

}


if (ASI_UGESR.IUG_DTLB == 1) { 

    execute demap_all for DTLB;

    /* A locked fDTLB entry with uncorrectable error is not removed by this 


operation.  A locked fDTLB entry with UE never detects its tag match or 

causes the data_access_error trap when its tag matches at the DTLB 

reference for address translation. */


}


if (ASI_UGESR.IUG_ITLB == 1) {
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    execute demap_all for ITLB;

/* A locked fITLB entry with uncorrectable error is not removed by this


operation. A locked fITLB entry with UE never detects its tag match

or causes the data access error trap when its tag matches at the ITLB

reference for address translation. */


}


if ((ASI_UGESR.bits22:14 == 0) && 

((ASI_UGESR.INSTEND == 0) || (ASI_UGESR.INSTEND == 1))) {


    ++ADE_trap_retry_per_unit_of_time;

    if (ADE_trap_retry_per_unit_of_time < threshold)

        resume the trapped context by use of the RETRY instruction;


 else

        invoke panic routine because of too many ADE trap retries;

}

else if ((ASI_UGESR.bits22:18 == 0) && 


(ASI_UGESR.bits15:14 == 0) &&

(ASI_UGESR.PRIV == 0)) {


    ++ADE_trap_kill_user_per_unit_of_time;

    if (ADE_trap_kill_user_per_unit_of_time < threshold)

        kill one user process trapped and continue system operation;


 else

       invoke panic routine because of too may ADE trap user kill;

}

else

    invoke panic routine because of unrecoverable urgent error;

}


P.5 Instruction Access Errors 
See Appendix F for details. 

P.6 Data Access Errors 
See Appendix F for details. 
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P.7 Restrainable Errors

This section describes the registers—ASI_ASYNC_FAULT_STATUS, 
ASI_ASYNC_FAULT_ADDR_D1, and ASI_ASYNC_FAULT_ADDR_U2—that define the 
restrainable errors and explains how software handles these errors. 

P.7.1 ASI_ASYNC_FAULT_STATUS (ASI_AFSR) 

[1] Register name:	 ASI_ASYNC_FAULT_STATUS  (ASI_AFSR) 
[2] ASI:	 4C16 

[3] VA:	 0016 

[4] Error checking:	 None 
[5] Format & function:	 See TABLE P-14 

[6]	 Initial value at reset: Hard POR: All fields in ASI_AFSR are set to 0. 

Other resets: Values in ASI_AFSR are unchanged. 

The ASI_ASYNC_FAULT_STATUS register holds the detected restrainable error sticky bits. 
TABLE P-14 describes the fields of this register. In the table, the prefixes in the name field 
have the following meaning: 

■ DG_ Degradation error 
■ CE_ Correctable Error 
■ UE_ Uncorrectable Error 

TABLE P-14 ASI_ASYNC_FAULT_STATUS Bit Description 

Bit Name RW Description 

12 DG_U2$x RW1C Degradation in U2$. This bit is set when automatic way 
reduction is applied in U2$ due to U2$ tag errors in 
system. 

11 DG_U2$ RW1C Degradation in U2$. This bit is set when automatic way 
reduction is applied in U2$ due to U2$ errors in CPU or 
System. 

10 DG_D1$sTLB RW1C Degradation in L1$ and sTLB. This bit is set when 
automatic way reduction is applied in I1$, D1$, sITLB, 
sDTLB, uITLB and uDTLB 

9 Reserved R Always reads as 0; writes are ignored. 

3 UE_DST_BETO RW1C Disrupting store JBUS bus error or time-out. 

2 Reserved R Always reads as 0; writes are ignored. 

1 UE_RAW_L2$INSD RW1C Raw UE in L2 cache inside data. 
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TABLE P-14 ASI_ASYNC_FAULT_STATUS Bit Description 

Bit Name	 RW Description 

0 UE_RAW_D1$INSD RW1C Raw UE in D1 cache inside data. 

Other Reserved R Always reads as 0; writes are ignored. 

Note – Disrupting store bus error or time-out is reported as either AFSR.UE_DST_BETO, 
DSFSR.BERR, or DSFSR.RTO exclusively. 

Note – A load followed by a store with the same address which causes UE_DST_BETO may 
not signals data_access_error. In this case the data is returned from the store buffer, and 
AFSR.UE_DST_BETO is set eventually. 

P.7.2 ASI_ASYNC_FAULT_ADDR_D1 

The register is always reads as 0; write to this register is ignored in SPARC64 VII. 

P.7.3 ASI_ASYNC_FAULT_ADDR_U2 

The register is always read as 0; write to this register is ignored in SPARC64 VII. 

P.7.4 Expected Software Handling of Restrainable Errors 

Error recording and information is expected for all restrainable errors. 

The expected software recovery from each type of each restrainable error is described below. 

■	 DG_L1$, DG_U2$, DG_U2$x — The following status of the CPU is reported: 

■	 Performance is degraded by the way reduction in I1$, D1$, U2$, sITLB, or sDTLB. 

■	 CPU availability may be slightly decreased. If only one way facility is available among 
I1$, D1$, U2$, sITLB, and sDTLB and further way reduction is detected for this 
facility, the error_state transition error is detected. 

Software stops the use of the CPU, if required. 

■	 UE_DST_BETO — This error is caused by either: 

■	 Invalid DTLB entry is specified, or 

■	 Invalid memory access instruction when a physical address access ASI is executed in 
privileged software. 
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This error is always caused by a mistake in privileged software. Record the error and 
correct the erroneous privileged software. 

■	 UE_RAW_L2$INSD, and UE_RAW_D1$INSD — Software handles these errors as follows: 

■	 Correct the cache line data containing the uncorrected error by executing a block store 
with commit instruction, if possible. Note that the original data is deleted by this 
operation. 

■	 For UE_RAW_L2$FILL, avoid using the memory block with the UE as much as 
possible. 

■	 No error indication in ASI_AFSR at ECC_error trap — Ignore the ECC_error trap. 

This situation may occur at the condition described in the TABLE P-2 on page 179 (see the 
third row, last column”). 
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P.8 Internal Register Error Handling 
This section describes error handling for the following registers. 

■ Nonprivileged and Privileged registers 
■ ASR registers 
■ ASI registers 

P.8.1 Nonprivileged and Privileged Registers Error Handling 

The terminology used in TABLE P-15 is defined as follows: 

Column Term Meaning 

Error Detect 
Condition 

InstAccess The error is detected when the instruction accesses the register. 

Correction W The error indication is removed when an instruction performs a full 
write to the register 

ADE trap The error is removed by a full write to the register in the 
async_data_error hardware trap sequence. 

TABLE P-15 shows error handling for nonprivileged and privileged registers. 

TABLE P-15 Nonprivileged and Privileged Registers Error Handling 

Error 
Register Name RW Protect Error Detect Condition Error Type Correction 

%rn RW Parity InstAccess IUG_%R W 

%fn RW Parity InstAccess IUG_%F W 

PC Parity Always IUG_PSTATE ADE trap 

nPC Parity Always IUG_PSTATE ADE trap 

PSTATE RW Parity Always IUG_PSTATE ADE trap, W 

TBA RW Parity PSTATE.RED = 0  error_state W (by OBP) 

PIL RW Parity PSTATE.IE = 1  IUG_CORE W 
InstAccess IUG_PSTATE 

CWP, CANSAVE, RW Parity Always IUG_PSTATE ADE trap, W 
CANRESTORE, 
OTHERWIN, 
CLEANWIN 

TT RW None — — — 

TL RW Parity PSTATE.RED = 0  error_state W (by OBP) 

TPC RW Parity InstAccess IUG_TSTATE W 
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TABLE P-15 Nonprivileged and Privileged Registers Error Handling 

Error 
Register Name RW Protect Error Detect Condition Error Type Correction 

TNPC RW Parity InstAccess IUG_TSTATE W 

TSTATE RW Parity InstAccess IUG_TSTATE W 

WSTATE RW Parity Always IUG_PSTATE W 

VER R None — — — 

FSR RW Parity Always IUG_%F ADE trap, W 

Y RW Parity InstAccess IUG_%R W 

CCR RW Parity Always IUG_%R ADE trap, W 

ASI RW Parity Always IUG_%R ADE trap, W 

TICK RW Parity AUG Always1 IUG_COREERR ADE trap2, W 

FPRS RW Parity Always IUG_%F ADE trap, W 

1.Notified as error_state transition error in suspended state. 

2.TICK, TICK_COMPARE are set to 0x8000_0000_0000_0000 on ADE trap for correction. 

P.8.2 ASR Error Handling 

The terminology used in TABLE P-16 is defined as follows: 

Column Term Meaning 

Error Detect AUG always	 The error is detected while 
Condition	 (ASI_ERROR_CONTROL.UGE_HANDLER = 0) && 

(ASI_ERROR_CONTROL.WEAK_ED = 0)  

InstAccess The error is detected when the instruction accesses the register. 

Error Type (I)AUG_xxx The error is indicated by ASI_UGESR.IAUG_xxx = 1, and the 
error is an autonomous urgent error. 

I(A)UG_xxx The error is indicated by ASI_UGESR.IAUG_xxx = 1, and the 
error is an instruction urgent error. 

Correction W The error is removed by a full write to the register by an 
instruction. 

ADE trap The error is removed by a full write to the register in the 
async_data_error hardware trap sequence. 

TABLE P-16 shows the handling of ASR errors. 

STICK Behavior upon Error 

When error is occurred in %stick register, countup is stopped regardless of the error detect 
condition described in TABLE P-16. 
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TABLE P-16 ASR Error Handling 

ASR 
Number Register Name RW Error Protect Error Detect Condition Error Type Correction 

16 PCR RW None — — — 

17 PIC RW None — — — 

18 DCR R None — — — 

19 GSR RW Parity Always IUG_%F ADE trap, W 

20 SET_SOFTINT W None — — — 

21 CLEAR_SOFTINT W None — — — 

22 SOFTINT RW None — — — 

23 TICK_COMPARE RW Parity AUG Always1 IUG_COREERR ADE trap, W 

24 STICK RW Parity AUG always1 (I)AUG_CRE W 

InstAccess I(A)UG_CRE W 

25 STICK_COMPARE RW Parity AUG always1 (I)AUG_CRE W 

InstAccess I(A)UG_CRE W 

1.Notified as error_state transition error in suspended state. 

P.8.3 ASI Register Error Handling 

The terminology used in TABLE P-17 is defined as follows: 

Column Term 

Error Protect 

Meaning 

Parity 

ECC 

Parity protected. 

ECC (double-bit error detection, single-bit error correction) 
protected. 

Gecc Generated ECC. 

PP Parity propagation. The parity error in the input registers to 
calculate the register value is propagated. 
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Column Term Meaning 

Error Detect Always Error is always checked. 
Condition AUG always Error is checked when 

(ASI_ERROR_CONTROL.UGE_HANDLER = 0) && 
(ASI_ERROR_CONTROL.WEAK_ED = 0).  

LDXA Error is checked when the register is read by LDXA instruction. 

LDXA #I Error is checked when the register is read by LDXA instruction. 

Also, the register is used for the calculation of 
IMMU_TSB_8KB_PTR and IMMU_TSB_64KB_PTR. When the 
register has a UE and the register is used for the calculation of 
ASI_IMMU_TSB_PTR registers, the UE is propagated to the 
ASI_IMMU_TSB_PTR registers. Upon execution of the LDXA 
instruction to read ASI_IMMU_TSB_PTR with the propagated 
UE, the IUG_TSBP error is detected. 

LDXA #D Error is checked when the register is read by LDXA instruction. 

Also, the register is used for the calculation of 
DMMU_TSB_8KB_PTR, DMMU_TSB_64KB_PTR, and 
DMMU_TSB_DIRECT_PTR. When the register has a UE and the 
register is used for the calculation of ASI_DMMU_TSB_PTR 
registers, the UE is propagated to the ASI_DMMU_TSB_PTR 
registers. Upon execution of the LDXA instruction to read 
ASI_DMMU_TSB_PTR with the propagated UE, the IUG_TSBP 
error is detected. 

ITLB write Error is checked at the ITLB update timing after completion of 
the STXA instruction to write or demap an ITLB entry. 

DTLB write Error is checked at the DTLB update timing after the completion 
of the STXA instruction to write or demap a DTLB entry. 

Use for TLB Error is checked when the register is used for a TLB reference. 

Enabled Error is checked when the facility is enabled. 

intr_receive Error is checked when the Jupiter Bus interrupt packet is 
received. When an uncorrectable error is detected in the 
received interrupt packet, the vector interrupt trap is caused but 
ASI_INTR_RECEIVE.BUSY = 0 is set. In this case, a new 
interrupt packet can be received after software writes 
ASI_INTR_RECEIVE.BUSY = 0.  

BV interface Uncorrected error in the Barrier Variable transfer interface 
between the processor and the memory system is checked during 
the AUG_always period. 

Error Type error_state error_state transition error. 

(I)AUG_xxxx The error is indicated by ASI_UGESR.IAUG_xxxx = 1, and the 
error class is autonomous urgent error. 

I(A)UG_xxxx The error is indicated by ASI_UGESR.IAUG_xxxx = 1, and the 
error class is instruction urgent error. 

Others The name of the bit set to 1 in ASI_UGESR indicates the error 
type. 
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Column Term Meaning 

Correction RED trap The whole register is updated and corrected when a 
RED_state trap occurs. 

W The whole register is updated and corrected by use of an STXA 
instruction to write the register. 

W1AC The whole register is updated and corrected by use of an STXA 
instruction to write 1 to the specified bit in the register. 

WotherI The register is corrected by a full update of all of the following 
ASI registers: 
• ASI_IMMU_TAG_ACCESS 
• plus, when  ASI_UGESR.IAUG_TSBCTXT = 1 is indicated in 

a single-ADE trap: ASI_IMMU_TSB_BASE, 
ASI_IMMU_TSB_PEXT, ASI_PRIMARY_CONTEXT, 
ASI_SECONDARY_CONTEXT, ASI_SHARED_CONTEXT 

IMMU_TSB_8KB_PTR and IMMU_TSB_64KB_PTR are 
corrected only when a  
fast_instruction_access_MMU_miss trap occurs. 

WotherD The register is corrected by a full update of all of the following 
ASI registers: 
• ASI_DMMU_TAG_ACCESS 
• plus, when  ASI_UGESR.IAUG_TSBCTXT = 1 is indicated in 

a single-ADE trap: ASI_DMMU_TSB_BASE, 
ASI_DMMU_TSB_PEXT, ASI_DMMU_TSB_SEXT, 
ASI_PRIMARY_CONTEXT, ASI_SECONDARY_CONTEXT, 
ASI_SHARED_CONTEXT 

DMMU_TSB_8KB_PTR and DMMU_TSB_64KB_PTR are 
corrected only when a  fast_data_access_MMU_miss 
trap occurs. 

DemapAll The error is corrected by the demap all operation for the TLB 
with the error. Note that the demap all operation does not 
remove the locked TLB entry with uncorrectable error. 

Interrupt receive The register is corrected when the Jupiter Bus interrupt packet is 
received. 

TABLE P-17 shows the handling of ASI register errors. 

TABLE P-17 Handling of ASI Register Errors 

ASI VA 
Register Name RW 

Error 
Protect 

Error Detect 
Condition Error Type Correction 

4516 0016 DCU_CONTROL RW Parity Always error_state RED trap 

0816 MEMORY_CONTROL RW Parity Always error_state RED trap 

4816 0016 INTR_DISPATCH_STATUS R Gecc LDXA I(A)UG_CRE (UE) None 

ignored (CE) 

4916 0016 INTR_RECEIVE RW Gecc LDXA I(A)UG_CRE (UE) None 

ignored (CE) 

4A16 — JB_CONFIG_REGISTER R None — — — 
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TABLE P-17 Handling of ASI Register Errors 

ASI VA Error Error Detect 
Register Name RW Protect Condition Error Type Correction 

4C16 0016 ASYNC_FAULT_STATUS RW1C None — — — 

4C16 0816 URGENT_ERROR_STATUS R None — — — 

4C16 1016 ERROR_CONTROL RW Parity Always error_state RED trap 

4C16 1816 STCHG_ERROR_INFO R,W1AC None — — — 

4D16 0016 AFAR_D1 R,WAC Parity LDXA I(A)UG_CRE WAC 

4D16 0816 AFAR_U2 R,WAC Parity LDXA I(A)UG_CRE WAC 

5016 0016 IMMU_TAG_TARGET R Parity LDXA #I IUG_TSBP WotherI 

5016 1816 IMMU_SFSR RW None — — — 

5016 2816 IMMU_TSB_BASE RW Parity LDXA #I I(A)UG_TSBCTXT W 

5016 3016 IMMU_TAG_ACCESS RW Parity LDXA #I IUG_TSBP W (WotherI) 

5016 4816 IMMU_TSB_PEXT RW Parity = ITSB_BASE IAUG_TSBCTXT W 

5016 5816 IMMU_TSB_NEXT R Parity = ITSB_BASE IAUG_TSBCTXT W 

5016 6016 IMMU_TAG_ACCESS_EXT RW Parity LDXA #I IUG_TSBP W 

5016 7816 IMMU_SFPAR RW Parity LDXA #I I(A)UG_CRE W 

5116 — IMMU_TSB_8KB_PTR R  PP  LDXA IUG_TSBP WotherI 

5216 — IMMU_TSB_64KB_PTR R  PP  LDXA IUG_TSBP WotherI 

5316 — SERIAL_ID R None — — — 

5416 — ITLB_DATA_IN W Parity ITLB write IUG_ITLB DemapAll 

5516 — ITLB_DATA_ACCESS RW Parity LDXA IUG_ITLB DemapAll 

ITLB write IUG_ITLB DemapAll 

5616 — ITLB_TAG_READ R Parity LDXA IUG_ITLB DemapAll 

5716 — IMMU_DEMAP W Parity ITLB write IUG_ITLB DemapAll 

5816 0016 DMMU_TAG_TARGET R Parity LDXA #D IUG_TSBP WotherD 

5816 0816 PRIMARY_CONTEXT RW Parity LDXA #I, I(A)UG_TSBCTXT W 
LDXA #D 

Use for TLB I(A)UG_TSBCTXT W 

AUG always (I)AUG_TSBCTXT W 

5816 1016 SECONDARY_CONTEXT RW Parity = P_CONTEXT IAUG_TSBCTXT W 

5816 1816 DMMU_SFSR RW None — — — 

5816 2016 DMMU_SFAR RW Parity LDXA IAUG_CRE W 

5816 2816 DMMU_TSB_BASE RW Parity LDXA #D I(A)UG_TSBCTXT W 

5816 3016 DMMU_TAG_ACCESS RW Parity LDXA #D IUG_TSBP W (WotherD) 

5816 3816 DMMU_VA_WATCHPOINT RW Parity Enabled (I)AUG_CRE W 

LDXA I(A)UG_CRE W 

5816 4016 DMMU_PA_WATCHPOINT RW Parity Enabled (I)AUG_CRE W 

LDXA I(A)UG_CRE W 

5816 4816 DMMU_TSB_PEXT RW Parity = DTSB_BASE I(A)UG_TSBCTXT W 
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TABLE P-17 Handling of ASI Register Errors 

ASI VA Error Error Detect 
Register Name RW Protect Condition Error Type Correction 

5816 5016 DMMU_TSB_SEXT RW Parity = DTSB_BASE I(A)UG_TSBCTXT W 

5816 5816 DMMU_TSB_NEXT R Parity = DTSB_BASE I(A)UG_TSBCTXT W 

5816 6016 DMMU_TAG_ACCCESS_EXT RW Parity LDXA #D IUG_TSBP W 

5816 6816 SHARED_CONTEXT RW Parity = P_CONTEXT (I)AUG_TSBCTXT W 

5816 7816 DMMU_SFPAR RW Parity LDXA #D I(A)UG_CRE W 

5916 — DMMU_TSB_8KB_PTR R  PP  LDXA IUG_TSBP WotherD 

5A16 — DMMU_TSB_64KB_PTR R  PP  LDXA IUG_TSBP WotherD 

5B16 — DMMU_TSB_DIRECT_PTR R  PP  LDXA IUG_TSBP WotherD 

5C16 — DTLB_DATA_IN W Parity DTLB write IUG_DTLB DemapAll 

5D16 — DTLB_DATA_ACCESS RW Parity LDXA IUG_DTLB DemapAll 

DTLB write IUG_DTLB DemapAll 

5E16 — DTLB_TAG_READ R Parity LDXA IUG_DTLB DemapAll 

5F16 — DMMU_DEMAP W Parity DTLB write IUG_DTLB DemapAll 

6016 — IIU_INST_TRAP RW Parity LDXA No match at error W 

6116 0016, ITSB_PREFETCH RW Parity LDXA I(A)UG_TSBP W 
0816, 
4016, 
4816 

6216 0016, DTSB_PREFETCH RW Parity LDXA I(A)UG_TSBP W 
0816, 
4016, 
4816 

6D16 0016 - BARRIER_INIT RW Parity Always if Fatal Error — 
3E016 assigned 

or LDXA#D 

6E16 0016 EIDR RW Parity Always1 IAUG_CRE W 

6F16 0016 - BARRIER_ASSIGN RW Parity Always if Fatal Error — 
5016 assigned 

7416 addr CACHE_INV W None — — — 

7716 4016 – INTR_DATA0:7_W W Gecc None — W 
8816 INTR_DISPATCH_W W Gecc store (I)AUG_CRE W 

7F16 4016 – INTR_DATA0:7_R R  ECC  LDXA IAUG_CRE Interrupt 
8816 intr_receive BUSY = 0  Receive 

EF16 0016 - LBSY, BST RW Parity Always if Fatal Error — 
5016 assigned 

1.Notified as error_state transition error in suspended state. 
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P.9 Cache Error Handling

In this section, handling of cache errors of the following types is specified: 

■ Cache tag errors 
■ Cache data errors in I1, D1, and U2 caches 

This section concludes with the specification of automatic way reduction in the I1, D1, and 
U2 caches. 

P.9.1 Handling of a Cache Tag Error 

Error in D1 Cache Tag and I1 Cache Tag 

Both the D1 cache (Data level 1) and the I1 cache (Instruction level 1) maintain a copy of 
their cache tags in the U2 (unified level 2) cache. The D1 cache tags, the D1 cache tags copy, 
the I1 cache tags, and the I1 cache tags copy are each protected by parity. 

When a parity error is detected in a D1 cache tag entry or in a D1 cache tag copy entry, 
hardware automatically corrects the error by copying the correct tag entry from the other 
copy of the tag entry. If the error can be corrected in this way, program execution is 
unaffected. 

Similarly, when a parity error is detected in an I1 cache tag entry or in a I1 cache tag copy 
entry, hardware automatically corrects the error by copying the correct tag entry from the 
other copy of the tag entry. If the error can be corrected in this way, program execution is 
unaffected. 

When the error in the level-1 cache tag or tag copy is not corrected by the tag copying 
operation, the tag copying is repeated. If the error is permanent, a watchdog timeout or a 
FATAL error is then detected. 

Error in U2 (Unified Level 2) Cache Tag 

The U2 cache tag is protected by double-bit error detection and single-bit error correction 
ECC code. 

When a correctable error is detected in a U2 cache tag, hardware automatically corrects the 
error by rewriting the corrected data into the U2 cache tag entry. The error is not reported to 
software. 

When an uncorrectable error is detected in a U2 cache tag, a fatal error is detected and the 
CPU enters the CPU fatal error state. 
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P.9.2 Handling of an I1 Cache Data Error 

I1 cache data is protected by parity attached to every doubleword. 

When a parity error is detected in I1 cache data during an instruction fetch, hardware 
executes the following sequence: 

1. Reread the I1 cache line containing the parity error from the U2 cache. 

The read data from U2 cache must contain only the doubleword without error or the 
doubleword with the marked UE, because error marking is only applied to U2 cache 
outgoing data. 

2. For each doubleword read from U2 cache: 

a.	 When the doubleword does not have a UE, save the correct data in the I1 cache 
doubleword without parity error and supply the data for instruction fetch if required. 

There is no direct report to software for an I1 cache error corrected by refilling data. 

b. When the doubleword has a marked UE, set the parity bit in the I1 cache doubleword 
to indicate a parity error and supply the parity error data for the instruction fetch if 
required. 

3. Treat a fetched instruction with an error as follows: 

When the instruction with a parity error is fetched but not executed in any way visible 
to software, the fetched instruction with the error is discarded. 

Otherwise, fetch and execute the instruction with the indicated parity error. When the 
execution of the instruction is complete, an instruction_access_error exception will be 
generated (precise trap), and the marked UE detection and its ERROR_MARK_ID will 
be indicated in ASI_ISFSR. 

P.9.3 Handling of a D1 Cache Data Error 

D1 cache data is protected by 2-bit error detection and 1-bit error correction ECC, attached 
to every doubleword. 

Correctable Error in D1 Cache Data 

When a correctable error is detected in D1 cache data, the data is corrected automatically by 
hardware. There is no direct report to software for a D1 cache correctable error. 
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Marked Uncorrectable Error in D1 Cache Data 

When a marked uncorrectable error (UE) in D1 cache data is detected during the D1 cache 
line writeback to the U2 cache, the D1 cache data and its ECC are written to the target U2 
cache data and its ECC without modification. That is, a marked UE in D1 cache is 
propagated into the U2 cache. Such an error is not reported to software. 

When a marked UE in D1 cache data is detected during access by a load or store (excluding 
doubleword store) instruction, the data access error is detected. The data_access_error 
exception is generated precisely and the marked UE detection and its ERROR_MARK_ID are 
indicated in ASI_DSFSR. 

Raw Uncorrectable Error in D1 Cache Data During D1 Cache Line 
Writeback 

When a raw (unmarked) UE is detected in D1 cache data during the D1 cache line writeback 
to the U2 cache, error marking is applied to the doubleword containing the raw UE with 
ERROR_MARK_ID = ASI_EIDR. Only the correct doubleword or the doubleword with 
marked UE is written into the target U2 cache line. 

The restrainable error ASI_AFSR.UE_RAW_D1$INSD is detected. 

Raw Uncorrectable Error in D1 Cache Data on Access by Load or 
Store Instruction 

When a raw (unmarked) UE is detected in D1 cache data during access by a load or store 
instruction, hardware executes the following sequence: 

1. Hardware writes back the D1 cache line and refills it from U2 cache. The D1 cache line 
containing the raw UE, whether it is clean or dirty, is always written back to the U2 cache. 
During this D1 cache line writeback to U2 cache, error marking is applied for the 
doubleword containing the raw UE with ERROR_MARK_ID = ASI_EIDR. The D1 cache 
line is refilled from the U2 cache and the restrainable error ASI_AFSR.UE_RAW_D1$INSD 

is detected. 

2. Normally, hardware changes the raw UE in the D1 cache data to a marked UE. However, 
yet another error may introduce a raw UE into the same doubleword again. When a raw 
UE is detected again, step 1 is repeated until the D1 cache way reduction is applied. 

3. At this point, hardware changes the raw UE in the D1 cache data to a marked UE. The 
load or store instruction accesses the doubleword with the marked UE. The marked UE is 
detected during execution of the load or store instruction, as described in Raw 
Uncorrectable Error in D1 Cache Data During D1 Cache Line Writeback, above. 
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P.9.4 Handling of a U2 Cache Data Error 

U2 cache data is protected by 2-bit error detection and 1-bit error correction ECC, attached 
to every doubleword. 

Correctable Error in U2 Cache Data 

When a correctable error is detected in the incoming U2 cache fill data from Jupiter Bus, the 
data is corrected by hardware, stored into U2 cache. No exception is signalled. 

When a correctable error is detected in the data from U2 cache for I1 cache fill, D1 cache 
fill, copyback to Jupiter Bus, or writeback to Jupiter Bus, both the transfer data and source 
data in U2 cache are corrected by hardware. The error is not reported to software. 

Marked Uncorrectable Error in U2 Cache Data 

For U2 cache data, a doubleword with marked UE is treated the same as a correct 
doubleword. No error is reported when the marked UE in U2 cache data is detected. 

When a marked uncorrectable error (UE) is detected in incoming U2 cache fill data from 
Jupiter Bus, the doubleword with the marked UE is stored without modification in the target 
U2 cache line. 

When a marked uncorrectable error is detected in incoming data from the D1 cache to 
writeback D1 cache line, the doubleword with the marked UE is stored without modification 
in target U2 cache line. Note that there is no raw UE in D1 writeback data because error 
marking is applied for D1 writeback data, as described in Handling of a D1 Cache Data 
Error on page 209. 

When a marked UE is detected in the data read from the U2 cache for an I1 cache fill, D1 
cache fill, copyback to Jupiter Bus, or writeback to Jupiter Bus, the doubleword with the 
marked UE is transferred without modification. 

Raw Uncorrectable Error in U2 Cache Data 

When a raw (unmarked) UE is detected in incoming U2 cache fill data, error marking is 
applied for the doubleword with the raw UE, using ERROR_MARK_ID = 0. The doubleword 
and its ECC are changed to the marked UE data, the changed data is stored in the target U2 
cache line. No exception is signalled. 

When a raw UE is detected in data read from U2 cache, such as for I1 cache fill, D1 cache 
fill, copyback to Jupiter Bus, or writeback to Jupiter Bus, then error marking is applied for 
the doubleword with the raw UE, using ERROR_MARK_ID = ASI_EIDR. Both the 
doubleword and its ECC in the read data and those in the source U2 cache line are changed 
to marked UE data. The restrainable error ASI_AFSR.UE_RAW_L2$INSD is detected. 
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P.9.5	 Automatic Way Reduction of I1 Cache, D1 Cache, and 
U2 Cache 

When frequent errors occur in the I1, D1, or U2 cache, hardware automatically detects that 
condition and reduces the way, maintaining cache consistency. 

Way Reduction Condition 

Hardware counts the sum of the following error occurrences for each way of each cache: 

■ For each way of the I1 cache: 
■ Parity error in I1 cache tag or I1 cache tag copy 
■ I1 cache data parity error 

■ For each way of the D1 cache: 
■ Parity error in D1 cache tag or D1 cache tag copy 
■ Correctable error in D1 cache data 
■ Raw UE in D1 cache data 

■ For each way of U2 cache: 
■ Correctable error and uncorrectable error in U2 cache tag 
■ Correctable error in U2 cache data 
■ Raw UE in U2 cache data 

If an error count per unit of time for one way of a cache exceeds a predefined threshold, 
hardware recognizes a cache way reduction condition and takes the actions described below. 

I1 Cache Way Reduction 

When a way reduction condition is recognized for the I1 cache way W (W = 0 or 1), the 
following way reduction procedure is executed: 

1. When only one way in I1 cache is active because of previous way reduction: 

■ All entries in I1 cache way W are invalidated. 

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software. 

2. Otherwise: 

■ All entries in I1 cache way W are invalidated and the way W will never be refilled. 

■ The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software. 

D1 Cache Way Reduction 

When a way reduction condition is recognized for the D1 cache way W (W = 0 or 1), the 
following way reduction procedure is executed: 

1. When only one way in D1 cache is active because of previous way reduction: 
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■	 All entries in D1 cache way W are invalidated. On invalidation of each dirty D1 cache 
entry, the D1 cache line is written back to its corresponding U2 cache line. 

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software. 

2. Otherwise: 

■	 All entries in D1 cache way W are invalidated and the way W will never be refilled. 
On invalidation of each dirty D1 cache entry, the D1 cache line is written back to its 
corresponding U2 cache line. 

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software. 

U2 Cache Way Reduction 

When a way reduction condition is recognized for a U2 cache way, the U2 cache way 
reduction procedure is executed as follows: 

1. When ASI_L2CTL.WEAK_SPCA = 0,  

the U2 cache way reduction procedure (below) is started immediately. 

2. Otherwise, when ASI_L2CTL.WEAK_SPCA = 1 is set, 

the U2 cache way reduction procedure (below) becomes pending until

ASI_L2CTL.WEAK_SPCA is changed to 0. When ASI_L2CTL.WEAK_SPCA is

changed to 0, the U2 cache way reduction procedure will be started.


The U2 cache way W (W=0, 1, 2, or 3) reduction procedure: 

1. When only one way in U2 cache is active because of previous way reductions: 

■	 All entries in U2 cache way W are at once invalidated (that is, all active U2 cache 
entries are invalidated) and U2 cache way W remains as the only available U2 cache 
way. The U2 cache data is invalidated to retain system consistency. 

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software, even though 
the available U2 cache configuration is not changed as a result of the error. 

2. Otherwise: 

■	 All entries in available U2 cache ways, including way W, are invalidated to retain 
system consistency. 

■	 Way W becomes unavailable and is never refilled. 

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software. 

P.10 TLB Error Handling

This section describes how TLB entry errors and sTLB way reduction are handled. 
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P.10.1 Handling of TLB Entry Errors 

Error protection and error detection in TLB entries are described in 
TABLE P-18. 

TABLE P-18 Error Protection and Detection of TLB Entries 

TLB type Field Error Protection Detectable Error 

sITLB and sDTLB tag Parity Parity error (Uncorrectable) 

sITLB and sDTLB data Parity Parity error (Uncorrectable) 

fITLB and fDTLB lock bit Triplicated None; the value is determined by 
majority 

fITLB and fDTLB tag except lock bit Parity Parity error (Uncorrectable) 

fITLB and fDTLB data Parity Parity error 

Errors can occur during the following events: 

■ Access by LDXA instruction 
■ Virtual address translation (sTLB) 
■ Virtual address translation (fTLB) 

Error in TLB Entry Detected on LDXA Instruction Access 

If a parity error is detected in a DTLB entry when an LDXA instruction attempts to read 
ASI_DTLB_DATA_ACCESS or ASI_DTLB_TAG_ACCESS, hardware automatically 
demaps the entry and an instruction urgent error is indicated in ASI_UGESR.IUG_DTLB. 

When a parity error is detected in an ITLB entry when an LDXA instruction attempts to read 
ASI_ITLB_DATA_ACCESS or ASI_ITLB_TAG_ACCESS, hardware automatically 
demaps the entry and an instruction urgent error is indicated in ASI_UGESR.IUG_ITLB. 

Error in sTLB Entry Detected During Virtual Address Translation 

When a parity error is detected in the sTLB entry during a virtual address translation, 
hardware automatically demaps the entry and does not report the error to software. 

Error in fTLB Entry Detected During Virtual Address Translation 

When an fTLB tag has a parity error, the fTLB entry never matches any virtual address. An 
fTLB tag error in a locked entry causes a TLB miss for the virtual address already registered 
as the locked TLB entry. 

A parity error in fTLB entry data is detected only when the tag of the fTLB entry matches a 
virtual address. 
214 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 



When a parity error in the fITLB is detected at the time of an instruction fetch, a precise 
instruction_access_error exception is generated. The parity error in the fITLB entry and 
the fITLB entry index is indicated in ASI_ISFSR. 

When a parity error in fDTLB is detected for the memory access of a load or store 
instruction, a precise data_access_error exception is generated. The parity error in the 
fDTLB entry and the fDTLB entry index is indicated in ASI_DSFSR. 

P.10.2 Automatic Way Reduction of sTLB 

When frequent errors occur in sITLB and sDTLB, hardware automatically detects that 
condition and reduces the way, with no adverse effects on software. 

Way Reduction Condition 

Hardware counts TLB entry parity error occurrences for each sITLB way and sDTLB way. 
If the error count per unit of time exceeds a predefined threshold, hardware recognizes an 
sTLB way reduction condition. 

sTLB Way Reduction 

When a way reduction condition is recognized for the sTLB way W (W = 0 or 1), hardware 
executes the following way reduction procedures: 

1. When only one way in sTLB is active because of previous way reductions: 

■	 The previously reduced way is reactivated. 

2. Regardless of how many ways were previously active, way reduction occurs: 

■	 Hardware reduces the way and invalidates all entries in sTLB way W. Way W will 
never be refilled. 

■	 The restrainable error ASI_AFSR.DG_L1$U2$STLB is reported to software. 
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F.AP PE ND IX Q 

Performance Instrumentation


This appendix describes and specifies performance monitors that have been implemented in 
the SPARC64 VII processor. The appendix contains these sections: 

■ Performance Monitor Overview on page 217

■ Performance Event Description on page 219


■ Instruction and trap Statistics on page 222

■ MMU and L1 cache Event Counters on page 229

■ L2 cache Event Counters on page 230

■ Multi-thread specific Event Counters on page 234


Q.1 Performance Monitor Overview 
For the definitions of performance counter registers, please refer to Performance Control 
Register (PCR) (ASR 16) on page 18 and Performance Instrumentation Counter (PIC) 
Register (ASR 17) on page 20. 

Q.1.1 Sample Pseudo-codes 

Counter Clear/Set 

The PICs are read/write registers. Writing zero will clear the counter; writing any other value 
will set that value. The following pseudocode procedure clears all PICs (assuming privileged 
access): 
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/* clear pics without altering sl/su values */

pic_init = 0x0;

pcr = rd_pcr();

pcr.ulro = 0x1; /* don’t change su/sl on write */

pcr.ovf = 0x0; /* clear overflow bits also */

pcr.ut = 0x0;

pcr.st = 0x0; /* disable counts for good measure */

for (i=0; i<=pcr.nc; i++) {


/* select the pic to be written */

pcr.sc = i;

wr_pcr(pcr);

wr_pic(pic_init);/* clear pic i */


}


Counter Event Selection and Start 

Counter events are selected through PCR.SC and PCR.SU/PCR.SL fields. The following 
pseudocode selects events and enables counters (assuming privileged access): 

pcr.ut = 0x0; /* initially disable user counts */

pcr.st = 0x0; /* initially disable system counts */

pcr.ulro = 0x0; /* make sure read-only disabled */

pcr.ovro = 0x1; /* do not modify overflow bits */

/* select the events without enabling counters */

for(i=0; i<=pcr.nc; i++) {


pcr.sc = i;

pcr.sl = select an event;

pcr.su = select an event;

wr_pcr(pcr);


}

/* start counting */

pcr.ut = 0x1;

pcr.st = 0x1;

pcr.ulro = 0x1; /* for not changing the last su/sl */

/* resetting of overflow bits can be done here */

wr_pcr(pcr);


Counter Stop and Read

 The following pseudocode disables and reads counters (assuming privileged access): 

pcr.ut = 0x0; /* disable counts */

pcr.st = 0x0; /* disable counts */

pcr.ulro = 0x1; /* enable sl/su read-only */

pcr.ovro = 0x1; /* do not modify overflow bits */

for(i=0; i<=pcr.nc; i++) {


/* assume rest of pcr data has been preserved */
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pcr.sc = i;

wr_pcr(pcr);

pic = rd_pic();

picl[i] = pic.picl;

picu[i] = pic.picu;


}


Q.2 Performance Event Description 
The performance events can be divided into the following groups: 

1. Instruction and Trap statistics 
2. MMU and L1 cache event counters 
3. L2 cache event counters 
4. Jupiter Bus transaction event counters 
5. Multi-thread specific event counters 

There are two types of performance events, basic and extended in SPARC64 VII. 

Basic performance events are documented in JPS (Joint Programmer’s Specification) and 
verification have been verified. 

Extended events are not documented in JPS, and they are intended to provide information for 
debugging the hardware. Users of these extended events should be aware of the following 
rules. 

a. Verification of the extended events is not necessarily completed. In other words, 
the counters might not work as expected. 

b.	 Definition of the extended events may change without notice. Compatibility is not 
guaranteed between future SPARC64 generations. 

All event counters implemented in SPARC64 VII are listed in TABLE Q-1. The events in 
shadow are extended. The details of the performance counters are described in the following 
sections. They are speculatively updated, unless specially noted. 

TABLE Q-1 Events and Encoding of Performance Monitor 

Encoding 
Counter 

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3 

000000 cycle_counts 

000001 instruction_counts 
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TABLE Q-1 Events and Encoding of Performance Monitor  (Continued) 

Encoding 
Counter 

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3 

000010 instruction_fl 
ow_counts 

only_this_thr 
ead_active 

single_mode_ 
cycle_counts 

single_mode_ 
instructions 

instruction_fl 
ow_counts 

d_move_wait cse_priority_ 
wait 

xma_inst 

000011 iwr_empty w_cse_windo 
w_empty 

w_eu_comp_ 
wait 

w_branch_co 
mp_wait 

iwr_empty w_op_stv_wa 
it 

w_d_move w_0endop 

000100 Reserved w_op_stv_wa 
it_nc_pend 

w_op_stv_wa 
it_sxmiss 

w_op_stv_wa 
it_sxmiss_ex 

Reserved w_fl_comp_w 
ait 

w_cse_windo 
w_empty_sp_ 
full 

w_op_stv_wa 
it_ex 

000101 op_stv_wait 

000110 Reserved 

000111 Reserved 

001000 load_store_instructions 

001001 branch_instructions 

001010 floating_instructions 

001011 impdep2_instructions 

001100 prefetch_instructions 

001101 Reserved 

001110 Reserved 

001111 Reserved 

010000 Reserved 

010001 Reserved 

010010 rs1 flush_rs Reserved 

010011 1iid_use 2iid_use 3iid_use 4iid_use Reserved sync_intlk regwin_intlk Reserved 

010100 Reserved 

010101 Reserved toq_rsbr_pha 
ntom 

Reserved flush_rs Reserved rs1 Reserved 

010110 trap_all trap_int_vec 
tor 

trap_int_lev 
el 

trap_spill trap_fill trap_trap_in 
st 

trap_IMMU_ 
miss 

trap_DMMU 
_miss 

010111 Reserved 

011000 only_this_thr 
ead_active 

both_threads 
_active 

both_threads 
_empty 

Reserved 

011001 Reserved 

011010 Reserved 

011011 rsf_pmmi Reserved op_stv_wait_ 
nc_pend 

0iid_use flush_rs Reserved decall_intlk 

011100 Reserved 

011101 act_thread_s 
uspend 

op_stv_wait_ 
sxmiss 

op_stv_wait_ 
sxmiss_ex 

op_stv_wait_ 
nc_pend 

cse_window_ 
empty_sp_full 

Reserved both_threads 
_suspended 

Reserved 

011110 cse_window_ 
empty 

eu_comp_wai 
t 

branch_comp 
_wait 

0endop op_stv_wait_ 
ex 

fl_comp_wait 1endop 2endop 
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TABLE Q-1 Events and Encoding of Performance Monitor  (Continued) 

Encoding 
Counter 

picu0 picl0 picu1 picl1 picu2 picl2 picu3 picl3 

011111 inh_cmit_gpr 
_2write 

Reserved 3endop Reserved op_stv_wait_ 
sxmiss_ex 

op_stv_wait_ 
sxmiss 

100000 Reserved write_if_uTL 
B 

write_op_uT 
LB 

if_r_iu_req_ 
mi_go 

op_r_iu_req 
_mi_go 

if_wait_all op_wait_all 

100001 Reserved 

100010 Reserved 

100011 if_l1_thrashi 
ng 

op_l1_thrashi 
ng 

Reserved 

100100 swpf_success 
_all 

swpf_fail_all Reserved swpf_lbs_hit Reserved 

100101 Reserved 

100110 Reserved 

100111 Reserved 

110000 sx_miss_wait 
_dm 

sx_miss_wai 
t_pf 

sx_miss_co 
unt_dm 

sx_miss_co 
unt_pf 

sx_read_co 
unt_dm 

sx_read_co 
unt_pf 

dvp_count_ 
dm 

dvp_count_ 
pf 

110001 jbus_bi_count jbus_cpi_co 
unt 

jbus_cpb_co 
unt 

jbus_cpd_co 
unt 

jbus_reqbus 
_busy 

jbus_odrbus 
_busy 

Reserved 

110010 Reserved snres_256 snres_64 Reserved 

110011 Reserved sx_btc_count sx_miss_coun 
t_dm_if 

sx_miss_coun 
t_dm_opsh 

sx_miss_coun 
t_dm_opex 

110100 lost_softpf_pf 
p_full 

Reserved lost_softpf_by 
_abort 

Reserved 

110101 Reserved 

110110 jbus_reqbus0 
_busy 

jbus_reqbus1 
_busy 

jbus_reqbus2 
_busy 

jbus_reqbus3 
_busy 

jbus_odrbus0 
_busy 

jbus_odrbus1 
_busy 

jbus_odrbus2 
_busy 

jbus_odrbus3 
_busy 

111111 Disabled (No PIC is counted up) 
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Q.2.1 Instruction and trap Statistics 

Basic events 

1	 cycle_counts 
Counts the cycles when the performance monitor is enabled. This counter is similar to 
the %tick register but can separate user cycles from system cycles, based on PCR.UT 
and PCR.ST selection. 

2	 instruction_counts (non-speculative) 
Counts the number of committed instructions. For user or system mode counts, this 
counter is exact. Combined with the cycle_counts, it provides instructions per cycle. 

IPC = instruction_counts / cycle_counts 

If Instruction_counts and cycle_counts are both collected for user or system mode, IPC 
in user or system mode can be derived. 

3	 load_store_instructions (non-speculative) 
Counts the committed load/store instructions. Also counts atomic load-store instructions. 

4	 branch_instructions (non-speculative) 
Counts the committed branch instructions. Also counts CALL, JMPL, and RETURN 
instructions. 

5	 floating_instructions (non-speculative) 
Counts the committed floating-point operations (FPop1 and FPop2). Does not count 
Floating-Point Multiply-and-Add instructions. 

6	 impdep2_instructions (non-speculative) 
Counts the committed Floating Multiply-and-Add instructions. 

Contrary to its name, FPMADDX and FPMADDXHI are not counted by this counter. See 
xma_inst counter for detail. 

7	 prefetch_instructions (non-speculative)

Counts the committed prefetch instructions.


8	 trap_all (non-speculative) 
Counts all trap events. The value is equivalent to the sum of type-specific traps counters. 
222 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 



9	 trap_int_vector (non-speculative) 
Counts the occurrences of interrupt_vector_trap. 

10	 trap_int_level (non-speculative) 
Counts the occurrences of interrupt_level_n. 

11	 trap_spill (non-speculative) 
Counts the occurrences of spill_n_normal, spill_n_other. 

12	 trap_fill (non-speculative) 
Count the occurrences of fill_n_normal, fill_n_other. 

13	 trap_trap_inst (non-speculative) 
Counts the occurrences of Tcc instructions. 

14	 trap_IMMU_miss (non-speculative) 
Counts the occurrences of fast_instruction_access_MMU_miss. 

15	 trap_DMMU_miss (non-speculative) 
Counts the occurrences of fast_data_instruction_access_MMU_miss. 

Extended events 

16	 xma_inst (non-speculative) 
Counts the committed FPMADDX and FPMADDXHI instructions. 

17	 instruction_flow_counts (non-speculative) 

Number of committed instruction flow during measuring period. In SPARC64 VII, for 
specific instructions, an instruction may be internally represented as a set of instructions, 
and executed as if it were multiple instructions. instruction_flow_count measures the 
number of internal instructions during measuring period. 

18	 iwr_empty 

Number of cycles that IWR (Issue Word Register) is empty. IWR is a four-entry register 
that holds instructions while the decoder is processing. IWR empty may be caused on 
instruction cache miss. Note that the IWR is shared between both threads in a core. 
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19 rs1 (non-speculative) 

The number of cycles that normal execution is halted in order to service one of the 
following: 

■ trap, interrupt 
■ update of privileged registers 
■ assurance of memory order 
■ hardware retry (RAS initiated) 

20 flush_rs (non-speculative) 

Number of pipeline flushes due to mis-prediction. Since SPARC64 VII employs 
speculative execution, it may execute instructions that should have not been executed due 
to mis-prediction. When the predict path is found to be wrong, all instructions in the 
pipeline are aborted and execution of the correct path is started. A pipeline flush occurrs 
at this time.

 mis-prediction rate = flush_rs / branch_instructions 

21 0iid_use 

No instruction is issued in a cycle. SPARC64 VII issues up to four instructions. 0iid_use 
is incremented when no instruction is issued. In SPARC64 VII, for specific instructions, 
an instruction may be internally represented as a set of instructions. If an instruction is 
represented internally by multiple smaller instructions, each sub-instruction is measured. 

22 1iid_use 

One instruction is issued in a cycle. 

23 2iid_use 

Two instructions are issued in a cycle. 

24 3iid_use 

Three instructions are issued in a cycle. 

25 4iid_use 

Four instructions are issued in a cycle. 

26 sync_intlk 

Number of cycles that prevent issuing instructions due to pre-sync and post-sync. 
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27 regwin_intlk 

Number of cycles that prevent issuing instructions due to CWR switch. CWR holds the 
value of window register (%r8 - %r31), and its neighbors. Replacing the contents of CWR 
is caused by a save/restore or trap. Replacement is usually done concurrently in the 
background, but it can sometimes cause an interlock such as successive save/restore. 

28 decall_intlk 

Number of cycles that prevent issuing instructions due to any static inter-lock conditions 
at the decode stage. decall_intlk includes sync_intlk and regwin_intlk, but it does not 
count stall cycles due to dynamic conditions such as reservation station full. 

29 toq_rsbr_phantom 

Counts when an instruction predicted as a taken branch is actually not a branch 
instruction. This may happen in SPARC64 VII since branch prediction is done prior to 
decode of the instruction. 

30 op_stv_wait (non-speculative) 

Number of cycles that instruction commit is not done due to data wait. SPARC64 VII has 
a resource named CSE (Commit Stack Entry), which holds information of in-flight 
instructions. CSE is a fifo, and information is registered in-order. op_stv_wait is measured 
if the top entry of CSE (TOQ: Top of Queue) is a memory access instruction and data is 
not ready. 

op_stv_wait does not count memory access latency for a store instruction (however, 
memory access latency for an atomic instruction is counted). This is due to a feature of 
which SPARC64 VII employs for performance improvement. SPARC64 VII commits a 
store instruction before data is written to L2 cache. 

Caution is needed because not all data cache miss latency is measured by op_stv_wait. 
When a data cache miss occurrs, and after all instructions prior to that instruction have 
committed, the latency of that instruction is measured. 

Also caution is needed because the event is counted regardless of a given thread having 
priority to commit. To measure the event in the prioritized cycles, use w_op_stv_wait. 

31 op_stv_wait_nc_pend (non-speculative) 

op_stv_wait due to non-cache accesses regardless of a given thread having commit 
priority. 
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32 op_stv_wait_ex (non-speculative) 

No instruction is committed waiting for an integer load instruction in TOQ to complete, 
regardless of a given thread having commit priority. 

33 op_stv_wait_sxmiss (non-speculative) 

op_stv_wait due to L2$ miss regardless of a given thread having commit priority. 

34 op_stv_wait_sxmiss_ex (non-speculative) 

op_stv_wait_ex due to L2$ miss regardless of a given thread having commit priority. 

35 cse_window_empty_sp_full (non-speculative) 

No instruction is committed because CSE is empty while the Store Port is full, regardless 
of a given thread having commit priority. 

36 cse_window_empty (non-speculative) 

No instruction is committed because CSE is empty, regardless of a given thread having 
commit priority. 

37 branch_comp_wait (non-speculative) 

No instruction is committed waiting for a branch instruction in TOQ to complete. Its 
priority is lower than eu_comp_wait, regardless of a given thread having commit priority. 

38 eu_comp_wait (non-speculative) 

No instruction is committed waiting for an integer and floating-point instruction in TOQ 
to complete. Its priority is higher than branch_comp_wait, regardless of a given thread 
having commit priority. 

39 fl_comp_wait (non-speculative) 

No instruction is committed waiting for a floating-point instruction in TOQ to complete, 
regardless of a given thread having commit priority. 

40 d_move_wait (non-speculative) 

No instruction is committed waiting for register window, regardless of a given thread 
having commit priority. 
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41 cse_priority_wait 

No instruction is committed because the thread is waiting for commit priority. In 
SPARC64 VII, only one thread can commit instructions in a given cycle, and the priority 
is swithed every cycle as long as the other thread is active. cse_priority_wait counts the 
number of cycles the thread is ready to commit but does not have the right to do so. The 
event is counted only when there is an instruction to be committed for the thread. 

42 0endop (non-speculative) 

No instruction is committed regardless of whether the given thread has commit priority. 

43 1endop (non-speculative) 

One instruction is committed. 

44 2endop (non-speculative) 

Two instructions are committed. 

45 3endop (non-speculative) 

Number of cycles three instructions are committed. 

46 inh_cmit_gpr_2write (non-speculative) 

Less than four instructions are committed due to lack of GPR write ports. 

47 w_op_stv_wait (non-speculative) 

Number of cycles op_stv_wait is observed for the thread that has commit priority. 

48 w_op_stv_wait_nc_pend (non-speculative) 

Number of cycles op_stv_wait_nc_pend is observed for the thread that has commit 
priority. 

49 w_op_stv_wait_ex (non-speculative) 

Number of cycles op_stv_wait_ex is observed for the thread that has commit priority. 

50 w_op_stv_wait_sxmiss (non-speculative) 

Number of cycles op_stv_wait_sxmiss is observed for the thread that has commit priority. 
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51 w_op_stv_wait_sxmiss_ex (non-speculative) 

Number of cycles op_stv_wait_sxmiss_ex is observed for the thread that has commit 
priority. 

52 w_cse_window_empty_sp_full (non-speculative) 

Number of cycles cse_window_empty_sp_full is observed for the thread that has commit 
priority. 

53 w_cse_window_empty (non-speculative) 

Number of cycles cse_window_empty is observed for the thread that has commit priority. 

54 w_branch_comp_wait (non-speculative) 

Number of cycles branch_comp_wait is observed for the thread that has commit priority. 

55 w_eu_comp_wait (non-speculative) 

Number of cycles eu_comp_wait is observed for the thread that has commit priority. 

56 w_fl_comp_wait (non-speculative) 

Number of cycles fl_comp_wait is observed for the thread that has commit priority. 

57 w_d_move_wait 

Number of cycles d_move_wait is observed on the thread which has no right to commit. 

58 w_0endop (non-speculative) 

Number of cycles 0endop is observed on the thread which has no right to commit. 

59 rsf_pmmi (non-speculative) 

Number of cycles where the processor was mixing single and double precision. 
228 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 



Q.2.2 MMU and L1 cache Event Counters 

Basic events 

1	 write_if_uTLB 
Counts the occurrences of instruction uTLB misses. 

2	 write_op_uTLB 
Counts the occurrences of data uTLB misses. 

Note – Occurrences of main TLB misses are counted by trap_IMMU_miss/ 
trap_DMMU_miss. 

3	 if_r_iu_req_mi_go 
Counts the occurrences of I1 cache misses. 

4	 op_r_iu_req_mi_go 
Counts the occurrences of D1 cache misses. 

5	 if_wait_all 
Counts the total latency of I1 cache misses. Sum of if_wait=xxx is shown. Caution must 
be taken as it does not represent L1 instruction cache miss latency. Events measured in 
if_wait=xxx are mutually exclusive, thus, at most one of if_wait=xxx is counted up in a 
cycle. SPARC64 VII can process multiple cache misses in parallel since it employs a 
non-blocking cache, but only one (TOQ) of those accesses is measured. 

6	 op_wait_all 
Counts the total latency of D1 cache misses. Sum of op_wait=xxx is shown. Caution 
must be taken as it does not represent L1 instruction cache miss latency. Events 
measured in op_wait=xxx are mutually exclusive, thus, at most one of op_wait=xxx is 
counted up in a cycle. SPARC64 VII can process multiple cache misses in parallel since 
it employs a non-blocking cache, but only one (TOQ) of those accesses is measured. The 
condition where an access becomes a TOQ is beyond the scope of this document, but 
suffice it to say that a prefetch instruction can never become a TOQ. 
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Extended events 

7 swpf_success_all 

Number of prefetch instructions not lost in SU and sent to SX successfully. 

8 swpf_fail_all


Number of prefetch instructions lost in SU.


9 swpf_lbs_hit 

Number of prefetch instructions resulting in a L1-cache hit. 

The number of prefetch instructions sent to SU 
= swpf_success_all + swpf_fail_all + swpf_lbs_hit 

10 if_l1_thrashing 

Counts the occurrences of a read port issuing a move-in request twice for a cache line  
before releasing the port. This could happen when an L1 instruction cache miss occurs, 
data is obtained, but then pushed out before reading. 

11 op_l1_thrashing 

Counts the occurrences of a read port issuing a move-in request twice for a cache line  
before releasing the port. This could happen when an L1 data cache miss occurs, data is 
obtained, but then pushed out before reading. 

Q.2.3 L2 cache Event Counters 

Most L2 cache access related counters are categorized as dm (demand) and pf (prefetch), but 
for these counters, it does not always correspond to load/store/atomic or prefetch 
instructions. This is because: 

a.	 If a load/store/atomic instruction can not be processed due to starvation of L1 cache 
resources, these requests are handled as if they were prefetches to L2 cache, which 
does not use L1 cache resources. These requests are treated as 'prefetch' in the L2 
cache access related counters. 

b. SPARC64 VII employs hardware to prefetch data for a sequential access. A hardware 
prefetch request is treated as 'prefetch' in the L2 cache access related counters. 
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Basic events 

1	 sx_miss_wait_dm 

Counts the number of cycles from the occurrence of an L2 cache miss to data returned, 
caused by demand access. 

2	 sx_miss_wait_pf 
Counts the number of cycles from the occurrence of an L2 cache miss to data returned, 
caused by both software prefetch and hardware prefetch access. 

3	 sx_miss_count_dm 

Counts the occurrences of L2 cache miss by demand access. A Request to the same line 
of outstanding access (not yet completed) is considered to be "hit" and not counted in this 
counter. 

4	 sx_miss_count_pf 
Counts the occurrences of L2 cache miss by both software prefetch and hardware 
prefetch access. 

5	 sx_read_count_dm 

Counts L2 cache references by demand read access. A cache access may be aborted for 
many reasons such as contention of resources. sx_read_count_dm does not measure a 
retry of cache accesses. It double-counts multi-flow operations. Therefore the following 
equation is approximately true (but not precise): 

sx_read_count_dm + sx_read_count_pf = 

number of cache misses by L1I and L1D + number of non-lost hardware prefetch +

number of physical address access which bypass the L1 cache (ASI:0x14, 0x1c, 0x34,

0x3c)


Requests from other CPUs (copyback/invalidate request) are not measured by this 
counter. 

6	 sx_read_count_pf 
Counts L2 cache references by both software prefetch and hardware prefetch access. 

7	 dvp_count_dm 
Counts the occurrences of L2 cache miss by demand with writeback request. 
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8	 dvp_count_pf 
Counts the occurrences of L2 cache miss by both software prefetch and hardware 
prefetch, with writeback request. 

Extended events 

9 sx_miss_count_dm_if 

Count of L2 cache miss by demand request for instruction fetch 

10 sx_miss_count_dm_opsh 

Count of L2 cache misses by demand request of shared type for operand access. 

11 sx_miss_count_dm_opex 

Count of L2 cache misses by demand request of exclusive type for operand access. 

12	 sx_btc_count 

Number of requests of exclusive type while the line exists in SX with the S or O 
attributes. 

13 lost_softpf_pfp_full 

Number of software prefetch requests lost due to PF port full. 

14 lost_softpf_by_abort 

Number of software prefetch requests lost due to SX pipe abort. 

Q.2.4 Jupiter Bus Event Counters 

Basic events 

1	 jbus_bi_count 
Counts the number of invalidation requests received. 

2	 jbus_cpi_count 
Counts the number of copy and invalidate requests received. 
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3	 jbus_cpb_count 
Counts the number of copyback requests received. 

4	 jbus_cpd_count 
Counts the number of block-load requests and reqd requests from IOs. 

Extended events 

5	 sn_res_64 

The number of SC replies which indicate 1 subline (64 byte) will be transferred to the 
CPU. 

6	 sn_res_256 

The number of SC replies which indicate 4 sublines (256byte) will be transferred to the 
CPU. 

7 jbus_odrbus_busy 

Counts the number of busy cycles for order buses from the SCs to the CPU in Jupiter Bus 
cycles. There are four order buses (maximum) connecting SCs and a CPU with dedicated 
event counters. jbus_odrbus_busy summarizes these counters. 

jbus_odrbus_busy = jbus_odrbus0_busy + jbus_odrbus1_busy + jbus_odrbus2_busy + 
jbus_odrbus3_busy 

8 jbus_reqbus_busy 

Counts the number of busy cycles for request buses from the CPU to SCs in CPU cycles. 
There are four request buses (maximum) connecting a CPU and SCs with dedicated event 
counters. jbus_reqbus_busy summarizes these counters. 

jbus_reqbus_busy = jbus_reqbus0_busy + jbus_reqbus1_busy + jbus_reqbus2_busy + 
jbus_reqbus3_busy 

9 jbus_odrbus0_busy 

Counts the number of busy cycles for the bus from SC0 to the CPU. 

10 jbus_reqbus0_busy 

Counts the number of busy cycles for the bus the CPU to SC0. 
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SP
11 jbus_odrbus1_busy 

Counts the number of busy cycles for the bus from SC1 to the CPU. 

12 jbus_reqbus1_busy 

Counts the number of busy cycles for the bus from the CPU to SC1. 

13 jbus_odrbus2_busy 

Counts the number of busy cycles for the bus from SC2 to the CPU. 

14 jbus_reqbus2_busy 

Counts the number of busy cycles for the bus from the CPU to SC2. 

15 jbus_odrbus3_busy 

Counts the number of busy cycles for the bus from SC3 to the CPU. 

16 jbus_reqbus3_busy 

Counts the number of busy cycles for the bus from the CPU to SC3. 

Q.2.5 Multi-thread specific Event Counters 

Extended events 

1 single_mode_cycle_counts 

Number of cycles the thread is active in single threaded mode. 

2 single_mode_instructions 

Number of committed instructions in single threaded mode. 

3 both_threads_active 

Number of cycles both of the threads in a core are active and at least one entry of CSE in 
both threads are used. 
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4 both_threads_empty 

Number of cycles both of the threads in a core are active, but the CSE in both threads are 
empty. 

5 both_threads_suspended 

Number of cycles when both of the threads in a core are in the suspended state. 

6 only_this_thread_active 

Number of cycles only this thread in a core is active and the other thread is in the 

suspended state.


7 act_thread_suspend 

Number of cycles that this thread is in the suspended state. 
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Q.3 CPI analysis 
A common way to identify a performance bottleneck in SPARC64 VII is to measure the 
number of stall cycles and the cause of  the stall for each instruction. This is called CPI 
(Cycle Per Instruction) analysis. The performance events shown in Table Q-2 are useful for 
CPI analysis on a thread-base and a core-base. Note that using a sum of events for both 
threads leads to a core-based analysis. These events are all counted at the commit stage. 

TABLE Q-2 Performance events useful for CPI analysis 

Number of instructions 
and cycles committed Factors to prevent the next instruction from committing 

Inst. Cycle Thread-based analysis Core-based analysis1 

4 cycle_counts 
- 3endop - 2endop 
- 1endop - 0endop 

N/A  (Four instructions are committed in a cycle) 

3 3endop inh_cmit_gpr_2write + misc.

 misc. = 2endop + 3endop - inh_cmit_gpr_2write 2 2endop 

1 1endop misc. = 1endop 

0 0endop Others 0endop 
- d_move_wait 
- cse_priority_wait 
- op_stv_wait 
- cse_window_empy 
- eu_comp_wait 
- branch_comp_wait 
-(instruction_flow_counts 

- instruction_counts) 

w_0endop 
- w_d_move 

- w_op_stv_wait 
- w_cse_window_empy 
- w_eu_comp_wait 
- w_branch_comp_wait 
-(instruction_flow_counts 

- instruction_counts) 

wait for commit 
priority 

cse_priority_wait 

Execution eu_comp_wait 
+ branch_comp_wait 

w_eu_comp_wait 
+ w_branch_comp_wait 

Fetch miss cse_window_empy w_cse_window_empy 

L1D cache miss op_stv_wait 
- L2 cache miss 

w_op_stv_wait 
- L2 cache miss 

L2 cache miss op_stv_wait_sxmiss 
+ op_stv_wait_nc_pend 

w_op_stv_wait_sxmiss 
+ w_op_stv_wait_nc_pend 

1.Use sum of events in both threads. 
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Q.4 Shared performance events between threads

The performance counters (PCR and PIC) are not shared between threads. This is true for 
performance events as well. In other words, a given performance event increments a 
performance counter of one and only one thread which has triggered the event. 

But there are some exceptions. The following performance events are shared among all eight 
threads. That is, each event increments PICs for all of the threads. 

■ cycle_counts 
■ Jupiter Bus events 

These performance events are shared by two threads in a core. 

■ both_threads_active, both_threads_empty, both_threads_suspended 

Q.5	 Differences of Performance Events 
Between SPARC64 VI and SPARC64 VII 
As defined in Section Q.2, Performance Event Description, on page 219, extended events 
may change in definition, or even existence, without notice. Some events found in 
SPARC64 VI no longer exist in SPARC64 VII. This section summarize the difference of 
extended events in these CPUs. 

Encoding Counter SPARC64 VI SPARC64 VII Reason 

0000102 picl0 Reserved only_this_thread_ac 
tive 

Add SMT event 

0000102 picu1 Reserved single_mode_cycle_ 
counts 

Add SMT event 

0000102 picl1 Reserved single_mode_instruc 
tions 

Add SMT event 

0000102 picl2 Reserved d_move_wait Microarchitecture design 
changed 

0000102 picu3 Reserved cse_priority_wait Add SMT event 

0000102 picl3 Reserved xma_inst New Instruction 

0000112 picl0 Reserved w_cse_window_emp 
ty 

Add SMT event 
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Encoding Counter SPARC64 VI SPARC64 VII Reason 

0000112 picu1 Reserved w_eu_comp_wai Add SMT event 

0000112 picl1 Reserved w_branch_comp_wa 
it 

Add SMT event 

0000112 picl2 Reserved w_op_stv_wait Add SMT event 

0000112 picu3 Reserved w_d_move Add SMT event 

0000112 picl3 Reserved w_0endop Add SMT event 

0001002 picl0 Reserved w_op_stv_wait_nc_p 
end 

Add SMT event 

0001002 picu1 Reserved w_op_stv_wait_sxmi 
ss 

Add SMT event 

0001002 picl1 Reserved w_op_stv_wait_sxmi 
ss_ex 

Add SMT event 

0001002 picl2 Reserved w_fl_comp_wait Add SMT event 

0001002 picu3 Reserved w_cse_window_emp 
ty_sp_full 

Add SMT event 

0001002 picl3 Reserved w_op_stv_wait_ex Add SMT event 

0110002 picu0 thread_switch_all only_this_thread_ac 
tive 

VMT to SMT 

0110002 picl0 ts_by_sxmiss both_threads_active VMT to SMT 

0110002 picu1 ts_by_data_arrive both_threads_empty VMT to SMT 

0110002 picl1 ts_by_timer Reserved Remove VMT event 

0110002 picu2 ts_by_intr Reserved Remove VMT event 

0110002 picl2 ts_by_if Reserved Remove VMT event 

0110002 picl3 ts_by_suspend Reserved Remove VMT event 

0110012 picl3 ts_by_other Reserved Remove VMT event 

0110102 all active_cycle_count Reserved Remove VMT event 

0111012 picl3 Reserved both_threads_suspen 
ded 

Add SMT event 

1000112 picu0 Reserved if_l1_thrashing Enhance Microarchitecture 

1000112 picl0 Reserved op_l1_thrashing Enhance Microarchitecture 
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F.AP PE ND IX R 

Jupiter Bus Programmer’s Model


This chapter describes the programmers model of the Jupiter Bus interface of the 
SPARC64 VII. The registers for the Jupiter Bus interface and the access method for those 
registers are described. 

R.3 Jupiter Bus Config Register 
The Jupiter Bus Config Register is an implementation-specific ASI read-only register. This 
register is accessible in the ASI 4A16 space from the processor. 

[1] Register Name: ASI_JB_CONFIG_REGISTER 

[2] ASI: 4A16 
[3] VA: 0 
[4] RW Supervisor read, a write is ignored. 
[5] Data 

The Jupiter Bus Config Register is illustrated below and described in TABLE R-1. 

Reserved UC_S UC_SW CLK_MODE Reserved ITID 

63 20 19 17 16 15 11 10 9 0 

TABLE R-1 

Bits 

63:20 

19:17 

Jupiter Bus Config Register Description 

Field RW Description 

— R Reserved. Read as 0. 

UC_S R U2 cache size: 

1002:  4 MB
 1012:  5 MB  

1102:  6 MB  
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TABLE R-1 Jupiter Bus Config Register Description  (Continued) 

Bits Field RW Description 

16 UC_SW R U2 cache size per way 

0:  0.5 MB 
1:  1 MB 

15:11	 CLK_MODE R Specify the ratio between CPU clock and JBUS clock. 
000002 – 010112: Reserved 
011002:  3:1  
011012:                  3.25:1 
011102:             3.5:1 
... 
111102:  7.5:1  

9:0 ITID R This field shows ITID (Interrupt Target ID) of the thread. 
240 SPARC64 VII Extensions • Ver 1.0, 1 Jul. 2008 



F.AP PE ND IX S 

Summary Differences Between

SPARC64 VI and SPARC64 VII


The following table summarizes differences between SPARC64 VI and SPARC64 VII ISA. 
This list is a summary, not an exhaustive list. 

SPARC64 VI SPARC64 VII 
SPARC64 VII 
page 

C
hi

p Chip 
Architecture 

2CORE x 2VMT 
128KB(I) + 128KB(D) L1-Cache/core 

4CORE x 2SMT 
64KB(I) + 64KB(D) L1-Cache /core 

2, 45 
148 

M
M

U
 

Newly Added 
Features 

N/A fTLB as a victim cache 
Shared Context 
TSB Prefetch 

117 
114 
127 

Removed 
Features 

sTLB hash N/A 116 

In
st

ru
ct

io
n Modified 

Instructions 
N/A sleep 

prefetch 
60 
70 

Newly Added 
Instructions 

Newly Added 
Registers 

N/A FPMADDXHI, FPMADDX 61 

R
eg

is
te

r 

N/A SHARED_CONTEXT 
I/DTSB_PREFETCH 
BARRIER_INIT 
BARRIER_ASSIGN 
LBSY, BST 

114 
127 
143 
144 
145 

Removed 
Registers 

L2_DIAG_TAG_READ 
L2_DIAG_TAG_READ_REG 

N/A N/A 

Modified 
Registers 

VER VER 18 
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Index

A 
A_UGE


categories 175


error detection action 180


error detection mask 179


specification of 175


address mask (AM) field of PSTATE register 53

address space identifier (ASI)


complete list 137

ADE


conditions causing 192


end-method 194


registers written for update/validation 193


software handling 195


state transition 192

see also async_data_error


ASI_AFAR_D1 167, 190, 199, 206


ASI_AFAR_U2 167, 190, 199, 206

ASI_AFSR, see ASI_ASYNC_FAULT_STATUS


ASI_ASYNC_FAULT_STATUS 178, 198, 198, 206


ASI_ATOMIC_QUAD_LDD_PHYS 64, 129, 137, 138


ASI_ATOMIC_QUAD_LDD_PHYS_LITTLE 64, 129,


ASI_DCU_CONTROL_REGISTER 138


ASI_DCUCR 138


ASI_DMMU_SFAR 178


ASI_DMMU_SFSR 178


ASI_DMMU_TAG_ACCESS 190


ASI_DMMU_TAG_TARGET 190


ASI_DMMU_TSB_64KB_PTR 190


ASI_DMMU_TSB_8KB_PTR 190


ASI_DMMU_TSB_BASE 190


ASI_DMMU_TSB_DIRECT_PTR 190


ASI_DMMU_TSB_NEXT 190


ASI_DMMU_TSB_PEXT 190


ASI_DMMU_TSB_PTR 204


ASI_DMMU_TSB_SEXT 190

ASI_DSFSR 

FTYPE field 140, 141


ASI_DTLB_DATA_ACCESS 214


ASI_DTLB_TAG_ACCESS 214


ASI_ECR 185


UGE_HANDLER 180


ASI_EIDR 178, 185, 188, 190, 207, 210


ASI_ERROR_CONTROL 178, 185


UGE_HANDLER 192


update after ADE 193


WEAK_ED 174


ASI_FLUSH_L1I 148, 151, 152


ASI_IESR 138


ASI_IMMU_SFSR 178


ASI_IMMU_TAG_ACCESS 190


ASI_IMMU_TAG_TARGET 190


ASI_IMMU_TSB_64KB_PTR 190


137 
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ASI_IMMU_TSB_8KB_PTR 190


ASI_IMMU_TSB_BASE 190


ASI_IMMU_TSB_PEXT 190


ASI_IMMU_TSB_SEXT 190


ASI_INT_ERROR_CONTROL 138


ASI_INT_ERROR_RECOVERY 138


ASI_INT_ERROR_STATUS 138


ASI_INTR_DISPATCH_STATUS 156


ASI_INTR_DISPATCH_W 190


ASI_INTR_R 157, 190


ASI_INTR_RECEIVE 157


ASI_INTR_W 155, 156


ASI_ITLB_DATA_ACCESS 214


ASI_ITLB_TAG_ACCESS 214


ASI_JB_CONFIG_REGISTER 205, 239


ASI_L2_CTRL 152


ASI_MCNTL 109


JPS1_TSBP 105


ASI_MEMORY_CONTROL_REG 138


ASI_NUCLEUS 70, 119, 122


ASI_NUCLEUS_LITTLE 70, 122


ASI_PA_WATCH_POINT 188, 190


ASI_PHYS_BYPASS_EC_WITH_E_BIT 149


ASI_PHYS_BYPASS_EC_WITH_E_BIT_LITTLE 149


ASI_PHYS_BYPASS_WITH_EBIT 26


ASI_PRIMARY 70, 119, 122


ASI_PRIMARY_AS_IF_USER 70


ASI_PRIMARY_AS_IF_USER_LITTLE 70


ASI_PRIMARY_CONTEXT 190


ASI_PRIMARY_LITTLE 70, 122


ASI_SCRATCH 140


ASI_SECONDARY 70


ASI_SECONDARY_AS_IF_USER 70


ASI_SECONDARY_AS_IF_USER_LITTLE 70


ASI_SECONDARY_CONTEXT 190


ASI_SECONDARY_LITTLE 70


ASI_SERIAL_ID 48, 139


ASI_STCHG_ERROR_INFO 178


ASI_UGESR 189


IUG_DTLB 214


ASI_UPA_CONFIGURATION_REGISTER 138


ASI_URGENT_ERROR_STATUS 178, 189


ASI_VA_WATCH_POINT 188, 190


ASRs 18


async_data_error exception 3, 25, 38, 39, 39, 39, 40, 50,

88, 89, 93, 175, 176, 179, 180, 186, 188, 189, 191,

192, 192


asynchronous error 15

atomic


load quadword 64

load-store instructions


compare and swap 37


B 
block


block store with commit 140


load instructions 140


store instructions 140


blocked instructions 11


branch history buffer 2, 2, 6, 30


branch instructions 22


BRHIS, see branch history buffer 30


bypass attribute bits 129


C 
cache


coherence 150, 164

data


cache tag error handling 208

characteristics 149

data error detection 209

description 7

modification 147

protection 209

uncorrectable data error 210

way reduction 212


error protection 3


event counting ??–232

instruction 
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characteristics 148

data protection 209

description 7

error handling 209

fetched 9

flushing/invalidation 151

invalidation 147

way reduction 212


level-1

characteristics 147


level-2

characteristics 147

control register 152

unified 149

use 2


snooping 164


synchronizing 42

unified


characteristics 149

description 7


CALL instruction 22, 28, 63


CANRESTORE register 190


CANSAVE register 190


CASA instruction 26, 37, 123


CASXA instruction 26, 37, 123


catastrophic_error exception 37

CE


correction 182


counting in D1 cache data 212


in D1 cache data 209


in U2 cache tag 208


Chip Multi Processing 45


CLEANWIN register 92, 190


CLEAR_SOFTINT register 203


cmask field 67


CMP 46

CMP, see Chip Multi Processing


Commit Stack Entry 6, 32, 225


committed, definition 9, 10, 11, 12


compare and swap instructions 37


completed, definition 9


context ID hashing 110


core 3, 4, 10, 40, 45, 46, 47


counter 

disabling/reading 218


enabling 218


overflow (in PIC) 20


CPopn instructions (SPARC V8) 54

CSE, see Commit Stack Entry


current exception (cexc) field of FSR register 16


CWP register 92, 190


D 
DAE 

error detection action 180, 186


error detection mask 179


reporting 174

data


cacheable 
doubleword error marking 183

error marking 182

error protection 182


prefetch 25


data_access_error exception 65, 107, 124, 152, 175


data_access_exception exception 64, 107, 123, 124, 140,

151


data_access_MMU_miss exception 50


data_access_protection exception 50, 65


data_breakpoint exception 89

DCR


error handling 203


nonprivileged access 20


DCU_CONTROL register 205

DCUCR


access data format 21


CP (cacheability) field 21


CV (cacheability) field 21


data watchpoint masks 68


DC (data cache enable) field 21


DM (DMMU enable) field 21


field setting after POR 20


IC (instruction cache enable) field 21


IM field 148, 164
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IMI (IMMU enable) field 21


PM (PA data watchpoint mask) field 21


PR/PW (PA watchpoint enable) fields 21


updating 164


VM (VA data watchpoint mask) field 21


VR/VW (VA data watchpoint enable) fields 21


WEAK_SPCA field 21


deferred trap 37

deferred-trap queue


floating-point (FQ) 15, 22


integer unit (IU) 11, 15, 23, 87

denormalized


operands 16


results 16


DG_L1$L2$STLB error 213


DG_L1$U2$STLB error 213


dispatch (instruction) 9


disrupting traps 15, 37

distribution


nonspeculative 10


speculative 11

D-MMU


Secondary Context Register 113, 115

DMMU 

access bypassing 129


disabled 108


internal register (ASI_MCNTL) 109


registers accessed 109


Synchronous Fault Status Register 118


Tag Access Register 107


DMMU_DEMAP register 207


DMMU_PA_WATCHPOINT register 206


DMMU_SFAR register 206


DMMU_SFSR register 206


DMMU_TAG_ACCESS register 206


DMMU_TAG_TARGET register 206


DMMU_TSB_64KB_PTR register 207


DMMU_TSB_8KB_PTR register 207


DMMU_TSB_BASE register 206


DMMU_TSB_DIRECT_PTR register 207


DMMU_TSB_NEXT register 207


DMMU_TSB_PEXT register 206


DMMU_TSB_SEXT register 207


DMMU_VA_WATCHPOINT register 206

DSFAR


on JMPL instruction error 63


update during MMU trap 107

DSFSR


bit description 121


format 118


FT field 123, 124, 151


on JMPL instruction error 63


UE field 122


update during MMU trap 107


update policy 124


DTLB_DATA_ACCESS register 207


DTLB_DATA_IN register 207


DTLB_TAG_READ register 207


E 
E bit of PTE 26


ECC_error exception 50, 176, 180, 200


ee_second_watch_dog_timeout 188


ee_sir_in_maxtl 188


ee_trap_addr_uncorrected_error 188


ee_trap_in_maxtl 188


ee_watch_dog_timeout_in_maxtl 188

error


asynchronous 15


categories 171


classification 3


correctable 176, 208


correction, for single-bit errors 3


D1 cache data 209


fatal 172

handling


ASI errors 205

ASR errors 202
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most registers 201


isolation 3


restrainable 176


source identification 183


transition 172


U2 cache tag 208


uncorrectable 208

D1 cache data 210

without direct damage 176


urgent 173


ERROR_CONTROL register 206


ERROR_MARK_ID 183, 184, 210


error_state 36, 89, 162, 164, 180, 192

exceptions


catastrophic 37


data_access_error 65


data_access_protection 65


data_breakpoint 89


fp_exception_ieee_754 58, 81


fp_exception_other 78, 96


illegal_instruction 29, 58, 62, 68, 87, 88, 91


LDDF_mem_address_not_aligned 97, 140


mem_address_not_aligned 97, 140


persistence 38


privileged_action 96


statistics monitoring ??–223


unfinished_FPop 78, 81


execute_state 164


executed, definition 9

execution


EU (execution unit) 6


out-of-order 25


speculative 25


F 
fast_data_access_MMU_miss exception 107


fast_data_access_protection exception 107, 123


fast_data_instruction_access_MMU_miss exception 223


fast_instruction_access_MMU_miss exception 50, 107,


120, 121, 223

fatal error


behavior of CPU 172


cache tag 208


definition 172


detection 187


U2 cache tag 208


fDTLB 94, 102, 108


fe_other 188


fe_upa_addr_uncorrected_error 188


fetched, definition 9


fill_n_normal exception 223


fill_n_other exception 223


finished, definition 9


fITLB 94, 102, 107

floating-point


deferred-trap queue (FQ) 15, 22


denormalized operands 16


denormalized results 16


operate (FPop) instructions 16

trap types


fp_disabled 52, 58, 68, 91

unimplemented_FPop 87


FLUSH instruction 87, 89


FMADD instruction 29, 49, 55


FMSUB instruction 29, 49, 55


FNMADD instruction 49, 55


FNMSUB instruction 49, 55


formats, instruction 27


fp_disabled exception 29, 52, 58, 68, 91


fp_exception_ieee_754 exception 58, 81


fp_exception_other exception 50, 78, 96


FQ 15, 22

FSR


aexc field 17


cexc field 16, 17


conformance 17


NS field 78


TEM field 17


VER field 16
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fTLB 95, 104, 107, 115, 116, 117, 119, 121, 129, 130,

214


G 
GSR register 203


I

I_UGE


definition 174


error detection action 180, 186


error detection mask 179


type 173

IAE


error detection action 180


error detection mask 179


reporting 174


IEEE Std 754-1985 16, 77


IIU_INST_TRAP register 50, 207


illegal_instruction exception 22, 29, 58, 62, 68, 87, 88, 91

IMMU


internal register (ASI_MCNTL) 109


registers accessed 109


Synchronous Fault Status Register 118


IMMU_DEMAP register 206


IMMU_SFSR register 206


IMMU_TAG_ACCESS register 206, 207


IMMU_TAG_TARGET register 206


IMMU_TSB_64KB_PTR register 206


IMMU_TSB_8KB_PTR register 206


IMMU_TSB_BASE register 206, 207


IMMU_TSB_NEXT register 206


IMMU_TSB_PEXT register 206


IMPDEP1 instruction 29, 54, 90


IMPDEP1 instructions 101


IMPDEP2 instruction 29, 54, 57, 90, 100


IMPDEP2A instruction 61


IMPDEP2B instruction 27, 55


IMPDEPn instructions 54, 55


impl field of VER register 16


implementation number (impl) field of VER register 87


initiated, definition 9

instruction


execution 25


formats 27


prefetch 26


instruction fields, reserved 49


instruction_access_error exception 50, 107, 119, 121,

152, 175, 215


instruction_access_exception exception 50, 107, 120, 121


instruction_access_MMU_miss exception 50

instructions


atomic load-store 37


blocked 11


cache manipulation 151–?? 

cacheable 148


committed, definition 9, 10, 11, 12


compare and swap 37


completed, definition 9


control unit (IU) 6


count, committed instructions 222


executed, definition 9


fetched, definition 9


fetched, with error 209


finished, definition 9


floating-point operate (FPop) 16


FLUSH 89


IMPDEP2 90


implementation-dependent (IMPDEP2) 29


implementation-dependent (IMPDEPn) 54, 55


initiated, definition 9


issued, definition 9


LDDFA 97


prefetch 108


reserved fields 49


stall 10


timing 50


integer unit (IU) deferred-trap queue 11, 15, 23, 87
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internal ASI, reference to 124 
interrupt 

causing trap 15


dispatch 155


level 15 20


Interrupt Vector Dispatch Register 158


Interrupt Vector Receive Register 158


interrupt_level_n exception 223


interrupt_level_n exception 60


interrupt_vector_trap exception 38, 60, 223


INTR_DATA0:7_R register, error handling 207


INTR_DATA0:7_W register, error handling 207


INTR_DISPATCH_STATUS register 155, 205


INTR_DISPATCH_W register 207


INTR_RECEIVE register 205

I-SFSR


update during MMU trap 107

ISFSR


bit description 119


format 118


FT field 120


update policy 121


issue unit 9


issued (instruction) 9

issue-stalling instruction


instructions

issue-stalling 10


ITLB_DATA_ACCESS register 206


ITLB_DATA_IN register 206


ITLB_TAG_READ register 206


J 
JEDEC manufacturer code 18


JMPL instruction 28, 63


JPS1_TSBP mode 110


JTAG command 188


Jupiter Bus 7, 8, 38, 68, 91, 107, 108, 162, 182, 184, 188,

204, 205, 211, 219, 232, 237, 239


Jupiter Bus Config Register 239


L 
LDD instruction 37


LDDA instruction 37, 64, 123, 124


LDDF_mem_address_not_aligned exception 97, 140


LDDFA instruction 97, 140


LDQF_mem_address_not_aligned exception 50


LDSTUB instruction 26, 37, 123


LDSTUBA instruction 123


LDXA instruction 214


le 46


load quadword atomic 64


LoadLoad MEMBAR relationship 66

load-store instructions


compare and swap 37


D1 cache data errors 210


memory model 51


LoadStore MEMBAR relationship 66


Lookaside MEMBAR relationship 67


M 
machine sync 10


MAXTL 36, 90, 162, 164


MCNTL.NC_CACHE 148, 149


mem_address_not_aligned exception 64, 97, 107, 124,

140, 151


MEMBAR


#LoadLoad 66


#LoadStore 66


#Lookaside 67


#MemIssue 67


#StoreLoad 66


#Sync 67


blockload and blockstore 51


functions 66


in interrupt dispatch 156


instruction 66


partial ordering enforcement 67


membar_mask field 66

memory model
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PSO 41


RMO 41


store order (STO) 91


TSO 41, 42


MEMORY_CONTROL register 205


mmask field 66

MMU


disabled 108


event counting 229, 230


exceptions recorded 107


Memory Control Register 109


physical address width 104


registers accessed 109


Synchronous Fault Address Registers 126, 163


TLB data access address assignment 116


TLB organization 102


MOESI cache-coherence protocol 150

MT, see Multi-thread


Multi-thread 2, 4, 45, 45, 46


N 
noncacheable access 64, 148


nonleaf routine 63


nonspeculative distribution 10


nonstandard floating-point (NS) field of FSR register 16, 

88


nonstandard floating-point mode 16, 78


O 
OBP


facilitating diagnostics 148


notification of error 187


resetting WEAK_ED 174


validating register error handling 201


with urgent error 175


Operating Status Register (OPSR) 36, 164


OTHERWIN register 92, 190


out-of-order execution 25


P 
panic process 175

parity error


counting in D1 cache 212


D1 cache tag 208


fDTLB lookup 108


I1 cache data 209


I1 cache tag 208


partial ordering, specification 67

partial store instruction


watchpoint exceptions 68


partial store instructions 140


partial store order (PSO) memory model 41


PC register 45, 46, 193

PCR 

accessibility 18


counter events, selection 218


error handling 203


NC field 19


OVF field 19


OVRO field 19


PRIV field 18, 72, 74


SC field 19, 218


SL field 218


ST field 222


SU field 218


UT field 222

performance monitor


events/encoding 219


groups 219


pessimistic overflow 81


pessimistic zero 80

PIC register


clearing 217


counter overflow 20


error handling 203


nonprivileged access 20


OVF field 20


PIL register 38
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POPC instruction 49, 69


POR reset 180, 185, 187, 198

power-on reset (POR)


DCUCR settings 20


implementation dependency 89


RED_state 164


precise traps 15, 37

prefetch


data 25


instruction 26, 108


variants 70


prefetcha instruction 70


PRIMARY_CONTEXT register 206


privileged registers 17


privileged_action exception 18, 96, 107, 124, 137


PCR access 72, 74


privileged_opcode exception 20

processor states


after reset 165


error_state 36, 89, 164


execute_state 164


RED_state 36, 164


program counter (PC) register 92


program order 26

PSTATE register


AM field 28, 53, 92


IE field 156, 157


MM field 42


PRIV field 18, 72, 74


RED field 17, 148, 164, 165

PTE


E field 26


Q 
quadword-load ASI 64


queues 11


R 
RAS, see Return Stack Address 28, 29, 30, 63


RDPCR instruction 18, 72


RDTICK instruction 17


reclaimed status 11


RED_state 180, 193


entry after failure/reset 36


entry after SIR 162


entry after WDR 164


entry after XIR 162


entry trap 15


processor states 164, 165


restricted environment 36


setting of PSTATE.RED 17


trap vector 36


trap vector address (RSTVaddr) 91

registers


clean windows (CLEANWIN) 92


clock-tick (TICK) 90


current window pointer (CWP) 92


Data Cache Unit Control (DCUCR) 21


other windows (OTHERWIN) 92


privileged 17


renaming 11


restorable windows (CANRESTORE) 92


savable windows (CANSAVE) 92


relaxed memory order (RMO) memory model 41


reservation station 11


reserved fields in instructions 49

reset


externally_initiated_reset (XIR) 162


power_on_reset (POR) 89


software_initiated_reset (SIR) 162

resets


POR 180, 185, 187, 198


WDR 180, 187


restorable windows (CANRESTORE) register 92

restrainable error


definitions 176

handling


ASI_AFSR.UE_DST_BETO 199

ASI_AFSR.UE_RAW_L2$FILL 200
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UE_RAW_D1$INSD 200

UE_RAW_L2$INSD 200


software handling 199


types 176


Return Address Stack 28, 30, 53, 63


return prediction hardware 28

RMO, see relaxed memory ordering


rs3 field of instructions 27


RSTVaddr 36, 91, 162, 164


S 
S_CPB_REQ packets received count 233


S_CPD_REQ packets received count 233


S_CPI_REQ packets received count 232


S_INV_REQ packets received count 232


savable windows (CANSAVE) register 92


SAVE instruction 63

scan


definition 11


ring 11


sDTLB 94, 102


SECONDARY_CONTEXT register 206


SERIAL_ID register 206


SET_SOFTINT register 203


SHARD_CONTEXT register 207


SHUTDOWN instruction 73


Simultaneous Multi-thread 46


SIR instruction 162


sITLB 94, 102, 107


size field of instructions 27


SLEEP instruction 49, 54, 90, 101


SMT 46, 241

SMT, see Simultaneous Multi-Thread


SOFTINT register 38, 157, 190, 203

speculative


distribution 11


execution 25


spill_n_normal exception 223


spill_n_other exception 223


stall (instruction) 10


STBAR instruction 75


STCHG_ERROR_INFO register 206


STD instruction 37


STDA instruction 37


STDFA instruction 140


STICK 60


STICK register 190, 203


STICK_COMP register 190


STICK_COMPARE register 203


sTLB 7, 94, 95, 102, 103, 104, 110, 111, 115, 116, 119,

121, 125, 129, 130, 198, 213, 214, 215


Store Buffer 7


store order (STO) memory model 91


StoreLoad MEMBAR relationship 66


StoreStore MEMBAR relationship 66


STQF_mem_address_not_aligned exception 50


superscalar 11, 25


SUSPEND instruction 49, 54, 90, 101


suspended state 48, 59, 172, 173, 175, 176, 177, 179, 235


SWAP instruction 26, 37, 123


SWAPA instruction 123


sync (machine) 11


Sync MEMBAR relationship 67


synchronizing caches 42


syncing instruction 11


T 
Tag Access Register 117


Tcc instruction, counting 223


Thread 46


thread 4, 11, 12, 45, 46, 47, 48


Threads 46


threads 46


TICK register 17, 90


TICK_COMPARE register 203


TL register 162, 164

TLB 
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CP field 148

data


characteristics 94

in TLB organization 102


data access address 116


Data Access/Data In Register 117


index 116

instruction


characteristics 94

in TLB organization 102


main 10, 36


multiple hit detection 103


replacement algorithm 116


TNP register 190


total store order (TSO) memory model 41, 42


TPC register 190


transition error 172

traps


deferred 37


disrupting 15, 37


precise 15

TSB


Base Register 118


Extension Register 118


size 118


TSB Prefetch 105


TSB Prefetch Registers 127

TSTATE register


CWP field 17


error bit in ASI_UCESR register 190

TTE


CV field 148


U 
U2 cache


operation control (SXU) 7


tag error protection 208


uncorrectable data error 211


way reduction 213


uDTLB 10, 102


UE_RAW_D1$INSD error 210


uITLB 10, 102, 107


uncorrectable error 176, 191


unfinished_FPop exception 78, 81


unimplemented_FPop floating-point trap type 87


unimplemented_LDD exception 50


unimplemented_STD exception 50

urgent error


definition 173

types


A_UGE 173

DAE 173

IAE 173

instruction-obstructing 173


URGENT_ERROR_STATUS register 206


uTLB 10, 36, 103


V

VA_watchpoint exception 124


var field of instructions 27


VER register 18, 139


version (ver) field of FSR register 88


Vertical Multi-thread 45


virtual 45


Virtual Processor 45

VIS instructions


encoding 101


VMT 46, 241

VMT, see Vertical Multi-thread


W 
watchdog timeout 188, 190, 208


watchdog_reset (WDR) 37, 96, 164

watchpoint exception


on block load-store 52


on partial store instructions 68


quad-load physical instruction 65


WDR reset 180, 187


Write Buffer 7
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writeback cache 149


WRPCR instruction 18, 74


WRPR instruction 164, 165
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